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Abstract

Feature subset selection has become more and
more a common topic of research. This popu-
larity is partly due to the growth in the num-
ber of features and application domains. The
family of algorithms known as plus-l-minus-
r and its immediate derivatives (like forward
selection) are very popular and often the only
viable alternative when used in wrapper mode.
In consequence, it is of the greatest importance
to take the most of every evaluation of the in-
ducer, which is normally the more costly part.
In this paper, a technique is proposed that
takes into account the inducer evaluation both
in the current subset and in the remainder sub-
set (its complementary set) and is applicable
to any sequential subset selection algorithm at
a reasonable overhead in cost. Its feasibility is
demonstrated on a series of benchmark data
sets.

1 Introduction

In the last few years feature selection has be-
come a more and more common topic of re-
search, a fact probably due to the introduction
of new application domains and the growth of
the number of features involved. An exam-
ple of these new domains is web page catego-
rization, a domain currently of much interest
for internet search engines where thousands
of terms can be found in a document. An-
other example is found in appearance-based
image classification methods which may use
every pixel in the image. Classification prob-

lems with many features are also very common
in medicine and biology; e.g. molecule classi-
fication, gene selection or medical diagnostics.

Feature selection can help in solving a clas-
sification problem with irrelevant and/or re-
dundant features for many reasons. First it
can make the task of data visualization and
understanding easier by eliminating irrelevant
features which can mislead the interpretation
of the data. It can also reduce costs since the
measurement or recording of some of the fea-
tures can be avoided; this is especially impor-
tant in domains where some features are very
expensive to obtain, e.g., a costly or invasive
medical test. In addition, a big benefit of fea-
ture selection is in defying the curse of dimen-
sionality to help the induction of good classi-
fiers from the data. When many unuseful, i.e.
irrelevant or redundant, features are present
in the training data, classifiers are prone to
finding false regularities in the input features
and learn from that instead of learning from
the features that really determine the instance
class (this is also valid when predicting the in-
stance target value in the case of regression).

This work addresses the problem of select-
ing a subset of features from a given set by in-
troducing a general-purpose modification for
feature subset selection algorithms which it-
eratively select and discard features. An im-
portant family of algorithms for feature sub-
set selection perform an explicit search in the
space of subsets by iteratively adding and/or
removing features one at a time until some
stop condition is met. The idea is then to
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use the evaluation of the inducer in the so-
called remainder set (the set complementary
to the current subset of selected features) as
an additional source of information. This in-
formation is used in conjuntion to conventional
algorithms, that only use the evaluation on
the current subset of selected features. In our
experimental results, such simple modification
achieves significant improvements in the max-
imization of the objective function for classifi-
cation tasks. The modified algorithms obtain
similar numbers of selected features in general,
or a further reduction if purely forward algo-
rithms are used.

The rest of the paper is organized as follows:
first we briefly review the feature subset selec-
tion problem (Section 2). Section 3 introduces
the concept of the remainder set of features
and suggests a modification of the previously
presented algorithms. In the next section the
experimental design is defined and the results
are exposed and discussed. Finally, section 5
extracts conclusions about these results and
introduces some future work.

2 Feature Subset Selection

There are two main approaches to feature se-
lection: filter methods and wrapper methods.
These two families of methods only differ in
the way they evaluate the candidate sets of
features. While the former uses a problem in-
dependent criterion, the latter uses the per-
formance of the final classifier to evaluate the
quality of a feature subset. The basic idea of
the filter methods is to select the features ac-
cording to some prior knowledge of the data.
For example, selection of features based on the
conditional probability that an instance is a
member of a certain class given the value of
its features [1]. Another criterion commonly
used by filter methods is the correlation of a
feature with the class, i.e. selecting features
with high correlation [3]. In contrast, wrapper
methods suggest a set of features that is then
supplied to a classifier, which uses it to classify
the training data and returns the classification
accuracy or some other measure thereof [5].

It is common to see feature subset selection

in a set Y of size n as an optimization prob-
lem where the search space is P(Y ) [6]. In
this setting, the feature selection problem is to
find an optimal subset X∗ ∈ P(Y ) which max-
imizes a given criterion J : P(Y ) → [0, 1] as
seen in eq. (1). Having J(X) as the evaluation
criterion is a common characteristic of many
feature selection algorithms. The criterion J
may be problem-independent or may be the
classifier that will be used to solve a classifi-
cation problem, and thus this setting is valid
either for filter or wrapper algorithms. In any
case, we will refer to J(X) as the usefulness of
feature subset X.

