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NIKOLSKII CONSTANTS
FOR POLYNOMIALS ON THE UNIT SPHERE

By

FENG DAI∗, DMITRY GORBACHEV† AND SERGEY TIKHONOV‡

Abstract. This paper studies the asymptotic behavior of the exact constants
of the Nikolskii inequalities for the space�d

n of spherical polynomials of degree at
most n on the unit sphere S

d ⊂ R
d+1 as n → ∞. It is shown that for 0 < p < ∞,

lim
n→∞ sup

{ ‖P‖L∞(Sd )

n
d
p ‖P‖Lp(Sd )

: P ∈ �d
n

}
= sup

{‖f‖L∞(Rd)

‖f‖Lp(Rd)
: f ∈ Ed

p

}
,

where Ed
p denotes the space of all entire functions of spherical exponential type at

most 1 whose restrictions to R
d belong to the space Lp(Rd), and it is agreed that

0/0 = 0. It is also proved that for 0 < p < q <∞,

lim inf
n→∞ sup

{ ‖P‖Lq(Sd )

nd(1/p−1/q)‖P‖Lp(Sd )
: P ∈ �d

n

}
≥ sup

{‖f‖Lq(Rd )

‖f‖Lp(Rd )
: f ∈ Ed

p

}
.

These results extend the recent results of Levin and Lubinsky for trigonometric
polynomials on the unit circle.
The paper also determines the exact value of the Nikolskii constant for nonnegative
functions with p = 1 and q = ∞:

lim
n→∞ sup

0≤P∈�d
n

‖P‖L∞(Sd )

‖P‖L1(Sd )
= sup

0≤f∈Ed
1

‖f‖L∞(Rd)

‖f‖L1(Rd)
=

1
4dπd/2�(d/2 + 1)

.

1 Introduction

Let Sd = {x ∈ Rd+1 : |x| = 1} denote the unit sphere ofRd+1 equipped with the usual
surface Lebesgue measure dσ(x), and ωd the surface area of the sphere Sd; that is,
ωd := σ(Sd) = 2π

d+1
2 /�( d+1

2 ). Here and throughout the paper, | · | denotes the Eu-
clidean norm of Rd+1. Given 0 < p ≤ ∞, we denote by Lp(Sd) the usual Lebesgue
Lp-space defined with respect to the measure dσ(x) on Sd, and ‖ · ‖p = ‖ · ‖Lp(Sd) the
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162 F. DAI, D. GORBACHEV AND S. TIKHONOV

quasi-norm of Lp(Sd); that is,

‖f‖p =
(∫

Sd
|f (x)|p dσ(x)

)1/p

, 0 < p <∞, ‖f‖∞ = ess sup
x∈Sd

|f (x)|.

Let ρ(x, y) := arccos (x · y) denote the geodesic distance between x, y ∈ Sd .
Throughout this paper, we use the letter e to denote the vector (0, . . . , 0, 1) ∈ Sd ,
and the notation A 	 B means that there exists a positive constant c, called the
constant of equivalence, such that c−1A ≤ B ≤ cA.

Let�d
n denote the space of all spherical polynomials of degree at most n on Sd

(i.e., restrictions on Sd of polynomials in d + 1 variables of total degree at most n),
and Hd

n the space of all spherical harmonics of degree n on Sd. As is well known
(see, e.g., [7, Chap. 1]), both Hd

n and�d
n are finite-dimensional spaces with

dimHd
n =

2n + d − 1
d − 1

�(n + d − 1)
�(n + 1)�(d − 1)

=
2nd−1

�(d)
(1 + O(n−1))

and

(1.1) dim�d
n =

(2n + d)�(n + d)
�(n + 1)�(d + 1)

=
2nd

�(d + 1)
(1 + O(n−1))

as n → ∞.
The spaces Hd

k are mutually orthogonal with respect to the inner product of
L2(Sd), whereas the orthogonal projection projk of L2(Sd) onto the space Hd

k can
be expressed as a spherical convolution:

projk f (x) =
k + λ
λ

1
ωd

∫
Sd

f (y)Cλk (x · y) dσ(y), x ∈ Sd, λ =
d − 1

2
,

where the Cλk denote the Gegenbauer polynomials as defined in [23]. As a result,
each spherical polynomial f ∈ �d

n has an integral representation,

f (x) =
∫
Sd

Gn(x · y)f (y) dσ(y),

where

(1.2) Gn(t) =
1
ωd

n∑
k=0

k + λ
λ

Cλk (t) = dnR
( d

2 ,
d−2

2 )
n (t),

R(α,β)
n (t)= P(α,β)

n (t)
P(α,β)

n (1)
denotes the normalized Jacobi polynomial, and dn :=dim�d

n/ωd.
The classical Nikolskii inequality for spherical polynomials reads as follows

(see, e.g., [17]):

(1.3) ‖f‖q ≤ Cdn
d ( 1

p − 1
q )‖f‖p ∀ f ∈ �d

n, 0 < p < q ≤ ∞.
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In fact, using (1.2) and the addition formula for spherical harmonics ([7, Chap-
ter 1]), one can easily obtain the following Nikolskii inequality with explicit
constant in the case of 0 < p ≤ 2 (see, for instance, [2, 10]):

(1.4) ‖f‖q ≤ (dn)
1/p−1/q‖f‖p ∀ f ∈ �d

n, 0 < p ≤ 2, 0 < p < q ≤ ∞.

Note, however, that the constant (dn)1/p−1/q here is not optimal unless p = 2 and
q = ∞.

Our main interest in this paper is on the asymptotic behavior of the following
sharp Nikolskii constant as n → ∞:

(1.5) C(n, d, p, q) :=sup{‖f‖Lq(Sd) : f ∈�d
n and ‖f‖Lp(Sd) =1}, 0<p<q≤∞.

Note that by log-convexity of theLp-norm, it is easily seen that if 0<p<q<q1≤∞,
then

C(n, d, p, q) ≤ C(n, d, p, q1)
1/p−1/q
1/p−1/q1 .

Moreover, according to (1.4), if 0 < p ≤ 2 and p < q, then (see also [9])

C(n, d, p, q) ≤ dn =
( nd

2d�(d/2 + 1)πd/2

)1/p−1/q
(1 + O(n−1)), as n → ∞.

The asymptotic order of the Nikolskii constant in (1.3) and (1.4) is sharp in the
sense that C(n, d, p, q) 	 nd( 1

p − 1
q ) for 0 < p < q ≤ ∞ as n → ∞ with the constant

of equivalence depending only on d and p when p → 0. However, the exact value
of the sharp constant C(n, d, p, q) is known only for p = 2 and q = ∞, in which
case (1.4) gives the best possible Nikolskii constant; that is,

(1.6) C(n, d, 2,∞) =
√

dn.

Indeed, it is a longstanding open problem to determine the exact value of the
Nikolskii constant C(n, d, p, q) for (p, q) �= (2,∞) and 0 < p < q ≤ ∞. This
problem is open even in the case of trigonometric polynomials on the unit circle
(i.e., d = 1). We refer to [1, 13] for more background information.

