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ABSTRACT: The catalyzed semihydrogenation of dibromo-
methane (CH2Br2) to methyl bromide (CH3Br) is a key step in
the bromine-mediated upgradation of methane. This study
presents a cutting-edge strategy combining density functional
theory (DFT), catalytic tests complemented with the extensive
characterization of a wide range of metal catalysts (Fe, Co, Ni, Cu,
Ru, Rh, Ag, Ir, and Pt), and statistical tools for a computer-assisted
investigation of this reaction. The steady-state catalytic tests
identified four classes of materials comprising (i) poorly active
(<8%) Fe/SiO2, Co/SiO2, Cu/SiO2, and Ag/SiO2; (ii) Rh/SiO2
and Ni/SiO2, which exhibit intermediate CH3Br selectivity
(<60%); (iii) Ir/SiO2 and Pt/SiO2, which display great propensity
to CH4 (>50%); and (iv) Ru/SiO2, which exhibits the highest
selectivity to CH3Br (up to 96%). In-depth characterization of representative catalysts in fresh and used forms was done by X-ray
diffraction, inductively coupled plasma optical emission spectroscopy, N2 sorption, temperature-programmed reduction, Raman
spectroscopy, electron microscopy, and X-ray photoelectron spectroscopy. The dimensionality reduction performed on the 272 DFT
intermediate adsorption energies using principal component analysis identified two descriptors that, when employed together with
the experimental data in a random forest regressor, enabled the understanding of activity and selectivity trends by connecting them
to the energy intervals of the descriptors. In addition, a representative analytic model was found using the Bayesian inference. These
findings illustrate the exciting opportunities presented by integrated experimental/computational screening and set the fundamental
basis for the accelerated discovery of superior hydrodebromination catalysts and beyond.

KEYWORDS: methane activation, dibromomethane, hydrodebromination, principal component analysis, random forest classifier,
statistical analysis, density functional theory

1. INTRODUCTION

The development of innovative approaches enabling the
efficient and economical on-site valorization of natural gas
into fuels and chemicals has become a strategic research
area.1−4 Among the various technologies, halogen-mediated
processes have emerged as viable routes for the transformation
of methane, the main constituent of natural gas, into
transportable liquids.5,6 In this regard, bromine is the preferred
halogen over chlorine as it provides higher selectivities to the
desired bromomethane (CH3Br).

7,8 In addition, the weaker
C−Br bond (2.95 eV) compared to the C−Cl bond (3.51 eV)
allows facile HBr elimination, vital for halogen recycling within
the process.9 Nonetheless, the formation of significant amounts
of dibromomethane (CH2Br2, selectivity up to 32%) in the gas-
phase bromination of CH4 hinders this technology to prosper
at industrial scale.10 Polyhalogenated byproducts shorten the
lifetime of zeolites, main catalytic systems for the downstream

halomethane coupling step, due to the increased coke
formation.11 The elimination of CH2Br2 by CH4 bromination
over heterogeneous catalysts has a limited scope, since the
noncatalytic gas-phase radical pathways cannot be fully
suppressed,12 while reproportionation of CH2Br2 with CH4

into CH3Br requires long residence times (up to 60 s) and is
thermodynamically constrained.13

In contrast, the selective reforming of polyhalomethanes via
catalytic hydrodehalogenation, a class of semihydrogenation
reactions, presents a practicable approach.14,15 This reaction
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has mainly been studied by Ding et al., reporting the
performance of noble-metal-based catalysts (Ru, Rh, Pd, Ag,
Pt, and Au) supported on silica.15 Therein, Pd/SiO2 was
shown to produce oligomers, revealing its full transformation
into Pd6C/SiO2 under reaction conditions. Selective CH2Br2
hydrodebromination to CH3Br was reported over Ru/SiO2
(<96% selectivity) and Rh/SiO2 (<83% selectivity), whereas
Pt/SiO2 produced mainly CH4 (>47% selectivity to CH4). Ag
was found to rapidly oxidize to AgBr under reaction
conditions, whereas Au was inactive. Still, the amount of
literature on hydrodebromination chemistry on catalytic
surfaces is very limited. In particular, other known hydro-
genation catalysts such as Fe, Co, Ni, Cu, and Ir were never
studied in this reaction and the stability performance of
systems that selectively hydrodebrominate CH2Br2 to CH3Br is
not reported.16,17

The search for new catalysts typically starts with high-
throughput experimental screening and by property similarity
within the periodic table. New techniques based on statistical
learning (SL) have been tentatively applied to guide this
quest.18 Some degree of success has been achieved when
activity and, to a lesser extent, selectivity were taken as
response functions.19−27 The variables introduced as potential
descriptors often correspond to preparation variables, for
instance, the catalytic composition for optimization of dopant
concentrations via artificial neural networks.22−27 The main
issues preventing the extensive application of such strategies
are the lack of consistency between the databases originating
from previous works and the fact that open literature contains
only successful experiments, whereas SL techniques require the
full scenario (i.e., including conclusive but unsuccessful results)
to make robust predictions. Activity descriptors have been
reported from linear-scaling relationships (LSRs);28 however,
the identification of these descriptors can benefit SL
techniques.
In this work, we present a systematic catalytic preparation

and testing protocol coupled to mechanistic studies based on
density functional theory (DFT) that can be employed as a
complete database for the use of statistical learning inference of
trends for a highly active and selective CH2Br2 hydro-
debromination catalyst. Herein, the toolbox of statistical
learning methodologies applied contains dimensionality
reduction via principal component (PC) analysis (PCA)
clustering, and classification techniques.29−31 The findings
reported in this work are first attempts directed at elucidating
hydrodebromination performance patterns to lay the founda-
tions for future catalyst design and to pave the way for the
wider application of machine learning techniques to, for
instance, multimetallic systems.

