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Abstract

We consider a uniformly elliptic operator LA in divergence form associated
with an (n + 1)× (n + 1)-matrix A with real, merely bounded, and possibly non-
symmetric coefficients. If

ωA(r) = sup
x∈Rn+1

−
∫
B(x,r)

∣∣∣A(z)− −
∫
B(x,r)

A
∣∣∣ dz,

then, under suitable Dini-type assumptions on ωA, we prove the following: if
μ is a compactly supported Radon measure in R

n+1, n ≥ 2, and Tμ f (x) =∫ ∇x�A(x, y) f (y) dμ(y) denotes the gradient of the single layer potential associ-
ated with L A, then

1 + ‖Tμ‖L2(μ)→L2(μ) ≈ 1 + ‖Rμ‖L2(μ)→L2(μ),
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where Rμ indicates the n-dimensional Riesz transform. This allows us to provide
a direct generalization of some deep geometric results, initially obtained for Rμ,
which were recently extended to Tμ associated with L A with Hölder continuous
coefficients. In particular, we show the following:

(1) If μ is an n-Ahlfors-David-regular measure on R
n+1 with compact support,

then Tμ is bounded on L2(μ) if and only if μ is uniformly n-rectifiable.
(2) Let E ⊂ R

n+1 be compact and Hn(E) < ∞. If THn |E is bounded on
L2(Hn|E ), then E is n-rectifiable.

(3) If μ is a non-zero measure on R
n+1 such that lim supr→0

μ(B(x,r))
(2r)n is positive

and finite for μ-a.e. x ∈ R
n+1 and lim infr→0

μ(B(x,r))
(2r)n vanishes for μ-a.e.

x ∈ R
n+1, then the operator Tμ is not bounded on L2(μ).

(4) Finally, we prove that if μ is a Radon measure on R
n+1 with compact support

which satisfies a proper set of local conditions at the level of a ball B =
B(x, r) ⊂ R

n+1 such thatμ(B) ≈ rn and r is small enough, then a significant
portion of the support of μ|B can be covered by a uniformly n-rectifiable set.
These assumptions include a flatness condition, the L2(μ)-boundedness of Tμ
on a large enough dilation of B, and the smallness of the mean oscillation of
Tμ at the level of B.

Key words. Riesz transform · Layer potentials · Second order elliptic equations ·
Dinimeanoscillation ·David–Semmesproblem ·Uniform rectifiability ·Rectifiability
Mathematics Subject Classification (2020): 42B37 · 42B20 · 35J15 · 28A75 ·
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1. Introduction

The aim of this paper is to extend and provide a unified approach to several
recent results on the connection of the L2-boundedness of gradients of single-layer
potentials associated with an elliptic operator in divergence form defined on a set
E and the geometry of E . The importance of these operators stems from their role
in the study of boundary value problems and free boundary problems for harmonic
and elliptic measure, as well as the study of analytic capacity (see for instance
[2–6,8,18,23,29,30,34,38] and the references therein).

The investigation of geometric properties of singular integrals has produced
many important results starting with Calderón’s proof in [9] of the boundedness of
Cauchy transformonLipschitz graphswith small Lipschitz constant. A prototypical
example of a singular integral operator is the Riesz transform, which is the higher
dimensional analogue of the Cauchy transform. If μ is a Radon measure on R

n+1,
n ≥ 1, its associated (d-dimensional) Riesz transform is defined as

Rd
μ f (x) =

∫
x − y

|x − y|d+1 dμ(y), for f ∈ L1
loc(μ),
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whenever the expression above makes sense. For δ > 0, we define the δ-truncated
Riesz transform as

Rd
μ,δ f (x):=

∫
|x−y|>δ

x − y

|x − y|d+1 f (y) dμ(y),

and if f ≡ 1 on R
n+1, we use the notation Rdμ(x) = Rd

μ1(x) and Rd
δ μ(x) =

Rd
μ,δ1(x). We say that Rd

μ is bounded on L2(μ) if Rd
μ,δ is bounded on L2(μ)

uniformly on δ > 0. In this case, we write

‖Rd
μ‖L2(μ)→L2(μ):= sup

δ>0
‖Rd

μ,δ‖L2(μ)→L2(μ).

Given x ∈ R
n+1 and r > 0,we denote by B(x, r) the open ball of center x and

radius r . We say that a non-negative Borel measure has growth of degree d or, for
brevity, d-growth, and we write μ ∈ Md+(Rn+1), if there exists c0 > 0 such that

μ
(
B(x, r)

) ≤ c0r
d for all x ∈ R

n+1, r > 0.

Any such measure is in fact a Radon measure. Measures with polynomial growth
are crucial for the study of singular integrals; for instance, if μ is a non-negative
measure on R

n+1 without atoms and its associated Riesz transformRd
μ is bounded

on L2(μ), then μ ∈ Md+(Rn+1) (see [12, p. 56], where this is proved for more
general singular integral operators, and also Lemma 3.17).

A Borel measureμ is said d-Ahlfors-David regular (also abbreviated by d-AD-
regular) if there exists C > 0 such that

C−1rd ≤ μ
(
B(x, r)

) ≤ Crd for all x ∈ suppμ, 0 < r < diam(suppμ).

If Hd stands for the d-dimensional Hausdorff measure in R
n+1, we say that a set

E ⊂ R
n+1 is d-AD-regular ifHd |E is a d-AD-regular measure.

A set E ⊂ R
n+1 is called d-rectifiable if there exists a countable family of

Lipschitz maps f j : R
d → R

n+1 such that

Hd
(
E \

⋃
j

f j (R
d)
)

= 0.

A measure μ is d-rectifiable if it vanishes outside a d-rectifiable set E and it is
absolutely continuous with respect toHd |E .

We say that a set E ⊂ R
n+1 is uniformly d-rectifiable if it is d-AD regular and

there exist θ,M > 0 such that for all x ∈ E and all r > 0 there is a Lipschitz
mapping g from the ball Bd(0, r) ⊂ R

d to R
n+1 with Lip(g) ≤ M such that

Hd(E ∩ B(x, r) ∩ g(Bd(0, r))
) ≥ θrd .

We also say that a measure μ is uniformly n-rectifiable if it is d-AD-regular and it
vanishes outside of a uniformly d-rectifiable set.

The notion of uniform rectifiability of a set E was introduced by David and
Semmes in their seminal works [13,14] as the optimal geometric property that
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E should have so that operators in a pretty general subclass of singular integral
operators are L2(Hn|E )-bounded. They proved in [13] that a d-AD-regularmeasure
μ onR

n+1 is uniformly d-rectifiable if and only if all the singular integral operators
with smooth and anti-symmetric convolution-type kernel are bounded on L2(μ).
They also raised the question, commonly referred to asDavidandSemmes’ problem,
if the L2(μ)-boundedness of the d-Riesz transform Rd

μ associated with a d-AD-
regular measure μ implies its uniform d-rectifiability.

A positive answer to this question was first provided in the planar case d =
n = 1 by Mattila, Melnikov, and Verdera in [26], who used the connection of the
Cauchy transform with the so-called Menger curvature of a measure. However,
their method cannot be generalized to higher dimensions. More recently, Nazarov
and Volberg along with the fourth named author proved in [31] the analogous result
in the case d = n for any integer n ≥ 1 using a different set of delicate techniques
(we will often refer to it as the 1-codimensional case). We point out that the full
David-Semmes’ conjecture is still open for d-AD-regular measures of dimension
d = 2, . . . , n − 2.

The n-dimensional Riesz transform in R
n+1 has a natural generalization to the

context of elliptic PDEs. Let A(·) = (ai j )i, j∈{1,...,n+1} be an (n + 1) × (n + 1)-
matrix whose entries ai j are measurable real-valued functions in L∞(Rn+1). We
say that A is uniformly elliptic if there exists � > 0 such that

〈A(x)ξ, ξ 〉 ≥ �−1|ξ |2 for all ξ ∈ R
n+1 and a.e. x ∈ R

n+1, (1.1)

〈A(x)ξ, η〉 ≤ �|ξ ||η| for all ξ, η ∈ R
n+1 and a.e. x ∈ R

n+1. (1.2)

We consider the second order equation in divergence form

L Au(x):= − div(A(·)∇u(·))(x) = 0, x ∈ R
n+1, (1.3)

to be understood in the sense of distributions. If A is a uniformly elliptic matrix
with bounded measurable coefficients, the operator LA has a fundamental solution
�A(x, y) which, if δy is the Dirac mass at y, satisfies L A�A(·, y) = δy in the sense
of distributions. For the construction of the fundamental solution associated with
L A we refer to [21].

For a non-negative Radon measure μ on R
n+1 we define the gradient of the

single layer potential

Tμ f (x):=
∫

∇1�A(x, y) f (y) dμ(y), for f ∈ L1
loc(μ), (1.4)

to be interpreted in the sense of the truncations

Tμ,δ f (x):=
∫

|x−y|>δ
∇1�A(x, y) f (y) dμ(y), for f ∈ L1

loc(μ).

For f ≡ 1 we use the notations Tδμ:=Tμ,δ1 and T :=Tμ1. We also denote that

‖Tμ‖L2(μ)→L2(μ):= sup
δ>0

‖Tμ,δ‖L2(μ)→L2(μ).
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Furthermore, we observe that in the case A ≡ I d, it readily follows by defi-
nition that LA = −	 and so ∇1�I d equals the Riesz kernel up to a dimensional
multiplicative constant.

Under the sole assumption that the entries of A are in L∞, the kernel∇1�A(·, ·)
does not necessarily satisfy local L∞ estimates, let alone a modulus of continu-
ity, and so it is not necessarily of Calderón-Zygmund type. We need to impose
some additional regularity conditions on A for this to happen. For instance, an ad-
equate framework is provided by matrices with Hölder continuous entries. Many
important geometric results that are known for the Riesz transform, such as the 1-
codimensional version of theDavid-Semmes’ problem, have been successfully gen-
eralized by Conde-Alonso, Prat, and the last three named authors (see [10,33,35]).
For more details we refer to the discussion of the corollaries of Theorem 1.1.

In the present paper, we are concernedwith elliptic operators whose coefficients
may have a Lebesgue measure zero set of points of discontinuity. Namely, we will
assume that they are of Dini mean oscillation-type.

Let κ ≥ 1. We say that a function θ : [0,∞] → [0,∞] is κ-doubling if

θ(t) ≤ κ θ(s) for
1

2
t ≤ s ≤ t and t > 0. (1.5)

We denote byLd the Lebesgue measure on R
d and for a set E ⊂ R

n+1, we will
also use the notation Ln+1(E) = |E |.When we write integrals, we often prefer the
more compact and standard notation dLd(x) = dx .

We say that a κ-doubling function θ belongs to the class DS(κ) (Dini in small
scales), if it is L1-measurable and

∫ 1

0
θ(t)

dt

t
< ∞. (1.6)

Given d > 0, we say that θ belongs to the class DLd(κ) (d-Dini in large scales) if
it is L1-measurable and

∫ ∞

1
θ(t)

dt

td+1 < ∞.

We remark that, if 0 < d1 ≤ d2, then DLd1(κ) ⊂ DLd2(κ). Moreover, for θ ∈
DS(κ) we define

Iθ (r):=
∫ r

0
θ(t)

dt

t
, r > 0 (1.7)

and, for d > 0 and θ ∈ DLd(κ),

Ld
θ (r):=rd

∫ ∞

r
θ(t)

dt

td+1 , r > 0 (1.8)

For x ∈ R
n+1, r > 0, and an (n + 1)× (n + 1)-matrix A we denote

Āx,r :=−
∫
B(x,r)

A:= 1

|B(x, r)|
∫
B(x,r)

A(y) dy
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and, for p ≥ 1, define its mean oscillation function ωA : [0,∞) → [0,∞) as

ωA(r):= sup
x∈Rn+1

−
∫
B(x,r)

∣∣A(z)− Āx,r
∣∣ dz.

By [24, p.495]1, there exists a dimensional constant κ such that ωA satisfies (1.5).
We say that an (n + 1) × (n + 1)-matrix A ∈ DMOs (resp. A ∈ DMO�) if

ωA ∈ DS(κ) (resp. ωA ∈ DLn−1(κ)). We also say that A ∈ DDMOs if A ∈ DMOs

and IωA satisfies (1.6), i.e.,
∫ 1

0

∫ r

0
ωA(t)

dt

t

dr

r
= −

∫ 1

0
ωA(t) log t

dt

t
< +∞. (1.9)

Finally, we define

D̃MO:=DDMOs ∩ DMO�.

The acronym DMO (resp. DDMO) stands for Dini mean oscillation (resp. double
Dini mean oscillation), and the subscripts in DMOs and DMO� indicate that the
associated Dini condition is required at small and large scales respectively. Due to
(1.9), we may also use the terminology log-Dini mean oscillation instead of double
Dini mean oscillation.

Furthermore, D̃MO includes the class of matrices with α-Hölder continuous
coefficients for α ∈ (0, 1). Indeed, if there exists Ch > 0 such that

|ai j (x)− ai j (y)| ≤ Ch |x − y|α, for all i, j ∈ {1, . . . , n + 1}, x, y ∈ R
n+1,

(1.10)
thenωA(t) � tα and so A ∈ D̃MO.Our condition even includesmatrices that satisfy
(1.10) for α ∈ (0, 1) when |x − y| � 1 and (n − 1− α) when |x − y| � 1. In fact,
it is clear that if A is uniformly continuous with a Dini modulus of continuity then
it is of Dini mean oscillation. In the converse direction, as proved in [22, Appendix
A], if A is of Dini mean oscillation, then it agrees (Lebesgue) almost everywhere
with a uniformly continuous function with modulus of continuity IωA . However, as
we are mostly interested in sets with Lebesgue measure zero, we highlight that we
cannot assume that A is uniformly continuous and thus more delicate arguments
are required.

A variant of the example in [15, p. 418] shows that the condition A ∈ D̃MO is
strictly weaker than requiring the matrix A to be Hölder continuous. Indeed, if we
define the matrix ai j (x) = δi j for |x | > 1 and

ai j (x):=δi j
(
1 + (− ln |x |)−γ−1

)
, for 0 < |x | � 1, 0 < γ < 1/2,

then, as remarked in [15, p. 418], we have that ωA(r) ≈ (− ln r)−γ−2 for r � 1.
Since ωA is an increasing function, A ∈ DDMOs but its modulus of continuity
does not satisfy the double Dini condition.

1 The doubling propertywas proved in [24] for slightly differentDinimoduli of oscillation,
but a minor variant of that argument works also under a Dini mean oscillation assumption
(see also the use of the doubling property in [15, p.424]).



Arch. Rational Mech. Anal. (2023) 247:38 Page 7 of 59 38

The DMOs assumption on A guarantees that ∇1�(·, ·) is locally of Calderón-
Zygmund type, see Lemma 3.9. Indeed, this is possible because of thework ofDong
and Kim [15] who proved that, under this hypothesis, weak solutions of LAu = 0
are continuously differentiable providing also local L∞ and regularity estimates
for ∇u. We highlight that one of the crucial technical difficulties in [15] is that
the modulus of oscillation ωA is not monotone as it would be the case if one used
ω̃A(r):= sup0<ρ≤r ω(ρ). The proof of the regularity theorem of Dong and Kim is
significantly easier for ω̃A. Note that if A is a compactly supported perturbation of
the identity matrix I d, then ωA(r) → 0 as r → ∞ but ω̃A(r) does not.2

Let us now state the main result of the paper.

Theorem 1.1. Let A be a uniformly elliptic matrix satisfying A ∈ D̃MO and let
μ ∈ Mn+(Rn+1) with compact support, n ≥ 2. If Tμ is the associated operator
given by (1.4), it holds that

1 + ‖Rμ‖L2(μ)→L2(μ) ≈ 1 + ‖Tμ‖L2(μ)→L2(μ), (1.11)

where the implicit constant depends on n,�, c0, and diam(suppμ).

The role of the D̃MO-condition on the matrix A in Theorem 1.1 can be bet-
ter understood if we relate it to the technical framework of the recent works in
the Hölder continuous setting. Indeed, one of the key methods of [10] and the
subsequent papers consists in using a proper pointwise estimate of the difference
∇1�A(x, y)−∇1�A(x)(x, y), often referred to as frozen coefficients method which
was proved in [23]. This approach is particularly important because it allows to
reduce the study of the operator Tμ to the gradient of the single layer potential
associated with a uniformly elliptic equation with constant coefficients, which in
turn coincides with the Riesz transform modulo a linear change of variables (that
depends on x though).

Hence, a crucial difficulty in the proof of Theorem 1.1 is the identification of
the right substitute of the frozen coefficients method which adapts to the mean
oscillation setting. This issue is resolved in Lemma 3.12, where we estimate the
difference between ∇1�A(x, y) and ∇1� Āx,r

(x, y), for r :=|x − y|/2. The bound
depends on the scale R > 0 such that x, y ∈ B(0, R) and it involves the quantity

r−n τA(r):=r−n (
IωA(r)+ Ln

ωA
(r)

) = 1

rn

∫ r

0
ωA(t)

dt

t
+
∫ ∞

r
ωA(t)

dt

tn+1

(1.12)
and the term

R−n τ̂A(R):=R−n
(
IωA (R)+ Ln−1

ωA
(R)

)
= 1

Rn

∫ R

0
ωA(t)

dt

t
+ 1

R

∫ ∞

R
ωA(t)

dt

tn
.

Observe that the D̃MO assumption implies that IτA (1) < ∞ and τ̂A(R) < ∞ for
any R > 0. Moreover, if A is α-Hölder continuous, τA(r) � rα .

2 We would like to thank Seick Kim for bringing those facts to our attention motivating
us to improve on a previous version of our results where we had used ω̃A.
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In the proof of Lemma 3.12 we use a slight variation of the result of Dong and
Kim [15] (see Theorem 3.7) and make some delicate PDE estimates obtaining a
sharp bound in terms of τA and the term R−n τ̂A(R). Since we allow the implicit
constant in (1.11) to depend on the diam(suppμ), picking up the term R−n τ̂A(R)
not only is it harmless, but it is a term that can become small if the support of
the measure has small enough diameter. Its importance will become evident in the
proof of Corollary 1.6.

One of the main difficulties is that we do not have scale invariant estimates
and in large scales this creates a significant complication. This stands in contrast to
the case of Hölder continuous and periodic coefficients, where scale invariant local
L∞ estimates for the gradient of a solution are at our disposal, which makes things
work smoothly in scales much larger than R. Let us highlight that, in the present
manuscript, we do not require any periodicity assumption on the matrix. In fact,
we fill a gap in the use of [23, Lemma 2.2] even for Hölder continuous matrices in
the previous works [10,33,35], and [7], where [23, Lemma 2.2] was invoked for
non-periodic matrices without any additional justification. To be precise, the bound
of (3.56) is the missing component. Another obstacle when working with elliptic
operators L A associated with non-constant matrices is that the kernel ∇1�(·, ·) is
not anti-symmetric, which, in principle, is rather inconvenient when dealing with
its associated single layer potential. If A0 is a real elliptic measure with constant
coefficients, we also write �(x, y; A0):=�A0(x, y).

Our strategy to prove Theorem 1.1 consists in using the frozen coefficients type
method in order to bound the L2-operator norm of the difference of the δ-truncated
gradient of the single layer potential and the δ-truncated Riesz transform at the level
of a cube in terms of the operator norm of Rμ. This is a three-step perturbation
argument:

(1) The first step is the comparison of∇1�A with∇�(·; Āx,|x−y|/2) that has already
been described above (see Lemma 3.12). The dependence of the second kernel
on both x and y requires an additional step.

