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Abstract

We analyze (non-deterministic) contests with anonymous contest success functions.

There is no restriction on the number of contestants or on their valuations for the

prize. We provide intuitive and easily veri�able conditions for the existence of an

equilibrium with properties similar to the one of the (deterministic) all-pay auction.

Since these conditions are ful�lled for a wide array of situations, the predictions of

this equilibrium are very robust to the speci�c details of the contest. An application

of this result contributes to �ll a gap in the analysis of the popular Tullock rent-

seeking game because it characterizes properties of an equilibrium for increasing

returns to scale larger than two, for any number of contestants and in contests with

or without a common value.

Keywords: (non-) deterministic contest, all-pay auction, contest success functions.

JEL Classi�cation Numbers:

C72 (Noncooperative Games),

D72 (Economic Models of Political Processes: Rent-Seeking, Elections),

D44 (Auctions).
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1. Introduction

In a contest agents exert irreversible e¤ort to increase their probability of winning a

prize. Contests have been used to analyze a variety of situations including lobbying,

rent-seeking and rent-defending contests, litigation, political campaigns, con�ict, patent

races, arms races, sports events or R&D competition. Moreover, recent papers (like e.g.

Alesina and Spolaore (2006), Baron and Diermeier (2007), Konrad (2000a, 2000b) or

Klumpp and Polborn (2006)) have embedded contests in larger political economy models

in order to capture the e¤ect of con�ict on other variables of interest.

Particularly when a contest model is embedded in a larger game, it is desirable that

equilibrium payo¤s do not change too much as the primitives of the contest change.

Otherwise, the predictions of the larger model might not be robust to changes in the

primitives of the contest subgame. The present paper determines a class of contests with

fairly di¤erent primitives that admits essentially the same equilibrium. Equilibrium pre-

dictions within this class of contests can, thus, be considered robust to the speci�cation

of the contest. Moreover, the class includes two prominent models of contests.

The crucial element in the speci�cation of a contest is the so-called contest success

function (CSF), which associates to each vector of contestants� e¤ort levels a lottery

specifying for each agent a probability of getting the prize. In the literature there are

two prominent ways to model contests.

First, there is the all-pay auction, in which the player exerting the highest e¤ort
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wins the prize with probability one. Such a contest is therefore called deterministic (or

perfectly discriminating). It has been analyzed by Hillman and Riley (1989), Baye et

al. (1993, 1996) or Che and Gale (1998), among others.

For later reference we summarize the results of Hillman and Riley (1989) and Baye et

al. (1996) as follows. Denote the valuation of bidder Bi for the prize by Vi and suppose

that V1 � V2 � � � � � Vn. There exists a Nash equilibrium in mixed-strategies to the

all-pay auction. In this equilibrium, bidder B1 randomizes uniformly on [0; V2], while

bidder B2 abstains with probability 1 � V2=V1 and adopts the same mixed-strategy as

B1, given that he enters the contest. All other contestants abstain with probability one.

Expected equilibrium payo¤s are E�1 = V1 � V2 and E�j = 0 for all Bj with j > 1.

The expected revenue is ER = V2(V1 + V2)=(2V1).1

In the sequel we will use the term all-pay auction equilibrium to indicate an equilib-

rium in which the expected equilibrium bids, payo¤s and revenues (but not necessarily

the distributions of bids) are as in the (deterministic) all-pay auction (see De�nition

3.1). Note that these equilibria have important implications for the participation in the

aforementioned applications of contests. It is su¢ cient to deal with two contestants,

because further players prefer to abstain.

Second, a very prominent class of contest games is the so-called Tullock�s Rent-

Seeking Game. Given a vector of e¤orts b and R, a positive parameter measuring

1 In many instances this equilibrium is unique, see Remark 3.2 for more details.
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returns to scale from e¤ort, in Tullock�s speci�cation the probability that bidder Bi

wins the contest is given by

	Ti (b) =
bRiPn
j=1 b

R
j

: (1.1)

Note that if R = 0, that is, the so-called contest success function is completely insensitive

to e¤ort, the extreme case of a (fair) lottery is obtained. The opposite case of extreme

sensitivity (R ! 1) in which only e¤orts matter yields the (deterministic) all-pay

auction. Hence, we might think of R as specifying how much the extreme requirement

of the deterministic all-pay auction is relaxed through chance in the assignment of the

prize.

Tullock�s Rent-Seeking Game has been analyzed by Tullock (1980), Pérez-Castrillo

and Verdier (1992), Baye et al. (1994) and Skaperdas (1996), among others. Equilibria

in this game are well understood when R is relatively small, because then there exist pure

strategy equilibria. However, this is not so for larger R. For 2 < R < 1, we are only

aware of one study (Baye et al. (1994)), which restricts to two contestants with equal

valuations. For this large range of parameter values, the widely applied Tullock�s Rent-

Seeking Game o¤ers, hence, no prediction concerning rent-seeking outlays when there

are more than two contestants or when valuations di¤er. Moreover, it is not known what

properties of the deterministic all-pay auction extend to the non-deterministic Tullock�s

Rent-Seeking Game.

For tractability reasons applications of Tullock�s Rent-Seeking Game suppose very
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often that R = 1. This case yields very di¤erent results from the deterministic all-pay

auction. For instance, equilibrium payo¤s are, in general, di¤erent. As a consequence,

more than two contestants might have an incentive to participate actively in the contest.

