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Abstract
We use Pitt inequalities for the Fourier transform to prove the following weighted gradient
inequality

‖e−τ�(·)u
1
q f ‖q ≤ cτ‖e−τ�(·)v

1
p ∇ f ‖p, f ∈ C∞

0 (Rn).

This inequality is a Carleman-type estimate that yields unique continuation results for solu-
tions of first order differential equations and systems.

Mathematics Subject Classification Primary: 42B10; Secondary: 35B60

1 Introduction

The main purpose of this paper is to prove that the following weighted Sobolev gradient
inequality holds for every linear function � : R

n → R, every f ∈ C∞
0 (Rn) and every τ ≥ 0,
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with suitable weights u, v and exponents 1 < p, q < ∞.

‖e−τ�(·)u
1
q f ‖q ≤ cτ‖e−τ�(·)v

1
p ∇ f ‖p (1.1)

Here, cτ is a finite constant that may depend on τ but does not depend on � and f . We have

denoted with ‖ f ‖r = (∫
Rn | f (x)|r dx

) 1
r the norm in Lr (Rn) and with 〈x, y〉 = x1y1+· · ·+

xn yn and |x | = 〈x, x〉 1
2 the standard inner product and norm in R

n .
When τ > 0, we prove in Theorem 1.1 that cτ = max (τ−1, 1)C ; here and throughout

the paper, C denotes a generic constant that depends only on non-essential parameters, i.e.,
C = Cu,v,p,q,n . In particular, cτ = C when τ ≥ 1. Inequalities like (1.1) are often called
Carleman inequalities in literature. In Sects. 3 and 4 we will discuss Carleman inequalities
and their connection with unique continuation problems and we will prove new unique
continuation results for systems of partial differential equations and inequalities.

When τ = 0 in (1.1), we obtain a standard weighted Sobolev gradient inequality (also
called weighted Poincaré-Sobolev inequality)

‖u
1
q f ‖q ≤ c0‖v

1
p ∇ f ‖p, f ∈ C∞

0 (Rn). (1.2)

These inequalities have deep applications in partial differential equations. For example, the
case p = 2 < q of (1.2) arises inHarnack’s inequality and regularity estimates for degenerate
second order differential operators in divergence form. They also have applications in the
study of the stable solutions of the Laplace and the p-Laplace operators in the Euclidean
space, the Laplace–Kohn operator in the Heisenberg group, the sub-Laplace operator in the
Engel group, etc.; see e.g. [22,49,58] and the references cited in these papers; see also [10].

Conditions on the weights u and v and the exponents p, q for which (1.2) holds have
been investigated by several authors. The most natural approach to study (1.2) is based on
the following pointwise inequality (see e.g. [19,46])

| f (x)| ≤ C I1(|∇ f |)(x), x ∈ R
n,

where Iαφ(x) = ∫
Rn

φ(y)

|x−y|n−α dy, α < n, is the Riesz potential. This inequality follows from
the classical Sobolev integral representation and is proved e.g. in [42].

If the weighted inequality

‖u
1
q I1 f ‖q ≤ C‖v 1

p f ‖p (1.3)

holds for the weights u and v, we also have

‖u
1
q f ‖q ≤ C‖u

1
q I1(|∇ f |)‖q ≤ C‖v 1

p |∇ f |‖p.

Sawyer [48] a complete characterization of the weights u and v for which the gradient
inequality (1.3) holds with p ≤ q . However, in some cases, the conditions in [48] are
difficult to verify. When p = q = 2, a full characterization of the weights for which (1.2)
holds is also in [41], but also the conditions in this paper are difficult to verify.

Heinig [25] that weighted norm inequalities for the Fourier transform (or: Pitt-type
inequalities) in the form of

‖ f̂ u
1
q ‖q ≤ C‖ f w

1
p ‖p, f ∈ C∞

0 (Rn), (1.4)

can be used to prove weighted gradient inequalities. The Fourier transform is defined as
f̂ (y) = ∫

Rn f (x)e−i〈x, y〉dx .
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To prove (1.2) from (1.4), we observe that Îα f (y) = cα|y|−α f̂ (y),where cα is an explicit
constant; we can see at once that (1.3) is equivalent to

‖u
1
q (|y|−1 f̂ ) ‖̌q ≤ C‖v 1

p f ‖p

whereˇ denotes the inverse Fourier transform. We can apply Pitt’s inequality twice (with a
suitable weight w and an exponent γ ∈ (1,∞)) to obtain

‖u
1
q (|y|−1 f̂ ) ‖̌q ≤ C‖w 1

γ |y|−1 f̂ ‖γ ≤ C‖v 1
p f ‖p.