2. MATERIALS AND METHODS
2.1. Catalyst Preparation. Commercial SiO2 (Evonik,

AEROPERL 300/30, SBET = 257 m2 g−1, Vpore = 0.95 cm3 g−1,
>99.0%) was calcined at 973 K for 5 h in static air (heating rate
5 K min−1) prior to its use as a support in the synthesis
protocol. The metal precursors, Fe(NO3)3·9H2O (Acros
Organics, 99%), Co(NO3)2·6NH3 (abcr, 99%), Ni(NO3)2·
6H2O (Strem Chemicals, 99.9%), Cu(NO3)2·xH2O (Sigma-
Aldrich, 99.999%), RhCl3·H2O (Acros Organics, 99%), AgNO3
(Sigma-Aldrich, 99.8%), IrCl4·xH2O (abcr, 99.9%), RuCl3·
xH2O (abcr, 99.9%), and Pt(NH3)4Cl2·xH2O (Sigma-Aldrich,
99%), were dispersed on the support via incipient wetness
impregnation. Appropriate amounts of the precursors required

to obtain a metal loading of 1 wt % in the final catalyst were
dissolved in a volume of deionized water equal to the pore
volume of the carrier. The precursor solution was added
dropwise to the support, and the mixture was magnetically
stirred (500 rpm) for 30 min at room temperature. The
resulting solids were dried at 373 K for 12 h and calcined in
static air at 623 K (heating rate 5 K min−1) to obtain the SiO2-
supported metal oxides, followed by their reduction under 20
vol % H2 (PanGas, purity 5.0) in He (PanGas, purity 5.0) flow
at elevated temperatures (573−968 K) for 3 h in the catalytic
reactor with a heating rate of 10 K min−1 prior to their use in
catalytic tests. The catalysts were referred to as M/SiO2, where
M denotes the metal (i.e., Fe, Co, Ni, Cu, Ru, Rh, Ag, Ir, or
Pt). The specific catalyst obtained by direct reduction was
denoted M/SiO2-NC, where NC stands for “noncalcined.”

2.2. Catalyst Characterization. Powder X-ray diffraction
(XRD) was carried out in a PANalytical X’Pert PRO-MPD
diffractometer with Bragg−Brentano geometry by applying Ni-
filtered Cu Kα radiation (λ = 1.54060 Å). The data were
recorded in the 10−70° 2θ range with an angular step size of
0.017° and a counting time of 0.51 s per step. The metal
loading in the solids was determined by inductively coupled
plasma optical emission spectroscopy (ICP-OES) using a
Horiba Ultima 2 instrument equipped with photomultiplier
tube detection. N2 sorption at 77 K was measured in a
Micromeritics TriStar II analyzer. Samples (ca. 0.1 g) were
degassed to 50 mbar at 573 K for 12 h prior to the
measurement. The Brunauer−Emmett−Teller (BET) method
was applied to calculate the total surface area, SBET. The pore
volume, Vpore, was determined from the amount of N2
adsorbed at a relative pressure of p/p0 = 0.98. Temperature-
programmed reduction with hydrogen (H2-TPR) was
conducted in a Micromeritics AutoChem II 2920 unit
equipped with a thermal conductivity detector. The sample
(ca. 0.1 g) was loaded in a U-shaped quartz reactor between
two plugs of quartz wool and pretreated in He (20 cm3 min−1)
at 473 K for 10 min. The analysis was performed in 5 vol % H2
in N2 (20 cm

3 min−1) by heating up the catalyst in the range of
323−1100 K at 10 K min−1. Raman spectroscopy was carried
out on a WITec CRM200 confocal system using a 532 nm
laser with 20 mW power, a 100× objective lens with numerical
aperture (NA) = 0.9 (Nikon Plan), and a fiber-coupled grating
spectrometer (2400 lines mm−1), giving a spectral sampling
resolution of 0.7 cm−1. High-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) was
conducted on an aberration-corrected HD2700CS microscope
(Hitachi) at 200 kV. All samples were dispersed in ethanol, and
some droplets were deposited onto lacey carbon-coated copper
grids. The particle size distribution of the catalysts was
obtained by examining more than 100 nanoparticles. X-ray
photoelectron spectroscopy (XPS) measurements were
performed on a Physical Electronics Quantum 2000 X-ray
photoelectron spectrometer using monochromatic Al Kα
radiation, generated from an electron beam operated at 15
kV, and equipped with a hemispherical capacitor electron-
energy analyzer. The solids were analyzed at an electron takeoff
angle of 45° and a pass energy of 46.95 eV. The samples were
mounted onto the sample holder by pressing the powders onto
an aluminum foil. The spectrometer was calibrated for the 4
Au 4f7/2 signal to be at 84.0 ± 0.1 eV with a resolution step
width of 0.2 eV. The envelopes were fitted by mixed
Gaussian−Lorentzian component profiles after Shirley back-
ground subtraction. The selected peak positions of the
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different species are based on literature-reported data and fixed
with an error of ±0.3 eV.
2.3. Catalyst Testing. The hydrodebromination of

dibromomethane was performed at ambient pressure in a
home-made continuous-flow fixed-bed reactor setup. H2

(PanGas, purity 5.0), He (Carrier gas, PanGas, purity 5.0),
and Ar (internal standard, PanGas, purity 5.0) were dosed by a
set of digital mass flow controllers (Bronkhorst), and liquid
CH2Br2 (Acros Organics, 99%) was supplied by a syringe
pump (Fusion 100, Chemyx) equipped with a water-cooled
syringe to a vaporizer unit operated at 393 K. The quartz
reactor (internal diameter, di = 12 mm) containing the reduced
catalyst (catalyst weight, Wcat = 0.1−1 g, particle size, dp =
0.4−0.6 mm) was heated to the desired temperature (T =
423−623 K) in an electric oven under He flow. The catalyst
bed was allowed to stabilize for at least 10 min at the desired
temperature before the reaction mixture was fed at a total
volumetric flow (FT) of 20−150 cm3 STP min−1 and the

desired feed composition of CH2Br2/H2/Ar/He =
6:24:4.5:65.5 (mol %), unless otherwise stated. Downstream
linings were heated at 393 K to prevent the condensation of
unconverted reactants and/or products. Carbon-containing
compounds (CH2Br2, CH3Br, and CH4) and Ar were
quantified online via a gas chromatograph equipped with a
GS-Carbon PLOT column coupled to a mass spectrometer
(GC−MS, Agilent GC 6890, Agilent MSD 5973N). The
effluent gas stream was then passed through two impinging
bottles in series, containing a 1 M NaOH aqueous solution, for
neutralization prior to its release in the ventilation system.
After the catalytic tests, the reactor was quenched to room
temperature in He flow, and the catalyst was retrieved for
characterization studies.
The conversion of dibromomethane in CH2Br2 hydro-

debromination, X(CH2Br2), was calculated using eq 1

Figure 1. Overview of the multitechnique strategy combining experimentally obtained data, DFT results, and statistical tools to analyze the activity
and selectivity of metal-catalyzed CH2Br2 hydrodebromination.
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where n(CH2Br2)in and n(CH2Br2)out are the molar flows of
the reactant at the reactor inlet and outlet, respectively. The
selectivity, S(j), to product j (j: CH3Br, CH4) was calculated
according to eq 2
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where n(j)out is the molar flow of product j at the reactor
outlet. The turnover frequency, TOF, and reaction rate based
on CH2Br2 consumption, r, were calculated using eqs 3 and 4,
respectively
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where ωM is the metal loading determined by ICP-OES and
DM is the metallic dispersion and is expressed as
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where the area occupied by one surface metal atom is σM and
the volume occupied by an atom in the metallic state is ϕM.
The error of the carbon balance, εC, used to specify the
selectivity to coke, was determined using eq 6
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Evaluation of the dimensionless moduli based on the criteria of
Carberry, Mears, and Weisz−Prater32,33 indicated that the
catalytic tests were performed in the absence of mass and heat
transfer limitations. In addition, CH2Br2 hydrodebromination
tests over selected catalysts performed at variable flow rates
and constant FT/Wcat as well as using catalyst particles of
different sizes at constant FT/Wcat verified the absence of extra-
and intraparticle mass-transfer limitations (Figure S1),
respectively.
2.4. Density Functional Theory. Density functional

theory on slab models representing the different metals was
employed as implemented in the Vienna Ab initio Simulation
Package (VASP 5.4.4).34,35 Generalized gradient approxima-
tion with the Perdew−Burke−Ernzerhof (GGA-PBE) func-
tional was used to obtain the exchange−correlation energies.36