Of related interest is a recent result of Arestov and Deikalova [1] showing that
the supremum in (1.5) can be in fact achieved by zonal polynomials for q = ∞.
More precisely, they proved that

(1.7) C(n, d, p,∞)= sup
degP≤n

P(1)

(ωd−1
∫ 1
−1 |P(t)|p(1 − t2)(d−2)/2dt)1/p

, 1≤p <∞

with the supremum being taken over all real algebraic polynomials P of degree at
most n on [−1, 1].
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In this paper, we will study the asymptotic behavior of the quantity C(n,d,p,q)
nd(1/p−1/q)

as n → ∞. Our work was motivated by a recent work of Levin and Lubinsky
[19, 20], who proved (using our notation in this paper)1 that for d = 1,

lim
n→∞

C(n, 1, p,∞)
n1/p

= L(p,∞), 0 < p < ∞,

and

lim inf
n→∞

C(n, 1, p, q)
n1/p−1/q

≥ L(p, q), 0 < p < q <∞.

Here the constant L(p, q) is defined as

L(p, q) := sup
‖f‖Lq(R)

‖f‖Lp(R)
, 0 < p < q ≤ ∞

with the supremum being taken over all entire functions of exponential type at
most 1. For more related results in one variable, we also refer to [13, 12].

Our main goal in this paper is to prove a d-dimensional generalization of these
results of Levin and Lubinsky. To be more precise, recall that an entire function F
in d complex variables is of spherical exponential type at most σ > 0 if for ev-
ery ε > 0 there exists a constant Aε > 0 such that |F(z)| ≤ Aεe(σ+ε)|Im(z)| for all
z = (z1, . . . , zd) ∈ Cd. Given 0 < p ≤ ∞, we denote by Ed

p the class of all entire
functions of spherical exponential type at most 1 on Cd whose restrictions to Rd

belong to the space Lp(Rd). According to the Paley–Wiener theorem ([21, Sub-
sect. 3.2.6]), each function f ∈ Ed

p can be identified with a function in Lp(Rd) whose
distributional Fourier transform is supported in the unit ballBd = {x ∈ Rd : |x| ≤ 1}.
Here and throughout this paper, the Fourier transform of f ∈ L1(Rd) is defined by

Ff (ξ) ≡ f̂ (ξ) =
∫
Rd

f (x)e−ix · ξdx, ξ ∈ Rd.

Recall also that the inverse Fourier transform is given by

F−1f (x) =
1

(2π)d

∫
Rd

f (ξ)eix · ξdξ, f ∈ L1(Rd), x ∈ Rd.

As is well known, if 0 < p < q ≤ ∞, then Ed
p ⊂ Ed

q and there exists a constant
C = Cd,p,q such that ‖f‖q ≤ C‖f‖p for all f ∈ Ed

p. For 0 < p < q ≤ ∞, let
L(d, p, q) denote the sharp Nikolskii constant defined by

L(d, p, q) := sup{‖f‖Lq(Rd) : f ∈ Ed
p and ‖f‖Lp(Rd) = 1}.

1Trigonometric polynomials in [19, 20] are written in the form P(eit) with P being an algebraic
polynomial of degree n on [−1, 1]. Note that the absolute value |P(eit)| corresponds to the absolute
value of a trigonometric polynomial of degree at most (n + 1)/2.
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All the above stated results on properties of functions from the class Ed
p can be

found in [21, Ch. 3] and [15].
In this paper, we will prove the following theorem, which extends the recent

result of Levin and Lubinsky [19, 20]:

Theorem 1.1. (i) For 0 < p < ∞, we have

lim
n→∞

C(n, d, p,∞)
nd/p

= L(d, p,∞).

Here we recall that the constant C(n, d, p, q) is defined in (1.5).
(ii) For 0 < p < q ≤ ∞,

lim inf
n→∞

C(n, d, p, q)
nd(1/p−1/q)

≥ L(d, p, q).

Note that as an immediate consequence of (1.6) and Theorem 1.1, we obtain

L(d, 2,∞) =
( 2
ωd�(d + 1)

)1/2
.

Compared with those in [19, 20] and [13, 12] in one variable, the proof of
Theorem 1.1 in higher-dimensional case is more difficult because: (1) functions on
the sphere can not be identified as periodic functions on Euclidean space; (2) ex-
plicit connections between spherical polynomial interpolation Sd and the Shannon
sampling theorem for entire functions of exponential type are not available.

While it remains a very challenging open problem to determine the exact value
of the Nikolskii constant L(d, 1,∞), we are able to find the exact value of the
Nikolskii constant for p = 1, q = ∞ and nonnegative functions f ∈ Ed

1:

Theorem 1.2. We have

lim
n→∞ sup

0≤P∈�d
n‖P‖L1(Sd )=1

n−d‖P‖L∞(Sd) = sup
0≤f∈Ed

1‖f‖L1(Rd )=1

‖f‖L∞(Rd) =
1

(4
√
π)d�(d/2 + 1)

.

It is worthwhile to point out that the exact Nikolskii constant for nonnegative
polynomials with p = 1 and q = ∞ has interesting applications in metric geometry.
For example, it was used to obtain some tight-bounds for spherical designs in
[3, 18].

This paper is organized as follows. In Section 2, we briefly review some useful
properties of the exponential mapping ψ : Rd → Sd from the tangent space of Sd

to the sphere Sd, which connects functions on Sd with functions on Rd, and whose
dilations can be used to obtain a higher-dimensional analogue of the following
useful formula for 2π-periodic functions in one variable:∫

S1
f (x) dσ(x) =

1
n

∫ nπ

−nπ
f
(

sin
θ

n
, cos

θ

n

)
dθ, n = 1, 2, . . . .
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Also, in Section 2 we prove that for the de la Vallée–Poussin type kernels Gn,η

associated with a smooth cutoff function η ∈ C∞
c [0,∞) on the sphere Sd,

lim
n→∞

1
nd

Gn,η

(
ψ
( x
n

)
·ψ

( y
n

))
= η̂(| · |)(|x − y|), ∀x, y ∈ Rd.

These results play an important role in the proof of Theorem 1.1, which is given
in Section 3 and Section 4. More precisely, we prove the lower estimate,

lim inf
n→∞

C(n, d, p, q)
nd(1/p−1/q)

≥ L(d, p, q), 0 < p < q ≤ ∞,

in Section 3 and the corresponding upper estimate in Section 4. The proofs follow
along the same line as those of Levin and Lubinsky [19, 20] for trigonometric
polynomials in one variable. Our proof of the upper estimate also relies on a
recent deep result of Bondarenko, Radchenko and Viazovska [3, 4] on spherical
designs, and an earlier result of Yudin [24, 25] on the distribution of points of
spherical designs. Finally, we prove Theorem 1.2, and find the exact value of the
Nikolskii constant sup0≤P∈�d

n

‖P‖∞
‖P‖1

for nonnegative spherical polynomials on Sd in
Section 5. Of crucial importance in the proofs of these results in Section 5 are the
Markov type quadrature formulas for even functions of exponential type and the
Jacobi–Gauss–Radau quadrature rules for algebraic polynomials.