(2) The second step is to compare ∇�(·; Āx,|x−y|/2) with ∇�(·; Āx,δ/2), where
δ is the level of the truncation of the single layer potential (see Lemmas 3.13
and 3.14). This is crucial since it allows us to reduce case to a smooth and odd
kernel which is homogeneous of degree −n and independent of the y variable
(it is the variable with respect to which we integrate the kernel to construct the
integral operator).

(3) The third and final step is the estimate of the difference between ∇�(·; Āx,δ/2)

and the normalized Riesz kernel. Here we assume that our measure is supported
on a cube Q centered at xQ and x, y ∈ Q. Modulo a change of variables
argument, we can assume that the average of A over a ball centered at xQ with
radius comparable to the side-length of the cube is the identitymatrix.Contrarily
to the previous case,wewant to compare∇�(·; Āx,δ/2)with∇�(·; ĀxQ ,M�(Q))

moving up from δ to a higher scale �(Q). Pure PDE estimates do not give
satisfactory upper bounds and hence, inspired by the approach of [27, Section
1], we study∇�(·; Āx,δ/2)−∇�(·; I d) via the method of spherical harmonics
expansion (see Lemma 3.16).
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More specifically, in the latter step, we prove suitable bounds on the coefficients
of the expansion again via PDE estimates. However, we also need proper estimates
for the operator norm of singular integrals associated with harmonic polynomials in
terms of the norm of the Riesz transform. In order to accomplish this, our argument
also relies on some powerful results which have been recently proved by the last
named author in [41] (this paper relaxed the assumptions of the main theorem of
its companion paper by Dabrowski and the last named author [11], and provided
an extension of [39] to higher dimensions). In particular, that work characterizes
non-atomic Radon measures in R

n+1 whose Riesz transform is L2-bounded. From
that result it was possible to derive the invariance of the L2-boundedness of the
Riesz transform under bilipschitz transformations of the measure. Furthermore, as
proved in [41, Corollary 1.4], if μ is a measure in R

n+1 with no point masses, and
TK ,μ is the singular integral operator of convolution-type formally defined as

TK ,μ f (x) =
∫

K (x − y) f (y) dμ(y) for f ∈ L1
loc(μ),

where K is antisymetric and satisfies

|∇ j K (x)| � 1

|x |n+ j
, x ∈ R

n+1 \ {0}, 0 ≤ j ≤ 2,

then

‖TK ,μ‖L2(μ)→L2(μ) ≤ C‖Rμ‖L2(μ)→L2(μ).

Theorem 1.1 has some direct and important applications, which we present
below. If μ is a non-zero Borel measure on R

n+1 and s ∈ (0, n + 1], we define its
upper s-dimensional density

�∗,s(x, μ):= lim sup
r→0

μ(B(x, r))

(2r)s
for x ∈ R

n+1

and its lower s-dimensional density

�s∗(x, μ):= lim inf
r→0

μ(B(x, r))

(2r)s
for x ∈ R

n+1.

One of the key tools used in the solution of the codimension-1 David-Semmes’
problem in [31] is a variational technique partially inspired by a previous argument
of Eiderman, Nazarov and Volberg in [16]. The main result of [16] is that, for
n ≤ s < n + 1, if a measure μ on R

n+1 is such that 0 < �∗,s(x, μ) < ∞ for
μ-almost every x and �s∗(x, μ) = 0 μ-almost everywhere, then its s-dimensional
Riesz transformRs

μ is not bounded on L2(μ). This was recently generalized in the
case s = n by Conde-Alonso together with the second and fourth named authors
in [10] for the gradient of the single layer potential Tμ associated with a Hölder
continuous matrix A (see also [7] for a version of [10] for Schrödinger operators).
Since Hölder continuous matrices belong to D̃MO, Theorem 1.1 allows us to obtain
an alternative approach to [10, Theorem A], and to extend it to a more general class
of elliptic equations.
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Corollary 1.2. Let A be a uniformly elliptic matrix satisfying A ∈ D̃MO and let
μ be a non-zero measure on R

n+1, n ≥ 2, such that 0 < �∗,n(x, μ) < ∞ and
�n∗(x, μ) = 0 forμ-a.e. x ∈ R

n+1. Then the associated operator Tμ given by (1.4)
is not bounded on L2(μ).

Another important application of our main theorem is the elliptic version of the
David and Semmes problem in codimension 1. Via a decomposition in spherical
harmonics, it was proved in [10] that, if A is Hölder continuous, Tμ is bounded
on L2(μ) on uniformly n-rectifiable measures μ with compact support. The con-
verse implication was obtained by Prat, Puliatti, and Tolsa in [33], via a non-trivial
adaptation of the scheme of [31]. In particular, we remark that their proof relies
on a delicate reflection argument for the matrix across hyperplanes, and it is not
clear how to adapt it to the context of uniformly elliptic matrices with Dini mean
oscillation. Nevertheless, Theorem 1.1 readily shows the following:

Corollary 1.3. Let A be a uniformly elliptic matrix satisfying A ∈ D̃MO and let μ
be an n-AD-regular measure on R

n+1, n ≥ 2, with compact support. If Tμ is the
associated operator given by (1.4), then Tμ is bounded on L2(μ) if and only if μ
is uniformly n-rectifiable.

The combination of [16,31], and a covering argument of Pajot allowedNazarov,
Volberg, and the fourth named author to prove in [32] that if E ⊂ R

n+1 is such that
Hn(E) < ∞ andRHn |E is bounded on L2(Hn|E ), then the set E is n-rectifiable. Its
elliptic analogue for second order elliptic operators in divergence form associated
with Hölder continuous matrices was obtained in [33]. We generalize this result as
well.

Corollary 1.4. Let A be a uniformly elliptic matrix satisfying A ∈ D̃MO and
let E ⊂ R

n+1, n ≥ 2, be a compact set with Hn(E) < ∞. If T is the associated
operator given by (1.4) and THn |E is bounded on L2(Hn|E ), then E is n-rectifiable.

The main advantage of Theorem 1.1 is that its application gives alternative and
more direct proofs of [10,33], and [35] via [16,31,32], and [20], which readily
extend to uniformly elliptic matrices in D̃MO.

Moreover, if we further assume that the matrix A is Hölder continuous, Corol-
laries 1.3 and 1.4 are crucial tools in order to prove a rectifiability result for elliptic
measure in the context of a non-variational one-phase problem (see [33, Theorem
1.3]) which generalizes [3]. For more details we refer to [33, Section 12].

Finally, we also extend the main result of Girela-Sarrión and the fourth named
author [20] as well as its elliptic analogue of the third named author in [35]. Let μ
be a Radon measure on R

n+1. For a ball B ⊂ R
n+1 of radius r(B) and an integer

N > 0, we denote that

�μ(B) = μ(B)

r(B)n
,

αA(t) = t + tβ + ωA(t), t > 0, β ∈ (0, 1] (1.13)

Pγ,μ(B):=
∑
j≥0

2−γ j�μ(2
j B), γ ∈ (0, 1]
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PN
ω,μ(B):=

∑
j≥N

αA(2
− j )�μ(2

j B). (1.14)

Given an n-dimensional plane L in R
n+1 we denote that

βL
μ,1(B) = 1

r(B)n

∫
B

dist(x, L)

r(B)
dμ(x) and βμ,1(B) = inf

L
βL
μ,1(B),

where the infimum is taken over all hyperplanes. Finally, for a set E ⊂ R
n+1 with

μ(E) > 0 and f ∈ L1
loc(μ) we write that

mE ( f, μ) = 1

μ(E)

∫
E
f dμ.

Let M(Rn+1) be the space of real Borel measures, endowed with the total
variation norm ‖ · ‖: for μ ∈ M(Rn+1) we indicate by |μ| its variation and by
‖μ‖:=|μ|(Rn+1).

For our application, we have to determine whether Tμ,ε f converges pointwise
μ-almost everywhere for ε → 0. In case it does, we denote the limit as

pvTμ f (x) = lim
ε→0

Tμ,ε f (x),

and we refer to this as the principal value of the integral Tμ f (x). The existence
of principal values for gradients of single layer potentials can be proved in our
framework via aminor variant of the arguments of [35, Theorem 1.1]: one can study
separately the case of rectifiable measures and that of measures with zero density,
which can be both analyzed via the frozen coefficients method of Lemma 3.12.
Ultimately, this implies

Proposition 1.5. Letμ be a Radon measure onR
n+1, n ≥ 2, with compact support

and with growth of degree n. Let A be a uniformly elliptic matrix satisfying A ∈
D̃MO and assume that its associated gradient of the single layer potential Tμ is
bounded on L2(μ). Then the following holds:

(1) for 1 ≤ p < ∞ and all f ∈ L p(μ), pvTμ f (x) exists for μ-a.e. x ∈ R
n+1.

(2) for all ν ∈ M(Rn+1), pvT ν(x) exists for μ-a.e. x ∈ R
n+1.

Finally,we state the local quantitative rectifiability criterion forRadonmeasures
which generalizes [20] and [35].We refer to the introductions of the aforementioned
articles for a detailed discussion of the result and the role of all the hypotheses. The
result is stated in the form of [4, Corollary 3.2].

Corollary 1.6. Let A be a uniformly elliptic matrix satisfying A ∈ D̃MO and let
μ be a Radon measure with compact support in R

n+1, n ≥ 2. Let B ⊆ R
n+1 be

an open ball with μ(B) > 0 and let C0,C ′
0 > 0. Denote by Tμ the gradient of the

single layer potential associated with L A and μ, and let β be as in Lemma 3.9.
Suppose that μ and B are such that, for some positive real numbers τ , δ, and λ,
and a positive integer N, the following properties hold:

(1) r(B) ≤ λ.



38 Page 12 of 59 Arch. Rational Mech. Anal. (2023) 247:38

(2) We have P0
ω,μ(B) ≤ C0�μ(B), PN

ω,μ(B) ≤ C0IαA (2
−N )�μ(2N B), and it

holds �μ(B(x, r)) ≤ C0�μ(2N B) for all x ∈ B and 0 < r ≤ 2Nr(B).
(3) Tμ|2N B

is bounded on L2(μ|2N B) and it holds ‖Tμ|2N B
‖L2(μ|2N B )→L2(μ|2N B )

≤
C ′
0�μ(2N B).

(4) There exists somen-plane L passing through the center of B such thatβL
μ,1(B) ≤

δ�μ(B).
(5) We have that∫

B

∣∣Tμ1(x)− mB(Tμ1, μ)
∣∣2 dμ(x) ≤ τ �μ(2

N B)2μ(B). (1.15)

Then there exist a choice of δ and τ small enough, possibly dependingonn,�,C0,C ′
0,

anddiam(supp ν), a choice of N = N (τ, n,�, diam(supp ν),C0,C ′
0) large enough,

a choice of λ = λ(τ, N , n,�,C0,C ′
0, diam(supp ν)) small enough such that 2Nλ

is also sufficiently small, for which the following holds: if μ satisfies (1)–(6), there
exist a uniformly n-rectifiable set � and θ ∈ (0, 1) such that

μ(B ∩ �) ≥ θμ(B).

The UR constants of � depend on all the constants above.

In the condition (1.15)we identifyTμ1with pvTμ1.Moreover, thewell-posedness
of the expression on the left hand side of (1.15) can be justified via the existence
of principal values and the fact the measure μ has compact support. For the details
we refer to [20, Section 2.4] (see also [35, Section 3]).

The proof of Corollary 1.6 consists in showing that, for λ � 1, the smallness in
themean oscillation assumption (1.15) implies smallness for the analogous quantity
associated to the Riesz transform. As it is more coherent with the notation of the rest
of the paper, we will equivalently prove this for cubes in R

n+1; we also remark that
Girela-Sarrión and Tolsa reduced the proof of their theorem to [20, Main Lemma
3.1], which is formulated for cubes itself.

Finally, we remark that for 0 < β < 1, N ≥ 1, μ ∈ Mn+(Rn+1), and a ball
B ⊂ R

n+1 such that 2N B satisfies the Pβ,μ-doubling condition

Pβ,μ(2
N B) � �μ(2

N B), (1.16)

elementary calculations show that
∑
j≥N

2− jβ�μ(2
j B) = 2−Nβ

∑
j≥N

2−( j−N )β�μ

(
2 j−N (2N B)

)

= 2−Nβ
∑
j≥0

2− jβ�μ

(
2 j (2N B)

)
� 2−Nβ�μ(2

N B).

Thus, if ωA(t) � tβ , the assumption (2) in Corollary 1.6 is satisfied if we can
guarantee that both B and 2N B are Pβ,μ-doubling in the sense of (1.16).

Previous versions of Corollary 1.6 had been applied to solve the non-variational
two-phase problem for harmonic measure and elliptic measure associated with
an elliptic operator with Hölder continuous coefficients. In particular, those were
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needed to analyze the measures at the level of points of zero density. One of the
main ingredients was [4, Lemma 6.1], which shows that if μ is an n-dimensional
measure, for any β ∈ (0, 1), there exists M > 0 depending on β and the dimension,
such that for μ-a.e. x ∈ R

n+1, there exists a sequence of M-Pβ,μ-doubling balls
B(x, ri ) with ri → 0 as i → ∞. In fact, if A is a β-Hölder continuous matrix,
Corollary 1.6 is equivalent to [35, Theorem 1.2] for the study of the two-phase
problem for the elliptic measure as in [35]. Indeed, if x0 is a point for which we
may find a sequence of M-Pβ,μ-doubling balls, we fix B0 = B(x0, r0) to be a ball
with radius r0 ≤ λ. Then, we pick the largest M-Pβ,μ-doubling ball B = B(x0, r̃)
such that 0 < r̃ ≤ 2−Nr0 for which, if r0/2 < 2N0 r̃ ≤ r0 and N ≤ N0, it holds
that

Pβ,μ(2
N0B) ≤ M2−N0β�μ(2

N0B).

Hence, under these circumstances, Corollary 1.6 gives the desired property of big
pieces of uniformly n-rectifiable measure in B, equivalently to the main results of
[20] and [35].

Finally, let us mention that generalizing the one-phase and two-phase problems
for elliptic measure as in [3,33] and [6,35] to elliptic measures associated with L A,
A ∈ D̃MO, presents significant difficulties; for instance, the lack of a proper T (1)-
theorem for suppressed kernels with such general modulus of continuity. Therefore,
those problems should be treated separately.

Structure of the paper

In Section 2 we present the general notation which we adopt in the paper
and recall some properties of Dini functions along with their relation to integral
operators with proper reproducing kernels (see Lemma 2.5).

Section 3 contains the PDE bulk of the paper. In the first part we describe how
the elliptic operator LA and the gradient of the single layer potential transform
under a bilipschitz change of variables. Furthermore, in Lemma 3.5 we introduce a
specific linear map S so that, given a ball B ⊂ R

n+1, the average of the symmetric
part of the transformed matrix Â equals the identity matrix on S−1(B). This turns
out to be crucial for the proof of Main Lemma I, as it allows to compare ∇1�A

at the level of a given cube with the Riesz kernel effectively. In the second part
of Section3 we adapt the arguments of [15] in order to prove that ∇1�A can be
interpreted locally as a Calderón-Zygmund kernel (see Lemma 3.9), and we gather
other auxiliary PDE lemmas.

Section 3.3 contains the previously described three-step perturbation argument:
we deal with the frozen coefficients type estimate in Lemma 3.12, in Lemma 3.13
andLemma3.14weprovepointwise boundswhich allowus to compare∇1� Āx,|x−y|/2
and ∇1� Āx,δ/2

for δ > 0, and finally in Lemma 3.16 we implement the techniques
based on spherical harmonic decomposition in order to estimate the difference of
∇�(·; Āx,δ/2) and ∇�(·; Ā�Q ), where Ā�Q denotes the integral average of A on
a set at the level of al cube Q.

Section 4 covers the proof of the twomain lemmas. InMain Lemma I we gather
all the results of the previous section and estimate the L2(μ)-norm of the difference
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of Tμ,δ and a proper normalization of Rμ,δ . Main Lemma II is the main tool for
the proof of Corollary 1.6: under suitable hypotheses on the measure μ, a duality
argument and the local Calderón-Zygmund character of ∇1�A(x, y) allow us to
transfer the smallness of the L2(μ)-mean oscillation of Tμ to the Riesz transform,
which is the crucial step in order to invoke [20].

In Section 5 we introduce and discuss the properties of an auxiliary measure
νε, which we obtain as the convolution of the measure ν supported on a cube
with a proper cut-off function. This guarantees that the measure νε is absolutely
continuous with respect to Ln+1, which entails that the L2(νε)-norm of the Riesz
transform associated with νε applied to a Lipschitz function with compact support
is (qualitatively) finite. This is needed in the last section, as it allows to absorb the
norm of the Riesz transform in (6.3) in the left hand side of that expression.

The final Section 6 contains the proof of Theorem 1.1 and its corollaries. In
particular, we show how to prove those results combining the lemmas of Section4
and Section5 via the change of variables introduced in Lemma 3.5.

2. Preliminaries and Notation

General notation

• For λ > 0 and an open ball B = B(x, r), we define its dilation λB:=B(x, λr).
Analogously, given a Euclidean cube Q inR

n+1 with center xQ and side-length
�(Q), we denote by λQ the cube with center xQ and side-length λ�(Q).

• For 0 < r ≤ R < ∞, we indicate

A(x, r, R):=B(x, R) \ B(x, r) = {y ∈ R
n+1 : r < |x − y| < R}.

• We denote by S
n = ∂B(0, 1) the unit sphere in R

n+1, by σ its surface measure,
and we define ωn :=σ(Sn).

• Given A ⊂ R
d , we denote by χA its characteristic function.

• We endow the space of matrices R
n1×n2 with the norm |A|:=maxi, j |ai j |, for

A = (ai j )i, j ∈ R
n1×n2 .

• We write a � b if there is C > 0 so that a ≤ Cb, and a �t b to specify that the
constant C depends on the parameter t . We write a ≈ b to mean a � b � a,
and define a ≈t b similarly.

Dini functions and integral operators

Let θ be a κ-doubling function in the sense of (1.5) for κ > 0. For η ∈ (
0, 1

2

)
denote by Nη the positive integer such that 2−Nη−1 ≤ η < 2−Nη . Hence, if r > 0
and ηr ≤ t ≤ r then

∫ r

ηr
θ(t)

dt

t
≤

Nη∑
�=0

∫ 2−�r

2−�−1r
θ(t)

dt

t
≤ κ

Nη∑
�=0

θ(2−�−1r) ≤ κ

Nη∑
�=0

κNη−�−1θ(2−Nηr)

= κNη+1 − 1

κ − 1
θ(2−Nηr) ≤ κ

κNη+1 − 1

κ − 1
θ(ηr)=:C(κ, η) θ(ηr),
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where we used that θ is κ-doubling. Therefore,

∫ R

0
θ(t)

dt

t
=

∞∑
j=0

∫ η j R

η j+1R
θ(t)

dt

t
≤ C(κ, η)

∞∑
j=0

θ(η j+1R).

Moreover, if r > 0 and ηr ≤ t ≤ r it holds that

θ(r) = θ(r)−
∫ r

2−Nη r
dt ≤ κ

θ(r)

(1 − 2−Nη )r

Nη−1∑
�=0

2−�r
θ(2−�r)

∫ 2−�r

2−�−1r
θ(t)

dt

t

≤ κ

(1 − 2−Nη )

Nη−1∑
�=0

κ�2−�
∫ 2−�r

2−�−1r
θ(t)

dt

t
� max(1, (κ/2)Nη )

∫ r

ηr
θ(t)

dt

t
.

