Use this identifier to quote or link this document: http://hdl.handle.net/2072/169477

Strong isomorphism reductions in complexity theory
Buss, Samuel R.; Chen, Yijia; Flum, Jörg; Friedman, Sy D.; Müller, Moritz
Centre de Recerca Matemàtica
We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees.
2011
510 - Consideracions fonamentals i generals de les matemàtiques
Lògica matemàtica
Complexitat computacional
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)
Preprint
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;1009
         

Full text files in this document

Files Size Format
Pr1009.pdf 272.0 KB PDF

Show full item record

Related documents

 

Coordination

 

Supporters