Projector-augmented wave (PAW) method was chosen to
represent the inner electrons, and the valence monoelectronic
states were represented by plane waves with a cutoff energy of
450 eV. The Γ-centered k-point mesh was generated through
the Monkhorst−Pack method.37−39 Van der Waals interactions
were described via the Grimme’s DFT-D2 with the
reparametrized C6 values for metals by our group.40,41 Gas-
phase molecules were optimized in a box of 15 × 15 × 15 Å3.
The optimized bulk lattice parameters were 2.9175 Å for Ag,
2.5009 Å (c/a 1.6052) for Co, 2.5609 Å for Cu, 2.8317 Å for
Fe, 2.7146 Å for Ir, 2.4752 Å for Ni, 2.7959 Å for Pt, 2.6997 Å
for Rh, and 2.7058 Å (c/a 1.5824) for Ru. All metals were

modeled by a four-layer p(3 × 3)-(111) face-centered cubic
(fcc) slab, with the exception of using a four-layer p(3 × 3)-
(110) for Fe and a p(3 × 3)-(0001) for Co and Ru. The top
two layers were allowed to relax, while the bottom two were
fixed to the bulk lattice in all slabs, which were interspaced
along the z-direction by a vacuum space of 15 Å, and the
arising dipole was corrected.42 The thresholds were 10−5 eV
and 0.03 eV Å−1 for electronic and ionic relaxations,
respectively. Climbing image nudged elastic band (CI-NEB)
method,43,44 improved dimer method,45,46 and quasi-Newton
algorithms were employed to locate the transition states (TSs)
in the reaction profiles, where the TSs were further verified by
their single imaginary frequency character.45 This data
constitutes the first step of our computational analysis as
shown in Figure 1. All of the structures have been uploaded to
the ioChem-BD database.47−49

2.5. Statistical Learning Toolbox. Two main techniques,
principal component analysis (PCA) and random forest (RF)
regressor,50,51 have been employed in the statistical treatment
of the experimental data and DFT results (Figure 1). One of
the major issues of DFT simulations for complex reaction
networks is the large number of elementary steps (Figure 1,
first row) and that reaction profiles cannot be directly used to
map activity and selectivity. Descriptors have been traditionally
found by a combination of linear-scaling relationships (LSRs,
linking the thermodynamics of adsorption of some inter-
mediates to others) and heuristics based on simple chemical
concepts (number of bonds and valences).52 However, this
choice is somewhat nonunivocal as it is not based on a rigorous
mathematic algorithm (for instance, it does not ensure
orthogonality of the different descriptors).53 This explains
why there are dependencies in multidimensional descriptors,
particularly in metals. Alternatively, statistical learning
techniques provide a mathematically sound framework to
identify descriptors. Thus, the dimensionality reduction of the
adsorption energies of all of the intermediates involved in the
CH2Br2 reaction was done via an unsupervised statistical
learning method to retrieve the principal components from the
data set containing 272 DFT-computed intermediate adsorp-
tion energies (Figure 1, second row).29 The outcomes of the
analysis are the principal components (linearly uncorrelated
variables), in our case, two different energy terms. Thus, the
procedure maps the mathematical descriptors to two energies
that represent the covalent and redox contributions. More
importantly, PCA allows us to cleanse the data to avoid
dependencies and therefore focuses the search between the
catalytic response and the descriptors.
The next step constitutes the catalytic performance analysis.

Ideally, a full microkinetic model based on the DFT-computed
parameters would be the response function to be fitted by the
descriptors that were identified via the principal components.
However, the accuracy and robustness of these methodologies
prevent us from performing a full in silico analysis.54 Therefore,
the experiments are taken as input and understood with the
descriptors obtained computationally. The simplest approach
would be to utilize a classifier employing, for instance, K-
means, which is popular in data mining, or clustering
techniques. However, these methods fail when applied to
understand selectivity problems since very small variations in
the energy scale of intermediates can lead to a complete switch
of the selectivity.28,29 Alternatively, a simple classifier such as
the decision tree (DT) can be employed by answering a list of
simple energy-related questions for the two descriptors (vide
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infra) as shown in the third step in Figure 1. However, these
models tend to overfit and alternatives have been proposed in
the literature to mitigate this drawback.50 Therefore, we opted
for an ensemble learning method that allows simultaneous
classification and regression, thereby overcoming the pre-
viously mentioned issues (Figure 1, bottom row). The RF51

technique operates by constructing an ensemble of decision
trees with different seeds, thereby limiting overfitting. Here-
after, the average of the forest is taken as the outcome of the
statistical analysis, although a few disclaimers are needed.
Typically, random forests are applied to larger data sets and are
benchmarked via cross-validation. Even though the sets
derived from nanoparticles of metals of comparable size are
limited, the filtering introduced with the PCA ensures that the
results are qualitatively sound. Finally, the analytical functions
for the experimental activity, selectivity, and yield have been
identified through the Bayesian Machine Scientist (BMS).55

The algorithm searches for candidate functions that describe
the behavior of a given data set using the Markov chain Monte
Carlo (MCMC) method. At every Monte Carlo step, the
algorithm evaluates the quality of the current function using a
complexity parameter, based on the entanglement of the
mathematical operators, and an error parameter that depends
on the sum of the square estimate of the errors (SSEs).
Filtering these values makes it is possible to obtain simple and
accurate equations that properly describe the nature of the data
set. In our case, the data set contains both the experimental
results of activity, selectivity, and yield and the PCA that
provides the descriptors from the DFT part. Expansion of the
data to variable nanoparticle sizes, speciation, alloys, and
intermetallics is beyond the scope of this study but would
constitute a natural extension to this work.

