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Vector bundles over classifying spaces of p-local finite groups
and Benson–Carlson duality

José Cantarero, Natàlia Castellana and Lola Morales

Abstract

In this paper we obtain a description of the Grothendieck group of complex vector bundles
over the classifying space of a p-local finite group (S,F ,L) in terms of representation rings of
subgroups of S. We also prove a stable elements formula for generalized cohomological invariants
of p-local finite groups, which is used to show the existence of unitary embeddings of p-local
finite groups. Finally, we show that the augmentation C∗(|L|∧p ; Fp) → Fp is Gorenstein in the
sense of Dwyer–Greenlees–Iyengar and obtain some consequences about the cohomology ring of
|L|∧p .

1. Introduction

Let K(X) be the Grothendieck group of the monoid of complex vector bundles over X. When P
is a finite p-group, Dwyer and Zabrodsky [13] showed that there is an isomorphism K(BP ) ∼=
R(P ), where R(P ) denotes the representation ring of P . A few years later, Jackowski and
Oliver proved in [17] that if G is a compact Lie group, there is an isomorphism

K(BG)
∼=−→ lim←− R(P ),

where the inverse limit is taken over all p-toral subgroups (for all primes) with respect to
inclusion and conjugation. Note that this statement has a clear ‘local’ flavour in the sense
that this object depends only on a family of subgroups of G and conjugacy relations among
them.

The notions of p-local finite groups [6] and p-local compact groups [7] introduced by Broto,
Levi and Oliver model the p-local information of finite and compact Lie groups, respectively.
Hence, one would expect to have an analogous description for the Grothendieck group of
finite-dimensional complex vector bundles over their classifying spaces. In this paper we focus
on p-local finite groups. Partial results about p-local compact groups in this direction were
obtained by Cantarero and Castellana in [8].

Recall that a p-local finite group is a triple (S,F ,L), where S is a finite p-group, F is
a saturated fusion system over S and L is a centric linking system associated to F . The
classifying space of (S,F ,L) is |L|∧p . More details can be found in Section 2 of this article. Our
generalization in this context is the following theorem.

Theorem. Given a p-local finite group (S,F ,L), restriction to the subgroups of S gives an
isomorphism

K(|L|∧p )
∼=−→ lim←−

O(Fc)

R(P ).
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2 JOSÉ CANTARERO, NATÀLIA CASTELLANA AND LOLA MORALES

Hence, the theorem above can be rephrased to say that K(|L|∧p ) can be computed by
stable elements. An important component in the proof of this theorem is the fact that p-
adic topological K-theory can also be computed by stable elements, since this cohomology
theory describes the stable behaviour of complex vector bundles. In fact, we prove a stable
elements formula for any generalized cohomology theory.

Theorem. Given a p-local finite group (S,F ,L), there is an isomorphism

h∗(|L|∧p ) ∼= lim←−
O(Fc)

h∗(BP )

for any generalized cohomology theory h∗.

We note that this result was already established for cohomology with coefficients in Fp by
Broto–Levi–Oliver in [6]. Motivated by the biset from [6, Proposition 5.5], Ragnarsson con-
structed in [27] a characteristic idempotent ω in the ring of stable self-maps {Σ∞BS,Σ∞BS}
associated to the saturated fusion system F . This idempotent determines a stable summand
BF of Σ∞BS which is homotopy equivalent to Σ∞|L|∧p and it detects F-stable maps into
spectra, in the sense that a map f : Σ∞BS → Z is F-stable if and only if f ◦ ω � f . The
theorem mentioned above is a formal consequence of the existence of ω and its properties.

In [9], Castellana and Libman study the set of homotopy classes of maps between p-local
finite groups. In particular, they construct maps into the p–completed classifying space of a
symmetric group which extend the regular representation of the Sylow subgroup. In that case,
if one embeds the symmetric group as permutation matrices in a unitary group, we obtain a
map which is a monomorphism in a p-local homotopic sense (see Section 6 for the definition of
homotopy monomorphism at the prime p).

Homotopy monomorphisms |L|∧p → BU(m)∧p at the prime p were also studied in [8] by the
first two authors of this article, where they are called unitary embeddings. Note that [8] has
some overlap with this paper, but in this case the Sylow subgroup is finite and that allows us
to show the existence of unitary embeddings of p-local finite groups. Moreover, in Section 6 we
prove the following improvement.

Theorem. Given a p-local finite group (S,F ,L), there exists a homotopy monomorphism
|L|∧p → BSU(n)∧p whose homotopy fibre is a Fp-finite space with Poincaré duality.

The motivation for this theorem comes from duality properties of cohomology rings of finite
groups. Benson–Carlson duality for cohomology rings of finite groups [4] shows that if the
Fp-cohomology ring of a finite group is Cohen–Macaulay, then it is Gorenstein. On the other
hand, the computation by Grbić in [14] of the F2–cohomology rings of the exotic 2-local finite
groups constructed in Levi–Oliver [19] shows that these rings are Gorenstein. This suggested
that an extension of Benson–Carlson duality should hold for p-local finite groups.

Dwyer, Greenlees and Iyengar [11] viewed Benson–Carlson duality and other phenomena
in the framework of ring spectra, showing that several dualities that appear in algebra and
topology are particular cases of a more general situation. From this point of view, Benson–
Carlson duality is a consequence of the fact that the augmentation map C∗(BG; Fp) → Fp is
Gorenstein in the sense of [11, Definition 8.1].

A careful analysis of this fact shows that it is a byproduct of having an injective homomor-
phism G → SU(n). In this case SU(n)/G satisfies Poincaré duality, but more importantly, only
mod p Poincaré duality is needed to show the Gorenstein condition. This is the motivation for
the theorem mentioned above, and this is sufficient to prove a duality theorem for cohomology
rings of p-local finite groups.



VECTOR BUNDLES OVER p-LOCAL FINITE GROUPS 3

Theorem. Let (S,F ,L) be a p-local finite group. Then the augmentation map
C∗(|L|∧p ; Fp) → Fp is Gorenstein in the sense of Dwyer–Greenlees–Iyengar [11]. Therefore if
H∗(|L|∧p ; Fp) is Cohen–Macaulay, then it is Gorenstein.

2. Preliminaries on p-local finite groups

In this section, we recall the notion of a p-local finite group introduced by Broto, Levi and Oliver
in [6]. One of the ingredients is the concept of saturated fusion system introduced by Puig [26].
Given subgroups P and Q of S we denote by HomS(P,Q) the set of group homomorphisms
P → Q that are conjugations by an element of S and by Inj(P,Q) the set of monomorphisms
from P to Q.

Definition 2.1. A fusion system F over a finite p-group S is a subcategory of the category
of groups whose objects are the subgroups of S and such that the set of morphisms HomF (P,Q)
between two subgroups P and Q satisfies the following conditions.

(a) HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q) for all P,Q � S.
(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

Definition 2.2. Let F be a fusion system over a p–group S.

• We say that two subgroups P,Q � S are F-conjugate if they are isomorphic in F .
• A subgroup P � S is fully centralized in F if |CS(P )| � |CS(P ′)| for all P ′ � S which are

F-conjugate to P .
• A subgroup P � S is fully normalized in F if |NS(P )| � |NS(P ′)| for all P ′ � S which are

F-conjugate to P .
• F is a saturated fusion system if the following conditions hold:

(I) Each fully normalized subgroup P � S is fully centralized and the group AutS(P ) is a
p-Sylow subgroup of AutF (P ).

(II) If P � S and ϕ ∈ HomF (P, S) are such that ϕP is fully centralized, and if we set

Nϕ = {g ∈ NS(P ) | ϕcgϕ−1 ∈ AutS(ϕP )},
then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

The motivating example for this definition is the fusion system of a finite group G. For
a fixed Sylow p-subgroup S of G, let FS(G) be the fusion system over S defined by setting
HomFS(G)(P,Q) = HomG(P,Q). This is a saturated fusion system.

In the following definition we use the notation OutF (P ) = AutF (P )/ Inn(P ).

Definition 2.3. Let F be a fusion system over a p-group S.

