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Introduction: Down syndrome (DS) is a chromosomal disorder affecting simultaneously

cardiovascular and respiratory systems. There is no research studying the coupling

between these systems during cardiorespiratory exercise testing in a population with DS.

Cardiorespiratory coordination (CRC), evaluated through principal component analysis

(PCA), measures the covariation of cardiorespiratory variables during exercise.

Objective: To investigate and compare CRC in adults with and without DS during

maximal cardiorespiratory exercise testing.

Methods: Fifteen adults with DS and 15 adults without disabilities performed a maximal

cardiorespiratory exercise test on a treadmill. First, the slope, and afterward the velocity

was increased regularly until participants reached exhaustion. The time series of six

selected cardiorespiratory variables [ventilation per minute, an expired fraction of O2,

the expired fraction of CO2, heart rate, systolic blood pressure (SBP), and diastolic blood

pressure (DBP)] were extracted for the analysis. The number of principal components

(PCs), the first PC eigenvalues (PC1), and the information entropy were computed for

each group (non-DS and DS) and compared using a t-test or a Mann-Whitney U test.

Results: Two PCs in the non-DS group and three PCs in the DS group captured the

variance of the studied cardiorespiratory variables. The formation of an additional PC in

the DS group was the result of the shift of SBP and DBP from the PC1 cluster of variables.

Eigenvalues of PC1 were higher in the non-DS (U = 30; p = 0.02; d = 1.47) than in the

DS group, and the entropy measure was higher in the DS compared with the non-DS

group (U = 37.5; p = 0.008; d = 0.70).

Conclusion: Adults with Down syndrome showed higher CRC dimensionality and a

higher entropy measure than participants without disabilities. Both findings point toward

a lower efficiency of the cardiorespiratory function during exercise in participants with DS.

CRC appears as an alternative measure to investigate the cardiorespiratory function and

its response to exercise in the DS population.

Keywords: Down syndrome, principal component analysis, cardiorespiratory fitness, blood pressure, network

physiology of exercise, information entropy
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INTRODUCTION

Down syndrome (DS), a relatively common chromosomal
disorder, has always been part of the human condition. It exists
in all regions of the world, and in addition to causing intellectual
disability, it may cause varying effects on physical characteristics
and an increased risk of developing medical conditions (World
Health Organization, 2000). As of 2015, European DS population
prevalence was estimated at 4.9 per 10,000 inhabitants and 6.7 per
10,000 in the United States (De Graaf et al., 2018). The literature
comparing general physical health, as well as cardiorespiratory
fitness between persons with DS and people without disabilities
is extensive (Baynard et al., 2008; Franceschi et al., 2019; Gensous
et al., 2020). However, there is no research focusing on the
coupling between cardiovascular and respiratory systems and
their response to exercise in the DS population. Therefore,
the mechanisms underlying the coordinated activity between
cardiovascular and respiratory systems to generate a particular
function at the organism level in individuals with DS are still not
fully understood.

Different studies have investigated the factors that may be
influencing the impaired exercise response of persons with
DS (Mendonca et al., 2010; Fernhall et al., 2013). Within
these factors, researchers include musculoskeletal hypotonia
(Antonarakis et al., 2020), lower walking economy and altered
spatiotemporal gait variables (Agiovlasitis et al., 2009; Zago
et al., 2020), altered autonomic function (Fernhall et al., 2013),
reduced baroreceptors sensitivity (Agiovlasitis et al., 2010),
attenuated adrenergic responsiveness during the process of
exercise (Fernhall et al., 2009), and chronotropic incompetence
(Guerra et al., 2003). While the most common cardiorespiratory
parameters used to study the DS population offer useful
information on diverse physiological systems separately, they
do not provide sufficient information on the nature of the
dynamic interactions between cardiovascular and respiratory
systems and their common role as an integrated network
(Bashan et al., 2012) to adjust the individual response to
exercise requirements. Therefore, in the framework of the
new field of Network Physiology (Bartsch et al., 2012, 2014,
2015; Ivanov and Bartsch, 2014; Rizzo et al., 2020) and,
more specifically, of Network Physiology of Exercise (Balagué
et al., 2020; Garcia-Retortillo et al., 2020, 2021), the use of
non-linear models and time series analysis of coordinative
variables are strongly recommended to identify interactions
and principles of coordination and integration between diverse
physiological systems (Schulz et al., 2013; Rivera et al., 2016,
2018; Barajas-Martínez et al., 2021). Several methodologies
have been introduced in the past to investigate the complex
interaction between cardiovascular and respiratory systems, from
time and frequency domain measures (Horne, 2014) to more
complex ones, such as phase synchronization and time-delay
stability (Bartsch et al., 2012, 2014; Bartsch and Ivanov, 2014)
or those related to information theory (Lucchini et al., 2018,
2020).

