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Abstract—Radio Access Network Virtualization (vRAN) will
spearhead the quest towards supple radio stacks that adapt to
heterogeneous infrastructure: from energy-constrained platforms
deploying cells-on-wheels (e.g., drones) or battery-powered cells
to green edge clouds. We perform an in-depth experimental
analysis of the energy consumption of virtualized Base Stations
(vBSs) and render two conclusions: (i) characterizing perfor-
mance and power consumption is intricate as it depends on
human behavior such as network load or user mobility; and (ii)
there are many control policies and some of them have non-linear
and monotonic relations with power and throughput. Driven by
our experimental insights, we argue that machine learning holds
the key for vBS control. We formulate two problems and two
algorithms: (i) BP-vRAN, which uses Bayesian online learning
to balance performance and energy consumption, and (ii) SBP-
vRAN, which augments our Bayesian optimization approach with
safe controls that maximize performance while respecting hard
power constraints. We show that our approaches are data-efficient
and have provably performance, which is paramount for carrier-
grade vRANs. We demonstrate the convergence and flexibility of
our approach and assess its performance using an experimental
prototype.

I. INTRODUCTION

Virtualization is considered today the most promising ap-
proach for bringing cellular networks up to speed with the
demanding services they aspire to support [1]. The latest
frontier in this endeavor is virtualizing the radio access net-
work (vRAN) by turning the base stations (BSs) into fully-
softwarized stacks that can be deployed in diverse platforms
such as commodity servers, small embedded devices, or even
moving nodes (cells-on-wheels) [2]. This paradigm shift is
expected to offer the much-needed performance flexibility,
facilitate the ongoing network densification, and reduce capital
and operating expenses [3]. Hence, not surprisingly, it has
spurred numerous industry efforts to build BS stacks [4], fully-
open RANs [5], and even launch extensive field tests [6].

However, designing and operating vRANs is far from trivial,
since the virtualized base stations (vBSs) differ significantly
from their hardware-based counterparts. On the one hand,
vBSs are more controllable as one can tune their parameters
(transmission power, modulation schemes, etc.) in real time
based on the network needs. On the other hand, their soft-
warization and diverse platforms render less predictable their
performance and power consumption. The latter is particu-
larly important both for economic reasons but also because
the vBSs, most often, operate under tight energy budgets

[7]. Hence, traditional radio control policies run the risk of
under-utilizing this new type of BSs, or rendering vRANs
economically unsustainable. Clearly, in order to unleash the
full potential of vRANs we need to answer two key questions:
(i) what is the performance and energy consumption profile
of vBSs? and (ii) how can we optimize their operation using
an adaptive and platform-oblivious approach? In this paper
we take a hybrid experimental/theoretical approach to address
systematically these questions.

We first analyze experimentally the vBSs operation using
different platforms and scenarios. Our results shed light on the
relationship between performance (throughput), power con-
sumption, and vBS controls such as the modulation and coding
schemes (MCS) and spectrum allocation. For instance, we find
that the baseband unit (BBU) consumes power comparable to
wireless transmissions, and the vBS power and throughput are
affected by the configurations in a non-linear/non-monotonic
fashion. These results depend also on the hosting platform.
Moreover, we observe that uplink (UL)-related computations
consume more power and are more sensitive on MCS and SNR
variations, than the respective downlink (DL) computations; a
finding attributed to the heavier UL decoding. Our analysis is
centered on energy, which is the bottleneck vBS resource that
affects both its computations and transmissions.

The take-away message from these extensive measurements
(details in Sec. III) is that, unlike legacy BSs, virtualized
BSs have a complex, poly-parametric, and platform-dependent
performance and power consumption profile; and this renders
traditional control policies inefficient. Therefore, we propose
a powerful machine learning framework that learns on-the-
fly the vBS profiles and selects their optimal configurations
based on the network needs and power availability. We for-
mulate two energy-aware vBS control problems and design
novel algorithms to solve them: (i) BP-vRAN, which finds
the Pareto-optimal trade-off between performance and power
consumption; and (ii) SBP-vRAN, which maximizes perfor-
mance subject to hard constraints on the power source. The
former allows operators to balance performance and power
expenses, while the latter is crucial for vBS running on power-
constrained platforms, e.g., power-over-ethernet (PoE) cells.

Our algorithms are strongly founded on Bayesian online
optimization theory [8] and Gaussian Processes [9]. The GPs
model the behavior of the vBS in terms of performance and
power consumption, using the collected measurements in real
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time. Accordingly, we use a contextual bandit approach to
intelligently explore the space of vBS configurations, and ex-
ploit the best ones for each context, namely UL/DL traffic load
and SNR patterns. The result is a non-parametric algorithmic
framework that makes minimal assumptions about the system,
adapts to user needs and network conditions, and provably
maximizes performance. Furthermore, drawing ideas from safe
Bayesian optimization [10], [11], our SBP-vRAN algorithm
ensures that the vBS power constraints are not violated even
during exploration, hence enabling the vBS deployment on
energy-constrained platforms. By its design, this framework
outperforms other approaches requiring knowledge of the vBS
functions [12] or offline data to approximate them [13], and
adaptive techniques that do not offer performance guarantees
or have strict assumptions [14], [15] (see Sec. II).

Finally, we performed an extensive evaluation in a cus-
tomized testbed, virtualizing srsLTE [4] as vBs, and several
tools to measure in real time the power consumption. We ver-
ified that both algorithms converge and find the optimal vBS
configuration in a variety of scenarios. To that end, we also
proposed and evaluated practical enhancements that expedite
the algorithms’ convergence. Using real traffic traces, we show,
step-by-step, how our framework explores the configurations,
and how it refrains from violating the power constraints when
necessary.

To summarize, the main contributions of this paper are:
• We perform a thorough experimental study of the power

consumption and performance of vBSs upon different scenar-
ios and platforms, revealing their complex profile/operation.
• We develop a non-parametric fully-adaptive learning

framework to optimize on-the-fly the vBS operation; and we
propose two algorithms for tackling two important problems:
(i) BP-vRAN, which balances performance and cost, useful
for unconstrained computing platforms; and (ii) SBP-vRAN,
which maximizes performance subject to a hard power con-
sumption constraints.
• Finally, we assess the performance of our framework using

realistic contexts (network loads and channel dynamics). Our
findings verify that it constitutes a strong candidate for the
next-generation automated/zero-touch vBS control solution.

