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Abstract

The mechanistic analysis in heterogeneous catalysis is based on listing all

elementary steps and evaluating explicitly their energies. To this end, com-

putational models based on Density Functional Theory have become a stan-

dard to estimate the information needed in mechanistic studies. Typically,

either the minimum energy paths or those with the smaller span are sum-

marized in reaction profiles. Such simplifications gather a lot of information,

although further dimensionality reduction is required to obtain the most rel-

evant descriptors of catalytic activity and generate the so-called volcano

plots. The selection of descriptors has been traditionally based on simple

intermediates, such as central atoms in small molecules (as C in CH4),

which have good thermodynamic correlations to other fragments containing

them. Yet, in emerging processes (recent studies), the number of intermedi-

ates involved increase, configurational effects and lateral interactions

become significant, and complex materials with low symmetry are

employed, thus the simple rules encapsulated in linear scaling relationships

lose their predictive power due to error accumulation. At the same time,

large datasets generated for the intermediates call for statistical analysis and

thus these techniques are being leveraged to chemical systems, particularly

to reduce their dimensionality.
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1 | INTRODUCTION

Many industrially relevant chemical processes rely on the activation of a few atoms with a set of common intermedi-
ates characterized by a few main atoms, like the Haber–Bosch process for generating ammonia.1,2 As raw materials
taken as reactants become more complex,3 selectivity issues start to be central to attain performance4–6 since
separations are ecologically and economically costly. In addition, stability is the ultimate challenge that limits
catalytic implementation and, although widely academically neglected, it constitutes a must in the design of new
processes.7–9 Finally, catalytic architectures at the industrial level are characterized by complexity including the
active material, carrier,10 molecular modifiers11 or dopants12 plus the binders13,14 while computational models
barely go beyond pure crystals and simple orientations.15 Therefore, complexity is an intrinsic parameter to catalysis
and arises from three sources: the catalyst's structure, the reaction network, and environmental factors: (i) The cata-
lyst's complexity appears through in homogeneous structures with multiple potential active sites; (ii) The reaction
network leading from reactants to desired and unwanted products may have hundreds or thousands of intermedi-
ates and transition states; (iii) Environmental effects can be caused by pressure, local concentrations being different
from the bulk of the fluid phase, external forces.16 Their combination masks our understanding of catalytic
processes.

Linear-scaling relationships, LSR, generate constraints in the available chemical space that define volcanoes for
activity and selectivity. Thus, catalyst optimization relies in our ability to break such limitations.17,18 Although this
can be done effectively in labs, the search for a wider phase-space and the relatively small knowledge of complex
materials has severely limited our ability to predict their catalytic properties. Heuristics have been at the core of cat-
alytic development and large experimental databases were even generated in the early days of catalysis such as the
Haber–Bosch process. This heuristic knowledge has been mainly stored in companies while academia has discour-
aged the publication of negative results. In the later years, there has been a change in paradigm.19,20 Besides, com-
putational results can now be obtained cheaply and systematically for simple but widely used families of materials,
including metals and alloys. DFT can be employed to extract energies of phases that might not exist under reaction
conditions due to phase changes or poisoning, and this widens our ability to interrogate the phase space more com-
prehensively. Spanning a larger range of, for instance, adsorption energies, simplifies the evaluation of the proper-
ties and descriptor identification. Finally, negative results can be generated with minor cost. This has paved the way
for integrating statistical learning (machine learning, ML) techniques into computational heterogeneous catalysis.
ML can simplify complexity through different perspectives.21 The leverage of these techniques to chemical systems
has only been possible after many years due to the following: (i) ability to generate wide set of data with significant
similar error independent of the code22; (ii) emergence of databases with computational data (or where to introduce
this computational data)19,23–27; (iii) the awareness to move towards open science models.20 In this context, it is
interesting that such approaches have been already proved successful in biology of proteins where large databases
for crystal structures have been available for the last 50 years allowing the very recent successful implementation of
artificial intelligence (AI) algorithms.28 In heterogeneous catalysis, like in many other communities, there is a need
for AI algorithms that ensure their interpretability. This would allow to provide new synthetic routes while
retaining the scientific understanding on the process. In the following we present the most acute issues to address
complexity and how dimensionality reduction tools coming from statistical learning techniques can allow a more
robust approach.