(2.1)
Thus, for R > 0,

∞∑
j=0

θ(η j R) �
∞∑
j=0

max(1, (κ/2)Nη )

∫ η j R

η j+1R
θ(t)

dt

t

= max(1, (κ/2)Nη )

∫ R

0
θ(t)

dt

t
. (2.2)

In particular, θ belongs to DS(κ) if and only if the doubling property (1.5) holds
and

∑∞
j=0 θ(2

− j ) < +∞. One can analogously show that, if θ verifies (1.5), and
0 < d ≤ n, we have

∞∑
k=1

θ(2k R)

(2k R)d
�
∫ ∞

R
θ(t)

dt

td+1 , R > 0. (2.3)

Moreover, by the doubling property of θ ,

θ(r) ≤ κ

∫ r

r/2
θ(t)

dt

t
≤ κ Iθ (r), r > 0. (2.4)

Lemma 2.1. Assuming that for fixed d > 0

Ld
θ (t) = td

∫ ∞

t
θ(s)

ds

sd+1 < +∞ for any t > 0,

then Ld
θ is a 2d-doubling function. Moreover, it holds that

(1) If Iθ (1) < ∞ and Ld
θ (1) < ∞, then Ld

θ ∈ DS
(
2d
)
.

(2) If IIθ (1) < ∞ and ILd
θ
(1) < ∞, then Ld

Iθ
∈ DS

(
2d
)
.
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Proof. If t/2 ≤ s ≤ t , then

Ld
θ (t) = td

∫ ∞

t
θ(r)

dr

rd+1 ≤ td
∫ ∞

s
θ(r)

dr

rd+1 ≤ 2dsd
∫ ∞

s
θ(r)

dr

rd+1 ≤ 2dLd
θ (s).

which proves that Ld
θ is 2d -doubling. Moreover, to show (1), we use Fubini’s

theorem to get
∫ 1

0
Ld
θ (t)

dt

t
=
∫ 1

0
td
∫ 1

t
θ(s)

ds

sd+1

dt

t
+
∫ 1

0
td
∫ ∞

1
θ(s)

ds

sd+1

dt

t

= 1

d

∫ 1

0
θ(s)

ds

s
+ 1

d

∫ ∞

1
θ(s)

ds

sd+1 < ∞.

To prove (2), we apply Fubini’s theorem and for r > 0, it holds

Ld
Iθ
(r) = rd

∫ ∞

r
Iθ (t)

dt

td+1 = 1

d

∫ r

0
θ(t)

dt

t
+ rd

d

∫ ∞

r
θ(t)

dt

td+1

= 1

d

(
Iθ (r)+ Ld

θ (r)
)
< ∞.

(2.5)

��
Remark 2.2. Ifwe assume that θ ∈ DS(κ), the condition (2.2) implies that θ(η j R) →
0 as j → ∞ for all R > 0. In particular, the previous lemma implies that if
θ ∈ DS(κ) ∩ DLd(κ), then Ld

θ (η
j R) → 0 as j → ∞ for all R > 0.

Definition 2.3. Let θ be a κ-doubling function and 0 < d ≤ n + 1. We say that a
function K : R

n+1 × R
n+1\{(0, 0)} → R is a (θ, d)-kernel if it is continuous and

there exists C > 0 such that

|K (x, y)| ≤ C
θ(|x − y|)
|x − y|d for x �= y.

The latter estimate for (θ, d)-kernels is directly connectedwith theDini integral.

Lemma 2.4. Let θ ∈ DS(κ). Let 0 < d ≤ n + 1, and assume that μ ∈ Md+(Rn+1)

with d-growth constant c0 > 0. For ρ > 0 we have that∫
B(x,ρ)

θ(|x − z|)
|x − z|d dμ(z) �c0,κ

∫ ρ

0
θ(t)

dt

t
, (2.6)

and the right hand side of (2.6) tends to 0 as ρ → 0.

Proof. The proof of (2.6) follows from a standard estimate of the integral on dyadic
annuli, the d-growth of μ, and (2.2). Indeed,

∫
B(x,ρ)

θ(|x − z|)
|x − z|d dμ(z) =

∞∑
j=0

∫
A(x,2− j−1ρ,2− jρ)

θ(|x − z|)
|x − z|d dμ(z)

�
∞∑
j=0

θ(2− jρ)

2− jdρd
μ
(
B(x, 2− jρ)

)
�

∞∑
j=0

θ(2− jρ) ≈
∫ ρ

0
θ(t)

dt

t
.

��
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Lemma 2.5. Let 0 < d ≤ n + 1 and let μ be a measure with compact support in
R
n+1 and d-growth with constant c0 > 0. If K is a (θ, d)-kernel for θ ∈ DS(κ),

then its associated integral operator

T f (x):=
∫

K (x, y) f (y) dμ(y), x ∈ R
n+1

is bounded on L2(μ). More specifically, if C > 0 is as in Definition 2.3 and
R:= diam(suppμ), we have that

‖T ‖L2(μ)→L2(μ) �κ,C c0

∫ R

0
θ(t)

dt

t
. (2.7)

Proof. The lemma is a direct consequence of Schur’s Test (see for instance [17,
Theorem 6.18]) and Lemma 2.4. Indeed, for all x ∈ R

n+1, we have that

∫
|K (x, y)| dμ(y) �

∫
θ(|x − y|)
|x − y|d dμ(y) �

∫ R

0
θ(t)

dt

t
< +∞

and, analogously,

∫
|K (x, y)| dμ(x) �

∫ R

0
θ(t)

dt

t
for all y ∈ R

n+1.

��

3. Change of Variables and Pointwise Estimates for the Gradient of the
Fundamental Solution

3.1. Change of variables

Our arguments involve a change of variables with respect to a particular bilip-
schitz map, which will be specified later on. For this reason, we state some result
concerning how the elliptic operator, its fundamental solution, and its associated
gradient of the single layer potential change under such a transformation.

Lemma 3.1. (see [2], Lemma 2.4) Let A be a uniformly elliptic matrix with real
entries and let φ : R

n+1 → R
n+1 be a bilipschitz map. If we denote

Aφ :=| det D(φ)|D(φ−1)(A ◦ φ)D(φ−1)T ,

where D(·) denotes the differential matrix, then Aφ is a uniformly elliptic matrix
in R

n+1. Furthermore, u : R
n+1 → R is a weak solution of L Au = 0 if and only if

ũ:=u ◦ φ is a weak solution of L Aφ ũ = 0 in R
n+1.
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Lemma 3.2. (see [33], Lemma 5.3) Let φ : R
n+1 → R

n+1 be a bilipschitz map
and let A(·) be a uniformly elliptic matrix with coefficients in L∞(Rn+1). Let �A

be the fundamental solution of L A = −div(A∇·). Set Aφ :=| det φ|D(φ−1)(A ◦
φ)D(φ−1)T . Then

�Aφ (x, y) = �A(φ(x), φ(y)) for x, y ∈ R
n+1, (3.1)

and

∇1�Aφ (x, y) = D(φ)T (x)∇1�A(φ(x), φ(y)) for x, y ∈ R
n+1. (3.2)

Lemma 3.3. (see [33], Lemma 5.4) Let φ : R
n+1 → R

n+1 be a bilipschitz map. Let
μ be a Radon measure onR

n+1 and φ�μ be its image measure. For every x ∈ R
n+1

we have that

Tφμ(x) = D(φ)T (x)Tφ�μ(φ(x)). (3.3)

If φ and μ are as in the previous lemma, ν:=φ−1�μ, and for δ > 0 we define

Tφ,δν(x):=
∫

|x−y|>δ
∇1�Aφ (x, y) dν(y) (3.4)

and its variant

T̃φ,δν(x):=
∫

|φ(x)−φ(y)|>δ
∇1�Aφ (x, y) dν(y),

then the arguments of [33, Lemma 5.4] show that

T̃φ,δν(x) = D(φ)T (x)Tδμ(φ(x)),

For f ∈ L1
loc(ν) we also denote Tφ,ν,δ f (x):=Tφ,δ( f ν)(x) and T̃φ,ν,δ f (x):=

T̃φ,δ( f ν)(x). In particular, by [33, Section 6, p. 740], if Tμ is bounded on L2(μ)

then the operators T̃φ,ν,δ are bounded on L2(ν) uniformly on δ > 0 and

∥∥T̃φ,ν,δ∥∥L2(ν)→L2(ν)
≈ ‖Tμ,δ‖L2(μ)→L2(μ), (3.5)

where the implicit constant depends on the bilipschitz constant of φ.
Moreover we can prove the following lemma:

Lemma 3.4. Let A, T , and μ be as in Theorem 1.1, and L : R
n+1 → R

n+1 be an
invertible linear map. Then, for any δ > 0,

1 + ∥∥T̃L ,μ,δ∥∥L2(μ)→L2(μ)
≈ 1 + ‖Tμ,δ‖L2(μ)→L2(μ), (3.6)

where the implicit constant depends on ‖L‖op, n,�, c0, and diam(suppμ).
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Proof. Let f ∈ L2(μ). Let ψ ∈ C∞
c (Rn+1\B(0, 1)) be a function such that 0 ≤

ψ ≤ 1 in R
n+1, ψ = 1 in R

n+1\B(0, 2), and ‖∇ψ‖∞ � 1, and we define
ψδ(·):=ψ( ·

δ
). By standard estimates, we can prove that∣∣∣T̃ψ

L ,μ,δ f (x)− T̃L ,μ,δ f (x)
∣∣∣

:=
∣∣∣∣
∫

ψδ (L(x)− L(y))∇1�AL (x, y) f (y) dμ(y) − T̃L ,μ,δ f (x)

∣∣∣∣ � Mμ f (x),

where Mμ is the centered Hardy-Littlewood maximal function with respect to μ.
Apparently the same estimate holds for L = Id. Moreover, by the mean value theo-
rem, (3.2), and Lemma 3.9-(2) (which we will prove later), if M1:=min{‖L‖op, 1},
M2:=2max{‖L‖−1

op , 1}, it holds that∣∣∣T̃ψ
L ,μ,δ f (x)− T̃ψ

Id,μ,δ f (x)
∣∣∣

� ‖∇ψ‖L∞‖L‖op‖L − Id‖op
∫
A(x,M1δ,M2δ)

|x − y|
δ

| f (y)|
|L(x)− L(y)|n dμ(y)

�‖L‖op Mμ f (x),

and our result readily follows by triangle inequality, the L2(μ)-boundedness of
Mμ, and the fact that T̃Id,μ,δ f = Tμ,δ f . ��

As a direct application we have that, for φ, Aφ , and ν as in (3.4), and if we
further assume that φ is an invertible linear map, Lemma 3.4 reads as

1 + ‖Tφ,ν,δ‖L2(ν)→L2(ν) ≈ 1 + ∥∥T̃φ,ν,δ∥∥L2(ν)→L2(ν)
,

so

‖Tφ,ν,δ‖L2(ν)→L2(ν)�1+ ∥∥T̃φ,ν,δ∥∥L2(ν)→L2(ν)

(3.5)
� 1+‖Tμ,δ‖L2(μ)→L2(μ). (3.7)

We remark that, if A is a uniformly ellipticmatrixwith real entries and As :=(A+
AT )/2 is its symmetric part, for every x ∈ R

n+1 and r > 0 the matrix ( Ās)x,r is a
symmetric and uniformly elliptic matrix with real entries. In particular, it admits a

unique square root
√
( Ās)x,r , which is symmetric and uniformly elliptic, too.

A particularly useful change of variables is the one that transforms the sym-
metric part of the matrix at a given point into the identity (see [2, Lemma 2.5]). A
standard application of Lemma 3.1 and change of variables allows us to state the
following adaptation to the context of the present paper.

Lemma 3.5. Let A be a uniformly elliptic matrix with real entries and let As be its

symmetric part. For a fixed point x ∈ R
n+1 and r > 0, define S =

√
( Ās)x,r . If

Â(·):=| det S||S−1(B(x, r))|
|B(x, r)| S−1(A ◦ S)(·)S−1, (3.8)

then Â is uniformly elliptic, −
∫
S−1(B(x,r)) Âs = I d and u is a weak solution of

L Au = 0 in R
n+1 if and only if ũ = u ◦ S is a weak solution of L Âũ = 0 in R

n+1.
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Proof. In light of Lemma 3.1, we only have to verify that −
∫
S−1(B(x,r)) Âs = I d.

This follows from a change of variables and the definition of S. In particular, we
have

−
∫
S−1(B(x,r))

Âs(y) dy = | det S||S−1(B(x, r))|
|B(x, r)| S−1

(
−
∫
S−1(B(x,r))

As(Sy) dy
)
S−1

= | det S||S−1(B(x, r))|
|B(x, r)| S−1

( 1

|S−1(B(x, r))|
∫
B(x,r)

As(z)| det S−1| dz
)
S−1

= S−1
( 1

|B(x, r)|
∫
B(x,r)

As(z) dz
)
S−1 = I d.

This concludes the proof of the lemma. ��
The change of variables S defined in the previous lemma is a bilipschitz function

with bi-Lipschitz constant �1/2, and it maps balls to ellipsoids. In particular, we
have that�−1/2 ≤ |S| ≤ �1/2. For more details we refer to [2, Section 2]. We also
remark that in the setting of Lemma 3.5 we have that, for ζ ∈ R

n+1, ρ > 0, and
denoting ζ̃ :=Sζ , it holds that

B
(
ζ̃ , �−1/2ρ/2

) ⊂ S
(
B(ζ, ρ)

) ⊂ B
(
ζ̃ , 2�1/2ρ

)
. (3.9)

Furthermore, we equivalently have that

B(ζ, ρ) ⊂ S−1(B(Sζ, 2�1/2ρ)
) ⊂ B(ζ, 4�ρ). (3.10)

The mean oscillation of the transformed matrix under the change of variables
in (3.8) can be controlled according to the following lemma.

Lemma 3.6. Let A be a uniformly elliptic matrix with real entries, S and Â be as
in Lemma 3.5, and define

ω̂ Â(ρ):= sup
z∈Rn+1

−
∫
S−1(B(ζ,ρ))

∣∣∣ Â(y)− −
∫
S−1(B(ζ,ρ))

Â
∣∣∣ dy for ρ > 0.

Then we have that

ω̂ Â(ρ) ≈� ωA(ρ) ≈�,κ ω Â(ρ) for all ρ > 0, (3.11)

where � is the uniform ellipticity constant of A. In particular, if A ∈ DMOs then
Â ∈ DMOs as well.

Proof. The upper bound in the first equality of (3.11) is an easy consequence of
the definition of Â, the change of variables formula, the uniform ellipticity of A
and the fact that |S−1| ≈� 1 ≈� | det S|. In particular, for any ball B ⊂ R

n+1 of
radius r(B) we have that

−
∫
S−1(B)

∣∣∣ Â(y)− −
∫
S−1(B)

Â
∣∣∣ dy

≈�

1

|S−1(B)|2
∫
S−1(B)

∣∣∣
∫
S−1(B)

(
S−1A(Sz)S−1 − S−1A(Sw)S−1) dw

∣∣∣ dz

��

1

|B|2
∫
B

|S−1|
∣∣∣
∫
B

(
A(z)− A(w)

)
dw

∣∣∣|S−1| dz ��

1

|B|
∫
B

∣∣∣A(z)− −
∫
B
A
∣∣∣ dz.
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The proof of the lower bound is analogous.
In order to prove the second estimate in (3.11), we observe that, given a ball

B:=B(ζ, ρ) and denoting B̃:=B(Sζ, 2�1/2ρ), the inclusion (3.10), the first esti-
mate in (3.11) and the doubling assumption yield

−
∫
B

∣∣∣ Â(y)− −
∫
B
Â
∣∣∣ dy ≤ −

∫
B

∣∣∣ Â(y)− −
∫
S−1(B̃)

Â
∣∣∣ dy +

∣∣∣−
∫
S−1(B̃)

Â − −
∫
B
Â
∣∣∣

�� −
∫
S−1(B̃)

∣∣∣ Â(y)− −
∫
S−1(B̃)

Â
∣∣∣ dy ≤ ω̂ Â

(
2�1/2ρ

)
��,κ ωA(ρ).

The converse inequality can be proved analogously. ��
We recall that, if A0 is a uniformly elliptic matrix with constant coefficients,

then
�A0(x, y) = �(A0)s (x, y) for all x, y ∈ R

n+1, x �= y. (3.12)

Let A ∈ DMOs . The quantity IωA(r) defined in (1.7) satisfies IωA(2
− j r) → 0

for every 0 < r < 1 by Remark 2.2. We remark that it is not necessary to assume
that ωA(r) vanishes as r → 0+ for this property to hold.

3.2. Estimates for the gradient of the fundamental solutions

The following theorem is an easy adaptation of one of the main results of [15]:

Theorem 3.7. Let A be a uniformly elliptic matrix satisfying A ∈ DMOs . Let
0 < η < 1/2, and set N :=3( 43 )

Nη for Nη such that 2−Nη−1 ≤ η < 2−Nη . Assume
that g : B(0, N + 1) → R

m is a function that satisfies the Dini mean oscillation
condition
∫ 1

0
ω̊0,N
g (t)

dt

t
< +∞, where ω̊0,k

g (t):= sup
w∈B(0,k)

−
∫
B(w,t)

|g(x)− ḡw,t | dx, k ≥ 1.

(3.13)
Let u be a weak solution of

div(A(x)∇u) = divg, in B(0, N + 1). (3.14)

There exists an absolute value of η such that, if g and u satisfy (3.13) and (3.14),
then u ∈ C1

(
B(0, 1); R

m
)
. Furthermore, it holds that

‖∇u‖L∞(B(0,2)) � ‖∇u‖L1(B(0,4)) +
∫ 1

0
ω̊0,N
g (t)

dt

t
, (3.15)

and, for x, y ∈ B(0, 1) such that |x − y| < 1/2,

|∇u(x) − ∇u(y)| � ‖∇u‖L1(B(0,4))|x − y|β

+
(

‖∇u‖L1(B(0,4)) +
∫ 1

0
ω̊0,N
g (t)

dt

t

)∫ |x−y|

0
ω̊
0,N
A (t)

dt

t
+
∫ |x−y|

0
ω̊0,N
g (t)

dt

t
,

(3.16)
where β > 0 and the implicit constants depend on n.
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Proof. For the proof of the fact that u belongs to C1
(
B(0, 1)

)
, we refer to [15,

Theorem 1.5]. The inequality (3.15) is a variant of [15, (2.17)], which is formulated
in terms of a slightly different modulus of oscillation (see [15, (2.15)]). In order to
prove (3.15), we fix an exponent 0 < p < 1 and define

φ(x̄, r):= inf
c∈Rn+1

(
−
∫
B(x̄,r)

|∇u(z)− c|p dz
)1/p

, x̄ ∈ R
n+1, 0 < r < 1/3.

It was proved in [15, p. 424] that, for 0 < η < 1/2 sufficiently small (depending
on p and an absolute constant, see the bottom of [15, p. 423]) and j = 1, 2, . . .,

φ
(
x̄, η j r

)
� 2− jφ(x̄, r)+ ‖∇u‖L∞(B(x,r))

j∑
i=1

21−i ω̊
0,3
A

(
η j−i r

) +
j∑

i=1

21−i ω̊0,3
g

(
η j−i r

)
.

