Utilizad este identificador para citar o enlazar este documento: http://hdl.handle.net/2072/182585

Dynamical systems of type (m,n) and their C*-algebras
Ara i Bertrán, Pere; Exel, Ruy; Katsura, Takeshi
Centre de Recerca Matemàtica
Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n &= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.
517 - Anàlisi
Sistemes dinàmics diferenciables
Grups lliures
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
38 p.
Edición preliminar
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;1050

Documentos con el texto completo de este documento

Ficheros Tamaño Formato
Pr1050.pdf 500.1 KB PDF

Mostrar el registro completo del ítem