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The rational design of heterogeneous catalysts relies on the efficient survey of mechanisms

by density functional theory (DFT). However, massive reaction networks cannot be sampled

effectively as they grow exponentially with the size of reactants. Here we present a statistical

principal component analysis and regression applied to the DFT thermochemical data of 71

C1–C2 species on 12 close-packed metal surfaces. Adsorption is controlled by covalent

(d-band center) and ionic terms (reduction potential), modulated by conjugation and con-

formational contributions. All formation energies can be reproduced from only three key

intermediates (predictors) calculated with DFT. The results agree with accurate experimental

measurements having error bars comparable to those of DFT. The procedure can be

extended to single-atom and near-surface alloys reducing the number of explicit DFT cal-

culation needed by a factor of 20, thus paving the way for a rapid and accurate survey of

whole reaction networks on multimetallic surfaces.
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Heterogeneous catalysis holds the key to solving fundamental
sustainability issues by introducing renewable compounds
as a source of chemicals and energy vectors1–3. The

rational search for new catalysts benefits from the extensive use of
density functional theory (DFT) and kinetic models derived from
it3–10. This procedure requires sampling the reaction network that
links reactants, intermediates, and products through transition
states. For large molecules, such as those involved in biomass
valorization processes, the number of intermediates and transition
states grow exponentially with the molecular size, rendering the
computational screening of new catalysts impractical. For instance,
the decomposition of a medium size C5–C6 sugar alcohols
encompasses more than 104 species and 105 transition states in its
reaction network11. The positive aspect is that kinetic barriers are
linked to the formation energies of different intermediates4,12.
Thus, the screening may be reduced to obtain the thermo-
dynamics for the adsorbed species and couple them with linear-
scaling relationships and microkinetic models to simulate
operation conditions. The upgrade of biomass-derived molecules
is often done by metals and alloys1,13, and lately attention has
been drawn to the versatile properties of single-atom alloys
(SAAs) and near-surface alloys (NSAs)9,14–22. The number of
combinations is again unlimited and some have shown an
almost continuum of adsorption strengths21. To this end, new
thermochemical models based on statistical learning may allow a
rapid survey of the energies of adsorbed species for faster
screening8,18,23–27.
The pioneering work by Benson established the basis for

thermochemical scaling relationships of gas-phase molecules
already in the 60s28. In this formulation, the formation energy for
a hydrocarbon or oxygenated molecule is obtained as the sum of
the energies stored on C–C, C–O, C–H, and O–H bonds, con-
sidering also the contribution from rings, unsaturations, and
radicals28. Despite its simplicity, Benson’s model has an
impressive accuracy for small molecules such as hydrocarbons,
alcohols, and ethers, the formation energy of which is predicted
with errors lower than 0.05 eV29.
When molecules adsorb on metal surfaces, the interaction has

covalent, ionic, and dispersion contributions. The most studied
term is the covalency appearing from the coupling of the metal
sp- and d-states with the adsorbate. The sp part depends on the
species but it is rather constant along the metals. The second one
gives the metal-to-metal variability and comes from the d-band
center and filling30,31. As a consequence, the adsorption energy of
a molecular fragment AHx is a linear function of that of its
heteroatom, A, and the slope accounts for the valence of AHx

32.
Further linear dependencies have been identified for heteroatoms
belonging to the same group in the periodic table, i.e., P* scales
with N*33. In addition, the accuracy of the above models can be
improved by using site-specific adsorption rules22,32 and the
dependence on the local coordination of the adsorption
sites22,34,35. In the particular case of very small nanoparticles, the
activity modulation is linearly dependent with the local electro-
static potential36.

These adsorption energy models have been extended to mul-
tifunctionalized molecules by combining the heteroatom scalings
and the Benson model28,37,38. The combination can be centered
either on individual bond energies37 or on the coordination
environment of each heteroatom38. Attempts to generalize sim-
plified thermochemical models to other materials are less fre-
quent, but for perovskites and transition metal oxides39–41,
electronic parameters such as the occupancy of eg orbitals and the
covalency for the oxygen-transition metal bond were deemed
descriptors for their catalytic activity.