X∗ = arg max
X∈P(Y )

J(X) (1)

In the literature, several suboptimal algo-
rithms have been proposed for doing this.
Among them, a wide family is formed by those
algorithms which, departing from an initial so-
lution, iteratively add or delete features by lo-
cally optimizing the objective function. The
search starts with an arbitrary set of features
(e.g. the full set or the empty set) and moves
iteratively to neighbor solutions by adding
or removing features. These sequential algo-
rithms with no backtracking can be cast in the
general class of hill-climbing algorithms. They
leave a sequence of visited states Xk1 , . . . Xkm ,
where the size of every Xki is ki and m is the
number of visited states. The difficulty of the
feature selection problem can be illustrated by
the following facts:

1. In general, it is not the case that
J(Xki+1) ≥ J(Xki) (not even for the sim-
plest algorithms like SFG or SBG).

2. There may exist “ugly” feature subsets
along the way Xki such that J(Xki) <
J(∅), for some i ≥ 0.

3. Take Xki and Xki+1 such that Xki ⊂
Xki+1 and ki+1 = ki + 1. In general, it is
not the case that J(Xki+1) ≥ J(Xki).

4. Calling X∗
k+1 a current optimal solution

with k +1 features, it is not the case that
J(X∗

k+1) contains J(X∗
k). This is known

as the nesting problem.
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Expressed more succinctly, any partial or-
der with respect to J in the set P(X) is con-
ceivable. Among the proposed algorithms for
attacking this problem are the sequential for-
ward generation (SFG) and sequential back-
ward generation (SBG), the plus l - take away
r or PTA(l, r) proposed by Stearns [10] or the
floating search methods [9]. They both intro-
duce methods for the generation of the sets of
features by combining steps of SFG with steps
of SBG but keep using a certain J(X) as eval-
uation criterion.

X0 ← ∅ //Initial subset

i ← 0
repeat

//Subset generation
�Si+1 ← {X | X = Xi ∪ {x} ∧ x ∈ Y \ Xi}
//Subset evaluation

Xi+1 ← arg max
X∈�Si+1

J(X)

i ← i + 1
//Stopping criterion

until J(Xi) ≤ J(Xi−1) ∨ i = n
return Xi−1 //Selected subset

Algorithm 1: SFG

X0 ← Y //Initial subset

i ← 0
repeat

//Subset generation
�Si+1 ← {X | X = Xi \ {x} ∧ x ∈ Xi}
//Subset evaluation

Xi+1 ← arg max
X∈�Si+1

J(X)

i ← i + 1
//Stopping criterion

until J(Xi) ≤ J(Xi−1) ∨ i = 0
return Xi−1 //Selected subset

Algorithm 2: SBG

Algorithm 1 and Algorithm 2 below de-
scribe two of the classic feature selection algo-
rithms using this point of view: sequential for-
ward generation (SFG) and sequential back-
ward generation (SBG). In these algorithms
X0 is the starting set of features of the algo-
rithm, �Sk the set of sets of features generated
during the subset generation phase and Xk the

selected set of features at iteration k. It can
be seen that the subset evaluation phase in the
two algorithms is exactly the same while the
initialization and the subset generation phases
change. Note that at all times the size of Xk

is k and thus Xn = Y and X0 = ∅.

3 The Remainder Set of Features

As the goal of feature selection is to find an op-
timal subset X∗ as seen in (1), it seems plausi-
ble to choose an Xk for each iteration as in (2)
in a stepwise and greedy way, which is exactly
what the previously described feature selection
algorithms do:

Xk = arg max
X∈�Sk

J(X), k = 1, . . . , n (2)

In real problems, features are far from in-
dependent, thus not always the best feature
set in every iteration has to be the best op-
tion. Quite possibly there is some combina-
tion of features that would be a better choice
that the feature which maximizes J(X) in this
iteration. In this vain, the forward steps in
the previous algorithms are not taking into ac-
count some information they could use. Only
the usefulness of every generated subset of fea-
tures is measured, as in (2). However, by con-
sidering the current set of features Xk another
set is implicitly created, the set of remaining
features or remainder set Yk = Y \ Xk. This
set can also give information about the new
variable to be added or removed at every step.
It is our conjecture that a way to enhance the
detection of feature interactions is to see how
the addition of a feature to Xk (a removal,
from the point of view of Yk) affects the use-
fulness of the remainder set. The idea is to
add that feature most useful to Xk and whose
removal is most harmful to Yk. An analogous
reasoning can be made in backward steps by
interchanging the roles of the current and re-
mainder subsets. The general idea is called
Remainder Subset Awareness for obvious rea-
sons.

