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Abstract
We study the obstacle problem for parabolic operators of
the type 𝜕𝑡 + 𝐿, where 𝐿 is an elliptic integro-differential
operator of order 2𝑠, such as (−Δ)𝑠, in the supercritical
regime 𝑠 ∈ (0, 1

2
). The best result in this context was due

to Caffarelli and Figalli, who established the 𝐶1,𝑠𝑥 regularity
of solutions for the case 𝐿 = (−Δ)𝑠, the same regularity as
in the elliptic setting.
Here we prove for the first time that solutions are actually
more regular than in the elliptic case. More precisely, we
show that they are 𝐶1,1 in space and time, and that this
is optimal. We also deduce the 𝐶1,𝛼 regularity of the free
boundary. Moreover, at all free boundary points (𝑥0, 𝑡0), we
establish the following expansion:

(𝑢 − 𝜑)(𝑥0 + 𝑥, 𝑡0 + 𝑡) = 𝑐0(𝑡 − 𝑎 ⋅ 𝑥)
2
++𝑂(𝑡

2+𝛼 + |𝑥|2+𝛼),
with 𝑐0 > 0, 𝛼 > 0 and 𝑎 ∈ ℝ𝑛.

1 INTRODUCTION

The aim of this paper is to study the parabolic obstacle problem{
min{𝜕𝑡𝑢 + 𝐿𝑢, 𝑢 − 𝜑}= 0 in ℝ𝑛 × (0, 𝑇)

𝑢(⋅, 0) =𝜑 in ℝ𝑛,
(1.1)
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for nonlocal operators of the form

𝐿𝑢(𝑥) = ∫
ℝ𝑛
(𝑢(𝑥) − 𝑢(𝑥 + 𝑦))𝐾(𝑦)d𝑦. (1.2)

The kernel 𝐾 is even and satisfies the uniform ellipticity condition

𝜆|𝑦|−𝑛−2𝑠 ≤ 𝐾(𝑦) ≤ Λ|𝑦|−𝑛−2𝑠, 𝐾(𝑦) = 𝐾(−𝑦), (1.3)

for some 0 < 𝜆 ≤ Λ and 𝑠 ∈ (0, 1). We define the contact set {𝑢 = 𝜑} and the free boundary
𝜕{𝑢 > 𝜑}.
We are mostly interested on studying the supercritical case, 𝑠 ∈ (0, 1

2
), in which

the higher order term is the time derivative instead of the diffusion term. This will
give rise to a somewhat unusual approach to the problem, as well as some surprising
results.
Nonlocal operators arise naturally when one considers jump-diffusion processes. One of

the most classical motivations is the modelling of stock prices, because the nonlocality takes
into account the possible large fluctuations of the market. In the trading of options on
financial markets, the valuation of American options is an optimal stopping problem. Thus,
when the underlying asset price follows a jump-diffusion process, we are led naturally to
the parabolic obstacle problem (1.1); see refs. [8, 15] for details. These models were first
introduced in the 1970s by Nobel prize winner Merton [29], and have been used for many
years [15, 30, 34].

1.1 The elliptic case

From the mathematical point of view, elliptic and parabolic equations involving jump-diffusion
operators have been an active and successful field of research in the past two decades, coming
from Partial Differential Equations (PDE) and from Probability.
The first nonlocal operator of this type to be studied was the fractional Laplacian,

(−Δ)𝑠𝑢(𝑥) = 𝑐𝑛,𝑠 ∫
ℝ𝑛

𝑢(𝑥) − 𝑢(𝑥 + 𝑦)|𝑦|𝑛+2𝑠 d𝑦,

and problems involving it can be treated as lower-dimensional problems for local operators via
the Caffarelli-Silvestre extension1 [11].
The elliptic obstacle problem,

min{𝐿𝑢, 𝑢 − 𝜑} = 0 in Ω,

was studied for the case of 𝐿 = (−Δ)𝑠 by Caffarelli, Salsa and Silvestre using the extension and
local arguments in ref. [10]. Using a new Almgren-type monotonicity formula, they established
the optimal 𝐶1,𝑠 regularity of solutions. Furthermore, they proved the following dichotomy at the
free boundary points:

1 Actually, the paper [11] was motivated by the study of the fractional obstacle problem in refs. [10, 36].
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1726 ROS-OTON and TORRES-LATORRE

∙ Either 𝑥0 is a regular free boundary point, and

𝑐𝑟1+𝑠 ≤ sup
𝐵𝑟(𝑥0)

(𝑢 − 𝜑) ≤ 𝐶𝑟1+𝑠 ∀𝑟 ∈ (0, 𝑟0),

where 𝑐 > 0.
∙ Or, if 𝑥0 is not regular, it is called singular and then

0 ≤ sup
𝐵𝑟(𝑥0)

(𝑢 − 𝜑) ≤ 𝐶𝑟2 ∀𝑟 ∈ (0, 𝑟0).

Moreover, they also proved that the regular points are an open subset of the free boundary and
that they are locally a 𝐶1,𝛼 manifold.
It is important to notice that, in contrast with the classical case 𝑠 = 1, there is no nondegener-

acy property of the solutions, that is, at singular points we may have sup𝐵𝑟(𝑥0)(𝑢 − 𝜑) ≍ 𝑟
𝑘 with

𝑘 ≫ 1.
The regularity of the free boundary and related questions have been widely investigated in the

recent years by several authors. See refs. [6, 14, 18, 21, 22, 33] for more information on the singu-
lar points, [17, 25–27] for higher regularity of the free boundaries, [1, 9] for more general elliptic
operators and [19, 23, 28, 31] for operators with drift.

1.2 The parabolic case

Much less is known about the parabolic case (1.1). Notice that the problem now depends strongly
on the value of 𝑠: in the subcritical case 𝑠 ∈ (1

2
, 1), the higher order term is the nonlocal operator,

in the critical case 𝑠 = 1
2
, both 𝜕𝑡 and 𝐿 are of order one, and in the supercritical case 𝑠 ∈ (0,

1

2
),

the higher order term is the time derivative.
The first result in this direction was the regularity of the solutions in the case

𝐿 = (−Δ)𝑠 due to Caffarelli and Figalli [8], where they established the 𝐶1,𝑠 regularity in
𝑥 for all 𝑠 ∈ (0, 1), and conjectured it to be optimal. They also established the 𝐶1,𝛽 reg-
ularity in 𝑡, with 𝛽 = 1−𝑠

2𝑠
− 0+ when 𝑠 ≥ 1∕3, and that 𝑢𝑡 is log-Lipschitz in 𝑡 when

𝑠 < 1∕3. Their proof uses crucially the extension problem for the fractional Laplacian
and the 𝐶1,𝑠𝑥 regularity is established by using a new monotonicity formula for such
problem.
Then, the regularity of the free boundary near regular points was established in the sub-

critical case, 𝑠 ∈ (1
2
, 1), by Barrios, Figalli and the first author in ref. [5], where they establish

a dichotomy for the free boundary points completely analogous to the elliptic case (in par-
ticular, 𝐶1,𝑠𝑥 regularity is optimal). One the main difficulties in ref. [5] was to establish a
classification of blow-ups in a context where Almgren-type monotonicity formulas are not
available.
More recently, Borrin and Marcon established the quasi-optimal regularity of solutions for the

subcritical case, 𝑠 ∈ (1
2
, 1), for a more general equation allowing lower order terms [7].

Despite these developments, in the supercritical case 𝑠 ∈ (0, 1
2
) the only known result was the

regularity of the solutions for the fractional Laplacian proved in ref. [8]. Quite surprisingly, we
prove here that this was not optimal, and that solutions are 𝐶1,1 in 𝑥 and 𝑡.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1727

1.3 Main results

Our main results are the following. We first establish the optimal regularity of the solutions.

Theorem 1.1. Let 𝑛 ≥ 2 and 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying

(1.2) and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛).
Then, 𝑢 is Lipschitz inℝ𝑛 × [0, 𝑇] and

𝑢 ∈ 𝐶1,1(ℝ𝑛 × (0, 𝑇]),

that is, the solution 𝑢 is globally2 𝐶1,1 in 𝑥 and 𝑡.

It is important to notice that because of the initial condition in (1.1), the solution 𝑢 can never be
a solution of the elliptic problem; this is why solutions might be more regular than in the elliptic
case. Notice also, though, that our solution 𝑢 to (1.1) always converges as 𝑇 → ∞ to a solution to
the elliptic problem. For this reason, we cannot expect to get a uniform 𝐶1,1 bound inℝ𝑛 × (0,∞).
Our proof is completely different from ref. [8], and actually it is mainly based on barriers,

comparison principles, and the supercritical scaling of the equation. In particular, we do not use
any monotonicity formula, and this allows us not only to get the optimal 𝐶1,1 regularity for the
fractional Laplacian but also to extend the result to general integro-differential operators.
Then, we prove the global 𝐶1,𝛼 regularity of the free boundary.

Theorem 1.2. Let 𝑛 ≥ 2 and 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying

(1.2) and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Then,

∙ The free boundary 𝜕{𝑢 > 𝜑} is a 𝐶1,𝛼 graph in the 𝑡 direction,

𝜕{𝑢 > 𝜑} = {𝑡 = Γ(𝑥)}

with Γ ∈ 𝐶1,𝛼 and 𝛼 > 0.
∙ If (𝑥0, 𝑡0) is any free boundary point, the solution admits an expansion

(𝑢 − 𝜑)(𝑥0 + 𝑥, 𝑡0 + 𝑡) = 𝑐0(𝑡 − 𝑎 ⋅ 𝑥)
2
+ + 𝑂(𝑡

2+𝛼 + |𝑥|2+𝛼), (1.4)

where 𝑐0 > 0, 𝛼 > 0 and 𝑎 ∈ ℝ𝑛.

To have that all free boundary points have the same expansion is a very uncommon result in
the context of obstacle problems, and it contrasts notably with the elliptic and the parabolic sub-
critical obstacle problems. Moreover, the blow-up techniques that are always used to study free
boundaries appeared ineffective here, and our proof of Theorem 1.2 uses Theorem 1.1 and the fact
that 𝐿 has order 2𝑠 < 1 to gain further regularity instead.
This global regularity result allows us to define regular and singular points a posteriori in a very

simple way: we say that a free boundary point (𝑥0, 𝑡0) is regular if the vector 𝑎 in the expansion
(1.4) is not zero, and is singular if 𝑎 = 0.

2 Here we mean that for all 𝑡0 > 0, 𝑢 ∈ 𝐶1,1(ℝ𝑛 × [𝑡0, 𝑇]).
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1728 ROS-OTON and TORRES-LATORRE

Finally, as a consequence of Theorem 1.2, we deduce that the free boundary is 𝐶1,𝛼 in the 𝑥
direction near regular points, and that singular points are in some sense scarce.

Theorem 1.3. Let 𝑛 ≥ 2 and 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying

(1.2) and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Then,

∙ The set of regular free boundary points is an open subset of 𝜕{𝑢 > 𝜑}.
∙ If (𝑥0, 𝑡0) is a regular free boundary point, the free boundary 𝜕{𝑢 > 𝜑} is locally a 𝐶1,𝛼 graph in
the 𝑥𝑖 direction for some 𝑖 ∈ {1, … , 𝑛},

𝜕{𝑢 > 𝜑} ∩ 𝐵𝑟(𝑥0, 𝑡0) = {𝑥𝑖 = 𝐹(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛, 𝑡)},

with 𝐹 ∈ 𝐶1,𝛼 , 𝛼 > 0 and 𝑟 > 0.
∙ Let Σ𝑡 be the set of singular free boundary points (𝑥0, 𝑡0) with 𝑡0 = 𝑡. Then,

𝑛−1(Σ𝑡) = 0 for almost every 𝑡 ∈ (0, 𝑇).

This problem is very different than the rest of elliptic and parabolic free boundary problems.
Notice how Theorem 1.2 establishes a regularity result common to regular and singular free
boundary points, which deeply contrasts with how these problems were approached until now.
Besides, the fact that the free boundary is globally a𝐶1,𝛼 graph in the 𝑡 direction could also be true
in the subcritical (𝑠 > 1∕2) case, but is not known in the latter setting.

Remark 1.4. There ismore literature available for the related (but not equivalent) obstacle problem
with operator (𝜕𝑡 − Δ)𝑠. It appears when one considers the parabolic thin obstacle problem (𝑠 =
1∕2) or the parabolic thin obstacle problem with a weight. In this setting, the diffusion term is
always the highest order term and thus the scaling is always subcritical. For more information on
the topic, see refs. [2–4, 16, 37] and references therein.

1.4 Plan of the paper

The paper is organised as follows.
In Section 2 we prove a comparison principle and the semiconvexity of solutions. Then, in Sec-

tion 3 we prove that the solutions to (1.1) are 𝐶1, and in Section 4, we show that the optimal
regularity is 𝐶1,1. Finally, Section 5 is devoted to proving the 𝐶1,𝛼 regularity of the free boundary
and Theorem 1.3.
Besides, we include some technical tools in two appendices. Appendix A includes several reg-

ularity and growth estimates for the linear nonlocal parabolic equation, and Appendix B is a
discussion about the penalised obstacle problem.

2 PRELIMINARIES AND SEMICONVEXITY

In this Section we give some basic definitions and prove some basic results that will be used
later on.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1729

Given any solution 𝑢 of (1.1), we define

𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝜑(𝑥).

Notice that 𝜕𝑡𝑢 = 𝜕𝑡𝑣. Let 𝐵𝑟(𝑥0) be the ball of radius 𝑟 and centre 𝑥0 in ℝ𝑛, and let 𝑄𝑟(𝑥0, 𝑡0) be
the following parabolic cylinders:

𝑄𝑟(𝑥0, 𝑡0) = 𝐵𝑟(𝑥0) × (𝑡0 − 𝑟
2𝑠, 𝑡0 + 𝑟

2𝑠)

When the balls or cylinders are centred at the origin we will just write 𝐵𝑟 ∶= 𝐵𝑟(0) and
𝑄𝑟 ∶= 𝑄𝑟(0, 0).
We will denote ∇ ∶= ∇𝑥, and we will write ∇𝑥,𝑡 when we refer to the gradient in all variables.
We will also define the following weighted 𝐿1 norm:

‖𝑢‖𝐿1𝑠 = ‖𝑢‖𝐿1𝑠 (ℝ𝑛) ∶= ∫
ℝ𝑛

|𝑢(𝑥)|
1 + |𝑥|𝑛+2𝑠 d𝑥

and the corresponding weighted Lebesgue space

𝐿1𝑠 (ℝ
𝑛) ∶= {𝑓 ∶ ℝ𝑛 → ℝ, 𝑓 measurable, ‖𝑓‖𝐿1𝑠 < +∞}.

Throughout the paper we will assume 𝑛 ≥ 2.

2.1 Basic tools

We recall some standard tools for elliptic and parabolic PDE that are useful to deal with problem
(1.1). Let us start with the comparison principle.

Theorem 2.1. Let 𝐿 be a nonlocal operator satisfying (1.2) and (1.3), let 𝜑 and 𝜓 be uniformly
Lipschitz and bounded, and let 𝑢 and 𝑣 be the solutions of the following parabolic problems:{

min{𝜕𝑡𝑢 + 𝐿𝑢, 𝑢 − 𝜑}= 0 in ℝ𝑛 × (0, 𝑇)

𝑢(⋅, 0) =𝜑 in ℝ𝑛,{
min{𝜕𝑡𝑣 + 𝐿𝑣, 𝑣 − 𝜓}= 0 in ℝ𝑛 × (0, 𝑇)

𝑣(⋅, 0) =𝜓 in ℝ𝑛.

Assume additionally that 𝜑 ≤ 𝜓. Then, 𝑢 ≤ 𝑣 inℝ𝑛 × (0, 𝑇).
To prove it, we use the penalisation method. This approximation technique is based in consid-

ering the solutions to the obstacle problem as the limit of the solutions to the following parabolic
problem {

𝜕𝑡𝑢
𝜀 + 𝐿𝑢𝜀 =𝛽𝜀(𝑢

𝜀 − 𝜑) in ℝ𝑛 × (0, 𝑇)

𝑢𝜀(⋅, 0) =𝜑 +
√
𝜀,

(2.1)

where 𝛽𝜀(𝑧) = 𝑒−𝑧∕𝜀.
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1730 ROS-OTON and TORRES-LATORRE

Lemma 2.2. Let 𝐿 be an operator satisfying (1.2) and (1.3), let𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛) and let 𝑢𝜀 be the solution
of (2.1).
Then, 𝑢𝜀 → 𝑢0 as 𝜀 → 0 locally uniformly, where 𝑢0 is the solution of (1.1).

We give the proof in Appendix B. Using this technique, we can now proceed.

Proof of Theorem 2.1. It suffices to write 𝑢 and 𝑣 as the limits of the penalised versions of the
respective problems, and then apply Lemma B.1. □

The following observation is based in the strong maximum principle and will be important in
our discussion.

Lemma 2.3. Let 𝑢 be a solution of (1.1) with 𝐿 an operator satisfying (1.2) and (1.3), and 𝜑 ∈
𝐶
0,1
𝑐 (ℝ

𝑛). Then,

𝑢𝑡 > 0 in {𝑢 > 𝜑}.

Proof. First, we see that 𝑢 is nondecreasing in 𝑡. Consider the function �̃�(𝑥, 𝑡) = 𝑢(𝑥, 𝑡 + 𝛿), 𝛿 > 0.
Then, �̃� is clearly also a solution of min{(𝜕𝑡 + 𝐿)�̃�, �̃� − 𝜑} = 0, and �̃�(⋅, 0) = 𝑢(⋅, 𝛿) ≥ 𝑢(⋅, 0) = 𝜑.
Hence, �̃� is a supersolution of (1.1), and thus �̃� ≥ 𝑢. This yields 𝑢(𝑥, 𝑡 + 𝛿) ≥ 𝑢(𝑥, 𝑡) for all 𝑥, 𝑡 and
𝛿 > 0.
Let 𝑤 = 𝑢𝑡. Differentiating (1.1), we have

𝜕𝑡𝑤 + 𝐿𝑤 = 0 in {𝑢 > 𝜑}.

We also know that 𝑤 ≥ 0 because 𝑢 is nondecreasing in time. Suppose 𝑤 = 0 at (𝑥, 𝑡) ∈ {𝑢 > 𝜑}.
Then, by the strong maximum principle, 𝑤 ≡ 0 in all the connected component of (𝑥, 𝑡). In par-
ticular, 𝑤 = 0 in the segment {𝑥} × [0, 𝑡] because each point in the segment belongs either to the
contact set or to the connected component of (𝑥, 𝑡) in {𝑢 > 𝜑}. Hence, 𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝜑(𝑥),
contradicting (𝑥, 𝑡) ∈ {𝑢 > 𝜑}. Therefore, 𝑤 > 0 in {𝑢 > 𝜑}. □

2.2 Semiconvexity

An essential property of the solutions is that they are semiconvex, see ref. [5, Lemma 2.1] for the
case 𝐿 = (−Δ)𝑠 with 𝑠 > 1

2
. Here we can use the same strategy to prove it.

Proposition 2.4. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be a solution of (1.1), with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Then, 𝑢 is semiconvex, that is, for all unit vectors 𝑒 in 𝑥, 𝑡, 𝜕𝑒𝑒𝑢 ≥ −�̂�,
with a uniform bound that depends only on 𝜑, 𝑛, 𝑠 and the ellipticity constants.

Remark 2.5. The assumption 𝑠 ∈ (0, 1
2
) can be substituted by the more general 𝑠 ∈ (0, 1) and 𝜑 ∈

𝐶
max{2,4𝑠+𝜀}
𝑐 for some small 𝜀 > 0.

