To access the full text documents, please follow this link:

Discretized integral hydrodynamics
Romero-Rochín, V.; Rubí Capaceti, José Miguel
Universitat de Barcelona
Using an interpolant form for the gradient of a function of position, we write an integral version of the conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass, momentum, and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discretization procedure, we show how the integral equations can give rise to the so-called particle dynamics of smoothed particle hydrodynamics and dissipative particle dynamics.
Teoria quàntica
Teoria de camps (Física)
Relativitat especial (Física)
Física matemàtica
Química física
Quantum theory
Field theory (Physics)
Special relativity (Physics)
Physical and theoretical chemistry
Mathematical physics
(c) American Physical Society, 1998
The American Physical Society

Show full item record

Related documents

Other documents of the same author

Geisel, Nico; Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel
Vilar, J. M. G. (José M. G.), 1972-; Gomila Lluch, Gabriel; Rubí Capaceti, José Miguel
Pagonabarraga Mora, Ignacio; Bafaluy Bafaluy, Javier; Rubí Capaceti, José Miguel