• A subgroup P � S is F-centric if P and all its F-conjugates contain their S-centralizers.
• A subgroup P � S is F-radical if OutF (P ) is p-reduced, that is, if OutF (P ) has no proper

normal p-subgroup.

We will use Fc to denote the full subcategory of F whose objects are the F-centric subgroups
and Fcr for the full subcategory of F-centric, F-radical subgroups.

The following theorem is a version of Alperin’s fusion theorem for saturated fusion systems
[6, Theorem A.10].
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Theorem 2.4. Let F be a saturated fusion system over S. Then for each isomorphism
P → P ′ in F , there exist sequences of subgroups of S,

P = P0, P1, . . . , Pk = P ′ and Q1, Q2, . . . , Qk

and morphisms ϕi ∈ AutF (Qi) such that the following hold.

(i) Qi is fully normalized, F-centric and F-radical for each i.
(ii) Pi−1, Pi � Qi and ϕi(Pi−1) = Pi for each i.
(iii) ϕ = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1.

The notion of a centric linking system is the extra structure needed in the definition of a
p-local finite group to obtain a classifying space which behaves like BG∧

p for a finite group G.

Definition 2.5. Let F be a fusion system over a p-group S. A centric linking system
associated to F is a category L whose objects are the F–centric subgroups of S, together with
a functor

π : L −→ Fc

and ‘distinguished’ monomorphisms P δP−→ AutL(P ) for each F-centric subgroup P � S, which
satisfy the following conditions.

(A) π is the identity on objects and surjective on morphisms. More precisely, for each pair
of objects P , Q in L, Z(P ) acts freely on MorL(P,Q) by composition (upon identifying Z(P )
with δP (Z(P )) � AutL(P )) and π induces a bijection

MorL(P,Q)/Z(P )
∼=−→ HomF (P,Q).

(B) For each F–centric subgroup P � S and each g ∈ P , the functor π sends δP (g) to
cg ∈ AutF (P ).

(C) For each f ∈ MorL(P,Q) and each g ∈ P , the following square commutes in L:

Definition 2.6. A p-local finite group is a triple (S,F ,L), where F is a saturated fusion
system over a finite p-group S and L is a centric linking system associated to F . The classifying
space of the p–local finite group (S,F ,L) is the space |L|∧p .

A theorem of Chermak [10] (see also Oliver [25]) states that every saturated fusion system
admits a centric linking system and that it is unique up to isomorphism of centric linking
systems. In particular, the classifying space of a p–local finite group is determined up to
homotopy equivalence by the saturated fusion system.

In many cases it is convenient to restrict the fusion system to certain subcategories. It
was shown in Broto–Castellana-Grodal–Levi–Oliver [5] that one can consider certain full
subcategories L0 of L, such that the inclusion functor L0 → L induces a mod p homotopy
equivalence on nerves. In particular, one such is the full subcategory of F-centric F-radical
subgroups of S.

Our main goal is to understand maps between classifying spaces. The key tool when studying
maps between classifying spaces is the existence of mod p homology decompositions. That is, we
can reconstruct the classifying space of a p–local finite group up to p-completion as a homotopy
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colimit of classifying spaces of p-subgroups over the orbit category, O(F). The orbit category
is the category whose objects are the subgroups of S and whose morphisms are

MorO(F)(P,Q) = RepF (P,Q)
def
= Inn(Q) \ HomF (P,Q).

Also, O(Fc) is the full subcategory of O(F) whose objects are the F-centric subgroups of S.
The next proposition is part of [6, Proposition 2.2].

Proposition 2.7. Fix a saturated fusion system F and an associated centric linking system
L, and let π̃ : L → O(Fc) be the projection functor. Let

B̃ : O(Fc) −→ Top

be the left Kan extension along π̃ of the constant functor L → Top that sends every object
to the one-point topological space. Then B̃ is a homotopy lifting of the homotopy functor
P 	→ BP , and

|L| � hocolim−−−−−→
O(Fc)

B̃.

3. Complex representations of fusion systems

Let (S,F ,L) be a given p-local finite group. In this section we study complex representations
of the finite p-group S which are compatible with the morphisms in the fusion category F in
a sense that will be made precise. This description coincides with the one given in Cantarero–
Castellana [8, Section 3]. When dealing with a finite group G, this is described in Jackson [18].

Given a finite group G, we denote by Repn(G) = Rep(G,U(n)) the set of isomorphism classes
of n-dimensional complex representations of G. If ρ is an n-dimensional representation of G,
then χρ denotes its associated character function.

Definition 3.1. Let F be a fusion system over S. An n-dimensional complex representation
ρ of S is fusion-preserving if ρ|P = ρ|f(P ) ◦ f in Repn(P ) for any P � S and any f ∈
HomF (P, S).

We denote by Repn(F) the set of isomorphism classes of n-dimensional complex repre-
sentations of S which are fusion-preserving. It is clear that if two representations of S are
isomorphic and one of them is fusion-preserving, so is the other one. The following lemma
gives an alternative description of this set.

Lemma 3.2. Let F be a fusion system over S. The composition

lim←−
F

Repn(P ) ⊆
∏
P�S

Repn(P ) → Repn(S)

of the inclusion and the projection map is injective and has image Repn(F).

Proof. Given Q � S, an element (ρP )P in the limit must satisfy ρQ = (ρS)|Q since
the inclusion Q → S is a morphism in F . Therefore injectivity is clear. By definition, a
representation ρ of S is fusion-preserving if and only if the element (ρ|P )P belongs to
lim←−
F

Repn(P ), hence surjectivity follows. �

Remark 3.3. Since two representations are isomorphic if and only if their characters are
equal, we can conclude that ρ is fusion-preserving if and only if χρ(g) equals χρ(g′) whenever
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there is a morphism f in F such that f(g) = g′. Hence we can also think of Repn(F) as the
set of n-dimensional characters of S which are fusion-preserving in that sense.

Example 3.4. Let reg be the regular representation of S. It has the property that χreg(g) =
0 if g 
= e and χreg(e) = |S|. Using Remark 3.3, it is straightforward to check that reg ∈
Rep|S|(F) for any fusion system over S. Any trivial representation of S is also fusion-preserving.

Example 3.5. Let Σ3 be the symmetric group on three letters, S the subgroup generated
by (1,2,3), which is a 3-Sylow subgroup of Σ3, and F = FS(Σ3). The trivial representation and
the reduced regular representation of S are fusion-preserving.

When constructing fusion-preserving representations, it may be convenient to restrict to
the orbit category and to the family of centric or centric radical subgroups in F (see also
Cantarero–Castellana [8, Remark 3.2]).

Proposition 3.6. Let F be a saturated fusion system over S. Then

lim←−
Fcr

Repn(P ) = lim←−
Fc

Repn(P ) = Repn(F).

Moreover

lim←−
O(Fcr)

Repn(P ) ∼= Repn(F).

Proof. Since there are inclusions

lim←−
F

Repn(P ) ⊆ lim←−
Fc

Repn(P ) ⊆ lim←−
Fcr

Repn(P ),

it is enough to show that lim←−
Fcr

Repn(P ) ⊆ lim←−
F

Repn(P ).

Let ρ ∈ lim←−
Fcr

Repn(P ). We have to show that ρ|P = ρ|P ′ ◦ ϕ in Repn(P ) for any subgroups P ,

P ′ of S and any ϕ ∈ HomF (P, P ′). Since this holds for inclusions, we may assume that ϕ is an
isomorphism. By Theorem 2.4, there exists a sequence of subgroups P = P0, P1, . . . , Pk = P ′ of
S and a sequence of F-centric radical subgroups Q1, Q2, . . . , Qk of S, with Pi−1, Pi � Qi, and
a sequence of morphisms ϕi ∈ AutF (Qi) with ϕi(Pi−1) � Pi which factor ϕ. Since ρ|Qi

◦ ϕi

and ρ|Qi
are isomorphic representations and Pi−1, Pi � Qi, the representations ρ|Pi

and ρ|Pi−1

are isomorphic to the respective restrictions of ρ|Qi
. Therefore ρ|P is isomorphic to ρ|P ′ ◦ ϕ in

Repn(P ).
Moreover, the functor Repn : Fcr → Set factors through the orbit category O(Fcr) since

isomorphism classes of representations are fixed under inner automorphisms. Therefore the
bijection just proved shows that

lim←−
O(Fcr)

Repn(P ) ∼= Repn(F).
�

The rest of this section is devoted to a construction which provides fusion-preserving
representations out of representations of the Sylow subgroup. In the spirit of induction, the idea
is to ‘induce’ representations of the Sylow subgroup S to fusion-preserving representations.