Proof of Proposition 2.4. Using Lemma 2.2, we canwrite 𝑢 as the limit of solutions to the penalised
problem (2.1). Since the locally uniform limit of uniformly semiconvex functions is semiconvex,
we only need to prove it for the approximations 𝑢𝜀.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1731

First, we use Lemma B.5 and notice that 𝛽′′𝜀 ≥ 0 to obtain
𝜕𝑡𝑢
𝜀
𝜈𝜈 + 𝐿𝑢

𝜀
𝜈𝜈 ≥ 𝛽′𝜀(𝑢𝜀 − 𝜑)(𝑢𝜀𝜈𝜈 − 𝜑𝜈𝜈),

for any unit vector 𝜈 ∈ ℝ𝑛 × ℝ, and also

𝑢𝜀𝑡 (⋅, 0) = 𝑒
−1∕

√
𝜀 − 𝐿𝜑,

𝑢𝜀𝑡𝑡(⋅, 0) = 𝐿
2𝜑 −

1

𝜀
𝑒−1∕

√
𝜀(𝑒−1∕

√
𝜀 − 𝐿𝜑).

Define 𝐶0 ∶= ‖𝑢𝜀𝜈𝜈(⋅, 0)‖𝐿∞(ℝ𝑛). Then,
𝐶0 ≤ ‖𝐷2𝑥𝑢𝜀(⋅, 0)‖𝐿∞(ℝ𝑛) + ‖∇𝑢𝜀𝑡 (⋅, 0)‖𝐿∞(ℝ𝑛) + ‖𝑢𝜀𝑡𝑡(⋅, 0)‖𝐿∞(ℝ𝑛)

≤ ‖𝐷2𝜑‖𝐿∞(ℝ𝑛) + ‖∇𝐿𝜑‖𝐿∞(ℝ𝑛) + ‖𝐿2𝜑 − 1
𝜀
𝑒−1∕

√
𝜀(𝑒−1∕

√
𝜀 − 𝐿𝜑)‖𝐿∞(ℝ𝑛)

≤ ‖𝐷2𝜑‖𝐿∞(ℝ𝑛) + ‖∇𝐿𝜑‖𝐿∞(ℝ𝑛) + ‖𝐿2𝜑‖𝐿∞(ℝ𝑛) + 𝐶𝜀 + ‖𝐿𝜑‖𝐿∞(ℝ𝑛)
≤ 𝐶‖𝜑‖𝐶1,1(ℝ𝑛) + 𝐶𝜀.

Using again that𝛽′𝜀 ≤ 0, it follows that𝛽′𝜀(𝑢𝜀 − 𝜑)(𝑢𝜀𝜈𝜈 + 𝐶0) ≥ 0whenever𝑢𝜀𝜈𝜈 + 𝐶0 ≤ 0. Hence,
𝑤 ∶= min{0, 𝑢𝜀𝜈𝜈 + 𝐶0} satisfies

𝜕𝑡𝑤 + 𝐿𝑤 ≥ 0 in ℝ𝑛 × (0, 𝑇).

Finally, 𝑤 ≡ 0 at 𝑡 = 0 by construction, hence, by the maximum principle, 𝑤 ≡ 0 everywhere,
that is, 𝑢𝜀𝜈𝜈 ≥ −𝐶0. Since this constant does not depend on 𝜀, we can pass to the limit to get the
desired result. □

3 𝑪𝟏 REGULARITY OF SOLUTIONS

Here we prove that solutions 𝑢 to the problem (1.1) are globally 𝐶1 in 𝑥 and 𝑡. This was already
known in the case of 𝐿 = (−Δ)𝑠 thanks to Caffarelli and Figalli [8]; here we prove it in a different
way for our general class of operators (1.2). The first step is to prove global Lipschitz regularity.
Notice that we already know that 𝑢 is Lipschitz because it is globally bounded and semicon-

vex, but we provide a simple proof to obtain the optimal Lipschitz constant under the minimal
requirements for 𝜑.

Proposition 3.1. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be a viscosity solution of (1.1) with 𝐿 an operator satisfying

(1.2) and (1.3), and 𝜑 ∈ 𝐶0,1𝑐 (ℝ𝑛). Then, 𝑢 is globally Lipschitz,

‖∇𝑢‖𝐿∞(ℝ𝑛×(0,𝑇)) ≤ ‖𝜑‖𝐶0,1(ℝ𝑛) and ‖𝑢𝑡‖𝐿∞(ℝ𝑛×(0,𝑇)) ≤ 𝐶‖𝜑‖𝐶0,1(ℝ𝑛),
where 𝐶 depends only on the dimension, 𝑠 and the ellipticity constants.

Proof. First of all, ‖𝑢‖𝐿∞(ℝ𝑛×(0,𝑇)) ≤ ‖𝜑‖𝐿∞(ℝ𝑛×(0,𝑇)) by Theorem 2.1.
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1732 ROS-OTON and TORRES-LATORRE

We will treat Lipschitz regularity in 𝑥 and 𝑡 separately. For spatial regularity, observe that for
every ℎ ∈ ℝ𝑛, the function 𝑤ℎ(𝑥, 𝑡) ∶= 𝑢(𝑥 + ℎ, 𝑡) + ‖𝜑‖𝐶0,1 |ℎ| is a solution of{

min{𝜕𝑡𝑤ℎ + 𝐿𝑤ℎ,𝑤ℎ − 𝜑ℎ}= 0 in ℝ𝑛 × (0, 𝑇]

𝑤ℎ(⋅, 0) =𝜑ℎ in ℝ𝑛,

with 𝜑ℎ(𝑥) = 𝜑(𝑥 + ℎ) + ‖𝜑‖𝐶0,1 |ℎ| ≥ 𝜑. Then, by Theorem 2.1, 𝑢 ≤ 𝑤ℎ for all ℎ, and it follows
that

𝑢(𝑥, 𝑡) ≤ 𝑢(𝑥 + ℎ, 𝑡) + ‖𝜑‖𝐶0,1 |ℎ| ⇒ 𝑢(𝑥, 𝑡) − 𝑢(𝑥 + ℎ, 𝑡)|ℎ| ≤ ‖𝜑‖𝐶0,1 .
Since 𝑥 and ℎ are arbitrary, the Lipschitz regularity follows.
On the other hand, concerning 𝑢𝑡, it is zero in the interior of the contact set, and outside

of it 𝑢𝑡 = −𝐿𝑢. Moreover, since 𝑢 is continuous, the contact set is closed and we can estimate
the Lipschitz character of 𝑢 in the 𝑡 direction knowing it outside of the contact set. Hence,‖𝑢𝑡‖𝐿∞(ℝ𝑛×(0,𝑇)) ≤ ‖𝐿𝑢‖𝐿∞(ℝ𝑛×(0,𝑇)). Then, we can compute 𝐿𝑢. We omit the time dependence to
unclutter the notation.

|𝐿𝑢(𝑥)| = |||||∫ℝ𝑛(𝑢(𝑥) − 𝑢(𝑥 + 𝑦))𝐾(𝑦)d𝑦
|||||

≤ |||||∫𝐵1(𝑢(𝑥) − 𝑢(𝑥 + 𝑦))𝐾(𝑦)d𝑦
||||| +

||||||∫𝐵𝑐1(𝑢(𝑥) − 𝑢(𝑥 + 𝑦))𝐾(𝑦)d𝑦
||||||

≤ ∫
𝐵1

‖∇𝑢‖𝐿∞(ℝ𝑛×(0,𝑇))|𝑦|𝐾(𝑦)d𝑦 + ∫
𝐵𝑐
1

2‖𝑢‖𝐿∞(ℝ𝑛×(0,𝑇))𝐾(𝑦)d𝑦
≤ 𝐶1‖∇𝑢‖𝐿∞(ℝ𝑛×(0,𝑇)) + 𝐶2‖𝑢‖𝐿∞(ℝ𝑛×(0,𝑇)) ≤ 𝐶‖𝜑‖𝐶0,1(ℝ𝑛).

Here we used that𝐾(𝑦) ≤ Λ|𝑦|−𝑛−2𝑠 and 𝑠 < 1
2
, so that𝐾(𝑦) is integrable at infinity and |𝑦|𝐾(𝑦) is

integrable near the origin, and finally we applied the previous estimates for ‖∇𝑢‖𝐿∞ and ‖𝑢‖𝐿∞
in terms of ‖𝜑‖𝐶0,1 . □

Then, we improve the regularity up until 𝐶1,𝛼 in 𝑡 and 𝐶1 in 𝑥. We start with the time
regularity.

Proposition 3.2. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶0,1𝑐 (ℝ𝑛). Then, 𝑢𝑡 ∈ 𝐶𝛼 and

[𝑢𝑡]𝐶𝛼(ℝ𝑛×(0,𝑇)) ≤ 𝐶‖𝜑‖𝐶0,1(ℝ𝑛),
where𝛼 = 1 − 2𝑠 > 0 and𝐶 depends only on the dimension, 𝑠 and the ellipticity constants.Moreover,
we have

𝑢𝑡 = (𝐿𝑢)
− in ℝ𝑛 × (0, 𝑇).
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1733

Proof. Let us prove the following estimates for 𝐿𝑢 to begin. We prove the spatial regularity first,
omitting the time dependence for simplicity of reading.

|𝐿𝑢(𝑥1) − 𝐿𝑢(𝑥2)| = |||||∫ℝ𝑛(𝑢(𝑥1) − 𝑢(𝑥2) − 𝑢(𝑥1 + 𝑦) + 𝑢(𝑥2 + 𝑦))𝐾(𝑦)d𝑦
|||||

≤ ∫
𝐵𝑟

(|𝑢(𝑥1) − 𝑢(𝑥1 + 𝑦)| + |𝑢(𝑥2) − 𝑢(𝑥2 + 𝑦)|)𝐾(𝑦)d𝑦
+ ∫

𝐵𝑐𝑟

(|𝑢(𝑥1) − 𝑢(𝑥2)| + |𝑢(𝑥1 + 𝑦) − 𝑢(𝑥2 + 𝑦)|)𝐾(𝑦)d𝑦
≤
(
∫
𝐵𝑟

2|𝑦|𝐾(𝑦)d𝑦 + ∫
𝐵𝑐𝑟

2|𝑥1 − 𝑥2|𝐾(𝑦)d𝑦)‖∇𝑢‖𝐿∞(ℝ𝑛×(0,𝑇))
≤ 𝐶(𝑟1−2𝑠 + |𝑥1 − 𝑥2|𝑟−2𝑠)‖∇𝑢‖𝐿∞(ℝ𝑛×(0,𝑇))
≤ 𝐶‖𝜑‖𝐶0,1(ℝ𝑛×(0,𝑇))|𝑥1 − 𝑥2|1−2𝑠.

In the last steps we used that |𝐾(𝑦)| ≤ Λ|𝑦|−𝑛−2𝑠, with 𝑠 ∈ (0, 1
2
), we chose 𝑟 = |𝑥1 − 𝑥2| and we

used the estimate from Proposition 3.1.
Then, we prove temporal regularity:

|𝐿𝑢(𝑥, 𝑡1) − 𝐿𝑢(𝑥, 𝑡2)|
=
|||||∫ℝ𝑛(𝑢(𝑥, 𝑡1) − 𝑢(𝑥, 𝑡2) − 𝑢(𝑥 + 𝑦, 𝑡1) + 𝑢(𝑥 + 𝑦, 𝑡2))𝐾(𝑦)d𝑦

|||||
≤ ∫

𝐵𝑟

(|𝑢(𝑥, 𝑡1) − 𝑢(𝑥 + 𝑦, 𝑡1)| + |𝑢(𝑥, 𝑡2) − 𝑢(𝑥 + 𝑦, 𝑡2)|)𝐾(𝑦)d𝑦
+ ∫

𝐵𝑐𝑟

(|𝑢(𝑥, 𝑡1) − 𝑢(𝑥, 𝑡2)| + |𝑢(𝑥 + 𝑦, 𝑡1) − 𝑢(𝑥 + 𝑦, 𝑡2)|)𝐾(𝑦)d𝑦
≤ ∫

𝐵𝑟

2|𝑦|𝐾(𝑦)‖∇𝑢‖𝐿∞(ℝ𝑛×(0,𝑇))d𝑦 + ∫
𝐵𝑐𝑟

2|𝑡1 − 𝑡2|𝐾(𝑦)‖𝑢𝑡‖𝐿∞(ℝ𝑛×(0,𝑇))d𝑦
≤ 𝐶‖𝜑‖𝐶0,1(ℝ𝑛×(0,𝑇))|𝑡1 − 𝑡2|1−2𝑠.

Here 𝑟 = |𝑡1 − 𝑡2| and the rest of the estimates are used analogously.
Hence, [𝐿𝑢]𝐶𝛼(ℝ𝑛×(0,𝑇)) ≤ 𝐶‖𝜑‖𝐶0,1(ℝ𝑛). In particular, 𝐿𝑢 is continuous. Then, recall that

𝑢𝑡 + 𝐿𝑢 = 0 in the set {𝑢 > 𝜑}. Moreover, by Lemma 2.3, 𝑢𝑡 > 0 in this set, and therefore 𝐿𝑢 < 0.
In the interior of the contact set, however, 𝑢(𝑥, 𝑡) ≡ 𝜑(𝑥) and 𝑢𝑡 ≡ 0. Moreover, 𝑢𝑡 + 𝐿𝑢 ≥ 0,

and it follows that 𝐿𝑢 ≥ 0 in the interior of the contact set.
By continuity of 𝐿𝑢, 𝐿𝑢 = 0 on the free boundary. Then, 𝑢𝑡 = 0 on the free boundary as well.
We deduce that

𝑢𝑡 = (𝐿𝑢)
−

and thus [𝑢𝑡]𝐶𝛼(ℝ𝑛×(0,𝑇)) ≤ [𝐿𝑢]𝐶𝛼(ℝ𝑛×(0,𝑇)), as wanted. □
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1734 ROS-OTON and TORRES-LATORRE

Then, we continue with the regularity in 𝑥. First, we need the following estimate, analogous to
the elliptic estimate [9, Lemma 2.3].

Lemma 3.3. Let 𝑠 ∈ (0, 1). There exist constants 𝜏 ∈ (0, 𝑠) and 𝛿 > 0 such that the following holds.
Let 𝑣 be a globally Lipschitz solution of

⎧⎪⎨⎪⎩
𝑣≥ 0 in ℝ𝑛 × (−1, 0]

𝜕𝜈𝜈𝑣≥−𝛿 in 𝑄2 ∩ {𝑡 ≤ 0}, for all 𝜈 ∈ 𝕊𝑛−1

(𝜕𝑡 + 𝐿)(𝑣 − 𝑇ℎ𝑣)≤ 𝛿|ℎ| in {𝑣 > 0} ∩ 𝑄2 ∩ {𝑡 ≤ 0},
where 𝑇ℎ is the translation operator defined for any ℎ in the 𝑥 directions, that is, 𝑇ℎ𝑣(𝑥, 𝑡) =
𝑣(𝑥 + ℎ, 𝑡), and 𝐿 is a nonlocal operator satisfying (1.2) and (1.3).
Assume that 𝑣(0, 𝑡) = 0 for 𝑡 ≤ 0 and that sup𝑄𝑅 |∇𝑣| ≤ 𝑅𝜏 for all 𝑅 ≥ 1. Then,

sup
𝐵𝑟×(−𝑟2𝑠,0]

|∇𝑣| ≤ 2𝑟𝜏,
for all 𝑟 > 0. The constants 𝜏 and 𝛿 depend only on the dimension, 𝑠 and the ellipticity constants.

Proof. Let𝑊𝑟 = 𝐵𝑟 × (−𝑟2𝑠, 0] be the past cylinders at the origin.
We define

𝜃(𝑟) ∶= sup
𝑟′≥𝑟
(𝑟′)−𝜏 sup

𝑊𝑟′
|∇𝑣|.

Notice that 𝜃(𝑟) ≤ 1 for 𝑟 ≥ 1 because sup𝑊𝑅 |∇𝑣| ≤ sup𝑄𝑅 |∇𝑣| ≤ 𝑅𝜏 for 𝑅 ≥ 1. The result
we aim to prove is equivalent to showing 𝜃(𝑟) ≤ 2 for all 𝑟 ∈ (0, 1). Observe also that 𝜃 is
nonincreasing by definition.
Assume by contradiction that 𝜃(𝑟) > 2 for some 𝑟. Then, by construction there exists 𝑟0 ∈ (𝑟, 1)

such that

𝜃(𝑟0) ≥ 𝑟−𝜏0 sup
𝑊𝑟0

|∇𝑣| ≥ (1 − 𝜀)𝜃(𝑟) ≥ (1 − 𝜀)𝜃(𝑟0) ≥ 32 ,
where 𝜀 > 0 is to be chosen later.
Then, we define the scaling

𝑣0(𝑥, 𝑡) ∶=
𝑣(𝑟0𝑥, 𝑟

2𝑠
0
𝑡)

𝜃(𝑟0)𝑟
1+𝜏
0

.

Let 𝜏 ∈ (0, 𝑠). Then, the rescaled function satisfies

⎧⎪⎨⎪⎩
𝑣0 ≥ 0 in ℝ𝑛 × (−2𝑟−2𝑠

0
, 0]

𝜕𝜈𝜈𝑣0 ≥−𝑟2−1−𝜏0
𝛿 ≥−𝛿 in 𝑄2∕𝑟0

(𝜕𝑡 + �̃�)(𝑣0 − 𝑇ℎ𝑣0)≤ 𝑟2𝑠−1−𝜏0
𝛿|𝑟0ℎ|≤ 𝛿|ℎ| in {𝑣0 > 0} ∩ 𝑄2∕𝑟0 ,

where �̃� is the corresponding nonlocal operator with the appropriate scaled kernel, and it has the
same ellipticity constants. Notice that ‖∇𝑣0‖𝐿∞(𝑊1) ≤ 1 by construction.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1735

Moreover, by the definition of 𝜃 and 𝑟0, for all 𝑅 ≥ 1 the following estimates hold:

1 − 𝜀 ≤ sup|ℎ|≤ 1
4

sup
𝑊1

𝑣0(𝑥, 𝑡) − 𝑣0(𝑥 + ℎ, 𝑡)|ℎ| and sup|ℎ|≤ 1
4

sup
𝑊𝑅

𝑣0 − 𝑇ℎ𝑣0|ℎ| ≤ (𝑅 + 1
4
)𝜏.

Let 𝜂 ∈ 𝐶2𝑐 (𝑄3∕2) with 𝜂 ≡ 1 in 𝑄1 and 0 ≤ 𝜂 ≤ 1. Then,

sup|ℎ|≤ 1
4

sup
𝑊1

(
𝑣0 − 𝑇ℎ𝑣0|ℎ| + 3𝜀𝜂

)
≥ 1 + 2𝜀.

Notice that if 𝜏 > 0 is small enough,

sup|ℎ|≤ 1
4

sup
𝑊3

𝑣0 − 𝑇ℎ𝑣0|ℎ| ≤
(
3 +
1

4

)𝜏
< 1 + 𝜀.

Then, we can choose ℎ0 ∈ 𝐵1∕4 such that

𝑀 ∶= max
𝑊3∕2

(
𝑣0 − 𝑇ℎ0𝑣0|ℎ0| + 3𝜀𝜂

)
≥ 1 + 𝜀,

and the maximum is attained at a point (𝑥0, 𝑡0) where 𝜂(𝑥0, 𝑡0) > 0.
Define

𝑤 ∶=
𝑣0 − 𝑇ℎ0𝑣0|ℎ0| .