Still, the reactivity on metals has provided the largest amount
of DFT data and benchmarks on the thermochemistry

demonstrate the robustness of the results42. Thus, large FAIR
databases43 open alternative paths to rationally design hetero-
geneous catalysts10, by improving existing thermochemical
models and generating new ones through statistical learning. For
instance, the formation energies of large molecules in gas phase
can be retrieved from neural networks with an accuracy com-
parable to DFT, 0.04 eV MAE44, thus beyond Benson’s model29.
An alternative approach is to predict the formation energy of few
reactivity descriptors from geometric and electronic features, such
as atomic radius, local electronegativity, ionic potential, and the
coordination of the active site9,18,22,45. Particularly, a recent
SISSO study considers features from the adsorbate, the metal, and
the adsorption site45, providing excellent predictions with one
DFT evaluation for each metal. However, the method does not
belong to the explanatory class of machine-learning techniques
and thus results are difficult to interpret. A key step to generalize
statistical learning models is to extract physical insights from
them. For instance, a feature importance analysis18 rediscovered
the differentiated roles of d- and sp-band contributions31,46.
Other studies have highlighted the role of electronic and redox
descriptors for the thermochemistry of transition metal com-
plexes47 and oxide-supported single-metal atoms25. Yet, the
potential of statistical learning in heterogeneous catalysis remains
largely unexplored9,26.
In the present work, we applied principal component analysis

and Regression (PCA, PCR) on a set of formation energies
obtained by DFT. From the descriptors so obtained, we retrieved
the d-band center and the redox ability of the metal as the main
controllers of the thermochemistry, along conjugation and con-
formational effects. With these descriptors and a minimum set of
DFT energy evaluations (around two-thousand), we predicted a
full thermochemical database of 31,000 species adsorbed on
pure metals, SAAs and NSAs. The methodology reduces the
number of explicit DFT evaluations by a factor of 20 keeping its
accuracy. As the procedure is modular it can be adapted or
extended to other systems in heterogeneous catalysis.

Results
Interpretation of thermochemical data by PCA. The first step
consists in the generation of a well-converged database of for-
mation energies on late transition metals: Cu, Ag, Au, Ni, Pd, Pt,
Rh, Ir, Ru, Os, Zn, and Cd. This was done using the PBE-D2
functional following the gold standard in DFT42. The formation
energies, ECxHyOz�, are referred to gas-phase reservoirs of

methane, hydrogen, and water, Eqs. (1)–(2). In all cases, the
lowest energy conformation was employed to ensure that the
PCA includes the information corresponding to conjugation and
conformational changes. The data are arranged in a matrix-E in
which the rows span the metals i and the columns correspond to
the adsorbates j. As the data matrix is complete, meaning that it
does not have any missing points, it is suitable for PCA. PCA is a
statistical technique that reduces the dimensionality of E by
projecting it along the directions of greatest variability, thus
reducing its noise and aiding to its interpretability48. The process,
summarized in Fig. 1 and detailed in the Supplementary Methods,
proceeds as follows: the average adsorption energy for each
intermediate, μj, is employed to center the adsorption matrix-E
and get X. We kept the units of X as eV. This matrix is multiplied
at the left by its own transpose to get the covariance matrix C,
which is then diagonalized. The eigenvalues of the diagonal
matrix D are all positive and are placed in decreasing order,
consistently with the eigenvector matrix V. Afterwards, V is
truncated to kmax principal components and multiplied at the left
by X to get W and T. These matrices contain the descriptors for
the metals and adsorbates, tik and wkj, respectively. The
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adsorption energies can then be retrieved from Eq. (3).

xCH4 þ �2x þ 1
2
y � z

� �
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Êij ¼ ti1w1j þ ti2w2j þ � � � þ tikwkj þ � � � þ tikmax
wkmaxj