The key tool which will allow us to do this construction is the specific (S, S)-biset Ω
constructed in the proof of Proposition 5.5 of Broto–Levi–Oliver [6] for any saturated fusion
system F over S. This biset Ω satisfies that Ω|(P,S) and Ω|(ϕ,S) are isomorphic as (P, S)-bisets
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for any given ϕ ∈ HomF (P,Q). Recall that Ω|(ϕ,S) stands for the (P, S)-biset whose underlying
set is Ω with the same right action of S and the left action of P given by

p · x = ϕ(p)x,

where the action on the right-hand side is the original right action of S. Hence there exists
an isomorphism of (P, S)-bisets τϕ : Ω → Ω where the action on the source is via ϕ, that is,
τϕ(ϕ(p)x) = pτϕ(x).

In the remainder of the section we use C[X] to denote the complex vector space with the
set X as basis. If S acts linearly on the complex vector spaces V and W on the right and the
left, respectively, we denote by V ⊗S W their tensor product as CS-modules. Note that if V
has an action of R on the left, V ⊗S W inherits a left R-action.

Definition 3.7. Let ρ be a complex n-dimensional representation of the Sylow subgroup S
and consider the vector space C[Ω] ⊗S C

n, where S acts on C
n via ρ. Define ρF ∈ Repn|Ω/S|(S)

to be C[Ω] ⊗S C
n with the left action of S inherited from the left action of S on Ω.

Proposition 3.8. Let F be a saturated fusion system over S and ρ ∈ Repn(S). Then
ρF ∈ Repn|Ω/S|(F) and ρ is a subrepresentation of ρF .

Proof. We need to show that for any P � S and any ϕ ∈ HomF (P, S), the representations
ρF|P and ρF|ϕ(P ) ◦ ϕ of P are isomorphic. The map τϕ : Ω → Ω considered above induces a linear
map C[Ω] → C[Ω], which we also denote by τϕ. Consider the map

τϕ : C[Ω] ⊗S C
n −→ C[Ω] ⊗S C

n

x⊗ v 	−→ τϕ(x) ⊗ v.

The map τϕ is well defined and linear. It is bijective because τϕ is bijective. Given x ∈ Ω, the
equalities

τϕ(ϕ(p)(x⊗ v)) = τϕ(ϕ(p)x⊗ v) = τϕ(ϕ(p)x) ⊗ v = pτϕ(x) ⊗ v = pτϕ(x⊗ v)

show that τϕ is an isomorphism from ρF|ϕ(P ) ◦ ϕ to ρF|P . Hence ρF is fusion-preserving.
Now we prove that ρ is a subrepresentation of ρF . Let {x1, . . . , xr} ⊂ Ω be a set of orbit

representatives for Ω/S. We can assume that x1 is the element [e, e] ∈ S ×(S,id) S ⊂ Ω, where
e is the unit of S. It is clear that this element satisfies s · x1 = x1 · s for all s ∈ S.

Given a basis {v1, . . . , vn} of C
n, let V be the subspace of C[Ω] ⊗S C

n generated by the
elements x1 ⊗ vi for i = 1, . . . , n. Note that V is S-invariant since

s(x1 ⊗ v) = (s · x1) ⊗ v = (x1 · s) ⊗ v = x1 ⊗ ρ(s)(v).

Moreover, this shows that it is S-isomorphic to C
n with the action of S via ρ. Therefore ρ is

a subrepresentation of ρF . �

Remark 3.9. In particular, given a saturated fusion system F over S, any representation
ρ ∈ Repn(S) is a subrepresentation of a fusion-preserving representation.

4. Generalized cohomology theories of classifying spaces of p-local finite groups

This section contains the proof of Theorem 4.2 which relies strongly in the work of Ragnarsson
[27] on the stable homotopy theory of fusion systems. We use {E,F} to denote the set of
homotopy classes of maps between the spectra E and F .

Given a saturated fusion system F over S, Ragnarsson [27] constructs an idempotent in the
ring of stable self-maps {Σ∞BS,Σ∞BS} associated to the saturated fusion system F . More
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precisely, it is shown that there exists an idempotent ω in {Σ∞BS,Σ∞BS} which is a Z
∧
p -

linear combination of stable maps of the form Σ∞Bϕ ◦ trP , where trP : Σ∞BS → Σ∞BP is
the stable transfer map and ϕ ∈ HomF (P, S). This idempotent satisfies

ω ◦ Σ∞Bf � ω|Σ∞BP

for any P � S and any f ∈ HomF (P, S). Here ω|Σ∞BP denotes the composition of w with the
map jSP : Σ∞BP → Σ∞BS induced by the inclusion of P in S.

The homotopy type of the stable summand BF of Σ∞BS induced by ω coincides with the
homotopy type of the classifying spectrum constructed by Broto, Levi and Oliver in [6] just
after Proposition 5.5. Note that BF is p-complete since it is a retract of Σ∞BS.

The spectrum BF comes equipped with the structure map of the mapping telescope
σF : Σ∞BS → BF and a transfer map tF : BF → Σ∞BS such that tF ◦ σF � ω and σF ◦ tF �
id (see [27, Section 7]).

Remark 4.1. Let L be a centric linking system for F and Θ: BS → |L|∧p the canonical
inclusion induced by the structure morphism δS : S → AutL(S) from Definition 2.5. Propo-
sition 10.1 in [27] shows that there is a homotopy equivalence h : BF → Σ∞|L|∧p such that
h ◦ σF � Σ∞Θ.

Theorem 4.2. Let h∗ be a generalized cohomology theory. Given a p-local finite group
(S,F ,L), there is an isomorphism

h∗(|L|∧p ) ∼= lim←−
O(Fc)

h∗(BP ).

Proof. Let Y be a spectrum representing the corresponding reduced cohomology theory h̃∗,
so that we have

hn(BF) = {BF , Y }n = {BF ,Σ−nY }.

We will actually show that {BF , Z} ∼= lim←−
O(Fc)

{BP,Z} for any spectrum Z.

Let us denote by f∗ the image of a map f of spectra under the functor {−, Z}. We will show
that Im(ω∗) is isomorphic to both lim←−

O(Fc)

{Σ∞BP,Z} and {BF , Z}.

Since t∗Fσ
∗
F is the identity, σ∗

F is injective and so its image is isomorphic to {BF , Z}. On the
other hand, t∗F is surjective and therefore the image of ω∗ equals the image of σ∗

F . In particular,
the image of ω∗ is isomorphic to {BF , Z}.

Now consider the map

ϕ : Im(ω∗) → lim←−
O(Fc)

{Σ∞BP,Z}

a 	→ (
a ◦ jSP

)
P
.

It is well defined because given f : P → S in O(Fc) and a = ω∗b ∈ Im(ω∗) we have

(ω∗b) ◦ Σ∞f = b ◦ ω ◦ Σ∞f � b ◦ ω ◦ jSP = (ω∗b) ◦ jSP .

On the other hand, given (bP )P in the inverse limit, the map bS is right F-stable in the
terminology of [27, Definition 6.1]. Hence bS ◦ ω � bS by [27, Corollary 6.4] and therefore
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ω∗(bS) = bS . So the projection

lim←−
O(Fc)

{Σ∞BP,Z} → {Σ∞BS,Z}

factors through a map lim←−
O(Fc)

{Σ∞BP,Z} → Im(ω∗), which is the inverse of ϕ. �

Remark 4.3. Note that projection to the {Σ∞BS,Z}-factor defines an isomorphism

lim←−
O(Fc)

{Σ∞BP,Z} → {Σ∞BS,Z}F ,

where {Σ∞BS,Z}F is the subgroup of stable elements, that is, maps f such that f ◦ Σ∞ϕ �
f ◦ jSP for any ϕ : P → S in F . Hence this theorem also proved that there is an isomorphism

{Σ∞|L|∧p , Z} ∼= {Σ∞BS,Z}F
for any spectrum Z. In particular

h∗(|L|∧p ) ∼= h∗(BS)F

for any generalized cohomology theory h∗.

