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No Significant Effect of Coulomb 
Stress on the Gutenberg-Richter 
Law after the Landers Earthquake
Víctor navas-portella1,2,3, Abigail Jiménez  4 & Álvaro corral1,2,5,6*

Coulomb-stress theory has been used for years in seismology to understand how earthquakes trigger 
each other. Whenever an earthquake occurs, the stress field changes, and places with positive increases 
are brought closer to failure. Earthquake models that relate earthquake rates and Coulomb stress 
after a main event, such as the rate-and-state model, assume that the magnitude distribution of 
earthquakes is not affected by the change in the Coulomb stress. By using different slip models, we 
calculate the change in Coulomb stress in the fault plane for every aftershock after the Landers event 
(California, USA, 1992, moment magnitude 7.3). Applying several statistical analyses to test whether 
the distribution of magnitudes is sensitive to the sign of the Coulomb-stress increase, we are not 
able to find any significant effect. Further, whereas the events with a positive increase of the stress 
are characterized by a much larger proportion of strike-slip events in comparison with the seismicity 
previous to the mainshock, the events happening despite a decrease in Coulomb stress show no 
relevant differences in focal-mechanism distribution with respect to previous seismicity.

Since the L’Aquila event in 2009 seismologists have advocated the modeling and testing of earthquakes within a 
rigorous statistical framework1, following on the CSEP (Collaboratory for the Study of Earthquake Predictability) 
previous works. A recent pseudo-prospective forecast was conducted on the 2010–2012 Canterbury, New 
Zealand, series, in order to test a total of fourteen earthquake models2,3. Its results offer some encouragement for 
a physical basis in earthquake forecasting and suggest that some of the recent physics-based and hybrid model 
development have added informative components4.

Our basic understanding of earthquake physics is that stress is being accumulated on certain regions due to 
different mechanisms, and that those regions rupture whenever that stress surpasses the strength of the material. 
That rupture is the earthquake. The mechanisms by which stresses change are diverse: in addition to tectonic 
driving, they can be induced by precedent earthquakes5–9, by volcanic activity10, or even by artificial means, such 
as injection of fluids11 or aquifer withdrawal12. Coulomb-stress theory has been used to forecast spatial patterns 
of aftershock rates, as well as assessing the likelihood of earthquake rupture sequences13,14. Although there exist 
instances where its predictive skills are arguable15–18, the monitoring of the changes in the stress field represents 
a valuable information for seismic and volcanic hazard forecasting and to proposing the adequate mitigation 
measures.

A hallmark of statistical seismology and of earthquake hazard assessment is the well-known Gutenberg-Richter 
relation, or Gutenberg-Richter law19–21. This law states that earthquake magnitudes must be described in terms 
of a probability distribution and that, above a lower cut-off value, this distribution is exponential. In terms of the 
probability density f(m) one has 

= ∝− − −f m b( ) ( ln10)10 10 ,b m m bm( )min

 defined for m ≥ mmin (values below mmin are disregarded), with m the magnitude, mmin the lower cut-off in mag-
nitude, b the so called b-value (directly related to the exponent β of the power-law complementary cumulative 
distribution of seismic moment, β = 2b/3), and the symbol ∝ denoting proportionality. This relation is usually 
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called magnitude-frequency distribution in seismology. A straightforward property of the exponential distribu-
tion leads to the fact that the rate (the number per unit time of earthquakes above a certain magnitude m) is also 
a decreasing exponential function of the magnitude, with the same b-value.

Earthquake hazard forecasts usually comprise two stages: in the first one, the rate of events is forecasted, while 
in the second one, the Gutenberg-Richter law is applied to those rates in order to obtain the probabilities of occur-
rence for each magnitude threshold. In the case of physics-based models, the forecasted rates of events depend on 
the Coulomb stresses calculated in the region of interest. These models are variants of the rate-and-state model 
by Dieterich22, 

 R t r e e( ) [1 ( 1) ] (1)CFS B t t 1
a= + −−Δ − −

 where R(t) is the rate of events (i.e., aftershocks) at any given time t after a mainshock, r is the rate of background 
seismicity, ΔCFS is the increase in Coulomb stress induced by the mainshock, B is a constant, for our purposes, 
and ta is the characteristic relaxation time22.