Our software implementation of BP-vRAN and SBP-vRAN
and the dataset used in our paper are publicly available to ease
reproducibility and foster future research in this area.

II. RELATED WORK

Resource Orchestration in Networks can be classified to:
(i) studies that use models which relate control variables to
performance; (ii) model-free approaches that rely on offline
training data; and (iii) online learning techniques. Interesting
examples in (i) include [16] which performs rate control to
maximize throughput; [12] that selects also the MCS and
airtime; and [17] that adapts to traffic. Nonetheless, such
models are often unavailable and platform-dependent. On the
other hand, model-free approaches employ machine learning
to approximate the performance functions [18] and are used in
slicing [19], throughput forecasting [13], etc. Their efficacy is

remarkable as long as there are enough training data. Other-
wise, we need to employ online learning that has been recently
used, for instance, to configure video analytic systems [28] and
minimize the power consumption and interference among BSs
[22]. Similarly, online convex optimization is used for cloud
and IoT resource orchestration [20], [21], but requires convex
functions; a condition not satisfied here. Another approach is
reinforcement learning (RL), used in spectrum management
[14], network diagnostics [23], interference coordination [24],
and SDN control [25], among others. However, RL suffers
from the curse of dimensionality, and lacks convergence
guarantees.

Similarly to RL, contextual bandits have been recently
employed to adjust video streaming rates [27]; configure BS
parameters (e.g., handover thresholds) [29], [30]; assign CPU
time to virtualized BSs [15]; and control mmWave networks
[31], [32]. Here, instead, we combine Gaussian Processes [9]
and contextual bandit algorithms [26] to build a data-efficient
Bayesian optimization framework [8] with convergence guar-
antees. Our approach captures the non-trivial multimodal
correlations of configurations (revealed by our experiments)
through Gaussian Processes, and use these perpetually-updated
functions to sample the decision space. Our work draws from
the seminal CGP-UCB algorithm [26] which is extended to
include vRAN-specific context, to optimize throughput and
power costs, and to satisfy hard power constraints.

Experimental Studies of vBS. The early work of [34]
studied the cost savings when pooling the processing oper-
ations of BSs, and [35] proposed a vRAN architecture that
reduces processing load by 30%. Other studies considered
the effect of MCS, bandwidth, and SNR on Baseband Unit
(BBU) computing load [36], [37]. Using an OAI simulator
[38] models the processing time for different configurations,
and [15] presented measurements with srsLTE for the impact
of traffic. Our analysis builds on these important works and
further measures the impact of new context parameters and
radio schedulers on throughput, the coupling of uplink and
downlink, and the vBS power consumption.

Studies of power consumption in legacy BSs focus on the
effect of power amplifier, RF output, and baseband processing.
The EARTH model [39] relates the RF output power to
supplied power; and [40] studies the effect of bandwidth. The
works [41], [42] proposed models for macro and micro BSs,
and [43] studied how the packet length affects the CPU power.
Models accounting for various BS components are presented
in [44], [45]. Alas, for small vBSs other configuration param-
eters are equally important. Previous works focusing on vBS
include [46] which considered the effect of CPU cores/speed,
assuming a linear relation of traffic with computing load.
This assumption is not always valid as our measurements
and previous studies showed [36]. Importantly, the impact
of hardware/software platform on these metrics cannot be
captured in predetermined models. We overcome this obstacle
by building models on-the-fly using the observed data.
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Fig. 1: (a): Comparison of power consumption at: the BBU (Intel
NUC i7-8559U@2.70GHz), the BBU’s CPU, and the RU (an USRP
SDR), with 20Mbps DL and UL traffic. (b): Consumed power over
the baseline for different radio bandwidths and hardware platforms.
SF PC 1: Intel NUC i7-8559U@2.70GHz; SF PC 2: Intel NUC
i7-8650U@1.90GHz; Server 1: Dell XPS 8900 i7-6700@3.40GHz;
Server 2: Dell Aurora R5 i7-9700@3.00GHz.

III. PRELIMINARY EXPERIMENTAL ANALYSIS

We performed exhaustive experiments using an srsLTE-
based vBS testbed [4]; details in Section VI-A. We first present
results that motive the problem and our solution approach.
• BBU/CPU Power Cost & Impact of Platform. The first

important finding is that the power consumption associated
with BBU processing is comparable to the RF chain’s trans-
mission power. This result is consistent with previous studies;
e.g., [39] estimated that 40% of a femtocell’s power consump-
tion is due to BBU. Fig. 1a dissects the power consumption
of a vBS deployed over a small factor (SF) PC into the share
responsible by (i) the BBUs CPUs1, (ii) the BBUs cloud
platform except the CPUs, and (iii) the actual radio unit (RU)
deployed over an USRP software-defined radio (SDR). We
measure the power consumption for four scenarios: (i) the vBS
is not deployed (baseline), (ii) the vBS is deployed with an idle
user attached (vBS idle), (iii) the vBS is transmitting 20Mbps
of downlink (DL) traffic, and (iv) the user is transmitting
20Mbps of uplink (UL) traffic to vBS.

Excluding the baseline scenario, the CPU power cost alone
is, on average, 29% larger than that of the RU, while the
overall BBU power exceeds it by 175%, on average (208%
over full UL load). Interestingly, these numbers depend on
the platform which hosts the BBU. Namely, Fig. 1b shows the
BBU consumption over the baseline for different platforms.2

We compare the power consumed by the BBU in idle state
and operating at full UL/DL buffer, and subtract the baseline
power. Indeed, the power cost changes significantly, and is
affected also by the vBS bandwidth.
• Impact of SNR & MCS. The second finding is that the

signal-to-noise ratio (SNR) of the wireless channel and the
modulation and coding scheme (MCS) in UL affect the
BBU computing load and hence its power consumption in a
non-linear fashion. This is because the decoder needs more
iterations when the received signal becomes noisier. Thus, the

1We use the Intels Running Average Power Limit (RAPL) functionality
integrated into the Linux kernel to measure the CPU consumed power.

