To access the full text documents, please follow this link: http://hdl.handle.net/2117/8208

Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods
Arroyo Balaguer, Marino; Ortiz, Michael
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III; Universitat Politècnica de Catalunya. LACÀN - Centre Específic de Recerca de Mètodes Numèrics en Ciències Aplicades i Enginyeria
This is the pre-peer reviewed version of the following article: Arroyo, M.; Ortiz, M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. "International journal for numerical methods in engineering", Març 2006, vol. 65, núm. 13, p. 2167-2202, which has been published in final form at http://www3.interscience.wiley.com/journal/112159842/abstract
We present a one-parameter family of approximation schemes, which we refer to as local maximum-entropy approximation schemes, that bridges continuously two important limits: Delaunay triangulation and maximum-entropy (max-ent) statistical inference. Local max-ent approximation schemes represent a compromise - in the sense of Pareto optimality - between the competing objectives of unbiased statistical inference from the nodal data and the definition of local shape functions of least width. Local max-ent approximation schemes are entirely defined by the node set and the domain of analysis, and the shape functions are positive, interpolate affine functions exactly, and have a weak Kronecker-delta property at the boundary. Local max-ent approximation may be regarded as a regularization, or thermalization, of Delaunay triangulation which effectively resolves the degenerate cases resulting from the lack or uniqueness of the triangulation. Local max-ent approximation schemes can be taken as a convenient basis for the numerical solution of PDEs in the style of meshfree Galerkin methods. In test cases characterized by smooth solutions we find that the accuracy of local max-ent approximation schemes is vastly superior to that of finite elements.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
Maximum entropy method
Maximum entropy
Information theory
Approximation theory
Meshfree methods
Delaunay triangulation
Entropia
info:eu-repo/semantics/submittedVersion
Article
Wiley and Sons
         

Show full item record

Related documents

Other documents of the same author

Cyron, Christian J.; Arroyo Balaguer, Marino; Ortiz, Michael
Arias Vicente, Irene; Serebrinsky, S; Ortiz, Michael
Chalivendra, V. B.; Hong, Soonsung; Arias Vicente, Irene; Knap, Jaroslaw; Rosakis, Ares; Ortiz, Michael
Arias Vicente, Irene; Knap, Jaroslaw; Chalivendra, V. B.; Hong, Soonsung; Ortiz, Michael; Rosakis, Ares
 

Coordination

 

Supporters