To access the full text documents, please follow this link: http://hdl.handle.net/2117/2702

Automatic learning of 3D pose variability in walking performances for gait analysis
Rius, Ignasi; Gonzàlez, Jordi; Mozerov, Mikhail; Roca, Francesc Xavier
Institut de Robòtica i Informàtica Industrial
This paper proposes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. First, a Dynamic Programing synchronization algorithm is presented in order to establish a mapping between postures from different walking cycles, so the whole training set can be synchronized to a common time pattern. Then, the model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally statistics about the observed variability of the postures and motion direction are also computed at each time step. As a result, in this work we have extended a similar action model successfully used for tracking, by providing facilities for gait analysis and gait recognition applications.
Peer Reviewed
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo
Computer vision
human motion modelling
gair analysis and recognition
dynamic programming
Visió per ordinador
Classificació INSPEC::Pattern recognition::Computer vision
Article
Serials Publications
         

Show full item record

Related documents

Other documents of the same author

Rius, Ignasi; González Sabaté, Jordi; Mozerov, Mikhail; Roca, Francesc Xavier
Chakraborty, Bhaskar; Rius, Ignasi; Perdersoli, Marco; Mozerov, Mikhail; Gonzàlez, Jordi
Orozco, Francisco J.; Gonzàlez, Jordi; Rius, Ignasi; Roca, Francesc Xavier
Mozerov, Mikhail; Amato, Ariel; Roca, Francesc Xavier; Gonzàlez, Jordi
Huerta Casado, Iván; Rowe, Daniel; Viñas, Miguel; Mozerov, Mikhail; Gonzàlez, Jordi
 

Coordination

 

Supporters