(3.17)
Now notice that

∞∑
j=1

j∑
i=1

21−i ω̊0,3
g

(
η j−i r

) =
∞∑
i=1

∞∑
j=i

21−i ω̊0,3
g

(
η j−i r

) = 2
∞∑
j=0

ω̊0,3
g

(
η j r

)
. (3.18)

By [24, p. 495], there exists a constant κ > 0 depending only on n such that

ω̊0,3
g (s) ≤ κω̊0,4

g (t), for
s

2
≤ t < s. (3.19)

Moreover, by definition of N and a minor variant of (2.1) and (2.2), we have that

∞∑
j=0

ω̊0,3
g (η j r) �

∫ r

0
ω̊0,N
g (t)

dt

t
. (3.20)

Analogous properties hold for ω̊0,3
A . Thus,

∞∑
j=1

j∑
i=1

21−i ω̊0,3
g

(
η j−i r

) (3.18)≤ 2
∞∑
j=0

ω̊0,3
g

(
η j r

) (3.20)
�

∫ r

0
ω̊0,N
g (t)

dt

t
.

The same computations can be repeated to handle the second summand on the
right hand side of (3.17). Finally, the inequalities (3.15) and (3.16) follow as in [15,
(2.17) and (2.19)]. ��
Remark 3.8. Let 0 < r < R0, x0 ∈ R

n+1, and g : B(x0, (N + 1)R0) → R, where
N :=3( 43 )

Nη for η as in (3.17) and Nη such that 2−Nη−1 ≤ η < 2−Nη . For 0 < t < r
and 1 ≤ k ≤ N , we define

ω̊x0,kr
g (t) = sup

w∈B(x0,kr)
−
∫
B(w,tr)

∣∣g(x)− ḡw,tr
∣∣ dx .

Let A be a uniformly elliptic such that A ∈ DMOs and assume that, for N as
above,

∫ 1

0
ω̊x0,N R0
g (t)

dt

t
< ∞.
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Thenby theproof ofTheorem3.7, it holds that ifu is aweak solution to−div(A(x)∇u) =
−divg in B(x0, (N + 1)R0), we obtain that u ∈ C1(B(x0, r)) and satisfies the es-
timates

‖∇u‖L∞(B(x0,2r)) �R0 −
∫
B(x0,4r)

|∇u(x)| dx +
∫ 1

0
ω̊x0,Nr
g (t)

dt

t
, (3.21)

and, for x, y ∈ B(x0, r) such that |x − y| < r/2,

|∇u(x)− ∇u(y)| �R0

|x − y|β
rβ

−
∫
B(x0,4r)

|∇u(z)| dz

+
(

−
∫
B(x0,4r)

|∇u(z)| dz +
∫ 1

0
ω̊x0,Nr
g (t)

dt

t

)∫ |x−y|
r

0
ω̊
x0,Nr
A (t)

dt

t

+
∫ |x−y|

r

0
ω̊x0,Nr
g (t)

dt

t
.

(3.22)

Furthermore, we have that the implicit constants blow up logarithmically as R0 →
∞. If 0 < R0 < 1, they only depend on ellipticity, dimension, and the Dini Mean
Oscillation condition.

An important consequence of the pointwise bounds of Theorem 3.7, are the
following estimates for the fundamental solution and its derivatives:

Lemma 3.9. Let A(·) = (ai j ) be a uniformly elliptic matrix in R
n+1, n ≥ 2,

satisfying A ∈ DMOs . Let R > 0, and let β > 0 be as in Theorem 3.7. Then there
exists C = C(n,�, R) > 0 such that the fundamental solution �A satisfies the
following pointwise bounds:

(1) |�A(x, y)| ≤ C |x − y|−(n−1) for x, y ∈ R
n+1, 0 < |x − y| < R.

(2) |∇1�A(x, y)|+|∇2�A(x, y)| ≤ C |x − y|−n for x, y ∈ R
n+1, 0 < |x−y| < R.

(3) |∇1∇2�A(x, y)| ≤ C |x − y|−(n+1) for x, y ∈ R
n+1, 0 < |x − y| < R.

(4) We have

|∇1�A(x, y) − ∇1�A(x, z)| + |∇1�A(y, x) − ∇1�A(z, x)|

≤ C

(
|y − z|β
|x − y|β +

∫ |y−z|
|x−y|

0
ωA(t)

dt

t

)
|x − y|−n, (3.23)

for 2|y − z| ≤ |x − y| < R.

Proof. For the proof of (1) we refer to [21, Section 5]. The bounds (2) and (4) follow
directly from (1), the fact that the function uy(·):=�A(·, y) satisfies L Auy = 0 in
B(x, |x−y|/8), andRemark3.8.Thebound for∇1∇2�A canbeproved analogously,
observing that wy(·):=∇2�A(·, y) satisfies L Awy = 0 in B(x, |x − y|/8). ��

If � ⊂ R
n+1, n ≥ 2, is an open set and 2∗:= 2(n+1)

n−1 , we define Y 1,2(�) as the

space of all weakly differentiable functions u ∈ L2∗
(�), whose weak derivatives

belong to L2(�). We endow Y 1,2(�) with the norm

‖u‖Y 1,2(�):=‖u‖L2∗ (�) + ‖∇u‖L2(�), u ∈ Y 1,2(�).
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Wedenote byY 1,2
0 (�) the closure ofC∞

c (�) inY 1,2(�) and remark thatY 1,2(Rn+1) =
Y 1,2
0 (Rn+1) (see for instance [25, p. 46]).
Let A be a uniformly elliptic matrix in R

n+1, n ≥ 2, with coefficients in
L∞(Rn+1). For g ∈ L2(Rn+1; R

n+1), we denote by L−1
A ∇ · g the unique solution

u of the variational Dirichlet problem LAu = −divg and u ∈ Y 1,2
0 (Rn+1). By

a modification of the argument that proves [21, (3.47)] (for the details see, for
instance, the proof of [28, (6.3)]), for g ∈ L2(Rn+1), we have that

L−1
A ∇ · g(x) =

∫
∇2�A(x, y) · g(y) dy, (3.24)

and as in [21, (3.10)-(3.11)], one can prove that

‖∇L−1
A ∇ · g‖L2(Rn+1) � ‖g‖L2(Rn+1). (3.25)

The proof of the next lemma is a standard adaptation of the one of [21, Corollary
3.5], which we present below for the reader’s convenience.

Lemma 3.10. If A and Ã are uniformly elliptic matrices in R
n+1, n ≥ 2, so that

A, Ã ∈ DMOs , then for R > 0 and all x, y ∈ R
n+1 such tha 0 < |x − y| < R, it

holds that

� Ã(x, y) − �A(x, y) =
∫

∇2�A(x, z) · (A(z)− Ã(z)
)∇1� Ã(z, y) dz. (3.26)

Proof. Set�:=�A, �̃:=� Ã,�∗:=�AT , �̃∗:=� ÃT , and r :=|x−y|/4. For 0 < ρ < r
we denote as �ρ the averaged fundamental solution (see [21, Section 3.1]) which
can be defined, via Lax-Milgram theorem, as the unique function in Y 1,2

0 (Rn+1)

such that∫
A∇1�

ρ(·, y) · ∇u = −
∫
B(y,ρ)

u =
∫

fρ,yu for all u ∈ Y 1,2
0 (Rn+1), (3.27)

for fρ,y(z):=|B(y, ρ)|−1χB(y,ρ)(z). Note that, if B is a ball such that B∩B(y, ρ) =
∅ and u ∈ C∞

c (B), then the right hand side of (3.27) vanishes, i.e., L A�
ρ(·, y) = 0

in B. Thus, the De Giorgi-Nash-Moser theorem implies that �ρ(·, y) is locally
Hölder continuous in R

n+1 \ B(y, ρ). Moreover, by [21, (3.45)], �ρ admits the
representation

�ρ(x, y):=−
∫
B(y,ρ)

�(x, z) dz. (3.28)

We define �̃ρ, �
ρ∗ , �̃ρ∗ ∈ Y 1,2

0 (Rn+1) analogously and it holds that
∫

∇1�̃
ρ∗ (·, x) · Ã∇u = −

∫
B(x,ρ)

u for all u ∈ Y 1,2
0 (Rn+1). (3.29)

We claim that

�ρ(x, y) =
∫

∇2�̃(x, ·) · Ã(·)∇1�
ρ(·, y). (3.30)
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Let 0 < ρ′ < ρ < r . If we apply (3.29) for �̃ρ′
∗ and u = �ρ(·, y) ∈ Y 1,2

0 (Rn+1),
then it holds that∫

∇1�̃
ρ′
∗ (z, x) · Ã∇1�

ρ(z, y) dz = −
∫
B(x,ρ′)

�ρ(z, y) dz. (3.31)

Since �ρ(·, y) is continuous away from y, by Lebesgue’s differentiation theorem,

lim
ρ′→0

−
∫
B(x,ρ′)

�ρ(z, y) dz = �ρ(x, y). (3.32)

Moreover, by [21, (3.22) and (3.24)], there exist C1,C2 > 0 such that
∫
Rn+1\B(x,r)

∣∣∇1�
ρ′
ÃT (z, x)

∣∣2 dz ≤ C1r
1−n (3.33)

and
∥∥∇1�

ρ′
ÃT (·, x)

∥∥
L p(B(x,r)) ≤ C2r

n+1
p −n for p ∈ [1, (n + 1)/n), (3.34)

where C1 and C2 do not depend on ρ′.
We now split
∫

∇1�̃
ρ′
∗ (z, x) · Ã∇1�

ρ(z, y) dz

=
∫
B(x,r)

+
∫
Rn+1\B(x,r)

∇1�̃
ρ′
∗ (z, x) · Ã∇1�

ρ(z, y) dz=:Iρ′ + I Iρ′′ .
(3.35)

Since A ∈ DMOs and L A�
ρ(·, y) = 0 in B(x, r), by Lemma 3.9 and (3.28), for

any z ∈ B(x, r), it holds that

|∇1�
ρ
A(z, y)| ≤ −

∫
B(y,ρ)

|∇1�(z, w)| dw � −
∫
B(y,ρ)

1

|w − z|n dw ≈ r−n ≈ |x − y|−n,

where in the penultimate inequality we used that |w− z| ≈ r forw ∈ B(y, ρ), and
so ∇1�

ρ(·, y) ∈ L∞(B(x, r)).
Fix p ∈ (

1, n+1
n

)
and consider a sequence ρ′

j → 0 such that ρ′
j < ρ < r for

all j . As in the proof of [21, Theorem 3.1], by (3.34) and weak compactness of
W 1,p(B(x, r)), we may pass to a subsequence, which we still denote by ρ′

j , such

that ∇1�̃
ρ′
j∗ (·, x) ⇀ ∇1�̃∗(·, x) in L p(B(x, r)). Hence

lim
j→∞ Iρ′

j
=
∫
B(x,r)

∇1�̃∗(z, x) · Ã∇1�
ρ(z, y) dz. (3.36)

Furthermore, once again as in the proof of [21, Theorem 3.1], the bound (3.33) im-

plies that, bypassing to another subsequence if necessary,∇1�̃
ρ′
j∗ (·, x) ⇀ ∇1�̃∗(·, x)

in L2(Rn+1\B(x, r)). Thus, since �ρ(·, y) ∈ Y 1,2
0 (Rn+1),

lim
j→∞ I Iρ′

j
=
∫
Rn+1\B(x,r)

∇1�̃∗(z, x) · Ã∇1�
ρ(z, y) dz. (3.37)
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Therefore, (3.36), (3.37), and (3.32), imply

�ρ(x, y) =
∫

∇1�̃∗(z, x) · Ã∇1�
ρ(z, y) dz =

∫
∇2�̃(x, z) · Ã∇1�

ρ(z, y) dz,

(3.38)
where in the last equality we used that � ÃT (w, z) = � Ã(z, w) for all z, w ∈ R

n+1,
z �= w (see [21, (3.43)]). This concludes the proof of (3.30).

Let us now split

∫
∇2�̃(x, ·) · A(·)∇1�

ρ j (·, y) =
∫
B(x,r)

+
∫
B(y,r)

+
∫
Rn+1\(B(x,r)∪B(y,r))

=:I 1ρ j
+ I 2ρ j

+ I 3ρ j
.

Since �̃(x, ·) ∈ Y 1,2(Rn+1\B(x, r)), by the weak convergence ∇1�
ρ j (·, y) ⇀

∇1�(·, y) in L2(Rn+1\B(y, r)), we have that

lim
j→∞ I 3ρ j

=
∫
Rn+1\(B(x,r)∪B(y,r))

∇2�̃(x, z) · A(z)∇1�(z, y) dz.

By Lemma 3.9, it holds that |∇2�̃(x, z)| � |x − y|−n , for all z ∈ B(y, r), and since
∇1�

ρ j (·, y) ⇀ ∇1�(·, y) in L p(B(y, r)), we get that

lim
j→∞ I 2ρ j

=
∫
B(y,r)

∇2�̃(x, z) · A(z)∇1�(z, y) dz.

Lastly, by Lemma 3.9, ∇1�
ρ j (·, y) is a uniformly bounded equicontinuous fam-

ily of functions in B(x, r), and so, after passing to a subsequence, we get that
∇1�

ρ j (·, y) → ∇1�(·, y) uniformly in B(x, r). By [21, (3.52)], it holds that

‖∇2�̃(x, ·)‖L1(B(x,r)) � r,

and thus, we deduce that

lim
j→∞ I 1ρ j

=
∫
B(x,r)

∇2�̃(x, z) · A(z)∇1�(z, y) dz.

Hence, as lim j→∞ �ρ j (x, y) = �(x, y), by (3.38), we conclude that

�(x, y) =
∫

∇2�̃(x, ·) · A∇1�(·, y). (3.39)

Similarly, we can be prove that

�̃(x, y) = �̃∗(y, x) =
∫

∇2�∗(y, ·) · ÃT∇1�̃∗(·, x) =
∫

∇2�̃(x, ·) · Ã∇1�(·, y),

which, together with (3.39), concludes the proof of the lemma. ��
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For a real elliptic (n + 1) × (n + 1)-matrix A0 with constant coefficients, we
use the notation �(x, y; A0) = �A0(x, y) to denote the fundamental solution of
LA0 . In particular, we recall that �(x, y; A0) = �(x − y, 0; A0) and

�(z, 0; A0) = �(z, 0; A0,s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1

(n − 1)ωn
√
det A0,s

1

〈A−1
0,s z, z〉(n−1)/2

for n ≥ 2,

1

4π
√
det A0,s

log
(〈A−1

0,s z, z〉
)

for n = 1,

(3.40)
where A0,s := 1

2 (A0+AT
0 ) is the symmetric part of A0 andωn is the surfacemeasure

of the unit sphere S
n (see also Section2). Moreover it holds

∇1�(z, 0; A0) = ω−1
n√

det A0,s

A−1
0,s z

〈A−1
0,s z, z〉(n+1)/2

, for z ∈ R
n+1 \ {0}. (3.41)

Finally we observe that, for any integer k ≥ 0, we have

∣∣∇k
1�(z, 0; A0)

∣∣ � 1

|z|n+k−1 for z ∈ R
n+1 \ {0}, (3.42)

where the implicit constant depends on dimension, the ellipticity constants of A0,s ,
and the order of differentiation k.

In the next lemmawe show that IωA(r) controls themean oscillation of amatrix
A at all scales below r > 0. This is used in the proof of Lemma 3.12.

Lemma 3.11. Let A = (ai j )1≤i, j≤n+1 be a matrix such that ai j ∈ L∞(Rn+1) for
1 ≤ i, j ≤ n + 1 and A ∈ DMOs . Then, for r > 0 and p ≥ 1,

sup
0<ρ≤r

sup
x∈Rn+1

(
−
∫
B(x,ρ)

|A(z)− Āx,ρ |p dz
)1/p

� p IωA (r). (3.43)

Moreover, if C j :=A(x, 2 j r, 2 j+1r), j ∈ N, we have

(
−
∫
C j

|A(z)− Āx,r |p dz
)1/p

� p IωA (2
j r). (3.44)

Proof. By the John-Nirenberg inequality (see for instance [37, p. 144]), it holds

sup
0<ρ≤r

sup
x∈Rn+1

(
−
∫
B(x,ρ)

|A(z)− Āx,ρ |p dz
)1/p

� p sup
0<ρ≤r

sup
x∈Rn+1

−
∫
B(x,ρ)

|A(z)− Āx,ρ | dz.
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Let x ∈ R
n+1, r > 0, and ρ ∈ [0, r ]. We denote by N the positive integer such that

2Nρ ≤ r < 2N+1ρ. Then

−
∫
B(x,ρ)

|A(z)− Āx,ρ | dz ≤ 2−
∫
B(x,ρ)

|A(z)− Āx,r | dz

� 2−
∫
B(x,ρ)

|A(z)− Āx,2ρ | dz +
N+1∑
j=2

| Āx,2 jρ − Āx,2 j−1ρ | + | Āx,2N+1ρ − Āx,r |

�
N+1∑
j=1

ωA(2
jρ) �

∫ 2N+1ρ

0
ωA(t)

dt

t
≤
∫ 2r

0
ωA(t)

dt

t
� IωA (r),

where the last bound is a consequence of the doubling property of ωA. Thus, taking
the supremum for ρ ∈ [0, r), we obtain (3.43).

Let us now prove (3.44). Let B j
k , k = 1, . . . ,Mn , be a collection of balls of

radius 5
42

j r which covers C j , for a dimensional constant Mn > 1. Fix a ball B̃ in
this family, denote by x̃ its center, and define L:={

t x + (1 − t)x̃ : t ∈ [0, 1]}.
There exists a sequence of balls B0, . . . , Bj centered at L such that B0 = B(x, r),
Bj = B̃, r(Bk) ≈ 2kr , and Bk+1 ∩ Bk �= ∅. Moreover, for every k = 1, . . . ,Mn ,
there exists a ball B ′

k centered at L ∩ Bk ∩ Bk+1 such that r(B ′
k) ≈ 2kr and

Bk ∪ Bk+1 ⊂ B ′
k . Hence, if we denote ĀBk :=−

∫
Bk

A, it holds that
∣∣ ĀBk − ĀBk+1

∣∣ ≤ ∣∣ ĀBk − ĀB′
k

∣∣ + ∣∣ ĀBk+1 − ĀB′
k

∣∣
≤ −
∫
Bk

|A(z)− ĀB′
k
| dz + −

∫
Bk+1

|A(z)− ĀB′
k
| dz

� −
∫
B′
k

|A(z)− ĀB′
k
| dz � ωA(r(B

′
k)) � ωA(2

kr),

(3.45)

where the last bound follows from the doubling property of ωA. Thus,

∣∣ ĀB(x,r) − ĀB̃

∣∣ ≤
j∑

k=0

∣∣ ĀBk+1 − ĀBk

∣∣ (3.45)�
j∑

k=0

ωA(2
kr)

(2.2)
� IωA(2

j r), (3.46)

and so (
−
∫
C j

|A(z)− Āx,r |p dz
)1/p

≤
Mn∑
k=0

(
−
∫
B j
k

|A(z)− Ā
B j
k
|p dz

)1/p

+
Mn∑
k=0

∣∣ ĀB(x,r) − Ā
B j
k

∣∣

(3.46)
�n

Mn∑
k=0

(
−
∫
B j
k

|A(z)− Ā
B j
k
|p dz

)1/p

+ IωA (2
j r).

(3.47)

Observe that, for k = 1, . . . ,Mn , if we apply (3.43) we have
(

−
∫
B j
k

∣∣A(z)− Ā
B j
k

∣∣p dz
)1/p

� p IωA

(
r(B j

k )
)

� p IωA (2
j r), (3.48)
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where in the last inequality we used the doubling property of IωA . Thus, by (3.47)
and (3.48) we obtain (3.44) and conclude the proof of the lemma. ��

3.3. The three-step perturbations

An important component of our method is the comparison of ∇1�A to the
gradient of the fundamental solution associated with the averaged matrix. This is
what we prove in the next lemma.