The following corollary will be particularly important in the next section. Recall that p-adic
(periodic) topological K-theory K∗(−; Z∧

p ) is the generalized cohomology theory associated to
the spectrum determined by Z

∧
p ×BU∧

p (see Mitchell [23] for instance).

Corollary 4.4. Let (S,F ,L) be a p-local finite group. Then

K∗(|L|∧p ; Z∧
p ) ∼= lim←−

O(Fc)

K∗(BP ; Z∧
p ).

In particular, K∗(|L|∧p ; Z∧
p ) is torsion-free and concentrated in even degrees.

5. Vector bundles over classifying spaces of p-local finite groups

In this section we describe the Grothendieck group of complex vector bundles over the
classifying space of a p-local finite group in terms of the fusion-preserving characters of the
Sylow subgroup S. Our main goal is to obtain a description for p-local finite groups analogous
to the one in Jackowski–Oliver [17]. We achieve this in Theorem 5.6 which will follow from
Theorem 5.3.

When dealing with a p-group P , Dwyer and Zabrodsky prove that there is an isomorphism
Vect(BP ) ∼= Rep(P ), where Vect(BP ) and Rep(P ) are the monoids of isomorphism classes
of complex vector bundles over BP and of complex finite dimensional representations of P ,
respectively. Therefore we obtain an isomorphism of their Grothendieck groups K(BP ) ∼= R(P ).

Theorem 5.1 [13]. There are natural bijections

Rep(P,U(m)) → [BP,BU(m)] → [BP,BU(m)∧p ]

given by sending a representation ρ to Bρ and composing with the p-completion map BU(m) →
BU(m)∧p . Moreover, the natural map

BCU(m)(ρ(P )) → Map(BP,BU(m))Bρ

induces a homotopy equivalence

BCU(m)(ρ(P ))∧p → Map(BP,BU(m)∧p )Bρ.
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Recall that every p-local finite group (S,F ,L) comes equipped with a morphism δS : S →
AutL(S) inducing a map Θ: BS → |L|∧p . Restriction defines a map Θ∗ : [|L|∧p , BU(m)∧p ] →
[BS,BU(m)∧p ] which factors through the inverse limit

ψm : [|L|∧p , BU(m)∧p ] −→ lim←−
O(Fc)

[BP,BU(m)∧p ].

Theorem 5.1 allows us to give an algebraic description of the inverse limit above in terms of
fusion-preserving m-dimensional representations of S, since

lim←−
O(Fc)

[BP,BU(m)] ∼= lim←−
O(Fc)

Repm(P ) ∼= Repm(F).

Hence we may consider ψm as a map

ψm : [|L|∧p , BU(m)∧p ] −→ Repm(F).

We need to see how far ψm stands from being injective and surjective. A general framework
of obstruction theory to address this question has been developed by Wojtkowiak [29]. There
is a filtration Fn|L|∧p of |L|∧p induced by the skeletal filtration of the nerve of O(Fc) in such a
way that an element in

lim←−
O(Fc)

[BP,BU(m)∧p ]

defines a map F1|L|∧p → BU(m)∧p and the obstruction theory studies how to extend it
inductively to Fn|L|∧p . Note that the map ψm constructed above corresponds to restriction
along the inclusion F1|L|∧p → |L|∧p .

In our case, given ρ in Repm(F), the obstructions for ρ to be in the image or to have a
unique preimage lie in higher limits of the functors

F ρ
i : O(Fc)op → Z(p)–Mod

P 	→ πi

(
Map(B̃P,BU(m)∧p )

˜Bρ|P

)
,

where we denote by B̃ρ|P the composition of the map B̃P → BU(m) induced by ρ and
the p-completion map BU(m) → BU(m)∧p . More precisely, the obstruction to extend a map
f : Fn−1|L|∧p → BU(m)∧p to Fn|L|∧p without changing f on Fn−2|L|∧p is a class

[En] ∈ lim←−
n+1

O(Fc)

πn

(
Map(B̃P,BU(m)∧p )fP

)
,

where fP is the restriction of f to B̃P . Similarly, the obstruction to extending a homotopy
between two maps f and g which is already defined on Fn−1|L|∧p without changing the
homotopy on Fn−2|L|∧p is a class

[Un] ∈ lim←−
n

O(Fc)

πn

(
Map(B̃P,BU(m)∧p )fP

)
.

More details can be found in Cantarero–Castellana [8, Section 4].

Remark 5.2. Given maps f : X → BU(m)∧p and g : X → BU(n)∧p , we can define their
Whitney sum f ⊕ g to be the composition

X
(f,g)−→ BU(m)∧p ×BU(n)∧p

s−→ BU(m + n)∧p ,

where s : BU(m)∧p ×BU(n)∧p → BU(m + n)∧p is the map induced by the group homomorphism
U(m) × U(n) → U(m + n) that sends (A,B) to the matrix with A and B as diagonal blocks.
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Theorem 5.3. Let (S,F ,L) be p–local finite group (S,F ,L) and let reg be the regular
representation of S. The map

ψm : [|L|∧p , BU(m)∧p ] −→ Repm(F)

has the following properties:

(i) Given ρ ∈ Repm(F), there exists a positive integer M such that ρ⊕Mreg belongs to
the image of ψm+M |S|.

(ii) If f1, f2 : |L|∧p → BU(m)∧p are such that ψm(f1) = ψm(f2), then there exists h : |L|∧p →
BU(n)∧p for some n such that f1 ⊕ h � f2 ⊕ h and ψn(h) = Nreg for some positive
integer N .

Proof. Let ρ be a fusion-preserving representation of S, that is, ρ ∈ Repm(F) for some
m > 0. For each P � S, let {μ1, . . . , μr} be the set of all irreducible representations of P and
consider the decompositions

ρ|P = n1μ1 ⊕ · · · ⊕ nrμr

reg|P = k1μ1 ⊕ · · · ⊕ krμr

as sums of irreducible representations of P . Now

Map(B̃P,BU(m)∧p )
˜Bρ|P

� BCU(m)(ρ(P ))∧p �
r∏

i=1

BU(ni)∧p ,

where the first equivalence follows from Dwyer–Zabrodsky [13] and the second equivalence
is a consequence of Schur’s Lemma. In particular, the space Map(B̃P,BU(m)∧p )

˜Bρ|P
is

simply connected.
The proof of [17, Proposition 2.4] shows that the component of the constant map of

Map(B̃P,BU∧
p ) satisfies

πi

(
Map(B̃P,BU∧

p )0
) ∼= K−i(B̃P ) ⊗ Z

∧
p
∼= K−i

P (pt) ⊗ Z
∧
p

for i > 0 and R(P ) ⊗ Z
∧
p
∼= K(B̃P ; Z∧

p ) by [1, Lemma 2.1]. Hence, if z : BU(m)∧p → BU∧
p is

the map induced by the inclusion U(m) ⊆ U , we also have for i > 0

πi

(
Map(B̃P,BU∧

p )z◦ ˜Bρ|P

) ∼= K−i(B̃P ; Z∧
p )

because all the components of Map(B̃P,BU∧
p ) are homotopy equivalent. Thus, the mapping

space Map(B̃P,BU∧
p )z◦ ˜Bρ|P

is also simply connected. Therefore, the first obstructions [E1] to
the respective extension problems vanish. Hence there are maps from F2|L|∧p to BU(m)∧p and
BU∧

p that extend the maps B̃ρ|P and z ◦ B̃ρ|P , respectively. These results continue to hold if
we replace ρ by ρ⊕Mreg for any M .

