Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Reliable and randomized data distribution strategies for large scale storage systems
Miranda Bueno, Alberto; Effert, S.; Kang, Y.; Miller, E.L.; Brinkmann, A.; Cortés Rosselló, Antonio
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors; Universitat Politècnica de Catalunya. CAP - Grup de Computació d´Altes Prestacions
The ever-growing amount of data requires highly scalable storage solutions. The most flexible approach is to use storage pools that can be expanded and scaled down by adding or removing storage devices. To make this approach usable, it is necessary to provide a solution to locate data items in such a dynamic environment. This paper presents and evaluates the Random Slicing strategy, which incorporates lessons learned from table-based, rule-based, and pseudo-randomized hashing strategies and is able to provide a simple and efficient strategy that scales up to handle exascale data. Random Slicing keeps a small table with information about previous storage system insert and remove operations, drastically reducing the required amount of randomness while delivering a perfect load distribution.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Sistemes experts
Expert systems (Computer science)
File organization (Computer science)
Sistemes experts (Informàtica)
Fitxers informàtics -- Organització

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Miranda Bueno, Alberto; Cortés Rosselló, Antonio
González, José Luis; Cortés Rosselló, Antonio
Pessolani, Pablo; Cortés Rosselló, Antonio; Gonnet, Silvio; Tinetti, Fernando
Martínez, Álvaro; Prieto, Santiago; Gallego, Noé; Nou Castell, Ramon; Giralt, Jacobo; Cortés Rosselló, Antonio