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We prove that the correspondence between Reeb
and Beltrami vector fields presented in Etnyre &
Ghrist (Etnyre, Ghrist 2000 Nonlinearity 13, 441–
458 (doi:10.1088/0951-7715/13/2/306)) can be made
equivariant whenever additional symmetries of the
underlying geometric structures are considered. As a
corollary of this correspondence, we show that energy
levels above the maximum of the potential energy
of mechanical Hamiltonian systems can be viewed
as stationary fluid flows, though the metric is not
prescribed. In particular, we showcase the emblematic
example of the n-body problem and focus on the
Kepler problem. We explicitly construct a compatible
Riemannian metric that makes the Kepler problem of
celestial mechanics a stationary fluid flow (of Beltrami
type) on a suitable manifold, the Kepler–Euler flow.

1. Introduction
Reeb and Beltrami vector fields are two important
classes of vector fields that appear naturally in
classical mechanics and hydrodynamics, respectively. In
mechanical systems, Reeb vector fields are often obtained
by restriction of Hamiltonian vector fields to level-sets of
their Hamiltonians. Furthermore, the classical Weinstein
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conjecture asserts that Reeb vector fields exhibit at least one periodic orbit on closed manifolds.1

On the other hand, Beltrami vector fields are in a sense (see §2b) the most interesting stationary
solutions of the incompressible Euler equations from a dynamical point of view. A more
comprehensive introduction to Reeb and Beltrami vector fields is given in §2a and §2b below.

Sullivan envisaged that these vector fields, as well as their associated geometric structures
(contact forms for Reeb vector fields and Riemannian metrics for Beltrami vector fields), are
closely interconnected [2]. Etnyre & Ghrist formalized this idea in [3], showing that they are in
fact related through a simple correspondence.

Theorem 1.1 ([3]). Let M be a three-dimensional manifold. For any contact form on M and any non-
zero rescaling of the associated Reeb vector field, there is a Riemannian metric for which the rescaled Reeb
vector field is Beltrami. Conversely, for any Riemannian metric on M and any non-vanishing Beltrami
vector field, there is a contact form for which the Beltrami vector field is a rescaling of the Reeb vector field.

This correspondence has been used in various settings to translate results and techniques
between contact geometry and hydrodynamics. On one hand, tools from contact geometry are
adequate to construct Reeb vector fields with arbitrary topological complexity, so through the
correspondence one obtains results about topological complexity of Beltrami fields for adapted
Riemannian metrics. When the metric of the ambient space is fixed, analogous results are
extremely hard to prove (e.g. [4]). For instance, Etnyre & Ghrist used this technique to prove
that there is a non-vanishing Cω Beltrami field on S

3 for some adapted Riemannian metric which
exhibits periodic flowlines of all possible knot and link types [5]. Following a similar philosophy,
the second and the third author of this article used the correspondence to construct a Beltrami
field on S

3 for some Riemannian metric, which is Turing complete (i.e. one can perform arbitrary
computations by following streamlines of the flow) [6]. On the other hand, analytical techniques
on the hydrodynamics side were used to give lower bounds on the number of escape orbits of
b-singular Reeb vector fields using a singular version of the correspondence [7,8].

However, in all these references the study of the symmetries of the systems is missing. In this
article, we fill this gap and consider the effect of symmetries on both sides of the correspondence.
In §3, we extend theorem 1.1 by showing that we can also carry over any symmetries of the
underlying geometric structures, that is, the correspondence is equivariant.

Theorem 1.2. Let M be a (2n + 1)-dimensional manifold and ρ : G × M → M a compact Lie group
action on M. For any non-vanishing ρ-invariant Beltrami vector field X with ρ-invariant Riemannian
metric g, there is a ρ-invariant contact form for which X is a rescaling of the corresponding Reeb vector
field. Conversely, for each ρ-invariant rescaling of a Reeb vector field X with contact form α, there is a
ρ-invariant Riemannian metric for which X is Beltrami.

This result is particularly relevant when studying physical systems, whose symmetries are key
in their treatment. Indeed, at the end of §3, we use theorem 1.2 to obtain the following corollary.

Corollary 1.3. The flow of any mechanical Hamiltonian system (i.e. a system where the Hamiltonian
is the sum of kinetic and potential energies) on an energy level above the maximum value of the potential
is a stationary Beltrami solution to the Euler equations on the energy level with some adapted Riemannian
metric. Furthermore, symmetries of the Hamiltonian system translate to isometries of the metric.

This provides countless examples of Beltrami fields with nice symmetries. Indeed, any
integrable mechanical Hamiltonian system will yield highly symmetric Beltrami fields. We
remark, however, that the metrics that allow the aforementioned Hamiltonian systems to be seen
as Beltrami flows are not prescribed a priori, and it is generally very hard to understand their
curvature.

In §4, we give an explicit example of this equivariant correspondence, showing how it can be
used to view the classical Kepler problem of celestial mechanics—the motion of a satellite orbiting
a planet—along with its symmetries, as a stationary Beltrami solution to the Euler equations on

1This has been proved in dimension 3 [1] and in multiple other scenarios
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Figure 1. The maps which induce the Riemannian metrics whose geodesic flow is the regularized Kepler flow.

an adapted Riemannian manifold. We call this fluid flow the Kepler–Euler flow. The example
is based on the well-known Moser–Osipov–Belbruno regularization of the Kepler problem
(see theorem 4.3), which provides a way to rescale time to regularize collisions (i.e. when the
satellite collides with the planet at the origin) without otherwise affecting the dynamics of the
system. After mapping the flow on energy levels of the Kepler problem to adequate manifolds
(shown in figure 1), we can state the result about the Kepler–Euler flow as follows.