With this formulation we have a multi-
objective problem, since not always the sub-
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set with maximum J(Xk) will coincide with
the subset with minimum J(Yk), so it will not
be possible to satisfy both objectives with the
same single solution. In this case, either the
two solutions have to be explored or a trade-
off has to be found that partly optimizes both
objectives. If both solutions are chosen for
further exploration, then the search space is
highly increased over the original version of
the algorithm, and the complexity of the algo-
rithm grows from polynomial to exponential,
which is unfeasible. A reasonable alternative
is to choose the subset which maximizes some
predefined function f of the two criteria among
the two candidate subsets, as expressed by:

arg max
X∈�Sk

f [J(X), J(Y \ X)], k = 1, . . . , n

(3)
The function f : (0, 1)2 → (0, 1) has to be

chosen to be continuous in both arguments, in-
creasing in the first and decreasing in the sec-
ond and to permit control on the relative im-
portance of the two arguments (thus it is non-
symmetrical). Following this alternative, an
algorithm of the sequential kind can be modi-
fied by replacing the evaluation function J(X)
with the one in Eq. 3. As an example, the
following Algorithm 3 shows the straight-
forward Remainder Subset Aware version of
the original SFG presented in Algorithm 1.
Other forward/backward algorithms would be
modified analogously.

X0 ← ∅ //Initial subset

i ← 0
repeat

//Subset generation
�Si+1 ← {X | X = Xi ∪ {x} ∧ x ∈ Y \ Xi}
//Subset evaluation

Xi+1 ← arg max
X∈�Si+1

f [J(X), J(Y \ X)]

i ← i + 1
//Stopping criterion

until J(Xi) ≤ J(Xi−1) ∨ i = n
return Xi−1 //Selected subset

Algorithm 3: Remainder set aware SFG

The chosen evaluation function f , which
combines the usefulness of the selected subset

of features with that of the remaining subset
is shown in Eq. 4.

f(x, y) = xk × (1 − y)1−k, k, x, y ∈ [0, 1] (4)

Note that k = 1 recovers the conventional
algorithms and k = 0.5 corresponds to the ge-
ometrical mean between x and 1 − y. In gen-
eral, lower values of k give more weight to the
evaluation of the inducer in the remainder set.

4 Experimental work

The previous idea is first illustrated using the
CorrAl problem, a small dataset with some
specific characteristics that make it useful to
test feature subset selection algorithms in a
known environment [4]. This dataset has two
classes and six boolean features (A0; A1; B0;
B1; I; C). Feature I is irrelevant, feature C is
correlated to the class label 75% of the time,
and the other four features are relevant to the
boolean target concept: (A0∧A1)∨ (B0∧B1).
SFG will choose C first as it is the best feature
when taken all alone [4]. The hypothesis is
that the usefulness of the remainder set would
be so high if C was chosen that the modified
version of SFG would not choose it. After run-
ning the experiments with CorrAl, the hypoth-
esis was confirmed: a conventional SFG chose
the features in the order {C, I, A0, A1, B0, B1},
whereas the modified remainder set aware ver-
sion chose the order {A0, A1, B0, B1, C, I}.

4.1 Experimental settings

Experimental work is now presented in or-
der to assess the described modification with
a group of four sequential algorithms, using
some well known datasets from the UCI repos-
itory of machine learning databases [2]. The
family PTA(l, r) has been selected to carry
out the experiments, comparing their origi-
nal versions and the modified ones, which are
aware of the remainder set of non-selected fea-
tures. Four different combinations of values
for l and r have been tested as seen on Table
1. Note SFG can be seen as a particular case of
PTA(l, r) with l = 1 and r = 0 and referred

34 II Congreso Español de Informática



Table 1: Tested values for the PTA(l, r) pa-
rameters (forward and backward steps)

Algorithm Fwd st. Bwd st.

PTA(0, 1) ≡ SBG 0 1
PTA(1, 0) ≡ SFG 1 0
PTA(1, 2) 1 2
PTA(2, 1) 2 1

to as PTA(1, 0). The same can be done for
SBG calling it PTA(0, 1). The value of k in
eq. (4) was set to 0.8 after some preliminary
experiments and should be taken only as an
educated guess.