2 | LINEAR SCALING RELATIONSHIPS

Sabatier identified that the rate of some reactions depends on a single parameter, namely oxide formation, which
is the first descriptor for activity.29 These so-called volcano plots were introduced by Balandin30 However,
descriptors have been rather elusive and they have mostly been employed after extensive Density Functional The-
ory simulations. The reason for that is that in many cases phases change for the terminal parts of a given descrip-
tor (i.e., for too exothermic O adsorption energies the system is likely to evolve to the oxide phase). Even DFT
systems can provide data for ideal scenarios where a phase that does not exist under reaction conditions but its
properties can be computed, thus decoupling phase stability and reactivity in an effective manner.



2.1 | Descriptors à-la-antique

There are two main families of linear scaling relationships as described below. In the first one, structural or topological
features define the thermochemistry (e.g., describing the adsorption energy of intermediates). In the second one, the
thermochemistry defines the kinetics.

Early thermochemical models were based on group additivity rules and applied widely on molecular systems.31 On
heterogeneous catalysis, their application started on reactions involving hydrogenation of rather inert species, like the
Haber–Bosch process and methanation. These could be extensively computed by the 1990 and ended up with simplified
descriptors, the corresponding central atoms (as N in NH3 or C in CHx).

32–37 Thus, for the activity in NH3 formation, N2

is physisorbed and the NHx are found to depend on the energy of the Nitrogen atom. Although the adsorption energy
of H is sometimes used as descriptor,38 it also correlates to that of N or C on transition metals35,39 thus leaving N as the
unique descriptor. The origin for the dependence of NHx, x = 1–3 with N can be related to valence considerations and
therefore the relative energies ended up wrapping up to a single term.32 These dependencies on the properties of metals
where further extended to relationships between central atoms34 and to structural effects.40,41 The electronic structure
of molecular systems can be much more convoluted and thus LSR have not been derived till very recently.42 Extensions
to oxides, nitrides and other compounds were also proposed43 but, due to the semiconductor nature of some of these
materials further refinements are needed.44,45

In oxidation processes the equations turned out not to be so straightforward and thus multivariable approaches
were proposed.46 For CO oxidation, it was found that O binding energy as a single descriptor was insufficient, and thus
heuristically at least a second contribution was needed, namely CO. More recently, it was found that the two descriptors
come from the decomposition of the metal-adsorbate chemical bond into covalent and electrostatic terms, and the
chemical space of adsorbates on pure metals is 2D.39,47 Two-dimensional plots have also been employed in metal
oxides, particularly in the oxygen evolution reaction.48,49

2.2 | Kinetics as a function of thermodynamic parameters

Besides purely structural descriptors defining thermochemistry, kinetic parameters can also be approximated from the for-
mer ones following the so-called Bell-, or Brønsted–Evans–Polanyi relations.50–54 There, the activation energy of a given fam-
ily of elementary step (e.g., hydrogenations), Ea is put as a linear function of the reaction energy, ΔE. The factor multiplying
ΔE is exactly 0.5 for symmetric reactions, such in SN2, and approaches either 0.0 or 1.0 if the transition state structure resem-
bles more the initial or final states respectively. These scaling relationships were later on extended to put the energy of the
transition state ETS as a function of either the initial or final states, EIS or EFS.

4,55–57 The factors multiplying EIS or EFS were
shown to be necessarily 1.0 in order to be universal; this is, independent on the chosen energy references.57 Older qualitative
approaches, nonlinear methods such as Shustorovich Bond Order Conservation theory58 and the UBI-QEP method59 have
been trying to rationalize the origin of such structure, thermochemistry, and kinetics correlations in terms of bonds.