By construction, 𝑤 + 3𝜀𝜂 ≤ 𝑀 in 𝑊3∕2 and in 𝑊3 ⧵𝑊3∕2. Therefore, 𝑤 + 3𝜀𝜂 ≤ 𝑀 in 𝑄3 ∩
{𝑡 ≤ 0}. Besides, 𝑣0(𝑥0, 𝑡0) > 0 because if not 𝑤(𝑥0, 𝑡0) < 0 and then 𝑤 + 3𝜀𝜂 < 1 + 𝜀.
Now we evaluate the equation at (𝑥0, 𝑡0) to obtain a contradiction.
On the one hand, since (𝑥0, 𝑡0) is a maximum of𝑤 + 3𝜀𝜂, and (𝑥0, 𝑡0) is either an interior point

of𝑊3∕2 or a point in 𝐵3∕2 × {0},

𝜕𝑡(𝑤 + 3𝜀𝜂) ≥ 0.
On the other hand, we can use the semiconvexity of 𝑣0, together with 𝑣0(0, 𝑡) = 0 for 𝑡 ≤ 0

to obtain a lower bound for �̃�𝑤. Let 𝑒 = ℎ0|ℎ0| and 𝑘 = |ℎ0|. Then, for 𝑥 ∈ 𝐵1 and omitting the
dependence on 𝑡,

𝑣0(𝑥) ≤
𝑘𝑣0(0) + |𝑥|𝑣0(𝑥 + 𝑘 𝑥|𝑥|)

𝑘 + |𝑥| +
𝑘𝛿

2
|𝑥|2 ≤ 𝑣0(𝑥 + 𝑘 𝑥|𝑥|

)
+ 𝛿,

using that |𝑥| < 1 and 𝑘 < 1. Then, combining this fact with the definition of 𝑤,
𝑤(𝑥) =

𝑣0(𝑥) − 𝑣0(𝑥 + 𝑘𝑒)

𝑘
≤
𝑣0

(
𝑥 + 𝑘

𝑥|𝑥|
)
− 𝑣0(𝑥 + 𝑘𝑒)

𝑘
+ 𝛿 ≤ |||| 𝑥|𝑥| + 𝑒|||| + 𝛿,
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1736 ROS-OTON and TORRES-LATORRE

for all 𝑥 ∈ 𝐵1, where we also used that ‖∇𝑣0‖𝐿∞(𝑊1) ≤ 1. In particular, 𝑤(𝑥, 𝑡) < 12 for all 𝑡 ≤ 0
when 𝛿 < 1

4
and

𝑥 ∈ 𝐶𝑒 ∶=

{
𝑥 ∈ 𝐵1 ∶

|||| 𝑥|𝑥| + 𝑒|||| < 14
}
.

Using that𝑀 ≥ 1 + 𝜀 and 𝑤 < 1 + 𝜀 in𝑊3,
1 − 2𝜀 ≤ 𝑤(𝑥0, 𝑡0) < 1 + 𝜀.

Moreover, 𝑤 + 3𝜀𝜂 has a maximum at (𝑥0, 𝑡0) (global in 𝐵3 × {𝑡0}), and hence

𝑤(𝑥0, 𝑡0) − 𝑤(𝑥, 𝑡0) ≥ −3𝜀|𝐷2𝜂(𝑥0, 𝑡0)| |𝑥 − 𝑥0|22
= −𝐶𝜀|𝑥 − 𝑥0|2,

for all 𝑥 ∈ 𝐵3.
Let us now compute �̃�𝑤 at the point (𝑥0, 𝑡0). Using the previous estimates,

�̃�𝑤(𝑥0, 𝑡0) =∫
ℝ𝑛
(𝑤(𝑥0, 𝑡0) − 𝑤(𝑥0 + 𝑦, 𝑡0))𝐾(𝑦)d𝑦

≥ 𝜆 ∫
ℝ𝑛
(𝑤(𝑥0, 𝑡0) − 𝑤(𝑥0 + 𝑦, 𝑡0))+|𝑦|−𝑛−2𝑠d𝑦

− Λ∫
ℝ𝑛
(𝑤(𝑥0, 𝑡0) − 𝑤(𝑥0 + 𝑦, 𝑡0))−|𝑦|−𝑛−2𝑠d𝑦

≥ 𝜆 ∫
𝐶𝑒−𝑥0

(
1

2
− 2𝜀

) |𝑦|−𝑛−2𝑠d𝑦 − Λ∫
𝐵3∕2

𝐶𝜀|𝑦|2|𝑦|−𝑛−2𝑠d𝑦
− Λ∫

𝐵𝑐
3∕2

((|𝑦| + 3
2

)𝜏
− 1 + 2𝜀

)|𝑦|−𝑛−2𝑠d𝑦
≥ 𝑐 − 𝐶𝜀 − Λ∫

𝐵𝑐
3∕2

((|𝑦| + 3
2

)𝜏
− 1

)|𝑦|−𝑛−2𝑠d𝑦 ≥ 𝑐 − 𝐶𝜀,
where in the last step we choose 𝜏 > 0 even smaller if needed to absorb the integral into the
𝐶𝜀 term.
Finally,

(𝜕𝑡 + �̃�)𝑤(𝑥0, 𝑡0) ≥ −3𝜀𝜂𝑡(𝑥0, 𝑡0) + 𝑐 − 𝐶𝜀 > 𝛿,
choosing small enough 𝜀 and 𝛿, reaching a contradiction. Hence, 𝜃(𝑟) ≤ 2 for all 𝑟 ∈ (0, 1), as we
wanted to prove. □

Now we can apply Lemma 3.3 to obtain 𝐶1 regularity.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1737

Proposition 3.4. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Then, ∇𝑢 ∈ 𝐶(ℝ𝑛 × (0, 𝑇)). In particular, 𝑢 ∈ 𝐶1(ℝ𝑛 × (0, 𝑇)).

Proof. First, by Proposition 3.2, 𝑢𝑡 is already continuous, and by Proposition 3.1, ∇𝑢 is globally
defined in 𝐿∞. We will prove that it is continuous at every point.
In the interior of the contact set, 𝑢(𝑥, 𝑡) ≡ 𝜑(𝑥) ∈ 𝐶1, and in the interior of {𝑢 > 𝜑}, we can use

interior estimates (Proposition A.4) to see that 𝑢 is 𝐶1.
Therefore, we only need to work with the points on the free boundary. Assume without loss

of generality that the origin is a free boundary point, and we will prove that ∇𝑢 is continuous
at it.
Let 𝑣 = 𝑢 − 𝜑. After a scaling and a translation, we can apply Lemma 3.3 to obtain

sup
𝐵𝑅(𝑥0)×(𝑡0−𝑅2𝑠,𝑡0]

|∇𝑣| ≤ 𝐶𝑅𝜏,
for all𝑅 ≥ 0. The constant𝐶 here depends only on𝜑, the dimension, 𝑠 and the ellipticity constants.
We distinguish two cases:
Case 1. If the free boundary continues to the future, more precisely, for all 𝜌 ∈ (0, 𝑟), there exists

𝑡𝜌 > 0 such that

{𝑣 = 0} ∩ (𝐵𝜌 × {𝑡𝜌}) ≠ ∅,
it follows that for all 𝑡 ∈ (0, 𝑡𝜌), {𝑣 = 0} ∩ (𝐵𝜌 × {𝑡}) ≠ ∅, because 𝑢𝑡 ≥ 0 and therefore the contact
set shrinks in time.
Let 𝛿 ∈ (0, 𝑟). Let |𝑥| < 𝛿, and 𝑡 < 𝑡𝛿 as defined above. Then, there exists 𝑥′ ∈ 𝐵𝛿 such that

(𝑥′, 𝑡) belongs to the contact set, and it follows that

|∇𝑣(𝑥, 𝑡)| ≤ 𝐶|𝑥 − 𝑥′|𝜏 ≤ 𝐶(2𝛿)𝜏.
Then, letting 𝛿 → 0, we obtain a sequence of neighbourhoods of the origin where |∇𝑣| ≤

𝐶(2𝛿)𝜏, and hence ∇𝑣 vanishes continuously at (0, 0).
Case 2. If the free boundary ends at the origin, there exists some 𝑟0 > 0 such that for all 𝑡 > 0,

𝑣 > 0 in 𝐵𝑟0 × {𝑡}. Assume after a scaling that 𝑟0 = 1 (notice that 𝐿 may change but the ellipticity
constants will be the same). We will prove that the limit of 𝑣𝑖 is zero as it approaches the origin.
If we approach from the past, then (0, −𝑡) belongs to the contact set for all 𝑡 > 0, and we can use
the same argument that in Case 1.
To consider approaching the origin from the future, recall that 𝑢 solves 𝑢𝑡 = (𝐿𝑢)− globally,

hence, we can consider 𝑢 a solution of the nonlocal heat equation with right hand side

(𝜕𝑡 + 𝐿)𝑢 = (𝐿𝑢)
+ in ℝ𝑛 × (0, 𝑇′)

and apply Duhamel’s formula at (𝑥, 𝑡) with 𝑥 ∈ 𝐵1∕2 and 𝑡 ∈ (0,
1

2
), to get

𝑢(𝑥, 𝑡) = ∫
ℝ𝑛
𝑝𝑡(𝑥 − 𝑦)𝑢(𝑦, 0)d𝑦 + ∫

𝑡

0
∫
ℝ𝑛
𝑝𝑡−𝜁(𝑥 − 𝑦)(𝐿𝑢)

+(𝑦, 𝜁)d𝑦d𝜁,
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1738 ROS-OTON and TORRES-LATORRE

where 𝑝𝑡(𝑥) is the fundamental solution for this particular operator (see Theorem A.1). Then,
differentiating with respect to 𝑥𝑖 and using that 𝑝𝑡 ∈ 𝐶∞ and 𝑢 is Lipschitz,

𝑢𝑖(𝑥, 𝑡) = ∫
ℝ𝑛
𝑝𝑡(𝑥 − 𝑦)𝑢𝑖(𝑦, 0)d𝑦 + ∫

𝑡

0
∫
ℝ𝑛
𝜕𝑖𝑝𝑡−𝜁(𝑥 − 𝑦)(𝐿𝑢)

+(𝑦, 𝜁)d𝑦d𝜁.

Now let us estimate both integrals separately. For the first one,wewill use that |𝑢𝑖(𝑦, 0)| ≤ 𝐶|𝑦|𝜏
by Lemma 3.3, as well as |𝑝𝑡(𝑥)| ≤ 𝐶min{𝑡− 𝑛2𝑠 , 𝑡|𝑥|−𝑛−2𝑠} by Theorem A.1.|||||∫ℝ𝑛 𝑝𝑡(𝑥 − 𝑦)𝑢𝑖(𝑦, 0)d𝑦

||||| ≲ ∫
ℝ𝑛
min{1, |𝑦|𝜏}min{𝑡− 𝑛2𝑠 , 𝑡|𝑥 − 𝑦|𝑛+2𝑠

}
d𝑦

≲ ∫
𝐵
𝑡

1
2𝑠 ∕2

(𝑥)

𝑡
−
𝑛

2𝑠 |𝑦|𝜏d𝑦 + ∫
𝐵1∕2(𝑥)⧵𝐵

𝑡

1
2𝑠 ∕2

(𝑥)

𝑡|𝑦|𝜏|𝑥 − 𝑦|𝑛+2𝑠 d𝑦 + ∫
𝐵𝑐
1∕2
(𝑥)

𝑡|𝑥 − 𝑦|𝑛+2𝑠 d𝑦
≤ 𝑡− 𝑛2𝑠 |𝑥 + 𝑡 12𝑠 |𝜏|𝐵

𝑡
1
2𝑠
| + 𝑡 ∫

𝐵1∕2⧵𝐵
𝑡

1
2𝑠

|𝑦|−𝑛−2𝑠|𝑥 + 𝑦|𝜏d𝑦 + 𝑡 ∫
𝐵𝑐
1∕2

|𝑦|−𝑛−2𝑠d𝑦
≲ |𝑥 + 𝑡 12𝑠 |𝜏 + 𝑡(𝑡 12𝑠)−2𝑠 |𝑥|𝜏 + 𝑡(𝑡 12𝑠)𝜏−2𝑠 + 𝑡 ≲ 𝑡 𝜏2𝑠 + |𝑥|𝜏.

For the second integral, we will use that 𝐿𝑢 is bounded because 𝑢 is Lipschitz, 𝐿𝑢 ≤ 0 in
𝐵1∕2(𝑥) ⊂ 𝐵1, as well as 𝐿𝑢 ≤ 0 outside of the support of the obstacle 𝜑. Let 𝑅 big enough such
that supp𝜑 ⊂ 𝐵𝑅. Then, by Corollary A.5,|||||∫

𝑡

0
∫
ℝ𝑛
𝜕𝑖𝑝𝑡−𝜁(𝑥 − 𝑦)(𝐿𝑢)

+(𝑦, 𝜁)d𝑦d𝜁
||||| ≲ ∫

𝑡

0
∫
𝐵𝑅⧵𝐵1∕2(𝑥)

|∇𝑝𝑡−𝜁(𝑥 − 𝑦)|d𝑦d𝜁
≲ ∫

𝑡

0
∫
𝐵𝑅⧵𝐵1∕2(𝑥)

1d𝑦d𝜁 ≲ 𝑡.

Therefore, |𝑢𝑖(𝑥, 𝑡)| ≲ 𝑡 𝜏2𝑠 + |𝑥|𝜏 for 𝑡 > 0, and it converges to zero as it approaches the origin
from the future, concluding that ∇𝑢 is continuous in 𝑥 and 𝑡 at that point. □

4 OPTIMAL 𝑪𝟏,𝟏 REGULARITY

In this section, we establish the optimal 𝐶1,1 regularity of solutions. First, we prove that the free
boundary moves at a positive speed.

Proposition 4.1. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛)3. Let 𝑣 = 𝑢 − 𝜑, and let 0 < 𝑡1 < 𝑡2 < 𝑇. Then,

|∇𝑣| ≤ 𝐶𝑣𝑡 in ℝ𝑛 × [𝑡1, 𝑡2],

for some positive 𝐶, depending only on 𝑡1, 𝑡2, 𝜑, the dimension, 𝑠 and the ellipticity constants.

3 The compactness of the support is a technical condition needed for the proof of this proposition but it does not seem
crucial for the problem.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1739

Moreover, the free boundary is the graph of a Lipschitz function {𝑡 = Γ(𝑥)} in ℝ𝑛 × (𝑡1, 𝑡2), with
the same Lipschitz constant 𝐶.

To prove this proposition, we will use the following positivity lemma, see ref. [9, Lemma 6.2]
for the elliptic version.

Lemma 4.2. Let 𝐸 ⊂ 𝑄1 be compact, let 𝐿 be an operator satisfying (1.2) and (1.3), and let 𝑤 ∈
𝐶(𝑄1) ∩ 𝐶

1(𝑄1 ⧵ 𝐸) satisfying

⎧⎪⎨⎪⎩
|𝜕𝑡𝑤 + 𝐿𝑤|≤ 𝜀 in 𝑄1 ⧵ 𝐸

𝑤=0 in 𝐸

𝑤 ≥−𝜀 in 𝐸𝑐,

in the viscosity sense, and also

∫
ℝ𝑛

𝑤+(𝑥, 𝑡)

1 + |𝑥|𝑛+2𝑠 d𝑥 ≥ 1 for all 𝑡 ∈ [−1, 1].

Then,

𝑤 ≥ 0 in 𝑄1∕2.

The constant 𝜀 > 0 depends only on 𝑠, the dimension and the ellipticity constants.

Proof. Let𝜓 ∈ 𝐶∞𝑐 (𝑄3∕4), with𝜓 ≡ 1 in𝑄1∕2 and 0 ≤ 𝜓 ≤ 1.We proceed by contradiction. Suppose
the lemma does not hold. Then, for some 𝑐 > 0, the function

𝜓𝜀,𝑐 = −𝑐 − 𝜀 + 𝜀𝜓

touches 𝑤 from below in (𝑥0, 𝑡0) ∈ 𝑄3∕4. Moreover, (𝑥0, 𝑡0) ∈ 𝐸𝑐 because 𝑤(𝑥0, 𝑡0) < 0, so
(𝑥0, 𝑡0) ∈ 𝑄1 ⧵ 𝐸.
Now we compute (𝜕𝑡 + 𝐿)𝑤(𝑥0, 𝑡0) to obtain a contradiction. By the definition of (𝑥0, 𝑡0), 𝑤 −

𝜓𝜀,𝑐 attains a global minimum there. Thus,

(𝜕𝑡 + 𝐿)(𝑤 − 𝜓𝜀,𝑐)(𝑥, 𝑡) = 𝐿(𝑤 − 𝜓𝜀,𝑐)(𝑥, 𝑡)

= −∫
ℝ𝑛
(𝑤(𝑥 + 𝑦, 𝑡) − 𝜓𝜀,𝑐(𝑥 + 𝑦, 𝑡))𝐾(𝑦)d𝑦

≤ −𝜆 ∫
ℝ𝑛
𝑤+(𝑥 + 𝑦, 𝑡)|𝑦|−𝑛−2𝑠d𝑦

≤ −𝜆 ∫
ℝ𝑛

𝑤+(𝑦, 𝑡)|𝑦 − 𝑥|𝑛+2𝑠 d𝑦 ≤ −𝐶𝜆,
using that 𝜓𝜀,𝑐 < 0 and that |𝑦 − 𝑥|𝑛+2𝑠 ≤ 𝐶(1 + |𝑦|𝑛+2𝑠) for any 𝑥 ∈ 𝐵3∕4, with 𝐶 depending only
on 𝑛 + 2𝑠.
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1740 ROS-OTON and TORRES-LATORRE

On the other hand,

(𝜕𝑡 + 𝐿)(𝑤 − 𝜓𝜀,𝑐)(𝑥, 𝑡) = (𝜕𝑡 + 𝐿)𝑤(𝑥, 𝑡) − (𝜕𝑡 + 𝐿)𝜓𝜀,𝑐 ≤ 𝜀 + 𝜀‖(𝜕𝑡 + 𝐿)𝜓‖𝐿∞(𝑄3∕4),
and choosing 𝜀 small enough we get a contradiction. □

Using this lemma we are now able to prove that the free boundarymoves at all values of 𝑡, that
is, it is a Lipschitz graph in the 𝑡 direction.

Proof of Proposition 4.1. We will prove the inequality for any directional derivative 𝑣𝑖 instead of
the gradient. The result follows as a consequence.

Let 𝑅 ≥ max{1, 𝑇 12𝑠 } be such that supp𝜑 ⊂ 𝐵𝑅 and let 𝑃 > 0 large, to be chosen later. Consider
the set 𝐴 = 𝐵1(3𝑅𝑒1) × [

𝑡1

2
,
𝑡2+𝑇

2
]. Then, by construction, 𝐴 ⊂ {𝑣 > 0}, and from Lemma 2.3 and

compactness, it follows that 𝑣𝑡 ≥ 𝑎 > 0 in 𝐴.
Let 𝑟 > 0 such that for all (𝑥0, 𝑡0) ∈ 𝐵𝑃𝑅 × [𝑡1, 𝑡2], 𝑄𝑟(𝑥0, 𝑡0) ⊂ ℝ𝑛 × [

𝑡1

2
,
𝑡2+𝑇

2
]. We will use a

rescaled Lemma 4.2 in 𝑄𝑟(𝑥0, 𝑡0) with a suitable linear combination

𝑤 = 𝑀𝑣𝑡 − 𝑚𝑣𝑖

with some positive𝑀 and𝑚 to be chosen later.
First, let 𝐸 be the contact set. Then, 𝑤 ≥ −𝑚‖𝑣𝑖‖𝐿∞(ℝ𝑛×(0,𝑇)) ≥ −2𝑚‖𝜑‖𝐶0,1(ℝ𝑛) in the whole

space by Proposition 3.1. Moreover, in 𝐸𝑐 we have

|(𝜕𝑡 + 𝐿)𝑤| = 𝑚|(𝜕𝑡 + 𝐿)𝑣𝑖| = 𝑚| − 𝐿𝜑𝑖| ≤ 𝑚‖𝜑‖𝐶1,1(ℝ𝑛) in 𝐸𝑐.