Taking w = |y|γ and γ = q and assuming conditions on the weights that ensure that both
Pitt’s inequalities hold we obtain the main theorem in [25], which was proved differently;
see Theorem 2.1 in Sect. 2.

1.1 Main results

Throughout this paper, we will often write A � B when A ≤ C B with a constant C > 0. We
will also write A � B when there exists a constantC > 0, called the constant of equivalence,
such that C−1A ≤ B ≤ C A. As usual, we let g∗ be the non-increasing rearrangement of g.
We let p′ = p

p−1 be the dual exponent of p ∈ (1,∞).
Our main result can be stated as follows.

Theorem 1.1 Let u �≡ 0 and v �≡ +∞ be weights on R
n, n ≥ 1.

(a) Let 1 < p ≤ q < ∞. If there exists γ > 0 that satisfies max (p, p′) ≤ γ ≤ q, for
which

⎧
⎪⎪⎨

⎪⎪⎩

Aq
u(0) := sup

s>0
s
1−q( 1

γ ′ − 1
n )

u∗(s) < ∞,
1

n
<

1

γ ′ ≤ 1

n
+ 1

q
,

Aq
u(τ ) := sup

s>0

∫ s

0
u∗(t) dt

(∫ 1
s

0
(t + τ n)−

γ ′
n dt

) q
γ ′

< ∞, τ > 0,
(1.5)

and

Ap
v := sup

s>0
s

p
γ ′ −1

(1/v)∗(s) < ∞, (1.6)

the inequality

‖e−τ�(·)u
1
q f ‖q ≤ cτ‖e−τ�(·)v

1
p ∇ f ‖p, f ∈ C∞

0 (Rn), (1.7)

holds for every τ ≥ 0 and every linear function �(x) = 〈a, x〉 + b, a ∈ R
n, |a| = 1, b ∈ R,

with the constant

cτ = C Au(τ )Av, (1.8)

where C = C p,q,γ,n is some positive constant. Moreover,

Au(τ ) ≤ max (τ−1, 1)Au(1), τ > 0. (1.9)

(b) Let 1 < q < p < ∞. If there exists γ > 0 that satisfies
{

n
n−1 < γ ≤ q, τ = 0,

1 < γ ≤ q, τ > 0,
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for which (1.5) holds and

Ãr
v :=

∫ ∞

0
s− r

γ
−1

(∫ s

0
(1/v)∗(t)

1
p−1 dt

) r
p′

ds < ∞,

with 1
r = 1

γ
− 1

p , the inequality (1.7) holds with the constant

cτ = C Au(τ ) Ãv. (1.10)

Remark 1.1 When τ = 0 and γ = q weobtain Theorem2.4 in [25]with simplified conditions
on u and v. The proof of Theorem 1.1 shows that the assumptions 1

γ ′ ≤ 1
n + 1

q and p′ ≤ γ

are to rule out the trivial weights u ≡ 0 and v ≡ +∞.

Remark 1.2 For the applications of Theorem 1.1 it is important to have the uniform bound-
edness of cτ as τ → ∞. From (1.8), (1.10) and (1.9), we have cτ ≤ c1 � Au(1) whenever
τ ≥ 1; thus, to prove the boundedness of cτ , it is sufficient to verify that Au(1) < ∞.

Remark 1.3 It is interesting to compare our weighted gradient inequalities with those proved
by Sinnamon [53]. In that paper, a weighted norm inequality in the form of

‖ f u
1
q ‖q ≤ C‖〈∇ f , x〉w 1

p ‖p, f ∈ C∞
0 (Rn) (1.11)

is considered. If we denote with ∂r f = 〈 x
|x | , ∇ f 〉 the radial derivative of f , the inequality