Theorem 1.4 (The Kepler–Euler flow). The regularized Kepler flow on the c-energy level is a
stationary Beltrami solution to the Euler equations on

— S∗
S

2
c if c < 0,

— S∗
R

2 if c = 0 and
— S∗

H
2
c if c > 0,

where S∗ denotes the cosphere bundle (see definition 4.2). The Riemannian metrics are the lifts to the
cosphere bundles of the natural constant (−2c)-curvature metrics, and the symmetries of the Kepler problem
correspond to isometries of the Riemannian metrics.

Remark 1.5. In the theorem above, the flow lines are lifted geodesics. The Kepler flow on the
plane is recovered from the natural stereographic projections of the respective surfaces, or from
the involution x �→ 2x/|x|2 when c = 0, as shown in figure 1. We note that the fact that symmetries
of the Kepler problem correspond to symmetries of the respective metrics was already well
known since Moser’s regularization.

This new perspective on the Kepler problem evokes the metaphoric image of a fluid moving
planets and stars through space, but it also raises the more down to Earth question, what systems of
classical mechanics are solutions to fluid equations? We take the example further, noting that we can
also reinterpret the n-body problem on positive energies as a stationary fluid flow (by corollary
1.3), though we do not compute the metric explicitly.

Corollary 1.6. The flow of the n-body problem on a positive energy level is a stationary Beltrami solution
to the Euler equations for some adapted Riemannian metric.

In the next section, we briefly introduce Reeb and Beltrami vector fields and proceed with the
proofs of theorems 1.2 and 1.4 in §§3 and 4 below.

2. Basic results

(a) Contact geometry and Reeb vector fields
Recall that a symplectic form on an even-dimensional manifold is a closed, non-degenerate
differential 2-form ω, and that a Hamiltonian system on a symplectic manifold (M, ω) with
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Hamiltonian function H ∈ C∞(M, R) is given by the vector field XH such that

ιXH ω = ω(XH, ·) = −dH.

For example, the Kepler problem is a Hamiltonian system on (T∗(R2 \ {0}), ω), where ω = dp1 ∧
dq1 + dp2 ∧ dq2 is the standard symplectic form, and the Hamiltonian function is given by

H(q, p) = |p|2
2

− 1
|q| . (2.1)

One of the fundamental problems when studying a Hamiltonian system is to describe its
periodic orbits. For example, for the 3-body problem of celestial mechanics (the motion of three
massive bodies interacting through gravitational force), only in very particular cases are periodic
orbits known to exist (for a thorough exposition of work on the three-body problem since Poincaré
we recommend [9]). Since energy is conserved along the flow of a Hamiltonian system, we can
immediately restrict our search for periodic orbits to energy levels of the Hamiltonian to reduce
the system by one dimension.

Reeb vector fields come into play when energy levels carry a contact form which is a primitive
of the symplectic form.

Definition 2.1 (Contact form). A contact form on a (2n + 1)-dimensional manifold Σ is a
differential 1-form α such that α ∧ (dα)n �= 0, or equivalently,

TΣ = ker α ⊕ ker dα.

The Reeb vector field associated with α is the unique vector field R on Σ such that

— 〈R〉 = ker dα and
— α(R) = 1.

We say that a vector field X is Reeb-like if X = fR for some smooth factor f > 0.

Remark 2.2. If a contact form on a regular energy level Σ = H−1(c) is a primitive of the
symplectic form, that is, dα = ω|Σ , then the Reeb vector field is parallel to the Hamiltonian vector
field XH on the energy level,

〈R〉 = ker dα = ker ω|Σ = 〈XH〉.

Therefore, the Hamiltonian vector field has periodic orbits if and only if the Reeb vector field does.
This is relevant because Weinstein’s conjecture states that every Reeb vector field on a closed
manifold has a closed orbit, so contact geometry and Reeb vector fields can be useful to prove
the existence of periodic orbits of Hamiltonian systems. This is precisely what is done in [10] to
prove that the regularized circular, planar, restricted three-body problem has periodic orbits on
compactified energy levels below the first Lagrange point L1.