Note that in the application of the Gutenberg-Richter law to the forecasted rate R(t) given by the previous 
expression it is implicit that the Coulomb-stress change caused by a mainshock does not alter the fulfillment 
of the Gutenberg-Richter law for the aftershocks, in particular, this law remains the same no matter whether 
ΔCFS is positive or negative. In some sense, R(t) inherits the dependence of the background rate r with the 
magnitude. Therefore, the rate-and-state formulation14,22–26 assumes the fulfillment of the Gutenberg-Richter law 
for the incoming events (aftershocks), with no change in the b-value. This assumption is made when inverting 
earthquake rates to obtain stress changes10,27,28. Physics-based models also assume the magnitude distribution 
does not depend on the stress values, so that forecasted rates can be translated into probabilities of occurrence for 
different magnitudes.

In fact, it has been long debated29 whether the value of b in the Gutenberg-Richter law is essentially universal21 
or whether, on the contrary, it is affected by different geophysical conditions30–32. Some studies30,31 have correlated 
the b-value (and also the parameters of the Omori law33–35) with the style of faulting36. These studies indicate that 
(at least for California, for a long time period) b ≈ 1.03 for normal events, b ≈ 0.87 for strike-slip events, and 
b ≈ 0.79 for thrust events30. As the b-value is directly related to the log-ratio between the number of small and 
large earthquakes, variations in b can be associated with the ability of an earthquake rupture to propagate (more 
large events, low b) or not (less large events, high b).

According to Mohr-Coulomb theory31,37, thrust faults rupture at much higher Coulomb stress than normal 
faults (with strike-slip faults in between, assuming the same value for the coefficient of static friction). When the 
stress required to initiate a rupture is higher, stress interactions are enhanced and cracks can propagate faster in 
many different directions, yielding larger earthquakes31, consistent with the empirically observed b-values for 
thrust faulting30. Conversely, for lower rupture thresholds, one should find indeed the large b-values character-
izing normal faulting. Although the threshold for triggering might be different for the different styles of faulting, 
the rupture or not of a fault also depends on its previous state.

Here we investigate, with rigorous statistical tools, if the Gutenberg-Richter law is affected by the binary choice 
between positive and negative increases of the Coulomb stress, using the sequence of aftershocks after the 1992 
Landers earthquake. This event is chosen for illustration due to its particular relevance, as it yields one of the most 
studied mainshocks and aftershock sequences in the history of seismology; nevertheless, we are equally interested 
in developing the methodological aspects to approach this problem. The next section explains the seismic cata-
log and the spatio-temporal window used to define this sequence. Section 3 develops the procedure to calculate 
the increase in the Coulomb stress that the Landers earthquake provokes in the fault plane of each event in the 
sequence. The statistical analysis is also exposed in this section. Section 4 presents the results and section 5 sum-
marizes the conclusions. We anticipate that the number of Landers aftershocks in the relevant window of space, 
time, magnitude, and Coulomb-stress increase is too low to reach statistically significant results. We suspect this 
may be a general characteristic of many other important aftershock sequences.

Data
The June 28, 1992, Landers earthquake, with a moment magnitude m = Mw = 7.3 and a rake angle ρ = −177°, 
corresponding to strike-slip focal mechanism, has been the strongest one in Southern California at least since 
1952. The earthquake and its subsequent aftershock sequence have been extensively studied38–40, with a number 
of slip distributions that describe its rupture41–44. In this work we use four slip models to calculate the strain; these 
models are: Wald and Heaton (referred here to as wald)41, Hernandez et al. (hernandez)42, Landers Big-Bear 
California (bbcal)43 and Landers Surface Rupture (surfrup)44. The terminology is the same as the one used in 
ref. 43.

High quality catalogs for Southern California are nowadays available45,46; in particular in this paper we 
will select the Landers’ aftershocks from the Yang-Hauksson-Shearer (YHS) catalog47, which incorporates 
focal-mechanism solutions. Given the distribution of acceptable mechanisms, the preferred solution is the most 
probable one48. The ambiguity of the actual fault plane is solved by considering that the preferred nodal planes 
are those associated with the preferred solution listed in the catalog47. The focal mechanism, in concrete, the 
rake angle, together with Landers stress field derived from the slip model, allows us to calculate Coulomb-stress 
increases (positive or negative) induced by the mainshock on the actual orientations of the aftershock fault planes. 
Nevertheless, if one does not trust the preferred solutions reported in the catalog, an alternative procedure can 
be applied based on selecting the nodal plane in which the Coulomb stress increase is maximum49. Note that the 
YHS catalog does not report the moment magnitude necessarily but a preferred magnitude.