Thus, it is no longer su¢ cient to deal with two contestants. Further di¤erences between

Tullock�s Rent-Seeking Game and deterministic all-pay auction exist and the reader

may �nd discussions in Nitzan (1994), Che and Gale (2000) and Fang (2002).

The purpose of the present paper is, hence, twofold:

1. We analyze to what extent the equilibrium predictions of the deterministic all-pay

auction are robust to di¤erent amounts of randomness in the assignment process

for the prize. This randomness might be introduced following (1.1) with R �nite,

but it is worth to point out at this point that we do not limit our analysis to logit

formulations of the CSF.

2. We contribute to close the gap in the analysis of Tullock�s Rent-Seeking Game,

because our main result applies for 2 < R < 1, for any number of contestants,

and for any valuations for the political prize the contestants might have.

Our main result speci�es conditions on the CSF that are su¢ cient for an all-pay

auction equilibrium to exist. The main conditions are three. Anonymity is used to

construct an equilibrium for general situations building on an equilibrium of the sym-

metric two bidder contest. While the deterministic all-pay auction is anonymous, the
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other two conditions relax the requirement that the highest bidder wins the contest

for sure. Su¢ cient Discrimination (SD) says that the contest has to be deterministic

enough. Su¢ cient Monotonicity (SM) requires that increasing one�s bid should yield a

su¢ ciently high win probability. We show then that these conditions are ful�lled under

a variety of very di¤erent CSFs, including Tullock�s Rent-Seeking Game.

Contests have been reviewed, for example, in Nitzan (1994) and Konrad (2007).

Usually, papers on contests specify a particular CSF and analyze equilibrium. Conse-

quently, there are few papers dealing with a general class of CSFs and we are not aware

of any carrying out an analysis at our level of generality.2 The present paper is most

related to Che and Gale (2000), Alcalde and Dahm (2007) and Baye et al. (1994). Che

and Gale analyze a family of linear di¤erence-form contests with two bidders that is

characterized by a non-negative parameter. Similarly to Tullock�s Rent-Seeking Game,

the scalar speci�es how deterministic the contest is. As a result, the family contains the

polar cases of the (fair) lottery and the (deterministic) all-pay auction. Che and Gale

analyze mixed-strategy equilibria and show the convergence of the equilibrium to that

of the all-pay auction as the di¤erence-form contest approaches the all-pay auction. In

contrast, the present paper speci�es conditions under which a non-deterministic contest

(e.g. Tullock�s Rent-Seeking Game with 2 < R <1) admits all-pay auction equilibria.3

2For example, Szidarovszky and Okuguchi (1997) focus on logit formulations of the CSF with twice
di¤erentiable, strictly increasing, and concave e¤ectivity functions. Malueg and Yates (2006) study
homogenous CSFs.

3 In principle, the class of contests analyzed in the present paper includes Che and Gale�s contest.
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Alcalde and Dahm de�ne the Serial Contest (for a formal de�nition see Subsection 4.2)

which is a di¤erent family of contests that also includes the two polar cases depending

on a scalar. They show that the Serial Contest admits all-pay auction equilibria when

the contest is deterministic enough. The present paper obtains this result as a special

case. However, contrary to the present paper, their proof relies on the homogeneity of

degree zero of the CSF. Both papers follow Baye et al. (1994) by using an auxiliary

contest with a �nite bidding space to in order to analyze mixed-strategy equilibria in

the original contest.

This paper is organized as follows. The next section introduces the class of contests

analyzed in the present paper and de�nes an auxiliary contest with a �nite grid on the

bidding space. Section 3 establishes our main result which we apply in Section 4 to

speci�c contests. The last section o¤ers some concluding remarks.

2. Contests

2.1. Preliminaries

There are n > 1 players wishing to participate in a contest. The set of contestants or

bidders is denoted by B = fB1; : : : ; Bi; : : : ; Bng. Each contestant has a valuation for

the object, denoted by Vi, and submits a bid bi 2 R+. Outlays are irreversible. Bidders

However, since their contest does not ful�ll condition (SD) when the scalar is �nite our main result does
not apply.
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are risk-neutral, and they bid simultaneously. The valuations are common knowledge

and without loss of generality ordered such that V1 � V2 � : : : � Vn > 0.

It is assumed that the contest administrator commits to determine the winner

through a contest success function. This function associates, to each vector of bids

b = (b1; : : : ; bn), a lottery specifying for each agent a probability of getting the object.

De�nition 2.1. [CSF] A contest success function is a mapping

	 : Rn+ ! �n

such that for each b 2 Rn+, 	(b) is in the n � 1 dimensional simplex, i.e. 	(b) is such

that, for each i, 	i (b) � 0, and
Pn
i=1	i (b) = 1.

Throughout this paper we assume that contest success functions satisfy the following

Incentive Property.

De�nition 2.2. [IP] We say that CSF 	 satis�es the Incentive Property if, for each

bidder Bi, and other agents�bids b�i 2 Rn�1+ n f0g,

	i (bi; b�i) � 	i
�
b
0
i; b�i

�
whenever bi � b

0
i; (2.1)

	j (bi; b�i) � 	j
�
b
0
i; b�i

�
for all j 6= i, whenever bi � b

0
i; and (2.2)

	i (bi; b�i) > 0 only if bi > 0. (2.3)
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Let us observe that [IP] is a natural condition that is satis�ed by all the (homoge-

neous) CSFs studied in the literature. In particular, (2:1) speci�es a weak monotonicity

property, of each bidder�s winning probability, in her own bid; (2:2) establishes that

when some bidder�s winning probability increases (resp. decreases), then the winning

probability of any other bidder decreases (resp. increases); and (2:3) says that no bidder

has a positive winning probability unless her bid is positive (or all bidders bid zero).