Remark 2.3. When energy levels are not compact, saying something interesting about the
dynamics becomes more complicated. One can either resort to results such as Berg–Pasquotto–
Vandervorst’s [11], or compactify the energy level, somehow extending the dynamics in a
physically meaningful way. This last option, especially when compactifying unbounded energy
levels with contact forms, often gives rise to singularities in the extended contact form along the
added boundary. This is the case, for example, when positive energy levels of the restricted 3-
body problem are compactified using a McGehee change of coordinates [8]. Studying singular
contact forms and finding an equivalent to Weinstein’s conjecture in this setting thus becomes an
important question. In this line of research, we have shown that for a generic set within a class of
so-called b-contact forms (contact forms having a logarithmic singularity along a hypersurface),
one can give lower bounds on the number of escape orbits of the system [7,8].
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(b) Hydrodynamics and Beltrami vector fields
We now move on to a subject at first glance completely unrelated to celestial mechanics:
hydrodynamics. The mathematical model of a fluid is that it is composed of fluid particles, each
with a certain velocity which can be jointly written as a vector field X on a smooth manifold M in
which the fluid is contained. We call this vector field X the velocity field, and it can depend on time
and position on M, so X = X(t, x). Fluid equations are equations that such a velocity field must
satisfy, and the simplest such equations are the Euler equations. To formulate them, a Riemannian
metric g and a distinguished volume form μ are required. For most physical applications, μ is the
Riemannian volume form. We assume that the density of the fluid is constant and equal to one.
Applying Newton’s second law to the trajectory of a fluid particle x(t), we get

d2

dt2 x(t) = F ⇒ d
dt

X(t, x(t)) = ∂X
∂t

+ ∇XX = F,

where ∇X is the Levi–Civita connection given by g and F is the force acting on the particle. The
incompressible Euler equations are obtained assuming that the only force acting on the fluid
particles comes from the internal pressures of the fluid, so that if P is the pressure at each point in
the fluid, F = −∇P. Furthermore, it is assumed that the fluid is incompressible, which translates
to div(X)μ =LXμ = 0. In this article, we are concerned with the special case in which the velocity
field X is stationary, so ∂X/∂t = 0. The stationary incompressible Euler equations are

∇XX = −∇P

and LXμ = 0.

}

It is convenient to reformulate the stationary Euler equations in the language of differential
forms, see [12]. To do so, we dualize the equations by the Riemannian metric, thus obtaining

ιXdιXg = −dB

and LXμ = 0

}
, (2.2)

where B = P + (1/2)||X||2 is known as the Bernoulli function. The last remaining object to be
introduced in this section is the curl of a vector field, which in Euclidean R

3 is the usual curl
operator, curl X = ∇ × X. On general Riemannian manifolds and in the language of differential
forms, the curl operator is generalized to

Definition 2.4 (Curl operator). Given a (2n + 1)-dimensional Riemannian manifold with
distinguished volume form (M, g, μ), the curl of a vector field X with respect to g and μ is the
unique vector field curl X that satisfies

ιcurl Xμ = (dιXg)n.

When X is a velocity field, curl X is commonly known as the vorticity field of the flow. A
particularly relevant class of stationary solutions to the Euler equations are velocity fields that
(in addition to being divergence-free) are parallel to their vorticity field: curl X = fX. In this case,
the Bernoulli function is constant B = c.

Definition 2.5 (Beltrami vector field). A divergence-free (with respect to the volume form μ)
vector field X on (M, g, μ) is a Beltrami vector field if curl X = fX. We call a Beltrami field non-singular
if neither it nor f vanish at any point.

The following proposition is standard and shows that there is a natural contact form associated
with a Beltrami field. We expand on this observation in the next section.

Proposition 2.6. A divergence-free non-singular Beltrami vector field X on (M, g, μ) is a solution to
the stationary Euler equations. Furthermore, ιXg is a contact form on M.
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Proof. Since X is Beltrami, noticing that μ = hμg for some factor h > 0 (μg is the Riemannian
volume), we have

ιXg ∧ (dιXg)n = f ιXg ∧ ιXμ = fhιXg ∧ ιXμg = fh||X||2μg �= 0.

This means that ιXg is a contact form. Moreover,

ιX(dιXg)n = ιXιcurl Xμ = ιXιfXμ = 0, (2.3)

and since ιXg is a contact form, it is obvious that X is in the kernel of dιXg, i.e. ιXdιXg = 0.
This shows that X is a solution to the stationary Euler equations (2.2) on (M, g, μ) with constant
Bernoulli function. �

Remark 2.7. Assume that curl X = fX for some non-vanishing factor f and volume form μ, and
we do not assume that X preserves the volume form μ. Then

LXμ = dιXμ = d
(

1
f
ιcurl Xμ

)
= d

(
1
f

(dιXg)n
)

= d
1
f

∧ (dιXg)n, (2.4)

which is not necessarily zero. However, since the proportionality function f is non-vanishing, it
is obvious that X preserves the volume form μ̃ = fμ. Additionally, if we denote by c̃url the curl
operator computed with the volume form μ̃, it is elementary to check that

c̃urlX = X.

Accordingly, X is a Beltrami field with constant proportionality factor for the volume form μ̃.

For a much more comprehensive introduction to stationary Euler flows, we recommend
[4,12,13].

3. The equivariant correspondence
In this section, we show that Etnyre and Ghrist’s correspondence between Reeb and Beltrami
vector fields of theorem 1.1 can be made to preserve symmetries of the metrics or contact forms.

Theorem 3.1 (The equivariant correspondence). Let M be a (2n + 1)-dimensional smooth manifold
and ρ : G × M → M a compact Lie group action on M. For each ρ-invariant non-singular Beltrami field
(X, g), there is a ρ-invariant contact form for which X is Reeb-like. Conversely, for each ρ-invariant Reeb-
like field (X, α), there is a ρ-invariant Riemannian metric for which X is non-singular Beltrami.