In order to better detect the influence of the Landers stress change we take a time window of 100 days after the 
mainshock and a spatial window going from 10 to 150 km from the mainshock rupture. The time of occurrence 
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of the Landers earthquake is taken as the time origin except for the bbcal slip model where the time origin is set 
by the Big-Bear earthquake (which occurred approximately three hours after Landers earthquake with a moment 
magnitude m = Mw = 6.3 and rake angle ρ = −180°43). We tried other choices for the limits of the window 
finding similar results as reported in the Supplementary Material. The referred spatio-temporal window defines 
Landers aftershocks for our purposes. Distances to the Landers rupture are computed as the minimum Euclidean 
distance from the aftershock hypocenter to the center of each rupture patch as given by the slip model. The reason 
to exclude events closer than 10 km is the uncertainty of the deformation field near the edges of the subfaults50, as 
the finite-fault approximation provides spurious values near the fault zone because of boundary effects.

Procedure
Continuum mechanics. The dMODELS software in ref. 51 calculates the deformation field (or displace-
ment) caused by different models corresponding to different physical processes. Although there exist many 
programs that calculate deformation caused by earthquakes, this package has been thoroughly tested, and can 
introduce many different sources of deformation, which can be translated into stress changes in a straightforward 
way. The dMODELS software will be the one used here to obtain deformation field from the different slip models 
of Landers.

The local coordinate system for dMODELS is east-north-up, ENU. After introducing the corresponding slip 
model (also called source model) for the mainshock of interest (Landers in our case43) into the dMODELS pro-
gram we obtain the projections in the ENU axes of the deformation field u→ caused by the mainshock at the posi-
tion of each aftershock (and also at its neighborhood, in order to take spatial derivatives). We then obtain the 
strain tensor associated to →u  by calculating the (symmetrized) gradient of the deformation52, whose components 
are εij = (∇iuj + ∇jui)/2 (with a spatial step equal to 1 km).

Afterwards, we assume an isotropic and elastic material for calculating the stress tensor52, or, more precisely, 
the contribution of the mainshock to the stress tensor, sij = 2μεij + λδij∑kεkk, with δij the components of the iden-
tity matrix and with the Lamé elastic moduli given by μ  =  λ  =  3  ×  104 MPa37 (Poisson ratio 

( ) /2 0 251ν λ λ μ= + = .− ). Moreover, when calculating the stress induced by previous events (mainshocks) on 
new events (aftershocks) it is necessary to orientate it onto the aftershock fault planes53,54, so that one can actually 
evaluate if the new events could have been triggered by the induced stress or not. Given the fault plane and slip 
vector of an aftershock, we calculate the change in the normal σn and shear (or tangential) τ stresses in that orien-
tation and position, as 

n s n s nand , (2)n ij i ij j ij i ij j∑ ∑σ τΔ = Δ =

 with ni and ℓi the components of the normal and slip vectors, respectively. The formulas to obtain the ENU 
components of these vectors from the information recorded in the YHS catalog (strike, dip and rake angles55) are 
given in the Methods section. Our calculation of the Coulomb-stress changes over the planes of the actual faults53 
is in contrast with an approach in which Coulomb stresses are calculated onto the so-called optimally oriented 
planes6, when the only information available is the regional stress. However, optimally oriented planes are imagi-
nary planes that might not correspond to the actual geology, and thus, our approach is more realistic.

The Mohr-Coulomb failure criterion56 states that the shear stress τ on a fault that ruptures must surpass the 
critical value τc, which is a linear function of the normal stress,

C (3)c nτ μ σ= − ′

 with C the cohesion and μ′ the effective fault friction coefficient (including the contribution of the pore pres-
sure6,57). Care must be taken with the convention of signs in the normal stress, which is not the same in geophysics 
than in solid mechanics (our convection takes the negative sign for compression, this is the reason for the negative 
sign before μ′). From this failure criterion it is natural to define the Coulomb stress as

τ μ σ= + ′CFS , (4)n

 which signals failure by CFS > C. In fact, for pre-existing faults one can consider that the cohesion is nearly zero. 
In any case, the change in Coulomb stress at the aftershock fault plane due to the mainshock will be

τ μ σΔ = Δ + ′ΔCFS , (5)n

with Δτ and Δσn coming from Eq. (2). Thus, positive increases of the Coulomb stress bring the fault closer to 
failure, whereas negative increases distance it away from failure. As the real value of the effective friction coeffi-
cient μ′ is uncertain37, we will check different values of it as in ref. 15.