3. RESULTS AND DISCUSSION

The state-of-the-art catalytic research work normally encom-
passes the experimental testing of a few materials, typically
reporting only the best hits in terms of activity and selectivity
and the study of the reaction network presenting the list of
elementary steps and the reaction profiles provided by DFT.
Advanced methodologies would include the use of LSR to
make a dimensionality reduction that provides one or two
descriptors (in some cases, the selection is nonunivocal). A
kinetic model based on the particular mechanism found for a
single catalyst (typically, a metal) is then simplified via a rate-
determining-step concept while considering the experimental
conditions. Applying the LSR, the rate is simplified to be a
function of a single descriptor parameter, leading to what are
known as volcano plots.28 Screening for different materials is
then done by computing energies of the descriptor over a

family of materials. However, this approach presents a few
pitfalls: (i) the selection of the descriptor is nonunivocal; (ii)
the probability that there are hidden dependencies is high
when there is more than one descriptor; as a consequence,
multidimensional analysis (considering more than one
descriptor) typically ends up with the activity of all metals
falling along the same line; (iii) selectivity is difficult to track
due to the small energy differences involved in the selectivity
switches (cliffs); and (iv) the studies of stability are introduced
in a separate step as a filter to the overall results.
In this work, we have taken an alternative route to combine

both experimental and theoretical results to avoid some of
these bottlenecks by the generation of an extensive database of
catalytic materials, using their activity and selectivity, and
employing DFT data as an independent source for the
performance descriptors through the inference via statistical
learning techniques. To this end, the dimensionality reduction
of the energies for intermediates is performed via a PCA and
the random tree and random forest methodologies are
employed as a classifier and regressor, respectively, to
understand and determine the key binding energies (BEs)
for the descriptors that limit the areas with higher activity and
selectivity. Formulae for the different response functions,
activity, selectivity, and yield, are found using the Bayesian
machine scientist employing the computed descriptors.

3.1. Mechanistic Studies and Dimensionality Reduc-
tion. The DFT calculations revealed the reaction profiles of
CH2Br2 hydrodebromination over the nine metals (Fe, Co, Ni,
Cu, Ru, Rh, Ag, Ir, and Pt; see Figure S2). The energies for the
kinetic and thermodynamic parameters of the reactions shown
in Figure 2 are presented in Tables S1−S7 and in the ioChem-
BD database, where they can be downloaded as a csv file.48,49

Three main reasons led to the use of pure metal surfaces as a
starting point in the reactivity studies: (i) they allow a
systematic investigation while keeping the nature of the
materials constant (and thus equivalent electronic structures);
(ii) they can provide the fundamentals for the phase transition
during the induction process and explain the sources of catalyst
instability simultaneously; and (iii) they constitute the simplest
type of DFT calculations. The starting point for obtaining the
reaction profiles over all nine metals was the mapping of the
full path over the Ru surface (Figure 3). The potential
transition-state structures on the other metal surfaces (Figure
S2) were inherited from that of Ru by applying a previously
reported algorithm that uses the potential seed TSs as input for
an improved dimer method or a CI-NEB refinement, after
which the final structure is confirmed through vibrational
analysis.56 This procedure allowed us to reduce the computa-
tional time as the intermediates along the reaction do not

Figure 2. Reaction network of CH2Br2 hydrodebromination showing the pathways leading to CH3Br, CH4, and C that accounts for coke formation.
Arrow labels indicate species involved in the reaction, while the labels in parentheses indicate thermodynamic and kinetic parameters that are
detailed in Tables S1−S7.
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require large optimizations and even the transition states could
be directly located from the Ru seed.
The reaction profiles show the sequential elimination of

either Br and H atoms and the recombination of the
carbonaceous fragments with the main products (CH4 and
CH3Br) and surface coke illustrated by a carbon precursor.
This sequential mechanism exists in all cases except for Fe
(Figure S2), on which the CH2Br intermediate cannot be
located. The large reactivity of Fe with respect to the reactants
is responsible for the direct decomposition of CH2Br2, losing
its both Br atoms on the surface. To identify the activity
descriptors, a PCA was performed by taking all of the 272
intermediate energies of CHxBry and the isolated atoms H, C,
and Br. For all species, several potential adsorption sites were
investigated.29 In the case of CH2Br2, physisorption and
dissociative adsorption of the C−Br bond occurs on the metal
surface. Ultimately, the values of the principal components are
92.8, 5.2, and 1.2%. Therefore, two principal components
account for 98% of the adsorption energies and are thus taken
as relevant. Then, to unravel the descriptors, we adopted the
strategy of mapping these principal component terms to the
energies of some of the smallest fragments in the reaction
network. We have followed the same mathematical procedure
as in our previous work,29 where the energies of the fragments
are correlated with the PC taking the ones showing the lowest
error in the prediction. In a second step, we map the PC to the
intermediate energies that are better represented by a single
PC. When doing so, the first and second PCs were determined
as the CH and Br species on the hcp sites, whereas their
adsorption energies were considered the descriptors for the
covalent (CH) and redox (Br) terms (Figures S3 and S4),
respectively, due to their exclusive contribution to these
principal components. The role of coverage effects on these
parameters for the most active catalyst is shown in Figure S5.
3.2. Catalytic Performance in CH2Br2 Hydrodebromi-

nation. Gas-phase CH2Br2 hydrodebromination was inves-
tigated over Fe-, Co-, Ni-, Cu-, Ru-, Rh-, Ag-, Ir-, and Pt-based
catalysts supported on SiO2 (1.0 wt % metal basis), which were
chosen based on previously reported CH2Br2 hydrogenation
studies.15 The inertness of SiO2 in hydrodehalogenation
reactions and its minimal interaction with the active phase
allow studying the intrinsic catalytic performance of each
transition metal. Synthesis of the catalysts was done by
incipient wetness impregnation, involving a calcination step in

air followed by reduction in H2 prior to their exposure to
reaction conditions. The reduction temperature was based on
H2-TPR analysis and was chosen as such to ensure the
formation of the metallic phase (Figure S6). Characterization
data of the catalysts revealed the close similarity of the specific
surface areas (SBET, 244−258 m2 g−1) and pore volumes (Vpore,
0.71−0.83 cm3 g−1) (Table 1). XRD analysis of the catalysts

showed diffraction peaks compatible with the metallic phases,
whereas no evidence of the oxide phases was observed (Figure
4a). Further confirmation of the elemental composition was
provided by ICP-OES, which showed that the metal content in
the materials was approximately the targeted 1.0 wt %. The
structural information gained from the utilization of XRD was
corroborated by Raman spectroscopy (Figure 4b). All catalysts
displayed low-frequency bands centered at 490 and 603 cm−1,
which are characteristic of the SiO2 support.