When we refer to Reeb and Beltrami vector fields, we refer to the vector field and the subjacent
geometric structure, so that when we say that (X, g) is ρ-invariant, for example, we mean that
ρσ∗X = X and ρ∗

σ g = g for every σ ∈ G.
Before continuing with the proof, we recall the definitions of a couple of objects that will be

used therein. The Haar measure on a compact Lie group G is the unique measure η on G such that
η is left invariant and η(G) = 1.

Remark 3.2. Given a compact Lie group action ρ : G × M → M, it is standard that the Haar
measure provides a way to average tensor fields on M to make them invariant by the action.
Indeed, if T is a tensor field on M, the tensor field defined pointwise as

T̃p =
∫

σ∈G
(ρ∗

σ T)p dη,

is a ρ-invariant tensor field. The integral is taken over all σ ∈ G and with respect to the Haar
measure.

In particular, we will use this averaging procedure for Riemannian metrics. Since the space of
positive definite symmetric bilinear forms is convex, it is well known that averaging a Riemannian
metric by the procedure above yields a Riemannian metric that is invariant by the group action.

Recall, also, that an almost complex structure on a vector bundle E → M over a smooth
manifold M is a section J : M → End(E) such that J2 = −Id. Almost complex structures establish a
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deep connection between complex and symplectic geometry. However, the only property we will
use is that they provide a way to construct Riemannian metrics from non-degenerate 2-forms:
for every non-degenerate differential 2-form ω on a vector bundle E → M, there is an almost
complex structure J such that g(·, ·) = ω(·, J·) is a positive definite, symmetric bilinear form on E
(see [14]).

Proof. Let (X, g) be a ρ-invariant non-singular Beltrami field. The construction of a ρ-invariant
contact form is the one in the proof of proposition 2.6. Invariance of X and α are automatic because
X was already taken to be invariant and α is a contraction of the invariant metric g with an
invariant vector field. Let us now prove the equivariance of the converse direction.

Let (X, α) be a ρ-invariant Reeb-like field, with X = hR, where R is the Reeb field with respect to
α and h > 0. Since X is ρ-invariant, h must also be so, as R is invariant by the invariance of α. Using
the splitting of TM into ker α ⊕ ker dα, we can define a Riemannian metric on each component
and impose mutual orthogonality to naturally construct a Riemannian metric following [15].
Consider

g̃ = 1
h
α ⊗ α + dα(·, J·),

where J is an almost complex structure on the vector bundle ker α → M (the complex structure)
making dα(·, J·) a Riemannian metric on this bundle. Note that in general g̃ is not ρ-invariant
because J is not. Nevertheless, we can average this metric using the Haar measure on G to obtain
a ρ-invariant metric

g =
∫

G
ρ∗(g̃) dη =

∫
G

ρ∗
(

1
h
α ⊗ α

)
dη +

∫
G

ρ∗(dα(·, J·)) dη = 1
h
α ⊗ α +

∫
G

ρ∗(dα(·, J·)) dη,

where we have used that the first summand is ρ-invariant.
We claim that X is Beltrami with respect to g. Indeed, the contraction of X with the second

summand of the metric vanishes, since X ∈ ker dα, and therefore

ιXg = 1
h
α(hR)α = h

h
α(R)α = α.

Taking the volume form μ = 1
h α ∧ (dα)n �= 0, we finally arrive at

(dιXg)n = (dα)n = ιXμ,

and therefore curl X = X. Also note that for the chosen μ,

LXμ = dιXμ = d(dα)n = 0,

so X is also divergence-free and therefore X is Beltrami with respect to (g, μ). This completes the
proof of the theorem. �

An interesting consequence of the equivariant Reeb–Beltrami correspondence is that it allows
us to view many physical systems as Beltrami fluid flows with all the symmetries of the original
system. In particular, the study of integrable systems—Hamiltonian systems with a high degree
of symmetry—is central to mechanics, and countless interesting examples have been considered
in the literature. In the rest of this section, we highlight a couple of families of examples which,
though not known for their symmetries, we consider to be particularly nice.

(a) Mechanical Hamiltonian systems as fluid flows and the n-body problem
The n-body problem of celestial mechanics is the problem of determining the dynamics
of a system of n bodies in R

d moving according to classical laws of gravitation. This
system can be expressed in the Hamiltonian formalism as follows. Take canonical coordinates
(q1, . . . , qn, p1, . . . , pn) on T∗

R
dn with the canonical symplectic form ω = dp ∧ dq, where qi
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represents the position of the ith body and pi its momentum. Denoting by mi the mass of the
ith body, the Hamiltonian describing the system is

H(q, p) = K(p) + U(q), (3.1)

with

K(p) =
∑

1≤i≤n

|pi|2
2mi

,

the kinetic energy and

U(q) = −
∑

1≤i<j≤n

mimj

|qi − qj|
,

the potential energy. The Hamiltonian is an example of a mechanical Hamiltonian. Mechanical
Hamiltonians (also known as natural Hamiltonians) are Hamiltonians consisting of a sum of kinetic
and potential energies depending only on momenta and positions, respectively.