By Broto–Levi–Oliver [6, Corollary 3.4], there exists a positive integer NF such that the
higher limits of any functor G : O(Fc) → Z(p)–Mod vanish above dimension NF . We can assume
NF � 2. Since the homotopy groups of the classifying spaces of complex unitary groups stabilize
to the homotopy groups of BU , we can find a positive integer M > 0 such that the maps
BU(nj + Mkj) → BU induce an isomorphism on the ith homotopy group for all i � NF and
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for all j = 1, . . . , r. If i is even, postcomposition with the map z : BU(m + M |S|)∧p → BU∧
p

induces a commutative diagram

where the top row corresponds to the map
∏

BU(nj + Mkj)∧p → ∏
BU∧

p induced by the
inclusions U(nj + Mkj) → U and therefore it induces an isomorphism on the ith homotopy
group for even i � NF (see [24, Proposition A.2]). A similar argument shows that the bottom
isomorphism also holds for odd i � NF since these homotopy groups are all zero. Since
the obstruction theory of Wojtkowiak [29] is natural with respect to postcomposition, the
obstructions of one extension problem are mapped to the other.

Just as before, we have

lim←−
i+1

O(Fc)

πi

(
Map(BP,BU∧

p )z◦ ˜B(ρ⊕Mreg)|P

) ∼= lim←−
i+1

O(Fc)

K−i(BP ; Z∧
p ).

This isomorphism sends the obstructions of the extension problem with BU∧
p to the obstruc-

tion classes associated to the problem of existence of an element of K−i(|L|∧p ; Z∧
p ) that

maps to the element of lim←−
O(Fc)

K−i(BP ; Z∧
p ) determined by the representation ρ⊕Mreg.

Corollary 4.4 tells us that such an element exists. Therefore, it is possible to construct a
map FNF+1|L|∧p → BU∧

p that extends the maps z ◦ B̃(ρ⊕Mreg)|P . The obstructions of the
extension problem with BU(m + M |S|)∧p are mapped to the obstructions of the extension
problem with BU∧

p via an isomorphism, so these obstructions must vanish. Hence it is possible
to construct a map

FNF+1|L|∧p → BU(m + M |S|)∧p
that extends the maps B̃(ρ⊕Mreg)|P . Finally the limi+1–term of F ρ⊕Mreg

i vanishes when
i � NF , so we can further extend it to a map f : |L|∧p → BU(m + M |S|)∧p which satisfies
ψm+M |S|(f) = ρ⊕Mreg.

Let f1, f2 : |L|∧p → BU(m)∧p be such that ψm(f1) = ψm(f2) = ρ. By the first part applied to
the regular representation of S, there is some M > 0 such that the obstructions to existence
vanish in each step, hence

Mreg = ψM |S|(h)

for a certain map h : |L|∧p → BU(M |S|)∧p . Then we have

ψm+M |S|(f1 ⊕ h) = ρ⊕Mreg = ψm+M |S|(f2 ⊕ h).

Now we follow the same process as in the first part to construct a homotopy between f1 ⊕ h
and f2 ⊕ h. In this process, the first obstruction to uniqueness [U1] vanishes for the same
reason, the obstructions up to filtration level NF vanish because Corollary 4.4 tells us that
there is a unique element in K−i(|L|∧p ; Z∧

p ) that maps to the element of lim←−
O(Fc)

K−i(BP ; Z∧
p )

determined by the representation ρ⊕Mreg. And the rest of obstructions vanish by
Broto–Levi–Oliver [6, Corollary 3.4]. �

Remark 5.4. Note that the previous theorem shows that for any p-local finite group
(S,F ,L), there exists a map f : |L|∧p → BU(n)∧p such that f| ˜BS � B̃(Mreg) for some M > 0.
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The maps ψn from Theorem 5.3 assemble to define a map of monoids∐
n�0

[|L|∧p , BU(n)∧p ] →
∐
n�0

Repn(F),

where the monoid structure on the first set is described in Remark 5.2 and on the right-hand
side is given by direct sum of representations. Therefore, it induces a group homomorphism
between their Grothendieck groups

Ψ: K
′(|L|∧p ) → R(F)

such that the following diagram commutes:

The following lemma relates this group to the Grothendieck group of complex vector bundles
over |L|∧p .

Lemma 5.5. The Grothendieck group of complex vector bundles over |L|∧p is isomorphic to
K

′(|L|∧p ).

Proof. Note that p-completion defines a map

[|L|∧p , BU(n)] → [|L|∧p , BU(n)∧p ].

By Theorem 4.2, we have H̃k(|L|∧p ; Z[1/p]) = 0. The space BU(n) is simply connected, in
particular nilpotent. Moreover, pointed homotopy classes of maps into BU(n) and BU(n)∧p
coincide with unpointed homotopy classes. Therefore, Miller [22, Theorem 1.5] shows that this
map is a bijection. This defines an isomorphism of monoids∐

n�0

[|L|∧p , BU(n)] →
∐
n�0

[|L|∧p , BU(n)∧p ],

hence their Grothendieck groups are isomorphic. �

Recall that K(X) denotes the Grothendieck group of complex vector bundles over X.
Given the result of the previous lemma, we will abuse the notation and use K(|L|∧p ) for both
Grothendieck groups. We will now show that Ψ is an isomorphism.

Theorem 5.6. The map Ψ: K(|L|∧p ) → R(F) is an isomorphism.

Proof. First we check that Ψ is a monomorphism. Assume that we have two maps f : |L|∧p →
BU(n)∧p and g : |L|∧p → BU(m)∧p such that Ψ(f − g) = 0. Then we must have f|BS − g|BS =
0 in K(BS) and so there exists f ′ : BS → BU(k)∧p such that f|BS ⊕ f ′ � g|BS ⊕ f ′. This
implies m = n. Since [BS,BU(k)∧p ] ∼= Rep(S,U(k)), we can assume that f ′ is induced by a
representation ρ of S. By Proposition 3.8, we can assume that ρ is fusion-preserving, and by
Theorem 5.3, that it belongs to the image of ψk. Hence, we can take f ′ to be the restriction of
a map t : |L|∧p → BU(k)∧p and we obtain ψm+k(f ⊕ t) = ψm+k(g ⊕ t). By Theorem 5.3, there
exists h : |L|∧p → BU(r)∧p for some r > 0 such that f ⊕ t⊕ h � g ⊕ t⊕ h. Therefore f − g = 0
in K(|L|∧p ).
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Let χ ∈ R(F), say χ = ρ1 − ρ2, where both ρ1 and ρ2 are fusion-preserving. By Theorem 5.3
there exist positive integers k1, k2 and maps f : |L|∧p → BU(n1)∧p and g : |L|∧p → BU(n2)∧p such
that

ψn1(f) = ρ1 + k1reg and ψn2(g) = ρ2 + k2reg.

We can take k2 big enough so that (k2 − k1)reg ∈ Im(ψ(k2−k1)|S|). Then

χ = (ρ1 + k1reg) − (ρ2 + k2reg) + (k2 − k1)reg ∈ Im(Ψ). �

One could wonder at this point whether the Grothendieck construction of the monoid of
fusion-preserving representations coincides with the inverse limit of representation rings over
the orbit category. The answer is given by the following proposition.

Proposition 5.7. There is an isomorphism R(F) ∼= lim←−
O(Fc)

R(P ).

Proof. Consider the map

ϕ : R(F) → lim←−
O(Fc)

R(P )

χ 	→ (resP χ)P ,

where resP is the composition R(F) → R(S) → R(P ) of the respective restriction maps. If
χ = ρ1 − ρ2, where ρ1 and ρ2 are fusion-preserving representations of S, then given f : P → S
in O(Fc)

f∗ resS(ρ1 − ρ2) = f∗(ρ1) − f∗(ρ2) = resP (ρ1) − resP (ρ2) = resP (ρ1 − ρ2)

and so ϕ is well defined. This map is clearly injective. On the other hand, given an element
(χP )P of the inverse limit, consider χS = α1 − α2. To show surjectivity, it suffices to show
that χS can be written as the formal difference of two fusion-preserving representations. By
Proposition 3.8 and Maschke’s lemma, there is a representation β such that α2 ⊕ β = αF

2 and
αF

2 is fusion-preserving. Then

χS = (α1 ⊕ β) − αF
2

and therefore, given f : P → S in O(Fc) we have

resP (α1 ⊕ β) − resP (αF
2 ) = f∗(α1 ⊕ β) − f∗(αF

2 ) = f∗(α1 ⊕ β) − resP (αF
2 ).