Lemma 3.12. Let A be a uniformly elliptic matrix in R
n+1, n ≥ 2, satisfying

A ∈ DMOs ∩ DMO�. For R0 > 0, there exists C = C(n,�, R0) > 0 such that,
for x, y ∈ R

n+1 such that 0 < |x − y| < R < R0, and

K1
�(x, y):=∇1�A(x, y) − ∇1�

(
x, y; Āx,|x−y|/2

)
,

we have

|K1
�(x, y)| ≤ C

τA(r)

rn
+ C

τ̂A(R)

Rn
for r :=|x − y|/2, (3.49)

where

τA(r):=IωA (r)+ Ln
ωA
(r) =

∫ r

0
ωA(t)

dt

t
+ rn

∫ ∞

r
ωA(t)

dt

tn+1

and

τ̂A(R) = IωA (R)+ Ln−1
ωA

(R) =
∫ R

0
ωA(t)

dt

t
+ Rn−1

∫ ∞

R
ωA(t)

dt

tn
.

In particular, if R0 = 1, the constant C only depends on ellipticity, dimension, and
the Dini Mean Oscillation condition.

Proof. Let x, y ∈ B(0, R). Let us denote by āi j the coefficients of Āx,r and, for
brevity, write �(z, y):=�(z, y; Āx,r ). By (3.26), it holds that

∇1�(·, y)− ∇1�(·, y) =
∫

∇1∇2�(·, z)
(
Āx,r − A(z)

)∇1�(z, y) dz

=:
∫

�(·, y, z) dz

=
∫
B(x,r)

�(·, y, z) dz +
∫
B(y,r)

�(·, y, z) dz

+
∫
Rn+1\(B(x,r)∪B(y,r))

�(·, y, z) dz=:Ir (·)+ I Ir (·)+ I I Ir (·).

(3.50)

First, let us estimate Ir . Setting εx,r (z):=( Āx,r − A(z)) χB(x,r)(z), we have that

Ir (w) =
∫

∇1∇2�(w, z) · εx,r (z)∇1�(z, y) dz

=
∫

∇1∇2�(w, z) · εx,r (z)
(∇1�(z, y)− ∇1�(x, y)

))
dz

+
∫

∇1∇2�(w, z) · εx,r (z)∇1�(x, y) dz

=:Ir,1(w)+ Ir,2(w).
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For w = x , in order to estimate Ir,1(x), we use Lemma 3.9 and write

|Ir,1(x)| �
∫

|εx,r (z)|
∣∣∇1�(z, y)− ∇1�(x, y)|

|x − z|n+1 dz

�
∫ |εx,r (z)|

|x − z|n|x − y|n+1 dz ≈ 1

rn+1

∫
B(x,r)

|A(z)− Āx,r |
|x − z|n dz.

Then, we estimate the last integral by splitting the domain of integration into dyadic
annuli A(x, 2− j−1r, 2− j r):

|Ir,1(x)| � 1

rn+1

∞∑
j=0

∫
A(x,2− j−1r,2− j r)

∣∣A(z)− Āx,r
∣∣

|x − z|n dz

� 1

rn+1

∞∑
j=0

r

2 j
−
∫
B(x,2− j r)

∣∣A(z)− Āx,r
∣∣ dz

≤ 1

rn

∞∑
j=0

1

2 j
−
∫
B(x,2− j r)

(∣∣A(z)− Āx,2− j r

∣∣ + | Āx,2− j r − Āx,r
∣∣) dz

� 1

rn

∞∑
j=0

1

2 j

(
ωA(2

− j r)+
j−1∑
k=0

−
∫
B(x,2−kr)

∣∣A(z)− Āx,2−kr

∣∣ dz
)

� 1

rn

∞∑
j=0

1

2 j

(
ωA(2

− j r)+
j−1∑
k=0

ωA(2
−kr)

)

� 1

rn

∞∑
j=0

j + 1

2 j
ωA(2

− j r) � 1

rn

∫ r

0
ωA(t)

dt

t
, (3.51)

where we use that j + 1 ≤ 2 j for any j ≥ 0 integer.
The estimate of Ir,2(x) is slightlymoredelicate. Let us denote g:=εx,r (·)∇1�(x, y)

and observe that L−1
A ∇ ·g is a weak solution to L A

(
L−1
A ∇ ·g) = divg in B(x, r/3).

We claim that, for N as in Remark 3.8 and ρ:=r/(3N + 3),

ω̊x,Nρ
g (t) � ωA(tρ)

rn
, 0 < t < 1, (3.52)

with the implicit constant depending on n and the doubling parameter C1. In order
to prove (3.52) we first observe that, for 0 < t < 1 and ε(·):= Āx,r − A(·), we have
that

ω̊x,Nρ
g (t) = sup

w∈B(x,Nρ)
−
∫
B(w,tρ)

∣∣∣g(z)− −
∫
B(w,tρ)

g(u) du
∣∣∣ dz

= sup
w∈B(x,Nρ)

−
∫
B(w,tρ)

∣∣∣∣
(
χB(x,r)(z)ε(z)− −

∫
B(w,tρ)

ε(u)χB(x,r)(u) du

)
· ∇1�(x, y)

∣∣∣∣ dz
(3.42)
� r−n sup

w∈B(x,Nρ)
−
∫
B(w,tρ)

∣∣∣χB(x,r)(z)ε(z)− −
∫
B(w,tρ)

ε(u)χB(x,r)(u) du
∣∣∣ dz

=:r−n sup
w∈B(x,Nρ)

I(w, tρ).
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For w ∈ B(x, Nρ) and t < 1 by triangle inequality we have B(w, tρ) ⊂ B(x, r).
Thus, for such w and t we can write

I(w, tρ) = −
∫
B(w,tρ)

∣∣∣ε(z)− −
∫
B(w,tρ)

ε

∣∣∣ dz = −
∫
B(w,tρ)

∣∣A(z)− Āw,tρ
∣∣ dz ≤ ωA(tρ),

which implies (3.52).Hence, byTheorem3.7 and (3.21) (see the endofRemark3.8),

|Ir,2(x)| ≤ sup
w∈B(x,2ρ)

∣∣∣
∫

∇1∇2�(w, z)εx,r (z)∇1�(x, y) dz
∣∣∣

�
(

1

ρn+1

∫
B(x,4ρ)

∣∣∇L−1
A ∇ · g(w)∣∣2 dw

)1/2

+
∫ 1

0
ω̊x,Nρ
g (t)

dt

t

(3.52)
� N

(
1

ρn+1

∫
B(x,4ρ)

∣∣∇L−1
A ∇ · g(w)∣∣2 dw

)1/2

+ 1

rn

∫ r

0
ωA(t)

dt

t
.

(3.53)

The operator (∇L−1
A ∇·) is bounded from L2(Ln+1) to L2(Ln+1) and satisfies

∥∥∇L−1
A ∇ · g∥∥L2(Ln+1)

(3.25)
� ‖g‖L2(Ln+1).

(3.54)

By Lemma 3.9 and the fact that |x − y| = 2r we have that

‖g‖L2(Ln+1) ≤
(∫

B(x,r)
|ε(z)|2|∇1�(x, y)|2 dz

)1/2

= |∇1�(x, y)|
(∫

B(x,r)

∣∣A(z)− Āx,r
∣∣2 dz

)1/2 (3.43)
� r−nr

n+1
2 IωA (r).

(3.55)

Hence, combining (3.51), (3.53), (3.54), and (3.55), we obtain

|Ir (x)| � r−nIωA(r).

Let us bound I Ir (x). For z ∈ B(y, r), we have |x − z| ≥ |x − y|− |z − y| > r.
Hence, by Lemma 3.9, triangle inequality and analogous calculations to those that
proved (3.51), we have that

|I Ir (x)| �
∫
B(y,r)

|A(z)− Āx,r |
|x − z|n+1|y − z|n dz ≤ 1

rn+1

∫
B(y,r)

|A(z)− Āx,r |
|y − z|n dz

≤ 1

rn+1

∫
B(y,r)

| Āx,r − Āy,4r |
|y − z|n dz + 1

rn+1

∫
B(y,4r)

|A(z)− Āy,4r |
|y − z|n dz

(3.51)
� 1

rn+1

(∫
B(y,r)

1

|z − y|n −
∫
B(x,r)

|A(w)− Āy,4r | dw dz

)
+ 1

rn

∫ 4r

0
ωA(t)

dt

t
,

� 1

rn

∫ 4r

0
ωA(t)

dt

t
+ ωA(4r)

rn
� 1

rn

∫ r

0
ωA(t)

dt

t
+ ωA(r)

rn

(2.4)
� r−n IωA (r),

where in the penultimate inequality we used the doubling property of ωA and IωA .
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We are left with the estimate of I I Ir .3 Let us observe that B(x, r)∪ B(y, r) ⊂
B(x, 4r). Given j ≥ 0, we denote C j :=A(x, 2 j r, 2 j+1r) and we split

I I Ir (x) =
∫
B(x,8r)\

(
B(x,r)∪B(y,r)

)�(x, y, z) dz +
∑
j≥3

∫
C j

�(x, y, z) dz=:I0
r + I1

r ,

(3.56)
where � is the function defined in (3.50). The term I0

r can be readily estimated
usingLemma3.9 and the fact that, for z ∈ B(x, 4r)\(B(x, r)∪B(y, r)

)
, |x−z| > r

and |y − z| > r . In particular,

|I0
r | �

∫
B(x,8r)\

(
B(x,r)∪B(y,r)

)
∣∣A(z)− Āx,r

∣∣
|x − z|n+1|y − z|n dz

≤ r−2n−1
∫
B(x,8r)

∣∣A(z)− Āx,r
∣∣ dz

� 1

rn
−
∫
B(x,8r)

∣∣A(z)− Āx,8r
∣∣ dz + 1

rn
∣∣ Āx,8r − Āx,r

∣∣ dz

� ωA(8r)

rn
� ωA(r)

rn

(2.4)
� r−n IωA(r).

(3.57)

For w ∈ R
n+1 we denote

v j (w):=
∫
C j

∇2�(w, z)
(
Āx,r − A(z)

)∇1�(z, y) dz

so that

I1
r =

∑
j≥3

∇v j (x) =
j0∑
j=3

∇v j +
∑

j≥ j0+1

∇v j=:I1,1
r + I1,2

r ,

where j0 is such that 2 j0−3r ≤ R < 2 j0−2r . Remark that v j is a weak solution to
LAv j = 0 in B(x, 2 j r) for all j ≥ 3.

Let us estimate I1,1
r . For j ∈ {3, . . . , j0}4, by (3.21) we have that

|∇v j (x)| ≤ sup
w∈B(x,2 j−4r)

|∇v j (w)| �R0

(
−
∫
B(x,2 j−3r)

|∇v j |2
)1/2

� 1

2 j r

(
−
∫
B(x,2 j−2r)

|v j |2
)1/2

,

(3.58)

3 This is exactly the part we mentioned in the introduction that was missing in the jus-
tification of [23, Lemma 2.2] when the coefficients are not periodic (even in the Hölder
continuous case).
4 The method for j ∈ {3, . . . , j0} could be significantly simplified using the pointwise

estimates for ∇1∇2�A, but as we will repeat this argument to handle the case j > j0, we
decided to use it for both. Here we only use the DMOs condition to bound |∇v j (x)| by
its L2-average on the ball, while the last inequality of (3.58) holds for solutions of elliptic
equations with L∞ coefficients without any additional regularity assumption.
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where the last bound follows fromCaccioppoli inequality, and the second inequality
does not depend on R0 if R0 = 1.

For z ∈ C j , we have |x − z| ≈ |y − z| ≈ 2 j r and so (3.42) implies that
|∇1�(z, y)| � |z − y|−n ≈ (2 j r)−n . If w ∈ B(x, 2 j−2r), by Cauchy-Schwarz
inequality and the latter estimate, we have that

|v j (w)| =
∣∣∣
∫
C j

∇2�(w, z)
(
Āx,r − A(z)

)∇1�(z, y) dz
∣∣∣

� 1

(2 j r)n

(∫
C j

|∇2�(w, z)|2 dz
)1/2(∫

C j

∣∣ Ā(z)− Ax,r
∣∣2 dz)1/2.

(3.59)

Thus, since |z − w| < 2 j+2r for z ∈ C j , by Caccioppoli inequality (see [19,
Theorem 4.4, p. 63]) and Lemma 3.9 we have that

(∫
C j

|∇2�(w, z)|2 dz
)1/2 ≤

(∫
B(w,2 j+2r)

|∇2�(w, z)|2 dz
)1/2

� 1

2 j r

(∫
A(w,2 j+2r,2 j+3r)

|�(w, z)|2 dz
)1/2

� |B(w, 2 j+3r)|1/2
(2 j r)n

� (2 j r)
(1−n)

2 .

(3.60)

Inequality (3.44) yields

(∫
C j

∣∣A(z)− Āx,r
∣∣2 dz)1/2 = |C j |1/2

(
−
∫
C j

∣∣A(z)− Āx,r
∣∣2 dz)1/2

� (2 j+1r)
(n+1)

2 IωA(2
j r).

(3.61)

In view of (3.59), (3.60), and (3.61) we obtain

|v j (x)| �n (2
j r)1−nIωA(2

j r), (3.62)

which, by (3.58), implies

|∇v j (x)| �R0,n (2
j r)−nIωA(2

j r), (3.63)

and hence

|I1,1
r | ≤

j0∑
j=3

|∇v j (x)| �R0,n

j0∑
j=3

(2 j r)−nIωA (2
j r) ≤

∞∑
j=1

(2 j r)−nIωA(2
j r)

(2.3)
�

∫ ∞

r
IωA(t)

dt

tn+1
(2.5)= 1

nrn

∫ r

0
ωA(t)

dt

t
+ 1

n

∫ ∞

r
ωA(t)

dt

tn+1

= 1

nrn
(
IωA(r)+ Ln

ωA
(r)

)
.

(3.64)
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We are left with the estimate of I1,2
r . For j ≥ j0 + 1, the rescaled version of

(3.15) and Cacciopoli inequality give

|∇v j (x)| �R0

(
−
∫
B(x,R)

|∇v j |2
)1/2

� 1

R

(
−
∫
B(x,2R)

|v j (w)|2 dw
)1/2

. (3.65)

We remark that the first inequality in (3.65) does not depend on R0 if R0 = 1.
If z ∈ C j and w ∈ B(x, 2R), since j ≥ j0 + 1 and R ≤ 2 j0−2r , it holds that

|z − w| ≈ 2 j r , and, arguing as above, we can prove (3.62). Therefore,

|∇v j (x)|
(3.62)
�R0

(2 j r)1−n

R
IωA(2

j r),

which infers that
∑

j≥ j0+1

|∇v j (x)| �R0

∑
j≥ j0+1

(2 j r)1−n

R
IωA (2

j r)
(2.3)
� 1

R

∫ ∞

R
IωA (t)

dt

tn

(2.5)≈n
1

Rn

∫ R

0
ωA(t)

dt

t
+ 1

R

∫ ∞

R
ωA(t)

dt

tn

≈n R−n(IωA (R)+ Ln−1
ωA

(R)
)
.

(3.66)

Therefore, combining (3.57), (3.64), and (3.66), we obtain

|I I Ir (x)| ≤ |I0
r | + |I1

r | � r−n (
IωA(r)+ Ln

ωA
(r)

) + R−n
(
IωA (R)+ Ln−1

ωA
(R)

)
.

Gathering the bounds for Ir (x), I Ir (x), and I I Ir (x), we conclude (3.49). ��
In the next lemma we bound the difference of the averages of a matrix at two

distinct scales, and compare the gradients of the respective fundamental solutions.
This is crucial for the second step of our perturbation argument.

Lemma 3.13. Let A be a uniformly elliptic matrix in R
n+1, n ≥ 2, satisfying

A ∈ DMOs . Let 0 < δ < r < 1 and x ∈ R
n+1, and assume that �x,δ ⊂ R

n+1 is a
Borel set such that for some constant M ≥ 1,

B(x, δ) ⊂ �x,δ ⊂ B(x,Mδ).

If we denote Ā�x,δ :=−
∫
�x,δ

A, then

∣∣ Āx,r/2 − Ā�x,δ

∣∣ �M

∫ r

δ

ωA(t)
dt

t
≤ τA(r) (3.67)

and ∣∣( Āx,r/2)s − ( Ā�x,δ )s
∣∣ �M

∫ r

δ

ωA(t)
dt

t
≤ τA(r). (3.68)

Moreover, for

K2
�(x, y):=∇1�(x − y, 0; Āx,r/2)− ∇1�(x − y, 0; Āx,δ/2)

and all z ∈ R
n+1 \ {0}, it holds

∣∣K2
�(z, 0)

∣∣ �n,�,M
1

|z|n
∫ r

δ

ωA(t)
dt

t
. (3.69)
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Proof. Let N0 ≥ 1 be such that 2−N0r ≤ δ < 2−N0+1r and 2N1−1 ≤ M < 2N1 .
Therefore, if N = N0 − N1, we have that∣∣ Āx,r/2 − Ā�x,δ

∣∣ ≤ ∣∣ Āx,r − Āx,2−N+1r

∣∣ + ∣∣ Ā�x,δ − Āx,2−N+1r

∣∣

�M

N−2∑
j=1

∣∣ Āx,2− j r − Āx,2− j−1r

∣∣ + ωA(2
−N+1r) �

N−2∑
j=1

ωA(2
− j r)+ ωA(2

−N+1r)

=
N−1∑
j=1

ωA(2
− j r) �

∫ r

δ

ωA(t)
dt

t
.

The bound (3.68) follows directly from (3.67).
Since A is uniformly elliptic with constant �, it is invertible and its inverse is

uniformly elliptic aswellwith the same constant.Moreover, as all its eigenvalues are
bounded fromabove by� and belowby�−1, and so is its determinant det(A) (as the
product of its n+ 1 eigenvalues). The same considerations apply toAr :=( Āx,r/2)s
and Aδ:=( Ā�x,δ )s . By standard calculations we can write

∣∣∇1�(z, 0; Āx,r/2)− ∇1�(z, 0; Ā�x,δ )
∣∣ (3.40)= ∣∣∇1�(z, 0;Ar )− ∇1�(z, 0;Aδ)

∣∣
= 1

ωn

∣∣∣ A−1
r z√

detAr 〈A−1
r z, z〉(n+1)/2

− A−1
δ z√

detAδ〈A−1
δ z, z〉(n+1)/2

∣∣∣

��,n
1

|z|2n+2

∣∣∣√detAδ〈A−1
δ z, z〉(n+1)/2A−1

r z −
√
detAr 〈A−1

r z, z〉(n+1)/2A−1
δ z

∣∣∣.
(3.70)

We remark that by elementary calculations and using the ellipticity of Aδ and Ar

we have

|A−1
δ z − A−1

r z| = |A−1
δ ArA−1

r z − A−1
δ AδA−1

r z|
= ∣∣A−1

δ (Ar − Aδ)A−1
r z

∣∣ �� |Ar − Aδ||z|.
(3.71)

The mean value theorem implies that, for 0 < a < b we have

|a(n+1)/2 − b(n+1)/2| ≤ n + 1

2
max
t∈[a,b] t

(n−1)/2(b − a) = n + 1

2
b(n−1)/2(b − a).