Given the contest success function 	, agents�expected utility from participating in

the contest, when the vector of bids is b, is

E�i (b) = 	i (b)Vi � bi; 8Bi 2 B: (2.4)

We denote a mixed-strategy for player Bi by �i and indicate the associated strategy

pro�le by �.

2.2. A Class of Contest Success Functions

We describe now properties of the class of contest success functions analyzed in this pa-

per. The �rst axiom is Anonymity, a property establishing that each agent�s probability

is independent of her label and depends only on the vector of bids.

(A) Anonymity: For any permutation function � of B (i.e., a bijection � : B ! B) we

have 	(� (b)) = � (	 (b)) for all b.

Note that this axiom also implies that all bidders submitting identical bids must



All-Pay Auction Equilibria in Contests 9

obtain equal probabilities of winning. Speci�cally, for the degenerated bid vector (all

contestants bid zero), Anonymity and the de�nition of a CSF imply that the CSF assigns

win probability 1=n to all contestants, as e.g. in Baye et al. (1994).

The present paper makes use of continuity properties of contestants�payo¤ functions

by applying results of Dasgupta and Maskin (1986) to contests. Therefore, a natural

requirement is continuity of the CSF. However, the most commonly used CSFs, like

the perfectly discriminating all-pay auction or Tullock�s Rent-Seeking Game, are not

continuous everywhere.4

To avoid excluding these CSFs, we allow for a weaker form of continuity of the CSF.

Given a vector of bids b = (bi; b�i) 2 Rn+, de�ne the highest bid of a contestant other

than Bi as bimax, i.e.

bimax = max
j 6=i

bj .

The following property assures that the set of discontinuities of the CSF is �small�and

that it �pays�to increase outlays slightly at these points.

(DS) Discontinuity Set: Given Bi 2 B, if 	i is discontinuous at b, then:

(a) bi = b
i
max; and

(b) 	i

�
b
0
i; b�i

�
= 1 for all b

0
i > bi.

4 In fact, it is easy to see that homogenity of degree zero of the CSF implies that if 	i (b) is continuous
at the degenerated bid vector (all contestants bid zero), then 	i (b) must be constant. This fact was
pointed out by Corchón (2000).
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For instance, in the popular Tullock�s Rent-Seeking Game the CSF is continuous

everywhere except at the degenerate bid vector, when all contestants bid zero. Thus,

bimax = 0. The second part of (DS) requires in such a case simply that in order to obtain a

strictly positive win probability contestant Bj , distinct of Bi, has to participate actively

in the contest. In other words, zero outlays by a contestant imply that this player has

no chance to win the contest. But note that (DS) is general enough to accommodate

the perfectly discriminating all-pay auction in which the CSF is continuous everywhere

except when two or more contestants tie for the highest bid.

In the following we focus on contests assigning win probabilities through an anony-

mous CSF ful�lling (DS).

2.3. The Continuous and the Finite Contest

In this paper we follow the approach in Baye et al. (1994) by relating the original

contest with continuous strategy space to another one in which there is a �nite grid on

the bidding space. Note that the latter is realistic when there is a smallest monetary

unit, like in experimental settings. Given some G 2 N+, the contest is �nite with grid

G and smallest monetary unit 1=G if the strategy space is discrete such that only bids

that coincide with the grid fm;m + 1=G;m + 2=G; : : : ;m + (G � 1)=G;m + 1g for all

m 2 N+ are feasible. We refer to this game as the �nite contest and indicate an arbitrary

element of the grid by x=G, where x 2 N+.
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As a starting point for our analysis we follow Baye et al. (1994) and apply results

of Dasgupta and Maskin (1986) to our model. Consider a contest with n bidders and

common value. Let ��G = (��G1 ; ::; ��
G
n ) denote an equilibrium to the contest with �nite

grid G. The next lemma establishes existence of a symmetric mixed-strategy equilibrium

to both the continuous and �nite contest and relates these equilibria.5

Lemma 2.3. Consider a contest with common value V and contest success function

satisfying (A) and (DS). This contest possesses a symmetric mixed-strategy Nash equi-

librium, both when the strategy space is �nite and when it is continuous. Moreover,

the pro�le �� = limG!1��
G exists and constitutes a mixed-strategy Nash equilibrium to

the continuous contest.

Proof. Note that the existence of a common value and (A) imply that both the �nite and

the continuous contest are symmetric games. With this, the existence of a symmetric

equilibrium for the contest with �nite grid G follows from Lemma 6 in Dasgupta and

Maskin (1986). We show that the conditions of their Theorem 6 are also satis�ed.

This theorem guarantees the existence of a symmetric mixed-strategy equilibrium when

the strategy space is continuous. In addition, the proof of Dasgupta and Maskin�s

Theorem 6 shows that the limiting equilibrium of a �nite approximation to the strategy

space as the grid size goes to zero is indeed an equilibrium to the continuous game.