þ μj ð3Þ

The accuracy of Eq. (3) is given by the number of principal
components selected; this is, the number of tikwkj terms. To assess
the minimum number of terms in the expansion, kmax, we have
evaluated two criteria: the MAE and the variance, see Supple-
mentary Table 3. In the first case, the MAE stagnates for two
terms to a value that falls within the DFT accuracy. At that point,
98.1% of the variance is already captured. As a result, only two
principal components, kmax ¼ 2, will be used from now on and
only two descriptors are needed for metals fðti1; ti2Þg and
adsorbates fðw1j;w2jÞg, Fig. 2a, b. These descriptors wrap up the
causes of variability in metal-adsorbate bond energies.

The first metal descriptor, ti1 spans the larger variability, 17 eV,
whereas the second one, ti2, accounts only for one-third of
this energy span, Fig. 2a. The metals tend to be ordered left-to-
right by their position on each period in the table of elements.
Those more resistant to oxidation, such as Pt and Au, appear on
the topmost region.

All adsorbates appear in the right side of Fig. 2b, meaning that
their first weight, w1j, is always positive. The largest terms belong
to highly unsaturated carbonaceous species. Therefore, the first
term, ti1w1j, can be interpreted as the affinity of metal i to form
covalent bonds with intermediate j. For late transition metals
(groups 8–11), this characteristic can be mapped to the d-band
center, Fig. 3a, which modulates the adsorption strength on such
surfaces30,31. However, the d-band model cannot describe several
systems that are relevant for catalysis: it does not apply for
adsorbates with an almost completely filled valence shell, such as
*OH, adsorbing on alloys with almost-filled d-bands46. Besides,
the d-band model cannot describe metals from group 12 (Zn, Cd)
and above, which can be components in high-entropy alloys
suited for electrocatalysis21. The second weight for the adsorbates,
w2j, is positive for those that bind through an oxygen atom, such
as O* and *OCH2CH2O*, and negative in species that bind by a
*COH center. Therefore, the second term, ti2w2j, can be
interpreted as the ionicity of the metal-adsorbate bond. As such,

Get thermochemistry data matrix
E = (Eij); i runs over metals;

j runs over species.

Center the data matrix
X = E–μj

Get covariance matrix
C = Xt X

Remove one metal from the
thermochemistry matrix

Separate the training set into
predictors and non-predictors

E′ = (Eij ′) ; E″ = (Eij ′)

Get metal descriptors {tik}
T = XW

PCA L1O

PCR

Diagonalize covariance matrix
D, V

Apply PCA on E′
D′, V′, W′, T′ 

Approximate metal descriptors for
the validation (prediction) set

Tval = Xval W′

Approximate species descriptors
{wkj,val} & �j,val

by linear regression on E″ and T′
Eij ″ = Σk tik′ wkj,val + �j,val  

Take kmax principal components
get species descriptors {wkj }

W     V (k = 1, 2, ..., kmax)

Predict thermochemical data
Êij = Σk tik wkj  + �j  

Validate thermochemical data
Êij,val = Σk tik,val wkj,val  + �j,val   

Fig. 1 Principal component analysis (PCA) and regression (PCR). The
formation energy of species j on metal i is obtained from DFT and Eqs. (1)-
(2). These energies are grouped in thermochemistry matrices, in red, and
are approximated following PCA or PCR, in green. PCR was validated by
leaving-one-metal-out of the data matrix (L1O). Variables associated with
metals and species are shown in blue and orange, respectively. In black,
variables associated with mathematical procedures. A data flow diagram,
including the sizes of all matrices in this study, is shown in Supplementary
Fig. 3
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ti2 can be mapped to the reduction potential, Fig. 3b. Cross-
correlations do not appear, Supplementary Fig. 1, meaning that
ti1w1j and ti2w2j summarize rather independently the covalent
and ionic contributions, respectively.