The symmetric inequality holds for 0 < b ≤ a and, for the choices a =
〈A−1

r z, z〉(n+1)/2 and b = 〈A−1
δ z, z〉(n+1)/2, gives

∣∣〈A−1
r z, z〉(n+1)/2 − 〈A−1

δ z, z〉(n+1)/2
∣∣

�n
∣∣〈A−1

r z, z〉 − 〈A−1
δ z, z〉∣∣

∣∣∣〈A−1
r z, z〉(n−1)/2 + 〈A−1

δ z, z〉(n−1)/2
∣∣∣

(3.71)
� |Ar − Aδ| |z|2 |z|n−1 = |z|n+1|Ar − Aδ|,

(3.72)

by the ellipticity of A−1
r and A−1

δ .
Let us recall that the map det : R

(n+1)×(n+1) → R is a polynomial in the entries
of the matrix and, more specifically, that Jacobi’s formula gives

∂

∂ ãi j
det(Ã) = (adjÃ)i j for Ã = (ãi j )i, j ∈ R

(n+1)×(n+1),
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where adjÃ = det(Ã)Ã−1 is the adjugate matrix of Ã. In particular, the map det(·)
is locally Lipschitz continuous and, for |Ã| ≤ �, its Lipschitz constant depends
only on � and n. Moreover,

|√a − √
b| = (

a1/2 + b1/2
)−1|a − b| for a, b > 0,

which implies

|√detAr − √
detAδ| = (

(detAr )
1/2 + (detAδ)

1/2)−1| detAr − detAδ|
��,n | detAr − detAδ| ��,n |Ar − Aδ|.

(3.73)
Finally, (3.70), triangle inequality, the bounds (3.72), (3.73), (3.71), and the uniform
ellipticity of Ar and Aδ yield

∣∣∇1�(z, 0;Ar )− ∇1�(z, 0;Aδ)
∣∣

��,n
1

|z|2n+2

(
|√detAδ − √

detAr |
∣∣〈A−1

δ z, z〉(n+1)/2A−1
r z

∣∣
+ |√detAr |

∣∣〈A−1
δ z, z〉(n+1)/2(A−1

r z − A−1
δ z)

∣∣
+ |√detAr |

∣∣〈A−1
δ z, z〉(n+1)/2 − 〈A−1

r z, z〉(n+1)/2
∣∣|A−1

δ z|
)

�n,�
|Ar − Aδ|

|z|n
(3.68)
� 1

|z|n
∫ r

δ

ωA(t)
dt

t
.

This concludes the proof of the lemma. ��
We can also demonstrate the following lemma:

Lemma 3.14. Let A be a uniformly elliptic matrix in R
n+1, n ≥ 2, satisfying

A ∈ DMOs . Assume that Q ⊂ R
n+1 is a dyadic cube and �Q ⊂ R

n+1 is a Borel
set such that, for some constant M ≥ 1,

B(xQ, �(Q)) ⊂ �Q ⊂ B(xQ,M�(Q)).

If we denote Ā�Q :=−
∫
�Q

A, then if x ∈ Q,

∣∣ Ā�Q − Āx,δ/2
∣∣ �M

∫ �(Q)

0
ωA(t)

dt

t
≤ τA(�(Q)), for δ <

√
n + 1�(Q),

(3.74)
and, for all z ∈ R

n+1 \ {0} and δ < √
n + 1�(Q),

∣∣∇1�(z, 0; Ā�Q )− ∇1�(z, 0; Āx,δ/2)
∣∣ �n,�,M

1

|z|n
∫ �(Q)

0
ωA(t)

dt

t
. (3.75)

Proof. The proof is a routine adaptation of the one of Lemma 3.13 and is left as an
exercise to the interested reader. ��
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Let δ > 0 and, for an affine function L , define the truncated integral operator

T̂ j
L ,μ,δ f (x):=

∫
|Lx−Ly|>δ

K j
�(x, y) f (y) dμ(y), j = 1, 2,

where we set r = |x − y| in the definition of K2
� given in Lemma 3.13.

Lemma 3.15. Let A be a uniformly elliptic matrix in R
n+1, n ≥ 2, satisfying

A ∈ D̃MO. Let R0 > 0 and μ ∈ Mn+(Rn+1) with compact support so that

diam(suppμ) = R ≤ R0. Then T̂ j
L ,μ,δ : L2(μ) → L2(μ), j = 1, 2, satisfying

sup
δ>0

∥∥T̂ 1
L ,μ,δ f

∥∥
L2(μ)→L2(μ)

� IτA (R)+ τ̂A(R)

sup
δ>0

∥∥T̂ 2
L ,μ,δ f

∥∥
L2(μ)→L2(μ)

� IτA (R),

where the implicit constants depend on ‖L‖op, �, n, and R0. In particular, if
R0 = 1, the implicit constants only depend on ellipticity, dimension, and the Dini
Mean Oscillation condition.

Proof. In view of Lemmas 3.12 and 3.13, we can apply Lemma 2.5 to the integral
operators with kernel K j

�(x, y)χB(Lx,δ/2)c (Ly) and deduce the result. ��
Lemma 3.16. Let A be a uniformly elliptic matrix in R

n+1, n ≥ 2, satisfying
A ∈ D̃MO. Let Q be a cube in R

n+1 with center xQ and side-length �(Q) � 1,
and let ν ∈ Mn+(Rn+1) be supported on Q and have n-growth constant c0 > 0.
Assume also that there exist a Borel set �Q and a constant M ≥ 1 such that

B(xQ, �(Q)) ⊂ �Q ⊂ B(xQ,M�(Q)).

For δ > 0 let us define

K3
�(x, z):=∇1�(z, 0; Āx,δ/2)− ∇1�

(
z, 0; Ā�Q

)
(3.76)

and

TK3
�,ν,δ

f (x):=
∫

|x−y|>δ
K3
�(x, x − y) f (y) dν(y), f ∈ L1

loc(ν).

Then, there exist a positive constant C ′′ = C ′′(n,�,M, c0) such that we have

‖TK3
�,ν,δ

‖L2(ν)→L2(ν) ≤ C ′′IωA (�(Q))
1/2‖Rν,δ‖L2(ν)→L2(ν). (3.77)

Proof. For brevity, let us denote K:=K3
�. Observe that the function K(x, ·) is

homogeneous of degree −n for any x ∈ R
n+1, namely,

K(x, z) = 1

|z|nK
(
x,

z

|z|
)

for all z ∈ R
n+1,
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and satisfies ‖K(x, ·)‖L2(Sn) �n,� 1. Indeed, by (3.41) and ellipticity of ( Āx,δ/2)s
we have that

‖K(x, ·)‖2L2(Sn)
�
∫
Sn

∣∣∣∣ ω−1
n√

det( Āx,δ/2)s

( Āx,δ/2)
−1
s ζ

〈( Āx,δ/2)
−1
s ζ, ζ 〉(n+1)/2

∣∣∣∣
2

dσ(ζ )

+
∫
Sn

∣∣∣ω−1
n

ζ

|ζ |n+1

∣∣∣2 dσ(ζ ) �n,�

∫
Sn

|ζ |−2n dσ(ζ ) = ωn .

Let {ϕ j,�} j≥1,1≤�≤N j be an orthonormal basis of L2(Sn) of spherical harmonics
of degree j . In particular N j satisfies the asymptotic estimate

N j = O( jn−1) for j � 1, (3.78)

for which we refer, for instance, to [1, display (2.12)]. Hence, we decompose K
into spherical harmonics in the L2-sense and write

K(x, z) = 1

|z|nK
(
x,

z

|z|
)

= 1

|z|n
∑
j≥1

N j∑
�=1

〈
K(x, ·), ϕ j,�

〉
L2(Sn)

ϕ j,�

( z

|z|
)

=: 1

|z|n
∑
j≥1

N j∑
�=1

k j,�(x)ϕ j,�

( z

|z|
)
.

We observe that, as K(x, ·) is an odd function, k j,�(x) = 0 if j is even. Fur-
thermore, since K(x, ·) is smooth on S

n , then by [1, Thorem 2.36], the series∑
j≥1

∑N j
�=1 k j,�(x)ϕ j,�(·) converges uniformly on S

n .
We claim that

|k j,�(x)| �n,� IωA (�(Q)) for all x ∈ R
n+1. (3.79)

Indeed, the bound (3.75) readily implies

|k j,�(x)| ≤
∫
Sn

|K(x, ζ )||ϕ j,�(ζ )| dσ(ζ ) �n,�

∫ �(Q)

0
ωA(t)

dt

t

∫
Sn

|ϕ j,�(ζ )|
|ζ |n dσ(ζ )

�n

∫ �(Q)

0
ωA(t)

dt

t
,

where the last inequality holds because of the normalization ‖ϕ j,�‖L2(Sn) = 1 and
Cauchy-Schwarz inequality. On the other hand we observe that, for m ≥ 1, the
bound (3.42) and the definition of K yield

∣∣∇2m
z K

(
x, z

)∣∣ �n,�,m
1

|z|n+2m , for z ∈ R
n+1 \ {0}.

Thus, denoting by 	m
Sn

the m-th iteration of the Laplace-Beltrami operator on S
n ,

we have ∣∣	m
Sn ,ζK

(
x, ζ

)∣∣ �n,�,m 1, (3.80)
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where the subscript in 	m
Sn ,ζ

denotes that the operator is applied with respect to
the ζ -variable. Moreover, asK(x, ·) is infinitely differentiable on S

n , [36, III 3.1.5]
gives that
∫
Sn
	m

SnK(x, ζ ) ϕ j,�(ζ ) dσ(ζ ) = k j,�(x)[− j ( j + n − 1)]m for all m ≥ 1.

Hence, Cauchy-Schwarz inequality implies that

[ j ( j + n − 1)]m∣∣k j,�(x)∣∣ �
(∫

Sn
|	m

SnK(x, ·)|2 dσ
) 1

2
(∫

Sn
|ϕ j,�|2 dσ

) 1
2

=
(∫

Sn
|	m

SnK(x, ·)|2 dσ
) 1

2
(3.80)
� n,�,m 1,

(3.81)

where we remark that the bound is uniform on x and y. Hence, for every m > 0
we have that ∣∣k j,�(x)∣∣ �n,�,m j−2m .

In particular, the choice m = (n + 5)(n − 1)/2 yields
∣∣k j,�(x)∣∣ �n,� j−(n+5)(n−1). (3.82)

Taking the geometric mean of (3.79) and (3.82), we obtain

∣∣k j,�(x)∣∣ �n,�

(
IωA(�(Q))

)1/2
j (n+5)(n−1)/2

. (3.83)

Now, let us define the kernel

K j,�(z):= 1

|z|n ϕ j,�

( z

|z|
)
, for z ∈ R

n+1 \ {0}.

By [36, p. 276] we have that

sup
|x |=1

∣∣∣∂
αϕ j,�(x)

∂xα

∣∣∣ �α j
n+1
2 +|α|, for α ∈ N

n+1.

so K j,� satisfies the estimate

|∂αz K j,�(z)| �α

j
n+1
2 +|α|

|z|n+|α| for α ∈ N
n+1, z ∈ R

n+1. (3.84)

Thus, for j odd and by [41, Corollary 1.4], its associated singular integral operator

TK j,�,ν f (x):=
∫

K j,�(x − y) f (y) dν(y)

is bounded on L2(ν) with norm

‖TK j,�,ν‖L2(ν)→L2(ν) � j
n+5
2 ‖Rν‖L2(ν)→L2(ν). (3.85)
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On the other hand we recall that, by the discussion before display (3.79), we have
that k j,�(x) = 0 if j is even.

Let TK j,�,ν,δ be the associated δ-truncated operator. For Ñ > 1 andψ ∈ L∞(ν),
we have that

∫ ∣∣∣∣
∫

|x−y|>δ

Ñ∑
j≥1

N j∑
�=1

k j,�(x)K j,�(x − y)ψ(y) dν(y)

∣∣∣∣
2

dν(x)

=
∫ ∣∣∣∣

Ñ∑
j≥1

N j∑
�=1

∫
|x−y|>δ

k j,�(x)K j,�(x − y)ψ(y) dν(y)

∣∣∣∣
2

dν(x)

=
∫ ∣∣∣∣

Ñ∑
j≥1

N j∑
�=1

k j,�(x)TK j,�,ν,δψ(x)

∣∣∣∣
2

dν(x).

(3.86)

Hence by (3.86), (3.83) and (3.78) we get that

(∫ ∣∣∣∣
Ñ∑
j≥1

N j∑
�=1

k j,�(x)TK j,�,ν,δψ(x)

∣∣∣∣
2

dν(x)

)1/2

≤
Ñ∑
j≥1

N j∑
�=1

‖k j,�‖L∞(Rn+1×Rn+1)‖TK j,�,ν,δψ‖L2(ν)

�
(∫ �(Q)

0
ωA(t)

dt

t

)1/2

‖Rν‖L2(ν)→L2(ν)

∑
j≥1

N j

jn+1 ‖ψ‖L2(ν)

�
(∫ �(Q)

0
ωA(t)

dt

t

)1/2

‖Rν‖L2(ν)→L2(ν)‖ψ‖L2(ν).

By the uniform convergence of the decomposition in spherical harmonics and dom-
inated convergence theorem, the estimate above implies that

‖TK,ν,δψ‖L2(ν) �
(∫ �(Q)

0
ωA(t)

dt

t

)1/2

‖Rν‖L2(ν)→L2(ν)‖ψ‖L2(ν).

Arguing by density, this proves the lemma. ��

Lemma 3.17. If A is a uniformly elliptic matrix in R
n+1, n ≥ 2, satisfying A ∈

D̃MO and if Tμ : L2(μ) → L2(μ) for some μ ∈ M+(Rn+1) without atoms is
bounded, then there exist r0 = r0(n,�, diam(suppμ)) ∈ (0, diam(suppμ)) small
enough and c0 > 0 so that μ(B(x, r)) ≤ c0rn, for all x ∈ R

n+1 and r < r0.

Proof. Let K (x, y):=∇1�A(x, y) for x, y ∈ R
n+1, x �= y. The lemma follows

from[12, Proposition1.4, p. 56] oncewe show that there exists r0 ∈ (0, diam(suppμ))
such that for any fixed cube Q of side length �(Q) < r0, it holds |K (x, y)| �
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|x − y|−n for all x �= y ∈ Q. To this end, fix a cube Q, and for x �= y ∈ Q we
have that the matrix A:= Āx,|x−y|/2 is elliptic with constant �, which yields

|∇1�(x − y, 0;A)| (3.40)= ω−1
n√

detAs

|A−1
s (x − y)|

〈A−1
s (x − y), x − y〉(n+1)/2

≥ C(n,�)

|x − y|n
(3.87)

for some C(n,�) > 0. Let C > 0 be as Lemma 3.12 for R = diam(suppμ) and
R0 = 2R. Then, for |x − y| < R,

|K (x, y) − ∇1�(x − y, 0;A)| ≤ C
τA(r)

rn
+ C

τ̂A(R)

Rn

≤ CτA(r)+ C τ̂A(R)R−nrn

rn
, r = |x − y|

2
.

(3.88)
Thus, (3.87), (3.88), and the triangle inequality imply

|K (x, y)| ≥ |∇1�(x − y, 0;A)| − |K (x, y)− ∇1�(x − y, 0;A)|
≥ C(n,�)− CτA(r)− C τ̂A(R)R−nrn

rn
.

Since τA(2− j ) → 0 as j → ∞ and also τA is cdb-doubling for some constant
cdb > 1, there exists j0 ∈ N such that, for every j > j0,

CτA(2
− j )+ C τ̂A(R)R

−n2− jn <
C(n,�)

2max(cdb, 2n)
.

Therefore, if 2−N ≤ |x − y| < 2−N+1 for some N ∈ N so that N > j0, it holds
that

CτA(|x − y|/2)+ C τ̂A(R)R
−n |x − y|n

2n

< max(cdb, 2
n)

C(n,�)

2max(cdb, 2n)
= C(n,�)/2.

Therefore, for |x − y|/2 < 2− j0=:r0,

|K (x, y)| � |x − y|−n,

which proves the lemma. ��

4. The Main Lemmas

Let A be a uniformly elliptic matrix as in Lemma 3.12. In particular, we recall
that we introduced the function τA in (1.12) and ωn in Section2.
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Lemma 4.1. (Main Lemma I) Let A be a uniformly elliptic matrix in R
n+1, n ≥ 2,

satisfying A ∈ D̃MO. Let Q be a cube in R
n+1 with center xQ and side-length

�(Q) � 1, and let ν ∈ Mn+(Rn+1) be supported on Q and have n-growth constant
c0 > 0. Assume also that there exist a Borel set �Q and a constant M ≥ 1 such
that

B(xQ, �(Q)) ⊂ �Q ⊂ B(xQ,M�(Q))

and ( Ā�Q )s :=−
∫
�Q

As = I d. Let Tν denote the gradient of the single layer potential

associated with the matrix A. Then, there exist positive constants C ′ = C ′(n, c0)
and C ′′ = C ′′(n,�,M, c0) such that for δ > 0 we have that

‖Tν,δ − ω−1
n Rν,δ‖L2(ν)→L2(ν) ≤ C ′IτA (�(Q))+ C ′τ̂A(�(Q))

+ C ′′IωA(�(Q))
1/2‖Rν,δ‖L2(ν)→L2(ν). (4.1)

Proof. Let δ > 0 and

T̄ν,δ f (x):=
∫

|x−y|>δ
∇1�(x − y, 0; Āx,δ/2) f (y) dν(y).

By Lemma 3.15 we have that

‖Tν,δ − T̄ν,δ‖L2(ν)→L2(ν) �n,� IτA(�(Q))+ τ̂A(�(Q)). (4.2)

Moreover,

K3
�(x, z)

(3.76)= ∇1�(z, 0; Āx,δ/2)− ∇1�
(
z, 0; Ā�Q

)
= ∇1�(z, 0; Āx,δ/2)− ω−1

n
z

|z|n+1 ,

where the second equality holds because of the assumption ( Ā�Q )s = I d. Hence
T̄ν,δ − ω−1

n Rν,δ = TK3
�,ν,δ

, so Lemma 3.16 concludes the proof of (4.1). ��
In the next lemma we denote by Rμ and Tμ the principal values of the corre-

sponding singular integral operators.

Lemma 4.2. (Main Lemma II) Let A be a uniformly elliptic matrix inR
n+1, n ≥ 2,

satisfying A ∈ D̃MO, and let Q be a cube in R
n+1 with center xQ and side-length

�(Q) � 1. Let also �Q be a Borel set and M ≥ 1 a constant such that

B(xQ, �(Q)) ⊆ �Q ⊆ B(xQ,M�(Q))

and Ā�Q :=−
∫
�Q

As = I d. Let μ be a non-negative Radon measure on R
n+1

with compact support. Assume that for some integer N > 0 we have 2N�(Q) ≤
diam(suppμ) and for a constant C0 > 0, the measure μ is such that

�μ

(
B(x, r) ∩ 2N Q

) ≤ C0�μ(2
N Q), for all x ∈ 2N Q, 0 < r ≤ 2N�(Q),

(4.3)

PN
ω,μ(Q) ≤ C0IαA

(
2−N )�μ(2

N Q), (4.4)
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where �μ and PN
ω,μ were defined in (1.13) and (1.14) respectively. If Tμ denotes

the gradient of the single layer potential associated with the matrix A and there
exists τ ∈ (0, 1) such that

(
−
∫
Q

∣∣∣Tμ1(x)− −
∫
Q
Tμ1

∣∣∣2 dμ(x)
)1/2 ≤ τ 1/2�μ(2

N Q), (4.5)

then it holds that(
−
∫
Q

∣∣∣Rμ1(x)− −
∫
Q
Rμ1

∣∣∣2 dμ(x)
)1/2 ≤ C1�μ(2

N Q)
(
τ 1/2 + IαA

(
2−N ))

+ C1�μ(2
N Q)

(
ϑ
(
2N�(Q)

) + IωA (2
N�(Q))1/2‖Rμ‖L2(μ|2N Q)→L2(μ|2N Q)

)
,

where ϑ(8�(Q)):=IτA (8�(Q))+ τ̂A(8�(Q)), and C1 depends on n,�, c0,C0,M,
and diam(suppμ).