Several methodologies have been introduced in the past
to investigate the complex interaction between cardiovascular
and respiratory systems, from time and frequency domain

measures (Horne, 2014) to more complex ones, such as
those related to information theory (e.g., Bartsch et al., 2012;
Lucchini et al., 2018, 2020). Such research approaches can
track not only quantitative differences related to maximal and
threshold physiological outcomes [e.g., heart rate (HR), VO2

max, ventilatory thresholds] but also qualitative changes in
relation to the reallocation of resources under exercise-related
constraints (Scholz and Schöner, 1999).

A recently proposed measure for testing the covariation
of cardiorespiratory variables during maximal exercise testing
(Balagué et al., 2016; Garcia-Retortillo et al., 2017, 2019a,b;
Esquius et al., 2019; Zebrowska et al., 2020) is cardiorespiratory
coordination (CRC). This is achieved through principal
component analysis (PCA) conducted on the time series of
several cardiorespiratory parameters. The PCA pinpoints
and quantifies whether the increment and/or decrement
of time patterns from different physiological processes are
statistically correlated. In this way, the magnitude to which time
patterns of physiological responses covary in time is reflected.
The covariation of several (two or more) cardiorespiratory
parameters shows the mutual information that they share.
This common variance, in turn, enables time patterns of single
cardiorespiratory outcomes to be represented through fewer
principal components (PCs). The PCs are obtained in decreasing
order of importance and reflect the highest possible fraction of
the variability from the original dataset. Thus, the total number
of PCs indicates the level of coordination among the initial
cardiovascular and respiratory parameters. More concretely, a
dimensionality reduction is indicative of the creation of new
coordinative patterns (Hacken, 2010), therefore, the reduction in
the quantity of PCs suggests an enhancement in the efficiency
of CRC (Balagué et al., 2016). Entropy, in turn, is employed to
calculate (i) the minimum information needed to determine the
current state of a given system (Naudts, 2005) and (ii) the number
of coordinative structures that are available for this system (Seely
and Macklem, 2012). A greater quantity of accessible states
reflects reduced covariation between the cardiovascular and
respiratory parameters, changing more separately from another.
Thus, measuring CRC through PCA and entropy could improve
the understanding of the information yielded by the typically
recorded performance and physiological parameters during
cardiorespiratory exercise testing in the DS population, while
showing the following advantages (refer to Balagué et al., 2016
for more details): (i) information on the level of covariation
and co-relatedness among several cardiorespiratory variables,
(ii) a decrease in the initial large dimensionality of the dataset
making it easier to model, that is, from various cardiorespiratory
variables to a few PCs, and (iii) information on the efficiency
of specific training and research interventions to generate
physiological adaptations.