Each pair of algorithms has been tested with
the following datasets:

Ionosphere Classification of radar returns
from the ionosphere. There are 2 classes,
351 instances, 34 numeric features. The
targets were free electrons in the iono-
sphere. ”Good” radar returns are those
showing evidence of some type of struc-
ture in the ionosphere. ”Bad” returns
are those that do not: their signals pass
through the ionosphere.

Mammogram Mammography data donated
by the Pattern Recognition and Image
Modeling Laboratory at University of
California, Irvine. There are 86 cases with
65 features each and a binary class indi-
cating benign or malignant.

Spect The dataset describes diagnosing of
cardiac Single Proton Emission Com-
puted Tomography (SPECT) images.
Each of the patients is classified into two
categories: normal and abnormal. There
are 22 binary features extracted from
the original SPECT images and 267 in-
stances.

Spectf The same data as the previous dataset
but this time a continuous feature pattern
of size 44 was created for each patient.

The same binary class and the same 267
instances.

Sonar There are 208 patterns obtained by
bouncing sonar signals off a metal cylin-
der and rocks at various angles and un-
der various conditions. Each pattern is
a set of 60 numbers in the range 0.0 to
1.0. Each number represents the energy
within a particular frequency band, inte-
grated over a certain period of time. The
class is binary indicating whether the ob-
ject was a rock or a metal cylinder.

Waveform Artificial dataset where each
class is generated from a combination of
2 of 3 ”base” waves. There are 5000 in-
stances with 21 features each, all of which
include noise, and 3 classes.

Wdbc Breast cancer databases obtained
from the University of Wisconsin Hospi-
tals, Madison from Dr. William H. Wol-
berg [7]. Features 2 through 10 have been
used to represent instances. There are 699
instances with 10 features, each has one of
2 possible classes: benign or malignant.

The experiments were carried out by ex-
tending the YALE learning environment [8] in
order to implement a conventional PTA and
the modified remainder set aware version of it.
Each experiment consisted of a feature selec-
tion chain with a 1-nearest neighbor learner
(using Euclidean distance) and 5-fold cross-
validation for estimating feature usefulness.
The quantity reported is the mean classifica-
tion error in the five test folds. It is impor-
tant to mention that there was no stopping
criterion in the experiments: forward meth-
ods run until all the features were selected and
backward ones until all of them were removed.
Then the best of the obtained sequence of sub-
sets was returned. The results are displayed
in Table 4. The table also shows the stan-
dard deviation for these values found in the
cross-validation runs and the size of the final
selected subsets.
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Table 2: Summary results of the experiments.
The results are from the point of view of the
modified algorithms.

# Feat.

Error = > < Total

better 3% 28% 25% 56%
equal 19% 3% 22%
worse 8% 14% 22%

Total 22% 39% 39% 100%

Table 3: Summary results of the experiments
for forward algorithms. The results are from
the point of view of the modified algorithms.

# Feat.

Error = > < Total

better 44% 17% 61%
equal 17% 6% 22%
worse 6% 11% 17%

Total 17% 56% 28% 100%

4.2 Experimental results

Tables 2 and 3 show the summary results of
the experiments for all the 8 data sets ans 4
algorithms, and for the forward versions of the
algorithms only, respectively. The tables cross
the number of features selected with the clas-
sification error.

Upon looking at the summary tables, the
first fact to note from the experiment results
is that the remainder aware version of the algo-
rithms outperformed the conventional version
in most of the cases. It is seen that perfor-
mance is in general increased (as expressed by
the chosen J) while keeping the number of se-
lected features roughly equal (Table 2). The
improvement is even greater if we only look at
the forward versions of the algorithms (Table
3). In this particular case, performance is in-
creased while lowering the number of selected
features. This is mainly due to the fact that
the forward methods can easyly make wrong
decisions at early iterations as (almost) no fea-
ture interaction is taken into account when

evaluating individual features. A clear exam-
ple of this has been exposed at the beginning
of this section with the CorrAl dataset. There
SFG selected the correlated feature while SBG
correctly discarded it as the interaction with
the other more relevant features was taken into
account. Whenever the conventional and the
modified algorithm are in ties or very close to,
the modified versions offer a solution with a
lower number of features, which is also inter-
esting from the point of view of feature se-
lection (there is an exception to this rule for
the particular case of the Sonar data set and
PTA (2,1)). The detailed experiment results
are displayed in Table 4.