In Fig. 1 we present a scatter plot that shows the resulting absolute values of the increase of Coulomb stress 
|ΔCFS| over each aftershock and their dependence with the distance between the aftershock and the Landers 
rupture for the four slip models. As it is implicit by the Coulomb theory, the value of the increase of Coulomb 
stress decays as the cube of the distance to the rupture. In Figs. 2, 3 and 4 we show aftershocks with strike-slip, 
normal and thrust focal mechanisms respectively for m ≥ 4 and positive and negative ΔCFS, as calculated from 
the hernandez slip model. The same figures including aftershocks with magnitude larger than 3 are shown in the 
Supplementary Material.

Statistical methods. Once we know the Coulomb-stress change in the fault plane of each aftershock we 
can separate these into two subsets attending to the value of the change, with the most natural separation being 
between positive and negative increases (denoted by sub-indexes > and < , respectively). Naturally, we expect to 
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obtain many more aftershocks with positive ΔCFS than with negative ΔCFS58. It is for each of these subsets that 
we will study the fulfillment of the Gutenberg-Richter law. For any set or subset (or sub-catalog) of earthquakes, 
the value of b in the Gutenberg-Richter law can be automatically obtained by maximum-likelihood estimation, 
as59,60: 

=
−

b
e

m m
log

,
(6)min

10

 with m the mean magnitude of the events considered (i.e., those above mmin). Let us stress that mmin is not the 
minimum magnitude recorded in the catalog but the value from which we fit the Gutenberg-Richter law to the 
data. As the resolution of the magnitude Δm is small (Δm = 0.01) it is not necessary to perform the discreteness 
correction61.

In principle, results should not significantly depend on the value of mmin, but the larger its value the less data 
to calculate the b-value and the larger the uncertainty, whereas for a too small mmin the Gutenberg-Richter law 
would not be fulfilled due to the incompleteness of the catalog and the resulting b-value would be artefactual. In 
this paper we have taken mmin = 3, which ensures the fulfillment of the Gutenberg-Richter law for all data sets 
analyzed, as we have verified by means of the Kolmogorov-Smirnov goodness-of-fit test62, where the distribution 
of the test statistic and, from it, the p-value of the fit, pfit, is calculated using 104 Monte Carlo simulations63,64. 
Although some fitting procedures look for the value of mmin that optimizes the fit for a given data set63–65, we have 
opted for a fixed mmin in order to compare the different subsets on the same footing. So, in all cases the exponen-
tial fit for m ≥ 3 cannot be rejected (pfit larger than 0.05). Note that mmin defined in this way can be considered a 
magnitude of completeness, and thus, our value of mmin turns out to be rather conservative or strict, in the sense 
that it is larger (and therefore safer) than in other works66.

The maximum-likelihood estimation of the b-value has an associated uncertainty given by its standard 
deviation

σ =
b
N

,

 where N is the number of earthquakes with m ≥ mmin in the subset, out of a total number Ntot (of any magni-
tude)67. Note that this uncertainty only depends on the number of data, and has nothing to do with the goodness 
of the fit. This result, as well as the formula for the maximum-likelihood estimation of b, Eq. (6), can also be 
obtained from ref. 64 just taking into account the relation between moment magnitude and seismic moment. The 
standard deviation, σ, is what represents the uncertainty when we report our resulting b-values.

The comparison between the b-values of the subsets with different values of ΔCFS is done by means of the 
following statistic 

σ σ
=

−

+
=

−

+
> <

> <

> <

> > < < 
z

b b b b

b N b N
,

2 2 2 2

 where the sub-indexes > and < refer to positive and negative increases of the Coulomb stress. This statistics is 
rooted on the null hypothesis that both subsets of data (positive and negative) belong to the same underlying 