3 | MULTI-SCALE MODELING

To get observables directly comparable to experiments, the energy profiles obtained via DFT have often been used as
input to multi-scale models.6,60–63 In those models, the LSR devised in the previous section have been employed to
approximate the input parameters of the ordinary differential equations (ODE) that define the chemical kinetics of a par-
ticular mechanism, and thus obtain the volcano plots. Here we describe the most popular among these methods: Micro-
kinetics (MK), Kinetic Monte Carlo (KMC), and computational fluid dynamics (CFD) simulations. MK is a mean-field
method that solves the entire coupled ODE system defined by each one of the different balances present in a reaction
network,63 and the boundary conditions of the experimental settings. MK can provide the composition as a function of
time and can take the kinetic parameters from LSR. Thus, volcano plots can be generated by coupling simple DFT and
MK via LSR. MK models can provide valuable insights in both homogeneous and heterogeneous catalytic systems. For
instance, precise reproduction of experimental kinetic data has been achieved for the condensation of n-butylamine and
benzaldehyde64 and Rh-based hydroformylation.65 In single atom catalysis, MK has been applied to investigate the oxygen
reduction reaction (ORR) with metal doped graphene.66 In heterogeneous catalysis, several examples exists, such as alco-
hol reforming57 or ethylene epoxidation on Ag.67 The limitations in the use of DFT or LSR-derived energies became also



evident in MK modeling.5 For instance, in formic acid decomposition on Au/SiC and Pt/C, Mavrikakis et al.68 tuned itera-
tively the DFT parameters by introducing coverage effects and improving the active site model until they reach the experi-
mental values. Kinetic parameters can also be estimated employing Bayesian Statistics.62 Those errors can be even bigger
if employing LSR to account for the dependences between different adsorption energies or barriers. This points out
towards the needs of much more accurate LSR and descriptors through ML techniques.

For highly anisotropic systems the spatial information is crucial and thus Kinetic Monte Carlo is needed.69,70

Instead of solving the ODE system defined in pure MK, KMC calculates the probabilities to transform the lattice current
state to all possible future states. These are related to the kinetic constant, generally via Eyring equation, where the
thermodynamic parameters are obtained by DFT. Next, the following state is selected, the lattice is updated, and
the simulation time is advanced.69–71 KMC has been implemented in several different codes, such as SPARKS,72

ZACROS,73 and kmos.74 In transition metals, for example, KMC has been used to study the water shift reaction on
Pd(100).75 In alloys, the mobility of atoms on metal surfaces76 for CO oxidation on RuO2(110)

77,78 or to find Cu and Fe
percolation with amine arylation activity on graphitic carbon nitride.79 The main drawback of this approach is the
number of configurations for which DFT simulations are needed. The number of barriers to be evaluated is explosive,
limiting the use of these codes. The energies for intermediates can be found from cluster expansions, while LSR can be
employed to estimate the barrier without performing the DFT transition state search itself. This explains why descrip-
tors of simple systems are found even if DFT evaluations are done in the low coverage regime.

MK,80 or, in some cases, KMC solvers81 can be coupled to CFD codes that solve numerically the possible balances pre-
sent on the system, for example, mass, momentum, or energy. The governing equations are a set of partial differential
equations (PDE) and ODE.82–84 Applications include CH4 partial oxidation on Rh,85 CO oxidation on RuO2(110) and
Pd(100),81 and ethylene oxidation on silver.67 In summary, as the number of intermediates and reactions rises, the system
becomes more difficult (or virtually impossible) to tackle with DFT coupled to MK, KMC or CFD alone. Likely ML tech-
niques with adequate uncertainty estimation can ensure a seamless input to multi-scale modeling.86,87

4 | AUTOMATED NETWORK GENERATION AND ANALYSIS

First, reaction networks present strong dependencies in the nature of the intermediates adsorbed on the surface.5,6 This
can be seen as an intrinsically symmetry due to the locality of the chemical bond4,32,54,88 and can be employed in the
dimensionality reduction. As this holds for many intermediates, the structures linking them are also subjected to these
dependencies and thus linear scaling relationships, LSR, appear both for the energies of intermediates and transition
states (Figure 1). However, as reaction processes are larger the number of related structures increases and this coupled to
the intrinsic error associated to the linear fittings in LSR make the predictions, particularly of selectivity, more uncertain.
The uncertainties in the activation energies get magnified when producing activity and selectivity, as they are introduced
into an exponential term (Arrhenius equation); as a result, typical errors are approximately of 2–3 orders of magnitude.5,6