5 Conclusions

This paper has presented a modification for
feature subset selection algorithms that itera-
tively evaluate subsets of features, by making
them compute not only the usefulness of the
selected set but also the usefulness of the re-
mainder set. A set of experiments have been
conducted in order to compare the modified
versions of the algorithms with their original
versions. Our experimental results indicate
a general improvement in performance while
keeping the size of the final subset roughly
equal or lower. The fact that the modified ver-
sion does not always improve the results of the
original should not be a surprise. According
to the No free lunch theorems, if an algorithm
achieves superior results on some problems, it
must pay with inferiority on other problems.
However, it is possible to modify a search al-
gorithm to obtain a version that is generally
superior in performance to the original version
[11]. In the present situation this fact can be
explained by the way the modified version se-
lects subsets of features. For instance, given
two features: One that makes a significant re-
duction of the performance of the remainder
set and not a big change on the performance
of the selected set. And one that increases the
performance of the selected set a bit more than
the first one but does not make a big change on
the remainder one. A conventional algorithm
would always select the latter while the mod-
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Table 4: Detailed Experiment Results. The error shown is the average of test set error in the
5 folds, while σ is the standard deviation of these values. Figures in boldface correspond to
improvements.

Dataset Steps Conventional Algorithm Modified Algorithm

fw bw error σ #Features error σ #Features

corrAl 0 1 0,00% 0,00% 4 0,00% 0,00% 4
corrAl 1 0 3,20% 6,40% 5 0,00% 0,00% 4
corrAl 1 2 0,00% 0,00% 4 0,00% 0,00% 4
corrAl 2 1 0,00% 0,00% 4 0,00% 0,00% 4

Ionosphere 0 1 9,68% 2,41% 9 7,12% 2,85% 13
Ionosphere 1 0 6,27% 2,15% 11 7,70% 1,95% 7
Ionosphere 1 2 7,11% 2,33% 12 7,42% 2,12% 7
Ionosphere 2 1 6,26% 1,09% 14 5,11% 2,44% 7

Mammogram 0 1 15,03% 5,65% 4 16,27% 2,29% 29
Mammogram 1 0 12,75% 6,74% 17 12,68% 5,29% 15
Mammogram 1 2 14,97% 7,41% 13 11,57% 5,05% 13
Mammogram 2 1 11,57% 3,42% 26 8,10% 4,61% 22

Spect 0 1 20,59% 1,07% 1 20,22% 1,81% 4
Spect 1 0 23,23% 3,11% 6 20,59% 1,07% 1
Spect 1 2 23,21% 1,38% 10 20,60% 1,68% 7
Spect 2 1 21,35% 1,92% 5 22,09% 2,68% 6

Spectf 0 1 20,98% 4,04% 11 18,72% 5,52% 13
Spectf 1 0 19,48% 4,98% 10 17,97% 3,85% 6
Spectf 1 2 20,58% 3,00% 22 16,48% 4,34% 27
Spectf 2 1 20,59% 3,53% 8 17,64% 5,07% 24

Sonar 0 1 13,94% 5,72% 39 10,10% 4,12% 28
Sonar 1 0 8,19% 4,70% 42 7,21% 2,61% 29
Sonar 1 2 12,02% 3,99% 22 9,11% 3,11% 26
Sonar 2 1 7,20% 5,42% 36 10,56% 4,87% 42

Waveform 0 1 20,60% 0,83% 18 21,32% 1,26% 17
Waveform 1 0 21,16% 0,85% 16 20,60% 0,83% 18
Waveform 1 2 21,00% 1,22% 15 21,00% 1,22% 15
Waveform 2 1 21,62% 1,11% 15 21,14% 0,48% 17

Wdbc 0 1 5,27% 2,41% 11 4,39% 2,66% 25
Wdbc 1 0 3,86% 2,39% 24 3,34% 2,17% 13
Wdbc 1 2 3,51% 3,04% 13 4,04% 1,89% 27
Wdbc 2 1 3,86% 1,80% 27 3,86% 2,26% 14
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ified version would maybe select the former.
That could lead the modified version to avoid
local maxima by not selecting the best feature
in this iteration feature and end with a better
subset; but when the algorithm has selected a
set close to optimal subset, the modification
may cause the algorithm to loose precision in
choosing features. This loss of precision can
be greater when the remainder set of features
is very small compared with the selected set
so few feature interactions are taken into ac-
count in this remainder set. Thus a future line
of work is to make the weight of the remainder
set performance vary with its size to compen-
sate for this fact.
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