The fact that 98.1% of the variance is captured by the
aforementioned descriptors, implies that other contributions to
the thermochemistry, such as conjugation, conformational
changes (different adsorption sites), and dispersion (van der
Waals) are already included, as they are related to the two major
covalent and ionic terms. For instance, CHCH2 can adsorb as
monodentate (*CH=CH2), tridentate (**CH–*CH2), or inter-
mediate structures. The most stable conformation depends on the
metal affinity to carbon, Supplementary Fig. 4. This means that
the adsorbate valence is not necessarily an integer, as it is
normally assumed in heteroatom scaling relationships32. Also,
small molecules such as *OH can adsorb on fcc, hcp, bridge, and
top-tilted sites49, and the preferred site can differ even for
chemically similar metals, such as Rh (fcc sites) and Ir (bridge), or
Ru (hpc) and Os (bridge). In other words, the most stable
conformation of the adsorbate is defined by the metal, thus
highlighting the interplay of the metal-adsorbate system.

To provide a rapid survey on the adsorption energies of surface
species, it is desirable to calculate by DFT only a small subset of
intermediates, called predictors. Their number should be at least
equal to the number of principal components kmax

27,48. Choosing
the predictors is not evident from Fig. 2b alone. For instance, the
simplest set would contain only the heteroatoms C* and O*27, but
EO and EC are mildly codependent. This codependence appears in
many pairs of adsorbates, as can be seen in Supplementary Fig. 2,
although its origin was unknown33,51. Therefore, the predictor set
can be expanded to ensure that the full DFT database, (E in
Fig. 1), is properly estimated (Ê).

To select the proper predictor set, we calculated the error
matrix ðÊ� EÞ that compares the potential energies obtained by
DFT to the ones estimated by Eq. (3). Then, the robustness of
each intermediate as a predictor, ιj, was measured following the
procedure detailed in Supplementary Methods. This ιj is indicated
by the color scale in Fig. 2b, in which dark brown indicates at
least one large wkj and a low SD. Therefore, such species are better
at predicting the thermochemistry of others. Interestingly, we
noticed that when the prediction error of O* was positive, the one
of *OH tends to be negative and vice versa. We also chose
*CCHOH as predictor, as it has a pair (w1j;w2j) that is almost
orthogonal to O* and *OH, Fig. 2b. In summary, the full

thermochemistry of a given metal can be estimated from two
principal components obtained from the formation energies of
three27 predictors (O*, *OH, and *CCHOH) that capture most of
the variability of the original data matrix. The principal
components define two descriptors for both metals (ti1, ti2) and
molecules (w1j, w2j).

Fast and accurate prediction of thermochemistry via PCR. To
assess the accuracy of the statistical learning tools, we performed
two set of tests, using PCA and PCR-L1O, respectively (Fig. 4). In
both cases, we compared the results of the estimated formation
energies from Eq. (3) (Ê, Fig. 1) with those obtained by DFT (E,
Fig. 1). For PCA, the training and prediction sets are equal, as
they contain the full DFT set: 71 molecules and 12 metals. PCA
estimates all the energies within ±0.50 eV and 98% of them lie
within ±0.30 eV, with a MAE of 0.08 eV (Fig. 4a, b). The test on
the PCR is stricter as the training set is reduced to only three
molecules as predictors. We followed a leave-one-out (L1O)
validation in which we took a subset of 11 metals (training set) to
predict the thermochemistry of the 12th one (validation set)
(Fig. 1). This matrix of energies is split into two submatrices
containing just the three predictors (E0) and the remaining species
(E00). In total, 792 DFT evaluations are required to get E0, cor-
responding to 11 metals ´ 71 species plus the empty surface. For
the validation set (Eval), only four DFT evaluations are needed
and correspond to the clean surface and the three predictors. The
PCR-L1O starts by applying PCA on the E0 submatrix to obtain
T0 and W0. Then the descriptors for the metals in the validation
set, t1;val and t2;val, are estimated from the DFT formation energies
of the three predictors. The descriptors for the remaining species
(w1j;val, w2j;val, and μj;val) are then found via linear regression of
Eq. (4) on the training set. Finally, the thermochemistry of the
validation set is predicted from Eq. (5). This procedure is
sequentially run to consider every metal independently as a
validation set. Fig. 4c, d compares the results from PCR-L1O with
DFT data, showing that the MAE increases to 0.12 eV and the
population in the central bars is about 25% smaller than for PCA.
Still, 98% of the estimated energies lie within ±0.40 eV. Thus, the
PCR-L1O methodology only increases the error span by 0.10 eV.
If C* and O* were used as predictors instead of O*, *OH, and
*CCHOH, the MAE would have rise to 0.16 eV and the max-
imum error to ±1.00 eV. Writing the formation energies as linear
regression of the d-band center and the oxidation potential
(excluding Os, Cd, and Zn) would increase the MAE to 0.18 eV
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and the maximum error to ±0.80 eV. Thus, higher accuracies can
be obtained from predictors calculated by DFT than by using
tabulated data.

