Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Framework for Traffic Pattern Identification: Required Step for Short-term Forecasting
Casas Vilaró, Jordi; Ruiz de Villa, Alex; Torday, Alexandre
Universitat de Vic. Facultat d'Empresa i Comunicació; Australasian Transport Research Forum (35è: 2012: Brisbane, Queensland, Australia); ATRF 2012
In the world of transport management, the term ‘anticipation’ is gradually replacing ‘reaction’. Indeed, the ability to forecast traffic evolution in a network should ideally form the basis for many traffic management strategies and multiple ITS applications. Real-time prediction capabilities are therefore becoming a concrete need for the management of networks, both for urban and interurban environments, and today’s road operator has increasingly complex and exacting requirements. Recognising temporal patterns in traffic or the manner in which sequential traffic events evolve over time have been important considerations in short-term traffic forecasting. However, little work has been conducted in the area of identifying or associating traffic pattern occurrence with prevailing traffic conditions. This paper presents a framework for detection pattern identification based on finite mixture models using the EM algorithm for parameter estimation. The computation results have been conducted taking into account the traffic data available in an urban network.
Tots els drets reservats
15 p.
Australian Transport Research Forum

Documentos con el texto completo de este documento

Ficheros Tamaño Formato
artconlli_a2014_casas_jordi_framework_traffic.pdf 340.1 KB PDF

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Casas Vilaró, Jordi; Torday, Alexandre; Perarnau i Codina, Josep; Breen, M.; Ruiz de Villa, Alex
Barceló Bugeda, Jaime; Dumont, André-Gilles; Montero Mercadé, Lídia; Perarnau, Josep; Torday, Alexandre