4.1 | Labeling and generation

The simplest set of reactions correspond to the addition or removal of an atom or moiety. Given the active role of sur-
faces participating in these events they are the easiest. In comparison, concerted steps are much less common catalyzed
by surfaces. Ideally, more advanced reaction search needs to implement a labeling technique to easily classify the inter-
mediates and the reactions involved in a reaction network. For example, SMILES labeling allows the codification of an
entire molecule using simple text string.89 Another important step during the generation of a network is the definition
of the connectivity between the different elements of the network. Graph theory becomes a powerful tool when connec-
tivity plays an important role in the system, allowing to model the moieties that compose the network as nodes that are
connected between edges. However, the use of graph theory is not restricted to the network, molecules can also be
converted to graphs, defining their atoms as nodes connected between their chemical bonds (edges). This approach sim-
plifies representation of molecules, easing their generation and analysis.90 Much progress has been made in this direc-
tion, materializing into tools to generate and model complex reaction networks, as for example NetGen,91 RING,92

RMGcat,93 among others.3,94 The use of these methods can be extended to other branches of chemistry and provide a
complete set of analysis tools to extract information from a reaction network. For a discussion on the scope and limita-
tions of all these methods the readers are directed to the recent review by Vernuccio and Broadbelt.95 However, these



graphs are codified to be optimal in machine language and their exploration is rather difficult, thus, requiring image
techniques to be understandable by humans. This is where graphical programming languages such as DOT96 and graph
serialization tools97 excel, generating illustrations of the network that are highly interpretable for the naked eye. Graph
networks are incredibly flexible, they allow not only to focus on specific parts of the network via the generation of sub-
graphs but also to manipulate the size of the network and coupled to automation techniques.

4.1.1 | Automation frameworks

As the reaction network grows in complexity, the amount of DFT calculations to fully describe an entire system
becomes a challenge. During these years, the need to create frameworks simplifying input generation process for mas-
sive DFT studies has emerged. Initiatives such ASE98 or Open Babel Project99 simplify the generation of input files,
drastically reducing the time needed to prepare these files via scripting. The combination of these automation frame-
works with graph theory becomes an extremely powerful tool. Graph-modeled networks can generate the connectivity
of the molecules inside the network and link them via elementary steps, while automation frameworks can be used to
calculate these intermediates. The generated DFT data can be then integrated inside the network and used to further
expand the network, generating a positive feedback loop. As the preparation and classification of DFT data is not
straightforward, workflows become imperative during the automatic data generation for large systems (more than 102–
103 DFT points).100–103 Workflows allow the application of recipes that effectively automate the energy calculations via
taking the control of the decision making and error handling processes. Fireworks104 and AiiDA105,106 are only two
examples of the available frameworks that implement these workflows in production environments. Due to the smart
assemble of graphs, the information contained in those graph-modeled networks is already sorted and classified, being
prone to be stored into databases.

FIGURE 1 (a) Representation of the old workflows versus (b) the automated generation of reaction networks coupled with statistical

post-processing. In the first approach the experimental data was complemented by density functional energy calculations to obtain the

reaction paths, and the linear-scaling relationships between them. The result is the volcano plot. Alternatively, the new procedures

automatically set up the calculations that are then stored in a database that are analyzed with the statistical approaches



4.1.2 | Feature extraction and databasing

As the flow of data increases, it also does the need to sort, classify and store this data to be available worldwide and
understandable for everyone. Online databases and chemical repositories provide an essential service to supply this
need.107 An increasing number of initiatives started emerging last decade, some of them aiming to store general DFT
data such as Nomad24 and ioChem-BD23 while others aiming to be more specific such as Materials Project Initiative,108

Materials Cloud,25 Computational Materials Repository26 and Catalysis Hub.109 Some of these databases, such as
ioChem-BD,23 provide an automatic refinement process, where the data provided is analyzed and preprocessed before
becoming public, extracting the most valuable features and explicitly exposing them to the final users. However, the
true potential of these databases lies in their role as nexus between the data generation and the data exploration/analy-
sis. Statistical learning techniques provide a powerful tool to predict and inspect the behavior of chemical systems.19,27

Nonetheless, the accuracy of these techniques relies on the amount and the quality of the data available to describe the
system. Thus, the classification and storage provided by online databases plays a center role during the discovery
process.