Throughout the paper, all functions are assumed to be real-valued and Lebesgue
measurable unless otherwise stated, and we denote by B(r) the ball in Rd centered
at the origin having radius r > 0.

2 Preliminary lemmas

In this section, we will present a few preliminary lemmas that will be used in the
proof of Theorem 1.1.

We start with the following well-known property of the Geigenbauer polyno-
mials.

Lemma 2.1 ([23, (8.1.1), p. 192]). For z ∈ C and μ ≥ 0,

lim
k→∞

Cμk (cos z
k )

Cμk (1)
= jμ−1/2(z),

where jα(z) = �(α + 1
2)(z/2)−αJα(z), and Jα denotes the Bessel function of the first

kind. This formula holds uniformly in every bounded region of the complex z-plane.

Next, we note that a function on the sphere Sd in general cannot be identified
with a periodic function on Rd, which is different from the one-dimensional case.
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In our next lemma, we connect functions on Sd with functions on Rd via the
following mapping ψ : Rd → Sd:

ψ(x) := (ξ sin |x|, cos |x|) for x = |x|ξ ∈ Rd and ξ ∈ Sd−1.

It is easily seen that ψ : B(π) → Sd is a bijective mapping and ρ(ψ(x), e) = |x| for
all x ∈ B(π). Furthermore, for each f ∈ L1(Sd),∫

Sd
f (x) dσ(x) =

∫ π

0

[ ∫
Sd−1

f (ξ sin θ, cos θ) dσd−1(ξ)
](sin θ

θ

)d−1
θd−1 dθ

=
∫

B(π)
f (ψ(x))

(sin |x|
|x|

)d−1
dx,

where dσd−1 denotes the usual surface Lebesgue measure on Sd−1. As a result,
we may identify each function f on the ball B(nπ) ⊂ Rd with a function fn on the
sphere Sd via dilation and the mapping y = ψ(x/n) for each x ∈ B(nπ). Indeed, we
have

Lemma 2.2 ([8]). For n ∈ N and f ∈ L1(Sd),

(2.1)
∫
Sd

f (x) dσ(x) =
1
nd

∫
B(nπ)

f (ψ(x/n))
(sin(|x|/n)

|x|/n
)d−1

dx.

Note that in the case of d = 1, (2.1) becomes∫
S1

f (x) dσ(x) =
1
n

∫ nπ

−nπ
f
(

sin
θ

n
, cos

θ

n

)
dθ.

Our last preliminary lemma can be stated as follows.

Lemma 2.3. Let η be a C∞-function on [0,∞) that is supported on [0, 2] and

is constant near 0. For a positive integer n, define

Gn,η(t) :=
1
ωd

2n∑
j=0

η(n−1j)
j + λ
λ

Cλj (t), t ∈ [−1, 1],

where λ = d−1
2 . Then for any u, v ∈ Sd, n ∈ N and any � > 0,

(2.2) |Gn,η(u · v )| ≤ Cd,η,�n
d(1 + nρ(u, v ))−�.

Furthermore,

(2.3) lim
n→∞

1
nd

Gn,η

(
ψ
( x
n

)
·ψ

( y
n

))
= Kη(|x − y|)

holds uniformly on every compact subset of (x, y) ∈ Rd×Rd, where Kη(| · |) denotes
the inverse Fourier transform of the radial function η(| · |) on Rd.
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Using the formula for the Fourier transforms of radial functions, we have

(2.4) Kη(|x|) =
ωd−1

(2π)d

∫ 2

0
η(ρ)jd/2−1(ρ|x|)ρd−1 dρ, x ∈ Rd.

Proof. (2.2) is known (see [5]). We only need to prove (2.3). The proof is
very close to that in [8]. But for completeness, we include a detailed proof here.
Write

(2.5) n−dGn,η

(
ψ
( x

n

)
·ψ

( y
n

))
=
∫ 2

0
bn(ρ, x, y)ρ

d−1 dρ,

where

bn(ρ, x, y)

= n−d 1
ωd

2n−1∑
j=0

η(n−1j)
j + λ
λ

Cλj
(
ψ
( x

n

)
·ψ

( y
n

))(∫ j+1
n

j
n

td−1 dt
)−1

χ[ j
n ,

j+1
n )(ρ),

where χI is the characteristic function of the set I. We first claim that

(2.6) sup
x,y∈Rd

|bn(ρ, x, y)| ≤ cd ∀ ρ ∈ [0, 2], n = 1, 2, . . . .

Indeed, if 0 ≤ ρ < n−1, then (2.6) holds trivially. Now assume that 0 < ρ ≤ 2
and n > ρ−1. Let 1 ≤ j ≤ 2n − 1 be an integer such that j

n ≤ ρ < j+1
n . Then

∫ j+1
n

j
n

td−1 dt ≥ cn−1ρd−1,

and hence

|bn(ρ, x, y)| ≤ cn−d j + λ
λ

∣∣∣Cλj (ψ( x
n

)
·ψ

( y
n

))∣∣∣(∫ j+1
n

j
n

td−1 dt
)−1

≤ cn−(d−1)ρ−(d−1)jd−1 ≤ c(nρ)−(d−1)jd−1 ≤ c.

This shows (2.6).
Next, we show that, for any ρ ∈ (0, 2] and any M > 1,

(2.7) lim
n→∞ sup

|x|,|y|≤M

∣∣∣bn(ρ, x, y) − 2
ωd�(d)

η(ρ)jd/2−1(ρ|x − y|)
∣∣∣ = 0.

Combining (2.7) with (2.6), (2.5) and (2.4), and observing that

ωdωd−1 =
2(2π)d

�(d)
,

we will deduce the desired equation (2.3) by the dominated convergence theorem.
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To show (2.7), we assume that |x|, |y| ≤ M. All the constants in the proof
below are independent of x, y, but may depend on M. Let n > ρ−1 and assume that
j
n < ρ ≤ j+1

n with 1 ≤ j ≤ 2n − 1. A straightforward calculation then shows that

(∫ j+1
n

j
n

td−1 dt
)−1

=
n
ρd−1 (1 + O((nρ)−1)) as n → ∞.

This implies that for j
n ≤ ρ ≤ j+1

n with 1 ≤ j ≤ 2n − 1,

bn(ρ, x, y) =
j + λ

(nρ)d−1λωd
η(ρ)C

d−1
2

j

(
ψ
( x

n

)
·ψ

( y
n

))
(1 + O((nρ)−1))

=
2

ωd�(d)
η(ρ)

C
d−1

2
j (cos θn(x, y))

C
d−1

2
j (1)

+ O(1)j−1,

where we used the formula Cλj (1) = �(j+2λ)
�(j+1)�(2λ) in the last step, and θn(x, y) ∈ [0, π]

satisfies

cos θn(x, y) = ψ
( x

n

)
·ψ

( y
n

)
=

x · y
|x| |y| sin

|x|
n

sin
|y|
n

+ cos
|x|
n

cos
|y|
n
.

