Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Robust outlier detection in high density surface electromyographic signals
Marateb, H.R.; Rojas Martínez, Mónica; Mañanas Villanueva, Miguel Ángel; Merletti, R.
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial; Universitat Politècnica de Catalunya. SISBIO - Senyals i Sistemes Biomèdics
High Density surface Electromyography (HDsEMG) has been applied in both research and clinical applications for non-invasive neuromuscular assessment in several different fields using 2-D array. Proper interpretation of HDsEMG signals requires identifying “good” channels (where there is no short-circuit or bad-contact or major power line interference problem). Recording with many channels usually implies bad-contacts (that introduces large power line interference) and short-circuits (when using gels). In addition to online monitoring the electrode-contact quality, it is necessary to identify “bad” channels, or outliers, prior to the analysis of HDsEMG signal. In this paper we introduce a robust method to identify outliers in a set of monopolar HDsEMG signals recorded from Biceps and Triceps Brachii,Anconeus, Brachioradialis and Pronator Teres. The sensitivity and precision of this method show that this approach is promising.
Àrees temàtiques de la UPC::Enginyeria biomèdica::Electrònica biomèdica
Biomedical engineering
Medical instruments and apparatus
Enginyeria biomèdica -- Aparells i instruments

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Rojas Martínez, Mónica; Mañanas Villanueva, Miguel Ángel; Alonso López, Joan Francesc; Merletti, R.
Marateb, HR; Rojas Martínez, Mónica; Mansourian, Marjan; Merletti, R.; Mañanas Villanueva, Miguel Ángel
Rojas Martínez, Mónica; Mañanas Villanueva, Miguel Ángel; Alonso López, Joan Francesc