# Consultar departamento

Por fecha Por autores Por títulos Por temas (CDU)

Del documento Todo RECERCAT

# Mi RECERCAT

Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/10256/661

 Título: Modelling structural zeros in compositional data Bacon Shone, John Thió i Fernández de Henestrosa, Santiago; Martín Fernández, Josep Antoni; Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada This analysis was stimulated by the real data analysis problem of householdexpenditure data. The full dataset contains expenditure data for a sample of 1224 households. The expenditure is broken down at 2 hierarchical levels: 9 major levels (e.g. housing, food, utilities etc.) and 92 minor levels. There are also 5 factors and 5 covariates at the household level. Not surprisingly, there are a small number of zeros at the major level, but many zeros at the minor level. The question is how best to model the zeros. Clearly, models that tryto add a small amount to the zero terms are not appropriate in general as at least some of the zeros are clearly structural, e.g. alcohol/tobacco for households that are teetotal. The key question then is how to build suitable conditional models. For example, is the sub-composition of spendingexcluding alcohol/tobacco similar for teetotal and non-teetotal households?In other words, we are looking for sub-compositional independence. Also, what determines whether a household is teetotal? Can we assume that it is independent of the composition? In general, whether teetotal will clearly depend on the household level variables, so we need to be able to model this dependence. The other tricky question is that with zeros on more than onecomponent, we need to be able to model dependence and independence of zeros on the different components. Lastly, while some zeros are structural, others may not be, for example, for expenditure on durables, it may be chance as to whether a particular household spends money on durableswithin the sample period. This would clearly be distinguishable if we had longitudinal data, but may still be distinguishable by looking at the distribution, on the assumption that random zeros will usually be for situations where any non-zero expenditure is not small.While this analysis is based on around economic data, the ideas carry over tomany other situations, including geological data, where minerals may be missing for structural reasons (similar to alcohol), or missing because they occur only in random regions which may be missed in a sample (similar to the durables) Geologische Vereinigung; Universitat de Barcelona, Equip de Recerca Arqueomètrica; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Patronat de l’Escola Politècnica Superior de la Universitat de Girona; Fundació privada: Girona, Universitat i Futur 01-04-2009 Estadística matemàtica Tots els drets reservats info:eu-repo/semantics/conferenceObject Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada

## Otros documentos del mismo autor/a

Lee, Bik-wa; Bacon Shone, John
Bacon Shone, John
Grunsky, Eric C.; Bacon Shone, John

Coordinación

Patrocinio