To access the full text documents, please follow this link: http://hdl.handle.net/2445/18822

Algebraic decay of velocity fluctuations near a wall
Pagonabarraga Mora, Ignacio; Hagen, M. H. J.; Lowe, C. P.; Frenkel, Daan, 1948-
Universitat de Barcelona
Computer simulations of the dynamics of a colloidal particle suspended in a fluid confined by an interface show that the asymptotic decay of the velocity correlation functions is algebraic. The exponents of the long-time tails depend on the direction of motion of the particle relative to the surface, as well as on the specific nature of the boundary conditions. In particular, we find that for the angular velocity correlation function, the decay in the presence of a slip surface is faster than the one corresponding to a stick one. An intuitive picture is introduced to explain the various long-time tails, and the simulations are compared with theoretical expressions where available.
2011-07-26
Teoria del transport
Matèria condensada
Reologia
Física estadística
Termodinàmica
Sistemes dinàmics diferenciables
Transport theory
Condensed matter
Rheology
Statistical physics
Thermodynamics
Differentiable dynamical systems
Química física
(c) American Physical Society, 1998
Article
The American Physical Society
         

Show full item record

Related documents

Other documents of the same author

Hagen, M. H. J.; Pagonabarraga Mora, Ignacio; Lowe, C. P.; Frenkel, Daan, 1948-
Pagonabarraga Mora, Ignacio; Hagen, M. H. J.; Lowe, C. P.; Frenkel, Daan, 1948-
Leveque, Maximilien; Duvail, Magali; Rotenberg, Benjamin; Pagonabarraga Mora, Ignacio; Frenkel, Daan, 1948-
Llopis I.; Pagonabarraga Mora, Ignacio; Consentino Lagomarsino Marco, 1974-; Lowe, C. P.
 

Coordination

 

Supporters