Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Chaotic advection, transport and patchiness in clouds of pollution in an estuarine flow
Stirling, James Robert
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
We present an application of the transport theory developed for area preserving dynamical systems, to the problem of pollution and in particular patchiness in clouds of pollution in partially stratified estuaries. We model the flow in such estuaries using a $3+1$ dimensional uncoupled cartoon of the dominant underlying global circulation mechanisms present within the estuarine flow. We separate the cross section up into different regions, bounded by partial and complete barriers. Using these barriers we then provide predictions for the lower bound on the vertical local flux. We also present work on the relationship between the time taken for a particle to leave the estuary, (ie. the exit time), and the mixing within the estuary. This link is important as we show that to optimally discharge pollution into an estuary both concepts have to be considered. We finish by suggesting coordinates in space time for an optimal discharge site and a discharge policy to ensure the continually optimal discharge from such a site (or even a non optimal site).
Peer Reviewed
Fluid mechanics
Differentiable dynamical systems
lobe dynmaics
pattern formation
Convecció (Física)
Sistemes dinàmics diferenciables
Teoria ergòdica
Classificació AMS::86 Geophysics
Classificació AMS::37 Dynamical systems and ergodic theory::37N Applications
Classificació AMS::76 Fluid mechanics::76F Turbulence
Classificació AMS::76 Fluid mechanics::76R Diffusion and convection
American Institute of Mathematical Sciences

Mostrar el registro completo del ítem