Lemma 3.3 (Lemma 2.6.3 and remark 2.6.5 of [16]). Let M be a smooth manifold and H = K(p) +
U(q) a mechanical Hamiltonian on T∗M, where K(p) = |p|2g/2 for some Riemannian metric g on M. Then

for c > max U, the Hamiltonian vector field XH restricted to the energy level Σ = H−1(c) is Reeb-like with
respect to the canonical Liouville form α = pdq restricted to Σ .

Proof. As in the discussion of §2a, on one hand, we have

ω|Σ = dα|Σ ⇒ 〈XH〉 = ker dα|Σ .

Furthermore, α is contact on Σ because α(XH) = K(p) > 0 on Σ , so

ker dα|Σ ∩ ker α|Σ = 0,

which yields the contact condition. �

An immediate consequence of the above lemma and theorem 3.1 is the following
reinterpretation of the n-body problem as a stationary incompressible fluid flow on some
Riemannian manifold.

Corollary 3.4. The flow of the n-body problem on a positive energy level is a stationary Beltrami solution
to the Euler equations on a hypersurface of T∗

R
dn with some Riemannian metric. Any symmetries of the

Hamiltonian field correspond to isometries of the corresponding metric.

In §4, we describe in detail the particular case of the 2-body problem, which can be reduced to
the Kepler problem. This system is integrable and we interpret the system’s symmetries explicitly
on the Beltrami side of the correspondence.

(b) Magnetic Hamiltonians and magnetic geodesic flows
Magnetic Hamiltonian functions are a more general class than mechanical Hamiltonians, and are
of the form

H(q, p) = K(p) + L(q, p) + U(q), (3.2)

where K and U are defined as above, and L (often referred to as the magnetic terms) is linear in
momenta. As the name suggests, they are used to model the motion of charged particles in a
magnetic field, or otherwise under the influence of velocity-dependent forces.

An interesting example of a magnetic Hamiltonian, again from celestial mechanics, is given
by the circular restricted three-body problem. This is the problem of determining the motion of
a (virtually) massless object (say a satellite) near two massive bodies (like the Earth and the
Moon). Indeed, let q = (q1, q2) and p = (p1, p2) denote the positions and momenta of the satellite.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 M

ar
ch

 2
02

4 



9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230499

..........................................................

Normalizing the masses of the massive bodies to μ and 1 − μ with μ ∈ (0, 1), under a non-inertial
change of coordinates the Hamiltonian of this system is given by

H(q, p) = 1
2
|p|2 + q1p2 − q2p1 − μ

|q − (1 − μ, 0)| − 1 − μ

|q − (−μ, 0)| .

The magnetic terms L(q, p) = q1p2 − q2p1 are what gives rise to the Coriolis force in this non-inertial
reference frame (see [10], §4). In this case, however, we cannot apply lemma 3.3 to easily conclude
that the dynamics of the system on given energy levels are generated by a contact form. In fact,
it is a highly non-trivial matter to establish when this is true for magnetic Hamiltonian systems.
Nevertheless, in [10], the authors show that certain energy levels of the circular restricted three-
body problem do carry contact forms that generate the dynamics, giving rise to an interpretation
of this system as a Beltrami flow through theorem 3.1.

Other examples of magnetic systems that have garnered a lot of attention are magnetic flows
on homogeneous spaces (see [17] and references therein). Magnetic flows on these spaces are more
naturally formulated by incorporating the magnetic terms of equation (3.2) directly into the
symplectic form on T∗(G/H) by ‘twisting’ it with a closed two-form. More specifically, given a
closed two-form Ω on G/H, the symplectic form on T∗(G/H) twisted by Ω is

ω = ω0 + π∗Ω ,

where ω0 is the natural symplectic form on T∗(G/H), and π : T∗(G/H) → G/H is the natural
projection. With this twisted symplectic form, mechanical Hamiltonian functions exhibit the same
dynamical properties as magnetic Hamiltonian functions with the natural symplectic form. These
systems are particularly interesting because they naturally exhibit many symmetries. In their
work [17], the authors prove integrability of the magnetic geodesic flow of the normal metrics
for specific classes of homogeneous spaces including the coadjoint orbits. Integrable systems in
the sense of Liouville have associated a semilocal torus action in the neighbourhood of their
compact fibres (Liouville tori). In the non-commutative integrable case, the associated Lie groups
can be more complex. Whenever the energy levels are contact, these symmetries will naturally be
transferred to symmetries of the associated fluid flows models by considering the corresponding
Lie group. An object of further study is to look at what the highly symmetric metrics look like after
applying theorem 3.1. Nevertheless, determining when these systems are governed by contact
dynamics is generally challenging.

More generally, a natural question in view of these examples is if the metric on an energy level
which makes the Hamiltonian flow Beltrami can be characterized in any way. A natural guess for
such a metric may be the canonical lift of the base metric to the cotangent bundle (described in the
next section), restricted to the energy level. In the next section, we show that this is the case when
the Hamiltonian is purely kinetic energy, but it is not true in general. As mentioned above, in the
next section, we also present an explicit example of corollary 3.4, namely we obtain an explicit
formulation of the Kepler problem as an Euler flow.