(1.11) is equivalent to

‖ f u
1
q ‖q ≤ C‖ |x |w 1

p ∂r f ‖p, f ∈ C∞
0 (Rn),

and implies (1.2) with v = |x |pw.
In [53, Theorem 4.1], (1.11) is only proved for p = q and q < p under some conditions

on u, w; moreover, in [53, Theorem 3.4] it is proved that when 1 ≤ p < q < ∞ and the
weight w is locally integrable on R

n , the inequality (1.11) holds for every f ∈ C∞
0 (Rn) if

and only if u ≡ 0 a.e.
When f is radial, ∇ f (x) = x

|x | ∂r f (x), and so |∇ f (x)| = |∂r f (x)|. Thus, our The-
orem 1.1 yields (1.11) for radial functions with a nontrivial weight u and with w =
|x |−pe−pτ�(x)v. We proved in Corollary 1.2 below that we can consider piecewise power
weights v = |x |(β1, β2), with 0 ≤ β1 ≤ n

( p
γ ′ − 1

)
(see definition (1.13)). For example, if

β1 = n
( p

γ ′ −1
)
, then w is locally integrable for 1

n < 1
γ ′ because −p +β1 > −n. We remark

that the counterexample in [53, Theorem 3.4] is not radial.

Remark 1.4 The inequality (1.7) is equivalent to

‖u
1
q f ‖q ≤ cτ‖v

1
p (τa f + ∇ f )‖p. (1.12)

To see this, it is enough to use the substitution f1 = e−τ�(·) f and ∇(eτ�(·) f1) =
eτ�(·)(τa f1 + ∇ f1).

Let β1, β2 ∈ R; we define the piecewise power function t �→ t (β1,β2) as follows:

t (β1,β2) :=
{

tβ1 , 0 < t ≤ 1,

tβ2 , t ≥ 1.
(1.13)

In the following corollary of Theorem 1.1 we consider the important case of piecewise power
weights.
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Corollary 1.2 Let 1 < p ≤ q < ∞; let γ > 0 that satisfies max (p, p′) ≤ γ ≤ q and
1
n < 1

γ ′ ≤ 1
n + 1

q .

With the notation and the assumptions of Theorem 1.1(a), the inequality (1.7) holds with
u(x) = |x |(−α1,−α2), v(x) = |x |(β1,β2), with α j , β j ≥ 0, provided that

α1 ≤ n
(
1 − q

γ ′ + q

n

)
,

{
α2 ≥ n

(
1 − q

γ ′ + q
n

)
when τ = 0,

α2 ≥ 0 when τ > 0,
(1.14)

β1 ≤ n
( p

γ ′ − 1
)
, β2 ≥ n

( p

γ ′ − 1
)
. (1.15)

In particular, for power weights u(x) = |x |−α , v(x) = |x |β the inequality (1.7) holds if

{
α = n

(
1 − q

γ ′ + q
n

) ≥ 0 when τ = 0,

0 ≤ α ≤ n
(
1 − q

γ ′ + q
n

)
when τ > 0,

β = n
( p

γ ′ − 1
)

≥ 0.

Moreover, the conditions

{
α
q + β

p = n
( 1

q − 1
p

) + 1 when τ = 0,
α
q + β

p ≤ n
( 1

q − 1
p

) + 1 when τ > 0,
(1.16)

are necessary for the validity of (1.7).

Letting τ = α = β = 0, 1 < p < n, and γ = q in (1.16), we obtain q = np
n−p

and Corollary 1.2 yields the classical Sobolev inequality ‖ f ‖q ≤ C‖∇ f ‖p; see also [25,
Corollary 2.5].

When τ = 0, we obtain the inequality

(∫

Rn
| f |q |x |(−α1,−α2) dx

) 1
q ≤ C

(∫

Rn
|∇ f |p|x |(β1,β2) dx

) 1
p
,

which was proved by Maz’ya [42] and Caffarelli et al. [3] for power weights. In [42,

Sect. 2.1.6] it was proved that if 1 < p < n, p ≤ q ≤ pn
n−p , and−α

q = β
p −1+n

(
1
p − 1

q

)
>

− n
q , then

(∫

Rn
| f |q |x |−α dx

) 1
q ≤ C

(∫

Rn
|∇ f |p|x |β dx

) 1
p
. (1.17)

In [28, Lemma 2.1], this inequality was proved for n ≥ 2, 1 < p < +∞, 0 ≤ 1
p − 1

q =
n

(
1 − β

p − α
q

)
and− n

q < −α
q ≤ β

p . Note that the conditions in [28,42] are the same, except

for the extra condition p < n in [42].
From Corollary 1.2 with τ = 0 we have that α = n

(
1− q

γ ′ + q
n

) ≥ 0, β = n
( p

γ ′ −1
) ≥ 0,

where max (p, p′) ≤ γ ≤ q and 1
n < 1

γ ′ ≤ 1
n + 1

q . These inequalities imply 1
p − 1

q =
n
(
1 − β

p − α
q

)
, − n

q < −α
q ≤ β

p , but we also have to assume α ≥ 0, β ≥ 0 because of our
method of the proof.