Since DS is a chromosomal disorder affecting simultaneously
cardiovascular and respiratory systems and given that such
systems are interdependent and interact in a dynamic and non-
linear way (Bartsch et al., 2012, 2014), we proposed in this study
to use CRC, which has shown high responsiveness to various
exercise and training contexts. To the best of our knowledge,
CRC response to exercise has never been assessed in adults

Frontiers in Physiology | www.frontiersin.org 2 September 2021 | Volume 12 | Article 704062

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Oviedo et al. Cardiorespiratory Coordination in Down Syndrome

with DS, and it is not known whether it will provide further
insight into the difference with respect to adults without DS in
cardiorespiratory outcomes. Accordingly, the objective of this
study was to investigate and compare CRC and cardiorespiratory
variables between adults with and without DS during a maximal
exercise test. We hypothesized that CRC and cardiorespiratory
variables would differ between groups and that the impaired
response to exercise of the DS group would be reflected in
a lower degree of CRC and a higher entropy measure. This
approach could offer new insights on how respiratory and
cardiovascular systems coordinate their activation as a network,
and how they synchronously integrate their function to generate
a global response at the organism level. Therefore, understanding
the dynamical organization and integration of respiratory and
cardiovascular systems in adults with DS, as well as its response
to exercise, would be of key relevance to develop new network-
based biomarkers that can complement the information provided
by the commonly utilized physiological variables to diagnose and
track the evolution of the cardiorespiratory and hemodynamic
parameters in adults with DS.

MATERIALS AND METHODS

Participants
We conducted a power analysis utilizing G∗Power 3.1 (Faul et al.,
2007) to determine the sample size for this study. Previous studies
of CRC during exercise (Balagué et al., 2016) have shown large
effect sizes. Therefore, using an effect size of d = 1, α < 0.05,
power (1—β) = 0.80, we estimated a sample size = 27. This
cross-sectional study used a convenience sample of 15 adults (12
men and 3 women) with DS (M = 27.33; SD = 4.98 y.o.) and
15 adults (12 men and 3 women) without disabilities (non-DS;
M = 27.01; SD = 4.60 y.o.). Participants were recruited from
university campuses and occupational centers for adults with
intellectual disabilities. All of them volunteered for this study.
Volunteers between 18 and 35 years of age without disabilities
and persons with DS of similar age were invited to a first
meeting where the testing procedures, benefits, risks, and time
required for the study were explained. During a second visit,
all participants signed an informed consent form. Parents/legal
guardians of participants with DS also signed the informed
consent. All volunteers underwent a medical examination to
discard any pathology and/or health problems that would not
allow them to perform a maximal exercise test and received
medical clearance to be part of this research. Inclusion criteria
were as follows: (a) participants between 18 and 35 years old; (b)
a normal 12-lead electrocardiogram at rest; (c) being able to walk
without external aids; (d) willing to provide written informed
consent, as well as the written consent of the parents/legal
guardians of participants with DS. Exclusion criteria for both
groups were to have the following: (a) cardiovascular diseases;
(b) contraindications to exercise; (c) use of medications that
may influence HR and/or exercise response; (d) inability to
communicate orally; (e) inability to provide written informed
consent; and (f) parents/legal guardians not willing to provide
written informed consent.

The intellectual disability level of the participants was assessed
by psychologists and categorized as borderline (one participant);
mild (seven participants), and moderate (seven participants).
We used the Kaufman Brief Test of Intelligence to assess the
intelligence quotient of the participants (Kaufman and Kaufman,
1990).

This study was approved by the Institutional Review Board
(CER URL 2017_2018_008) and complies with the principles of
the Declaration of Helsinki (World Medical Association, 2013).

Intervention and Procedure
To assess the peak aerobic capacity, all participants performed
a cardiopulmonary exercise test on a treadmill (Quasar model,
HP Cosmos sports & medical gmbh, Nussdorf-Traunstein,
Germany). Participants walked at a constant speed (4 km/h), and
the slope increased 2.5% every 2min up to 12.5%. From that
point on, the slope remained constant, and speed was increased
1.6 km/h every minute up to exhaustion. Exhaustion criteria were
the following: HR and/or VO2 plateau, respiratory exchange ratio
(RER) > 1.0, or when a participant could no longer continue.
During the test, participants breathed through a two-way mask
(Hans Rudolph, 2700, Kansas City, MO, USA) and gas exchange
variables were determined breath-by-breath using an automated
open-circuit system (Metasys TR-plus, Brainware SA, La Valette,
France). Following the guidelines and recommendations of the
manufacturer, gas and volume calibrations were performed prior
to each test. Peak values were recorded as the highest value during
the last 30 s of exercise.