4. The Kepler–Euler flow
The 2-body problem can be reduced to the Kepler problem, which is that of describing the
dynamics of a system comprised of a large body, which we call the star and assume centred
at the origin of the plane R

2, and a body of comparatively negligible mass orbiting around
the first, which we call the planet. In particular, since the planet exerts negligible force on
the star, the star remains stationary and therefore we need only to describe the motion of the
planet. Taking canonical coordinates (q, p) = (q1, q2, p1, p2) on (T∗

R
2, ω = p1 ∧ q1 + p2 ∧ q2), the

Hamiltonian describing the system (ignoring masses and other constants) is

H : T∗(R2 \ {0}) → R, (q, p) �→ |p|2
2

− 1
|q| .
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By corollary 3.4, the Kepler problem on a positive energy level is a solution to the Euler equations
for some Riemannian metric. Our goal is to find such a metric. We recall that a metric for which a
Reeb-like vector field is Beltrami is called an adapted metric to the Reeb-like field. Adapted metrics
were introduced by Chern & Hamilton in [18], though, as mentioned in the introduction, it was
Sullivan who first understood the connection with Beltrami fields in hydrodynamics.

(a) Regularizing the problem
When the planet is moving directly towards the star, a collision occurs and the planet’s velocity
blows up in finite time. The flow is therefore not complete and it is advantageous to reparametrize
time to fix this issue. Since we are mainly interested in the qualitative behaviour of trajectories,
reparametrizing time is not a problem and we will consider two orbits to be identical if they are
so up to reparametrization. This process is known as regularization of the system and it is standard
in dynamical systems. To regularize the Kepler problem, we follow Arnold in [19]. We include a
proof for the sake of completeness.

Lemma 4.1. Let γ (t) be an integral curve of energy c of a Hamiltonian H. If we reparametrize time
by τ �→ t(τ ) where dt/dτ = G(x), then γ (τ ) = γ (t(τ )) is an integral curve of energy 0 for the Hamiltonian
H̄ = G(H − c). If we take G = (H + k) for a constant k, we can take H̄ = (1/2)(H + k)2 and γ (τ ) will have
energy (c + k)2/2 instead.

Proof. We must check that (dγ /dτ )(τ ) = XH̄(γ (τ )). Applying the chain rule, we have

dγ

dτ
(τ ) = dγ

dt
dt
dτ

= XHG.

Now,

ω

(
dγ

dτ
(τ ), ·

)
= Gω(XH, ·) = −GdH = −(GdH + (H − c)dG) = −d(G(H − c)) = −dH̄,

where we have used that (H − c) = 0 along γ . From this, we see that (dγ /dτ )(τ ) = XH̄(γ (τ )). If
G = (H + k), we have

−GdH = −(H + k) dH = −d
(

1
2

(H + k)2
)

= −dH̄,

as desired. �

With the help of this lemma we reparametrize time, slowing it down as the planet approaches
the star taking G = |q|. On an energy level c, the regularized Kepler–Hamiltonian becomes

H̄(q, p) = G(H − c) = |q|
(

|p|2
2

− c

)
− 1.

For reasons that will shortly become clear, it is convenient to apply the lemma again with
G = (H̄ + 1) to obtain another equivalent Hamiltonian

Kc(q, p) = |q|2
2

(
|p|2 − 2c

2

)2

,

with integral curves on the energy level Kc = 1/2 identical to integral curves of the original
Hamiltonian on the c-energy level up to reparametrization. We henceforth refer to the flow of
K as the regularized Kepler flow on the c-energy level, omitting c when it does not lead to confusion.
This Hamiltonian is particularly interesting because after a symplectic coordinate change called
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Figure 2. The maps that induce the metrics whose lifted geodesic flows are the regularized Kepler flows on the respective
energy levels. The sphere corresponds to negative energy levels and has radius 1/

√
2|c|. The plane corresponds to the

null energy level and the map is given by x �→ 2x/|x|2. The hyperboloid in Minkowski space M
3 with signature + + −

corresponds to positive energy levels and is defined by the equation x2 + y2 − z2 = −2c.

symplectic switch given by (x, y) �→ (q, p) = (y, −x), the Hamiltonian becomes

K(x, y) = |y|2
2

(
|x|2 − 2c

2

)2

=
|y|2g∗

2
, (4.1)

where g∗ is the inverse of the conformally flat metric g = (2/(|x|2 − 2c))2〈·, ·〉euc. The physical
interpretation is that K consists only of kinetic energy. Such Hamiltonians are called kinetic and
they are of particular interest because their trajectories are lifted geodesics of the metric [16].
Physically, since there is no potential, there is no external force acting on the system. It is easy
to check that g is a constant −2c curvature metric, and that the stereographic projections shown in
the following figure are the maps that induce these metrics on R

2 (this is shown, for example, in
propositions 8.30 and 8.38 of [20]). When c < 0 the variable x takes values on the whole R

2, when
c = 0 then x ∈ R

2\{0}, and for c > 0 the configuration space is {x ∈ R
2 : |x|2 > 2c}.

The energy levels K = 1/2 are more precisely the cosphere bundles of these surfaces.

Definition 4.2. The cosphere bundle of a Riemannian manifold (M, g) is defined as

S∗M = {α ∈ T∗M||α|g∗ = 1} ⊆ T∗M.

Putting these last remarks together, we reach a formulation of the well-known Moser–Osipov–
Belbruno regularization. It was Moser who first gave a regularization of this sort for negative energy
levels in [21]. Osipov and Belbruno gave the corresponding positive energy regularization in
[22,23], respectively. The regularizations can be condensed into one theorem covering all energy
levels.