Figure 1. Dependence of the absolute value of the change in the Coulomb stress ΔCFS as a function of the 
distance of the aftershocks to the Landers rupture for each slip model, with 0 4μ′ = .  and m ≥ 3. Aftershocks 
correspond to the first 100 days after the mainshock and distance is restricted to the range from 10 to 150 km. 
Black dashed line with slope −3, as stated by Coulomb theory, is shown as a guide to the eye.
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population of earthquake magnitudes and then, both estimators of the b-value (b> and b<) have a common mean 
value, which is that of the whole population. Therefore, under the null hypothesis, b>−b< has zero mean and 
standard deviation 2 2σ σ+> <  (approximating the population variance from the sample values of b> and b< and 
assuming zero covariance between b> and b<) and then z has zero mean too and unit standard deviation. An 
additional assumption is that z is normally distributed, which is supported by theory in the asymptotic limit (N> 
and N< going to infinity68). Assuming normality we will test the null hypothesis just comparing the value of z with 
the standard normal distribution and the hypothesis will be rejected if the value of z is too extreme for a given 

Figure 2. Focal mechanism representation for strike-slip Landers aftershocks, separated in terms of ΔCFS, 
as calculated from the hernandez slip model (time window of 100 days after the mainshock). Top: ΔCFS > 0. 
Bottom: ΔCFS < 0. Color scale represents the sense of slip (rake) and fault traces are also shown using the same 
color code: red for right-lateral (ρ close to ±180°), light blue for left-lateral (ρ close to 0°), green for normal (ρ 
close to −90°) and dark blue or purple for thrust faulting (ρ close to 90°). An area of 550 × 500 km is shown; 
aftershocks are restricted to m ≥ 4 (for clarity sake). Aftershocks beyond the limit of 150 km are also shown. 
Both axes display distances with respect an arbitrary origin, in km.
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significance level; in quantitative terms this will be given by a p − value, called pnorm, smaller than the significance 
level (0.05, let us say; corresponding to 0.95 confidence).

If we do not want to believe that the asymptotic regime has been reached the best option is to use a permuta-
tion test69. Under the null hypothesis (same underlying population of magnitudes) one is allowed to aggregate 
both subsets (positive and negative) and take, without repetition, two sub-samples of size N> and N<; note that 
this is equivalent to take a permutation of the aggregated sample and separate it into two parts (> and <). One 
proceeds in the same way as in the original data, calculating (by maximum likelihood) b>

∗, <
∗b , and from here σ>

∗, 
σ<

∗, and z*, where the asterisk marks that we are dealing with a permutation of the original data. Repeating the 
permutation procedure many times we find the distribution of z*, which can be compared with the original value 
z. The p − value of the permutation test, pperm, will be given by the fraction of permutations for which |z*| is larger 
than |z| (the empirical value). In our case we take 104 permutations.

As a complement, instead of the fitted b-values we may directly compare the distributions; this can be done 
with the two-sample Kolmogorov-Smirnov test, whose null hypothesis is that both data sets come from the same 
population, so, the two empirical distributions (> and <) are two realizations of a unique theoretical distribution 
(which remains unveiled)62. This test leads to a p-value that we call p2ks. A final comparison comes from the 

Figure 3. Same as previous figure, for aftershocks with normal focal mechanism.
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application of the Akaike information criterion (AIC)70. We consider that we aggregate both subsets (positive and 
negative ΔCFS) but keeping the distinction in the sign of ΔCFS. Then, we contemplate two options. Model 1, 
simple: we fit the aggregated data set with one single Gutenberg-Richter exponential leading to the value ball. 
Model 2, “complex”: we fit each data set with its own exponential function (values b> and b<). In each case, 

��= −AIC k2 2 , where k is the number of parameters of each model and �� is the log-likelihood of the model at 
maximum. The likelihood in model 2 is the sum of likelihoods for each subcatalog68. The model yielding the 
smallest AIC should be prefered. Defining ΔAIC = AIC2 − AIC1 leads to the rejection of the simple model when 
ΔAIC is significantly below zero (see next section).

Results
 Table 1 shows the values of b obtained from the application of the maximum-likelihood-estimation procedure 
explained above to the different subcatalogs obtained from the Landers sequence. We can see how, in the overall 
case (when events are not separated in terms of Coulomb-stress change), the Gutenberg-Richter law is fulfilled 
with an average value ball = 0.92. Each slip model leads to a different value of ball because the fault geometry is 

Figure 4. Same as previous figure, for aftershocks with thrust focal mechanism.
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different, and events too close to the fault are discarded. This b-value for the Landers aftershocks is found, not sur-
prisingly, to be close to the average for aftershocks in California, b ≃ 0.971,72, and somewhat below the long-term 
value of Southern California (all events), b ≃ 1.073 (although other works report b ≃ 1.0 for Landers aftershocks, 
probably due to the consideration there of a much smaller magnitude of completeness74).