That is, α1 ⊕ β is fusion-preserving as we wanted to show. �

Remark 5.8. Equivalently, the projection to the R(S)–component shows that we can also
see R(F) as the subring of stable elements of R(S).

6. Duality

This section contains the proof of Theorem 6.7, that is, C∗(|L|; Fp) → Fp is Gorenstein for any
p-local finite group (S,F ,L). The motivation for this comes from extending Benson–Carlson
duality [4] to cohomology rings of p-local finite groups. This phenomenon was already observed
on the computation [14] by Grbić of the F2-cohomology rings of the exotic 2-local finite groups
constructed by Levi and Oliver in [19]. This suggested that an extension of Benson–Carlson
duality should hold for p-local finite groups.

The strategy is to follow Dwyer–Greenlees–Iyengar [11, Example 10.3], where it is shown
that C∗(BG; Fp) → Fp is Gorenstein for any finite group G. The main ingredient in their
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proof is the existence of a complex faithful representation of G into some SU(n) such that
H∗(SU(n)/G; Fp) is a Poincaré duality algebra. Our strategy is to mimic their proof using the
existence of a homotopy monomorphism |L|∧p → BSU(m)∧p at the prime p from Theorem 6.2.
The first step in our proof of Theorem 6.7 is to show that the mod p cohomology of the
homotopy fibre of such a map is a Poincaré duality algebra. This application of Theorem 6.2
was suggested to us by John Greenlees.

In order to prove Theorem 6.2, we recall the notion of homotopy monomorphism at the
prime p from Cantarero–Castellana [8].

Definition 6.1. A connected pointed space X is BZ/p-null if the pointed mapping space
Map∗(BZ/p,X) is contractible for any choice of basepoint in X. A map f : X → Y is called a
homotopy monomorphism at p if the homotopy fibre of f∧

p is BZ/p–null.

When the prime p in question is clear, we will just write homotopy monomorphism. Recall
that a space is called Fp-finite if its Fp-cohomology ring is a finite Fp-vector space.

Theorem 6.2. There exists a homotopy monomorphism |L|∧p → BSU(m)∧p for some
m > 0.

Proof. By Theorem 5.3, there is a multiple of the regular representation of S in the
image of some ψn. A preimage of this representation must be a homotopy monomorphism
|L|∧p → BU(n)∧p by Cantarero–Castellana [8, Theorem 2.5]. Consider the map BU(n)∧p →
BSU(n + 1)∧p induced by the standard inclusion of U(n) in SU(n + 1). The homotopy fibre
of this map is (SU(n + 1)/U(n))∧p , which is Fp-finite, so it is a homotopy monomorphism
by [8, Proposition 2.2]. Moreover, since (SU(n + 1)/U(n))∧p is connected, [8, Lemma 2.4(c)]
implies that the composition |L|∧p → BSU(n + 1)∧p of these two maps is a homotopy
monomorphism. �

The restriction of a homotopy monomorphism |L|∧p → BSU(n)∧p to BS determines a faithful
fusion-preserving representation ρ : S → SU(n). Since ρ is injective, we abuse the notation and
use SU(n)/P to denote SU(n)/ρ(P ) for any P � S.

For what follows, we will consider again the (S, S)-biset Ω from Broto–Levi–Oliver [6, Propo-
sition 5.5]. Recall that Ω is a disjoint union of bisets of the form S ×(P,ϕ) S with P � S and
ϕ : P → S in F . Moreover, this set is F-invariant in the sense that for each P � S and each
ϕ ∈ HomF (P, S), Ω|(P,S) and Ω|(ϕ,S) are isomorphic (P, S)-bisets.

Each (S, S)-biset of the form S ×(P,ϕ) S with ϕ ∈ HomF (P, S) induces an endomorphism of
H∗(SU(n)/S; Fp) in the following way. The representation ρ is fusion-preserving, hence there
exists A ∈ SU(n) such that Aρ(p)A−1 = ρ(ϕ(p)) for all p ∈ P . We define

ϕ : SU(n)/P → SU(n)/S

xP 	→ AxA−1S.

This map is well defined and it does not depend on the choice of A up to homotopy. To see
this, note that any two choices differ by an element in CSU(n)(ρ(P )), which can be regarded as
the fibre of the determinant CU(n)(ρ(P )) → S1 over 1. The centralizer in U(n) is a product of
unitary groups by Schur’s lemma, hence path-connected. The determinant CU(n)(ρ(P )) → S1

induces an epimorphism on the fundamental group since this centralizer is a product of unitary
groups and the determinant U(m) → S1 induces an isomorphism on the fundamental group. By
the long exact sequence of homotopy groups, we conclude that CSU(n)(ρ(P )) is path-connected.
Therefore any two choices are connected by a path, which determines a homotopy between the
two maps they would define.
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Let trSP be the transfer in cohomology with coefficients in Fp associated to the covering map
iP : SU(n)/P → SU(n)/S. Then we have an endomorphism of H∗(SU(n)/S; Fp) defined by

Ω
∗

=
∑

(P,ϕ)∈Ω

nP,ϕ trSP ϕ∗,

where (P,ϕ) ∈ Ω means Ω has a direct summand of the form S ×(P,ϕ) S and nP,ϕ is the number
of times this summand appears.

The proof of Proposition 6.5 requires the following technical lemma.

Lemma 6.3. The image of the endomorphism Ω
∗

is isomorphic to the inverse limit over
O(Fc) of the cohomology groups H∗(SU(n)/P ; Fp).

Proof. Consider the map

g : Im(Ω
∗
) → lim←−

O(Fc)

H∗(SU(n)/P ; Fp)

x 	→ (i∗Px)P ,

where iP : SU(n)/P → SU(n)/S is the covering map introduced above. Given ϕ : P → Q in
O(Fc) we have

ϕ∗i∗QΩ
∗

= i∗PΩ
∗

because Ω is F–invariant. Hence g is well defined. Given an element (xP )P in the inverse limit,
we have

Ω
∗
(xS) =

∑
(P,ϕ)∈Ω

nP,ϕ trSP ϕ∗(xS) =
∑

(P,ϕ)∈Ω

nP,ϕ trSP i∗P (xS)

because (xP )P belongs to the limit and
∑

(P,ϕ)∈Ω

nP,ϕ trSP i∗P (xS) =
∑

(P,ϕ)∈Ω

nP,ϕ[S : P ]xS =
|Ω|
|S|xS = xS

because the biset Ω satisfies |Ω|/|S| ≡ 1 (mod p) (see [6, Proposition 5.5(c)]). So xS belongs
to the image of Ω

∗
and g(xS) = (xP )P . This shows that g is surjective. Injectivity is clear. �

Remark 6.4. Note that projection to H∗(SU(n)/S; Fp) gives an isomorphism

lim←−
O(Fc)

H∗(SU(n)/P ; Fp) → H∗(SU(n)/S; Fp)F

to the direct summand of F-stable elements in H∗(SU(n)/S; Fp), that is, elements x such that
ϕ∗x = i∗Px for any ϕ : P → S in F . The proof of Lemma 6.3 shows that Ω

∗
is the identity on

this summand. Moreover, the endomorphism Ω
∗

is H∗(SU(n)/S; Fp)F -linear. Given elements
r in H∗(SU(n)/S; Fp)F and x in H∗(SU(n)/S; Fp), then

trSP ϕ∗(rx) = trSP (i∗P (r) · ϕ∗(x)) = r · trSP (ϕ∗(x)),

where the first equality is due to the fact that r is stable and the second equality holds by
Frobenius reciprocity.