It is easily seen that

cos θn(x, y) = 1 − |x − y|2
2n2

+ O(n−4).

Hence,

θn(x, y) =
1
n

√
|x − y|2 + O(n−2) + O(n−2) =

|x − y|
n

+ O(n−2)

=
ρ|x − y| + O(j−1)

j
.

Recalling that j 	 nρ → ∞ as n → ∞, using Lemma 2.1, we obtain that

lim
n→∞ bn(ρ, x, y) =

2
ωd�(d)

lim
n→∞ η(ρ)

C
d−1
2

j (cos ρ|x−y|+O(j−1)
j )

C
d−1
2

j (1)

=
2

ωd�(d)
η(ρ)jd/2−1(ρ|x − y|),

which shows (2.7). �
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3 Proof of Theorem 1.1: Lower estimate

This section is devoted to the proof of the following lower estimate:

(3.1) lim inf
n→∞

C(n, d, p, q)
nd(1/p−1/q)

≥ L(d, p, q), 0 < p < q ≤ ∞.

The proof requires the use of certain “maximal functions” for entire functions of
exponential type given in the following lemma:

Lemma 3.1 ([16]). If f ∈ Ed
p, 0 < p < ∞ and � > d/p, then

‖f ∗
� ‖p ≤ Cp‖f‖p,

where f ∗
� (x) := supy∈Rd

|f (y)|
(1+|x−y|)� for x ∈ Rd.

Lemma 3.1 for d = 1 is a direct consequence of Lemma 3.5 and Corollary 3.9
of [16, pp. 269–271], where the proof with slight modifications works equally well
for the case d ≥ 2.

Now we turn to the proof of (3.1). Setting

Lpq := lim inf
n→∞

C(n, d, p, q)
nd(1/p−1/q) ,

we reduce to showing that

‖f‖q ≤ Lpq‖f‖p, ∀ f ∈ Ed
p.(3.2)

We first assert that it is enough to prove (3.2) under the additional assumption
that supp f̂ ⊂ B(1 − ε) for some ε ∈ (0, 1). Indeed, if f ∈ Ed

p, then for any ε > 0,

supp
(
f̂
( ·
1 − ε

))
= supp f̂ε ⊂ B(1 − ε),

where fε(x) = (1 − ε)df ((1 − ε)x). Thus, applying (3.2) to fε instead of f yields

(1 − ε)d/q
′‖f‖q = ‖fε‖q ≤ Lpq‖fε‖p = Lpq(1 − ε)d/p

′‖f‖p,

where 1
q + 1

q′ = 1; (3.2) for general f ∈ Ed
p then follows by letting ε → 0. This

proves the assertion.
For the rest of the proof, we assume that f ∈ Ed

p and satisfies supp f̂ ⊂ B(1 − ε)
for some ε ∈ (0, 1). We will prove (3.2) under this extra condition. Let
η ∈ C∞[0,∞) be such that η(t) = 1 for t ∈ [0, 1 − ε] and η(t) = 0 for t ≥ 1.
As in Lemma 2.3, we denote by Kη(| · |) the inverse Fourier transform of the func-
tion η(| · |). Then Kη(| · |) is a Schwartz function on Rd, and since f̂ (ξ) = f̂ (ξ)η(|ξ|),
we have

(3.3) f (x) = f ∗ Kη(x) =
∫
Rd

f (y)Kη(|x − y|) dy, x ∈ Rd.
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Let m > 1 be a temporarily fixed parameter. For n > m, define fn,m to be a
function on Sd supported on the spherical cap {x ∈ Sd : ρ(x, e) ≤ m

n } and such that

fn,m(ψ(x/n)) = f (x)χB(m)(x) ∀ x ∈ B(nπ).

Consider the spherical polynomial Pn,m ∈ �d
n given by

(3.4) Pn,m(x) :=
∫
Sd

fn,m(y)Gn,η(x · y) dσ(y), x ∈ Sd

with

Gn,η(t) =
1
ωd

n∑
j=0

η
( j
n

) j + (d − 1)/2
(d − 1)/2

C
d−1

2
j (t).

By Nikolskii’s inequality (1.5),

(3.5) ‖Pn,m‖Lq(Sd) ≤ C(n, d, p, q)‖Pn,m‖Lp(Sd).

Moreover, using (2.1), we have that for any x ∈ B(nπ)

(3.6)
Pn,m(ψ(x/n)) =

∫
Sd

fn,m(u)Gn,η(ψ(x/n) ·u) dσ(u)

=
1
nd

∫
B(m)

f (y)Gn,η(ψ(x/n) ·ψ(y/n))
(sin(|y|/n)

|y|/n
)d−1

dy.

We now break the proof of (3.2) into several parts:
Step 1. We show that for any m ∈ N,

(3.7) lim
n→∞ sup

x∈B(2m)

∣∣∣∣Pn,m

(
ψ
( x
n

))
−

∫
B(m)

f (y)Kη(|x − y|) dy

∣∣∣∣ = 0.

This combined with (3.3), in particular, implies that

(3.8) lim
m→∞ lim sup

n→∞
|Pn,m(ψ(x/n)) − f (x)| = 0 ∀ x ∈ Rd.

To show (3.7), we use (3.6) to obtain

Pn,m(ψ(x/n)) =
∫

B(m)
Kη(|x − y|)f (y) dy + Rn,1(x) + Rn,2(x),

where

|Rn,1(x)| ≤
∫

B(m)
|f (y)|

∣∣∣ 1
nd

Gn,η

(
ψ
( x
n

)
·ψ

( y
n

))
− Kη(|x − y|)

∣∣∣dy,

|Rn,2(x)| ≤ C
∫

B(m)
|f (y)||Kη(|x − y|)|

[
1 −

(sin(|y|/n)
|y|/n

)d−1]
dy.
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By either Nikolskii’s inequality, ‖f‖1 ≤ Cp‖f‖p for 0 < p < 1, or Hölder’s
inequality if p ≥ 1,

|Rn,2(x)| ≤ Cm‖f‖p sup
|y|≤m

[
1 −

(sin(|y|/n)
|y|/n

)d−1]
,

which goes to zero uniformly as n → ∞. On the other hand, it follows by
Lemma 2.3 and the dominated convergence theorem that

lim sup
n→∞

sup
x∈B(2m)

|Rn,1(x)|

≤
(∫

B(m)
|f (y)|dy

)
lim

n→∞

(
sup

u,v ∈B(2m)

∣∣∣ 1
nd

Gn,η

(
ψ
(u

n

)
·ψ

(v
n

))
− Kη(|u − v |)

∣∣∣)=0.