4.1.3 | Missing pieces in network coding

Networks in organic modeling like in prebiotic chemistry are more advanced110 and such approaches need to be
introduced for the reactivity on surfaces. The complexity of the graph-modeled networks resides in the connectivity
between the fragments that compose the network. When the complexity of the intermediates that belong to the net-
work increases, the entire process falls apart. Many efforts have been made to globally describe convoluted reaction
networks111 and the interactions between all the components of a chemical system.112 Although a full description of
a chemical system is virtually the most accurate approach to solve these problems, complex molecules tend to be
computationally expensive and performing a full DFT analysis for a network involving a nonnegligible number of
complex molecules and their interactions with the rest of the system is impractical. Smart chemical space sam-
pling113 and thermodynamic prediction via machine learning114 are some of the solutions proposed to reduce the
DFT weight of these systems. However, the biggest challenge of analyzing complex reaction networks is to predict
of experimental rates and selectivities. Here, microkinetics is the most suitable tool to predict activities, selectivities,
reaction orders, preferred reaction paths, and most-abundant reaction intermediates. Graph-modeled networks
excel generating the full set of microkinetic equations.93 However, the usage of automation lead to a combinatory
explosion of intermediate and transition state energies that need to be considered in the microkinetic model. Graph
analysis can be used to prune the microkinetic model through the extraction of specific subgraphs of the network
and/or applying a kinetic criterion to the transition states. However, these models are limited, and cannot accu-
rately predict reaction rates by themselves.5,6 To overcome these issues, many efforts have been made to apply statis-
tical learning techniques and to include other phenomena traditionally neglected in DFT and microkinetic models,
as described next.

5 | SIMPLIFICATIONS IMPLICIT TO AUTOMATIC MODELING

In the automated multiscale modeling of heterogeneous catalytic processes complexity arises from three sources,
namely (i) the catalyst's structure, (ii) the molecular complexity of the reactant, and (iii) environmental effects,
Figure 2.

5.1 | Catalyst complexity

Computational models generated automatically normally assume simple crystalline systems. In contrast, real catalysts
may have nonregular shapes and have different ensembles,115 dopants can change reaction paths12 and the intrinsic
nature of active sites with clear speciation can be elusive.116,117 More generally, a catalytic material is composed by the
active phase and a support intended to be an inactive carrier and meant for the dilution of the expensive catalytic metal
phase. Depending on the carrier, the “inert” simplification can be disputed. The carrier may either affect the electronic



and geometric structure of the active phase in the so-called strong metal-support interaction, or actively interact with
the reactant as a co-catalyst. Depending on the particular effect, their activity would need to be taken into account in a
separately from the main active site.

In addition, LSR are very well-developed for metals and alloys where the deviations from the d-band model are
relatively small and the surface orientation and coordination can be approximated via metal coordination scal-
ing.32,41 Oxides and many other materials have complex electronic structures that need to be considered accu-
rately.118 However, the LSR relations have lower accuracy when applied in oxides, sulfides, nitrides and in general
multicomponent phases where two of the elements have marked differences in electronegativity.43,48,119 Seven pil-
lars controlling the reactivity of oxides were identified by Grasselli in 2002, namely the host structure, the strength
of metal-oxygen bonds, lattice oxygens, redox properties, multifunctionality, active site isolations, and phase coop-
eration.119 As these effects are overlapping, the minimum descriptors needed were found to be the vacancy forma-
tion energies as well as the basicity and acidity of the reaction centers but still much research is needed in this
area.120