Proof. Note that (4.1) still holds if we replace the truncated singular integrals on
its left hand-side by their principal values. This is an easy application of Fatou’s
lemma and the existence of principal values given by Proposition 1.5.

For brevity, we write

mQ( f, μ) = −
∫
Q

f dμ.

We define

L2
0(μ, Q):=

{
f ∈ L2(μ) : supp f ⊂ Q, mQ( f, μ) = 0

}

and by L2
0(μ, Q; R

n+1) its vector-valued analogue. The space L2
0(μ, Q) endowed

with the norm‖·‖L2(μ) is aHilbert spacewhoseBanachdual is the space of functions
in L2(μ) modulo an additive constant and equipped with the norm ‖ · ‖L2(μ) (see
e.g. [37, 1.2.2, p. 143]). Moreover, for f ∈ L2(μ, Q) it holds that

‖ f − mQ( f, μ)‖L2(μ,Q) ≈ sup
g∈L20(μ,Q),‖g‖

L2(μ)
=1

∫
( f − mQ( f, μ))g dμ

= sup
g∈L20(μ,Q),‖g‖

L2(μ)
=1

∫
f g dμ,

(4.6)

where the second identity follows from mQ(g, μ) = 0.
Then we have that(∫

Q

∣∣Rμ1(x) − mQ(Rμ1, μ(x))
∣∣2 dμ

)1/2

≈ sup
�g∈L20(μ,Q;Rn+1),
‖�g‖

L2(μ;Rn+1)
=1

∣∣∣∣
∫

Rμ1 · �g dμ
∣∣∣∣

= sup
�g∈L20(μ,Q;Rn+1),
‖�g‖

L2(μ;Rn+1)
=1

∣∣∣∣
∫

R∗
μ �g dμ

∣∣∣∣,
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where

R∗
μ �g(x):=

∫
y−x

|y−x |n+1 · �g(y) dμ(y).

We also denote that

Rμ · �g(x):=
∫

x−y
|x−y|n+1 · �g(y) dμ(y),

so that R∗
μg(x) = −Rμ · �g(x) for all x ∈ R

n+1.
Then, for �g ∈ L2

0(μ, Q; R
n+1)with ‖�g‖L2(μ;Rn+1) = 1 and Sμ · �g:=ωnTμ · �g−

Rμ · �g, triangle inequality yields
∣∣∣∣
∫

R∗
μ �g dμ

∣∣∣∣ =
∣∣∣∣
∫

Rμ · �g dμ
∣∣∣∣

�
∣∣∣∣
∫

Tμ · �g dμ
∣∣∣∣ +

∣∣∣∣
∫

Sμ · �g dμ
∣∣∣∣=:I + I I.

By (4.6) and the hypothesis (4.5) we have that

I � ‖Tμ1 − mQ(Tμ1, μ)‖L2(μ) ≤ τ 1/2�μ(2
N Q)μ(Q)1/2. (4.7)

We denote

K(x, y):=ωn∇1�A(x, y) − x − y

|x − y|n+1 , x, y ∈ R
n+1, x �= y.

In order to estimate I , we first observe that Lemma 3.9 and the standard Calderón-
Zygmund properties of the Riesz kernel imply that

|K(x, y) − K(x, z)| �n,�,R αA

( |y − z|
|x − y|

)
|x − y|−n (4.8)

for 2|y − z| ≤ |x − y| ≤ R, where

αA(t):=tβ + t + ωA(t), t > 0. (4.9)

Moreover, A ∈ D̃MO implies αA ∈ DS(κ).
Now, we write

I I ≤
∣∣∣∣
∫
2N Q

Sμ · �g dμ
∣∣∣∣ +

∣∣∣∣
∫
Rn+1\2N Q

Sμ · �g dμ
∣∣∣∣=:I I1 + I I2.

In order to estimate I I1 we apply Lemma 4.1, the Cauchy-Schwarz inequality and
the assumption ‖�g‖L2(μ;Rn+1) = 1, which give that

I I1 ≤ C ′�μ(2
N Q)ϑ

(
2N�(Q)

)
μ(Q)1/2

+ C ′′�μ(2
N Q)IωA

(
2N�(Q)

)1/2‖Rμ‖L2(μ|2N Q)→L2(μ|2N Q)
μ(Q)1/2,

where the multiplicative factor �μ(2N Q) on the right hand side is a consequence
of (4.3).
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Denote by xQ the center of the cube Q. To estimate I I2, observe that �g ∈
L2
0(μ, Q; R

n+1) and (4.8) imply that

I I2 ≤
∫
Rn+1\2N Q

∫
Q

|K(x, y) − K(x, xQ)||�g(y)| dμ(y) dμ(x)

�
∫
Rn+1\2N Q

∫
Q
αA

( |y − xQ |
|x − y|

) 1

|x − y|n |�g(y)| dμ(y) dμ(x)

≤
∑
j≥N

∫
2 j+1Q\2 j Q

∫
Q
αA

( |y − xQ |
|x − y|

) 1

|x − y|n |�g(y)| dμ(y) dμ(x)

� PN
ω,μ(Q)μ(Q)

1/2,

(4.10)

where the last inequality follows from the definition of PN
ω,μ(Q), the doubling

property of αA, and the assumption ‖�g‖L2(μ;Rn+1) = 1.
The bounds (4.7), (4.10), (4.10), and the assumption (4.4) conclude the proof

of the lemma. ��

5. The Approximating Measures

Let Q be a cube in R
n+1 and let ν ∈ Mn+(Q). We fix a function ϕ ∈ C∞

c (Rn+1)

such that suppϕ ⊂ B(0, 1), 0 ≤ ϕ ≤ 2, and ‖ϕ‖L1(Rn+1) = 1. Given ε > 0, we
denote

ϕε(z):= 1

εn+1 ϕ
( z
ε

)
for z ∈ R

n+1,

and we define

νε:=ν ∗ ϕε. (5.1)

The measure νε here introduced is absolutely continuous with respect to the
LebesguemeasureLn+1, its support is contained in the set {x ∈ R

n+1 : dist(x, supp ν)
≤ ε} and it satisfies ‖νε‖ = ‖ν‖ for all ε > 0. The following lemma shows that,
under our hypotheses on the matrix A, the L2(ν)-boundedness of Tν controls the
L2(νε)-boundedness of Tνε .

Lemma 5.1. Let A be a uniformly elliptic matrix in R
n+1, n ≥ 2, satisfying A ∈

D̃MO. Let ν ∈ Mn+(Q) with growth constant c0 > 0, and let νε be as in (5.1) for
ε > 0. Then

‖Tνε‖L2(νε)→L2(νε)
� 1 + ‖Tν‖L2(ν)→L2(ν), (5.2)

where the implicit constant depends on n, c0, � and diam(supp ν).

Proof. Given f ∈ L2(νε) and ε > 0, we define σε:= f νε. Let N ∈ N be such that
2−N−1�(Q) ≤ ε < 2−N�(Q). Let {Qi }i be a family of Ñ :=3n+12N (n+1) cubes
with disjoint interior and side-length 2−N�(Q) that cover 3Q.We denote by xQi the
center of the cube Qi . For any i = 1, . . . , Ñ we define the set v(Qi ):=3Qi ∩ 3Q,
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which consists of the union of at most 3n+1 cubes of side-length 2−N�(Q). We also
define

σ̃ε,i := σε(Qi )

ν(v(Qi ))
ν|v(Qi ) =

( σε(Qi )

ν(v(Qi ))
χ |v(Qi )

)
ν=: f̃ε,i ν, (5.3)

and also

σ̃ε:=
Ñ∑
i=1

σ̃ε,i =
Ñ∑
i=1

f̃ε,i ν=: f̃ε ν. (5.4)

We claim that f̃ε ∈ L2(ν) satisfies

‖ f̃ε‖L2(ν) �n ‖ f ‖L2(νε)
. (5.5)

Observe that the choices of ε and N yield

{z ∈ R
n+1 : dist(z, Qi ) < ε} ⊂ v(Qi ).

Thus, an application of Fubini’s theorem and the choice of the cut-off function ϕ
gives that

νε(Qi ) =
∫
Qi

∫
ϕε(x − y) dν(y) dx

=
∫

{z∈Rn+1:dist(z,Qi )<ε}

∫
Qi

ϕε(x − y) dx dν(y)

≤ ν
({z ∈ R

n+1 : dist(z, Qi ) < ε}) ≤ ν(v(Qi )).

(5.6)

Note that there exists a dimensional constant cn > 0 such that, for i = 1, . . . , Ñ ,
the set v(Qi ) has non-empty intersection with at most cn different sets of the form
v(Q j ) for j = 1, . . . , Ñ . Analogously, every cube Q j can be contained in at most
cn different sets of the form v(Qi ). For i = 1, . . . , Ñ we also define the cube Q∗

i as
a cube such that v(Q∗

i )∩ v(Qi ) �= ∅ and, for all j such that v(Q j )∩ v(Qi ) �= ∅,
it holds that

|σε(Q j )|
ν(v(Q j ))

≤ |σε(Q∗
i )|

ν(v(Q∗
i ))

. (5.7)

Hence, by elementary inequalities and the definitions above we obtain

‖ f̃ε‖2L2(ν)
=
∫ ∣∣∣∣

Ñ∑
i=1

σε(Qi )

ν(v(Qi ))
χv(Qi )(x)

∣∣∣∣
2

dν(x)

=
Ñ∑
i=1

σε(Qi )
2

ν(v(Qi ))
+

Ñ∑
i, j=1,i �= j

∫
σε(Qi )

ν(v(Qi ))

σε(Q j )

ν(v(Q j ))
χv(Qi )∩v(Q j )(x) dν(x)

(5.7)≤
Ñ∑
i=1

σε(Qi )
2

ν(v(Qi ))
+ cn

Ñ∑
i=1

∫
σε(Q∗

i )
2

ν(v(Q∗
i ))

2 χv(Qi )(x) dν(x).

(5.8)
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The first sum on the right hand side of (5.8) satisfies

Ñ∑
i=1

(σε(Qi ))
2

ν(v(Qi ))
=

Ñ∑
i=1

1

ν(v(Qi ))

(∫
Qi

f dνε

)2

≤
Ñ∑
i=1

νε(Qi )

ν(v(Qi ))
‖ f χQi ‖2L2(νε)

(5.6)≤ ‖ f ‖2L2(νε)

(5.9)

and, analogously, we have that

Ñ∑
i=1

∫
σε(Q∗

i )
2

ν(v(Q∗
i ))

2χv(Qi )(x) dν(x) �n ‖ f ‖2L2(νε)
. (5.10)

Hence, by (5.9) and (5.10), we get (5.5).
Let K (x, y):=∇1�(x, y; A), for x, y ∈ R

n+1 with x �= y and, for δ > 0, we
define Kδ(x, y):=K (x, y)χB(0,δ)c (x − y). For δ ∈ (0, ε/2) we write

Tδσε(x) =
∫

|x−y|<ε
Kδ(x, y) dσε(y)+

∫
|x−y|≥ε

Kδ(x, y) d
(
σε − σ̃ε

)
(y)

+
∫

|x−y|≥ε
Kδ(x, y) dσ̃ε(y)=:Iδ,ε(x)+ I Iδ,ε(x)+ I I Iδ,ε(x). (5.11)

In order to estimate the first term, we observe that, by the definition of ϕ and the
growth of ν, we have

νε
(
B(x, 2−kε)

) = 1

εn+1

∫
B(x,2−kε)

∫
ϕ
( y − z

ε

)
dν(z) dy

≤ 2

εn+1

∫
B(x,2−kε)

ν(B(y, ε)) dy ≤ 2

ε

∣∣B(x, 2−kε)
∣∣ �n

εn

2k(n+1)
.

(5.12)
Hence, ifMνε stands for the centered Hardy-Littlewood maximal function

Mνεg(x):= sup
r>0

1

νε(B(x, r))

∫
B(x,r)

|g(y)| dνε(y), for g ∈ L1
loc(νε),

the decay of K , a standard integration over dyadic annuli, and the definition of σε
give that

∣∣Iδ,ε(x)∣∣ �
∞∑
k=0

∫
A(x,2−k−1ε,2−kε)

1

|x − y|n d|σε|(y)

�
∞∑
k=0

2nk

εn
|σε|

(
B(x, 2−k−1ε)

)

�
∞∑
k=0

2nk

εn
νε
(
B(x, 2−kε)

)
Mνε f (x)

(5.12)
� Mνε f (x).

(5.13)
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Let us estimate I Iδε (x). Let β > 0 be as in Lemma 3.9. For i ∈ {1, . . . , Ñ }, the
fact that σε,i :=σε|Qi and σ̃ε,i have equal total mass, Lemma 3.9, triangle inequality,
and the choice of N in the construction yield

∣∣∣∣
∫

|x−y|>ε
Kδ(x, y) d

(
σε,i − σ̃ε,i

)
(y)

∣∣∣∣
=
∣∣∣∣
∫

|x−y|>ε
(
Kδ(x, y) − Kδ(x, xQi )

)
d
(
σε,i − σ̃ε,i

)
(y)

∣∣∣∣
≤
∫

|x−y|>ε
|K (x, y)− K (x, xQi )| d

(|σε,i | + |σ̃ε,i |
)
(y)

�
∫

|x−y|>ε
|y − xQi |β
|x − y|n+β d

(|σε,i | + |σ̃ε,i |
)
(y)

+
∫

|x−y|>ε
1

|x − y|n
∫ |y−xQi

|
|x−y|

0
ωA(t)

dt

t
d
(|σε,i | + |σ̃ε,i |

)
(y)

=:I I ′
δ,ε + I I ′′

δ,ε. (5.14)

Thus

I I ′
δ,ε � εβ

∫
|x−y|>ε

1

|x − y|n+β d
(|σε,i | + |σ̃ε,i |

)
(y)

�
∞∑
k=0

εβ

(2kε)n+β
(
|σε|

(
B(x, 2k+1)

) + |σ̃ε|
(
B(x, 2k+1)

))
,

(5.15)

where the last inequality follows from a standard integration on dyadic annuli.
Similarly, the second term can be bounded using the monotonicity of the function
IωA and integration on dyadic annuli. More precisely, we have that

I I ′′
δ,ε �

∫
|x−y|>ε

1

|x − y|n IωA

( ε

|x − y|
)
d
(|σε,i | + |σ̃ε,i |

)
(y)

�
∞∑
k=0

τA(2−k)

(2kε)n

(
|σε|

(
B(x, 2k+1)

) + |σ̃ε|
(
B(x, 2k+1)

))
,

(5.16)

where we also used the fact that IωA (·) ≤ τA(·).
Now, forμ ∈ M(Rn+1), we define the n-dimensional truncated radial maximal

operator

Mεμ(x):= sup
r≥2ε

|μ|(B(x, r))
rn

,

and the truncated centered maximal function

Mμ,εg(x):= sup
r>2ε

1

μ(B(x, r))

∫
B(x,r)

|g(y)| dμ(y), for g ∈ L1
loc(μ).
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So if we gather (5.14), (5.15), and (5.16), and sum over i = 1, . . . , Ñ , in view
of the fact that τA ∈ DS(κ) for some κ = κ(n) and (2.2), we deduce that

|I Iδ,ε(x)| �
∞∑
k=0

(
2−kβ + τA(2

−k)
)(
Mεσε(x)+ Mεσ̃ε(x)

)

�
( ∞∑
k=0

2−kβ +
∫ 1

0
τA(t)

dt

t

)(
Mεσε(x)+ Mεσ̃ε(x)

)

� Mεσε(x)+ Mεσ̃ε(x).

(5.17)

We claim that the operator Mε is bounded from M(Rn+1) to L1,∞(νε), with
operator norm independent on ε. Indeed let μ ∈ M(Rn+1), consider λ,m > 0, and
let us denote

Aλ:=
{
x ∈ R

n+1 : Mεμ(x) > λ
}

and Aλ,m :=Aλ ∩ B(0,m).

Thus, for every x ∈ Aλ,m there exists rx > 2ε such that

|μ|(B(x, rx )) > λrnx .

Fubini’s theorem, the normalization ‖ϕ‖L1(Rn+1) = 1, and the choice of rx imply
that, for all x ∈ Aλ,m , we have that

νε(B(x, rx )) =
∫
B(x,rx )

∫
ϕε(y − z) dν(z)dy ≤ ν(B(x, rx + ε)) �

(3
2
rx
)n
.

(5.18)
Besicovitch covering Lemma implies that there exists a countable collection of
balls {Bi }i ⊂ {

B(x, rx )
}
x∈Aλ,m

with bounded overlaps that covers Aλ,m . Hence

νε(Aλ,m) ≤ νε

(⋃
i

Bi
)

≤
∑
i

νε(Bi )
(5.18)
� 3n

2n
∑
i

|μ|(Bi )
λ

� 3n

2nλ
‖μ‖.

Since the latter estimate holds for every m, our claim follows.
Moreover, the fact that ν and νε have n-polynomial growth implies thatMνε,ε

and Mν,ε are bounded from L∞(νε) to L∞(νε) and from L∞(ν) to L∞(νε), re-
spectively. Thus, Marcinkiewicz interpolation theorem implies that

‖Mνε,ε g‖L2(νε)
� ‖g‖L2(νε)

and ‖Mν,ε g‖L2(νε)
� ‖g‖L2(ν). (5.19)

Analogously, we can prove that the operatorMν,ε is bounded from L2(ν) to L2(ν),
namely

‖Mν,ε g‖L2(ν) � ‖g‖L2(ν). (5.20)

Now we turn our attention to I I Iδ,ε(x). Since we assumed δ < ε/2, we have
that

|I I Iδ,ε(x)| ≤ ∣∣Tεσ̃ε(x)∣∣ + Mεσ̃ε(x).

Therefore, by (5.11), (5.13), (5.17), and the inequality above, we infer that

|Tνε,δ f (x)| = |Tδσε(x)| � Mεσε(x)+ Mεσ̃ε(x)+ Mνε f (x)+ ∣∣Tεσ̃ε(x)∣∣



38 Page 50 of 59 Arch. Rational Mech. Anal. (2023) 247:38

= Mν,ε fε(x)+ Mν,ε f̃ε(x)+ Mνε f (x)+ ∣∣Tεσ̃ε(x)∣∣.
(5.21)

We claim that, for i = 1, . . . , Ñ , it holds that

|Tεσ̃ε(x)− Tεσ̃ε(x
′)| � Mεσ̃ε(z) for all x, x ′, z ∈ 3Qi . (5.22)

Indeed, for x, x ′ ∈ 3Qi , observe that the choice of ε implies |x−x ′| ≤ diam(3Qi ) =
3
√
n + 1�(Qi ) ≤ 6nε. Furthermore, by triangle inequality we have that

B(x ′, ε) ⊂ B(x, 10nε) ⊂ B(x ′, 20nε).