5From Dasgupta and Maskin�s results it also follows that the equilibrium strategy has no atom at
zero e¤ort, when this is a point of discontinuity of the CSF.
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The application of their theorem requires some conditions to be ful�lled. First, the

sum of payo¤s must be upper semi-continuous. Since
Pn
i=1E�i(b) = V �

Pn
i=1 bi is

continuous, it is upper semi-continuous, too. Second, E�i(b) must be bounded, which

holds as �V � E�i(b) � V for bi 2 [0; V ] and i = 1; 2; : : : ; n. This completes the

proof when the CSF is continuous. For discontinuous CSFs ful�lling (DS) two further

properties must be ful�lled. Third, one must be able to express a set of points that

includes the discontinuities as a function relating the strategies of pairs of contestants.

Given (DS) the identity function can be used to de�ne this set. Fourth, a so-called

property � must hold. Let k � 1 denote the cardinality of the bid bimax in b�i. Property

� is ful�lled, since

lim inf
bi 7�!+bimax

E�i (bi; b�i) = V � bimax >
V

k + 1
� bimax � E�i

�
bimax; b�i

�
;

holds. Thus, Theorem 6 in Dasgupta and Maskin (1986) can be applied.

3. The Main Result

As explained in the Introduction, in this section we give conditions for the existence

of an equilibrium to non-deterministic contests that has properties of the one of the

deterministic all-pay auction. We de�ne �rst what we mean by an all-pay auction

equilibrium.
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De�nition 3.1. Let V1 � V2 � : : : � Vn. In an all-pay auction equilibrium �� the

expected bid of contestant B1 is E (��1) = V2=2 and the one of contestant B2 is

E (��2) = (V2)
2 = (2V1). All other contestants abstain from the contest (by bidding zero).

Contestant B1�s expected equilibrium payo¤ is E�1 (��) = V1 � V2, while for all other

contestants E�i6=1 (��) = 0. The expected revenue is ER (��) = V2(V1 + V2)=(2V1).

Remark 3.2. In the perfectly discriminating all-pay auction there is a unique equilib-

rium if V2 > V3. When there is a multiplicity of equilibria, in no equilibrium there is a

contestant whose expected payo¤ exceeds the one speci�ed in the statement. Moreover,

the only case in which there is no revenue equivalence among equilibria is when more

than one contestant have the second highest valuation which is strictly lower than the

highest one. See Baye et al. (1996) for more details.

It turns out that we can guarantee the existence of an all-pay auction equilibrium

when besides properties (A) and (DS) the contest success function is su¢ ciently dis-

criminating and monotonic in two active player contests.6 The following two conditions

will be used in the �nite game. Remember that in the discrete setting bidding (x+1)=G

represents a marginal increase of the bid x=G. For simplicity of exposition, let �x denote

the integer such that �x � GV1 < �x+ 1.

6These additional properties are related to the case in which at most two agents�bids are positive.
Since we deal with anonymous CSFs, there is no loss of generality by assuming that those agents are
bidders B1 and B2. Thus, we abuse notation and denote by (b1; b2) a vector in Rn such that bi = 0 for
all i 6= 1; 2.
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The �rst condition speci�es a minimum win probability that outbidding the oppo-

nent by the minimum amount must yield.

(SD) Su¢ cient Discrimination: For each x 2 f0; 1; :::; �xg,

	1

�
x+ 1

G
;
x

G

�
� x+ 2

2(x+ 1)
. (3.1)

Note that the right hand side, RHS from now on, is a strictly decreasing function with

values in (1=2; 1]. Thus, the CSF must be su¢ ciently discriminating in favor of the

higher bidder. Hence, (SD) speci�es a lower bound on how much the extreme case of

the (deterministic) all-pay auction, in which the higher bidder wins the contest for sure,

can be relaxed.

The next condition requires that a marginal increase of the bid x=G to (x + 1)=G

yields a su¢ ciently higher win probability than before.

(SM) Su¢ cient Monotonicity: 8x 2 f0; 1; :::; �xg and 8y 2 fx+ 1; :::; �xg

	1

�
x+ 1

G
;
y

G

�
�	1

� x
G
;
y

G

�
� 2	1

� x
G
;
y

G

��
	1

�
x+ 1

G
;
x

G

�
�	1

� x
G
;
x

G

��
: (3.2)

Note, again that (SM) is ful�lled in the extreme case of the (deterministic) all-pay

auction.

Remark 1. Let us observe that, since 	1
�
x
G ;

y
G

�
� 1

2 over the range of y considered,
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(3:2) is sure to be satis�ed if

	1

�
x+ 1

G
;
y

G

�
�	1

� x
G
;
y

G

�
� 	1

�
x+ 1

G
;
x

G

�
�	1

� x
G
;
x

G

�

We are now in a position to present our main result.

Theorem 3.3. Let V1 � V2 � � � � � Vn. Suppose the contest success function satis�es

(A), (DS), (SD) and (SM). Then the contest possesses an all-pay auction equilibrium.

To prove this result we use several lemmata. For a sketch of the proof consider the

following example with particularly simple equilibrium strategies.

Example 3.4. Consider Tullock�s Rent-Seeking Game with R = 2. In the case of a

common value, the �rst order conditions characterize maximizers of expected utility

for each agent.7 Both contestants bid half of their common valuation. Lemma 2.3 es-

tablished the existence of a symmetric equilibrium to common value contests for more

general situations.