Comparison of distributions. After separating by the sign of the Coulomb-stress change, the first result 
that becomes apparent from Table 1 is that the number of aftershocks with positive increases is much larger than 
the number for the negative case6,7, no matter the slip model used to calculate ΔCFS. Regarding the b-values, 
although they depend on the slip model, we can summarize them by taking the mean of the four models, which, 
for 0 4μ′ = . , is b> ≃ 0.93 and b< ≃ 0.87 with individual uncertainties around 0.04 and 0.11 respectively. Note that 
the magnitude distribution for the overall case is a mixture of the distributions corresponding to ΔCFS > 0 and 
ΔCFS < 0, and therefore, the value of b in the overall case turns out to be the harmonic mean of b> and b<, i.e., 

b
N b N b

N N
,

(7)
all

1
1 1

=
+
+

− > >
−

< <
−

> <

 see refs. 75,76. In order to properly compare the values of b> and b<, statistical testing becomes necessary77.
 Table 2 compares b> and b< for the different slip models taking μ′ = .0 4, and shows that the difference in the 

b-values can not be considered significantly different from zero with a confidence larger than 0.95 so, the null 
hypothesis b> ≃ b< can not be rejected. This result is true for all the statistical tests as all the p-values (pnorm and 
pperm) are greater than 0.05. Table 2 also shows the results of the two-sample Kolmogorov-Smirnov test and the 
calculation of ΔAIC leading in both cases to the result that no change in the distributions as a function of positive 
and negative ΔCFS can be established. In concrete, ΔAIC is always greater than the critical value 
ΔAICc = −1.8470,78 at significance level of 0.05, so the simple model with a unique exponent ball is preferred. The 
wald slip model is the one for which both distributions (positive and negative) appear as more different; however, 
the difference is not significant. Figure 5 shows the probability density functions as well as the complementary 
cumulative distribution functions in this case. Similar results are found when, instead of using the solutions 

Slip model Ntot N b-value σ pfit

wald ΔCFS > 0 5213 509 b> = 0.927 0.041 0.313 ± 0.005

ΔCFS < 0 814 51 b< = 0.766 0.107 0.861 ± 0.003

All 6027 560 ball = 0.909 0.038 0.243 ± 0.004

hernandez ΔCFS > 0 5027 465 b> = 0.926 0.043 0.505 ± 0.005

ΔCFS < 0 765 62 b< = 0.866 0.110 0.197 ± 0.004

All 5792 527 ball = 0.919 0.040 0.231 ± 0.004

bbcal ΔCFS > 0 3641 309 b> = 0.978 0.056 0.232 ± 0.004

ΔCFS < 0 1191 82 b< = 0.948 0.105 0.327 ± 0.005

All 4832 391 ball = 0.971 0.049 0.053 ± 0.002

surfrup ΔCFS > 0 5534 548 b> = 0.890 0.038 0.290 ± 0.005

ΔCFS < 0 774 68 b< = 0.891 0.108 0.555 ± 0.005

All 6308 616 ball = 0.890 0.036 0.239 ± 0.004

Table 1. Results of fitting the Gutenberg-Richter law to the Landers aftershocks, separating positive and 
negative Coulomb-stress increases, for different slip models, 0 4μ′ = . , and mmin = 3. Aftershocks correspond to 
the first 100 days after the Landers mainshock and their distance to the Landers rupture is restricted to be 
between 10 and 150 km. The p-value of the goodness-of-fit test is computed with 104 simulations and is denoted 
by pfit. Its uncertainty corresponds to one standard deviation. In no case the Gutenberg-Ricther law can be 
rejected.