The hemodynamic information obtained from the
participants was continuously recorded by using finger
cuff-based photoplethysmography (Nexfin, BMEYE Amsterdam,
Netherlands). The finger sensor provided beat-to-beat blood
pressure (BP) and determined systolic and diastolic BP (SBP and
DBP). The finger cuff was placed around the middle phalanx of
the middle finger of the left hand of the participants, and the left
arm was relaxed and placed on a platform (refer to Figure 1). The
technique used by the Nexfin device to estimate BP was described
elsewhere (Martina et al., 2012; Garcia-Retortillo et al., 2017).
Since it is useful for assessing acute changes in BP, we allowed the
system to monitor continuously finger photoplethysmography
(Eckert and Horstkotte, 2002).

Participants were monitored continuously via a 12-lead
electrocardiogram (CardioScan v.4.0, DM Software, Stateline,
Nevada, USA). All tests were conducted at an ambient
temperature of 23◦C and relative physical humidity of 48%,
with variations of no more than 1◦C in temperature and 10%
in relative physical humidity. The tests were performed in
the morning, and participants abstained from any moderate
or vigorous exercise for at least 24 h before testing and
refrained from alcohol and/or caffeine for at least 12 h before
the assessments.

Data Analysis
During the treadmill test, we registered the following
cardiorespiratory variables: ventilation per minute (VE;
L·min−1), oxygen uptake relative to body weight (VO2;
ml·Kg−1·min−1), oxygen uptake (VO2; L·min−1), carbon
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FIGURE 1 | Example of a participant performing cardiopulmonary exercise test on the treadmill. In addition, it can be seen the placement of the finger cuff around the

middle phalanx of the middle finger of the left hand.

dioxide production (VCO2; L·min−1), RER, expired fraction of
O2 (FeO2; %), expired fraction of CO2 (FeCO2; %), SBP (mmHg),
DBP (mmHg), HR (beat·min−1), ventilatory equivalent for O2

(VEqO2), ventilatory equivalent for CO2 (VEqCO2), and O2

pulse (ml·beat−1). The variables used for the specific PCA
were obtained breath-by-breath. All data were tested for
normality by using a Shapiro-Wilk test. The between-groups
comparison (DS vs. non-DS) was performed using a t-test
or, in the case of non-Gaussian distribution, using the Mann-
Whitney U test. To analyze the CRC for each participant, we
performed a PCA on the data series of the following selected
cardiorespiratory variables: VE, FeO2, FeCO2, HR, SBP, and
DBP. We excluded from the analysis VEqO2, VEqCO2, O2

pulse, RER, VO2, etc., due to their known deterministic
mathematical relation (lineal combination) with the selected
variables (Balagué et al., 2016). There is diverse evidence
about the use of dimensionality reduction by PCA in small
samples, which indicates certain robustness in the estimates
of shared variance that Jolicoeur (1984) pointed out some
time ago. In this sense, we must remember that the estimates
in small samples should be more descriptive than inferential
considerations, but appropriate to our objectives (Lang and Zou,
2020).

To analyze the suitability of the PCA implementation, we
calculated Bartlett’s test for sphericity and the Kaiser-Mayer-
Olkin (KMO) test for all participants.We determined the number
of PCs using the Kaiser-Gutmann criterion and thus considered
PCs with eigenvalues λ ≥ 1.00 as significant (Jollife, 2002). Given
that the first PC (PC1) always contains the highest proportion of
the data variance, the PC1 eigenvalues were compared between
non-DS and DS groups by means Mann-Whitney U test.
Furthermore, the loadings of the six selected cardio-respiratory
variables onto PC1, PC2, and PC3 were compared between groups
using a Mann-Whitney U test.