2The small factor PCs consume less power than the servers, which however
can host more vBSs hence are expected to consume less power per user.
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Fig. 2: vBS over SF PC 1 at full UL buffer. (a): UL decoding time as
a function of SNR and different MCS values. (b): Power consumption
as a function of the decoder performance (high correlation).
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Fig. 3: (a): 8 combinations of normalized MCS and airtime providing
2.6Mbps in UL, and its associated power (idle mode power is
subtracted). (b): Normalized power consumption at the BBU over
baseline for full buffer UL transmissions and high SNR, as a function
of MCS and airtime.

decoding time per subframe increases, e.g., by 52% between
20 and 15 dBs for MCS 23, see Fig. 2a; and this induces
a commensurate increase in power consumption, see Fig. 2b.
Besides, Fig. 2b shows that, even for a given decoding time,
higher MCS values induce more power consumption, which
is attributed to their more intricate demodulation. Importantly,
excessive decoding delays can induce throughput loss since
they lead to violations of vBS deadlines [4]. Hence, maximiz-
ing throughput does not only have an unpredictable effect on
power, but it is indeed highly non-trivial.
•Configuration Options & Impact of Scheduler. The above

vBS control challenges are exacerbated by the plenitude of
configuration options. Fig. 3a, for instance, presents com-
binations of MCS and airtime values (percentage of used
subframes) achieving the same UL throughput. Configurations
with higher MCSs (and therefore lower airtime) reduce power
by 38%. However, this relation is non-monotonic, as we have
also measured higher power when the MCS increases and SNR
is relatively low; this is due to the fast increase of computing
load (see Fig. 2b). On the other hand, configurations 6 to 8
have the same power consumption, but still differ since config.
8 involves lower airtime and thus can serve more users, while 6
is more resilient to noise. These decisions are made by the vBS
radio scheduler which based on the SNR selects the MCS and
airtime. Fig. 3b shows the power consumption as a function of
MCS and airtime for UL transmissions. We observe that both
parameters have a smooth impact on power, but in practice
this characterization is not available and needs to be learned.
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Fig. 5: O-RAN compliant system architecture and workflow.

• Coupling of DL & UL Processing. Finally, Fig. 4 shows
the BBU power consumption when DL and UL traffic streams
are processed separately and concurrently (UL+DL), for dif-
ferent MCSs and high SNR. We observe that the joint power
is not the total sum of the separate components. For instance,
for MCS 15, concurrent DL and UL processing consumes just
7.5% more than UL-only processing (and 26% over DL-only).
This is because there are common power consumption factors
in both links. This, in turn, makes it difficult to predict the
overall vBS power consumption, given that the DL and UL
can be configured separately. Also, note that UL power costs
are higher and more volatile than DL, since decoding is more
computationally demanding.

Conclusions: characterizing the vBS power consumption
is intricate as it depends on traffic, SNR, MCS and airtime.
There are many DL and UL configurations and some of them
present non-linear and non-monotonic relations with power
and throughput. Moreover, the power consumption depends
on the BBU platform and radio scheduler. This hinders the
derivation of general consumption models. Hence, we propose
the use of online learning to profile each vBS power cost and
performance, and devise goal-driven configuration policies.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

A. O-RAN Background and Model

We consider a virtualized Base Station (vBS) comprising a
Baseband Unit (BBU), which may correspond to a 4G eNB

or 5G gNB3 hosted in a cloud platform and attached to a
Radio Unit (RU), which are fed by a common and possibly
constrained energy source. This type of BSs is relevant for
low-cost small cells, Power-over-Ethernet (PoE) cells, and
so on. Our goal is to use O-RAN’s control architecture to
select and adapt radio policies to system dynamics satisfying
different energy-driven criteria. Fig. 5 shows the high-level
system architecture, which is O-RAN compliant [5]. The
Learning Agent (LA) runs online algorithms within the Non-
Real-Time (Non-RT) RAN Intelligent Controller (RIC) in the
system’s orchestrator, and sequentially selects efficient radio
policies every orchestration period t (in the order of seconds)
given the current context. We hence formulate our problem as
a Contextual Multi-armed Bandit or Contextual Bandit.

Contexts. We define the DL context at each period t as
ωdlt := [c̄dlt , c̃

dl
t , d

dl
t ], where c̄dlt and c̃dlt are the mean and

variance of the DL channel quality indicator (CQI) across
all users in the previous period; and ddlt is the new bit
arrivals at the vBS DL aggregated across all users. Note
that the DL CQI is sent periodically from the UEs to vBS
through Uplink Control Information (UCI) carried by 4G/5G’s
Physical Uplink Shared Channel (PUSCH) or Physical Uplink
Control Channel (PUCCH). Conversely, ddlt is measured by
the vBS at the PDCP layer. Also, we define the UL context
as ωult := [c̄ult , c̃

ul
t , d

ul
t ]. The UL CQI is measured by the vBS

at MAC layer, and the new UL bit arrivals are estimated from
the periodic Buffer Status Reports (BSRs) of the users (UEs).
All these measurement are collected by the Near-RT RIC’s
Data Monitor (Fig. 5) from the vBS using the E2 interface at
sub-second granularity, and are aggregated at the start of each
orchestration period t. We denote the global context vector
ωt := [ωdlt , ω

ul
t ] ∈ Ω, where Ω is the context space.

Controls. We define the DL control xdlt :=[pdlt ,m
dl
t , a

dl
t ] at

period t, where pdlt ∈ Pdl is a transmission power control
(TPC) policy for the maximum allowed vBS transmission
power, mdl

t ∈ Mdl is the highest MCS eligible by the vBS
(DL MCS policy), and adlt ∈ Adl is the maximum vBS trans-
mission airtime (DL airtime policy). We define the UL control
xult :=[mul

t , a
ul
t ], where mul

t ∈Mul and ault ∈Aul are the UL
MCS and airtime policies.4 We hence formalize each control
at decision period t as a radio policy xt := [xdlt , x

ul
t ] ∈ X ,

where X = Pdl×Mdl×Adl×Mul×Aul is the control space.
Once computed, the LA sends each radio control policy to
the Near-RT RIC via O-RAN’s A1-P interface, which is then
applied to vBS. The UL policies are applied by configuring
each UL scheduling at the vBS MAC layer.