This proves (3.7).
Step 2. Prove that for any � > 1,

(3.9) nd
∫
ρ(x,e)≥ 2m

n

|Pn,m(x)|p dσ(x) ≤ Cm−�p‖f‖p
p.

For x ∈ Sd such that ρ(x, e) ≥ 2m
n , write x = ψ(u/n) with 2m ≤ |u| ≤ nπ.

Since fn,m is supported in the spherical cap {y ∈ Sd : ρ(y, e) ≤ m
n }, using (3.4) and

Lemma 2.2 with � > d(1 + 1/p), we obtain that

|Pn,m(x)| ≤
∫
ρ(y,e)≤ m

n

|fn,m(y)||Gn,η(x · y)| dσ(y)

≤ Cnd(1 + nρ(x, e))−2�−d−1
∫
Sd

|fn,m(y)| dσ(y)

≤ Cm−�
∫

|v |≤m
|f (v )|(1 + |u − v |)−�−d−1 dv ≤ Cm−�f ∗

� (u).

Integrating over the domain {x ∈ Sd : ρ(x, e) ≥ 2m
n } then yields

nd
∫
ρ(x,e)≥ 2m

n

|Pn,m(x)|p dσ(x) ≤ C
∫

2m≤|u|≤nπ
|Pn,m(ψ(u/n))|p du

≤ Cm−�p
∫
Rd

|f ∗
� (u)|p du ≤ Cm−�p‖f‖p

p,

where the last step uses Lemma 3.1.
Step 3. Show that for each fixed m ≥ 1 and any � > 1,

(3.10)

lim sup
n→∞

(
nd

∫
ρ(y,e)≤ 2m

n

|Pn,m(y)|p dσ(y)
)p1/p

≤ (1 + Cm−�)‖f‖p1
p + C

(∫
|x|≥m/2

|f ∗
� (x)|pdx

)p1/p

where p1 = min{p, 1}.
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Indeed, using (2.1), we have(
nd

∫
ρ(y,e)≤ 2m

n

|Pn,m(y)|pdσ(y)
)p1/p

=
(∫

B(2m)
|Pn,m(ψ(x/n))|p

(sin(|x|/n)
|x|/n

)d−1
dx

)p1/p

≤
(∫

B(2m)

∣∣∣∣Pn,m(ψ(x/n)) −
∫

B(m)
f (y)Kη(|x − y|) dy

∣∣∣∣p dx
)p1/p

+
(∫

B(2m)

∣∣∣∣
∫

B(m)
f (y)Kη(|x − y|) dy

∣∣∣∣p dx
)p1/p

=: In,m + Jn,m.

For the first term In,m, we have

In,m ≤ Cmp1d/p sup
x∈B(2m)

∣∣∣∣Pn,m(ψ(x/n)) −
∫

B(m)
f (y)Kη(|x − y|) dy

∣∣∣∣p1

,

which, using (3.7), goes to zero as n → ∞. For the second term Jn,m, we use (3.3)
to obtain

Jn,m =
(∫

B(2m)

∣∣∣∣f (x) −
∫

|y|≥m
f (y)Kη(|x − y|)dy

∣∣∣∣pdx
)p1/p

≤ ‖f‖p1
p +

(∫
m/2≤|x|≤2m

∣∣∣∣
∫

|y|≥m
|f (y)||Kη(|x − y|)|dy

∣∣∣∣pdx
)p1/p

+
(∫

|x|≤m/2

∣∣∣∣
∫

|y|≥m
|f (y)||Kη(|x − y|)|dy

∣∣∣∣pdx
)p1/p

=: ‖f‖p1
p + Jn,m,1 + Jn,m,2.

Since Kη(| · |) is a Schwartz function, it is easily seen that for any � > 1,

Jn,m,1 ≤ C
(∫

|x|≥m/2
|f ∗
� (x)|p dx

)p1/p

and

Jn,m,2 ≤ Cm−�
∣∣∣∣
∫

|y|≥m
|f (y)|(1 + |y|)−�−d−1 dy

∣∣∣∣p1

≤ Cm−�‖f‖p1
p ,

where the last step uses Hölder’s inequality if p ≥ 1, and Nikolskii’s inequality if
p < 1. Putting the above together, we obtain (3.10).

Step 4. Conclude the proof of (3.2).
Setting P∗

n,m(x) = Pn,m(ψ(x/n))χB(nπ)(x), we have

‖f‖Lq(Rd) ≤ lim inf
m→∞ lim inf

n→∞ ‖P∗
n,m‖Lq(Rd) = lim inf

m→∞ lim inf
n→∞ nd/q‖Pn,m‖Lq(Sd)

≤ lim inf
m→∞ lim inf

n→∞ nd/qC(n, d, p, q)‖Pn,m‖Lp(Sd)

≤
[
lim inf
n→∞

C(n, d, p, q)
nd(1/p−1/q)

]
[lim inf

m→∞ lim sup
n→∞

nd/p‖Pn,m‖Lp(Sd)],
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where we used (3.8) and Fatou’s lemma in the first step, (2.1) in the second step,
and (3.5) in the third step. However, combining (3.9) with (3.10), we get

lim sup
n→∞

(nd/p‖Pn,m‖p)
p1 ≤ (1 + Cm−�)‖f‖p1

p + C
(∫

|x|≥m/2
|f ∗
� (x)|p dx

)p1/p

which, according to Lemma 3.1, goes to ‖f‖p1
p as m → ∞. This proves (3.2). �

4 Proof of Theorem 1.1: Upper estimate

In this section, we will prove that for 0 < p < ∞,

(4.1) lim sup
n→∞

C(n, d, p,∞)
nd/p

≤ L(d, p,∞).

Let Pn ∈ �d
n be such that ‖Pn‖∞

‖Pn‖p
= C(n, d, p,∞). Without loss of generality, we

may assume that Pn(e) = ‖Pn‖∞ = 1. For the proof of (4.1), it is then sufficient to
prove that

(4.2) lim inf
n→∞ nd/p‖Pn‖p ≥ L(d, p,∞)−1.

The proof (4.2) relies on several lemmas. The first lemma is on optimal asymp-
totic bounds for well-separated spherical designs, proved recently by Bondarenko,
Radchenko and Viazovska [3, 4].

Lemma 4.1 ([3, 4]). Let A = Ad be a large parameter depending only on d.
Then for each integer N ≥ Adnd, there exists a set {zn,j}N

j=1 of N points on Sd such

that

(4.3)
1
ωd

∫
Sd

P(x)dσ(x) =
1
N

N∑
j=1

P(zn,j), ∀ P ∈ �d
4n

and min1≤i �=j≤N ρ(zn,i, zn,j) ≥ cdN−1/d.

The second lemma is on the distribution of nodes of spherical designs. Denote
by B(x, θ) the spherical cap {y ∈ Sd : ρ(x, y) ≤ θ} with center x ∈ Sd and radius
θ ∈ (0, π].