Finally, to determine the degree of coordination between
the cardiovascular and respiratory subsystems, the information
entropy measure for both non-DS and DS groups was computed

as previously indicated by Balagué et al. (2016): H = Sum [1/2
ln (EV) + 1/2 ln (3.14) + 1/2], where H is the entropy of the
system and EV is the PC eigenvalue (Hacken, 2010). This sum
includes all PC eigenvalues of each participant; for instance, for a
subject with two PCs, the sum is repeated two times utilizing PC1

and PC2 eigenvalues. The information entropy measure between
groups was compared bymeans of aMann-WhitneyU test. Alpha
was set at p <0.05 for all statistical tests. Effect size (Cohen’s d)
was calculated when possible to demonstrate the magnitude of
standardized mean differences.

RESULTS

Table 1 depicts the descriptive characteristics of the participants.
DS group had a similar weight but was shorter and had a higher
BMI than the non-DS group (all p < 0.050).

Compared with the non-DS group, DS group reached lower
physiological peak values: VE (t = 9.02; p < 0.001; d = 3.29);
VO2 (t = 7.65; p < 0.001; d = 2.79); VCO2 (t = 8.82; p < 0.001;
d = 3.22); RER (t = 3.41; p = 0.002; d = 1.24); SBP (t = 5.13; p
< 0.001; d = 1.87), DBP (t = 2.77; p= 0.010; d = 1.01), HR (t =
5.47; p < 0.001; d= 1.99), VEqO2 (t = 3.26; p < 0.003; d= 1.19),
and O2 pulse (t = 6.61; p < 0.001; d = 2.46). The duration of the
tests performed by the non-disabled participants was longer than
those performed by the DS participants (t = 7.97; p < 0.001; d =

2.91) (Table 1).
The Bartlett’s sphericity test (p < 0.001) and the KMO index

showed an acceptable sampling adequacy in both non-DS (M
= 0.62; SD = 0.07) and DS groups (M = 0.57; SD = 0.07).
Eigenvalues of PC1, representing the highest proportion of the
data variance, were higher in the non-DS in contrast to the DS
group (U = 30; p= 0.02; d = 1.47) (Table 2).

As depicted in Figure 2, the variance of the six selected
cardiorespiratory variables in the non-DS group was captured
by two PCs: five variables (VE, FeCO2, HR, SBP, and DBP)
were always implicated in forming PC1, whereas PC2 was
composed of a single variable (FeO2). However, the six selected
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TABLE 1 | Characteristics of participants and peak cardiorespiratory values.

non-DS (n = 15) DS (n = 15) p-value

Characteristics

Sex (male/female) 12/3 12/3 1.000

Age (years) 27.01 (4.60) 27.33 (4.98) 0.850

Height (m) 1.74 (0.07) 1.56 (0.06) <0.001

Weight (kg) 70.08 (9.53) 66.58 (9.86) 0.331

BMI (kg/m2 ) 23.11 (1.99) 27.36 (4.29) 0.002

Peak cardiorespiratory values

VE (L·min−1 ) 118.39 (23.69) 53.73 (14.49) <0.001

VO2 (ml·Kg−1·min−1 ) 53.55 (10.42) 28.77 (6.67) <0.001

VO2 (L·min−1 ) 3.76 (0.85) 1.90 (0.44) <0.001

VCO2 (L·min−1 ) 4.42 (0.93) 2.12 (0.54) <0.001

RER 1.18 (0.06) 1.12 (0.03) 0.002

FeO2 (%) 16.99 (0.44) 16.67 (0.39) 0.051

FeCO2 (%) 4.57 (0.35) 4.40 (0.39) 0.211

SBP (mmHg) 190.16 (28.79) 141.60 (22.66) <0.001

DBP (mmHg) 104.12 (19.42) 85.56 (17.16) 0.010

HR (beat·min−1 ) 177 (13) 150 (13) <0.001

VEqO2 31.82 (3.44) 28.17 (2.64) 0.003

VEqCO2 26.84 (1.79) 25.34 (2.32) 0.211

O2 pulse (ml·beat−1 ) 21.13 (4.38) 12.55 (2.46) <0.001

Treadmill test duration (min) 17.60 (1.85) 12.50 (2.05) <0.001

Values are mean (SD). DS, Down syndrome; BMI, body mass index; VE, minute ventilation; VO2, oxygen uptake; VCO2, carbon dioxide production; RER, respiratory exchange ratio;

FeO2, expired fraction of O2; FeCO2, expired fraction of CO2; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; VEqO2, ventilatory equivalent for O2; VEqCO2,

ventilatory equivalent for CO2; O2 pulse, oxygen pulse.