Rewards. We denote Rdl(ωdlt , x
dl
t ) and Rul(ωult , x

ul
t ) the

DL and UL data transmission rates, and define the reward
function r(ωt, xt) :=

log

(
1+

Rdl(ωdlt , x
dl
t )

ddlt

)
+log

(
1+

Rul(ωult , x
ul
t )

dult

)
(1)

35G decouples BBU in 2 logical functions, i.e., a central unit (CU) and a
distributed unit (DU). Our scheme controls the DU, or both when co-located.

4We do not define an UL TPC policy for simplicity because the users’
transmission power has less impact on the vBS power than the MCS and UL
airtime; but our framework can be readily extended to that.
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where the logarithms are used to achieve fairness between the
DL and UL flows – and to that end, one could use any other
α-fair function [47]. The reward is computed at the end of
each period by the Near-RT RIC’s Data Monitor and sent to
LA. It is important to stress that in practice we can only hope
to observe noisy values of these functions, even when their
arguments are fixed, because naturally the system operation
is stochastic and also the power measurements are noisy –
as we have indeed seen in our experiments. Fortunately, our
optimization framework can handle such impairments. Hence-
forth, we denote Rdlt (ωdlt , x

dl
t ), Rult (ωult , x

ul
t ) and rt(ωt, xt)

the sample at period t of the functions.

B. Case 1: Balancing performance and cost
We consider first the case where the power supply is scarce,

or the operator simply wants to reduce the power costs. This
can be achieved with a scalarized objective function:

u(ωt, xt) := r(ωt, xt)− δB
(
P (ωt, xt)

)
, (2)

where P (ωt, xt) is the vBS power consumption associated
with the pair context-control (ωt, xt), B(·) corresponds to a
smooth function that models the monetary cost associated with
power consumption, and parameter δ prioritizes one over the
other criterion based on the operator’s preferences. Consider-
ing the noisy samples at period t Pt(ωt, xt) and rt(ωt, xt),
we define ut(ωt, xt) as the objective function observation. In
order to penalize power-consuming policies, we use a sigmoid
function with sharpness and tipping parameters a and b:

B(k) :=
1 + eab

eab

(
1

1 + e−a(k−b)
− 1

1 + eab

)
. (3)

When a → 0, B(·) approximates a linear function, and the
step function when a grows [48].

Following the standard approach in Bayesian bandit opti-
mization [11], [26], we use the cumulative contextual regret
to assess the performance of our algorithm. Namely, we define
the average T -period contextual regret:

RT :=
T∑
t=1

(
max
x′∈X

u(ωt, x
′)− u(ωt, xt)

)
,

where maxx′∈X u(ωt, x
′) yields the best decision for the cur-

rent period, which we cannot calculate in practice since the ob-
jective function is unknown. Our goal, therefore, is to find a se-
quence of decisions 〈xt〉Tt=1 from set X which ensure asymp-
totically sublinear average regret, i.e., limT→∞RT /T = 0.

C. Case 2: Hard power budget
When the vBS operates under a hard power budget Pmax,

e.g., when powered over Ethernet (PoE), the LA has to
find the maximum-throughput configuration that respects this
budget. Importantly, the LA needs to achieve that with a safe
exploration of the configuration space X in order to satisfy
the Pmax threshold at any period, i.e., not only at the final
optimal-operation stage. We define the respective regret:

RsT :=

T∑
t=1

(
max

x′∈St(ωt)
r(ωt, x

′)− r(ωt, xt)
)
, (4)

where in this case the decisions are selected from set

St(ωt) = {x ∈ X | P (ωt, x) ≤ Pmax}. (5)

Our goal is to find a sequence 〈xt〉Tt=1, xt∈St(ωt), such that
limT→∞RsT /T = 0. Note that sets St(ωt),∀ωt, are unknown
since P (ω, x) is unknown, and thus need to be learned from
the measurements Pt(ωt, xt). And, similarly, we only have
access to rt and ut, i.e., the t-period noisy measurements,
instead of the actual functions r and u. To solve this problem,
we propose a non-parametric learning approach in the sequel.

V. BAYESIAN ONLINE LEARNING SOLUTIONS

Next, we propose two online algorithms for solving the
problems stated in Sections IV-B and IV-C.

A. BP-vRAN: Balancing performance and cost
Many algorithms for solving contextual bandit problems

assume that there is a feature vector associated with each
action, and the objective function is linear in that vector [49],
[50]. However, this assumption does not hold here for the
following reasons. Firstly, our objective function is not linear,
as we can observe in eqs. (1)-(3). Secondly, the function values
associated with different actions (i.e., vBS control policies)
are correlated. Intuitively, we can think that a small change
in some configuration parameter (e.g., airtime) will induce a
small change in the vBS consumed power. This is actually
evaluated experimentally in Fig. 3b. This means that we can
obtain information about unobserved context-control pairs by
observing nearby actions, thus reducing the exploration time.

Based on these observations, we propose a Bayesian op-
timization method where we model the objective function
as a sample from a Gaussian Process (GP) over the joint
context-control space. This non-parametric estimator captures
the aforementioned non-linearities and correlations, and pro-
vides predictive uncertainty on the function estimation. Hence,
addresses effectively the exploration - exploitation trade-off.