On the other hand, for all 𝑡 ∈ [𝑡0 − 𝑟2𝑠, 𝑡0 + 𝑟2𝑠],

∫
ℝ𝑛

𝑤+(𝑥, 𝑡)

1 + |𝑥 − 𝑥0|𝑛+2𝑠 d𝑥 ≥ ∫
𝐵1(3𝑅𝑒1)

𝑤+(𝑥, 𝑡)

1 + |𝑥 − 𝑥0|𝑛+2𝑠 d𝑥 ≥

∫
𝐵1(3𝑅𝑒1)

𝑀𝑎 − 𝑚‖𝑣𝑖‖𝐿∞(ℝ𝑛×(0,𝑇))
1 + |𝑥 − 𝑥0|𝑛+2𝑠 d𝑥 ≥ (𝑀𝑎 −𝑚‖𝜑‖𝐶0,1(ℝ𝑛))|𝐵1|

1 + (𝑃𝑅 + 3𝑅 + 1)𝑛+2𝑠
.

Then, choosing𝑚 small enough and𝑀 big enough suffices to be able to apply Lemma 4.2, and
these constants depend only 𝑛, 𝑠, 𝜆, Λ, 𝑅 and 𝜑. Therefore, 𝑤 ≥ 0 in 𝐵𝑃𝑅 × [𝑡1, 𝑡2].
Finally, outside of 𝐵𝑃𝑅, we will use a barrier argument. Since 𝑣𝑡 > 0 in the set (𝐵𝑃𝑅∕2 ⧵ 𝐵𝑅) ×

[0, 𝑇], by compactness we can choose 𝑀 and 𝑚 such that 𝑤(⋅, 0) ≥ 0 in 𝐵𝑃𝑅 and also 𝑤 ≥ 𝑚 in
(𝐵𝑃𝑅∕2 ⧵ 𝐵𝑅) × [0, 𝑇].
Let �̃� = 𝑤 +𝑚(1 + 2‖𝜑‖𝐶0,1(ℝ𝑛))𝜒𝐵𝑅 . Now, since

𝑤 ≥ 𝑚𝑣𝑖 ≥ −𝑚‖𝑣𝑖‖𝐿∞(ℝ𝑛×[0,𝑇]) ≥ −2𝑚‖𝜑‖𝐶0,1(ℝ𝑛),
�̃� ≥ 𝑚 in 𝐵𝑃𝑅∕2 × [0, 𝑇). On the other hand, 𝑣 = 𝑢 − 𝜑 is identically zero at 𝑡 = 0 and
𝑣𝑡(⋅, 0) = −𝐿𝜑 > 0 outside of the support of 𝜑, and hence �̃�(⋅, 0) ≥ 0 in 𝐵𝑐𝑃𝑅.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1741

To apply the comparison principle, we also need to compute the right hand side for 𝑥 ∈ 𝐵𝑐𝑃𝑅.
Using that 𝑢 is a solution of the nonlocal heat equation,

(𝜕𝑡 + 𝐿)�̃� = (𝜕𝑡 + 𝐿)(𝑤 + 𝑚(1 + 2‖𝜑‖𝐶0,1(ℝ𝑛))𝜒𝐵𝑅) = 𝑚𝐿[𝜑𝑖 + (1 + 2‖𝜑‖𝐶0,1(ℝ𝑛))𝜒𝐵𝑅],
and since the expression inside of the brackets is supported in 𝐵𝑅, for all 𝑥 such that |𝑥| ≥ 𝑃𝑅,

|(𝜕𝑡 + 𝐿)�̃�| ≤ 𝐶′𝑚𝑅𝑛‖𝜑𝑖 + (1 + 2‖𝜑‖𝐶0,1(ℝ𝑛))𝜒𝐵𝑅‖𝐿∞(𝐵𝑅×[0,𝑇))(|𝑥| − 𝑅)−𝑛−2𝑠
≤ 𝐶𝑚𝑅𝑛|𝑥|−𝑛−2𝑠 in 𝐵𝑐𝑃𝑅 × [𝑡1, 𝑡2],

where 𝐶 depends only on 𝑛, 𝑠, 𝜆, Λ and 𝜑.
Let now 𝜓 be defined as the solution of{

(𝜕𝑡 + 𝐿)𝜓 = [(𝜕𝑡 + 𝐿)�̃�]𝜒𝐵𝑐
𝑃𝑅

in ℝ𝑛 × (0, 𝑇)

𝜓 =
𝑚

2
𝜒𝐵𝑃𝑅∕2 on ℝ𝑛 × {𝑡 = 0}

Then, |(𝜕𝑡 + 𝐿)𝜓| ≤ 𝐶𝑚𝑅𝑛(𝑃𝑅)−𝑛−2𝑠 = 𝐶𝑚𝑃−𝑛−2𝑠𝑅−2𝑠, and it follows that (𝜕𝑡 + 𝐿)

(𝜓 − 𝐶𝑚𝑃−𝑛−2𝑠𝑅−2𝑠𝑡) ≤ 0. Therefore, since it is a subsolution for the nonlocal heat equa-
tion, applying the comparison principle4 with a constant we deduce𝜓 − 𝐶𝑚𝑃−𝑛−2𝑠𝑅−2𝑠𝑡 ≤ 𝑚

2

in ℝ𝑛 × (0, 𝑇), and in particular 𝜓 ≤ 𝑚

2
+ 𝐶𝑚𝑃−𝑛−2𝑠𝑅−2𝑠𝑇. Choosing 𝑃 large enough, 𝜓 ≤ 𝑚 in

ℝ𝑛 × (0, 𝑇).
Now, we apply the comparison principle again. Notice that 𝜓 ≤ �̃� at 𝑡 = 0 by construction, and

that (𝜕𝑡 + 𝐿)𝜓 = (𝜕𝑡 + 𝐿)�̃� for all (𝑥, 𝑡) ∈ 𝐵𝑐𝑃𝑅 × (0, 𝑇). Furthermore, 𝜓 ≤ 𝑚 ≤ �̃� in 𝐵𝑃𝑅 × (0, 𝑇).
Therefore, 𝜓 ≤ �̃� in ℝ𝑛 × (0, 𝑇).
Finally, let

�̃�(𝑥, 𝑡) =
2

𝑚|𝐵1|𝜓
(
𝑃𝑅

2
𝑥,

(
𝑃𝑅

2

)2𝑠
𝑡

)
.

Then, �̃�(⋅, 0) = |𝐵1|−1𝜒𝐵1 , so it is positive, supported in 𝐵1 and ‖�̃�(⋅, 0)‖𝐿1(𝐵1) = 1. Moreover,
|(𝜕𝑡 + 𝐿)�̃�| ≤ 2𝐶𝑚𝑅𝑛𝑚|𝐵1|

(
𝑃𝑅

2

)2𝑠||||𝑃𝑅2 𝑥||||
−𝑛−2𝑠

𝜒𝐵𝑐
1
≤ 𝐶′𝑃−𝑛|𝑥|−𝑛−2𝑠𝜒𝐵𝑐

1
,

and if we take 𝑃 large enough such that 𝐶′𝑃−𝑛 < 𝛿, from Proposition A.6 we get that �̃� ≥ 0 in
𝐵𝑐
2
× (0, 𝑇(𝑃𝑅∕2)−2𝑠).5 Then, �̃� ≥ 0 in𝐵𝑐

2
× (0, 𝑇), and since �̃� = 𝑤 in𝐵𝑐𝑃𝑅 × (0, 𝑇)weobtain𝑤 ≥ 0

in 𝐵𝑐𝑃𝑅 × (0, 𝑇), as we wanted to prove.
From the inequality |∇𝑣| ≤ 𝐶𝑣𝑡, it follows that the free boundary is a Lipschitz graph in the 𝑡

direction with constant 𝐶. □

Once we know that the free boundary is a Lipschitz graph in the direction of 𝑡, we can use
barriers to gain insight on the boundary behaviour of 𝑣𝑡. We will prove first a Hopf-type estimate
in the 𝑡 direction. Here we use crucially the fact that the diffusion is supercritical, that is, 𝑠 < 1∕2.

4 Here, 𝜓 can be defined with the Duhamel formula and the heat kernel introduced in Theorem A.1, and the comparison
principle follows from the positivity of the heat kernel.
5 Here we need to choose 𝑃 large enough to have 𝑇(𝑃𝑅∕2)−2𝑠 < 1.
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1742 ROS-OTON and TORRES-LATORRE

Proposition 4.3. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let 𝑣 = 𝑢 − 𝜑, and let 0 < 𝑡1 < 𝑡2 < 𝑇. Then, there exists 𝑐0 > 0 such
that for all free boundary points (𝑥0, 𝑡0) ∈ ℝ𝑛 × [𝑡1, 𝑡2],

𝑣𝑡(𝑥0, 𝑡0 + 𝑡) ≥ 𝑐0𝑡 for 𝑡 ∈ (0, 𝛿),

where 𝑐0 and 𝛿 are small positive constants depending only on 𝑡1, 𝑡2, 𝑇, 𝜑, the dimension, 𝑠 and the
ellipticity constants.

Proof. Let 𝑅 ≥ 1 such that supp𝜑 ⊂ 𝐵𝑅. Then, consider the compact set

𝐴 = 𝐵1(3𝑅𝑒1) ×

[
𝑡1
2
,
𝑡2 + 𝑇

2

]
.

Then, by construction, 𝐴 ⊂ {𝑣 > 0}, and from Lemma 2.3 and compactness, it follows that 𝑣𝑡 ≥
𝑎 > 0 in 𝐴.
By Proposition 4.1, there exists 𝐶0 such that |∇𝑣| ≤ 𝐶0𝑣𝑡 in ℝ𝑛 × [ 𝑡1

2
,
𝑡2+𝑇

2
]. Assume without

loss of generality that 𝐶0 ≥ 1.
Now, there exists 𝑟 > 0 such that for all (𝑥, 𝑡) ∈ ℝ𝑛 × [𝑡1, 𝑡2],

𝑄𝑟(𝑥, 𝑡) ⊂ ℝ
𝑛 ×

(
𝑡1
2
,
𝑡2 + 𝑇

2

)
.

Let (𝑥0, 𝑡0) be a free boundary point with 𝑡0 ∈ [𝑡1, 𝑡2], and define the cone

 = {𝑡0 + 2𝐶0|𝑥 − 𝑥0| < 𝑡 < 𝑡0 + 𝑟2𝑠} ⊂ ℝ𝑛 ×(
𝑡1
2
,
𝑡2 + 𝑇

2

)
.

Since 𝐶0 is also the Lipschitz constant of the free boundary in ℝ𝑛 × (
𝑡1

2
,
𝑡2+𝑇

2
),  is entirely above

the free boundary, and 𝑣 > 0 in . Then, it follows from Lemma 2.3 that 𝑣𝑡 > 0 in  as well.
With this information, we can construct a subsolution in  to compare with 𝑣𝑡. Let us assume

after a translation that (𝑥0, 𝑡0) = (0, 0). Let 𝑤 defined in ℝ𝑛 × [0, 𝑟2𝑠] as follows:

𝑤(𝑥, 𝑡) = 𝑐0(𝑡 − 2𝐶0|𝑥|)+ + 𝑎𝜒�̃�(𝑥, 𝑡) = 𝑐0(𝑡 − 2𝐶0|𝑥|)+ + 𝑎𝜒𝐵1(3𝑅𝑒1−𝑥0)(𝑥),
with 𝑐0 > 0 to be chosen later.
Then, we need to check that (𝜕𝑡 + 𝐿)𝑤 ≤ 0 in  and that 𝑤 ≤ 𝑣𝑡 in (ℝ𝑛 × (0, 𝑟)) ⧵ . The latter

follows by construction, because for any (𝑥, 𝑡) ∈ ℝ𝑛 × (0, 𝑟) that does not belong to, 𝑡 − 2𝐶0|𝑥| <
0 and then𝑤 ≡ 𝑎𝜒𝐵1(3𝑅𝑒1−𝑥0)(𝑥) in the relevant set. Thus, recalling that 𝑣𝑡 ≥ 𝑎 in𝐴,𝑤 ≤ 𝑣𝑡 outside
of the cone.
To check that 𝑤 is a subsolution in , first notice that 𝑤𝑡 = 𝑐0 inside the cone. Then,

𝐿𝑤(𝑥, 𝑡) ≤ 𝑐0‖𝐿(𝑡 − 2𝐶0|𝑥|)+‖𝐿∞(ℝ𝑛×(0,𝑟)) + 𝑎 (𝐿𝜒𝐵1(3𝑅𝑒1−𝑥0)) (𝑥)
≤ 𝐶1𝐶0𝑐0 − 𝑎 ∫

ℝ𝑛
𝜒𝐵1(3𝑅𝑒1−𝑥0)

(𝑦)𝐾(𝑦)d𝑦 ≤ 𝐶1𝐶0𝑐0 − 𝑎𝜆|𝐵1|
(4𝑅 + 1)𝑛+2𝑠

,
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1743

where we used that |𝑥0| < 𝑅, and it follows that
(𝜕𝑡 + 𝐿)𝑤 ≤ 𝑐0 + 𝐶1𝐶0𝑐0 − 𝐶2

and then choosing 𝑐0 small enough suffices to have (𝜕𝑡 + 𝐿)𝑤 ≤ 0.
Finally, by the comparison principle,6 𝑣𝑡 ≥ 𝑤 in, and in particular 𝑣𝑡(0, 𝑡) ≥ 𝑐0𝑡 for 𝑡 ∈ [0, 𝑟2𝑠),

and undoing the translation,

𝑣𝑡(𝑥0, 𝑡0 + 𝑡) ≥ 𝑐0𝑡 for 𝑡 ∈ (0, 𝑟2𝑠),

and for all (𝑥0, 𝑡0) ∈ 𝜕{𝑢 > 𝜑} ∩ (ℝ𝑛 × [𝑡1, 𝑡2]), as we wanted to prove. □

Integrating the lower bound for 𝑣𝑡, we can obtain a quadratic nondegeneracy of 𝑣 in the 𝑡
direction.

Corollary 4.4. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 anoperator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let 𝑣 = 𝑢 − 𝜑, and let (𝑥0, 𝑡0) ⊂ ℝ𝑛 × [𝑡1, 𝑡2] be a free boundary point.
Then, there exists 𝑐0 > 0 such that

𝑣(𝑥0, 𝑡0 + 𝑟) ≥ 𝑐0𝑟2

for all 𝑟 ∈ (0, 𝛿), where 𝑐0 and 𝛿 are positive and depend only on 𝜑, 𝑡1, 𝑡2, 𝑇, 𝑠, the dimension and
the ellipticity constants.

Proof. Use Proposition 4.3 to see that 𝑣𝑡(𝑥0, 𝑡0 + 𝑟) ≥ 𝑐0𝑟 for all 𝑟 ∈ (0, 𝛿). Then, since 𝑣 ∈ 𝐶1, we
can recover the value of 𝑣 integrating 𝑣𝑡 and therefore we get 𝑣(𝑥0, 𝑡0 + 𝑟) ≥ 𝑣(𝑥0, 𝑡0) + 𝑐0𝑟2∕2 =
𝑐0𝑟
2∕2. Finally rename 𝑐0∕2 as 𝑐0. □

The counterpart is an upper bound for the growth of 𝑣𝑡. Much like the Hopf-type estimate can
be proved with a subsolution taking advantage of a future cone of positivity, the anti-Hopf-type
estimate is proved with a supersolution that takes advantage of a past cone in the contact set.
Again, here we use crucially that the diffusion is supercritical.

Proposition 4.5. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let 𝑣 = 𝑢 − 𝜑, and let 0 < 𝑡1 < 𝑡2 < 𝑇. Then, there exists𝑀 > 0 such
that for all free boundary points (𝑥0, 𝑡0) ∈ ℝ𝑛 × [𝑡1, 𝑡2],

𝑣𝑡(𝑥0, 𝑡0 + 𝑡) ≤ 𝑀𝑡 for all 𝑡 > 0,

where𝑀 depends only on 𝜑, 𝑡1, 𝑡2, 𝑇, 𝑠, the dimension and the ellipticity constants.

Proof. By Proposition 4.1, there exists𝐶0 such that |∇𝑣| ≤ 𝐶0𝑣𝑡 inℝ𝑛 × [ 𝑡1
2
,
𝑡2+𝑇

2
]. Assumewithout

loss of generality that 𝐶0 ≥ 1.

6 Here, 𝑣𝑡 and 𝑤 are classical solutions and the comparison principle follows from the standard pointwise bounds. We
shall use this feature again in subsequent arguments.
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1744 ROS-OTON and TORRES-LATORRE

Now, there exists 𝑟 > 0 such that for all (𝑥, 𝑡) ∈ ℝ𝑛 × [𝑡1, 𝑡2],

𝑄𝑟(𝑥, 𝑡) ⊂ ℝ
𝑛 ×

(
𝑡1
2
,
𝑡2 + 𝑇

2

)
.

Let (𝑥0, 𝑡0) be a free boundary point with 𝑡0 ∈ [𝑡1, 𝑡2], and define the cone

 = {𝑡0 − 𝑟2𝑠 < 𝑡 < 𝑡0 − 2𝐶0|𝑥 − 𝑥0|} ⊂ ℝ𝑛 ×(
𝑡1
2
,
𝑡2 + 𝑇

2

)
.

Notice that this cone is backwards, whereas the cone defined in the proof of Proposition 4.3 was
forward. Since𝐶0 is also the Lipschitz constant of the free boundary inℝ𝑛 × (

𝑡1

2
,
𝑡2+𝑇

2
), is entirely

below the free boundary, and then 𝑣𝑡 ≡ 0 in .
Assume after a translation that (𝑥0, 𝑡0) = (0, 0). Now, we want to construct a supersolution in

Ω𝜌 = 𝐵𝜌 × (−𝜌, 𝜌) ⧵ ,
with 𝜌 ∈ (0, 𝑟) to be chosen later.
To do so, we introduce the auxiliary function ℎ(𝑥, 𝑡) ∶= min{4𝐶0 + 1, (𝑡 + |𝑥|)+}. First, we

notice 𝜕𝑡ℎ ≡ 1 in {ℎ > 0} ∩ 𝑄1 and estimate 𝐿ℎ as follows.
‖𝐿ℎ‖𝐿∞(ℝ𝑛×ℝ) ≤ 𝐶1‖ℎ‖𝐶0,1(ℝ𝑛×ℝ) = 𝐶1.

Let now ℎ𝜌(𝑥, 𝑡) = ℎ(4𝐶0𝜌−1𝑥, 𝜌−1𝑡). By the scaling of the equation (notice that the bound on
𝐿ℎ depends on the ellipticity constants but not on the particular operator),

(𝜕𝑡 + 𝐿)ℎ𝜌 ≥ 𝜌−1 − 𝐶1(4𝐶0)2𝑠𝜌−2𝑠 ≥ 0 in Ω𝜌,

provided that 𝜌 is small enough. Notice that 𝜌 depends only on 𝑡1, 𝑡2, 𝑇, the dimension, 𝑠 and the
ellipticity constants.
Finally, let us check that there exists𝑀 > 0 such that 𝑣𝑡 ≤ 𝑀ℎ𝜌 in Ω𝜌. To do so, we will check

that 𝑣𝑡 ≤ 𝑀ℎ𝜌 in the parabolic boundary of Ω𝜌. Indeed, 𝑣𝑡 = 0 ≤ 𝑀ℎ𝜌 in  for any positive𝑀.
On the other hand, if we choose𝑀 = ‖𝑣𝑡‖𝐿∞(ℝ𝑛×(0,𝑇)), for all 𝑡 ∈ [−𝜌, 𝜌] and 𝑥 ∉ 𝐵𝜌,

ℎ𝜌(𝑥, 𝑡) = min{1, 𝜌
−1(𝑡 + 4𝐶0|𝑥|)+} ≥ min{1, 𝜌−1(−𝜌 + 4𝐶0𝜌)+} = 1,

and for all 𝑥 ∈ 𝐵𝜌 × (−𝜌, 𝜌) ⧵ , |𝑥| ≥ 𝜌

2𝐶0
, and therefore

ℎ𝜌(𝑥, −𝜌) = min{1, 𝜌
−1(−𝜌 + 4𝐶0|𝑥|)+} ≥ min{1, (−1 + 2)+} = 1.

