To access the full text documents, please follow this link:

Quantifying rock fabrics: a test of autocorrelation of the spatial distribution of cristals
Egozcue, Juan José; Mackenzie, J.R.; Heilbronner, Renée; Hielscher, Ralf; Müller, A.; Schaeben, Helmut
Daunis i Estadella, Josep; Martín Fernández, Josep Antoni; Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
A novel test of spatial independence of the distribution of crystals or phases in rocksbased on compositional statistics is introduced. It improves and generalizes the commonjoins-count statistics known from map analysis in geographic information systems.Assigning phases independently to objects in RD is modelled by a single-trial multinomialrandom function Z(x), where the probabilities of phases add to one and areexplicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistenciesof the tests based on the conventional joins{count statistics and their possiblycontradictory interpretations are avoided. In practical applications we assume that theprobabilities of phases do not depend on the location but are identical everywhere inthe domain of de nition. Thus, the model involves the sum of r independent identicalmultinomial distributed 1-trial random variables which is an r-trial multinomialdistributed random variable. The probabilities of the distribution of the r counts canbe considered as a composition in the Q-part simplex SQ. They span the so calledHardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This isa generalisation of the well-known Hardy-Weinberg law of genetics. If the assignmentof phases accounts for some kind of spatial dependence, then the r-trial probabilitiesdo not remain on H. This suggests the use of the Aitchison distance between observedprobabilities to H to test dependence. Moreover, when there is a spatial uctuation ofthe multinomial probabilities, the observed r-trial probabilities move on H. This shiftcan be used as to check for these uctuations. A practical procedure and an algorithmto perform the test have been developed. Some cases applied to simulated and realdata are presented.Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinbergmanifold, Aitchison geometry
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
Hardy, Espais de
Anàlisi funcional
Tots els drets reservats
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

Show full item record

Related documents

Other documents of the same author

Sánchez-Chardi, Alejandro; López Fuster, María José; Egozcue, Juan José
Egozcue, Juan José; Pawlowsky-Glahn, Vera
Egozcue, Juan José; Díaz Barrero, José Luis; Pawlowsky Glahn, Vera