Lemma 4.2 ([24, 25, 11]). If the formula (4.3) holds for all P ∈ �d
n, then

Sd =
N⋃
j=1

B(zn,j, θn),
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where θn = arccos tn ∼ 1
n and tn is the largest root of the following algebraic

polynomial on [−1, 1]:

Qn(t) :=

⎧⎨
⎩P

( d−2
2 , d−2

2 )
k (t), if n = 2k − 1,

P
( d−2

2 , d
2 )

k (t), if n = 2k.

The third lemma reveals a connection between positive cubature formulas and
the Marcinkiewitcz–Zygmund inequality on the sphere.

Lemma 4.3 ([6, Theorem4.2]). Suppose that� is a finite subset of Sd, λω ≥ 0
for allω ∈ �, and the formula,

∫
Sd f (x)dσ(x) =

∑
ω∈� λωf (ω), holds for all f ∈ �d

3n.
Then for 0 < p <∞ and all f ∈ �d

n,

‖f‖p 	
( ∑
ω∈�

λω|f (ω)|p
)1/p

with the constant of equivalence depending only on d and p when p → 0.

Now we turn to the proof of (4.2). Let ε ∈ (0, 1) be an arbitrarily given positive
parameter, and let η1 = η1,ε ∈ C∞

c [0,∞) be such that η1(x) = 1 for x ∈ [0, 1] and
η1(x) = 0 for x ≥ 1 + ε. Let Gn,η1 denote the polynomial on [−1, 1] as defined in
Lemma 2.3. Invoking Lemma 4.1 with N = Nn = And, we have that for x ∈ Sd,

(4.4) Pn(x) =
∫
Sd

Pn(y)Gn,η1(x · y)dσ(y) =
ωd

Nn

Nn∑
j=1

Pn(zn,j)Gn,η1 (x · zn,j).

According to Lemma 4.2 and Lemma 4.1, the set of nodes {zn,i}Nn
i=1 ⊂ Sd satisfies

(4.5) min
1≤i �=j≤Nn

ρ(zn,i, zn,j) ≥ δd
n

and max
x∈Sd

min
1≤j≤Nn

ρ(x, zn,j) ≤ cd

n
.

Without loss of generality, we may assume that zn,1 = e. By Lemma 4.3,

(4.6)
( Nn∑

j=1

|Pn(zn,j)|p
)1/p

≤ Cnd/p‖Pn‖p =
Cnd/p

C(n, d, p,∞)
≤ Cd <∞.

Next, write zn,j = ψ(yn,j/n) for 1 ≤ j ≤ Nn with yn,j ∈ B(nπ). Since

ρ(ψ(u), ψ(v )) ≤ π√
2
|u − v |

for any u, v ∈ B(π), we obtain from (4.5) that

(4.7) min
1≤i �=j≤Nn

|yn,i − yn,j| ≥ δ′d > 0.
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Rearrange the order of the codes zn,j of the spherical design so that

0 = |yn,1| ≤ |yn,2| ≤ · · · ≤ |yn,Nn |.
Set �n := {yn,j : 1 ≤ j ≤ Nn}. We claim that there exists a constant γd > 0

depending only on d such that for m = 1, . . . , n,

(4.8) B(γ−1
d m) ∩�n ⊂ {yn,1, . . . , yn,md} ⊂ B(γdm) ∩�n.

Indeed, noticing that for any 0 < t ≤ n,{
j : 1 ≤ j ≤ Nn, rho(zn,j, e) ≤ tπ

n

}
= {j : 1 ≤ j ≤ Nn, |yn,j| ≤ tπ},

we deduce from (4.5) that for any 1 ≤ t ≤ nπ,

#{j : 1 ≤ j ≤ Nn, |yn,j| ≤ t} 	 td,

which together with the monotonicity of {|yn,j|}Nn
j=0 implies the claim (4.8).

Now the rest of the proof follows along the same line as that of [19]. For
simplicity, we set P∗

n(x) := Pn(ψ(x/n)) for x ∈ Rd. Let A be a sequence of positive
integers such that

lim
n→∞, n∈A

nd/p‖Pn‖p = lim inf
n→∞ nd/p‖Pn‖p.

By (4.6) and (4.8), for eachfixedm≥1, we may find a subsequenceTm ofA such that

(4.9) lim
n→∞, n∈Tm

Pn(zn,j) = lim
n→∞, n∈Tm

P∗
n(yn,j) = αj ∈ R, j = 1, . . . ,md,

and
lim

n→∞, n∈Tm

yn,j = yj ∈ B(γdm), j = 1, . . . ,md.

We may also assume that

A ⊃ T1 ⊃ T2 ⊃ · · · ⊃ Tm ⊃ Tm+1 ⊃ · · · ,
so that both the sequences {αj}∞j=1 and {yj}∞j=1 are independent of m. Note that
α1 = Pn(e) = 1 and y1 = 0.

By (4.6) and (4.9), for each m ≥ 1,

md∑
j=1

|αj|p = lim
n→∞,n∈Tm

md∑
j=1

|Pn(zn,j)|p ≤ Cp
d.

Hence,

(4.10)
∞∑
j=1

|αj|p ≤ Cp
d < ∞.
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Now we define

(4.11) f (x) :=
ωd

A

∞∑
j=1

αjKη1 (|x − yj|), x ∈ Rd,

where Kη1 (| · |) is the inverse Fourier transform of η1(| · |) on Rd. According
to (4.7), infj �=j′ |yj − yj′ | ≥ δ′ > 0. Since Kη1 is a Schwartz function on Rd,
supx∈Rd

∑∞
j=1 |Kη1 (|x − yj|)| ≤ Cη1 < ∞. By (4.10), this implies that the series

(4.11) converges to f both uniformly on Rd and in the norm of Lp(Rd). Moreover,
the function f satisfies that

‖f‖p ≤ CA−1
( ∞∑

j=1

|αj|p
)1/p

< ∞,

and

f̂ (ξ) =
ωd

A
η1(|ξ|)

( ∞∑
j=1

αje
−iyj·ξ

)
,

where the infinite series converges in a distributional sense. According to the Paley–
Wiener theorem, f extends to an entire function on Cd of spherical exponential
type 1 + ε. In particular, this implies that (4) implies that the function

fε(x) := (1 + ε)−df
( x

1 + ε

)
belongs to the space Ed

p.
To complete the proof of (4.2), we need the following technical lemma:

Lemma 4.4. Let γd denote the constant in (4.8). If r ≥ 1 and m ≥ 2γdr, then

for any � ≥ 1,

(4.12) lim sup
n→∞,n∈Tm

sup
x∈B(r)

∣∣∣∣P∗
n(x) − A−1ωd

∑
1≤j≤md

αjKη1 (|x − yj|)
∣∣∣∣ ≤ Cη1,�,rm

−�.

In particular, this implies that

(4.13) f (0) = A−1ωd

∞∑
j=0

αjKη1 (|yj|) = 1.