57,58 In addition,
the Raman spectrum of Ir/SiO2 evidenced bands at 548 and
716 cm−1, which could be ascribed to a minor IrO2 phase,

59,60

and the spectrum of Cu/SiO2 displayed a band at 972 cm−1,
suggesting that a CuxSiOy phase is likely present in the
respective supported Ir and Cu catalysts.61,62 The presence of
CuxSiOy could explain the reduction peak at ca. 500 K
observed in H2-TPR (Figure S6).62

The catalysts were evaluated in CH2Br2 hydrodebromination
at different reaction temperatures (423−623 K). Assessment of
the hydrodebromination activity, expressed as CH2Br2
conversion, at 523 K allowed derivation of the following
order for the respective supported catalyst: Fe ≈ Co ≈ Cu ≈
Ag (4−7%) < Ni (11%) < Ru (19%) < Rh (32%) < Ir ≈ Pt
(50−52%) (Figures 5a and S7). Evaluation of the product
selectivities at 523 K and ca. 20% CH2Br2 conversion achieved
by adjustment of the space velocity is shown in Figure 5b. The
performance of Fe, Co, Cu, and Ag showed consistency with
the generally reported inferior hydrogenation activity of these
elements compared to the platinum group metals. From a cost
perspective, it is interesting that Ni displays a selectivity
pattern comparable to that of Rh.

3.3. Classification of Metal Catalysts Using the
Random Forest Regressor. Four clusters are classified
based on the experimentally determined product distribution
of the SiO2-supported metal catalysts: (i) poor hydro-
debromination activity over Fe, Co, Cu, and Ag, with coke

Figure 3. Energy profiles of CH2Br2 hydrodebromination on
ruthenium and platinum surfaces.

Table 1. Characterization Data of the Catalysts

SBET
b (m2 g−1) Vpore

c (cm3 g−1)

catalyst
metal loadinga

(wt %) fresh 1 h (10 h) fresh 1 h (10 h)

Fe/SiO2 1.1 254 254 0.77 0.76
Co/SiO2 0.9 258 250 0.79 0.78
Ni/SiO2 1.0 254 252 (240) 0.75 0.80 (0.71)
Ni/SiO2-
NC

1.0 251 244 0.77 0.79

Cu/SiO2 0.9 255 251 0.78 0.77
Ru/SiO2 1.0 247 254 (246) 0.71 0.73 (0.70)
Ru/SiO2-
NC

1.0 249 240 0.83 0.80

Rh/SiO2 1.0 250 220 (228) 0.77 0.72 (0.70)
Ag/SiO2 0.9 250 249 0.76 0.72
Ir/SiO2 1.0 254 253 (246) 0.76 0.73 (0.72)
Pt/SiO2 1.0 244 242 (245) 0.77 0.75 (0.73)
aICP-OES. bBET model. cVolume of N2 adsorbed at p/p0 = 0.98.
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as the main product. (ii) Intermediate activity and selectivity to
CH3Br (<55 and <58%, respectively) over Ni and Rh, coupled
with pronounced coke formation. Worth mentioning is the
absence of CH4 generation over these two groups of catalysts
at any reaction temperature applied (Figure S7). (iii) Great
propensity to CH4 (>48 and >61%, respectively) besides
producing CH3Br (<28 and <39%, respectively) over Ir and Pt
with minor coking. (iv) The highest selectivity to CH3Br
(<96%) over Ru with coke (<23%) as the byproduct (notably
higher than any other metal). The qualitative analysis of the
main product with a single decision tree shows that only two
decisions are needed to classify all of the observations (Figure
1): the main decision corresponds to the CH binding energy,
while the second is the binding energy of Br, in agreement with
the PCA.
Then, experimental performance can be analyzed in terms of

the PC through the random forest technique. Therein, the
experimentally determined CH2Br2 conversion, CH3Br yield,
CH3Br selectivity, and the two descriptors obtained by PCA
were taken as inputs (Figure 1). A random forest algorithm
composed of 128 trees was trained to sample the phase space
spanned by the descriptors.50 Tests with different tree lengths
and number of trees are presented in the SI (Figure S8). The
accuracy of the training set is 0.91 for the conversion, 0.79 for

the selectivity, and 0.87 for the yield. This allows the partition
of the performance of the different catalysts just by taking the
properties of the naked metal surfaces without considering
potential phase transformations (Figure 6).
For the highest conversion, the optimal CH adsorption

energy ranges from −6.50 to −6.75 eV (with respect to the
CH(g) fragment), while the ideal Br adsorption energy requires
a weak M−Br bond (Figure S2). This explains the inactive
behavior of Co, Cu, and Ag, since they hold either far-too-
strong or far-too-weak CH adsorption regions. The selectivity
frontiers are different from the activity ones, as previously
described for general reactivity models.28 In particular,
selectivity toward CH3Br requires a weaker CH and stronger
Br adsorption energy than the one for activity, with ranges
from −6.30 to −6.75 eV and from −2.2 to −2.3 eV,
respectively. It should be emphasized that there is a narrow
selectivity window for CH3Br, which spans only 0.1 eV along
the Br binding energy direction. Ru, with the best catalytic
behavior, is close to the sweet spot, and Ir and Pt are in the
weak binding region (Figure 6). Finally, the performance of Fe
sets up a new region due to its different packing way that leads
to the variations of surface metal positions from the standard
fcc metals. As a result, the descriptors correspond to very
exothermic energies and the area, likely to be shared with other
early transition metals, would correspond to a poorly active
region.

3.4. Identification of the Functional Forms for the
Catalytic Activity of the Metal Catalysts Using the
Bayesian Machine Scientist (BMS). The RF methods
present three main drawbacks: (i) their black-box nature
masks the physical interpretability of the trained model (a

Figure 4. (a) XRD patterns and (b) Raman spectra of the catalysts in
a fresh form and after CH2Br2 hydrodebromination. Reference
diffraction patterns are shown as vertical lines below the measured
diffractograms and are identified with their ICDD-PDF numbers.
Reaction conditions: CH2Br2/H2/Ar/He = 6:24:4.5:65.5, FT/Wcat =
25−150 cm3 min−1 gcat

−1, T = 523 K, P = 1 bar, and time on stream
(tos) = 1 or 10 h.