Function estimator. We use a GP as a function estimator,
which is a collection of random variables following joint
Gaussian distributions [9]. Let z ∈ Z = Ω × X denote a
context-control pair. We model the unknown objective function
in eq. (2) as a sample from a GP (µ(z), k(z, z′)), where µ(z)
is its mean function and k(z, z′) is its covariance function
or kernel. Without loss of generality, we assume µ := 0
and a bounded variance k(z, z) < 1, which we refer to as
the prior distribution, not conditioned on data. Given this
prior and a set of observations, the mean and covariance
of the posterior distribution can be computed using closed
form formulas. Let yT = [u1, . . . , uT ] be a vector of noisy
samples (assuming i.i.d. Gaussian noise ∼ N(0, σ2)) at points
ZT = [z1, . . . , zT ]. Then, the posterior distribution of the
objective function follows a GP distribution with mean µT (z)
and covariance kT (z, z′):

µT (z) = kT (z>)(KT + ζ2IT )−1yT (6)

kT (z, z′) = k(z, z′)− kT (z>)(KT + ζ2IT )−1kT (z′) (7)

where kT (z) = [k(z1, z), . . . , k(zT , z)]
>, KT (z) is a kernel

matrix defined as [k(z, z′)]z,z′∈ZT
, and IT is the T -dimension
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identity matrix. These equations allow us to estimate the
distribution of unobserved values of z∈Z based on the prior
distribution, the vector ZT , and the function observations yT .

Kernel function. The selection of the kernel is crucial
because it shapes the prior and posterior GP distributions by
encoding the correlation between the values of the objective
function of every pair of points. Namely, k(z, z′) indicates
the similarity between ut(z) and ut(z

′). In other words, the
kernel characterizes the smoothness of the function [51]. Based
on our experiments, we select the kernel for this problem
satisfying two properties: stationarity and anisotropicity. On
the one hand, a kernel k(z, z′) is stationary if it depends
only on the distance between z and z′, which means that
it is invariant to translations in Z . On the other hand, a
kernel is anisotropic when the encoded smoothness is different
among the different dimensions of Z . That means that an
anisotropic kernel is not invariant to rotations in Z . We encode
the smoothness of the objective function u with a length-scale
vector L = [l1, . . . , lN ], where N indicates the number of
dimensions of Z . Thus, the distance between two points based
on the length-scale vector can be written as

d(z, z′) =
√

(z − z′)>L−2(z − z′), (8)

where L = diag(L) is a diagonal matrix of the length-scale
values. We select the anisotropic version of the Matérn kernel,
which satisfies the properties discussed above [9]. To this end,
following standard practice, we particularize the Matérn kernel
with parameter ν = 3

2 (details in [9]) to devise a simple
expression that guarantees that the objective function is at least
once differentiable, which yields:

k(z, z′) = (1 +
√

3d(z, z′)) exp(−
√

3d(z, z′)). (9)

To improve performance, we can optimize the hyperparam-
eters L and the noise variance ζ2 (eq. (6)-(7)) before running
the algorithm by maximizing the likelihood estimation over
prior data and we keep these values constant over time.

Acquisition function. The acquisition function selects one
control xt at each period t based on the posterior distribution
of the objective function over the context-control pairs. To this
aim, we use the Upper Confidence Bound (UCB) method:

xt = argmax
x∈X

µt−1(ωt, x) +
√
βtσt−1(ωt, x). (10)

where ωt is the observed context at time t, βt is a weighting
parameter and σt(z) = kt(z, z). To sum up, we formalize
our approach, which we refer to as BP-vRAN (Bayesian opti-
mization for Power consumption in vRANs), in Algorithm 1.
At the beginning of each decision period t a context ωt is
observed (line 3). Then control xt is decided based on the GP
posterior and the acquisition function (line 5). At the end of
t the throughput and consumed power are observed and the
value of the objective function is computed (lines 6-7). The
new measurements are included in Zt and yt to improve the
posterior distribution in t+ 1 (lines 8-10).

Theoretical results. The choice of a value for βt in eq. (10)
is very important since it controls the trade-off between explo-
ration and exploitation. Larger values of βt lead the acquisition

Algorithm 1 BP-vRAN: Performance and cost balancing
1: Inputs: Control Space X , kernel k, β
2: Initialize: y0 = ∅, Z0 = ∅
3: for t = 1, . . . , T do
4: Observe the context ωt

5: xt = argmaxx∈X µt−1(ωt, x) +
√
βtσt−1(ωt, x)

6: Measure Rdl
t (ωdl

t , x
dl
t ), Rul

t (ωul
t , x

ul
t ) and Pt(ωt, xt) at the

end of the decision period t
7: Compute ut(ωt, xt) using (1), (2) and (3)
8: Update Zt ← Zt−1 ∪ [ωt, xt]
9: Update yt ← yt−1 ∪ ut(ωt, xt)

10: Perform Bayesian update to obtain µt and σt

11: end for

function to select controls with higher uncertainty while,
conversely, controls already known to be high-performing
(though not necessarily highest-performing) are selected when
βt takes smaller values. Following [26], we select

βt = 2B2 + 300γt ln3(t/ε) (11)

where ε ∈ (0, 1), B ≥ ‖u‖k is an upper bound on the
Reproductive Kernel Hilbert Space (RKHS) norm of u, and
γt is the maximum mutual information gain obtained from u
after t observations.

Lemma 1. The contextual regret RT of BP-vRAN satisfies

P
(
RT ≤

√
C1TβT γT + 2 ∀T ≥ 1

)
≥ 1− ζ (12)

at stage T , where C1 = 8
log(1+σ−2) and γt = O(t44/45 log(t)).

Proof. For the derivation of the bound of the information
gain γt, we consider a Matérn kernel with ν = 3

2 and
N = 11 dimensions in Z (corresponding to a 6- and
a 5-dimensional context and control space, respectively, as
described in Sec. IV). For this setting, we particularize the
expression provided in Theorem 5 of [33] to obtain the bound
γt = O(t44/45 log(t)). For further details please see [26]. �

B. SBP-vRAN: Safe Bayesian Optimization

Imposing hard constraints as proposed in Sec. IV-C, com-
pounds the problem. Prior works, e.g., in robotics and other
areas [10], [11], [52], [53], have proposed Bayesian optimiza-
tion algorithms with safety constraints. Their main idea lays
upon the definition: every t we define a subset of safe controls
St ⊆X that satisfy the constraints with certainty. Then, it is
needed to interleave an exploration process so as to expand the
safe set, while seeking a safe action with high performance.
Unfortunately, these works do not consider contextual infor-
mation, which clearly affects the safe set, i.e., St(ωt) ⊆ X .
To the best of our knowledge, only SafeOpt [53] proposes
a contextual safe learning algorithm. However, although that
algorithm provides theoretical guarantees, its acquisition func-
tion selects the control with the highest uncertainty among all
candidates that can expand the safe set and also the potential
maximizers. We found in our experiments that this approach
has overly slow convergence. This practical issue has been
reported in other works as well, e.g. [54]. Hence, we improve
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Algorithm 2 SBP-vRAN: Safe online optimization
1: Inputs: Control Space X , Initial safe set S0, kernel k, β, Pmax

2: Initialize: yf0 = ∅, yc0 = ∅, Z0 = ∅
3: for t = 1, . . . , T do
4: Observe the context ωt

5: St = S0 ∪ {x ∈ X | µc
t−1(ωt, x) + βtσ

c
t−1(ωt, x) ≤ Pmax}

6: xt = argmaxx∈St
µt−1(ωt, x) +

√
βtσt−1(ωt, x)

7: Measure Rdl
t (ωdl

t , x
dl
t ), Rul

t (ωul
t , x

ul
t ) and Pt(ωt, xt) at the

end of the decision period t
8: Compute rt(ωt, xt) using (1)
9: Update Zt ← Zt−1 ∪ [ωt, xt]

10: Update yft ← yft−1 ∪ rt(ωt, xt)
11: Update yct ← yct−1 ∪ Pt(ωt, xt)
12: Perform Bayesian update to obtain µf

t , σf
t , µc

t and σc
t

13: end for

this methodology by employing the acquisition function of
CGP-UCB [26], but constrained to the safe set.

We denote yfT = [r1, . . . , rT ] the vector of reward samples
at T and ycT = [P1, . . . , PT ] the power consumption samples.
We use one GP for the reward and one for the power constraint.
Both GPs have the same prior distribution and kernel but
different hyperparameters. The posterior distribution can be
computed using (6)-(7), and replacing yT by yfT or ycT , for
each GP. We denote the posterior mean and covariance of the
reward at T as µfT (z) and kfT (z, z′), and µcT (z) and kcT (z, z′)
for the power, respectively. The initial safe set S0 ⊆ X is
common for all contexts, and includes low power consumption
configurations (vBS close to idle). This is worst-case S0 can
be expanded using prior data.

At each period, St is computed based on the posterior
distribution of the power consumption provided by the GP. We
assume the true value of the power consumption at time t is
within the interval [µct(z)±βtσct (z)], where σct (z) = kct (z, z).
Using the posterior distribution, we define the safe set a time
t and for a given context ωt as:

St = {x ∈ X | µct−1(ωt, x) + βtσ
c
t−1ωt, x) ≤ Pmax}. (13)

The controls are selected at each decision period t using the
CGP-UCB policy constrained to the safe set:

xt = argmax
x∈St

µft−1(ωt, x) +
√
βtσ

f
t−1(ωt, x), (14)

where σft (z) = kft (z, z).
We summarize our approach, named SBP-vRAN (Safe

Bayesian optimization for Power consumption in vRANs), in
Algorithm 2. Note that it does not expand explicitly the safe
set, like it is done in SafeOpt [53]. Instead, a new observation
is included at each t, which updates the posterior distribution
of the power consumption and therefore alters the safe set in-
directly. In our preliminary experimental campaign in Sec. III,
we observed that, roughly speaking, controls with higher
throughput are associated with higher power consumption.
This leads Algorithm 2 to explore controls at the boundary
of the selected constraint. As a result, the uncertainty around
their neighborhood decreases, which allows Algorithm 2 to
include more controls in the safe set. That is, SBP-vRAN’s
acquisition function exploits the structure of our problem to

Power Meter
GW-Instek GPM-8213

Virtualized Base Station (vBS)
User Equipment (UE)

Baseband Unit (BBU)

Radio Unit (RU)

GW-Instek  
GPM-001 Adapter

Fig. 6: Experimental vBS and UE testbed.

effectively expand the safe set, as our experimental evaluation
presented in the next section demonstrates.

To conclude, it is important to remark that one inherent
problem in GP-based approaches is that they need O(N3)
computation complexity (for matrix inversion) each orches-
tration period, where N is the number of data points. We
observed in our experiments however that the unprecedented
convergence speed of our methods pays off in a very short
time. Moreover, we found that these computations do not
induce a delay since, according to O-RAN specifications, we
have a wide enough time window to update the policy.

VI. EXPERIMENTAL EVALUATION

A. Experimental setup
Our testbed is shown in Fig. 6 and comprises a vBS, the

user equipment (UE)5, and a digital power meter. Both the
vBS and the UE consist of an Ettus Research USRP B210
as RU, srseNB/srsUE (from srsLTE suite [4]) as BBU for
both the eNB and UE, and two small factor general-purpose
PCs (Intel NUCs with CPU i7-8559U@2.70GHz) deploying
each respective BBU and the near-RT RIC of Fig. 5. The
vBS and the UE are connected using SMA cables with 20dB
attenuators, and we adjust the gain of the RU’s RF chains
to attain different SNR values. Without loss in generality, we
select a 10-MHz band that renders a maximum capacity of
roughly 32 and 23 Mbps in DL and UL, respectively. We use
the power meter GW-Instek GPM-8213 to measure the power
consumption of the BBU and the RU by plugging their power
supply cable to a GW-Instek Measuring adapter GPM-001.
Finally, we have integrated E2’s interface and the ability to
enforce control policies on-the-fly (see Section IV) in srseNB.

We use three auxiliary PCs (not shown in the picture)
hosting the non-RT RIC and the network traffic end hosts,
which use mgen6. We have finally implemented O1 interface
(Fig. 5) using the USB-based power meter SCPI (Standard
Commands for Programmable Instruments) interface concern-
ing power consumption measurements and a REST interface
for the remainder. A final remark is that our RU (USRP B210)
does not integrate a variable power amplifier. Instead, it uses a
fixed power amplifier consuming 3W and a variable attenuator
for power calibration (see Fig. 1a). To compensate for this, we
post-process the power measurements to include a variable RU

5We use one UE emulating the load of multiple users (see Section VI-C).
6https://www.nrl.navy.mil/itd/ncs/products/mgen.
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consumption according to a linear model based on previous
works [39], [41] and a 3W cap.