Slip model z pnorm pperm d2ks p2ks ΔAIC

wald 1.396 0.163 0.156 ± 0.004 0.139 0.311 0.234

hernandez 0.511 0.609 0.596 ± 0.005 0.095 0.690 1.748

bbcal 0.254 0.800 0.828 ± 0.004 0.063 0.952 1.936

surfrup  − 0.010 0.992 0.994 ± 0.001 0.094 0.643 1.999

Table 2. Results of the statistical tests comparing b-values and magnitude distributions for positive and 
negative Coulomb-stress changes, using different slip models and 0 4μ′ = .  (same data as previous table). 
Columns 2 to 4: testing the null hypothesis that there is no difference between the b-values (i.e., b> = b<). Both 
asymptotic normality of the z statistic and a permutation test are used for the calculation of the p-value (labeled 
as pnorm and pperm, respectively). In the latter case the number of permutations is 104, and the uncertainty of pperm 
corresponds to one standard deviation. Columns 5 to 6: testing the null hypothesis that there is no difference in 
the distributions, using the 2-sample Kolmogorov-Smirnov test. d2ks and p2ks are the 2-sample Kolmogorov-
Smirnov statistic and its p-value. Values of ΔAIC = AIC2 − AIC1 are also included in the last column.
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provided by the YHS catalog, the nodal plane in which the Coulomb stress increase is maximum is selected for 
each aftershock49. The results obtained through this procedure are shown in the Supplementary Material.

Influence of focal mechanism. As mentioned in the introduction, some authors have unveiled a direct 
dependence of the b-value on the focal mechanism of the events, which implies a dependence of b on the total 
stress (not the stress increase)30. The rake angle is associated to the focal mechanism in the following way: values 
of the rake around − 90° correspond to normal events (labelled as no), values around 0° or ± 180° to strike-slip 
events (ss), and values around 90° to thrust events (th). We do not find any significant effect of the rake on the 
b-value (see Table 3), due to the low number of events in the normal and thrust regimes (which increases the 
uncertainty). But despite the large uncertainty, the values of bno and bss are roughly in agreement with the results 

Figure 5. Estimation of the probability densities (a) and of the complementary cumulative distribution 
functions (CCDF) (b) of seismic moment M separating in terms of ΔCFS > 0 and ΔCFS < 0 for Landers 
aftershocks during 100 days using the wald slip model and μ′ = .0 4. Curves corresponding to ΔCFS < 0 have 
been conveniently multiplied by a factor 100 and 10, respectively, for clarity sake. Error bars in (a) denote one 
standard deviation, and are symmetric, despite the appearance in log scale, see ref. 64. Correspondence between 
seismic moment M and magnitude m is also provided.

fm N>fm N<fm Nfm N fm
pre b>fm b<fm bfm bfm

pre

wald

No: − 135° ≤ ρ ≤ − 45° 39 5 Nno = 44 =N 77no
pre 1.047 — bno = 1.081 = .b 1 484no

pre

Th: 45° ≤ ρ ≤ 135° 9 8 Nth = 17 N 77th
pre = — — bth = 0.929 = .b 0 899th

pre

SS: the rest 461 38 Nss = 499 =N 503ss
pre 0.914 0.726 bss = 0.896 b 0 960ss

pre = .

hernandez

No: − 135° ≤ ρ ≤ − 45° 38 3 Nno = 41 N 78no
pre = 0.995 — bno = 1.011 b 1 502no

pre = .

Th: 45° ≤ ρ ≤ 135° 7 10 Nth = 17 =N 61th
pre — — bth = 0.929 b 0 899th

pre = .

SS: the rest 420 49 Nss = 469 N 506ss
pre = 0.920 0.840 bss = 0.911 b 0 957ss

pre = .

bbcal

No: − 135° ≤ ρ ≤ − 45° 22 4 Nno = 26 N 80no
pre = 1.128 — bno = 1.165 = .b 1 521no

pre

Th: 45° ≤ ρ ≤ 135° 7 5 Nth = 12 N 69th
pre = — — bth = 1.309 = .b 0 831th

pre

SS: the rest 280 73 Nss = 353 =N 507ss
pre 0.970 0.886 bss = 0.951 = .b 0 958ss

pre

surfrup

No: − 135° ≤ ρ ≤ − 45° 46 5 Nno = 51 =N 76no
pre 0.939 — bno = 0.966 b 1 470no

pre = .

Th: 45° ≤ ρ ≤ 135° 9 11 Nth = 20 =N 61th
pre — 1.010 bth = 0.886 = .b 0 899th

pre

SS: the rest 493 52 Nss = 545 N 504ss
pre = 0.888 0.844 bss = 0.884 = .b 0 961ss

pre

Table 3. Number of events and b-values corresponding to Landers aftershocks with m ≥ 3 separated by sign of 
the Coulomb-stress increase (> and <) and by focal mechanism (fm) for each slip model. fm = no (normal), ss 
(strike-slip), and th (thrust). The Coulomb stress is calculated with 0 4μ′ = . . Same data as in previous tables. 
Values of b calculated with 10 or less events are not reported. Values for the 5 years previous to Landers are also 
included and labelled by the superscript pre.
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of ref. 30; however, our value of bth turns out to be rather large in comparison (similar to bss but compatible also 
with bno, within the error bars).