Figure 5. (a) Conversion of CH2Br2 and (b) product selectivity of the
catalysts in CH2Br2 hydrodebromination. In (a), the conversion was
assessed at a constant space velocity of FT/Wcat = 40 cm3 min−1 gcat

−1,
while product selectivities in (b) were determined at ca. 20% CH2Br2
conversion achieved by adjusting the space velocity in the range of
FT/Wcat = 20−150 cm3 min−1 gcat

−1. Other reaction conditions:
CH2Br2/H2/Ar/He = 6:24:4.5:65.5, T = 523 K, P = 1 bar, and tos =
0.25 h.
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numerical value with an error is retrieved as a response), (ii)
the range and accuracy are closely related to the number of
samples used in the training phase, and (iii) extracting a
functional form is difficult. To overcome these issues, BMS55

has been employed to search for general functional forms
(Figure S9 and Tables S9−S11) that describe the response
functions (experimental conversion, selectivity, and yield) for
CH2Br2 hydrodebromination taking DFT-PCA descriptors as
variables. To homogenize our data set, Fe has been excluded
from the input data set due to its different atom packing.
Figure 7 shows the best functions obtained for each

experimental parameter and their graphical representation.
Conversion has the simplest equation, displaying a direct
dependence on the adsorption energy of Br and an inverse
dependence on the adsorption energy of CH. These
dependencies point to a possible surface Br contamination in
metals with the most exothermic Br−metal bonds. Contrarily,
conversion improves at lower values of CH adsorption energy.
Significantly, the equation for the yield is the squared of the
conversion. Therefore, it describes a volcano-like area with the
highest response values at the most exothermic CH adsorption
and intermediate values of Br adsorption energies. Finally, the
function obtained to represent the selectivity is rather complex
and hard to interpret. However, its graphic representation
shows a cliff cutting the area between the metals that coke and
those that do not, correctly reproducing the opposite behavior
of Co and Ni. Table S12 contains the fitting parameters of the
found functions. Additionally, Figure S10 shows an additional
simple functional form found for selectivity.
Figure 8 shows the obtained SSE comparing the

experimental and predicted values using the two regressors.
BMS is the method that achieves the best accuracy for all of
the experimental values. However, the dependency of RF on

the number of samples and the complexity of the selectivity
equation obtained with BMS leads us to think that for rough
areas such as selectivity, RF will perform a better prediction
with denser samples. Contrarily, BMS can provide simple
models with a limited number of observations, as can be seen
for conversion and yield. Additional information about
prediction errors can be found in Table S8.

3.5. Stability and Characterization of the Used
Catalysts. Establishing typical product distributions for each
metal naturally raises questions as to how the materials behave
upon exposure to reaction conditions for longer times.
Therefore, product-based trends identified were comple-
mented with short-term (10 h) CH2Br2 hydrodebromination
tests over the active SiO2-supported catalysts (Ni, Rh, Ir, Pt,
and Ru), evidencing deactivation of all catalytic systems with
ca. 25−80% loss of initial activity (Figure S11). The following
order of decreasing stability over 10 h was found: Rh ≈ Ru ≈
Ni < Ir ≈ Pt. Therein, Ni falls out of the trends by showing a
significant loss of CH2Br2 conversion in the first 2 h on stream
and displaying relatively stable performance for the remainder
of the reaction time. On the other hand, Ru follows a similar
deactivation profile as Rh, gradually losing activity over time. A
moderate decrease in performance was achieved over Ir and Pt,
showing ca. 1.5−3.5 times more activity compared to the rest
of the metal catalysts. Depletion of activity was appended by
moderate changes in the product distribution. With time on

Figure 6. CH2Br2 conversion, CH3Br selectivity, and CH3Br yield for
different values of Eads(CH) and Eads(Br) obtained with a random
forest regressor algorithm containing 128 trees.

Figure 7. CH2Br2 conversion, CH3Br selectivity, and CH3Br yield for
different values of Eads(CH) and Eads(Br) obtained with the Bayesian
machine scientist using the functions: X = −(Eads(Brhcp) − cc1)·cc2 +

+
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Fe was not included during the functional form search.
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stream, the selectivity to CH3Br progressively decreased over
Rh, Ir, and Pt, whereas a slight increase was observed over Ni
and Ru. The propensity to form CH4 was enhanced over Ir and
Pt, while changes in coke production were mainly observed
over Ni and Rh. These findings emphasize that catalyst
robustness remains a challenge, for which understanding the
origin of deactivation is essential to develop superior CH2Br2
hydrodebromination catalysts.
SiO2-supported metals that exhibit poor activity (Fe, Co,

Cu, and Ag) were characterized after 1 h on stream, whereas
analysis of the catalytically active systems (Ni, Ru, Rh, Ir, and
Pt) was performed after 1 and 10 h use in CH2Br2
hydrodebromination. In particular, N2-sorption, ICP-OES,
XRD, and Raman spectroscopy were applied to study the
development of the materials during exposure to the reaction
environment. Examination of the textural properties by N2-
sorption showed minimal differences in the specific surface
areas (SBET) and pore volumes (Vpore) of the used (1 and/or 10
h) and fresh samples (Table 1). Furthermore, quantification of
the metal content in used systems by ICP-OES analysis
pointed toward the preservation of the metal content (1.0 wt
%) in all catalysts, indicating the absence of active phase
leaching or volatilization. Further investigation revealed three
main deactivation mechanisms: (i) bromination, (ii) fouling by
coking, and (iii) active phase restructuring.
Generally, the presence of a halogen introduces structural

stability challenges for many catalysts.63 Analysis of the Ag/

SiO2 and Cu/SiO2 samples confirmed the severe effects of
bromination on activity. In line with the literature, the poor
performance of Ag could be explained by its rapid oxidization
to AgBr as observed in XRD (Figure 4a).15 A similar behavior
was observed for Cu, which was promptly restructured to
CuBr. The XRD reflections of used Co/SiO2 resembled those
of the fresh material, suggesting the absence of active phase
sintering or extensive bromination. In contrast, the disappear-
ance of the reflection assigned to metallic iron in Fe/SiO2
points toward restructuring after exposure to reaction
conditions. Complemented with Raman analysis (Figure 4b),
the spectra of used Fe/SiO2 evidenced minor bands at 147 and
272 cm−1, which could be attributed to Fe−Br and Fe−C
stretching modes, respectively, with the latter most likely due
to the presence of FexCy phases.

