Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/15558

Modelization of the Low-Mach Navier Stokes equations in unstructured meshes
Chiva Segura, Jorge; Ventosa, Jordi; Lehmkuhl Barba, Oriol; Pérez Segarra, Carlos David
Universitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics; Universitat Politècnica de Catalunya. CTTC - Centre Tecnològic de la Transferència de Calor
In this paper a Low-Mach number approximation of the Navier Stokes Equations in unstructured meshes is presented. Both staggered and collocated formulations for unstructured grids will be used.The aim is to develop a numerical algorithm suitable for describing flows which present large variations of the density field, but that the speed of the flow is low, so that the Mach number is small and if a compressible formulation was to be used would cause strong limitations to the time step. The test case for verification will be a differentially heated cavity with a large temperature gradient. The results will be compared against benchmark data.
Peer Reviewed
Àrees temàtiques de la UPC::Física::Termodinàmica::Física de la transmissió de la calor
Navier-Stokes equations -- Numerical solutions
Mach number
Equacions de Navier-Stokes -- Mètodes numèrics
Nombre de Mach
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Rigola Serrano, Joaquim; Lehmkuhl Barba, Oriol; Ventosa, Jordi; Pérez Segarra, Carlos David; Oliva Llena, Asensio
Ventosa, Jordi; Lehmkuhl Barba, Oriol; Pérez Segarra, Carlos David; Oliva Llena, Asensio
Lehmkuhl Barba, Oriol; Borrell Pol, Ricard; Pérez Segarra, Carlos David; Chiva Segura, Jorge; Oliva Llena, Asensio
Muela Castro, Jordi; Ventosa, Jordi; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio
Ventosa Molina, Jordi; Chiva Segura, Jorge; Lehmkuhl, Oriol; Muela Castro, Jordi; Pérez Segarra, Carlos David; Oliva Llena, Asensio