Building on this symmetric equilibrium we construct an equilibrium to two-player con-

tests without common value when, say, V1 � V2. Note that in the symmetric equilibrium

the rent is completely dissipated and contestants obtain zero payo¤s. Lemma 3.5 shows

that the same is true under (SD) and (SM) in a wide class of symmetric equilibria.

7 See e.g. Pérez-Castrillo and Verdier (1992) or Nti (1999) for a formal analysis of this maximization
problem.
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Notice also that the increase in B1�s valuation w.r.t. the symmetric situation does not

change the problem of contestant B2. Hence, given b�1 = V2=2, her best reply is still to

bid b�2 = V2=2, on one hand, or, on the other, to bid zero. So she is also willing to mix

between the two. If she mixes with the right frequency, then the maximization problem

of contestant B1 admits the same solution as in the symmetric game. Consequently, the

following is an equilibrium to the asymmetric contest. Contestant B1 bids the optimal

strategy of the symmetric game b�1 = V2=2 and contestant B2 abstains with probability

(1� V2=V1) and bids b�2 = V2=2 whenever she participates. Lemma 3.6 establishes such

a result for any symmetric equilibrium in which the rent is completely dissipated.

The last step is to observe that further contestants with lower valuations than V2 cannot

do better than B2. Given the speci�ed bids of the �rst two contestants they prefer to

abstain from the contest. Thus, the described strategies constitute an all-pay auction

equilibrium in mixed-strategies to the n-player Tullock�s Rent-Seeking Game with R = 2

and asymmetric valuations.

The next lemma, and its proof, follows some of the reasoning in Baye et al. (1994)

and generalizes it to a broader class of contests.

Lemma 3.5. Consider a 2-bidder contest with �nite grid G and common value V in

which the contest success function satis�es (A), (SD) and (SM). In any symmetric Nash
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equilibrium ��G = (��G1 ; ��
G
2 ) it is true that for i = 1; 2:

(1) 0 � E�i(��G) � 1
G and

(2) E(��Gi ) =
V
2 � E�i(��

G):

Proof. First of all, let us introduce some additional notation. Given G, and agent

Bi�s strategy �Gi , �
G
ik denotes the probability that agent Bi assigns to bidding k=G.

Moreover, it is easy to see that, at equilibrium, ��Gik = 0 for any agent Bi and bid such

that k > �x. To prove Lemma 3.5, we will concentrate on agent B1. A similar reasoning

applies to agent B2.

(1) (a) For the lower bound: The expected payo¤ from bidding x=G when the

opponent follows the equilibrium strategy ��G2 is

E�1

� x
G
; ��G2

�
= V

�xX
y=0

��G2y	1

� x
G
;
y

G

�
� x

G
. (3.3)

Choosing x = 0, contestant B1 can secure herself E�1
�
0; ��G2

�
� 0. Thus, E�1(��G) � 0.

(b) For the upper bound, since ��G is an equilibrium, agent B1 must react optimally to

B2�s strategy. Thus, for all x=G: (i) E�1
�
x=G; ��G2

�
� E�1

�
��G
�
, (ii) E�1

�
x=G; ��G2

�
=

E�1
�
��G
�
if ��G1x > 0 and (iii) ��G1x = 0 if E�1

�
x=G; ��G2

�
< E�1

�
��G
�
. Using (3.3),
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condition (i) can be rewritten as

V
�xX
y=0

��G2y	1

� x
G
;
y

G

�
� E�1

�
��G
�
+
x

G
: (3.4)

Let x=G � 0 be the lowest bid that is part of the symmetric mixed-strategy equilibrium.8

By (ii) condition (3.4) holds with equality. Using (A), we have

1

2
��G2x +

�xX
y=x+1

��G2y	1

� x
G
;
y

G

�
=
1

V

h
E�1

�
��G
�
+
x

G

i
: (3.5)

For x+ 1 condition (3.4) becomes

	1

�
x+ 1

G
;
x

G

�
��G2x+

1

2
��G2(x+1)+

�xX
y=x+2

��G2y	1

�
x+ 1

G
;
y

G

�
�
E�1

�
��G
�

V
+
x+ 1

V G
: (3.6)

8 I.e., ��G1x > 0, and ��
G
1y = 0 for all y < x.
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Computing ��G2x from equation (3.5) and substitution in inequality (3.6) yields

�
1
2 � 2	1

�
x+1
G ; xG

�
	1
�
x
G ;

x+1
G

��
��G2(x+1)+

+
�
	1
�
x+1
G ; x+2G

�
� 2	1

�
x+1
G ; xG

�
	1
�
x
G ;

x+2
G

��
��G2(x+2)+

+ : : :+
�
	1
�
x+1
G ; �xG

�
� 2	1

�
x+1
G ; xG

�
	1
�
x
G ;

�x
G

��
��G2�x �

� 1
V

�
E�1

�
��G
�
+ x+1

G � 2
�
E�1

�
��G
�
+ x

G

�
	1
�
x+1
G ; xG

��
=

= 1
V

�
1
G

�
x+ 1� 2x	1

�
x+1
G ; xG

��
� E�1

�
��G
� �
2	1

�
x+1
G ; xG

�
� 1
��
.

(3.7)

Note that (SM) implies that every term on the left hand side, LHS from now on, of

condition (3.7) is non-negative. Suppose, by way of contradiction, that E�1
�
��G
�
>

1=G. The RHS of condition (3.7) is strictly smaller than

1

V G

�
x+ 1� 2x	1

�
x+ 1

G
;
x

G

�
� 2	1

�
x+ 1

G
;
x

G

�
+ 1

�
:

Under (SD) this expression is smaller than zero, a contradiction.

