To access the full text documents, please follow this link: http://hdl.handle.net/2117/8372

Enumeration and limit laws of dissections on a cylinder
Rué Perna, Juan José
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
We compute the generating function for triangulations on a cylinder, with the restriction that all vertices belong to its boundary and that the intersection of a pair of different faces is either empty, a vertex or an edge. We generalize these results to maps with either constant ({k}-dissections) or unrestricted (unrestricted dissections) face degree. We apply singularity analysis to the resulting generating functions to obtain asymptotic estimates for their coefficients, as well as limit distributions for natural parameters.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria
Combinatorial analysis
Maps
Geometric dissections
Cylinders
Triangulations
Anàlisi combinatòria
Mapes
Cilindres
Triangulació
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Rué Perna, Juan José; Zumalacárregui, Ana
Grande, Francesco; Rué Perna, Juan José
Cilleruelo, Javier; Rué Perna, Juan José; Sarka, Paulius; Zumalacárregui, Ana
Noy Serrano, Marcos; Rué Perna, Juan José
 

Coordination

 

Supporters