For the moment, we assume Lemma 4.4 and proceed with the proof of (4.2).
Since fε ∈ Ed

p, we have

(1 + ε)−d = |fε(0)| ≤ ‖fε‖∞ ≤ L(d, p,∞)‖fε‖p = L(d, p,∞)(1 + ε)−d/p′‖f‖p.

Thus,

(4.14) ‖f‖p ≥ L(d, p,∞)−1(1 + ε)−d/p.
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On the other hand, setting p1 = min{p, 1}, we obtain that for n ∈ Tm,

(nd/p‖Pn‖p)
p1 ≥

(
nd

∫
B(e, r

n )
|Pn(x)|pdσ(x)

)p1/p

=
(∫

B(r)
|P∗

n(x)|p
(sin(|x|/n)

|x|/n
)d−1

dx
)p1/p

≥
(∫

B(r)

∣∣∣∣ωd

A

md∑
j=1

αjKη1 (|x − yj|)
∣∣∣p(sin(|x|/n)

|x|/n
)d−1

dx
)p1/p

− Cr sup
x∈B(r)

∣∣∣∣P∗
n(x) − (A−1ωd)

md∑
j=1

αjKη1 (|x − yj|)
∣∣∣∣p1

.

It then follows from Lemma 4.4 that for any � > 1,

lim inf
n→∞ (nd/p‖Pn‖p)

p1 = lim
n→∞, n∈Tm

(nd/p‖Pn‖p)
p1

≥
(∫

B(r)

∣∣∣∣ωd

A

md∑
j=1

αjKη1 (|x − yj|)
∣∣∣∣pdx

)p1/p

− Crm
−�.

Letting m → ∞, we obtain from (4.11) and the dominated convergence theorem
that

lim inf
n→∞ nd/p‖Pn‖p ≥

(∫
B(r)

|f (x)|pdx
)1/p

.

Letting r → ∞, and using (4.14), we then deduce

lim inf
n→∞ nd/p‖Pn‖p ≥ ‖f‖p ≥ L(d, p,∞)−1(1 + ε)−d/p.

Now the desired estimate (4.2) follows by letting ε → 0. �
It remains to prove Lemma 4.4.

Proof of Lemma 4.4. Note first that by Lemma 2.3,

lim
n→∞

1
nd

Gn,η1

(
ψ
( x
n

)
·ψ

( y
n

))
= Kη1 (|x − y|)

holds uniformly for x, y ∈ B(γdm). Note also that for 1 ≤ j ≤ md,∣∣∣n−dGn,η1

(
ψ
( x
n

)
·ψ

(yn,j

n

))
− Kη1 (|x − yj|)

∣∣∣
≤ sup

z∈B(γdm)

∣∣∣n−dGn,η1

(
ψ
( x

n

)
·ψ

( z
n

))
− Kη1 (|x − z|)

∣∣∣
+
∣∣∣Kη1 (|x − yn,j|) − Kη1 (|x − yj|)

∣∣∣.
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Letting n → ∞ and n ∈ Tm, we conclude that for 1 ≤ j ≤ md,

(4.15) lim
n→∞,n∈Tm

sup
x∈B(γdm)

∣∣∣ 1
nd

Gn,η1

(
ψ
( x

n

)
·ψ

(yn,j

n

))
− Kη1 (|x − yj|)

∣∣∣ = 0.

Next, using (4.4), we obtain that for x ∈ B(r) and m ≥ 2rγd,

P∗
n(x) =

1
And

And∑
j=1

Pn(zn,j)Gn,η1

(
ψ
( x
n

)
·ψ

(yn,j

n

))

=
∑

1≤j≤md

+
∑

md<j≤And

=: In,m(x) + Jn,m(x).

To estimate the second term Jn,m(x), we note that ρ(ψ( yn,j

n ), e) ≥ γ−1
d m
n ≥ 2r

n for
md ≤ j ≤ And, and ρ(ψ( x

n), e) ≤ r
n for x ∈ B(r). Thus, ρ(ψ( x

n), ψ( yn,j

n )) ≥ cdm
n for

x ∈ B(r) and md ≤ j ≤ And. It follows by (4.6) that for any � ≥ 1 and x ∈ B(r),

(4.16) |Jn,m(x)| ≤ Cm−�
( And∑

j=1

|Pn(zn,j)|p
)1/p

≤ Cm−�nd/p‖Pn‖p ≤ Cm−�.

For the term In,m, we use (4.15) and (4.9) to obtain

(4.17) lim
n→∞, n∈Tm

In,m(x) = A−1ωd

∑
1≤j≤md

αjKη1 (|x − yj|) uniformly for x ∈ B(r).

Combining (4.16) with (4.17), we conclude that

lim sup
n→∞,n∈Tm

sup
x∈B(r)

∣∣∣∣P∗
n(x) − A−1ωd

∑
1≤j≤md

αjKη1 (|x − yj|)
∣∣∣∣ ≤ Cm−�.

This proves (4.12).
Finally, invoking (4.12) with x = 0, and recalling that P∗

n(0) = Pn(e) = 1, we
obtain ∣∣∣∣1 − A−1ωd

∑
0≤j≤md

αjKη1 (|yj|)
∣∣∣∣ ≤ Cm−2 ∀ m ≥ 1.

Letting m → ∞, we obtain (4.13). This completes the proof. �

5 Proof of Theorem 1.2

We break the proof of Theorem 1.2 into two parts. In the first part, we prove the
following proposition, which gives the exact value of the Nikolskii constant for
nonnegative functions from the class Ed

1 on Rd.
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Proposition 5.1. We have

(5.1) sup
0≤f∈Ed

1

‖f‖L∞(Rd)

‖f‖L1(Rd)
=

1
4dπd/2�(d/2 + 1)

.

In the second part, we compute the exact value of the Nikolskii constant for
nonnegative polynomials on Sd:

Proposition 5.2. For n = 1, 2, . . .,

(5.2) sup
0≤P∈�d

n

‖P‖∞
‖P‖1

= ω−1
d

⎧⎨
⎩

(2k+d)(k+d−1)!
k!d! , n = 2k,

2
(d+k

d

)
, n = 2k + 1.

Note that (5.2), in particular, implies

(5.3) lim
n→∞ sup

0≤P∈�d
n

‖P‖∞
nd‖P‖1

=
1

4dπd/2�(d/2 + 1)
.

Theorem 1.2 is a direct consequence of (5.3) and (5.1).
We point out that (5.2) for algebraic polynomials on intervals was obtained in

[18]. Proofs of Propositions 5.1 and 5.2 are given in the next two subsections
respectively.

5.1 Proof of Proposition 5.1. For simplicity, we set

L+ := sup{‖f‖∞ : 0 ≤ f ∈ Ed
1, ‖f‖1 = 1}.