5.2 | Reactant complexity

The reaction network leading from reactants to desired and unwanted products may have hundreds or thousands of
intermediates and transition states, depending on the size of reactants and products. LSR in heterogeneous catalysis
were developed for very simplified molecular systems, rarely containing more than two central atoms.32,33,88 However,
deviations occur when increasing the size and chemical complexity of the molecule.31,121 First, when several alcohols
and amines functional groups are present, the number of conformations grows exponentially122 and the number of
hydrogen bonds need to be maximized. Besides, functional groups may repeal each other mediated by the surface, thus
breaking the additivity of thermochemical rules. Long hydrocarbon chains tend to maximize their interaction with the
surface122 and within themselves.121 Molecules containing rings also have rigidity,31 which constrains which parts of
them may effectively interact with the catalyst.123 The deviations are exacerbated for conjugated and aromatic
molecules,31,124 as the energies to form intramolecular double bonds shall be compared with the molecule-surface
bonds.39 Besides, such molecules may exist in an intermediate between two states depending on the metal39 or have sta-
ble counterintuitive radical forms.125 Moreover, chiral centers can be formed or controlled either in multifunctional cat-
alysts or through bifunctional strategies.126,127 Finally, future algorithms would need to detect if well-known organic-
chemistry-textbook reactions could take place independently on the catalyst-mediated reactions. For instance, in aque-
ous phase, a large part of the adsorbates do interact with the solvent and their acid/base properties, thus the steps con-
taining the formation of tautomers and zwitterions should be included in the reaction network. Also, some
intermediates may fully desorb and react in the solvent without the mediation of the catalysts.128 These complementary
reaction sets are also needed with a balanced estimation error.

FIGURE 2 Sources of complexity in heterogeneous catalysis at the levels of the material, the molecule, and the external factors



5.3 | External factors

Besides the catalyst and the reactant, the reaction environment is another source of complexity. The more pervasive of
them are the solvent interactions, which can affect the potential energy of all intermediates in a given reaction network,
and may fully switch the selectivity.57,129,130 The presence of solvent may also modify diffusion of key reactants and
products, thus affecting their local concentration around the surface and the local pH. Diffusion may in turn affect the
coverage. Reaction profiles are typically described in the low-coverage regime for all the intermediates, considering a
mean-field approximation where all lateral interactions are neglected. This greatly simplifies the definition of linear-
scaling relationships although it might introduce severe deviations, particularly for large fragments. On large molecules,
steric effects may also govern selectivity. For instance, for acrolein hydrogenation on Pd, it was found that more space
is required to hydrogenate the C O functional group over the C C one, and a different final product would be found
in low and high coverage regimes.131 In materials with small pore sizes, confinement dramatically affects the properties
of the fluid phase. Finally, for photo- and electrochemical applications, external potentials can excite the electronic
structure of both the catalyst and the adsorbate. The combination of all these effects altogether obscures the under-
standing of catalytic processes and may limit the accuracy of the models unless all relevant effects are considered.

6 | DESCRIPTORS FROM MACHINE LEARNING TECHNIQUES

Finding appropriate descriptors for complex systems is not evident. To solve this issue, machine learning
techniques are being introduced. This has the following benefits: (i) the descriptors are statistically robust and (ii) the
descriptor acquisition is easily automated. The statistical techniques for extracting descriptors can be clustered in two
main groups: feature selection and classification, and dimensionality reduction, as illustrated in Figure 3. The first
group selects the most representative features without changing the final dimension, while the second one transforms
those features into a lower dimension.

6.1 | Feature selection and classification

Two of the most popular feature selection techniques are the Least Absolute Shrinkage and Selection Operator (LASSO,
Figure 3 panel b), and the Elastic Net Regularization (ENR). LASSO and ENR are supervised ML techniques, in which
a Y response variable is needed to perform the feature selection. Those methods are also used for regression. The
LASSO method is a feature selection method based in a regression (linear, logistic, or others), in which data is shrunk
towards a central point, that is, the mean. LASSO adds a penalty equals to the absolute value of the coefficient
(L1-regularization). Thus, regression coefficients that corresponds to correlated variables are near zero. LASSO returns
simple models avoiding overfitting but if the number of points is much larger than the number of features, LASSO
tends to select all the number of features in an arbitrary way. LASSO has been applied to homogeneous catalysis for
predicting regioselectivities of alkenes,132 and the electronic structure of transition metal complexes with different
organic ligands,133 and with a L2-regularization method (Kernel Ridge Regression), to select the best catalysts in cross-
coupling reactions.134 In heterogeneous catalysis, LASSO has been used for generating a method for screening new pos-
sible catalysts135 and to investigate properties of single atom catalysis.136,137