E00
ij ¼ t0i1w1j;val þ t0i2w2j;val þ � � � þ t0ikmax

wkmaxj;val
þ μj;val ð4Þ

Êij;val ¼ ti1;valw1j;val þ ti2;valw2j;val þ � � � þ tikmax;val
wkmaxj;val

þ μj;val

ð5Þ

The adsorption energies of metals that are better predicted
correspond to Rh and Ir with 0.05 and 0.08 eV MAE, whereas the
worst are Zn and Ag with 0.18 and 0.17 eV MAE. Zn (Ag) has the
more exothermic (endothermic) average of formation energies.
Therefore, the binding energy of their adsorbates is normally
underestimated (overestimated). In general, the predicted values
are least accurate for species that have highly endothermic
formation energies, such as *CHOHCHOH and *CCH. However,
they would play a minor role when large reaction networks are
taken as a whole particularly when different competitive paths are
wrapped through microkinetic models7. The PCR-L1O method
was then benchmarked against experimental and DFT thermo-
chemical data (Fig. 5a)52,53. Our estimates, shown in orange, lie
nicely close to the 1:1 line. The error bars lie between the ±0:25
eV typical of DFT predictions, as shown by PBE and BEEF-vdW
values obtained by other groups (in dark and light gray,
respectively)52,53.
Finally, we have used PCR to generate the first full thermo-

chemical database containing SAAs and NSAs. The SAAs were
obtained by replacing one atom by the guest element, whereas the
NSA14 were generated by substituting either the overlayer or the
sub-surface layer (Fig. 5b–d). The host elements were those listed
in Fig. 4 and the guest elements also included Fe, Co, and Re, for a

total of 12 � ð15� 1Þ ¼ 168 SAA and 336 NSA. For each alloy, the
prediction of the thermochemistry required four DFT evaluations,
corresponding to the clean surface and three predictors: O*, *OH,
and *CCHOH. The alloys whose structures did not converge are
listed in the Supplementary Methods and were removed from the
pool, leaving 165 SAAs and 278 NSAs. These results, collected on
matrix Eval, required 1772 DFT evaluations. With this data, and
taking the pure metals as a training set (12 ´ 71= 852 DFT
evaluations distributed between matrices E and E’), a PCR was
applied to predict the thermochemistry for the remaining
68 species on each alloy. As a result, a database of 31,453
formation energies was generated (Supplementary File: alloys-
prediction.csv). To benchmark this database, 1% of these
species were randomly selected, calculated by DFT, and compared
with the predictions of PCR. The benchmark, shown in Fig. 5b–d
excluded those species that belong to predictor set. In all cases, the
estimates are within the DFT accuracy, with a MAE around 0.19
eV. This shows the high predictive power of PCR as the number of
explicit DFT calculations is reduced 20 times for each new alloy.
However, the PCA/PCR employed above can be extended to
account for other effects, likely appearing as new components in
the expansion in Eq. (5). Examples of these effects are coverage
contributions54, transition state search18, site coordination22,35,45,
and solvation7,55.