(2) We have that in a symmetric equilibrium E�i(��
G) = V PrfBi winsg � E(��Gi ).

Summing up for both agents gives 2E�1
�
��G
�
= V [PrfB1 winsg + PrfB2 winsg] �
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2E(��G1 ) and rearranging yields the statement.

Lemma 3.6. Let CS be a (continuous) 2-bidder contest with common value ~V . Let CA

be the same contest with asymmetric valuations V1 � V2 = ~V . If �� = (��1; �
�
2) is a

symmetric (possibly mixed) Nash equilibrium strategy pro�le to CS in which the rent is

completely dissipated (in expectation), then the following strategy pro�le �� = (��1; �
�
2)

constitutes a Nash equilibrium to CA:

� Contestant B1 bids ��1 = ��1 and

� contestant B2�s strategy ��2 is such that she abstains from the contest with prob-

ability (1� V2=V1) and bids ��2 whenever she participates.

Proof. Note �rst that in CS the complete dissipation of rents implies that ~V = E (��1)+

E (��2). Since the equilibrium is symmetric, we have E (��i ) = ~V =2, i 2 f1; 2g. The

symmetry of the game assures that on average each player wins half of the times and,

thus, in CS we have E�i (��) = 0, i 2 f1; 2g.

To see that in CA contestant B2 has no pro�table deviation from ��2, note that, since

��1 = �
�
1 and V2 = ~V is the same in CS and CA, any pure strategy in CA yields the same

as in CS and B2 obtains E�2 (��) = 0. She is, hence, willing to abstain with probability

(1� V2=V1).
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For B1 note that in CS , given the mixed-strategy �� by B2, all pure strategies b1 in

the support of �� maximize

E�1(b1; �
�) = ~V E[PrfB1 winsjb1;	; ��g]� b1; (3.8)

where E[PrfB1 winsjb1;	; ��g] is B1�s expected win probability from the pure strategy

b1 when the CSF is 	 and B2 mixes according to the equilibrium strategy ��. Note that,

although we do not know whether �� is a continuous, discrete, or partially continuous

and discrete distribution, the following must be true. For any constant A, any b1 which

is a maximizer of (3.8) is also a maximizer of

A+ ~V E[PrfB1 winsjb1;	1; ��g]� b1: (3.9)

The proof is completed by noticing that (3.9) with A = (1 � V2=V1)V1 is the payo¤ of

the pure strategy b1 in CA, with ��2 = �� conditional on entry.9

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. Suppose V1 � V2 � � � � � Vn, and that the contest success

function satis�es (A), (DS), (SD) and (SM). We show the existence of an all-pay auction

equilibrium by construction.

9This is because ~V = V2, and V1 cancels.
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Suppose there were two contestants with common value V2. Lemma 2.3 and suc-

cessively Lemma 3.5 can be applied. This establishes the existence of a symmetric

mixed-strategy equilibrium in which the rent (in expectation) is completely dissipated

because both contestants bid (in expectation) V2=2. Application of Lemma 3.6 allows to

conclude that in any two-bidder contest without common value, say, V1 � V2 there exists

equilibrium strategies for B1 and B2 with the properties speci�ed in De�nition 3.1. As-

sume there are further bidders with valuations lower or equal to V2. These contestants

Bj with j > 2 cannot do better than bidding zero and obtain expected payo¤s of zero.

To see this take any pure strategy b0. Given ��1, contestant B2 obtains E�2(�
�
1; b

0) � 0

in the two contestants game. By (A), we have that E�i (��1; �
�
2; b

0) = E�2 (�
�
1; b

0; ��2);

and by Condition (2:2), E�2 (��1; b
0; ��2) � E�2 (�

�
1; b

0). The expected bids imply the

expressions for expected equilibrium payo¤s and revenue in the statement of Theorem

3.3. �

4. Applications

In this section we apply Theorem 3.3 to speci�c contests, mainly by checking conditions

(SD) and (SM). This shows the practical applicability of these conditions. We start by

verifying existing results for the deterministic all-pay auction and the Serial Contest. We

turn then to the derivation of new results. Of particular interest is here Tullock�s Rent-

Seeking Game. Although the hypothesis of Theorem 3.3 does not include homogeneity
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of the CSF, we focus on this class of CSFs, because of its relevance for applications.10

4.1. The Deterministic All-Pay Auction

It is instructive to start with the deterministic all-pay auction and derive an equilib-

rium to this game without using existing results. It is straightforward to see that the

deterministic all-pay auction satis�es the hypothesis of Theorem 3.3. Now Theorem 3.3

says that this game has an all-pay auction equilibrium. This is indeed the case; for this

is a well established result (Hillman and Riley (1989) and Baye et al. (1996)). Note

that this equilibrium is unique when V2 > V3 (see Remark 3.2). Thus, we conclude:

Proposition 4.1. The deterministic all-pay auction has an all-pay auction equilibrium.