Hence,

𝑣𝑡 ≤ ‖𝑣𝑡‖𝐿∞(ℝ𝑛×(0,𝑇)) = 𝑀 = 𝑀ℎ𝜌(𝑥, 𝑡)
in the whole parabolic boundary of Ω𝜌, and together with the fact that (𝜕𝑡 + 𝐿)ℎ𝜌 ≥ 0 in Ω𝜌 we
can conclude that 𝑣𝑡 ≤ 𝑀ℎ𝜌 in Ω𝜌 by the comparison principle.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1745

In particular, for every free boundary point (𝑥0, 𝑡0) ∈ ℝ𝑛 × [𝑡1, 𝑡2], we have

𝑣𝑡(𝑥0, 𝑡0 + 𝑡) ≤ 𝑀𝑡 for 𝑡 ∈ (0, 𝜌),

with uniform𝑀 and 𝜌.
To conclude, observe that 𝑣𝑡(𝑥0, 𝑡0 + 𝑡) ≤ 𝜌−1‖𝑣𝑡‖𝐿∞(ℝ𝑛×(0,𝑇))𝑡 for all 𝑡 ≥ 𝜌, completing the

proof. □

Now, using the previous estimate and the semiconvexity, we are ready to prove the global 𝐶1,1
regularity of the solutions.

Proposition 4.6. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let 0 < 𝑡1 < 𝑡2 < 𝑇. Then, there exists 𝐶 > 0 such that

‖𝐷2𝑥𝑢‖𝐿∞(ℝ𝑛×[𝑡1,𝑡2]) + ‖𝜕𝑡∇𝑢‖𝐿∞(ℝ𝑛×[𝑡1,𝑡2]) + ‖𝜕𝑡𝑡𝑢‖𝐿∞(ℝ𝑛×[𝑡1,𝑡2]) ≤ 𝐶.
The constant 𝐶 depends only on 𝜑, 𝑡1, 𝑡2, 𝑇, 𝑠, the dimension and the ellipticity constants.

Proof. By Proposition 4.1, there exists 𝜂 ∈ (0, 1) such that 𝜂|∇𝑣| ≤ 𝑣𝑡 in ℝ𝑛 × [ 𝑡1
3
,
𝑡2+2𝑇

3
]. Let 𝑒

be a vector in the 𝑥 directions with |𝑒| ≤ 1, and let 𝜈 = 𝑒𝑛+1 + 𝜂𝑒. Thus, 𝜕𝜈𝑣 = (𝜕𝑡 + 𝜂𝜕𝑒)𝑣 ≥ 0 in
ℝ𝑛 × [

𝑡1

3
,
𝑡2+2𝑇

3
].

Besides, for any given (𝑥, 𝑡) ∈ ℝ𝑛 × (0, 𝑇) and 𝑟 ∈ (0, 2−1−
1

2𝑠 𝑡), consider the cutoff 𝜓 ∈
𝐶∞𝑐 (𝑄

2
1+
1
2𝑠 𝑟
(𝑥, 𝑡)) with 𝜓 ≡ 1 in 𝑄

2
1
2𝑠 𝑟
(𝑥, 𝑡). By Proposition 2.4, since |𝜈| ≤ √

2, 𝑣𝜈𝜈 ≥ −2�̂�, and
�̂� does not depend on the choice of 𝜈. Then,

0 ≤ ∫
𝑄
2

1
2𝑠 𝑟

(𝑥,𝑡)

𝑣𝜈𝜈 + 2�̂� ≤ ∫
𝑄
2
1+
1
2𝑠 𝑟

(𝑥,𝑡)

(𝑣𝜈𝜈 + 2�̂�)𝜓 = ∫
𝑄
2
1+
1
2𝑠 𝑟

(𝑥,𝑡)

𝑣𝜓𝜈𝜈 + 2�̂�𝜓 ≤ 𝐶(𝑟),

and then ‖𝑣𝜈𝜈‖𝐿1(𝑄
2

1
2𝑠 𝑟

(𝑥,𝑡)) ≤ 𝐶(𝑟) + 2�̂�|𝑄
2
1
2𝑠 𝑟

| =∶ 𝐶1(𝑟). Observe that this bound is independent
of (𝑥, 𝑡) and 𝜈.
Then we define the auxiliary function

𝑤 ∶=
𝜕𝜈𝑣(𝑥 + 𝜂ℎ𝑒, 𝑡 + ℎ) − 𝜕𝜈𝑣(𝑥, 𝑡)

ℎ
=
1

ℎ ∫
ℎ

0

𝜕𝜈𝜈𝑣(𝑥 + 𝜂𝜁𝑒, 𝑡 + 𝜁)d𝜁.

Since 𝑤 is an average of 𝑣𝜈𝜈, we can obtain a 𝐿1 bound as well. Let ℎ ∈ (0, 𝑟). Then,

‖𝑤‖𝐿1(𝑄𝑟(𝑥,𝑡)) ≤ 1ℎ ∫
ℎ

0

‖𝑣𝜈𝜈‖𝐿1(𝑄𝑟(𝑥+𝜂𝜁𝑒,𝑡+ℎ))d𝜁 ≤ ‖𝑣𝜈𝜈‖𝐿1(𝑄
2

1
2𝑠 𝑟

(𝑥,𝑡)) = 𝐶1(𝑟).

This shows that 𝑤 ∈ 𝐿1((𝑡3, 𝑡4] → 𝐿1𝑠 (ℝ𝑛)) for any 𝑡3, 𝑡4 ∈ (0, 𝑇 − ℎ]. Let us compute it:
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1746 ROS-OTON and TORRES-LATORRE

Let 𝑟 ∈ (0, 2−1−
1

2𝑠 𝑡3) and 𝑁 = ⌈ 𝑡4−𝑡3
2𝑟

⌉. Then, we decompose the space in the following way:
‖𝑤‖𝐿1((𝑡3,𝑡4]→𝐿1𝑠 (ℝ𝑛)) ≤ 𝑁−1∑

𝑖=0

‖𝑤‖𝐿1((𝑡3+2𝑖𝑟,𝑡3+2(𝑖+1)𝑟]→𝐿1𝑠 (ℝ𝑛)) + ‖𝑤‖𝐿1((𝑡4−2𝑟,𝑡4]→𝐿1𝑠 (ℝ𝑛))
=

𝑁−1∑
𝑖=0

∫
𝑡3+2(𝑖+1)𝑟

𝑡3+2𝑖𝑟
∫
ℝ𝑛

|𝑤(𝑥, 𝑡)|
1 + |𝑥|𝑛+2𝑠 d𝑥d𝑡 + ∫

𝑡4

𝑡4−2𝑖𝑟
∫
ℝ𝑛

|𝑤(𝑥, 𝑡)|
1 + |𝑥|𝑛+2𝑠 d𝑥d𝑡

≤
𝑁−1∑
𝑖=0

∑
𝑥∈ℤ𝑛

∫
𝑡3+2(𝑖+1)𝑟

𝑡3+2𝑖𝑟
∫
𝐵𝑟(𝑟𝑥∕

√
𝑛)

|𝑤(𝑥, 𝑡)|
1 + |𝑥|𝑛+2𝑠 d𝑥d𝑡

+
∑
𝑥∈ℤ𝑛

∫
𝑡4

𝑡4−2𝑖𝑟
∫
𝐵𝑟(𝑟𝑥∕

√
𝑛)

|𝑤(𝑥, 𝑡)|
1 + |𝑥|𝑛+2𝑠 d𝑥d𝑡

=

𝑁−1∑
𝑖=0

∑
𝑥∈ℤ𝑛

∫
𝑄𝑟(𝑟𝑥∕

√
𝑛,𝑡3+(2𝑖+1)𝑟)

|𝑤(𝑥, 𝑡)|
1 + |𝑥|𝑛+2𝑠 d𝑥d𝑡

+
∑
𝑥∈ℤ𝑛

∫
𝑄𝑟(𝑟𝑥∕

√
𝑛,𝑡4−𝑟)

|𝑤(𝑥, 𝑡)|
1 + |𝑥|𝑛+2𝑠 d𝑥d𝑡

≤ 𝑁 ∑
𝑥∈ℤ𝑛

𝐶1(𝑟)

1 + (|𝑟𝑥∕√𝑛| − 𝑟)𝑛+2𝑠+

=∶ 𝑁𝐶2(𝑟).

Moreover, let 𝜏𝑦𝑤 be the translation of 𝑤 by the vector 𝑦 ∈ ℝ𝑛. Analogously, we can deduce
that

‖𝜏𝑦𝑤‖𝐿1((𝑡3,𝑡4]→𝐿1𝑠 (ℝ𝑛)) ≤ 𝑁𝐶2(𝑟),
independently of 𝑦.
Now, recall that 𝑣 is a solution of (𝜕𝑡 + 𝐿)𝑣 = −𝐿𝜑 in the set {𝑣 > 0}. Furthermore, if

𝑣 > 0 at (𝑥, 𝑡) ∈ ℝ𝑛 × [ 𝑡1
3
,
𝑡2+2𝑇

3
], since 𝜕𝜈𝑣 ≥ 0, 𝑣(𝑥 + 𝜂ℎ𝑒, 𝑡 + ℎ) > 0 also holds (provided that

𝑡 + ℎ ≤ 𝑡2+2𝑇

3
), and it follows that the translated function is also a solution. Hence,

𝜕𝑡𝑤 + 𝐿𝑤 = 𝜂
𝜕𝑒𝐿𝜑(𝑥) − 𝜕𝑒𝐿𝜑(𝑥 + 𝜂ℎ𝑒)

ℎ
in {𝑣 > 0} ∩

(
ℝ𝑛 ×

[
𝑡1
3
,
𝑡2 + 2𝑇

3
− ℎ

])
,

and then |𝜕𝑡𝑤 + 𝐿𝑤| ≤ 𝐶‖𝐿𝜑‖𝐶1,1(ℝ𝑛) ≤ 𝐶‖𝜑‖𝐶2,1(ℝ𝑛) in
{𝑣 > 0} ∩

(
ℝ𝑛 ×

[
𝑡1
3
,
𝑡2 + 2𝑇

3
− ℎ

])
⊂ {𝑣 > 0} ∩

(
ℝ𝑛 ×

[
2𝑡1
3
,
2𝑡2 + 𝑇

3

])
,

provided that ℎ is small enough.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1747

Moreover, if (𝑥1, 𝑡1) ∈ {𝑣 = 0} ∩ (ℝ𝑛 × [
2𝑡1

3
,
2𝑡2+𝑇

3
]), then 𝜕𝜈𝑣(𝑥1, 𝑡1) = 0, and using Proposi-

tion 4.5 and taking ℎ small enough, it follows that

𝑤(𝑥1, 𝑡1) =
𝜕𝜈𝑣(𝑥1 + 𝜂ℎ𝑒, 𝑡1 + ℎ)

ℎ
≤ 2𝑣𝑡(𝑥1 + 𝜂ℎ𝑒, 𝑡1 + ℎ)

ℎ

≤ 2𝑀(𝑡1 + ℎ − Γ(𝑥1 + 𝜂ℎ𝑒))+
ℎ

≤ 2𝑀(ℎ + 𝐶0𝜂ℎ|𝑒| + 𝑡1 − Γ(𝑥1))
ℎ

≤ 4𝑀.
Therefore, �̃� = max{𝑤, 4𝑀} is a subsolution for

𝜕𝑡�̃� + 𝐿�̃� ≤ 𝐶‖𝜑‖𝐶2,1(ℝ𝑛) in ℝ𝑛 ×

[
2𝑡1
3
,
2𝑡2 + 𝑇

3

]
,

and we can apply Lemma A.3 to 𝜏𝑦�̃� obtain

sup
𝐵1×[𝑡1,𝑡2]

𝜏𝑦�̃� ≤ 𝐶
(‖𝜏𝑦�̃�‖𝐿1(( 2𝑡1

3
,
2𝑡2+𝑇

3

]
→𝐿1𝑠 (ℝ

𝑛)
) + ‖𝜑‖𝐶2,1(ℝ𝑛)),

with 𝐶 depending only on 𝑡1, 𝑡2, 𝑇, the dimension, the ellipticity constants and 𝑠. Then, since the
bound is uniform on 𝑦, it follows from the definition of 𝑤 that

sup
ℝ𝑛×[𝑡1,𝑡2]

𝑤 ≤ 𝐶(𝑁𝐶2(𝑟) + 2𝑀 + ‖𝜑‖𝐶2,1(ℝ𝑛)) =∶ 𝐶0.
Since 𝐶0 does not depend on 𝜈 or ℎ, combining this with Proposition 2.4, it follows that‖𝑣𝜈𝜈‖𝐿∞(ℝ𝑛×[𝑡1,𝑡2]) ≤ 𝐶∗ = max{𝐶0, 2�̂�} for all 𝜈 = 𝑒𝑛+1 + 𝜂𝑒 with 𝑒 in the 𝑥 direction and |𝑒| < 1.
Now, let 𝑒 = 𝜆𝑒 with 𝑒 a unit vector. Then,

𝐷2𝑒𝑛+1+𝜂𝑒𝑣 = 𝑣𝑡𝑡 + 𝜂(𝑣𝑡𝑒 + 𝑣𝑒𝑡) + 𝜂
2𝑣𝑒𝑒 = 𝑣𝑡𝑡 + 𝜂𝜆(𝑣𝑡𝑒 + 𝑣𝑒𝑡) + 𝜂

2𝜆2𝑣𝑒𝑒.

Since this expression is bounded by 𝐶∗ for all values of 𝑒 and 𝜆 ∈ (−1, 1), we can evaluate at
𝜆 = 0,

1

2
, −
1

2
to get:

|𝑣𝑡𝑡| ≤ 𝐶∗||||𝑣𝑡𝑡 + 12𝜂(𝑣𝑡𝑒 + 𝑣𝑒𝑡) + 14𝜂2𝑣𝑒𝑒|||| ≤ 𝐶∗||||𝑣𝑡𝑡 − 12𝜂(𝑣𝑡𝑒 + 𝑣𝑒𝑡) + 14𝜂2𝑣𝑒𝑒|||| ≤ 𝐶∗,
and then it is easy to check that |𝑣𝑒𝑒| + |𝑣𝑡𝑒 + 𝑣𝑒𝑡| ≤ 𝐶(𝜂)𝐶∗.
Hence, for any 𝑒 ∈ 𝕊𝑛 (all unit vectors in 𝑥, 𝑡), |𝑣𝑒𝑒| ≤ 𝐶′(𝜂)𝐶∗. Then, given two points (𝑥1, 𝑡1)

and (𝑥2, 𝑡2) in ℝ𝑛 × [𝑡1, 𝑡2],

|𝑣(𝑥1, 𝑡1) − ∇𝑥,𝑡𝑣(𝑥1, 𝑡1) ⋅ (𝑥2 − 𝑥1, 𝑡2 − 𝑡1) − 𝑣(𝑥2, 𝑡2)| ≤ 𝐶′(𝜂)𝐶∗‖(𝑥1 − 𝑥2, 𝑡1 − 𝑡2)‖2.
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1748 ROS-OTON and TORRES-LATORRE

This means that 𝑣 ∈ 𝐶1,1(ℝ𝑛 × [𝑡1, 𝑡2]), and 𝑢 = 𝑣 + 𝜑 as well. □

We can now give the:

Proof of Theorem 1.1. The global Lipschitz regularity follows from Proposition 3.1. The 𝐶1,1
regularity follows from Proposition 4.6. □

5 REGULARITY OF THE FREE BOUNDARIES

In this section we use the regularity of the solutions established before to deduce the regular-
ity of the free boundaries. Here again, we will use crucially the fact that 𝑠 < 1∕2. We first take
advantage of the different orders of derivation in the Equation (1.1) to obtain further regularity
in 𝑡.

Lemma 5.1. Let 𝑠 ∈ (0, 1
2
), let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2) and (1.3),

and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let 𝑣 = 𝑢 − 𝜑, and let 0 < 𝑡1 < 𝑡2 < 𝑇. Then, there exists 𝐶 > 0 such that

‖𝑣𝑡𝑡‖𝐶𝛼((ℝ𝑛×[𝑡1,𝑡2])∩{𝑣>0}) + 𝑛∑
𝑖=0

‖𝑣𝑡𝑖‖𝐶𝛼((ℝ𝑛×[𝑡1,𝑡2])∩{𝑣>0}) ≤ 𝐶.
where 𝛼 = 1 − 2𝑠 > 0.

Proof. Let 𝜈 ∈ 𝕊𝑛 be any unit vector in 𝑥 and 𝑡, and let 𝑤 = 𝜕𝜈𝑢. Then, by Proposition 4.6,‖𝑤‖𝐶0,1(ℝ𝑛×[𝑡1,𝑡2]) ≤ 𝐶. Moreover, by the same arguments as in the proof of Proposition 3.2, we
deduce ‖𝐿𝑤‖𝐶𝛼(ℝ𝑛×[𝑡1,𝑡2]) ≤ 𝐶.
Then, since 𝑣𝑡 = 𝑢𝑡 = −𝐿𝑢 in {𝑣 > 0}, differentiating the equation with respect to 𝜈 it follows

that 𝑤𝑡 = −𝐿𝑤 in {𝑣 > 0}, and therefore ‖𝑣𝑡𝜈‖𝐶𝛼(ℝ𝑛×[𝑡1,𝑡2]) ≤ 𝐶. □

We next show that the free boundary is 𝐶1,𝛼.

Theorem 5.2. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2) and

(1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let 0 < 𝑡1 < 𝑡2 < 𝑇.
Then, the free boundary is a 𝐶1,𝛼 graph in the 𝑡 direction inℝ𝑛 × [𝑡1, 𝑡2], that is,

𝜕{𝑢 > 𝜑} ∩ (ℝ𝑛 × (𝑡1, 𝑡2)) = {𝑡 = Γ(𝑥)},

with Γ ∈ 𝐶1,𝛼 and 𝛼 = 1 − 2𝑠 > 0.

Proof. We already know that the free boundary is a Lipschitz graph by Proposition 4.1. Then, let
𝛼 = 1 − 2𝑠. By Lemma 5.1,

‖𝑣𝑡𝑡‖𝐶𝛼((ℝ𝑛×[𝑡1,𝑡2])∩{𝑣>0}) + 𝑛∑
𝑖=0

‖𝑣𝑡𝑖‖𝐶𝛼((ℝ𝑛×[𝑡1,𝑡2])∩{𝑣>0}) ≤ 𝐶.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1749

Then, 𝑣𝑡𝑡 > 0 at the free boundary by Proposition 4.3, and by continuity 𝑣𝑡𝑡 ≥ 𝑐0 in 𝐸 = {𝑡 ∈
[Γ(𝑥), Γ(𝑥) + 𝛿]} ∩ [𝑡1, 𝑡2] for some small 𝛿 > 0. Thus,‖‖‖‖𝑣𝑡𝑖𝑣𝑡𝑡 ‖‖‖‖𝐶𝛼(𝐸) ≤ 𝐶.
Finally, notice that the free boundary can be seen as the zero level surface of 𝑣𝑡. The normal

vector to the level surfaces of 𝑣𝑡 is given by the formula

𝜈 =
∇𝑥,𝑡𝑣𝑡|∇𝑥,𝑡𝑣𝑡| = (𝜕𝑡1𝑣∕𝜕𝑡𝑡𝑣, … , 𝜕𝑡𝑛𝑣∕𝜕𝑡𝑡𝑣, 1)√

1 +
∑𝑛
𝑗=1
(𝜕𝑡𝑗𝑣∕𝜕𝑡𝑡𝑣)2

,

and therefore 𝜈 ∈ 𝐶𝛼(𝐸) uniformly, thus {𝑣𝑡 = 0} is a 𝐶1,𝛼 manifold, as desired. □

Once we know that the free boundary is a 𝐶1,𝛼 graph, we can provide an expansion for the
solution.

