To access the full text documents, please follow this link: http://hdl.handle.net/2117/818

First derivative of the period function with applications
Freire, Emilio; Gasull Embid, Armengol; Guillamon Grabolosa, Antoni
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Given a centre of a planar differential system, we extend the use of the Lie bracket to the determination of the monotonicity character of the period function. As far as we know, there are no general methods to study this function, and the use of commutators and Lie bracket was restricted to prove isochronicity. We give several examples and a special method which simplifies the computations when a first integral is known.
Differential equations
period function
Equacions diferencials ordinàries
Classificació AMS::37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory
Classificació AMS::34 Ordinary differential equations::34A General theory
Classificació AMS::34 Ordinary differential equations::34C Qualitative theory
Attribution-NonCommercial-NoDerivs 2.5 Spain
http://creativecommons.org/licenses/by-nc-nd/2.5/es/
Article
         

Show full item record

Related documents

Other documents of the same author

Freire, Emilio; Gasull Embid, Armengol; Guillamon Grabolosa, Antoni
Freire, Emilio; Gasull Embid, Armengol; Guillamon Grabolosa, Antoni
Freire, Emilio; Gasull Embid, Armengol; Guillamon Grabolosa, Antoni
Gasull Embid, Armengol; Guillamon Grabolosa, Antoni; Mañosa Fernández, Víctor
Gasull Embid, Armengol; Guillamon Grabolosa, Antoni; Mañosa Fernández, Víctor
 

Coordination

 

Supporters