64−67 Moreover, a strong band
was detected at 1084 cm−1, which relates to the asymmetric
stretching mode of Fe−O−Si bonds in tetrahedrally
coordinated Fe species.68 Altogether, Raman analysis suggests
the prompt restructuring of metallic Fe to FeBrx, FexCy, and
FeOxSiy under hydrodebromination conditions, rendering the
catalyst very complex (in agreement with the difficulties found
in the simulations) and mostly inactive. In addition, the Raman
spectra of used Fe/SiO2, Cu/SiO2, and Ni/SiO2 display the
well-documented D and G bands at ca. 1320 and 1585 cm−1,
which are ascribed to graphitic species and normal vibrations
in graphene, respectively.69,70 In addition to the D band, Co/
SiO2 and Ir/SiO2 show a significant peak at ca. 1606 cm−1,
commonly denoted the D′ band, signifying the presence of
imperfect graphite or disordered carbon.71 This indicates that
coke formation, the main deactivation mechanism over Co/
SiO2 and Ir/SiO2, follows a different pathway compared to Fe
and Cu.
In addition to the previously mentioned characterization

techniques, XPS and HAADF-STEM microscopy were
adopted to further study the catalytically active systems that
were exposed to 10 h hydrodebromination conditions (Figure
S11). Therein, HAADF-STEM observations disclosed the
dispersion of Ni, Ru, Rh, Ir, and Pt nanoparticles on SiO2. Rh-
and Pt-based materials displayed a narrow size distribution,
whereas a wide size distribution was found for Ni, Ru, and Ir-
based systems (Figure 9). Although the micrographs indicate
that Pt/SiO2 exhibits an average particle size distribution of 2.2
nm, a few particles in the range of 18−28 nm were
distinguished, too. Moreover, large Pt crystallites of up to ca.
100 nm could be appraised quantitatively from XRD analysis,
providing this numerical estimation based on the Scherrer
equation (Figure 4a). Compared to their fresh analogues, used
Ni-, Ir-, and Pt-based systems showed small changes in the
average metal nanoparticle size. In contrast, pronounced active
phase sintering in Ru/SiO2 and Rh/SiO2 strongly reduced the
fraction of surface metal atoms after 10 h on stream by ca. 30
and 40%, respectively, demonstrating that this deactivation
mechanism occurs on various nanoparticle-based catalysts
regardless of the halogen source.14 The systems were further
analyzed by XPS to assess the presence of brominated metal
species on the surface of the used materials, revealing that
bromination plays a limited role in catalyst deactivation
(Figure 10). The Ru 3d, Rh 3d, Ir 4f, and Pt 4f core-level
spectra of the fresh and used systems displayed pronounced
peaks at binding energies (BEs) of ca. 279.1, 306.9, 60.4, and
70.7 eV, respectively, corresponding to the metallic phase.72−74

Careful fitting of the spectra revealed contributions at BEs of
72.2 and 74.0 eV in Pt/SiO2, at 61.9 eV in Ir/SiO2, and at

Figure 8. Sum of squared estimate of errors (SSEs) comparing the
experimentally obtained CH2Br2 conversion, CH3Br selectivity, and
CH3Br yield with their predicted values using the Bayesian machine
scientist and the trained random forest regressor.
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280.6 eV in Ru/SiO2, all designated to oxidized species,72,73,75

likely due to exposure of the sample to air. Minor active phase
bromination (<15%) was observed over used Pt/SiO2, as

indicated by the peak at a BE of 73.8 eV, which is ascribed to
PtBr4 species.

76 The presence of carbon species (ca. 30%) was
detected over used Ru/SiO2, as evidenced by the strong
contribution at a BE of 284.2 eV. The Ni-based system suffered
from the formation of an oxidized Ni layer formed by contact
of the sample with air, a process well-studied in literature.77

Sputtering prior to XPS analysis would remove potential Br
species present on the surface, preventing any realistic
comparison with other catalysts. The use of operando
spectroscopic techniques could provide more insights into
the deactivation phenomena. However, the application of such
methods requires the design of adequate cells resistant to the
corrosive nature of this reaction, which will be the subject of
future investigations.

3.6. Kinetic Analysis. To further compare and benchmark
the performance of the catalytically active systems, TOF values
of selected materials were determined (Figure 11a). Ni/SiO2,
Ru/SiO2, and Pt/SiO2 were chosen as representative systems
of their respective performance group. The dispersion was

Figure 9. HAADF-STEM micrographs and derived particle size distributions of selected catalysts in a fresh form and after 10 h in CH2Br2
hydrodebromination. The conditions specified in Figure 4 apply here.

Figure 10. Ru 3d, Rh 3d, Ir 4f, and Pt 4f XPS core-level spectra of
selected catalysts in a fresh form and after 10 h in CH2Br2
hydrodebromination. The solid lines and the open circles represent
the overall fit and the raw data, respectively, while the colored areas
beneath them indicate the different contributions. The conditions
specified in Figure 4 apply here.
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calculated based on the average metal nanoparticle size,
assuming a hemispherical geometry of the metal site as
observed in the micrographs (Figure 9). The activity of the
catalysts decreased in the following order: Pt/SiO2 ≫ Ru/SiO2
> Ni/SiO2, with dispersions of 51, 10, and 7%, respectively,
confirming the previously determined trends (Figure 5a). As
shown in Figure 11a, Pt/SiO2 displays TOF values ca. 1 order
of magnitude higher than those observed over the other
systems. The dispersion values of Ni/SiO2 and Ru/SiO2 differ
significantly from that of Pt/SiO2. To eliminate a possible
influence of this parameter, reference catalysts with comparable
active phase dispersion were synthesized by omitting the
calcination step during the synthesis to obtain Ni/SiO2-NC
and Ru/SiO2-NC. XRD analysis and HAADF-STEM micros-
copy confirmed the attainment of systems lacking large
crystallites and with an average nanoparticle size of 2 nm for
both Ni and Ru (Figures S12 and S13), resulting in a metal
dispersion of 48 and 56%, respectively (Figure S14). Notably,
for the Ru- and Ni-based systems, selectivity patterns as well as
CH2Br2 conversion remained unchanged (Figure S14).
Consequently, the TOF values of Ni/SiO2-NC and Ru/SiO2-
NC were lower than those of Ni/SiO2 and Ru/SiO2, thereby
stressing the outstanding hydrodebromination activity attained
over Pt/SiO2 (Figure 11a). Moreover, these results suggest
that activity over Ni- and Ru-based systems is structure
dependent. The impact of active phase nanostructuring on
CH2Br2 hydrodebromination performance deserves attention
in future dedicated studies.
Further insights were gained by conducting kinetic analysis

over the three systems, showing differences in the apparent
activation energies with values of 53 kJ mol−1 (Ru/SiO2), 36 kJ
mol−1 (Ni/SiO2), and 34 kJ mol−1 (Pt/SiO2) (Figure 11b). On
the other hand, similarities in the derived partial orders with

respect to CH2Br2 were found, with values ranging between
1.05 and 1.21 (Figure 11c). Particularly interesting are the
relatively low reaction orders in H2 for Ni/SiO2 and Ru/SiO2

of ca. 0.47, deviating from that of a system that mainly
produces CH4, which exhibited a partial order of 1.01 (Figure
11d). These kinetic fingerprints are a direct consequence of the
observed patterns described in the reaction profiles (Figures 3
and S2). For the reactant, the reaction order is around 1, which
is in line with the stoichiometric term in the general equation.
The same applies to the H2 dependencies, where the
production of CH4 results in a partial order of ca. 1 if the
reaction of the second H-atom is considered as rate
determining (Figure 2). On the other hand, the production
of CH3Br requires a single H-atom and therefore shows the
observed partial order in H2 of ca. 0.5. Comparable results
were found over nanostructured catalysts for selective CH2Cl2
hydrodechlorination, where a kinetic model could give an
account of the possible origin of the observed selectivity
differences.14 The effects of inlet partial pressures of CH2Br2
and H2 were further studied to determine the effect of these
compounds on product distribution (Figure 12). Therein,
adjusting the CH2Br2 inlet partial pressure showed a little
influence on the selectivity patterns. On the other hand,
changing the partial pressure of H2 from 6 to 72 kPa had a
significant effect on product distributions and activity. With
increasing H2 concentration in the feed, a higher selectivity to
CH3Br was obtained over Ru/SiO2 and Ni/SiO2. In contrast, a
slight decrease of CH3Br selectivity at the expense of CH4

formation was observed over Rh/SiO2 and Pt/SiO2. Over all
systems, coke formation was curbed at the expense of the
production of either CH3Br or CH4 with increasing H2 partial
pressures.

