To access the full text documents, please follow this link:

On the monotone upper bound problem
Pfeifle, Julián; Ziegler, Günter M.
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II; Universitat Politècnica de Catalunya. MD - Matemàtica Discreta
The Monotone Upper Bound Problem asks for the maximal number M(d,n) of vertices on a strictly-increasing edge-path on a simple d-polytope with n facets. More specifically, it asks whether the upper bound M(d,n) ≤ Mubt(d,n) provided by McMullen’s (1970) Upper Bound Theorem is tight, where Mubt(d,n) is the number of vertices of a dual-to-cyclic d-polytope with n facets. It was recently shown that the upper bound M(d,n) ≤ Mubt(d,n) holds with equality for small dimensions (d ≤ 4: Pfeifle, 2003) and for small corank (n ≤ d + 2: Gärtner et al., 2001). Here we prove that it is not tight in general: In dimension d=6 a polytope with n=9 facets can have Mubt(6,9)=30 vertices, but not more than 27 ≤ M(6,9) ≤ 29 vertices can lie on a strictly-increasing edge-path. The proof involves classification results about neighborly polytopes, Kalai’s (1988) concept of abstract objective functions, the Holt-Klee conditions (1998), explicit enumeration, Welzl’s (2001) extended Gale diagrams, randomized generation of instances, as well as non-realizability proofs via a version of the Farkas lemma.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria
Combinatory logic
Graph theory
Grafs, Teoria de
Attribution-NonCommercial-NoDerivs 3.0 Spain

Show full item record

Related documents

Other documents of the same author

Matschke, Benjamin; Pfeifle, Julián; Pilaud, Vincent
Ardila, Federico; Beck, Matthias; Hosten, Serkan; Pfeifle, Julián; Seashore, Kim