TABLE 2 | PC1 eigenvalues and percentage of participants with two PCs (PC2) and three PCs (PC3) in non-Down syndrome and Down syndrome groups.

Non-Down Syndrome Down Syndrome

Eigenvalues % 2PCs % 3PCs Eigenvalues % 2PCs % 3PCs

(PC1) Entropy (PC1) Entropy

Mean 3.25 3.02 92.86 7.14 2.70 3.82 15.38 84.62

SD 0.36 0.31 – – 0.39 0.43 – –

PC1, First Principal Component; % 2PC, percentage of participants with two principal components (PC); % 3PCs, percentage of participants with three principal components.

cardiorespiratory variables could only be reduced to three PCs in
the DS group: PC1 was formed by VE, FeCO2, and HR; PC2 by
SBP and DBP, and PC3 was mainly saturated by FeO2.

Accordingly, the loadings for SBP and DBP onto PC1 were
significantly higher in the non-DS compared with the DS group:
U = 46; p = 0.03; d = 0.78 and U = 40; p = 0.04; d = 0.77,
respectively (Table 3).

As for the loadings for PC2 (Table 4), while FeO2 loading
was higher in the non-DS group (U = 45; p = 0.04; d = 0.50),
loadings for SBP and DBP were higher in the DS group (U =

39.5; p = 0.001; d = 0.97 and U = 34; p = 0.005; d = 1.10).
Note that it was the shift of SBP and DBP from the PC1 cluster of
variables that provoked the formation of an additional PC in the
DS group. Finally, reinforcing previous results, entropy measure
was significantly higher in the DS compared with the non-DS
group (U = 37.5; p= 0.008; d = 0.70) (Table 2).

DISCUSSIONS

To the best of our knowledge, this is the first study examining
CRC in adults with DS and comparing their results with those of
adults without disabilities of similar age and sex. As hypothesized,
we found a higher number of PCs, reflecting a lower degree of
CRC, and a higher entropy measure in the DS group in contrast
to the non-DS group. In agreement with previous research, adults
with DS showed lower values of cardiorespiratory fitness than
their peers without disabilities (Baynard et al., 2008; Mendonca
et al., 2011; Hilgenkamp et al., 2018).

There are several variables that may alter the cardiorespiratory
function of people with DS (Fernhall et al., 2013). Among
them, and derived from impaired autonomic function, are
the reduced parasympathetic and sympathetic control and
reduced baroreceptor sensitivity. These factors would lead to a
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FIGURE 2 | A typical example of the formation of time series of coordination variables, expressed by means of principal components from cardiorespiratory variables

in non-DS and DS groups. This figure represents the higher number of PCs in the DS compared with the non-DS group (three PCs vs. two PCs, respectively),

reflecting a lower degree of covariation of physiological variables, which can be linked to lower adaptive properties of the physiological network in response to exercise

workloads. (A) Time series of the six selected cardiorespiratory variables during the cardiopulmonary exercise test. (B) Time series of the PC scores, with standardized

z-values in the space spanned by PCs. The average trend was computed by the weighted least squares method. The variance of the six cardiorespiratory variables in

the non-DS group was captured by two PCs: five variables (VE, FeCO2, HR, SBP, and DBP) were implicated in the formation of PC1, whereas PC2 was composed by

a single variable (FeO2 ). However, the six selected cardiorespiratory variables could only be reduced to three PCs in the DS group: PC1 was formed by VE, FeCO2,

and HR; PC2 by SBP and DBP, and PC3 was mainly saturated by FeO2. Note that the shift of SBP and DBP from the PC1 cluster of variables provoked the formation

of an additional PC in the DS group. PC, principal component; VE, minute ventilation; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure;

FeO2, expired fraction of oxygen; FeCO2, expired fraction of carbon dioxide; DS, Down syndrome.