The ENR method is a variation of the LASSO method with quadratic penalty term (L2-regularization). ENR shares
the strong points of LASSO, with the extra benefit that solves the issue of the number of features extracted but still has
the issue of the correlated variables and with a high computational cost. ENR has been applied in homogeneous cataly-
sis for quantifying steric effects on organic molecules138 and as benchmark regressor in the screening of (111)-bimetallic
alloys in heterogeneous catalysis.139

Feature selection methods can also be coupled to classification methods to make predictions. Two of the most pre-
ferred ML classifiers in catalysis are Artificial Neural Networks (ANN), and Random Forest Classifier (RFC, Figure 3
panel c), which are supervised ML techniques. The ANN method consists in a set of connected input and output units
(neurons), where each connection has an associated weight. During the training process, the network adjusts the
weights to obtain the feature classification. ANN performance is particularly good for nonlinear data with large number
of features and once trained, the ANN is a very fast method. However, ANN outputs are not interpretable (black box),
and strongly depends on the training data (more than another classification or regression ML methods). Thus,



generalization to other datasets is more difficult and overfitting can appear. As example, in homogeneous catalysis
ANN has been applied in predicting and analyzing 60 � 103 cross-coupling reactions140 and the prediction of formation
enthalpies of hydrocarbons,141 while in heterogeneous catalysis, surface properties,142 and CO2 reduction

3 on bimetallic
surfaces have been explored.

The RFC is based in generating a set of decision trees, extract a prediction for every tree and select the best solution
by scoring all the solutions in the ensemble. The features are selected as a function of the weight that they have in the
final decision. The robustness of the method depends on the number of trees used but in general RFC is highly accurate
and robust and avoids overfitting (via forest averaging). Again, has the drawbacks of a black box model, limiting inter-
pretability and the cost raises with the number of trees used. RFC has been applied olefin oligomerization using Cr as
homogeneous catalyst143 and in heterogeneous catalysis to screen C2 transformation catalysts,144 or the HER evolution
on NiP2 systems.145 RFC has been also used together with multi-scale modeling to MK and KMC coupled to CFD for
simulating ethylene oxidation on Ag86 and in CO oxidation on RuO2(110),

87 respectively.
Other supervised nonlinear techniques for classification and regression are convolutional graph and graph embed-

ding neural networks applied on organic molecules with biological interest,146,147 and diffusion maps, applied on pro-
teins.148 Even if these last methods are not very popular in our field, they show a huge potential for large systems like
big organic molecules synthesis in homogenous catalysis, or mapping all the possible interactions of complex surfaces,
such as oxides in heterogenous catalysis.

6.2 | Dimensionality reduction

Common dimensionality reduction techniques are t-Stochastic Neighbor Embedding (t-SNE, Figure 3 panel d) and Princi-
pal Component Analysis (PCA, Figure 3 panel e). t-SNE transforms the distances between observations into conditional
probabilities. Then, instead of comparing distances between the point xi and its neighbor xj, the method measures the