Theorem 4.3 (Moser–Osipov–Belbruno). The dynamics of the Kepler problem on the energy level
H = c are equivalent to the lifted geodesic flow on

— S∗
S

2
c for c < 0,

— S∗
R

2 for c = 0 and
— S∗

H
2
c for c > 0

after applying the stereographic maps described in figure 2.

For an elementary geometric proof of this result, we recommend Geiges’ exposition [20].

(b) The contact form and adapted metric
We have already seen in lemma 3.3 that the contact form for which the regularized Kepler flow
is Reeb-like on an energy level is the Liouville form α = ydx restricted to the energy level. If we
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want the contact form on the original phase space, we simply pull back the Liouville form by
the maps that induce the metrics and then by the symplectic switch. However, we continue the
exposition in the context of constant curvature surfaces, as this results in more elegant and concise
formulations of the statements.

The following proposition is well known and gives an equivalent characterization of adapted
metrics to Reeb vector fields. We will use it to obtain the adapted metric to the Kepler–Reeb vector
field explicitly.

Proposition 4.4. Let (α, R) be a Reeb field. A Riemannian metric g such that R is g-orthogonal to ker α

and |R|2g is constant is an adapted metric to (α, R).

Proof. Since ker ιRg = ker α, necessarily ιRg = hα for some h �= 0. Furthermore, |R|2g = hα(R) = h
is constant by hypothesis, say h = 1. Taking μ = α ∧ (dα)n, which is a volume form preserved by
R, we obtain

ιRμ = (dα)n = (dιRg)n,

so that curl R = R, as we wanted to prove. �

Theorem 4.5. Let (M, g) be a Riemannian manifold. The Reeb field on S∗M with respect to the canonical
Liouville form α is orthogonal to ker α and of constant magnitude with respect to the canonical lift S∗g of
g to the cosphere bundle.

Before the proof of this theorem, we recall how to construct S∗g. We begin by emphasizing that
g is a tensor field that takes vectors of TM, while S∗g is a tensor field that takes vectors of T(S∗M).
We construct S∗g by first constructing the cotangent lift T∗g on T∗M and then restricting it to S∗M.
The cotangent lift was introduced by Mok in [24] following Sasaki’s construction of the tangent
lift metric in [25].

The tangent bundle of the cotangent bundle T∗M
π→ M splits on each ξ ∈ T∗M into the vertical

tangent space Vξ = ker Tξ π and a horizontal tangent space Hξ , which without additional structure
cannot be chosen canonically. It is only required that Tξ (T∗M) = Vξ ⊕ Hξ . In fact, a smooth choice
of horizontal tangent spaces is equivalent to a choice of a connection on M. Precisely for this
reason, the metric g provides a canonical choice of H through the Levi–Civita connection,

Hξ = {(γ̇ , θ̇ ) ∈ Tξ (T∗M)|(γ (t), θ (t)) ⊆ T∗M and ∇γ̇ θ = 0}.

It is easy to check that indeed Tξ (T∗M) = Vξ ⊕ Hξ and that Hξ is naturally isomorphic to Tπ(ξ )M,
since Hξ is identified with the space of geodesics on M passing through π (ξ ). On the other hand,
Vξ

∼= T∗
π(ξ )M, because if we take paths of the form (π (ξ ), tθ ), their tangent fields are in Vξ and they

are identified with θ ∈ T∗
π(ξ )M. Figure 3 illustrates this splitting.

With these natural identifications, we finally obtain

Tξ (T∗M) ∼= T∗
π(ξ )M ⊕ Tπ(ξ )M,

and since there are natural inner products on each component, given by g∗ and g respectively, we
can define an inner product on Tξ (T∗M) by imposing that the components are orthogonal to each
other.

A coordinate expression for the resulting metric is the following. If V = (α̇, θ̇ ) and W = (β̇, ω̇),

T∗g(V, W) = g(Tπ (V), Tπ (W)) + g∗(∇α̇θ , ∇β̇ω).

The first component projects onto Hξ
∼= Tπ(ξ )M and the second onto Vξ

∼= T∗
π(ξ )M.
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Figure 3. Splitting of W = (v, w) ∈ Tξ (T∗M) in components v of a horizontal tangent space and w of the vertical tangent
space. The horizontal component v can be thought of as moving the base pointπ (ξ ) while the vertical component w moves
the covector ξ within the cotangent space atπ (ξ ).

Proof. We first check that R is orthogonal to ker α with respect to S∗g, which, again, is T∗g
restricted to T(S∗M). Taking natural coordinates (x, y), we have

K(x, y) = 1
2

gij(x)yiyj ⇒ dK(x, y) = 1
2

gij
,kyiyj dxk + gijyi dyj,

where we are using Einstein notation to avoid notational clutter. In this case, the Reeb vector field
is the Hamiltonian vector field, so it has the following expression,

R = XK = 1
2

gij(x),kyiyj
∂

∂yk
− gijyi

∂

∂xj
.

On the other hand, a vector field Y ∈ ker α is necessarily of the form Y = αi(∂/∂xi) + βj(∂/∂yj) with

α(Y) = yk dxk(αi ∂

∂xi
+ βj

∂

∂yj
) = yiα

i = 0.