TABLE 3 | Average (SDs) for the loadings of the selected cardiorespiratory variables onto PC1.

Non-Down Syndrome Down Syndrome

VE FeO2 FeCO2 HR SBP DBP VE FeO2 FeCO2 HR SBP DBP

Mean 0.87 0.05 0.61 0.90 0.43 0.35 0.84 0.28 0.49 0.88 0.06* 0.07*

SD 0.07 0.44 0.38 0.10 0.66 0.54 0.12 0.38 0.37 0.05 0.60 0.55

*p < 0.05; VE, minute ventilation; FeO2, expired fraction of O2; FeCO2, expired fraction of CO2; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure.

TABLE 4 | Average (SDs) for the loadings of the selected cardiorespiratory variables onto PC2.

Non-Down Syndrome Down Syndrome

VE FeO2 FeCO2 HR SBP DBP VE FeO2 FeCO2 HR SBP DBP

Mean 0.25 0.50 −0.25 0.15 0.07 0.14 0.16 0.18* −0.04 0.04 0.43* 0.54*

SD 0.29 0.66 0.58 0.27 0.30 0.37 0.32 0.63 0.48 0.33 0.43 0.36

*p < 0.05; VE, minute ventilation; FeO2, expired fraction of O2; FeCO2, expired fraction of CO2; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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TABLE 5 | Average (SDs) for the loadings of the selected cardiorespiratory variables onto PC3.

Non-Down Syndrome Down Syndrome

VE FeO2 FeCO2 HR SBP DBP VE FeO2 FeCO2 HR SBP DBP

Mean – – – – – – 0.04 0.32 0.10 0.07 0.18 0.24

SD – – – – – – 0.19 0.56 0.63 0.19 0.36 0.39

VE, minute ventilation; FeO2, expired fraction of O2; FeCO2, expired fraction of CO2; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure.

lower cardiac response to exercise, lower BP, lower peripheral
blood flow, and lower cardiac output, ultimately affecting
cardiorespiratory fitness. In light of the current results, CRC
has also been shown to be reduced, which allows us to explain
and, in turn, is the consequence of previously mentioned
findings. The higher number of PCs found in the DS group,
compared with the non-DS group (three PCs vs. two PCs,
respectively), reflects a lower degree of covariation among
physiological variables, which can be linked to the lower adaptive
properties of the physiological network in response to exercise
workloads (Balagué et al., 2020). This may explain, together
with the higher entropy measures observed in the DS group,
the impaired efficiency of the cardiorespiratory system found
in the DS population (Mendonca et al., 2010; Mendonca et al.,
2018; Fernhall et al., 2013) and their commonly reduced fitness
(Fernhall et al., 2013). More specifically, the higher entropy
measure in the DS group is indicative of an increased number
of coordinative states needed to specify physiological systems
function during cardiorespiratory exercise testing, this reflects
reduced covariation among the cardiovascular and respiratory
variables, changing more separately from each other.

As for the non-DS group, our results support previous works
investigating CRC in healthy individuals (Balagué et al., 2016;
Garcia-Retortillo et al., 2017, 2019a,b; Esquius et al., 2019).
The variance of the six cardiorespiratory variables during the
cardiopulmonary exercise test was reduced to two PCs (Figure 2
and Tables 3, 4). The particular dynamics of FeO2, decreasing
at onset as a result of initial hyperventilation (Skinner and
McLellan, 1980), compared with the rest of the variables forming
PC1 (with a clear increasing pattern during all the tests), was
responsible for the formation of PC2 in the non-DS group.
Regarding the DS group, the same FeO2 behavior was observed,
leading to the formation of PC3 (Table 5). However, it is worth
noting that the reduced CRC (i.e., the formation of an extra
PC – PC2; Table 4) observed in the DS group was provoked
by a change in SBP and DBP behavior (i.e., an erratic but
correlated response of BP during the test; refer Figure 2), which
subsequently led to a reduction in covariation between SBP and
DBP, and the other cardiorespiratory variables forming PC1 (VE,
FeO2, and FeCO2; Table 3). This response could be explained
by the impaired autonomic function that may worsen with
exercise intensity (Dipla et al., 2013; Hu et al., 2013). More
specifically, individuals with DS show lower vagal withdrawal and
diminished sympathetic responses to most sympatho-excitatory
activities (Agiovlasitis et al., 2010), with smaller increments in
BP during exercise (Bunsawat and Baynard, 2016). In response
to sympatho-excitatory stimulation, DS individuals can preserve