For the elaboration of the dataset used in Sec. III, we
configure the vBS and UE in order to fix the conditions in
the uplink and the downlink in terms of traffic load, channel
quality, MCS, and airtime. Then, we fix each configuration
for approximately one minute while the system takes mea-
surements that later are processed to obtain its statistics.
We assess the power behavior of the vBS by measuring the
power consumption of its CPU and the whole BBU, the
achieved performance in terms of throughput and goodput,
details about the decoder at the vBS such as the subframe
decoding time and the number of turbo decoder iterations per
subframe, and some MAC and PHY indicators such as the
Buffer Status Report (BSR), Block Error Rate (BSR), and
the used MCS and airtime. Moreover, we detect and identify
unfeasible configurations in the dataset. This mainly occurs
when an MCS value is forced but the channel quality is
not good enough to decode its data. Finally, we release our
dataset7 online allowing the community to realistically emulate
the behavior of a vBS in terms of power consumption and
performance as a function of its configuration and conditions
(user traffic load and channel qualities) for future research.

For our evaluation, we consider |Pdl| = 20, |Mdl| = 28,
|Mul| = 24, and |Adl| = |Aul| = 11. In consequence, the
size of the control set is |X | ≈ 1.6 · 106. Note that, for a
decision period of 10s, we would need 185 days to explore
every control policy in X once, which highlights the need for a
data-efficient learning strategy. Although Lemma 1 guarantees
convergence and sublinear regret in general, faster convergence
can be achieved with problem-specific information. Hence, and
in line with previous works [53], [54], we select β1/2 = 2.5,
which shows good performance in our setup. In the case of
BP-vRAN, we configure δ = 20 and set the parameters a
and b in the penalty function, eq. (3), to severely penalize the
power consumption values close to b or higher. Namely, we
set a = 2.5 and evaluate different values of b. To visualize
our results, we use lines representing the average along 10
independent runs and a colored shadow representing the area
within the 10th and 90th percentiles.

The implementation of the algorithms BP-vRAN8 and SBP-
vRAN9 used for this evaluation can be found online.

B. Convergence Evaluation

We start off by evaluating the convergence of BP-vRAN
and SBP-vRAN. To this end, we consider the special case
of a single context and observe their performance over time
with no prior training up till they converge to yield optimal
policies. We select a context with high SNR = 35 dB (CQI =
15) in DL and UL, and high traffic demands (relative to our
testbed’s capacity) equal to 25 and 20 Mbps for DL and UL,
respectively. Fig. 7-8 show the temporal evolution of different
metrics for both algorithms during 150 orchestration periods.

7https://github.com/jaayala/power dlul dataset
8https://github.com/jaayala/contextual bayesian optimization
9https://github.com/jaayala/constrained bayes opt
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Fig. 7: Convergence rate evaluation of BP-vRAN for different con-
figurations of the objective function.
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Fig. 8: Convergence rate evaluation of SBP-vRAN for different values
of the power budget Pmax.

Let us discuss first the results of BP-vRAN in Fig. 7.
We observe that the power consumption and, consequently,
throughput, are lower for lower values of b, e.g., 12.5%
power drop and 33.75% throughput drop between b = 25
and b = 16. This is intuitive because lowering b induces more
stringent power requirements. Note that b = 16 only penalizes
DL throughput. This is because it imposes a mild power
requirement, and hence BP-vRAN only sacrifices transmission
power, which reduces DL SNR and thus DL throughput. Lower
values of b force BP-vRAN to sacrifice UL throughput too.

Concerning SBP-vRAN, we evaluate different values of
Pmax up to Pmax = 20, which is an upper bound for the
power consumption irrespective of the policy and the context.
The results, in Fig. 8, depict how SBP-vRAN learns to use
configurations within the power budget with high probability,
sacrificing throughput when so required. Note that, in all the
cases, SBP-vRAN always selects policies very close to Pmax.
This is because the optimal policy, i.e., the one that maximizes
throughput, usually requires consuming all the Pmax budget. To
this end, SBP-vRAN gradually expands its safe set close to
Pmax and therefore an explicit strategy to expand the safe set is
not needed. Specifically, Fig. 9 shows that all the controls are
safe for Pmax = 20, with 15.4% and 53.2% less safe policies
for Pmax = 14 and Pmax = 12, respectively. As expected, lower
values of Pmax incur a smaller safe policy set.

We conclude this evaluation with the observation that, de-
spite using a large set of policies X , both algorithms converge
in, at most, 30 orchestration periods. This result highlights the
data-efficiency nature of our solutions, which are able to find
optimal policies by observing only a very small subset of X .
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C. Performance in real network contexts

Next, we evaluate the performance of BP-vRAN and SBP-
vRAN using a realistic one-day traffic pattern from [55]
(Fig. 10, top). Concerning channel quality, we consider a
worst-case pattern emulating UEs with high mobility (Fig. 10,
bottom), which compromises network capacity (well below
the demand). Due to the granularity of our traffic pattern
dataset, we set the orchestration period length to 5 minutes
in these experiments (note there is no loss in generality). We
run our algorithms for two days and present results of the
second day to focus on the attained system performance. Their
convergence, evaluated in the previous subsection, takes just
a few periods (well within a day). This is possible because
the knowledge acquired by our algorithms for one context
is transferred to other similar contexts. That is, after a few
periods, the algorithms select efficient policies even for unseen
contexts. To remove the clutter introduced by the high SNR
variability under evaluation, each point in Figs. 11 and 12
corresponds to the average across all the points of a SNR
cycle (see Fig. 10, bottom). Fig. 11 shows the total power
consumption (a) and the evolution of throughput along the
day (b) using BP-vRAN and different configurations of the
objective function. We observe that the power consumption
evolves with the traffic demand and with the selected value
of b. For instance, when b = 16, the achieved throughput
is penalized in favor of better power consumption during
daylight but no performance degradation is required during
the night (between 2am and 7am). Similarly, Fig. 12 shows
the performance of SBP-vRAN under the same scenarios.
Specifically, SBP-vRAN manages to satisfy the power budget
constraint with probabilities 0.99 and 0.93 when Pmax equals
14 and 12, respectively, while maximizing throughput (which
we calculated through exhaustive search).
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Fig. 11: Performance evaluation of BP-vRAN throughout one day.
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Fig. 12: Performance evaluation of SBP-vRAN throughout one day.