4.2. The Serial Contest

One way to relax the extreme requirement of the deterministic all-pay auction that the

highest bidder wins the contest with probability one, is through the Serial CSF (Alcalde

and Dahm (2007)). Without loss of generality suppose that the vector of bids is ordered

such that b1 � b2 � ::: � bn.11 Given a scalar R > 0, the serial CSF assigns

	Si (b) =

nX
j=i

bRj � bRj+1
j � bR1

for all Bi 2 B, (4.1)

10One interpretation of homogeneity of degree zero is that it does not matter whether lobbying
expenditures are measured in dollars or in euros. See also the further discussion in Malueg and Yates
(2006).
11 If necessary relabel the set of bidders.
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with bn+1 = 0.

Using homogeneity, condition (SD) becomes

x+ 2

2(x+ 1)
� 1� 1

2

�
x

x+ 1

�R
,
�

x

x+ 1

�R�1
� 1, (4.2)

which holds for all R � 1. On the other hand, (SM) can be written as

1� 2
�

x

x+ 1

�R
+

"�
x

x+ 1

�R#2
� 0, (4.3)

which is true for all R � 0. Summarizing, we have the following.

Proposition 4.2. For R � 1, the Serial Contest has an all-pay auction equilibrium.

4.3. Tullock�s Rent-Seeking Game

Tullock�s CSF is de�ned as in equation (1.1). Again, using homogeneity, conditions

(SD) and (SM) simplify. The former becomes

x+ 2

2(x+ 1)
� (x+ 1)R

(x+ 1)R + xR
, (x+ 2)xR � x(x+ 1)R, (4.4)

which is ful�lled for x = 0. For x > 0, (following Baye et al. (1994), p. 379) we obtain

x+ 2

(x+ 1)
�
�
x+ 1

x

�R�1
, 1 +

1

x+ 1
�
�
1 +

1

x

��
1 +

1

x

�R�2
.
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This holds for R � 2. The latter condition (SM) can be written as

(xR + yR)((x+ 1)R + xR) � ((x+ 1)R + yR)2xR, (4.5)

which is true for all R � 0. We have proved the following result.

Proposition 4.3. For R � 2, Tullock�s Rent-Seeking Game has an all-pay auction

equilibrium.

Although the explicit derivation of the equilibrium mixed-strategies is beyond the

scope of the present paper, we conclude this subsection computing four examples of the

symmetric two-bidder Tullock�s Rent-Seeking Game with a �nite strategy space. We

represent the cases of R equal to 2, 3, 5 and1 with a grid of G = 11 in Figure 4.1. The

computations suggest that, as the returns to scale increase, the bulk of probability mass

shifts to the right and some mass is attached to low bids. As R increases further, ��

becomes more and more uniformly distributed, which is the optimal bidding strategy in

the all-pay auction.12

12 Due to the �niteness, contestants obtain very low but strictly positive expected pro�ts (smaller
than 0:06). Moreover, the expected bid � even of the discrete all-pay auction � is strictly lower than
0:5 (but larger than 0:44). Baye et al. (1994) have shown that in the two player case the symmetric
equilibrium of the discrete all-pay auction converges to the unique equilibrium of the continuous strategy
space all-pay auction.
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Figure 4.1: G = 11 and R 2 f2; 3; 5;1g

4.4. Combining Tullock�s and the Serial Contest

Consider a contest administrator who wants to design a contest that has properties of

both Tullock�s Rent-Seeking Game and the Serial Contest. In the -TS contest win

probabilities are assigned following

	TSi (b) = 	Ti (b) + (1� )	Si (b); (4.6)

with  2 [0; 1] and for all Bi 2 B.

Using homogeneity, condition (SD) becomes

x+ 2

2(x+ 1)
�  (x+ 1)R

(x+ 1)R + xR
+ (1� )

"
1� 1

2

�
x

x+ 1

�R#
,
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which we know holds for R � 2 because then (4.4) and (4.2) hold. Condition (SM) can

be written as

1

2

 (x+1)R

(x+1)R+yR
+ (1� )12

�
x+1
y

�R
 xR

xR+yR
+ (1� )12

�
x
y

�R �  (x+ 1)R

(x+ 1)R + xR
+ (1� )

"
1� 1

2

�
x

x+ 1

�R#
.

Notice that only the LHS depends on y. Furthermore, this expression can be shown to

be increasing in y.13 Thus, it su¢ ces to verify (SM) for y = x + 1. In this case (SM)

becomes

1

4
� 2

(x+ 1)R

(x+ 1)R + xR
xR

xR + (x+ 1)R
+ (1� )2 1

2

�
x

x+ 1

�R "
1� 1

2

�
x

x+ 1

�R#

+(1� )
("
1� 1

2

�
x

x+ 1

�R# xR

xR + (x+ 1)R
+
1

2

�
x

x+ 1

�R (x+ 1)R

(x+ 1)R + xR

)
.

Given that (4.5) and (4.3) hold it is enough to show that

1

2
�
"
1� 1

2

�
x

x+ 1

�R# xR

xR + (x+ 1)R
+
1

2

�
x

x+ 1

�R (x+ 1)R

(x+ 1)R + xR
,

which is true for all R � 0. We obtain, hence, the following.

Proposition 4.4. For R � 2 and for all  2 [0; 1], the -TS contest has an all-pay

auction equilibrium.

13Details are available on request.
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Notice that this result may be interpreted as saying that the all-pay auction equi-

librium is very robust. Given that the same equilibrium exists for any combination of

the two contests �provided that the contest is deterministic enough (R � 2)�the model

builder does not really have to decide which model is more realistic.

