To access the full text documents, please follow this link: http://hdl.handle.net/2117/876

The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces
Cabré Vilagut, Xavier; Fontich i Julià, Ernest; Llave Canosa, Rafael de la
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
We introduce a method to prove existence of invariant manifolds and, at the same time to find simple polynomial maps which are conjugated to the dynamics on them. As a first application, we consider the dynamical system given by a Cr map F in a Banach space X close to a fixed point: F(x) = Ax + N(x), A linear, N(0) = 0, DN(0) = 0. We show that if X1 is an invariant subspace of A and A satisfies certain spectral properties, then there exists a unique Cr manifold which is invariant under F and tangent to X1. When X1 corresponds to spectral subspaces associated to sets of the spectrum contained in disks around the origin or their complement, we recover the classical (strong) (un)stable manifold theorems. Our theorems, however, apply to other invariant spaces. Indeed, we do not require X1 to be an spectral subspace or even to have a complement invariant under A.
Differentiable dynamical systems
parameterization method
invariant manifolds
non-resonant subspaces
Sistemes dinàmics diferenciables
Classificació AMS::37 Dynamical systems and ergodic theory::37D Dynamical systems with hyperbolic behavior
Attribution-NonCommercial-NoDerivs 2.5 Spain
http://creativecommons.org/licenses/by-nc-nd/2.5/es/
Article
         

Show full item record

Related documents

Other documents of the same author

Cabré Vilagut, Xavier; Fontich i Julià, Ernest; Llave Canosa, Rafael de la
Cabré Vilagut, Xavier; Fontich i Julià, Ernest; Llave Canosa, Rafael de la
 

Coordination

 

Supporters