Corollary 5.3. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2) and

(1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let (𝑥0, 𝑡0) ∈ 𝜕{𝑢 > 𝜑} be a free boundary point. Then,

𝑢𝑡(𝑥0 + 𝑥, 𝑡0 + 𝑡) = 𝑐0(𝑡 − 𝑎 ⋅ 𝑥)+ + 𝑂(𝑡
1+𝛼 + |𝑥|1+𝛼)

and

(𝑢 − 𝜑)(𝑥0 + 𝑥, 𝑡0 + 𝑡) =
𝑐0
2
(𝑡 − 𝑎 ⋅ 𝑥)2+ + 𝑂(𝑡

2+𝛼 + |𝑥|2+𝛼),
with 𝛼 = 1 − 2𝑠 > 0, 𝑐0 = 𝑢𝑡𝑡(𝑥0, 𝑡0) > 0 and 𝑎 = ∇Γ(𝑥0).

Proof. We will use strongly that Γ ∈ 𝐶1,𝛼 by Theorem 5.2, and that 𝑢𝑡 ∈ 𝐶1,𝛼({𝑢 > 𝜑}) by
Lemma 5.1.
We distinguish two cases. If (𝑥0 + 𝑥, 𝑡0 + 𝑡) ∈ {𝑢 = 𝜑}, 𝑡0 + 𝑡 ≤ Γ(𝑥0 + 𝑥), then expanding

Γ(𝑥0 + 𝑥) = 𝑡0 + ∇Γ(𝑥0) ⋅ 𝑥 + 𝑂(|𝑥|1+𝛼) we obtain
𝑡 − ∇Γ(𝑥0) ⋅ 𝑥 ≤ 𝑂(|𝑥|1+𝛼),

and therefore

(𝑡 − ∇Γ(𝑥0) ⋅ 𝑥)
2
+ ≤ 𝑂(|𝑥|2+2𝛼) ≤ 𝑂(|𝑥|2+𝛼),

and since (𝑢 − 𝜑)(𝑥0 + 𝑥, 𝑡0 + 𝑡) = 𝑢𝑡(𝑥0 + 𝑥, 𝑡0 + 𝑡) = 0 this is exactly what we needed.
On the other hand, outside of the contact set,

𝑢𝑡(𝑥0 + 𝑥, 𝑡0 + 𝑡) = ∫
𝑡0+𝑡

Γ(𝑥0+𝑥)

𝑢𝑡𝑡(𝑥0 + 𝑥, 𝜏)d𝜏

= (𝑡0 + 𝑡 − Γ(𝑥0 + 𝑥))(𝑢𝑡𝑡(𝑥0, 𝑡0) + 𝑂(𝑡
𝛼 + |𝑥|𝛼))

= (𝑡 − ∇Γ(𝑥0) ⋅ 𝑥)+𝑢𝑡𝑡(𝑥0, 𝑡0) + 𝑂(𝑡
1+𝛼 + |𝑥|1+𝛼),
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1750 ROS-OTON and TORRES-LATORRE

where in the last equality we expanded Γ(𝑥0 + 𝑥) as before, and if 𝑡 − ∇Γ(𝑥0) ⋅ 𝑥 ≤ 0, the whole
term is 𝑂(𝑡1+𝛼 + |𝑥|1+𝛼) and can be absorbed in the error term because 𝑡0 + 𝑡 − Γ(𝑥0 + 𝑥) ≥ 0.
Then, we can repeat the procedure and integrate 𝑢𝑡, knowing already its expansion, and the

conclusion follows from an analogous computation. □

We can now give the:

Proof of Theorem 1.2. The first part is Theorem 5.2, the second part is Corollary 5.3. □

5.1 Regular and singular points

Definition 5.4. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let (𝑥0, 𝑡0) ∈ 𝜕{𝑢 > 𝜑} be a free boundary point. Then,

∙ We say (𝑥0, 𝑡0) is a regular free boundary point if there exists 𝑐0 > 0 such that for all small
𝑟 > 0,

‖𝑢(⋅, 𝑡0) − 𝜑‖𝐿∞(𝐵𝑟(𝑥0)) ≥ 𝑐0𝑟2.
∙ We say (𝑥0, 𝑡0) is a singular free boundary point if it is not regular.

One important first observation is the following.

Proposition 5.5. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying

(1.2) and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Then, if (𝑥0, 𝑡0) is any free boundary point, the following are
equivalent:

(i) (𝑥0, 𝑡0) is a regular free boundary point.
(ii) If 𝜈0 is the normal vector to the free boundary at (𝑥0, 𝑡0), 𝜈0 ≠ 𝑒𝑛+1.
(iii) ∇𝑢𝑡(𝑥0, 𝑡0) ≠ 0.
Moreover, the set of regular free boundary points is an open subset of 𝜕{𝑢 > 𝜑}.

Proof. (ii)⇔ (iii):
It follows directly from

𝜈0 =
(∇𝑢𝑡(𝑥0, 𝑡0), 𝑢𝑡𝑡(𝑥0, 𝑡0))√
1 + |∇𝑢𝑡(𝑥0, 𝑡0)|2∕𝑢𝑡𝑡(𝑥0, 𝑡0)2

and the fact that 𝑢𝑡𝑡(𝑥0, 𝑡0) > 0.
(i)⇔ (ii):
We will distinguish the cases 𝜈0 = 𝑒𝑛+1 and 𝜈0 ≠ 𝑒𝑛+1. If 𝜈0 = 𝑒𝑛+1, let {𝑡 = Γ(𝑥)} be the free

boundary. Then, Γ ∈ 𝐶1,𝛼 and ∇Γ(𝑥0) = 0 because 𝜈0 = 𝑒𝑛+1. Then,

Γ(𝑥0 + 𝑥) ≥ 𝑡0 − 𝐶|𝑥|1+𝛼,
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1751

and therefore

(𝑢 − 𝜑)(𝑥0 + 𝑥, 𝑡0) ≤ ∫
𝑡0

Γ(𝑥0+𝑥)
∫
𝜏

Γ(𝑥0+𝑥)

𝑢𝑡𝑡d𝜏
′d𝜏

≤ (𝑡0 − Γ(𝑥0 + 𝑥))2
2

‖𝑢𝑡𝑡‖𝐿∞(ℝ𝑛×[Γ(𝑥0+𝑥),𝑡0])
≤ 𝐶|𝑥|2+2𝛼,

contradicting the assumption that (𝑥0, 𝑡0) is a regular point.
On the other hand, if 𝜈0 = 𝛼𝑒𝑛+1 + 𝛽𝑒, with 𝑒 a unit vector in the 𝑥 directions and 𝛽 > 0, we

can also approximate Γ as

Γ(𝑥0 + 𝑥) ≤ 𝑡0 − 𝛽𝛼 (𝑥 ⋅ 𝑒) + 𝐶|𝑥|1+𝛼.
Notice that 𝛼 ≠ 0 because 𝑢𝑡𝑡 > 0 on the free boundary as a consequence of Proposition 4.3. We
also need to use that, for some small 𝛿 > 0, 𝑢𝑡𝑡 ≥ 𝑐𝛿 > 0 in the set 𝐸𝛿 = {𝑡 ∈ [Γ(𝑥), Γ(𝑥) + 𝛿]} ∩
[𝑡0 − 𝛿, 𝑡0 + 𝛿], by the same argument as in the proof of Theorem 5.2.
Then, if 𝑟 is small,

‖𝑢(⋅, 𝑡0) − 𝜑‖𝐿∞(𝐵𝑟(𝑥0)) ≥ 𝑢 (𝑥0 + 𝑟2𝑒, 𝑡0) − 𝜑 (𝑥0 + 𝑟2𝑒) ≥ 1
2

(
𝛽𝑟

2𝛼
− 𝐶𝑟1+𝛼

)2
𝑐𝛿 ≥ 𝑐0𝑟2.

For the last part, first notice that∇𝑢𝑡 is a continuous function in {𝑢 > 𝜑} because 𝑢𝑡 ∈ 𝐶1,𝛼({𝑢 >
𝜑}) by Lemma 5.1. As a consequence, the set of regular points, {∇𝑢𝑡 ≠ 0} ∩ 𝜕{𝑢 > 𝜑}, is a relatively
open set. □

In a neighbourhood of a regular free boundary point, the free boundary is also 𝐶1,𝛼 in space:

Proposition 5.6. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let (𝑥0, 𝑡0) be any regular free boundary point.
Then, there exists an open neighbourhood 𝑥0 ∈ 𝑈 ⊂ ℝ𝑛 × (0, 𝑇) such that the free boundary is a

𝐶1,𝛼 graph in the 𝑥 direction, that is, there exists 𝑖 ∈ {0, … , 𝑛} such that

𝜕{𝑢 > 𝜑} ∩ 𝑈 = {𝑥𝑖 = 𝐹𝑖(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛, 𝑡)},

with 𝐹𝑖 ∈ 𝐶1,𝛼 and 𝛼 = 1 − 2𝑠 > 0.

Proof. First, by Theorem 5.2, the free boundary can be represented as𝜕{𝑢 > 𝜑} = {𝑡 = Γ(𝑥)} in a
neighbourhood of (𝑥0, 𝑡0), with Γ ∈ 𝐶1,𝛼. Moreover, since (𝑥0, 𝑡0) is regular, by Proposition 5.5,
the normal vector to the free boundary 𝜈(𝑥0,𝑡0) ≠ 𝑒𝑛+1, and thus ∇Γ(𝑥0) ≠ 0, and in particular
𝜕𝑥𝑖Γ(𝑥0) ≠ 0.
Therefore, by the implicit function theorem, {𝑢 > 𝜑} ∩ {𝑡 = 𝑡0} is locally a𝐶1,𝛼 graph of the form

(𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛, 𝑡) ↦ 𝑥𝑖 . □
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1752 ROS-OTON and TORRES-LATORRE

On the other hand, in the time slice of a singular point, the free boundary could be very com-
plicated. Nevertheless, we can prove that singular points are scarce. To do so, we will use the
following lemma from geometric measure theory.

Lemma 5.7 ([20]). Consider the family {𝐸𝑡}𝑡∈(0,𝑇) with 𝐸𝑡 ⊂ ℝ𝑛, and let us denote 𝐸 ∶=
⋃

𝑡∈(0,𝑇)

𝐸𝑡 .

Let 1 ≤ 𝛾 ≤ 𝛽 ≤ 𝑛, and assume that the following holds:
∙ dim 𝐸𝑡 ≤ 𝛽,
∙ for all 𝜀 > 0, 𝑡0 ∈ (0, 𝑇) and 𝑥0 ∈ 𝐸𝑡0 , there exists 𝜌 > 0 such that

𝐵𝑟(𝑥0) ∩ 𝐸𝑡 = ∅,

for all 𝑟 ∈ (0, 𝜌) and 𝑡 > 𝑡0 + 𝑟𝛾−𝜀.

Then, dim 𝐸𝑡 ≤ 𝛽 − 𝛾, for1-a.e. 𝑡 ∈ (0, 𝑇).
Using the global 𝐶1,𝛼 regularity of the free boundary, and noticing that the normal vector is

𝑒𝑛+1 at singular points, we can prove the following dimension bound.

Proposition 5.8. Let 𝑠 ∈ (0, 1
2
), and let 𝑢 be the solution of (1.1) with 𝐿 an operator satisfying (1.2)

and (1.3), and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛). Let Σ ⊂ 𝜕{𝑢 > 𝜑} be the set of singular free boundary points, and let
Σ𝑡 = {(𝑥, 𝑡

′) ∈ Σ ∶ 𝑡′ = 𝑡} be the time slices of the singular set.
Then,

dim Σ𝑡 ≤ 𝑛 − 1 − 𝛼, for almost every 𝑡 ∈ (0, 𝑇),

with 𝛼 = 1 − 2𝑠 > 0. In particular,𝑛−1(Σ𝑡) = 0 for almost every 𝑡 ∈ (0, 𝑇).
Proof. We just need to check the hypotheses of Lemma 5.7, with 𝛽 = 𝑛 and 𝛾 = 1 + 𝛼. The first
condition is obvious, because since Σ𝑡 ⊂ ℝ𝑛 × {𝑡}, dim Σ𝑡 ≤ 𝑛.
For the second condition, we use the 𝐶1,𝛼 regularity of the free boundary. Let 𝑥0 ∈ 𝐸𝑡0 . This

means that (𝑥0, 𝑡0) is a singular free boundary point. In particular, since 𝑣𝑡(𝑥0, Γ(𝑥0)) = 0 and
𝑣𝑡𝑡(𝑥0, 𝑡0) ≠ 0,

∇Γ(𝑥0) = −
∇𝑣𝑡(𝑥0, 𝑡0)

𝑣𝑡𝑡(𝑥0, 𝑡0)
= 0.

Now, Γ ∈ 𝐶1,𝛼. Therefore, Γ(𝑥) ≤ 𝑡0 + 𝐶|𝑥 − 𝑥0|1+𝛼 for all 𝑥 ∈ 𝐵𝜌(𝑥0) for some 𝜌 > 0.
Finally, for any 𝜀 > 0, there exists 𝜌(𝜀) such that for all 𝑟 ∈ (0, 𝜌(𝜀)),

Γ(𝑥) ≤ 𝑡0 + 𝐶𝑟1+𝛼 < 𝑡0 + 𝑟1+𝛼−𝜀,
and thus 𝐵𝑟(𝑥0) ∩ Σ𝑡 = ∅ for all 𝑡 > 𝑡0 + 𝑟1+𝛼−𝜀, completing the proof. □

We finally give the:

Proof of Theorem 1.3. The first part follows from Proposition 5.5, the second is Proposition 5.6 and
the last is Proposition 5.8. □
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APPENDIX A: SOME TOOLS FOR NONLOCAL PARABOLIC EQUATIONS
We start recalling the following estimates on the fundamental solution to the nonlocal heat
equation, see ref. [13].

Theorem A.1 ([13]). Let 𝐿 be an operator satisfying (1.2) and (1.3), and let 𝑤 ∈ 𝐿∞(ℝ𝑛 × (0, 𝑇)) be
the solution of

(𝜕𝑡 + 𝐿)𝑤 = 0 in ℝ𝑛 × (0, 𝑇)
𝑤 = 𝑤0 on {𝑡 = 0}.

Then,

𝑤(𝑥, 𝑡) = 𝑝𝑡 ∗ 𝑤0,

and 𝑝𝑡 is nonnegative, ‖𝑝𝑡(⋅, 𝑡)‖𝐿1(ℝ𝑛) = 1 for all 𝑡 ∈ (0, 𝑇),
(𝜕𝑡 + 𝐿)𝑝𝑡 = 0 in ℝ𝑛 × (0, 𝑇),
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and

𝑐1 min

{
𝑡
−
𝑛

2𝑠 , 𝑡|𝑥|−𝑛−2𝑠} ≤ 𝑝𝑡(𝑥) ≤ 𝑐2 min
{
𝑡
−
𝑛

2𝑠 , 𝑡|𝑥|−𝑛−2𝑠} ,
for some 0 < 𝑐1 < 𝑐2 depending only on 𝑇, the dimension, 𝑠 and the ellipticity constants.

It is worth noticing that 𝑝𝑡 is an approximation to the identity, in the following sense.

Corollary A.2. Let 𝑓 ∈ 𝐿∞(ℝ𝑛) be uniformly continuous, and define 𝑓𝑡 = 𝑝𝑡 ∗ 𝑓 for all 𝑡 > 0, with
𝑝𝑡 the fundamental solution introduced in Theorem A.1. Then,

‖𝑓𝑡‖𝐿∞(ℝ𝑛) ≤ ‖𝑓‖𝐿∞(ℝ𝑛)
and

‖𝑓𝑡 − 𝑓‖𝐿∞(ℝ𝑛) → 0 as 𝑡 → 0.

Proof. Since 𝑝𝑡 ≥ 0 and ‖𝑝𝑡(⋅, 𝑡)‖𝐿1(ℝ𝑛) = 1, the trivial bound of the convolution suffices to obtain
the first inequality.
For the second inequality, for any 𝜀 > 0 and any 𝑥 ∈ ℝ𝑛,

|𝑓𝑡(𝑥) − 𝑓(𝑥)| = |||||∫ℝ𝑛 𝑝𝑡(𝑦)(𝑓(𝑥 − 𝑦) − 𝑓(𝑥))d𝑦
|||||

≤ ∫
𝐵𝛿

𝑝𝑡(𝑦)|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)|d𝑦 + ∫
𝐵𝑐
𝛿

𝑝𝑡(𝑦)|𝑓(𝑥 − 𝑦) − 𝑓(𝑥)|d𝑦
≤ 𝜀 ∫

𝐵𝛿

𝑝𝑡 + 2‖𝑓‖𝐿∞(ℝ𝑛) ∫
𝐵𝑐
𝛿

𝑝𝑡 ≤ 𝜀 + 2𝑐2𝛿−2𝑠‖𝑓‖𝐿∞(ℝ𝑛)𝑡 < 2𝜀,
as we can choose 𝛿 sufficiently small to ensure |𝑓(𝑥 − 𝑦) − 𝑓(𝑥)| < 𝜀 inside 𝐵𝛿 by uniform
continuity, and then use Theorem A.1 and make 𝑡 tend to zero. □

We will also use the following 𝐿1 to 𝐿∞ bound for subsolutions.

Lemma A.3. Let 𝐿 be an operator satisfying (1.2) and (1.3), and let 𝑤 ∈ 𝐿∞(ℝ𝑛 × (−1, 0)) be a
subsolution of

(𝜕𝑡 + 𝐿)𝑤 ≤ 𝐶0 in ℝ𝑛 × (−1, 0).

Then,

sup
𝐵1×[−1+𝛿,0)

𝑤 ≤ 𝐶
(
∫
0

−1
∫
ℝ𝑛

|𝑤(𝑥, 𝑡)|
1 + |𝑥|𝑛+2𝑠 d𝑥d𝑡 + 𝐶0

)
,

where 𝐶 depends only on 𝛿 > 0, 𝑠, the dimension and the ellipticity constants.
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1756 ROS-OTON and TORRES-LATORRE

Proof. Since𝑤 − 𝐶0(𝑡 + 1) ≥ 𝑤 − 𝐶0 and (𝜕𝑡 + 𝐿)(𝑤 − 𝐶0(𝑡 + 1)) ≤ 0, we can assumewithout loss
of generality that 𝐶0 = 0.
Then, since𝑤 is a subsolution for the nonlocal heat equation, the following holds for any−1 <

𝑡0 < 𝑡 < 0:

𝑤(𝑥, 𝑡) ≤ ∫
ℝ𝑛
𝑝𝑡−𝑡0(𝑥 − 𝑦)𝑤(𝑦, 𝑡0)d𝑦,

where 𝑝𝑡(𝑥) is the heat kernel associated to the operator 𝐿 (see Theorem A.1). Then, given 𝛿 > 0,
𝑥 ∈ 𝐵1 and 𝑡 ∈ [−1 + 𝛿, 0) we can integrate the relation in time to obtain the following:

𝑤(𝑥, 𝑡) ≤ ∫
𝑡−
𝛿

2

𝑡−𝛿
∫
ℝ𝑛
𝑝𝑡−𝜁(𝑥 − 𝑦)|𝑤(𝑦, 𝜁)|d𝑦d𝜁

≤ ∫
𝑡−
𝛿

2

𝑡−𝛿
∫
ℝ𝑛
𝐶 min

{
(𝑡 − 𝜁)

−
𝑛

2𝑠 , (𝑡 − 𝜁)|𝑥 − 𝑦|−𝑛−2𝑠}|𝑤(𝑦, 𝜁)|d𝑦d𝜁
≤ 𝐶 ∫

𝑡−
𝛿

2

𝑡−𝛿
∫
ℝ𝑛

2

(𝑡 − 𝜁)
𝑛

2𝑠 + (𝑡 − 𝜁)−1|𝑥 − 𝑦|𝑛+2𝑠 |𝑤(𝑦, 𝜁)|d𝑦d𝜁
≤ 𝐶 ∫

𝑡−
𝛿

2

𝑡−𝛿
∫
ℝ𝑛

2(
𝛿

2

) 𝑛
2𝑠
+ 𝛿−1|𝑥 − 𝑦|𝑛+2𝑠 |𝑤(𝑦, 𝜁)|d𝑦d𝜁

≤ 𝐶 ∫
𝑡−
𝛿

2

𝑡−𝛿
∫
ℝ𝑛

1

1 + |𝑦|𝑛+2𝑠 |𝑤(𝑦, 𝜁)|d𝑦d𝜁,
and 𝐶 depends on 𝛿, and universal constants (𝑛, 𝑠, 𝜆 and Λ). □

For the interior regularity, we will need an analogue of ref. [20, Corollary 3.4].