Thus, we can write

|Tεσ̃ε(x)− Tεσ̃ε(x
′)| =

∣∣∣
∫

|x−y|>ε
K (x, y) dσ̃ε(y)−

∫
|x ′−y|>ε

K (x ′, y) dσ̃ε(y)
∣∣∣

≤
∫

|x−y|>10nε
|K (x, y) − K (x ′, y)| d|σ̃ε|(y)+

∫
ε<|x−y|≤10nε

|K (x, y)| d|σ̃ε|(y)

+
∫
ε<|x ′−y|≤20nε

|K (x ′, y)| d|σ̃ε|(y)=:J1 + J2 + J3.

The Calderón-Zygmund properties of K in Lemma 3.9, a standard integration
over dyadic annuli analogous to (5.14), the inequality IωA (·) ≤ τA(·), and the
assumption τA ∈ DS(κ) imply

J1 �
∫

|x−y|>ε

( |x − x ′|β
|x − y|n+β +

∫ |x ′−y|
|x−y|

0 ωA(t)t−1 d

|x − y|n
)
d|σ̃ε|(y)

�
∫

|x−y|>ε

( εβ

|x − y|n+β + IωA

(
ε/|x − y|)

|x − y|n
)
d|σ̃ε|(y)

�
∞∑
k=0

( εβ

(2kε)n+β + τA(2−k)

(2kε)n

)
|σ̃ε|

(
B(x, 2kε)

)

�
∞∑
k=0

(
2−kβ + τA(2

−k)
)
Mεσ̃ε(z)

(2.2)
�

(
1 +

∫ 1

0
τA(t)

dt

t

)
Mεσ̃ε(z) � Mεσ̃ε(z).

(5.23)

Analogously, we can prove that

J2 + J3 �
∫
ε<|x−y|<10nε

1

|x − y|n d|σ̃ε|(y)+
∫
ε<|x ′−y|<20nε

1

|x ′ − y|n d|σ̃ε|(y)
� Mεσ̃ε(z).

(5.24)
Combining (5.23) and (5.24), we get (5.22).
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Finally, in light of νε(Qi ) ≤ ν(3Qi ), the definition of νε, and (5.22), we have
that

∫
|Tεσ̃ε(x)|2 dνε(x) =

Ñ∑
i=1

∫
Qi

|Tεσ̃ε(x)|2 dνε(x) ≤
Ñ∑
i=1

(
νε(Qi ) sup

x∈3Qi

|Tεσ̃ε(x)|2
)

≤
Ñ∑
i=1

[
νε(Qi )

(
inf

z∈3Qi
|Tεσ̃ε(z)|2 + inf

z∈3Qi

(Mεσ̃ε(z)
)2)]

≤
Ñ∑
i=1

∫
3Qi

|Tεσ̃ε(x)|2 dν(x)+
Ñ∑
i=1

∫
3Qi

(Mεσ̃ε(x)
)2 dν(x)

≤ ‖Tεσ̃ε‖2L2(ν)
+ ‖Mεσ̃ε‖2L2(ν)

= ‖Tν,ε f̃ε‖2L2(ν)
+ ‖Mν,ε f̃ε‖2L2(ν)

.

(5.25)
Hence, by (5.20), (5.21), (5.25), and (5.19), we infer that

‖Tνε,δ f ‖L2(νε)
� ‖Mνε f ‖L2(νε)

+ ‖Mνε,ε f ‖L2(νε)
+ ‖Mν,ε f̃ε‖L2(νε)

+ ‖Tεσ̃ε‖L2(νε)
+ ‖Mν,ε f̃ε‖L2(ν)

� ‖ f ‖L2(νε)
+ ‖ f̃ε‖L2(ν) + ‖Tν‖L2(ν)→L2(ν)‖ f̃ε‖L2(ν)

(5.9)
�

(
1 + ‖Tν‖L2(ν)→L2(ν)

)‖ f ‖L2(νε)
,

which concludes the proof of the lemma. ��
Conversely to theprevious lemma,weprove that the uniform L2(νε)-boundedness

of Tνε with respect to ε controls the L
2(ν)-boundedness of Tν at small scales.

Lemma 5.2. Let ν, νε, A and Q be as in Lemma 5.1. Let us also assume that there
exists C > 0 such that ‖Tνε‖L2(νε)→L2(νε)

≤ C for all ε > 0. Then for any fixed
δ > 0,

lim
ε→0

∥∥Tνε,δ
∥∥
L2(νε)

= ‖Tν,δ‖L2(ν) for any fixed δ > 0. (5.26)

In particular ‖Tν‖L2(ν)→L2(ν) ≤ C.

Proof. It is clear that‖Tν‖L2(ν)→L2(ν) ≤ C follows form (5.26) and‖Tνε‖L2(νε)→L2(νε)≤ C and so it suffices to prove (5.26). To this end, if f ∈ C∞
c (Q) and δ > 0 is

fixed, we have that
∣∣∣∣
∫ ∣∣Tνε,δ f (x)

∣∣2 dνε(x)−
∫ ∣∣Tν,δ f (x)∣∣2 dν(x)

∣∣∣∣
≤
∫ ∣∣Tν,δ f (x)∣∣2 d(νε − ν

)
(x)+

∫ ∣∣∣∣∣Tνε,δ f (x)
∣∣2 − ∣∣Tν,δ f (x)∣∣2

∣∣∣ dνε(x)
=:Iδ,ε + I Iδ,ε.

The first summand Iδ,ε vanishes as ε → 0 because |Tν,δ f (x)|2 is a bounded
and continuous function, ν is compactly supported, and νε converges weakly to ν.
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If ψ ∈ C∞ is a non-negative smooth function such that χB(0,2)c ≤ ψ ≤ χB(0,1)c

with ‖∇ψ‖∞ � 1. We set ψδ(·) = ψ(·/δ) and
K (x, y):=∇1�A(x, y), x, y ∈ R

n+1 \ {0} and Kδ(x, y):=K (x, y)ψδ(x − y).

As Lemma 3.9 entails |K (x, y)| � |x − y|−n for all x, y ∈ B(0, R), it follows that

|Kδ(x, y)| � δ−n for all x, y ∈ B(0, R), x �= y. (5.27)

Moreover, if x, y1, y2 ∈ B(0, R) such that y1 �= y2 and 2|y1 − y2| < min{|x −
y1|, |x − y2|}, by the mean value theorem and (3.23), it holds that

|Kδ(x, y1)− Kδ(x, y2)|
≤ |Kδ(x, y1)| |ψδ(x − y1)− ψδ(x − y2)| + |Kδ(x, y1)− Kδ(x, y2)|

� |y1 − y2|
δn+1 +

(
|y1 − y2|β

δβ
+
∫ |y1−y2 |

δ

0
ωA(t)

dt

t

)
1

δn

(1.13)
�δ αA

( |y1 − y2|
δ

)
.

If |y1 − y2| < ε � δ, then, since δ < min{|x − y1|, |x − y2|}, we have that
|Kδ(x, y1)− Kδ(x, y2)| ��,n,δ αA(ε/δ) → 0, as ε → 0. (5.28)

Inorder to estimate I Iδ,εwefirst observe that (5.27) and the fact thatνε(Rn+1) =
ν(Rn+1) readily imply∣∣Tνε,δ f (x)+ Tν,δ f (x)

∣∣ � δ−n‖ f ‖L∞(Rn+1)ν(R
n+1), (5.29)

where the implicit constant is independent of ε. Also, the definition of νε and
Fubini’s theorem yield

∣∣Tνε,δ f (x)− Tν,δ f (x)
∣∣ =

∣∣∣∣
∫

Kδ(x, y) f (y) dνε(y)−
∫

Kδ(x, z) f (z) dν(z)

∣∣∣∣
=
∣∣∣∣
∫

Kδ(x, y) f (y)
∫

ϕε(y − z) dν(z) dy

−
∫

Kδ(x, z) f (z)
∫

ϕε(y) dy dν(z)

∣∣∣∣
=
∣∣∣∣
∫ [

Kδ(x, y) f (y)ϕε(y − z) dy −
∫

Kδ(x, z) f (z)ϕε(y) dy

]
dν(z)

∣∣∣∣
≤
∫ ∫

B(0,ε)

∣∣Kδ(x, y + z) f (y + z)− Kδ(x, z) f (z)
∣∣ϕε(y) dy dν(z).

Furthermore, the estimate (5.27), the mean value theorem, and (5.28) imply∣∣Tνε,δ f (x)− Tν,δ f (x)
∣∣

≤
∫ ∫

B(0,ε)

∣∣Kδ(x, y + z)
∣∣| f (y + z)− f (z)|ϕε(y) dy dν(z)

+
∫ ∫

B(0,ε)
| f (z)|∣∣Kδ(x, y + z)− Kδ(x, z)

∣∣ϕε(y) dy dν(z)
� ε

δn
‖∇ f ‖L∞(Rn+1)ν(R

n+1)+ αA(ε/δ)‖ f ‖L∞(Rn+1)ν(R
n+1).
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Hence, by(5.29) and the latter inequality we infer that

I Iδ,ε =
∫ ∣∣Tνε,δ f (x)+ Tν,δ f (x)

∣∣∣∣Tνε,δ f (x)− Tν,δ f (x)
∣∣ dνε(x) �δ, f,ν ε + αA(ε/δ)

and so I Iδ,ε → 0 as ε → 0. This proves (5.26), which concludes the proof of the
lemma. ��

6. The Proof of Theorem 1.1

Proof of Theorem 1.1. Let R:= diam(suppμ) and assume that suppμ ⊂ Q0 for
some cube Q0 such that �(Q0) = R. First, we prove that

‖Rμ‖L2(μ)→L2(μ) � 1 + ‖Tμ‖L2(μ)→L2(μ). (6.1)

For N ∈ Nwe consider a collection of cubes {Qi }1≤i≤Nn+1 with disjoint interior
such that �(Qi ) = R/N for all i and Q0 = ⋃

i Qi .
We also denote μi :=μ|Qi and observe that Tμi is bounded on L2(μi ) and

satisfies
‖Tμi ‖L2(μi )→L2(μi )

≤ ‖Tμ‖L2(μ)→L2(μ). (6.2)

We recall that Qi ⊂ B
(
xQi ,

√
n + 1�(Qi )

) ⊂ B(xQi , 2n�(Qi )). Moreover, we

denote Si :=
√ ¯(As)xQi ,4n��(Qi ) and we define the change of variables ψi (x):=Si x

for all x ∈ R
n+1. Finally, we consider the measure νi :=(ψ−1

i )�μi , and we denote

by Âi the matrix defined in (3.8), namely

Âi (x):= | det Si |
∣∣S−1

i

(
B(xQi , 4n��(Qi ))

)∣∣
|B(xQi , 4n��(Qi ))| S−1

i (A ◦ Si )(x)S
−1
i for all x ∈ R

n+1.

By Lemma 3.5 we have that −
∫
S−1
i

(
B(xQi ,4n��(Qi ))

) Âi
s = I d and, by Lemma 3.6,

the moduli of oscillation ω Âi and τ Âi belong to D̃MO. Moreover, by (3.9) it holds
that

supp νi ⊂ S−1
i (Qi ) ⊂ S−1

i

(
B(xQi , 2n�(Qi ))

) ⊆ B
(
S−1
i xQi , 4n�

1/2�(Qi )
)

and the ball B
(
S−1
i xQi , 4n�

1/2�(Qi )
)
is contained in a cube Q̃i with center xQ̃i

=
S−1
i xQi and side-length �(Q̃i ) = 4n�1/2�(Qi ).
Given M :=4n�3/2, the inclusions (3.9) imply

B
(
xQ̃i

, �(Q̃i )
) ⊂ S−1

i

(
B(xQi , 4n��(Qi ))

) ⊂ B
(
xQ̃i

,M�(Q̃i )
)
.

The definition of νi and the bilipschitz character of ψi yield

νi (B(x, r)) ≤ c0Mrn for all x ∈ R
n+1, r > 0.

Hence, the measure νi belongs to Mn+(Rn+1) and is supported on Q̃i . For ε > 0,
let νi,ε be the auxiliary measure defined as in (5.1). Let f be a compactly supported
Lipschitz function in L2(νi,ε) (this class is clearly dense in L2(νi,ε)), and observe
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that Tψi ,νi,ε defined according to the notation introduced in (3.4) satisfies the as-
sumptions of Main Lemma 4.1. By triangle inequality, the Main Lemma 4.1, and
Lemma 3.6 we have

‖Rνi,ε f ‖L2(νi,ε)
≤ ωn‖ω−1

n Rνi,ε f − Tψi ,νi,ε f ‖L2(νi,ε)
+ ωn‖Tψi ,νi,ε f ‖L2(νi,ε)

≤ C ′ (IτA (�(Q̃i ))+ τ̂A(�(Q̃i ))
)

‖ f ‖L2(νi,ε)

+ ωn‖Tψi ,νi,ε f ‖L2(νi,ε)
+ C ′′

(∫ �(Q̃i )

0
ωA(t)

dt

t

)1/2

‖Rνi,ε f ‖L2(νi,ε)

≤
(
‖ f ‖L2(νi,ε)

+ ωn‖Tψi ,νi,ε f ‖L2(νi.ε)

)
+ 1

2
‖Rνi,ε f ‖L2(νi,ε)

,

(6.3)
where in the last inequality we used Lemma 5.1 and chose N big enough (see also
Remark 2.2) so that

C ′′(∫ �(Q̃i )

0
ωA(t)

dt

t

)1/2 ≤ 1/2

C ′(IτA(�(Q̃i )
) + τ̂A

(
�(Q̃i )

)) ≤ 1.

Hence, since ‖Rνi,ε f ‖L2(νi,ε)
< ∞ by construction of the approximating measures

νi,ε and the fact that f is Lipschitz with compact support, the estimate (6.3) implies
that

‖Rνi,ε f ‖L2(νi,ε)
≤ 2 ‖ f ‖L2(νi,ε)

+ 2ωn‖Tψi ,νi,ε f ‖L2(νi,ε)

(5.2)≤ (
2 + 2ωn‖Tψi ,νi ‖L2(νi )→L2(νi )

)‖ f ‖L2(νi,ε)
.

So, if we take the supremum over all compactly supported Lipschitz functions in
L2(νi,ε), by density, we have that for any δ > 0,

‖Rνi,ε,δ‖L2(νi,ε)→L2(νi,ε)
≤ 2 + 2ωn‖Tψi ,νi ‖L2(νi )→L2(νi )

(3.7)≤ C̃1 + C̃1‖Tμi ‖L2(μi )→L2(μi )
.

Taking limits as ε → 0, by Lemma 5.2, we infer

‖Rνi ,δ‖L2(νi )→L2(νi )
≤ C̃1 + C̃1‖Tμi ‖L2(μi )→L2(μi )

, (6.4)

uniformly in δ > 0, and, applying [41, Corollary 1.3], there exists C̃2 > 0 depend-
ing on dimension and �, such that

‖Rμi ‖L2(μi )→L2(μi )
≤ C̃2‖Rνi ‖L2(νi )→L2(νi )

≤ C̃1C̃2 + C̃1C̃2‖Tμi ‖L2(μi )→L2(μi )

(6.2)≤ C̃1C̃2 + C̃1C̃2‖Tμ‖L2(μ)→L2(μ). (6.5)

Thus [40, Proposition 2.25] and [40, Theorem 2.21] imply that

‖Rμ‖L2(μ)→L2(μ) � ‖R∗‖M(Rn+1)→L1,∞(μ) �n,N

Nn+1∑
i=1

‖R∗‖M(Rn+1)→L1,∞(μi )
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�n,N

Nn+1∑
i=1

(1 + ‖Rμi ‖L2(μi )→L2(μi )
)

(6.5)
� n,N ,�,R 1 + ‖Tμ‖L2(μ)→L2(μ),

which concludes the proof of (6.1) since N depends on �, n, and R.
In order to prove the converse inequality it is enough to observe that, for N big

enough, (6.1) yields

‖Tψi ,νi ‖L2(νi,ε)→L2(νi )
≤ ‖Tψi ,νi − ω−1

n Rνi ‖L2(νi,ε)→L2(νi )
+ ω−1

n ‖Rνi ‖L2(νi,ε)→L2(νi )

� 1 + ‖Rνi ‖L2(νi )→L2(νi )
� 1 + ‖Rμi ‖L2(μi )→L2(μi )

,

where the last inequality follows from [41, Corollary 1.3]. Then we apply (3.5) and
(3.6) and deduce that ‖Tμi ‖L2(μ)→L2(μ) � 1 + ‖Rμi ‖L2(μi )→L2(μi )

. Finally, we
can repeat the argument above using [40, Theorem 2.21] and [40, Proposition 2.25],
which are still true for the operator Tμ (the hypothesis that τA is a Dini function
makes possible to argue via estimates in terms of the centered maximal function
which closely resemble (5.23)), and conclude the proof of the theorem. ��
Proof of Corollary 1.3. Let μ be an n-AD-regular measure on R

n+1 with compact
support such that the gradient of the single layer potential Tμ is bounded on L2(μ).
Then, in particularμ ∈ Mn+(suppμ) so Proposition 1.1 implies thatRμ is bounded
on L2(μ). Hence, the main result of [31] yields that μ is uniformly n-rectifiable.
Conversely, it is immediate that Theorem 1.1 and the boundedness of the Riesz
transform on uniformly n-rectifiable sets imply that the boundedness of Tμ on
uniformly n-rectifiable sets. ��
Proof of Corollary 1.2. Let μ be a non-trivial totally irregular measure on R

n+1,
i.e., it satisfies 0 < �∗,n(x, μ) < ∞ and �n∗(x, μ) = 0 for μ-a.e. x ∈ R

n+1.
Arguing by contradiction, we assume that ‖Tμ‖L2(μ)→L2(μ) < ∞ and so, by
Lemma 3.17, μ has n-polynomial growth. Thus, by Theorem 1.1, we have that
‖Rμ‖L2(μ)→L2(μ) < ∞, which contradicts the main result of [16]. ��
Proof of Corollary 1.4. This is a direct consequence of Theorem 1.1 and the main
result of [32]. ��
Proof of Corollary 1.6. We first apply Lemma 4.2 for N large enough (depending
on n, τ,C1, and diam(supp ν)) so that

IαA(2
−N ) ≤ τ 1/2,

where we recall that αA(t) = t + tβ + ωA(t), t > 0.
Then, in view of (6.5), we choose �(Q) small enough (depending on N and τ )

so that 2N�(Q) is as small as required in the proof of Theorem 1.1 in order for the
following estimate to hold:

‖Rμ‖L2(μ|2N Q)→L2(μ|2N Q)
≤ 1 + C2‖Tμ‖L2(μ|2N Q)→L2(μ|2N Q)

≤ 1 + C ′
0 C2.
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Here C2 depends on n,�,M, and C0. Finally, we may choose �(Q) even smaller
(depending on n, N , τ,C ′

0,C1,C2, and diam(supp ν)) so that

IτA
(
2N�(Q)

) + τ̂A
(
2N�(Q)

) ≤ τ 1/2

and also

IωA (2
N �(Q))1/2‖Rμ‖L2(μ|2N Q )→L2(μ|2N Q )

≤ (1 + C ′
0 C2)IωA (2

N �(Q))1/2 ≤ τ 1/2.

Collecting all the above estimates and combining themwith Lemma 4.2, we deduce
that

(
−
∫
Q

∣∣∣Rμ1(x)− −
∫
Q
Rμ1

∣∣∣2 dμ(x)
)1/2 ≤ 4C1 τ

1/2�μ(2
N Q).

If τ̃ = 4C1τ
1/2 is small enough depending on C0,C ′

0, n,�,M , and diam(suppμ),
in light of Theorem 1.1 applied to the measure μ|2N Q , we can implement [20,
Theorem 1.1] and conclude the proof of the corollary. ��
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