We further observe that ratios N>ss/N<ss and N>no/N<no are higher than N>th/N<th; i.e., in strike-slip and nor-
mal events the contribution from ΔCFS > 0 is higher than in thrust events, as can be verified looking at Table 3. 
Comparing with the number of earthquakes with each focal mechanism for the 5 years previous to Landers we 
conclude that it is indeed the low number of thrust aftershocks with positive ΔCFS which is anomalous (and not 
the relatively high number of them for negative ΔCFS), due to an increase in the number of normal events and 
an even higher increase in strike-slip events triggered (ΔCFS > 0) by the Landers mainshock. This difference in 
numbers becomes visually apparent in Figs. 2, 3 and 4.

Discussion
We have seen how the positive Coulomb-stress increase associated to the Landers mainshock triggered a very 
large number of strike-slip events and also a large number of normal events, but much less thrust events. Although 
this result seems easy to establish, as it can be obtained without the calculation of ΔCFS (due to the fact that most 
of the events have ΔCFS > 0 and thus, this subset dominates the overall statistics), we have unambiguously asso-
ciated these events to the positive ΔCFS. On the other side, the events in the opposite regime (with ΔCFS < 0) 
keep a proportion between normal, strike-slip, and thrust events rather different to the ΔCFS > 0 case, and close 
to that of the immediately previous record (1987–1992, up to Landers). These results are largely independent 
on the slip model used to calculate the change in Coulomb stress. We have also found that the b-values of the 
Gutenberg-Richter law for which the Landers event yielded a positive ΔCFS (with b> ≃ 0.93) are in general larger 
than the b-values for the events with negative ΔCFS (b< ≃ 0.87); nevertheless, this difference is not statistically 
significant for any of the slip models used to compute the change in the Coulomb stress.

A non-significant result teaches us that the differences in b-values may be spurious and that certainly, more 
careful research is necessary in order to overcome statistical limitations. We urge the study of other aftershock 
sequences for which both knowledge of focal mechanisms as well as detailed slip models for the mainshock 
are available. It may happen, as for the Landers sequence, that the restrictions in space, time, magnitude, and 
Coulomb-stress change are too many to yield significant results (in our case, the restriction m ≥ 3 is particularly 
strong, but necessary for the fulfillment of the Gutenberg-Richter law). In such a case of low statistics, aggregation 
(stacking) of sequences from different mainshocks could reduce statistical uncertainty and lead to significant 
results. This is left for future research.

In addition, a number of extensions and improvements could be incorporated to our approach. We make use 
of slip models with relatively low resolution in space; so, it would be interesting to know if higher resolution slip 
models79,80 lead to somewhat different values of the strain and the stress, in particular close to the fault. Also, some 
authors have argued that real faults should have rather low values of the μ′ coefficient81. We provide some check 
of this in the Supplementary Material, which leads to the conclusion that μ′ has little influence on the b-values. 
Further, in our temporal window of 100 days, the effect of viscoelastic relaxation82 should be important; so, this 
would need to be incorporated into the calculation of the stress. Perhaps more relevant but easier to implement 
would be the contribution to the stress of the triggered events83. Knowing the focal mechanism of each of these 
events allows us to calculate the slip direction, which, together with an estimation of the slip value from the mag-
nitude, can be considered an elementary slip model. From this, the event’s contribution to the strain can be com-
puted in the same way as for the mainshock. Moreover, we could take into account the relation between b-values 
and differential stress84.

Finally, in a preliminary analysis we have seen that there is no substantial difference in the fulfilling of the 
Omori law33–35 in the two populations of events (ΔCFS > 0 and < 0). Indeed, if we compare this for the two 
subsets we find the "characteristic” power-law Omori decay of the rate with very similar values of the Omori 
exponent. Note that this is in disagreement with the rate-and-state formulation22, which does not predict Omori 
behavior in the case of negative ΔCFS, but instead, contemplates a sudden reduction of seismicity followed by 
a gradual recovery. The issues discussed in this paper about the Gutenberg-Richter law are equally important in 
relation to the Omori law. Further research in the lines we point to would be of great interest85.

Methods
The YHS catalog characterizes fault planes and slip vectors by means of three angles: strike Θ, dip δ, and rake ρ. 
In term of these, the normal vector of the fault is given by 
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