FIGURE 3 Schematic representation of dimensionality reduction techniques grouped as classifiers, feature selectors and pure

dimensionality reductors: (a) 3 dimensional plot of f(x,y,z), where x and y are two normal randomly distributed variables, and z is a linear

combination of x and y; (b) LASSO (c) random forest classifier, (d) t-SNE, and (e) PCA applied on data illustrated in panel (a)



probability for xj to be selected assuming a Gaussian Probability Density Distribution (PDD) centered in xi. Nearly points
have a high probability, while further observations have almost 0 probabilities to be selected. Later, the algorithm gener-
ates two analog observations yi and yj in a lower dimension space, and again calculates the conditional probability of the
point yj to be selected. The final output is a visually attractive a 2 or 3D map, in which the input data have been grouped
in such way that dense clusters are expanded, and sparse set of points are condensed. t-SNE reduces dimensionality in
systems in which other techniques fail at providing a very visual understanding of the data. However, 3D is the maximum
dimension for the new reduced space and extrapolation to new datasets is limited. In homogeneous catalysis these tech-
niques have allowed the construction of data-driven volcanoes,114 while in the heterogeneous catalysis context, it has been
employed as visualization technique in water oxidation,149 or to derive new CO2 electrocatalytic Cu-based bimetallic
materials.113

The PCA reduces the dimensionality by projecting all data points into the directions that capture most of the vari-
ability, called principal components. This projection is done via diagonalization of the covariance matrix, thus ensuring
that the corresponding vectors are orthogonal. The eigenvalues contain the explained variance of each corresponding
eigenvector and are taken as criterion for selecting those that explains more. The PCA presents the following advan-
tages: (i) the precision of dimensionality reduction can be controlled by including more principal components, (ii) the
results and predictions are generalizable among similar data-sets, (iii) as the master equation is a bilinear model, it is
can be tuned to be interpretable, thus describing additive phenomena such as thermochemistry, and (iv) the equation
is highly modular and, provided that the physical interpretation is known, it can be extended to include other terms,
such as solvation and coverage. The main drawback of PCA is that it cannot capture nonlinear correlations, although
they are easier to spot in spaces with lower dimensionality. In homogeneous catalysis PCA has been also applied in
asymmetric catalysis.150 An iterative supervised variant, where PCA was recursively applied after fitting the obtained
descriptors to the response variable, was applied for spotting selective ligands for the pyrrole synthesis.151 The interpret-
able flavor of PCA has been successful applied in the decomposition of alcohols39 and hydrodebromination reactions47

on metals. There it was found that the largest source of variability almost coincides with the covalent part of the metal-
adsorbate bond, commonly mapped to the d-band center on transition metals.32,152 The second largest source of vari-
ability was associated with the relative redox character of the bonds, in line with the classical view of Pauling,153 as well
as the recent interpretation of differences on the coupling matrices.154 Thus, PCA is a highly versatile method, able to
reduce the dimensionality while preserving most of the system information. PCA paves the way for a universal method-
ology to extract robust and physically meaningful descriptors that can be related to experimental observables.39,47 In
addition, it is possible to overcome the linearity issues of PCA by using the kernel-PCA (kPCA) method, which uses dif-
ferent shaped kernels (as example, the corresponding kernel (k) for linear PCA is k(x, y) = x�y). In kPCA, the covari-
ance matrix is never explicitly diagonalized; the kernel function, which is defined as the dot product of the mapping on
the new space of the nonlinear combinations (k is a matrix), plays the role of the covariance matrix instead. Then, the
eigenvalues and the eigenvectors of the kernel are the principal components of the new space. The kPCA has been used
to study the enzyme lactate hydrogenase.155 All these dimensionality reduction techniques have a huge potential in
shortening the estimations through Density Functional Theory based on data already available.

7 | CONCLUSION

Heterogeneous Catalysis has been based on the use of descriptors derived heuristically. However, as complexity
increases simplifications based on simple arguments and chemical intuition fade. During the last years, several
approaches to identify descriptors through statistical techniques have been put forward. In the present work we have
revised the key implementation aspects regarding automation, structure generation and data extraction and storage,
the first bottleneck when working with data-driven approaches. We have identified several areas that require further
attention, particularly when increasing the multicomponent phase of materials that serve as catalysts, when larger mol-
ecules cannot be represented by small surrogates, and when external forces such as solvation or electric potentials are
imposed to the system. Finally, we present pure dimensionality reduction techniques, like t-SNE or PCA in heteroge-
neous catalysis, that constitute promising and robust tools for descriptors identification thus paving the way to more
advanced models that can account for activity and selectivity in an interpretable manner.
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