Proposition 6.5. Let F be the homotopy fibre of a homotopy monomorphism from |L|∧p
to BSU(n)∧p at the prime p. Then there is an additive isomorphism

H∗(F ; Fp) ∼= lim←−
O(Fc)

H∗(SU(n)/P ; Fp).
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Moreover, SU(n)/S is an orientable manifold and the cohomological fundamental class ωS ∈
H∗(SU(n)/S; Fp) is a stable element.

Proof. For each P � S, consider the cohomological Serre spectral sequence E∗(P ) associated
to the fibration SU(n) → SU(n)/P → BP . More precisely, this spectral sequence comes from
the double complex

Cr,s(P ) = HomFp[P ](Mr, C
s(SU(n); Fp)),

where M∗ is a free resolution of Fp as a Fp[S]-module and P acts on the singular cochains
C∗(SU(n); Fp) via the linear representation ρ. There is a transfer

trSP : HomFp[P ](Mr, C
s(SU(n); Fp)) → HomFp[S](Mr, C

s(SU(n); Fp))

given by trSP (f) =
∑

gi∈X gifg
−1
i , where X is a set of representatives for S/P . Each ϕ : P → S

in F also induces a map

ϕ∗ : HomFp[S](Mr, C
s(SU(n); Fp)) → HomFp[P ](ϕMr,

ϕCs(SU(n); Fp)),

where ϕN denotes N with the action of P through ϕ. Recall that ϕ induces a map
ϕ : SU(n)/P → SU(n)/S given by xP 	→ AxA−1S, where A ∈ SU(n) is such that Aρ(p)A−1 =
ρ(ϕ(p)) for all p ∈ P . Given f : SU(n) → SU(n), let us denote by f# the induced endomor-
phism of Cs(SU(n); Fp). And given B in SU(n), we denote by LB : SU(n) → SU(n) the map
given by left multiplication by B. The map cA : SU(n) → SU(n) that sends X to AXA−1

defines a P -equivariant map

c#A : ϕCs(SU(n); Fp) → Cs(SU(n); Fp).

To see this, note that the action of p ∈ P on ϕCs(SU(n); Fp) is given by L#
ρ(ϕ(p)) and by L#

ρ(p)

on Cs(SU(n); Fp). And we have

c#AL
#
ρ(ϕ(p)) = (Lρ(ϕ(p)) ◦ cA)# = (cA ◦ Lρ(p))# = L#

ρ(p)c
#
A ,

where the second equality holds because

Lρ(ϕ(p))cA(B) = ρ(ϕ(p))ABA−1 = Aρ(p)A−1ABA−1 = cALρ(p)(B).

Therefore, c#A induces a map

HomFp[P ](ϕMr,
ϕCs(SU(n); Fp)) → HomFp[P ](ϕMr, C

s(SU(n); Fp)).

And we denote by ϕ̃∗ the composition of ϕ∗ with this map, that is,

ϕ̃∗ : HomFp[S](Mr, C
s(SU(n); Fp)) → HomFp[P ](ϕMr, C

s(SU(n); Fp)).

Since the maps trSP and ϕ̃∗ commute with the differentials, we obtain an endomorphism of
the double complex C∗,∗(S)

Ω̃∗ =
∑

(P,ϕ)∈Ω

nP,ϕ trSP ϕ̃∗.

Therefore, we have an induced endomorphism of each term Ek(S) in the spectral sequence,
which we denote by Ω∗

k. By construction, the image of Ω∗
k consists of the stable elements, hence

Im(Ω∗
k) ∼= lim←−

O(Fc)

Ek(P )

for all k.
Left multiplication of S on SU(n) via ρ induces the action of S on the cohomology groups

of SU(n) associated to the fibration SU(n) → SU(n)/S → BS. But left multiplication via ρ
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factors through the left multiplication action of SU(n) on itself and since SU(n) is connected,
the map given by left multiplication by an element of SU(n) is homotopic to the identity map.
Therefore, the action of S on H∗(SU(n); Fp) is trivial and so we have

Er,s
2 (S) ∼= Hr(BS; Fp) ⊗Hs(SU(n); Fp).

Note that by construction, Ω∗
2 coincides with the morphism [Ω] from [6, Proposition 5.5] on

H∗(BS; Fp) and it is the identity on the Hs(SU(n); Fp)–factor since c∗A is the identity. In
particular, the choice of A does not affect Ω∗

k for k � 2.
Consider now the cohomological Serre spectral sequence E∗ associated to the fibration

SU(n)∧p → F → |L|∧p . The action of the fundamental group of |L|∧p on H∗(SU(n)∧p ; Fp) ∼=
H∗(SU(n); Fp) factors through the action of S, and so it is also trivial. Therefore the E2-term
is given by

Er,s
2

∼= Hr(|L|∧p ; Fp) ⊗Hs(SU(n); Fp).

The map Θ: BS → |L|∧p induces a map of fibre sequences

which in turn induces a morphism of the associated Serre spectral sequences. Considering
the maps involved in this diagram, the corresponding morphism of spectral sequences E2 →
E2(S) is the morphism induced by the map Θ: BS → |L|∧p on the first factor of the tensor
product and the identity on the second factor. Since the cohomology of a p-local finite group is
computed by stable elements, the image of E2 → E2(S) is precisely Im([Ω]) ⊗Hs(SU(n); Fp),
which coincides with Im(Ω∗

2). And therefore Ek
∼= Im(Ω∗

k) for all k.
Since SU(n) is finite-dimensional, the spectral sequences E∗ and E∗(S) collapse at a finite

stage and therefore

E∞ ∼= Im(Ω∗
∞) ∼= lim←−

O(Fc)

E∞(P ).

Now E∗ converges to H∗(F ; Fp) and E∗(P ) converges to H∗(SU(n)/P ; Fp). The endomorphism
Ω∗

∞ of E∞(P ) coincides with the one induced by Ω
∗

from Lemma 6.3 because the maps
cA induce the maps SU(n)/P → SU(n)/S that take xP to AxA−1S. Therefore we have an
isomorphism of cohomology groups

H∗(F ; Fp) ∼= lim←−
O(Fc)

H∗(SU(n)/P ; Fp).

The action of S on SU(n) via ρ is free and trivial on cohomology, hence SU(n)/S is an
orientable manifold. The same holds for any P � S. It remains to show that the fundamental
class ωS ∈ HN (SU(n)/S; Fp) is stable, where N is the dimension of SU(n). For each P < S,
the quotient SU(n)/P → SU(n)/S is a covering map of p-power index, hence the induced map
in the Nth Fp-cohomology group is zero. Therefore

HN (F ; Fp) ∼= lim←−
O(Fc)

HN (SU(n)/P ; Fp) ∼= HN (SU(n)/S; Fp)AutF (S).
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But the action of an element ϕ ∈ AutF (S) on SU(n)/S factors through the action of SU(n)
on SU(n)/S by conjugation, and so it is trivial on cohomology. Therefore

HN (F ; Fp) ∼= HN (SU(n)/S; Fp)

and in particular, the fundamental class of SU(n)/S is stable. �

Corollary 6.6. H∗(F ; Fp) is a Poincaré duality algebra.

Proof. Let N be dimension of SU(n). By Proposition 6.5 and Remark 6.4, we know that
H∗(F ; Fp) ∼= H∗(SU(n)/S; Fp)F . In particular, the cohomology groups Hi(F ; Fp) vanish for
i > N . Proposition 6.5 also showed that the fundamental class ωS ∈ HN (SU(n)/S; Fp) is
a stable element and HN (F ; Fp) ∼= HN (SU(n)/S; Fp). Since H∗(SU(n)/S; Fp) is a Poincaré
duality algebra, the following diagram defines a pairing for H∗(SU(n)/S; Fp)F

It remains to show that this pairing is non-singular. It is enough to show that for any a
in Hi(SU(n)/S; Fp)F , there exists b ∈ HN−i(SU(n)/S; Fp)F such that a 
 b = ωS . Since
Hi(SU(n)/S; Fp) is a Poincaré duality algebra, there exists b′ ∈ HN−i(SU(n)/S; Fp) such that
a 
 b′ = ωS . Consider the element b = Ω

∗
(b′) in HN−i(SU(n)/S; Fp)F . By Remark 6.4, the

morphism Ω
∗

is H∗(SU(n)/S; Fp)F–linear and so

a 
 Ω
∗
(b′) = Ω

∗
(a 
 b′) = Ω

∗
(ωS) = ωS ,

where the last equality holds because ωS is a stable element. �

Recall that a map R → k of differential graded algebras is Gorenstein of shift a if there is
a quasi-isomorphism HomR(k,R) ∼ Σak of differential graded algebras over k and the natural
map

HomR(k,R) ⊗EndR(k) HomR(k, k) → HomR(k,HomR(k,R) ⊗EndR(k) k)

is a quasi-isomorphism of differential graded algebras over EndR(k). This is a particular case
of Dwyer–Greenlees–Iyengar [11, Definition 8.1].

