To access the full text documents, please follow this link: http://hdl.handle.net/2117/10790

Approximation of a variable density cloud of points by shrinking a discrete membrane
Esteve Cusiné, Jordi; Brunet Crosa, Pere; Vinacua Pla, Álvaro
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics; Universitat Politècnica de Catalunya. MOVING - Grup de Recerca en Modelatge, Interacció i Visualització en Realitat Virtual
This paper describes a method to obtain a closed surface that approximates a general 3D data point set with nonuniform density. Aside from the positions of the initial data points, no other information is used. Particularly, neither the topological relations between the points nor the normal to the surface at the data points are needed. The reconstructed surface does not exactly interpolate the initial data points, but approximates them with a bounded maximum distance. The method allows one to reconstruct closed surfaces with arbitrary genus and closed surfaces with disconnected shells
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria convexa i discreta
Discrete geometry
scattered data points
surface approximation
voxelization
discrete geometry
Geometria discreta
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
Article
North Holland
         

Show full item record

Related documents

Other documents of the same author

Esteve Cusiné, Jordi; Vinacua Pla, Álvaro; Brunet Crosa, Pere
Esteve Cusiné, Jordi; Vinacua Pla, Álvaro; Brunet Crosa, Pere
Esteve Cusiné, Jordi; Brunet Crosa, Pere; Vinacua Pla, Álvaro
Esteve Cusiné, Jordi; Brunet Crosa, Pere; Vinacua Pla, Álvaro
Esteve Cusiné, Jordi; Brunet Crosa, Pere; Vinacua Pla, Álvaro
 

Coordination

 

Supporters