Figure 11. (a) Turnover frequencies and rates of CH2Br2 hydrodebromination over selected catalysts as a function of (b) temperature and inlet
partial pressures of (c) CH2Br2 and (d) H2. Each catalytic data point was gathered using materials in a fresh form to exclude the possible influence
of catalyst deactivation. Reaction conditions: (a) CH2Br2/H2/Ar/He = 6:24:4.5:65.5, FT/Wcat = 40 cm3 min−1 gcat

−1, and T = 523 K; (b) CH2Br2/
H2/Ar/He = 6:24:4.5:65.5, FT/Wcat = 40−200 cm3 min−1 gcat

−1, and T = 498−548 K; (c) CH2Br2/H2/Ar/He = 3−9:24:4.5:62.5−68.5, FT/Wcat =
40−200 cm3 min−1 gcat

−1, and T = 523 K; and (d) CH2Br2/H2/Ar/He = 6:6−72:4.5:17.5−83.5, FT/Wcat = 40−200 cm3 min−1 gcat
−1, and T = 523

K. All tests were conducted at P = 1 bar and tos = 0.25 h.
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4. CONCLUSIONS
A strategy combining computational techniques and catalyst
testing was devised with the aim to understand the
performance of selected metal catalysts in the hydrodebromi-
nation of CH2Br2 to CH3Br. Here, we have derived a
consistent catalytic data set comprising experimentally
obtained and DFT data for the application of statistical
techniques. The steady-state catalytic tests of metals supported
on SiO2 revealed four performance groups comprising (i)
poorly active Fe, Co, Cu, and Ag; (ii) Rh and Ni, which show
intermediate selectivity to CH3Br (<60%) but do not generate
CH4; (iii) Ir and Pt, which mainly produce CH4 (>50%); and
(iv) Ru, which exhibits the highest selectivity to CH3Br
(>96%). DFT was applied to retrieve the energy profiles over
the metals, after which the binding energies of the 272
intermediates were subjected to dimensionality reduction via
principal component analysis, a robust mathematical construct.
The two descriptors obtained from this unsupervised method
were, together with the experimental data, employed in the
random forest regressor and the Bayesian machine scientist,
ultimately connecting the descriptor energy intervals with
catalytic activity or selectivity and obtaining the functional
forms for the identification of performance trends in terms of
CH3Br yield. This work addresses important aspects in
machine-learning-aided research, mainly (i) the use of

integrated and complementary experimental and computa-
tional first-principles results, (ii) the identification of hot
activity/selectivity spots through robust mathematically and
nonbiased methodologies, and (iii) extraction of physically
meaningful mathematical expressions to describe the perform-
ance of the catalytic systems. Ideally, these methodologies shall
be able to identify new candidates and verify them
experimentally. In practice, synthetic methods for different
metals can end up producing different species. Therefore, the
particular active site speciation, nanoparticle size, coordination,
and existence of nonremoved ligands could affect the final
performance and would require a much more dedicated
analysis and a better understanding of the synthetic protocols.
However, our approach lays the foundations for future studies
targeting the full ab initio prediction of catalytic performance.
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(43) Henkelman, G.; Jońsson, H. Improved Tangent Estimate in the
Nudged Elastic Band Method for Finding Minimum Energy Paths
and Saddle Points. J. Chem. Phys. 2000, 113, 9978−9985.
(44) Henkelman, G.; Uberuaga, B. P.; Jońsson, H. A Climbing
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(74) Muhler, M.; Paaĺ, Z.; Schlögl, R. XPS of Platinum in Pt/SiO2
(Europt-1): Possibilities and Limitations of the Method. Appl. Surf.
Sci. 1991, 47, 281−285.
(75) Zhu, Z.; Tao, F.; Zheng, F.; Chang, R.; Li, Y.; Heinke, L.; Liu,
Z.; Salmeron, M.; Somorjai, G. A. Formation of Nanometer-Sized
Surface Platinum Oxide Clusters on a Stepped Pt(557) Single Crystal
Surface Induced by Oxygen: A High-Pressure STM and Ambient-
Pressure XPS Study. Nano Lett. 2012, 12, 1491−1497.
(76) Katrib, A.; Stanislaus, A.; Yousef, R. M. XPS Investigations of
MetalSupport Interactions in Pt/SiO2, Ir/SiO2 and Ir/Al2O3
Systems. J. Mol. Struct. 1985, 129, 151−163.
(77) Wang, C.-M.; Baer, D. R.; Bruemmer, S. M.; Engelhard, M. H.;
Bowden, M. E.; Sundararajan, J. A.; Qiang, Y. Microstructure of the
Native Oxide Layer on Ni and Cr-Doped Ni Nanoparticles. J. Nanosci.
Nanotechnol. 2011, 11, 8488−8497.

https://dx.doi.org/10.1002/sia.6225
https://dx.doi.org/10.1002/sia.6225
https://dx.doi.org/10.1002/sia.5852
https://dx.doi.org/10.1002/sia.5852
https://dx.doi.org/10.1016/0169-4332(91)90042-I
https://dx.doi.org/10.1016/0169-4332(91)90042-I
https://dx.doi.org/10.1021/nl204242s
https://dx.doi.org/10.1021/nl204242s
https://dx.doi.org/10.1021/nl204242s
https://dx.doi.org/10.1021/nl204242s
https://dx.doi.org/10.1016/0022-2860(85)80201-5
https://dx.doi.org/10.1016/0022-2860(85)80201-5
https://dx.doi.org/10.1016/0022-2860(85)80201-5
https://dx.doi.org/10.1166/jnn.2011.4964
https://dx.doi.org/10.1166/jnn.2011.4964
pubs.acs.org/acscatalysis?ref=pdf
https://dx.doi.org/10.1021/acscatal.0c00679?ref=pdf