Proposition A.4. Let 𝐿 be an operator satisfying (1.2) and (1.3). Let 𝑢 ∈ 𝐿∞(ℝ𝑛 × (−1, 0)) be a
viscosity solution of 𝑢𝑡 + 𝐿𝑢 = 𝑓 in 𝐵1 × (−1, 0). Assume additionally that

𝐶0 = sup
𝑡∈(−1,0)

‖𝑢(⋅, 𝑡)‖𝐶𝛼(ℝ𝑛) + sup
𝑥∈ℝ𝑛

‖𝑢(𝑥, ⋅)‖𝐶𝛽((−1,0))
+ sup
𝑡∈(−1,0)

‖𝑓(⋅, 𝑡)‖𝐶𝛼(𝐵1) + sup
𝑥∈𝐵1

‖𝑓(𝑥, ⋅)‖𝐶𝛽((−1,0)) < ∞,
for some 𝛼, 𝛽 ≥ 0 (with the 𝐿∞ norm if 𝛼 or 𝛽 are 0).
Then, for all 𝜀 > 0, 𝑢 ∈ 𝐶𝛼+2𝑠−𝜀𝑥 𝐶

𝛽+1−𝜀
𝑡

(
𝐵1∕2 ×

[
−
1

2
, 0
])
, and

sup
𝑡∈[−

1

2
,0]

‖𝑢(⋅, 𝑡)‖𝐶𝛼+2𝑠−𝜀(𝐵1∕2) + sup
𝑥∈𝐵1∕2

‖𝑢(𝑥, ⋅)‖
𝐶𝛽+1−𝜀

([
−
1

2
,0
]) ≤ 𝐶𝐶0,

where 𝐶 only depends on the dimension, 𝑠, 𝜀, and the ellipticity constants.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1757

Proof. The proof is the same as the proof of ref. [20, Corollary 3.4], but using ref. [35, Theorem
2.2] instead of ref. [20, Theorem 1.3]. □

Combining the heat kernel estimates with the interior regularity result, we obtain the following
bound.

Corollary A.5. Let 𝐿 be an operator satisfying (1.2) and (1.3), and let 𝑝𝑡 as introduced in
Theorem A.1. Then, for all 𝑟0 > 0,

‖∇𝑝𝑡‖𝐿∞(𝐵𝑐𝑟0×(0,𝑇)) ≤ 𝐶,
where 𝐶 depends only on 𝑟0, 𝑇, the dimension, 𝑠 and the ellipticity constants.

Proof. Assume after a scaling that 𝑟0 = 1. Iterating proposition A.4, we obtain that

sup
𝑡∈[−2−𝑘,0]

‖𝑝𝑡(⋅, 𝑡)‖𝐶1(𝐵2−𝑘 ) ≤ 𝐶‖𝑝𝑡‖𝐿∞(𝐵1×(−1,0)),
for some big enough 𝑘 depending only on 𝑠. After a scaling and a covering argument, for all 𝑥 ∈ 𝐵𝑐

1

it holds

‖∇𝑝𝑡‖
𝐿∞(𝐵𝛿∕2(𝑥)×[𝑡−

𝛿2𝑠

2
,𝑡])

≤𝐶𝛿‖𝑝𝑡‖𝐿∞(𝐵𝛿(𝑥)×(𝑡−𝛿2𝑠,𝑡)), for all 𝑡 ∈ (𝛿2𝑠, 𝑇),‖∇𝑝𝑡‖𝐿∞(𝐵
𝑡

1
2𝑠 ∕2

(𝑥)×[
𝑡

2
,𝑡])

≤𝐶0𝑡−1‖𝑝𝑡‖𝐿∞(𝐵
𝑡

1
2𝑠

(𝑥)×(0,𝑡)), for all 𝑡 ∈ (0, 𝑇),

where we leave 𝛿 > 0 to be chosen later.
Then, using Theorem A.1, substituting the estimate |𝑝𝑡(𝑥)| ≤ 𝑐2𝑡|𝑥|−𝑛−2𝑠,

‖∇𝑝𝑡‖
𝐿∞(𝐵𝛿∕2(𝑥)×[𝑡−

𝛿2𝑠

2
,𝑡])

≤ 𝐶𝛿𝑐2𝑡(1 − 𝛿)−𝑛−2𝑠, for all 𝑡 ∈ (𝛿2𝑠, 𝑇),

and

‖∇𝑝𝑡‖𝐿∞(𝐵
𝑡

1
2𝑠 ∕2

(𝑥)×[
𝑡

2
,𝑡])

≤ 𝐶0𝑐2
(
1 − 𝑡

1

2𝑠

)−𝑛−2𝑠
+

, for all 𝑡 ∈ (0, 𝑇).

Finally, choosing 𝛿 = 1
4
, for all 𝑥 ∈ 𝐵𝑐

1
and 𝑡 ≥ 4−2𝑠,

|∇𝑝𝑡(𝑥, 𝑡)| ≤ 𝐶1∕4𝑐2𝑡(3∕4)−𝑛−2𝑠 ≤ 𝐶1∕4𝑐2𝑇(3∕4)−𝑛−2𝑠,
and for all 𝑥 ∈ 𝐵𝑐

1
and 𝑡 ∈ (0, 4−2𝑠),

|∇𝑝𝑡(𝑥, 𝑡)| ≤ 𝐶0𝑐2(3∕4)−𝑛−2𝑠,
as we wanted to prove. □

We will also make use of the following estimate for the nonlocal heat equation.
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1758 ROS-OTON and TORRES-LATORRE

Proposition A.6. Let 𝐿 be an operator satisfying (1.2) and (1.3). Then, there exists 𝛿 > 0 such that
the following holds. If 𝑏 ∈ 𝐿∞ is continuous and satisfies{|(𝜕𝑡 + 𝐿)𝑏|≤ 𝛿max{|𝑥|, 1}−𝑛−2𝑠 in ℝ𝑛 × (0, 1)

𝑏 = 𝑏0 on {𝑡 = 0},

where 𝑏0 ≥ 0, supp 𝑏0 ⊂ 𝐵1 and ‖𝑏0‖𝐿1(𝐵1) = 1, the following estimate holds:
𝑐1𝑡|𝑥|−𝑛−2𝑠 ≤ 𝑏(𝑥, 𝑡) ≤ 𝑐2𝑡|𝑥|−𝑛−2𝑠 for all (𝑥, 𝑡) ∈ 𝐵𝑐

2
× (0, 1)

The constants 𝛿, 𝑐1 and 𝑐2 are positive and depend only on the dimension, 𝑠 and the ellipticity con-
stants.

Proof. Wewill use Duhamel’s formulawith the fundamental solution, togetherwith TheoremA.1.
Let us take 𝛿 = 0 first and then we will show that the perturbation introduced by the right hand
side can be absorbed by the constants.
If |𝑥| > 2 and 𝑡 < 1, 𝑝𝑡(𝑥) ≍ 𝑡|𝑥|−𝑛−2𝑠. Thus, if |𝑥| ≥ 2, for all 𝑦 ∈ 𝐵1, |𝑥 − 𝑦| ≍ |𝑥|, and then

𝑏(𝑥, 𝑡) = ∫
ℝ𝑛
𝑝𝑡(𝑥 − 𝑦)𝑏0(𝑦)d𝑦 = ∫

𝐵1

𝑝𝑡(𝑥 − 𝑦)𝑏0(𝑦)d𝑦

≍ ∫
𝐵1

𝑡|𝑥|−𝑛−2𝑠𝑏0(𝑦)d𝑦 = 𝑡|𝑥|−𝑛−2𝑠.
Now, if we allow a right hand side in the PDE, making 𝛿 > 0, we obtain the following:|||||𝑏𝑅(𝑥, 𝑡) − ∫

ℝ𝑛
𝑝𝑡(𝑥 − 𝑦)𝑏0(𝑦)d𝑦

||||| ≤ 𝛿 ∫
𝑡

0
∫
ℝ𝑛
𝑝𝑡−𝜁(𝑥 − 𝑦)max{|𝑦|, 1}−𝑛−2𝑠d𝑦d𝜁,

and then we can estimate the second integral as follows. First we separate the integral in pieces,
taking into account that 𝑝𝑡(𝑥 − 𝑦) ≲ min{𝑡

−
𝑛

2𝑠 , 𝑡|𝑥 − 𝑦|−𝑛−2𝑠}, and also that |𝑥| ≥ 2.
𝐼1 ∶= ∫

𝐵1

𝑡|𝑥 − 𝑦|−𝑛−2𝑠d𝑦 ≲ 𝑡|𝑥|−𝑛−2𝑠,
𝐼2 ∶= ∫

𝐵
𝑡

1
2𝑠

(𝑥)

𝑡
−
𝑛

2𝑠 max{1, |𝑦|}−𝑛−2𝑠d𝑦 ≲ (
𝑡
1

2𝑠

)𝑛
𝑡
−
𝑛

2𝑠 |𝑥|−𝑛−2𝑠 = |𝑥|−𝑛−2𝑠,
𝐼3 ∶= ∫

𝐵1(𝑥)⧵𝐵
𝑡

1
2𝑠

(𝑥)

𝑡|𝑥 − 𝑦|−𝑛−2𝑠|𝑦|−𝑛−2𝑠d𝑦 ≲ 𝑡(𝑡 12𝑠)−2𝑠 |𝑥|−𝑛−2𝑠 = |𝑥|−𝑛−2𝑠,
𝐼4 ∶= ∫

𝐵𝑐
1
∩𝐵𝑐
1
(𝑥)

𝑡|𝑥 − 𝑦|−𝑛−2𝑠|𝑦|−𝑛−2𝑠d𝑦 = 𝑡 ∫
𝐵𝑐
1
∩𝐵𝑐
1
(𝑥)

|𝑥 − 𝑦|−𝑛−2𝑠|𝑦|−𝑛−2𝑠d𝑦
= 2𝑡 ∫

𝐵𝑐
1
∩{𝑥⋅𝑦≤|𝑥|2∕2} |𝑥 − 𝑦|−𝑛−2𝑠|𝑦|−𝑛−2𝑠d𝑦 ≲ 𝑡|𝑥|−𝑛−2𝑠 ∫𝐵𝑐

1

|𝑦|−𝑛−2𝑠d𝑦 ≲ 𝑡|𝑥|−𝑛−2𝑠,
where we used that |𝑥 − 𝑦| ≥ |𝑥|

2
in the half-space {𝑥 ⋅ 𝑦 ≤ |𝑥|2∕2} to estimate 𝐼4.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1759

Putting everything together, we have

∫
ℝ𝑛
𝑝𝑡(𝑥 − 𝑦)max{|𝑦|, 𝑅}−𝑛−2𝑠d𝑦 ≤ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 ≲ |𝑥|−𝑛−2𝑠.

Therefore, the error term introduced by the right hand side in the PDE can be bounded by the
main term:

|||||𝑏𝑅(𝑥, 𝑡) − ∫
ℝ𝑛
𝑝𝑡(𝑥 − 𝑦)𝑏0(𝑦)d𝑦

||||| ≤ 𝛿 ∫
𝑡

0
∫
ℝ𝑛
𝑝𝑡−𝜁(𝑥 − 𝑦)max{|𝑦|, 1}−𝑛−2𝑠d𝑦d𝜁

≲ 𝛿𝑡|𝑥|−𝑛−2𝑠 ≲ 𝛿 ∫
ℝ𝑛
𝑝𝑡(𝑥 − 𝑦)𝑏0(𝑦)d𝑦.

Thus, choosing 𝛿 small enough, we have 𝑏𝑅(𝑥, 𝑡) ≍ 𝑡|𝑥|−𝑛−2𝑠 for |𝑥| ≥ 2. □

APPENDIX B: THE PENALISED PARABOLIC OBSTACLE PROBLEM
First, we need that the penalised problem has a unique solution. To do that, we first prove that
there holds a comparison principle.

Lemma B.1. Let 𝜀 > 0, let 𝐿 be a nonlocal operator satisfying (1.2) and (1.3), and let 𝑓, 𝑔, 𝜑, 𝜓, 𝑢0
and 𝑣0 be uniformly Lipschitz and bounded, and let 𝑢 and 𝑣 be uniformly Lipschitz and bounded
solutions of the following parabolic problems:{

𝜕𝑡𝑢 + 𝐿𝑢=𝛽𝜀(𝑢 − 𝜑) + 𝑓 in ℝ𝑛 × (0, 𝑇)

𝑢(⋅, 0) =𝑢0,

{
𝜕𝑡𝑣 + 𝐿𝑣 =𝛽𝜀(𝑣 − 𝜓) + 𝑔 in ℝ𝑛 × (0, 𝑇)

𝑣(⋅, 0) = 𝑣0,

where 𝛽𝜀(𝑧) = 𝑒−𝑧∕𝜀 . Assume additionally that 𝑢0 ≤ 𝑣0, 𝜑 ≤ 𝜓 and 𝑓 ≤ 𝑔. Then, 𝑢 ≤ 𝑣 in
ℝ𝑛 × (0, 𝑇).

Proof. Assume that inf (𝑣 − 𝑢) < 0, otherwise there is nothing to prove. Let 𝛿 > 0 small, 𝑀 > 0
large to be chosen later, and let 𝑝(𝑥) = (1 + |𝑥|)𝑠. First, one can check by a direct computation
that 𝐿𝑝 is bounded. Then, the function

𝑤(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) +
𝛿

𝑇 − 𝑡
+ 𝛿𝑝(𝑥) + 𝛿𝑀

has an absoluteminimum inℝ𝑛 × [0, 𝑇], and taking 𝛿 small enough, theminimum is negative. Let
(𝑥0, 𝑡0) be the minimum point. First, observe that, since the minimum is negative, 𝑡0 > 0, because
𝑣 ≥ 𝑢 at 𝑡 = 0. Notice also that 𝑡0 < 𝑇 because 𝛿(𝑇 − 𝑡)−1 tends to infinity as 𝑡 → 𝑇. Then, (𝑥0, 𝑡0)
is an interior point and then we can differentiate in 𝑡 and evaluate 𝐿, which is well defined thanks
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1760 ROS-OTON and TORRES-LATORRE

to the uniform Lipschitz regularity. Therefore,

𝑣𝑡(𝑥0, 𝑡0) − 𝑢𝑡(𝑥0, 𝑡0) +
𝛿

(𝑇 − 𝑡0)2
= 0

𝐿𝑣(𝑥0, 𝑡0) − 𝐿𝑢(𝑥0, 𝑡0) + 𝛿𝐿𝑝(𝑥0) ≤ 0.
Furthermore, we can also evaluate the equations at (𝑥0, 𝑡0) to obtain

(𝜕𝑡 + 𝐿)𝑢(𝑥0, 𝑡0) = 𝛽𝜀(𝑢(𝑥0, 𝑡0) − 𝜑(𝑥0)) + 𝑓(𝑥0, 𝑡0)

(𝜕𝑡 + 𝐿)𝑣(𝑥0, 𝑡0) = 𝛽𝜀(𝑣(𝑥0, 𝑡0) − 𝜓(𝑥0)) + 𝑔(𝑥0, 𝑡0).

And then combining the equations and using that 𝛽𝜀 is decreasing,

𝛽(𝑣 − 𝜑) − 𝛽(𝑢 − 𝜑) ≤ 𝛽(𝑣 − 𝜓) + 𝑔 − 𝛽(𝑢 − 𝜑) − 𝑓
= (𝜕𝑡 + 𝐿)(𝑣 − 𝑢) ≤ 𝛿

[
𝐿𝑝 −

1

(𝑇 − 𝑡0)2

]
≤ 𝐶𝛿,

where we have omitted that all the functions are considered at the point (𝑥0, 𝑡0) for ease of
read. It follows that 𝑣(𝑥0, 𝑡0) − 𝑢(𝑥0, 𝑡0) ≥ −𝐶′𝛿. Therefore, choosing 𝑀 > 𝐶′, 𝑤(𝑥0, 𝑡0) > 0, a
contradiction. Therefore 𝑣 ≥ 𝑢 in ℝ𝑛 × (0, 𝑇). □

Then, using the Perron method, one can construct a viscosity solution for the penalised
problem.

Proposition B.2. For all 𝜀 > 0 and 𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛), there exists a unique viscosity solution, 𝑢𝜀 ∈
𝐶(ℝ𝑛 × [0, 𝑇]) ∩ 𝐿∞(ℝ𝑛 × [0, 𝑇]), to the penalised problem{

𝜕𝑡𝑢
𝜀 + 𝐿𝑢𝜀 =𝛽𝜀(𝑢

𝜀 − 𝜑) in ℝ𝑛 × (0, 𝑇)

𝑢𝜀(⋅, 0) =𝜑 +
√
𝜀,

where 𝛽𝜀(𝑧) = 𝑒−𝑧∕𝜀 .

Sketch of the proof. The proof follows the standard techniques in viscosity solutions, see ref. [24]
for a detailed explanation in the case of local operators.
To see existence, we construct a bounded continuous subsolution and supersolution, and then

we will take the infimum of all supersolutions as our solution.
It is easy to check that 𝑢−(𝑥, 𝑡) = −‖𝜑‖𝐿∞(ℝ𝑛) is a subsolution. Indeed,

𝑢−(⋅, 0) ≤ 𝜑 +√
𝜀 and (𝜕𝑡 + 𝐿)𝑢− − 𝛽𝜀(𝑢− − 𝜑) = −𝛽𝜀(𝑢− − 𝜑) ≤ 0.

On the other hand, 𝑢+(𝑥, 𝑡) = ‖𝜑‖𝐿∞(ℝ𝑛) +√
𝜀 + 𝑡 is a supersolution. The initial condition is

immediately fulfilled, and

(𝜕𝑡 + 𝐿)𝑢+ − 𝛽𝜀(𝑢+ − 𝜑) = 1 − 𝛽𝜀(𝑢+ − 𝜑) ≥ 1 − 𝛽𝜀(√𝜀) = 1 − 𝑒−1∕√𝜀 > 0.
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1761

Then, we can apply the standard procedure for viscosity solutions and define

𝑢∗(𝑥, 𝑡) ∶= inf {𝑢(𝑥, 𝑡)| 𝑢 is a supersolution},
and then it can be checked that 𝑢∗ is a solution in the viscosity sense. Furthermore, 𝑢− ≤ 𝑢∗ ≤ 𝑢+.
By interior regularity, such solution 𝑢∗ is a classical solution, and thus uniqueness follows from

Lemma B.1. □

Then, we prove some basic properties of solutions to this problem. The following lemma is
analogous to the first part of ref. [8, Lemma 3.3] for our case, and the proof is very similar.