To show the lower estimate,

L+ ≥ 1
4d�(d/2 + 1)πd/2 ,

we consider the function f (x) := (jd/2(|x|/2))2. Note that

G(x) :=
ωd−1

d(2π)d
jd/2(|x|)

is the inverse Fourier transform of χBd , where Bd denotes the unit ball centered at
the origin in Rd. It follows that 0 ≤ f ∈ Ed

1. Furthermore, by Plancherel’s theorem,

‖f‖1 =
(d(2π)d

ωd−1

)2
2d

∫
Rd

|G(x)|2dx =
d22d(2π)d

(ωd−1)2

∫
Bd

1dx

=
2dd(2π)d

ωd−1
= 2d−1ωdd!.
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This yields the stated lower estimate:

L+ ≥ f (0)
‖f‖1

=
1

2d−1d!ωd
=

1
4d�(d/2 + 1)πd/2

.

To show the upper estimate,

(5.4) L+ ≤ 1
4d�(d/2 + 1)πd/2

,

we need the following Markov type quadrature formula, which was established in
[14]:

Lemma 5.1 ([14]). Assume that α ≥ −1
2 and τ > 0. Let Bα,τ denote the set of

all even entire functions f of exponential type ≤ 2τ such that
∫ ∞
0 |f (t)|t2α+1dt <∞.

Then there exists a sequence {ρk}∞k=0 of positive numbers with

ρ0 = 22α(�(α + 1))2(2α + 2)/τ2α+2

such that ∫ ∞

0
f (t)t2α+1dt = ρ0f (0) +

∞∑
k=1

ρkf (qα+1,k/τ), ∀f ∈ Bα,τ,

where the infinite series converges absolutely, and {qα+1,k}∞k=1 is the sequence of all

positive zeros of the Bessel function Jα+1(x) arranged in increasing order.

Now we turn to the proof of the estimate (5.4). Given ε ∈ (0, 1), let f ∈ Ed
1 be

a nonnegative function such that ‖f‖1 = 1 and ‖f‖∞ ≥ L+ − ε. Without loss of
generality, we may assume that ‖f‖∞ = f (0). Define a nonnegative radial function
g by

g(x) = g0(|x|) :=
1

ωd−1

∫
Sd−1

f (|x|ξ)dσ(ξ), x ∈ Rd.

It is easily seen that

ĝ(x) :=
1

ωd−1

∫
Sd−1

f̂ (|x|ξ)dσ(ξ), x ∈ Rd,

and that g(0) = f (0), and ‖g‖1 = ‖f‖1 = 1. By the Paley–Wiener theorem, this in
particular implies g ∈ Ed

1. Thus, we may apply Lemma 5.1 to the function g0 with
τ = 1/2 and α = d/2 − 1. Taking into account the facts that ρj ≥ 0 for j = 0, 1, . . .
and g0 is nonnegative, we then obtain

1 = ‖g‖1 = ωd−1

∫ ∞

0
g0(t)t

d−1dt ≥ ωd−1ρ0g(0) = ωd−12
2d−2d(�(d/2))2f (0).

Thus,

L+ − ε ≤ f (0) ≤ 1
ωd−122d−2d(�(d/2))2

=
1

d!2d−1ωd
=

1
4d�(d/2 + 1)πd/2 .

Letting ε → 0 yields the desired estimate (5.4).
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5.2 Proof of Proposition 5.2. Without loss of generality, we may assume
n = 2k. (The case n = 2k + 1 can be treated similarly.) The proof follows along the
same line as that of Proposition 5.1.

To show the lower estimate,

(5.5) sup
0≤P∈�d

2k

‖P‖∞
‖P‖1

≥ ω−1
d

(2k + d)(k + d − 1)!
k!d!

,

we consider the polynomial

f (x) := [R
( d

2 ,
d−2

2 )
k (x · e)]2, x ∈ Sd,

where e ∈ Sd is a fixed point on Sd and R(α,β)
k (t) = P(α,β)

k (t)/P(α,β)
k (1). Clearly,

f ∈ �d
n , and ‖f‖∞ = f (e) = 1. Moreover, using (1.2), we have

‖f‖1 =
∫
Sd

|R( d
2 ,

d−2
2 )

k (x · e)|2dσ(x) =
1
d2

k

k∑
j=0

dimHd
j

ωd
=

ωd

dim�d
k

.

It then follows from (1.1) that

‖f‖∞
‖f‖1

=
dim�d

k

ωd
=

1
ωd

(2k + d)�(k + d)
k!d!

,

which shows the lower estimate (5.5).
The proof of the upper estimate,

(5.6) sup
0≤P∈�d

2k

‖P‖∞
‖P‖1

≤ ω−1
d

(2k + d)(k + d − 1)!
k!d!

,

relies on the following Jacobi–Gauss–Radau quadrature rules, which can be found
in [22, p. 81]:

Lemma 5.2 ([22]). Let {xj}N
j=1 be the zeros of the Jacobi polynomial P(α+1,β)

N

with α, β > −1. Then for every algebraic polynomial P of degree at most 2N,

∫ 1

−1
P(x)(1 − x)α(1 + x)βdx = λ0P(1) +

N∑
j=1

λjP(xj),

where

λ0 =
2α+β+1(α + 1)(�(α + 1))2N!�(N + β + 1)

�(N + α + 2)�(N + α + β + 2)
,

λj =
2α+β+4�(N + α + 2)�(N + β + 1)

(1 + xj)(1 − xj)2[P
(α+2,β+1)
N−1 (xj)]2(N + α + β + 2)�(N + α + β + 3)

.
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To show (5.6), let f be an arbitrary nonnegative spherical polynomial of degree
at most 2k such that ‖f‖∞ = f (x0) = 1 for some x0 ∈ Sd. Without loss of generality,
we may assume that x0 = (1, 0, . . . , 0). Define

g(t) :=
1

ωd−1

∫
Sd−1

f (t,
√

1 − t2ξ) dσ(x), t ∈ [−1, 1].

It is easily seen that g is an algebraic polynomial of degree at most 2k on [−1, 1],
g(1) = f (x0) = 1, and

∫ 1

−1
g(t)(1 − t2)

d−2
2 dt =

1
ωd−1

∫ 1

−1

∫
Sd−1

f (t,
√

1 − t2ξ) dσ(ξ)(1 − t2)
d−2
2 dt

=
1

ωd−1
‖f‖L1(Sd).

Using Lemma 5.2 with α = β = d−2
2 , and taking into account the facts that g is

nonnegative and λj > 0 for j = 0, 1, . . ., we deduce

‖f‖L1(Sd) = ωd−1

∫ 1

−1
g(t)(1 − t2)

d−2
2 dt ≥ λ0ωd−1g(1)

= ωd−1
2d−2d(�(d/2))2k!
(k + d/2)�(k + d)

= ωd
k!d!

(2k + d)�(k + d)
.

Thus,
‖f‖∞

‖f‖L1(Sd)
≤ ωd

(2k + d)�(k + d)
k!d!

,

and the upper estimate (5.6) then follows.
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