4.5. The Serial Contest with Spillover E¤ects

Note that instead of the power function fi(b) = bRi any homogenous production function

for lotteries might be combined with the basic functional form of either Tullock�s logit

structure or the serial formulation in order to generate another homogeneous CSF.

Consider, for example, the case in which e¤ort represents advertising. Malueg and

Yates (2006) introduce a CES production function in order to capture such a setting.

Here a contestant�s success depends on her private e¤ort bi (her own advertising). But

there might be also a public aspect or spillover e¤ect of e¤ort (e.g. increased consumer

awareness of the product generated through rivals�advertisements). The following is a

variation of the production function introduced in Malueg and Yates

fi(b) =

0@abRi + cbTi X
k 6=i

bR�Tk

1A1=S

; for all Bi 2 B, (4.7)

where a � c � 0, R > T � 0 and S > 0. Note that if c = 0, then (4.7) reduces to

the classical power function. Notice also that for T = 0, we obtain the exact expression

used by Malueg and Yates. In this case a contestant who exerts no e¤ort might still
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have a positive probability of winning. When T > 0, a positive win probability requires

non-zero e¤ort.

With this we can de�ne e.g. the Serial Contest with spillover e¤ects in which win

probabilities are assigned following

	SSi (b) =
nX
j=i

fj(b)� fj+1(b)
j � f1(b)

for all Bi 2 B, (4.8)

where fi(b) is de�ned as in (4.7) and fn+1(b) = 0.

Consider the following simple example in which R = 3 and S = T = a = c = 1. We

obtain

fi(b) = bi

0@b2i +X
k 6=i

b2k

1A , i = 1; :::; n:
By homogeneity, condition (SD) requires

x+ 2

2(x+ 1)
� 1� x3 + x(x+ 1)2

2((x+ 1)3 + x2(x+ 1))
, x3 + x(x+ 1)2

2((x+ 1)3 + x2(x+ 1))
� x

2(x+ 1)
.
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Straightforward manipulation shows that this is true. For (SM), we have that

	1

�
x+ 1

G
;
y

G

�
=

(x+ 1)3 + (x+ 1)y2

2(y3 + (x+ 1)2y)
;

	1

� x
G
;
y

G

�
=

x3 + xy2

2(y3 + x2y)
; and

	1

�
x+ 1

G
;
x

G

�
= 1� x3 + x(x+ 1)2

2((x+ 1)3 + x2(x+ 1))
.

Thus, it must hold that

(x+ 1)3 + (x+ 1)y2

2(y3 + (x+ 1)2y)
� 2

�
1� x3 + x(x+ 1)2

2((x+ 1)3 + x2(x+ 1))

�
x3 + xy2

2(y3 + x2y)
;

which is true if x = 0. For x > 0, it is required that

�
(x+ 1)3 + (x+ 1)y2

�
(y3 + x2y)

(y3 + (x+ 1)2y) (x3 + xy2)
�
2((x+ 1)3 + x2(x+ 1))�

�
x3 + x(x+ 1)2

�
((x+ 1)3 + x2(x+ 1))

.

Expanding terms yields the condition

y5
�
2x+ 2x2 + 1

�
+y3

�
4x+ 8x2 + 8x3 + 4x4 + 1

�
+y

�
x2 + 4x3 + 7x4 + 6x5 + 2x6

�
� 0.

We have, hence, shown the following.
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Proposition 4.5. In the example in which R = 3 and S = T = a = c = 1, the Serial

Contest with spillover e¤ects has an all-pay auction equilibrium.

5. Discussion

The present paper has o¤ered a robustness analysis of the predictions of the determin-

istic all-pay auction. In this auction the highest bidder always wins with probability

one. We have analyzed non-deterministic contests which respond to di¤erent degrees

to the highest bid when assigning the prize. This setting includes �but is not limited

to�the popular Tullock�s Rent-Seeking Game. Our model is quite general because we

did not suppose the existence of a common value and we did not restrict the number of

contestants. Not surprisingly, our main result can be interpreted as saying that if the

contest is �not too far away�from the polar case of the all-pay auction, it admits essen-

tially a common equilibrium. This is an important result as it implies that conclusions

of models that embed an all-pay auction in a larger model might be robust to changes

in the contest structure.

However, it is somewhat surprising that the contest can be �quite far away�from the

polar case and that there are di¤erent mathematical formulations through which one

might depart from the deterministic case. These conclusions follow from the application

of our main result to speci�c contests. A by-product of our analysis here is to provide an

equilibrium to Tullock�s Rent-Seeking Game for increasing returns to scale larger than
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two, for any number of contestants, and for any valuations for the political prize the

contestants might have. But future research concerning this contest in the general set-

ting is still needed in order to determine an equilibrium for R 2 (n=(n�1); 2), to derive

the explicit equilibrium strategies and to determine the complete set of equilibria.14

The question of robustness of the predictions of the deterministic case is important

because the polar case has important properties �some of which are known to be not

ful�lled when the contest is non-deterministic enough, say, in Tullock�s Rent-Seeking

Game with R = 1 (see Che and Gale (2000) or Fang (2002)). This refers to properties

concerning incentives for more than two agents to participate in the contest, rent dis-

sipation, exclusion principle (Baye et al. (1993)), and the preemption e¤ect (Che and

Gale (2000)). Our analysis implies that these properties are ful�lled in a wide range of

non-deterministic contests.
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