LemmaB.3. Let𝐿 be an operator satisfying (1.2) and (1.3), let𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛) and let𝑢𝜀 be the solution
of (2.1).
Then,

𝛽𝜀(𝑢
𝜀 − 𝜑) ≤ max{1, ‖𝐿𝜑‖𝐿∞(ℝ𝑛)}.

In particular,

𝑢𝜀 − 𝜑 ≥ −𝜀 ln+ ‖𝐿𝜑‖𝐿∞(ℝ𝑛).
Proof. If 𝑢𝜀 ≥ 𝜑 everywhere, then 𝛽𝜀 ≤ 1 and there is nothing to prove. Assume then otherwise,
that is, inf

ℝ𝑛×[0,𝑇]
(𝑢𝜀 − 𝜑) < 0.

Then, since 𝑢𝜀 ∈ 𝐿∞(ℝ𝑛 × (0, 𝑇)), if 𝑝(𝑥) = (1 + |𝑥|)𝑠 as in Lemma B.1, for any 𝛿 > 0 the
function

𝑤 = 𝑢𝜀 − 𝜑 +
𝛿

𝑇 − 𝑡
+ 𝛿𝑝

has aminimum point (𝑥𝛿𝜀 , 𝑡𝛿𝜀 ) ∈ ℝ𝑛 × [0, 𝑇]. Furthermore, if 𝛿 is small enough,𝑤(𝑥𝛿𝜀 , 𝑡𝛿𝜀 ) < 0, and
it follows that 𝑡𝛿𝜀 ∈ (0, 𝑇). Hence, since the point is interior and 𝑢𝜀 is smooth, then 𝜕𝑡𝑤(𝑥𝛿𝜀 , 𝑡𝛿𝜀 ) = 0
and 𝐿𝑤(𝑥𝛿𝜀 , 𝑡𝛿𝜀 ) ≤ 0, which combined with the penalised equation (2.1) yields

𝛽𝜀(𝑢
𝜀 − 𝜑)

(
𝑥𝛿𝜀 , 𝑡

𝛿
𝜀

) ≤ 𝐿𝜑 (𝑥𝛿𝜀 ) − 𝛿(
𝑇 − 𝑡𝛿𝜀

)2 − 𝛿𝐿𝑝 (𝑥𝛿𝜀 ) ≤ ‖𝐿𝜑‖𝐿∞(ℝ𝑛) + 𝐶𝛿.
Finally, since 𝛽𝜀 is decreasing and (𝑢𝜀 − 𝜑)(𝑥𝛿𝜀 , 𝑡𝛿𝜀 ) → inf

ℝ𝑛×[0,𝑇]
(𝑢𝜀 − 𝜑) as 𝛿 → 0, we obtain that

sup
ℝ𝑛×[0,𝑇]

𝛽𝜀(𝑢
𝜀 − 𝜑) ≤ ‖𝐿𝜑‖𝐿∞(ℝ𝑛),

as wanted. □

We can also prove an upper bound for 𝑢𝜀.

LemmaB.4. Let𝐿 be an operator satisfying (1.2) and (1.3), let𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛)and let𝑢𝜀 be the solution
of (2.1).
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1762 ROS-OTON and TORRES-LATORRE

Then,
𝑢𝜀(⋅, 𝑡) − 𝜑 ≤ √

𝜀 + 2𝑡 max{1, ‖𝐿𝜑‖𝐿∞(ℝ𝑛)}.
Proof. First, let us compute

(𝜕𝑡 + 𝐿)(𝑢
𝜀 − 𝜑) = 𝛽𝜀(𝑢

𝜀 − 𝜑) − 𝐿𝜑 ≤ max{1, ‖𝐿𝜑‖𝐿∞(ℝ𝑛)} + ‖𝐿𝜑‖𝐿∞(ℝ𝑛),
where we used Lemma B.3 to estimate 𝛽𝜀.
Therefore, if we define

𝑤(𝑥, 𝑡) = 𝑢𝜀(𝑥, 𝑡) − 𝜑(𝑥) −
√
𝜀 − 2𝑡 max{1, ‖𝐿𝜑‖𝐿∞(ℝ𝑛)},

we get that 𝑤(⋅, 0) ≡ 0 and that 𝑤 is a subsolution, (𝜕𝑡 + 𝐿)𝑤 ≤ 0, by construction, and then
the comparison principle for classical solutions of the nonlocal parabolic equation yields the
result. □

We also need to see that we can differentiate the penalised problem.

LemmaB.5. Let𝐿 be an operator satisfying (1.2) and (1.3), let𝜑 ∈ 𝐶2,1𝑐 (ℝ𝑛) and let𝑢𝜀 be the solution
to the penalised problem (2.1). Then, given any unit vector 𝜈 ∈ ℝ𝑛 × ℝ,

(𝜕𝑡 + 𝐿)𝑢
𝜀
𝜈 = 𝛽

′
𝜀(𝑢
𝜀 − 𝜑)(𝑢𝜀𝜈 − 𝜑𝜈),

(𝜕𝑡 + 𝐿)𝑢
𝜀
𝜈𝜈 = 𝛽

′
𝜀(𝑢
𝜀 − 𝜑)(𝑢𝜀𝜈𝜈 − 𝜑𝜈𝜈) + 𝛽

′′
𝜀 (𝑢

𝜀 − 𝜑)(𝑢𝜀𝜈 − 𝜑𝜈)
2,

𝑢𝜀𝑡 (⋅, 0) = −𝐿𝜑 + 𝑒
−1∕

√
𝜀,

𝑢𝜀𝑡𝑡(⋅, 0) = 𝐿
2𝜑 −

1

𝜀
𝑒−1∕

√
𝜀(𝑒−1∕

√
𝜀 − 𝐿𝜑),

where the two last expressions must be understood in the sense of the uniform limit as 𝑡 → 0+.

Proof. We will iterate Proposition A.4. First, 𝑢𝜀 ∈ 𝐿∞(ℝ𝑛 × (0, 𝑇)) by Lemmas B.3 and B.4. Then,
observe that 𝛽𝜀(𝑢𝜀 − 𝜑) ∈ 𝐿∞ as well.
Let 𝑊 = 𝑊𝑥 × [𝑡1, 𝑡2] be a compact cylinder in ℝ𝑛 × (0, 𝑇). Then, by Proposition A.4 and a

covering argument, ‖𝑢𝜀‖𝐶2𝑠−𝛿𝑥 𝐶1−𝛿𝑡 (𝑊) ≤ 𝐶 for a small 𝛿 > 0 to be chosen later. Since𝑊 is arbitrary,

𝑢𝜀 ∈ 𝐶2𝑠−𝛿𝑥 𝐶1−𝛿𝑡 (ℝ𝑛 × (0, 𝑇)),

and, since the previous estimates where invariant with respect to translations in 𝑥,

‖𝑢𝜀‖𝐶2𝑠−𝛿𝑥 𝐶1−𝛿𝑡 (ℝ𝑛×[𝑡1,𝑡2])
≤ 𝐶(𝑡1, 𝑡2),

for any 0 < 𝑡1 < 𝑡2 < 𝑇.
Now, repeating the same argument 𝑘 times we obtain that

‖𝑢𝜀‖
𝐶
3,2𝑠−𝛿
𝑥 𝐶

𝑘(1−𝛿)
𝑡 (ℝ𝑛×[𝑡1,𝑡2])

≤ 𝐶(𝑡1, 𝑡2),
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1763

provided that 𝑘 is large enough. The cap in the 𝑥 regularity comes from the fact that 𝜑 ∈ 𝐶2,1𝑐 and
then 𝛽𝜀(𝑢𝜀 − 𝜑) cannot attain further regularity in 𝑥.
In particular, 𝑢𝜀 ∈ 𝐶3(ℝ𝑛 × (0, 𝑇)), it is a classical solution, and then 𝑢𝜀𝜈 and 𝑢𝜀𝜈𝜈 are at least 𝐶1

in ℝ𝑛 × (0, 𝑇), and they are also bounded for each 𝑡 ∈ (0, 𝑇), and therefore they are also classical
solutions of their respective equations.
For the initial conditions, we recover the expression of 𝑢𝜀 from Duhamel’s formula,

𝑢𝜀 = 𝑝𝑡 ∗ 𝜑 +
√
𝜀 + ∫

𝑡

0

𝑝𝜏 ∗ (𝛽(𝑢
𝜀(⋅, 𝑡 − 𝜏) − 𝜑))d𝜏,

and then differentiate it with respect to 𝑡 to get

𝑢𝜀𝑡 = 𝜕𝑡𝑝𝑡 ∗ 𝜑 + 𝑝𝑡 ∗ 𝛽|𝑡=0 + ∫
𝑡

0

𝑝𝜏 ∗
(
𝛽′(𝑢𝜀(⋅, 𝑡 − 𝜏) − 𝜑)𝑢𝜀𝑡 (⋅, 𝑡 − 𝜏)

)
d𝜏.

Then, notice that 𝜕𝑡𝑝𝑡 = −𝐿𝑝𝑡 because 𝑝𝑡 is a solution, and it follows that 𝜕𝑡𝑝𝑡 ∗ 𝜑 = 𝑝𝑡 ∗ (−𝐿𝜑).
Furthermore, 𝛽(𝑢𝜀 − 𝜑) ≡ 𝑒−1∕√𝜀 at 𝑡 = 0, so putting everything together,

𝑢𝜀𝑡 = −𝑝𝑡 ∗ (𝐿𝜑) + 𝑒
−1∕

√
𝜀 −
1

𝜀 ∫
𝑡

0

𝑝𝜏 ∗
(
𝛽(𝑢𝜀(⋅, 𝑡 − 𝜏) − 𝜑)𝑢𝜀𝑡 (⋅, 𝑡 − 𝜏)

)
d𝜏. (B.1)

Since 𝑝𝑡 is an approximation to the identity (see Corollary A.2) and 𝛽 is bounded by LemmaB.3,
taking the 𝐿∞ norm we can conclude that

‖𝑢𝜀𝑡 (⋅, 𝑡)‖𝐿∞(ℝ𝑛) ≤ 𝐶1 + 𝐶2 ∫ 𝑡

0

‖𝑢𝜀𝑡 (⋅, 𝜏)‖𝐿∞(ℝ𝑛)d𝜏,
which implies by the Gronwall inequality that 𝑢𝜀𝑡 ∈ 𝐿

∞(ℝ𝑛 × (0, 𝑡)).
Then, again by (B.1), since 𝛽 and 𝑢𝜀𝑡 are bounded, 𝐿𝜑 is uniformly𝐶

2 and𝑝𝑡 is an approximation
to the identity, it follows that 𝑢𝜀𝑡 → −𝐿𝜑 + 𝑒

−1∕
√
𝜀 uniformly as 𝑡 → 0+.

For the last identity, we first differentiate (B.1) with respect to time to obtain

𝑢𝜀𝑡𝑡 = −𝜕𝑡𝑝𝑡 ∗ (𝐿𝜑) −
1

𝜀
𝑝𝑡 ∗ (𝛽𝑢

𝜀
𝑡 )
||𝑡=0 − 1𝜀 ∫ 𝑡

0

𝑝𝜏 ∗ (𝛽
′(𝑢𝜀𝑡 )

2 + 𝛽𝑢𝜀𝑡𝑡)(⋅, 𝑡 − 𝜏)d𝜏. (B.2)

Now, by the same arguments used to simplify (B.1),

𝑢𝜀𝑡𝑡 = 𝑝𝑡 ∗

(
𝐿2𝜑 −

1

𝜀
𝑒−1∕

√
𝜀(−𝐿𝜑 + 𝑒−1∕

√
𝜀)

)
−
1

𝜀 ∫
𝑡

0

𝑝𝜏 ∗ (𝛽
′(𝑢𝜀𝑡 )

2 + 𝛽𝑢𝜀𝑡𝑡)(⋅, 𝑡 − 𝜏)d𝜏,

and then using the boundedness of 𝑢𝜀𝑡 and a Gronwall inequality, analogously to what we did with
𝑢𝜀𝑡 ,

𝑢𝜀𝑡𝑡 → 𝐿
2𝜑 −

1

𝜀
𝑒−1∕

√
𝜀(−𝐿𝜑 + 𝑒−1∕

√
𝜀),

uniformly as 𝑡 → 0+. □
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1764 ROS-OTON and TORRES-LATORRE

Finally, we prove that the solutions to the penalised problem converge to the solution to the
obstacle problem.

Proof of Lemma 2.2. Let 𝜀 ∈ (0, 1).
Step 1. First, recall the 𝐿∞ estimates for 𝑢𝜀 − 𝜑. From Lemmas B.3 and B.4,

−𝜀 ln
+ ‖𝐿𝜑‖𝐿∞(ℝ𝑛) ≤ 𝑢𝜀 − 𝜑 ≤ √

𝜀 + 2𝑡 max{1, ‖𝐿𝜑‖𝐿∞(ℝ𝑛)}.
Now we use interior estimates and Arzelá-Ascoli to show that 𝑢𝜀 → 𝑢0 locally uniformly along

a subsequence.
Let𝑊 ⊂⊂ ℝ𝑛 × (0, 𝑇). Then, we can apply a version of ref. [20, Theorem 1.3] to obtain

‖𝑢𝜀‖𝐶1−𝛿𝑡 (𝑊) + ‖𝑢𝜀‖
𝐶
2𝑠(1−𝛿)
𝑥 (𝑊)

≤ 𝐶(‖𝑢𝜀‖𝐿∞(ℝ𝑛×(0,𝑇)) + ‖𝛽𝜀(𝑢𝜀 − 𝜑)‖𝐿∞(ℝ𝑛×(0,𝑇))) ≤ 𝐶,
with 𝐶 only depending on𝑊, ‖𝐿𝜑‖𝐿∞(ℝ𝑛), 𝛿 > 0, the dimension, 𝑠, and the ellipticity constants,
because of the previous 𝐿∞ estimates on 𝑢𝜀 and 𝛽𝜀.
Hence, choosing a suitable small 𝛿, by the compact inclusion of Hölder spaces and Arzelá-

Ascoli, 𝑢𝜀𝑘 → 𝑢0 uniformly in𝑊 for some subsequence 𝜀𝑘 → 0.
Now, consider a sequence of compact sets 𝑊0 ⊂ 𝑊1 ⊂ … such that their union is ℝ𝑛 × (0, 𝑇)

and repeat the same reasoning above. By a standard diagonalization argument, we can construct
a sequence 𝜀𝑘 such that 𝑢𝜀𝑘 → 𝑢0 locally uniformly in ℝ𝑛 × (0, 𝑇).
Step 2. Putting it together, we want to prove that, for all 𝜅 > 0, 𝑢𝜀𝑘 → 𝑢0 also in the

𝐿∞([0, 𝑇 − 𝜅] → 𝐿1𝑠 ) norm. To do it, let 𝜏 > 0 to be chosen later. Then, we distinguish two cases.
If 𝑡 < 𝜏,

‖𝑢𝜀𝑘 (⋅, 𝑡) − 𝑢0(⋅, 𝑡)‖𝐿1𝑠 ≤ ‖𝑢𝜀𝑘 (⋅, 𝑡) − 𝜑‖𝐿1𝑠 + ‖𝜑 − 𝑢0(⋅, 𝑡)‖𝐿1𝑠
≤ 2 sup

𝑚≥𝑘
‖𝑢𝜀𝑚 − 𝜑‖𝐿1𝑠 ≤ 2𝐶 sup

𝑚≥𝑘
‖𝑢𝜀𝑚 − 𝜑‖𝐿∞(ℝ𝑛)

< 2𝐶
(√
𝜀𝑘 + 2𝜏max{1, ‖𝐿𝜑‖𝐿∞(ℝ𝑛)}).

On the other hand, if 𝑡 ≥ 𝜏 we use the locally uniform convergence of the sequence. Let 𝑅 > 0.
Then, for all 𝑡 ∈ [𝜏, 𝑇 − 𝜅],

‖𝑢𝜀𝑘 (⋅, 𝑡) − 𝑢0(⋅, 𝑡)‖𝐿1𝑠 ≲ ‖𝑢𝜀𝑘 (⋅, 𝑡) − 𝑢0(⋅, 𝑡)‖𝐿∞(𝐵𝑅) + 𝑅−2𝑠‖𝑢𝜀𝑘 (⋅, 𝑡) − 𝑢0(⋅, 𝑡)‖𝐿∞(𝐵𝑐𝑅)
≲ ‖𝑢𝜀𝑘 (⋅, 𝑡) − 𝑢0(⋅, 𝑡)‖𝐿∞(𝐵𝑅) + 2𝑅−2𝑠 sup

𝑚≥𝑘
‖𝑢𝜀𝑚(⋅, 𝑡)‖𝐿∞(𝐵𝑐

𝑅
)

≲ ‖𝑢𝜀𝑘 (⋅, 𝑡) − 𝑢0(⋅, 𝑡)‖𝐿∞(𝐵𝑅) + 𝑅−2𝑠,
and then the second term tends to zero as 𝑅 → ∞ and then the first term tends to zero as 𝑘 goes
to infinity by the local uniform convergence.
Therefore, choosing first 𝜏 small, then 𝑅 big and then 𝑘 big, ‖𝑢𝜀𝑘 (⋅, 𝑡) − 𝑢0(⋅, 𝑡)‖𝐿1𝑠 can be made

arbitrarily small, as we wanted to see.
Step 3. Then we prove that 𝑢0 is the solution of (1.1).
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OPTIMAL REGULARITY FOR SUPERCRITICAL PARABOLIC OBSTACLE PROBLEMS 1765

First, from the lower bound 𝑢𝜀𝑘 ≥ 𝜑 − 𝜀𝑘 ln+ ‖𝐿𝜑‖𝐿∞(ℝ𝑛), taking the limit 𝜀𝑘 → 0 it becomes
clear that 𝑢0 ≥ 𝜑. Then (𝜕𝑡 + 𝐿)𝑢𝜀𝑘 = 𝛽𝜀𝑘 (𝑢𝜀𝑘 − 𝜑) ≥ 0, and the uniform limit of viscosity super-
solutions is also a supersolution (with the extra convergence assumption of Step 2), by ref. [12,
Theorem 5.3].
Hence, we only need to check that (𝜕𝑡 + 𝐿)𝑢0 = 0 in the set {𝑢0(𝑥, 𝑡) > 𝜑(𝑥)} in the viscosity

sense. Again by ref. [12, Theorem 5.3], it suffices to check the following.
Consider a compact set 𝐸 ⊂ {𝑢0(𝑥, 𝑡) > 𝜑(𝑥)}. By the uniform convergence of 𝑢𝜀𝑘 to 𝑢0, there

exist 𝜇 > 0 and 𝑘0 such that for all 𝑘 ≥ 𝑘0, 𝑢𝜀𝑘 (𝑥, 𝑡) > 𝜑(𝑥) + 𝜇, for all (𝑥, 𝑡) ∈ 𝐸. Hence,
(𝜕𝑡 + 𝐿)𝑢

𝜀𝑘 (𝑥, 𝑡) = 𝛽𝜀𝑘 (𝑢
𝜀𝑘 − 𝜑)(𝑥, 𝑡) ∈ (0, 𝑒−𝜇∕𝜀𝑘 ),

and the limit of the right hand side is zero when 𝜀𝑘 → 0.
Finally, from the 𝐿∞ estimates in Lemmas B.3 and B.4, it follows the concordance of the initial

conditions, 𝑢0(⋅, 0) = 𝜑, and the continuity of 𝑢0 as 𝑡 → 0+.
Step 4. Using the uniqueness of the solution we can eliminate the need to consider sub-

sequences. Indeed, for any 𝜀𝑛 ↓ 0, we can repeat Steps 2 and 3 to obtain a subsequence 𝑢𝜀𝑛𝑗
that converges locally uniformly to the solution of (1.1). Therefore, 𝑢𝜀 → 𝑢0 locally uniformly as
well. □
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