VII. CONCLUSIONS

We have presented an in-depth experimental study of the
energy behavior of virtualized base stations (vBSs). Our results
made evident the complex relationship between performance,
power consumption, and different vBS control policies. In light
of these, we argued that such complexity can only be tamed
with data-driven machine-learning solutions. To that end, we
have proposed an online learning framework, compliant with
O-RAN, to achieve two goals: (i) balance performance and
power consumption in unconstrained platforms such as data
centers; and (ii) maximize performance subject to power con-
straints vBS, e.g., solar-powered platforms or cells-on-wheels.
We have followed a judicious design approach by resorting
to Bayesian learning theory. This methodology allowed us to
derive two algorithms, BP-vRAN and SBP-vRAN, that achieve
the aforementioned goals (i) with theoretical performance
guarantees, (ii) with high data-efficiency and convergence
speed, and (iii) respecting power constraints even during
learning. We have finally presented a thorough experimental
evaluation of our algorithms using real-life traffic load and
signal quality patterns. Our results demonstrated the ability of
our approach to converge quickly to optimal policies. We have
released the source code of BP-vRAN and SBP-vRAN along
with the dataset used in this work to foster future research in
this area.

ACKNOWLEDGMENTS

This work was supported by the European Commis-
sion through Grant No. 856709 (5Growth) and Grant No.
101017109 (DAEMON); and by SFI through Grant No. SFI
17/CDA/4760.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

Authorized licensed use limited to: Universitat de Barcelona. Downloaded on March 14,2022 at 10:19:18 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] “AT&T and Nokia Accelerate the Deployment of RAN Open
Source,” AT&T. Press Release, 2019. [Online]. Available: https:
//about.att.com/story/2019/open source.html

[2] “Virtualized Radio Access Network: Architecture, Key Technologies and
Benefits,” Samsung. Technical Report, 2019.

[3] “Open & Virtualized – The Future of Radio Access Network,” NEC.
White Paper, 2020.

[4] I. Gomez-Miguelez et al., “srsLTE: an Open-source Platform for LTE
Evolution and Experimentation,” in in Proc. of ACM WinTech, 2016.

[5] O-RAN Alliance, “O-RAN-WG1-O-RAN Architecture Description -
v01.00.00.” Technical Specification, Februry 2020.

[6] “Reimagining the End-To-End Mobile Network in the 5G Era,” Cisco,
Rakuten, Altiostar. White Paper, 2019.

[7] “5G network energy efficiency,” Nokia Corporation. White Paper, 2016.
[8] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. d. Freitas, “Tak-

ing the Human Out of the Loop: A Review of Bayesian Optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[9] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[10] Y. Sui, A. Gotovos, J. Burdick, and A. Krause, “Safe exploration for
optimization with Gaussian Processes,” in Proc. of ICML, 2015, pp.
997–1005.

[11] Y. Sui et al., “Stagewise Safe Bayesian Optimization with Gaussian
Processes,” arXiv preprint arXiv:1806.07555, 2018.

[12] D. Bega et al., “CARES: Computation-aware Scheduling in Virtualized
Radio Access Networks,” IEEE Trans. on Wireless Communications,
vol. 17, no. 12, pp. 7993–8006, 2018.

[13] D. Raca et al., “On Leveraging Machine and Deep Learning for
Throughput Prediction in Cellular Networks: Design, Performance, and
Challenges,” IEEE Communications Magazine, vol. 58, no. 3, pp. 11–17,
2020.

[14] N. Zhao et al., “Deep Reinforcement Learning for User Association and
Resource Allocation in Heterogeneous Cellular Networks,” IEEE Trans.
on Wireless Communications, vol. 18, no. 11, pp. 5141–5152, 2019.

[15] J. A. Ayala-Romero et al., “vrAIn: A Deep Learning Approach Tailoring
Computing and Radio Resources in Virtualized RANs,” in Proc. of ACM
MOBICOM, 2019.

[16] P. Rost et al., “Computationally Aware Sum-Rate Optimal Scheduling
for Centralized Radio Access Networks,” in Proc. of IEEE GLOBECOM,
2015.

[17] K. Wang et al., “Computing Aware Scheduling in Mobile Edge Com-
puting System,” Springer Wireless Networks, pp. 1–17, 2019.

[18] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A Survey,” IEEE Commun. Surv. Tutor., vol. 21,
no. 3, pp. 2224–2287, 2019.

[19] D. Bega et al., “DeepCog: Optimizing Resource Provisioning in Net-
work Slicing With AI-Based Capacity Forecasting,” IEEE J. Sel. Areas
Commun., vol. 38, no. 2, pp. 361–376, 2020.

[20] N. Liakopoulos et al., “No Regret in Cloud Resources Reservation with
Violation Guarantees,” in Proc. of IEEE INFOCOM, 2019.

[21] V. Valls, G. Iosifidis, G. de Mel, and L. Tassiulas, “Online network
flow optimization for multi-grade service chains,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 1329–1338.

[22] J. A. Ayala-Romero, J. J. Alcaraz, A. Zanella, and M. Zorzi, “Online
learning for energy saving and interference coordination in hetnets,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp.
1374–1388, 2019.

[23] F. Mismar, J. Choi, and B. L. Evans, “A Framework for Automated
Cellular Network Tuning With Reinforcement Learning,” IEEE Trans-
actions on Communications, vol. 67, no. 10, pp. 7152–7167, 2019.

[24] J. J. Alcaraz, J. A. Ayala-Romero, J. Vales-Alonso, and F. Losilla-López,
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