central pressure. However, a reduction in wave reflection
was found during sympathetic stimulation, which could be
indicative of a limited vasoconstriction capacity in the periphery
(Hilgenkamp et al., 2019).

Exercise challenges the adaptive capacity of physiological
networks, providing relevant information about their
coordinative properties. Therefore, CRC could be a privileged
tool for testing the adaptability of the cardiorespiratory function,
which may be altered under different fitness and health states.
The response of the network to different exercise intensity
perturbations may be better captured by coordinative variables
(such as CRC or psychophysiological parameters) than through
maximal cardiorespiratory variables (Balagué et al., 2014, 2020;
Slapsinskaite et al., 2016).

The current results allow us to hypothesize that CRC,
evaluated through a PCA of cardiorespiratory variables recorded
during progressive exercise tests, may be an alternative
assessment system of cardiorespiratory function in the DS
population. It can help to increase the sensitivity of commonly
registered fitness biomarkers (e.g., VO2 peak) and be more
responsive to changes produced by exercise programs and
training interventions. Previous results have demonstrated
the higher responsiveness of CRC with respect to maximal
performance and physiological variables after distinct training
programs (Balagué et al., 2016; Garcia-Retortillo et al., 2019a),
and under different fatigue states (Garcia-Retortillo et al.,
2017), and nutritional interventions (Esquius et al., 2019). As
individuals with DS and a low-fitness level population, in general,
may have more difficulties in performing maximal tests, the
assessment of CRCmight be more advantageous since it does not
require reaching maximal and peak performance values.

The findings of this work need to be discussed in light of
some methodological limitations. In this study, the BP data
obtained through a non-invasive finger cuff (refer to Methods
section) may have been affected by some potential artifacts
due to the test protocol changes on the treadmill gradient and
speed. Such changes could produce a possible balance loss of
participants who, in turn, could apply some isometric force
with their hand affecting the data recorded by the finger cuff.
Nevertheless, during the entire test on the treadmill, special
care and control were taken to ensure that this did not happen.
According to current results, motor coordination problems of the
DS population can be extended to CRC. It has to be considered
that motor coordination depends on both psychological and
biological issues, therefore, in future studies, it may be of interest
to take into account psychological variables that would give more
power to the net. Finally, it is important to recognize that the
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interpretation of our findings should be treated with caution due
to the reduced sample of participants with DS included in this
study. Further research is needed to identify the mechanisms
underlying the lower CRC levels as well as the potential
relationship with the impaired autonomic function typically
observed in DS patients. Finally, research is also warranted for
analyzing in more detail the effects of different anthropometric
variables, such as weight, height, BMI, percentages of fat mass,
and fat-free mass on the CRC of people with DS.

In conclusion, adults with DS show lower CRC and
higher entropy in contrast to adults without a disability. Our
results revealed that the reduced CRC observed in the DS
group is because the SBP and DBP of participants with DS
behave differently than the BP of their peers without DS. We
hypothesized that the difference in BP response during the
treadmill test may be linked to an impaired autonomic regulation
in the DS participants (Figueroa et al., 2005; Fernhall et al.,
2013). However, this should be further investigated empirically.
The CRC evaluation appears as an alternative measure for
investigating the cardiorespiratory function and its response to
exercise and training in the DS population, alongside traditional
measures of aerobic fitness.
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