Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Euler's beta integral in Pietro Mengoli's works
Massa Esteve, Maria Rosa; Delshams Valdés, Amadeu
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions; Universitat Politècnica de Catalunya. GRHCT - Grup de Recerca d´Història de la Ciència i de la Tècnica
Beta integrals for several non-integer values of the exponents were calculated by Leonhard Euler in 1730, when he was trying to find the general term for the factorial function by means of an algebraic expression. Nevertheless, 70 years before, Pietro Mengoli (1626–1686) had computed such integrals for natural and half-integer exponents in his Geometriae Speciosae Elementa (1659) and Circolo (1672) and displayed the results in triangular tables. In particular, his new arithmetic–algebraic method allowed him to compute the quadrature of the circle. The aim of this article is to show how Mengoli calculated the values of these integrals as well as how he analysed the relation between these values and the exponents inside the integrals. This analysis provides new insights into Mengoli’s view of his algorithmic computation of quadratures.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística
Mengoli, Pietro, 1625-1686
Euler, Leonhard, 1707-1783.
Arithmetical algebraic geometry.
Mengoli, Pietro
Euler, Leonhard, 1707-1783
Geometria algebraica aritmètica
Attribution-NonCommercial-NoDerivs 3.0 Spain

Mostrar el registro completo del ítem