To access the full text documents, please follow this link:

Analysis of a viscoelastic spring-mass model
Pellicer Sabadí, Marta; Solà-Morales Rubió, Joan de
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
In this paper we consider a linear wave equation with strong damping and dynamical boundary conditions as an alternative model for the classical spring-mass-damper ODE. Our purpose is to compare analytically these two approaches to the same physical system. We take a functional analysis point of view based on semigroup theory, spectral perturbation analysis and dominant eigenvalues.
Partial differential equations
Dynamical systems
Structures and materials
strongly damped wave equation
dynamical boundary conditions
asymptotic behavior
dominant eigenvalues
Equacions en derivades parcials
Classificació AMS::35 Partial differential equations::35L Partial differential equations of hyperbolic type
Classificació AMS::35 Partial differential equations::35B Qualitative properties of solutions
Classificació AMS::74 Mechanics of deformable solids::74D Materials of strain-rate type and history type, other materials with memory
Classificació AMS::74 Mechanics of deformable solids::74H Dynamical problems
Classificació AMS::74 Mechanics of deformable solids::74K Thin bodies, structures
Attribution-NonCommercial-NoDerivs 2.5 Spain

Show full item record

Related documents

Other documents of the same author

Munhoz Rodrigues, Hildebrando; Solà-Morales Rubió, Joan de
Munhoz Rodrigues, Hildebrando; Solà-Morales Rubió, Joan de
Avinyó Andrés, Albert; Solà-Morales Rubió, Joan de; València Guitart, Marta