Discussion
Statistical learning provides a robust toolbox to go beyond the
traditional interpretation of the energetics of intermediates on
transition metal surfaces. By applying PCA on a set of formation
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energies obtained by DFT, we extracted only two descriptors for
the reactivity of metals and alloys. A close analysis to these
descriptors revealed their nature as covalent and ionic contribu-
tions, which can be traced back to the well-known d-band model,
the reduction potential of the metal, as well as conjugation and
conformational effects. Then, PCR enabled us to do a fast survey
on the adsorption on SAAs and NSAs, using just three adsorbates
as predictors: *O, *OH, and *CCHOH. A minimum of DFT
energy evaluations (around 1800) is required to predict the full set
of 31,000 formation energies with high accuracy, as the error bars
are comparable to DFT ones. This approach is modular and can
be extended to other materials and systems, such as the prediction
of activation energies for elementary steps or the quantification of
solvent and coverage effects, thus paving the way for reliable
thermochemical models suited to heterogeneous catalysis.

Methods
Computational details. We performed DFT calculations with the Vienna Ab-
initio Simulation Package, VASP56,57, for 71 species derived from C1 and C2
alcohol decomposition7,49 on closed-packed surfaces of Cu, Ag, Au, Ni, Pd, Pt, Rh,
Ir, Ru, Os, Zn, and Cd. The structures can be retrieved from ioChem-BD58,59,
which is a FAIR (Findability, Accessibility, Interoperability, and Reusability)
database43. Instructions about data management are provided in Supplementary
Methods. The functional of choice was PBE60 with the D2 dispersion corrections of
Grimme and our reparameterized values for metals61,62. The structural and elec-
tronic parameters for the metals can be found on Supplementary Tables 1–2. The
present setup follows the current gold standard in DFT calculations42. Core elec-
trons were represented by Projector Augmented Wave pseudopotentials63,64 and
valence electrons were represented by plane waves with a kinetic energy cutoff of
450 eV. The calculated lattice parameters for the metals show good agreement with
experimental values, as detailed in the Supplementary Information. Metal surfaces
were modeled by four-layer slabs, where the two uppermost layers were fully
relaxed and the bottom ones were fixed to the bulk distances. We selected the (111)
surfaces for the fcc metals and the (0001) for the hcp ones. The adsorption was
studied on 2

ffiffiffi
3

p
´ 2

ffiffiffi
3

p � R30� supercells. The vacuum between the slabs was set
larger than 13Å and the dipole correction was applied in z direction65. The
Brillouin zone was sampled by a Γ-centered 3 ´ 3 ´ 1 k-points mesh generated
through the Monkhorst–Pack method66. For each species, several conformations
were calculated by DFT7,49, but only the most stable ones were taken for sub-
sequent analysis. The gas-phase molecules were relaxed in a cubic box with 20Å
sides. For PCA and PCR, the diagonalizations were done with Maple using double
precision.

Data availability
All relevant data are available from the authors. The matrices E, E′, and E″ from the
training set are uploaded as Supplementary Files matrix-E.csv, matrix-E-
prime.csv, and matrix-E-second.csv, respectively. The matrix E′ for SAAs and
NSAs is presented on matrix-E-prime-alloys.csv and the 31,453 structures
predicted are listed on alloys-prediction.csv. The matrix files are labeled using
a succinct notation detailed in Supplementary Methods and Supplementary Table 5. The
structures of all species can be downloaded from ioChem-BD58 following ref. 59.

Code availability
The LibreOffice Calc spreadsheets, Maple worksheets, and Python scripts are available
from the authors. The data from pure metals and alloys are processed in pca-
regressions.ods and pca-alloys.ods spreadsheets, respectively. The Maple
worksheet used for diagonalizations is diagonalization.mw. The python script that
generates all thermochemical data for alloys is pca-alloys.py.
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