As a consequence of Corollary 6.6, we obtain that C∗(|L|∧p ; Fp) → Fp is Gorenstein. The
proof follows the argument in [11, Example 10.3], and we refer to this article for the relevant
notions which appear in this proof and the following results.

Theorem 6.7. Let (S,F ,L) be a p–local finite group. Then the augmentation
C∗(|L|∧p ; Fp) → Fp is Gorenstein.

Proof. By Theorem 6.2, there is a homotopy monomorphism |L|∧p → BSU(m)∧p for some
m � 0. Let F be the homotopy fibre of this map. Note that C∗(X∧

p ; Fp) is quasi-isomorphic to
C∗(X; Fp) if X is p–good. In particular, this holds for |L|∧p , BSU(m) and SU(m).

By Proposition 6.5, all the homology groups Hk(F ; Fp) are finite-dimensional. And since
BSU(m)∧p and SU(m)∧p are simply connected, the fundamental group of F is isomorphic to
the fundamental group of |L|∧p . This is a finite p-group by [6, Proposition 1.12]. Therefore
(F,Fp) is of Eilenberg–Moore type.
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Since H∗(F ; Fp) is finite-dimensional, Remark 5.5(2) in [11] tells us that the augmen-
tation C∗(F ; Fp) → Fp is cosmall. By [11, Remark 4.15], it is also proxy-small. Now
[11, Proposition 8.12] and Corollary 6.6 imply that this augmentation is Gorenstein.

Theorem 7.14 in [20] shows that there is a quasi-isomorphism

C∗(F ; Fp) ∼ C∗(|L|∧p ; Fp) ⊗C∗(BSU(m)∧p ;Fp) Fp.

By [11, Section 10.2], the augmentation C∗(BSU(m)∧p ; Fp) → Fp is small and Gorenstein.
Since the augmentation C∗(BSU(m)∧p ; Fp) → Fp is small and the morphism C∗(F ; Fp) → Fp

is proxy-small, the augmentation C∗(|L|∧p ; Fp) → Fp is proxy-small by [11, Proposition 4.18].
The fibration F → |L|∧p → BSU(m)∧p is admissible in the sense of Dwyer–Wilkerson [12],

hence C∗(|L|∧p ; Fp) is small over C∗(BSU(m)∧p ; Fp) by [12, Lemma 2.10]. The augmentation
maps C∗(BSU(m)∧p ; Fp) → Fp and C∗(F ; Fp) → Fp are both Gorenstein, so we can use
[11, Proposition 8.10] to conclude that C∗(|L|∧p ; Fp) → Fp is Gorenstein. �

Corollary 6.8. Let (S,F ,L) be a p-local finite group and let Ω(|L|∧p ) denote the based
loop space of |L|∧p . Then the augmentation C∗(Ω(|L|∧p ); Fp) → Fp is Gorenstein.

Proof. Since (|L|∧p ,Fp) is of Eilenberg–Moore type, it is dc-complete (see [11, Section 4.22]).
We saw in the proof of the previous theorem that the augmentation C∗(|L|∧p ; Fp) → Fp is
proxy-small and Gorenstein. By [11, Proposition 8.5], we conclude that C∗(Ω(|L|∧p ); Fp) → Fp

is Gorenstein. �

Moreover, as in [11, Example 10.3], we get other interesting consequences, such as the
existence of a local cohomology spectral sequence.

Corollary 6.9. Let (S,F ,L) be a p-local finite group. There is a spectral sequence

E2
i,j = H−i

I (H∗(|L|∧p ; Fp))j ⇒ Hi+j(|L|∧p ; Fp),

where I is the ideal of elements of positive dimension.

Proof. Since C∗(|L|∧p ; Fp) is coconnective and connected, it follows by [11, Remark 3.17] that
C∗(|L|∧p ; Fp) is Fp-cellular over C∗(|L|∧p ; Fp). Since the Fp-cohomology of |L|∧p is Noetherian, it
follows from [11, Proposition 9.3] that there is a spectral sequence

E2
i,j = H−i

I (H∗(|L|∧p ; Fp))j ⇒ Hi+j−a(|L|∧p ; Fp),

where I is the ideal of elements of positive dimension and C∗(|L|∧p ; Fp) → Fp is Gorenstein of
shift a. By Corollary 6.6, F is a Poincaré duality algebra of the same dimension of SU(m),
so the shift of C∗(BSU(m)∧p ; Fp) → Fp and C∗(F ; Fp) → Fp coincide. By [11, Propositions 8.6
and 8.10], the shift of C∗(|L|∧p ; Fp) → Fp is zero. �

Recall that a graded commutative Noetherian local ring R with maximal ideal m and residue
field k is Cohen–Macaulay if its local cohomology is concentrated in one degree. In this case, R
is Gorenstein if the local cohomology in this degree is isomorphic to Homk(R, k) (see Greenlees–
Lyubeznik [16] for instance).

The local cohomology spectral sequence has structural implications on the cohomology of
|L|∧p . For example, if H∗(|L|∧p ; Fp) is Cohen–Macaulay, then the spectral sequence collapses to
give an isomorphism

Hr
I (H∗(|L|∧p ; Fp)) ∼= H∗(|L|∧p ; Fp) ∼= HomFp

(H∗(|L|∧p ; Fp),Fp)

and so it is Gorenstein (see Greenlees [15] and Greenlees–Lyubeznik [16]).
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Example 6.10. Some important examples of exotic 2-local finite groups were constructed
in Levi–Oliver [19] (see also Benson [3]), motivated by the work of Solomon [28] of classifying
all finite simple groups whose 2-Sylow subgroups are isomorphic to those of the Conway group
Co3. They construct a 2-local finite group (S,FSol(q),Lc

Sol(q)) over a 2-Sylow subgroup S of
Spin7(q) for any odd prime power q. The F2-cohomology of these 2-local finite groups was
computed by Grbić [14] to be

H∗(|Lc
Sol(q)|∧2 ; F2) ∼= F2[u8, u12, u14, u15, y7, y11, y13]/I,

where I is the ideal generated by the polynomials

y2
11 + u8y

2
7 + u15y7,

y2
13 + u12y

2
7 + u15y11,

y4
7 + u14y

2
7 + u15y13.

In fact, [14, Proposition 1] shows that H∗(|Lc
Sol(q)|∧2 ; F2) is a finitely generated free

F2[u8, u12, u14, u15]-module. Therefore, the cohomology ring is Cohen–Macaulay (see Benson
[2, Definition 5.4.9 and Theorem 5.4.10]). Hence, our arguments above imply that it must
be Gorenstein.

In this particular case we can actually deduce that it is Gorenstein from the computa-
tion. The quotient of H∗(|Lc

Sol(q)|∧2 ; F2) by the ideal generated by the polynomial subring
F2[u8, u12, u14, u15] is the graded ring

F2[y7, y11, y13]/(y2
11, y

2
13, y

4
7)

which is a Poincaré duality algebra. By Proposition I.1.4 and the Remark on the same page of
Meyer–Smith [21], we can conclude that H∗(|Lc

Sol(q)|∧2 ; F2) is Gorenstein.

Acknowledgements. The authors are grateful to John Greenlees for suggesting that the
existence of homotopy monomorphisms should have duality consequences on the cohomology
ring. We are grateful to the referee for providing very helpful suggestions.
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