Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Enhanced pulse propagation in non-linear arrays of oscillators
Sarmiento, Antonio; Reigada Sanz, Ramon; Romero, A. H.; Lindenberg, Katja
Universitat de Barcelona
The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays
Física estadística
Física matemàtica
Dinàmica reticular
Statistical physics
Mathematical physics
Lattice dynamics
(c) American Physical Society, 1999
The American Physical Society

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Reigada Sanz, Ramon; Sarmiento, Antonio; Lindenberg, Katja
Reigada Sanz, Ramon; Sarmiento, Antonio; Lindenberg, Katja
Reigada Sanz, Ramon; Sarmiento, Antonio; Lindenberg, Katja
Lacasta Palacio, Ana María; Sancho, José M.; Romero, A. H.; Sokolov, Igor M., 1958-; Lindenberg, Katja