Thus, since the projection of R onto the horizontal tangent spaces vanishes for being a geodesic
vector field, the inner product of R and Y by S∗g is

S∗g(R, Y) = g(Tπ (R), Tπ (Y)) = g
(

−gijyi
∂

∂xj
, αi ∂

∂xi

)
= −gklg

ikyiα
l = −yiα

i = 0.

Therefore, R is orthogonal to ker α. Lastly, for the constant magnitude condition, we see that

S∗g(R, R) = g
(

−gijyi
∂

∂xj
, −gijyi

∂

∂xj

)
= gklg

ikyig
jlyj = gijyiyj = 1

for being always on S∗M. �

Combining proposition 4.4 and theorem 4.5, we finally get an interpretation of the Kepler
problem as a stationary Beltrami solution to the Euler equations.

Corollary 4.6 (The Kepler–Euler flow). The regularized Kepler flow on the c-energy level is a
stationary Beltrami solution to the Euler equations on

— S∗
S

2
c if c < 0,

— S∗
R

2 if c = 0 and
— S∗

H
2
c if c > 0
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with the liftings to the cosphere bundles of the respective constant (−2c)-curvature metrics. The flow lines
are lifted geodesics. The Kepler flow on the plane is recovered from the natural stereographic projections of
the respective surfaces, or from the involution x �→ 2x/|x|2 when c = 0.

5. Further remarks on the Kepler–Euler flow
We conclude with a more detailed description of the lifted metrics and dynamics of the Kepler–
Euler flow, relating them to other known Beltrami fields when possible.

(a) The metrics
The coordinate expressions for the metrics lifted to the cosphere bundles are rather long and
messy, so we do not give them here. However, the spherical tangent lift of the round sphere
metric was studied by Klingenberg & Sasaki [26], and the lifts of general metrics on surfaces
were studied by Nagy [27]. Since the tangent and cotangent bundles (with the lifted metrics) are
isometric [24], the results therein also apply to our case. In the latter article, Nagy showed that
the spherical tangent bundle of a surface is of constant curvature only when the base surface is of
constant curvature 0 or 1. In these cases, the curvature of the spherical tangent bundles are 0 and
1/4, respectively. In particular, the Kepler–Euler flow on energy level c takes place on a constant
curvature 3-manifold exactly when c = 0 or c = −(1/2).

Sasaki further classified geodesics on the spherical tangent bundles of space forms into
horizontal, vertical and oblique geodesics [28]. Horizontal geodesics are geodesics in which the unit
tangent vector is parallel transported along the projection of the geodesic to the base manifold;
vertical geodesics are rotations along the fibres of the sphere bundle, the base point remaining
stationary; oblique geodesics have some combination of motion through the base and fibres. Since
the Kepler–Euler flow is the lift to the cosphere bundle of base geodesics, all of the trajectories are
horizontal geodesics according to Sasaki’s classification.

(b) The Beltrami vector fields
First, we give the Hamiltonian vector field for the regularized Kepler Hamiltonian given in
equation (4.1). In those coordinates, which are the stereographic coordinates (x1, x2, α) on S∗

c R
2,

where the cosphere bundle is taken with respect to the metric corresponding to the c-energy level,
the vector field is expressed as

Xc = |x|2 − 2c
2

(cos α∂x1 + sin α∂x2 ) + (x1 sin α − x2 sin α)∂α .

A straightforward computation shows that for all c, these Beltrami fields have eigenvalue 1, that
is, Xc = curlc Xc, where curlc is the curl with respect to the lift of the corresponding constant
curvature metric. We now give a few more details on the dynamics of these Beltrami fields
according to the sign of the energy level.

When c < 0, in spherical coordinates (φ, θ , α) for S∗
S

2
c
∼= RP

3, the vector field is expressed as

Xc = ρ
√−2c

(
cos α

sin θ
∂φ + sin θ sin α∂θ + cos θ

sin2 θ
cos3 α∂α

)
,

where ρ = (cos2 α + sin2 θ sin2 α)−(1/2). While this expression may be somewhat messy, the
dynamics are clear: For all c < 0, the flow is simply a constant rescaling of the flow on c = −(1/2),
and it is well known that the lift of the geodesic flow to S∗

S
2 ∼= RP

3 is the quotient of the Hopf
flow on S

3 by the antipodal action (see, for example, ch 4 in [16]). Thus, the orbits are all the Hopf
orbits under the antipodal map quotient.
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When c = 0, applying the involution x �→ 2x/|x|2, we can reexpress X0 as

X0 = cos α∂x1 + sin α∂x2 .

This flow on S∗
R

2 ∼= R
2 × S

1 is a shear type Beltrami flow (meaning that the flow consists of
parallel stream lines that twist as the angle α changes).

Finally, when c > 0, in half-plane coordinates (x, y, α) for S∗
H

2
c
∼= R × R

+ × S
1 the vector field

is expressed as
Xc = y

√
2c(cos α∂x + sin α∂y) +

√
2c cos α∂α .

As in the case c < 0, this Beltrami field is the same for all values of c up to a constant rescaling, so
the dynamics are the same. Naturally, all streamlines are open and tend to y = 0 or y = +∞.
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