To access the full text documents, please follow this link:

Kalai's squeezed 3-spheres are polytopal
Pfeifle, Julián
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II; Universitat Politècnica de Catalunya. MD - Matemàtica Discreta
In 1988, Kalai [5] extended a construction of Billera and Lee to produce many triangulated(d−1)-spheres. In fact, in view of upper bounds on the number of simplicial d-polytopes by Goodman and Pollack [2, 3], he derived that for every dimension d ≥ 5, most of these(d − 1)-spheres are not polytopal. However, for d = 4, this reasoning fails. We can now show that, as already conjectured by Kalai, all of his 3-spheres are in fact polytopal. We also give a shorter proof for Hebble and Lee’s result [4] that the dual graphs of these 4-polytopes are Hamiltonian.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria
Hamiltonian graph theory
Combinatory logic
Convex geometry
Lògica combinatòria
Geometria convexa
Hamilton, Sistemes de
Attribution-NonCommercial-NoDerivs 3.0 Spain

Show full item record

Related documents

Other documents of the same author

Ardila, Federico; Beck, Matthias; Hosten, Serkan; Pfeifle, Julián; Seashore, Kim
Muntés Mulero, Víctor; Padrol Sureda, Arnau; Perarnau Llobet, Guillem; Pfeifle, Julián
Pfeifle, Julián; Ziegler, Günter M.