It is interesting to observe that the best constant in the inequality (1.17) has been evaluated
in [58] and also in [22] for special values of α and β.
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1.2 Unique continuation

Our Theorem 1.1 can be used to prove unique continuation results for weak solutions (also
called solutions in distribution sense) of systems of differential equations and inequalities;
see Sect. 3 for definitions and preliminary results.

We consider solutions in weighted Sobolev spaces of distributions: given a domain D ⊂
R

n , we let W m,p,v
0 (D) be the closure of C∞

0 (D) with respect to the norm

‖ f ‖W m,p,v(D) =
m∑

|α|=0

‖v 1
p ∂α

x f ‖L p(D)

where α = (α1, . . . , αn) ∈ N
n and the ∂α

x f = ∂
α1
x1 · · · ∂αn

xn f are the partial derivatives of f .
In Sect. 3 we prove the following

Theorem 1.3 Let p, q,γ , u andv be as in Theorem1.1(a). Let 1
r = 1

p − 1
q . Let f ∈ W 1,p,v

0 (Rn)

be a solution of the differential inequality

|∇ f | ≤ V | f | (1.18)

with V ∈ Lr (supp f , v
r
p u− r

q dx). If, for some linear function � : R
n → R, we have that

supp f ⊂ {x : �(x) ≥ 0}, necessarily f ≡ 0.

Note that the condition V ∈ Lr (supp f , v
r
p u− r

q dx) follows from either V ∈
Lr (Rn, v

r
p u− r

q dx) if supp f is unbounded, or from V ∈ Lr
loc(R

n, v
r
p u− r

q dx) if f has
compact support. In particular, for power weights u, v as in Corollary 1.2, the differential
inequality (1.18) does not have solutions with compact support if V � |x |−1+ε for some
ε > 0; see Remark 3.1.

To prove Theorem 1.3 we use a method developed by Carleman [4]. A brief discussion
on unique continuation problems and Carleman’s method is in Sects. 3 and 4.

When D is measurable and v is a suitable weight we consider the Dirichlet problem
{

− div (v ∇ f |∇ f |p−2) = v V f | f |p−2,

f ∈ W 1,p,v
0 (D),

(1.19)

where div ((g1, . . . , gn)) = ∂x1g1 + · · · + ∂xn gn and the potential V is in a suitable Lr

space. The operator div (v ∇ f |∇ f |p−2) is known as weighted p-Laplacian in the literature
(see e.g. [23,34]) and is denoted by 
p when v ≡ 1. The weighted p-Laplacian is nonlinear
when p �= 2 and is linear when p = 2.

When v ≡ 1, (1.19) can be compared to the Sturm–Liouville problem in the form of
−
p f = (λm −V ) f | f |p−2 (see e.g. [8]).When n = 1 and p = 2 we have−(v f ′)′ = vV f .
This problem is related to the classical Sturm-Liouville problem −(v f ′)′ = (λw − q) f .
See [40].

We prove the following

Theorem 1.4 Let f ∈ W 1,p,v
0 (D) be a solution of the Dirichlet problem (1.19). Let V+ =

max{V , 0}. Assume that |V | 1p ∈ Lr (D, v
r
p u− r

q dx), where u, v are as in Theorem 1.1 and
1
r = 1

p − 1
q . Then, either

c0‖u− 1
q v

1
p V

1
p

+ ‖Lr (D) ≥ 1,

where c0 is as in (1.2), or f ≡ 0 in D.
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Thus, the Dirichlet problem (1.19) has the unique solution f ≡ 0 if the weighted Lr norm

of V
1
p

+ on D is small enough.
To the best of our knowledge, the method of proof of Theorem 1.4 has been used for the

first time in [13]; it is extensively used in [11,17].

2 Proof of Theorem 1.1

In this section we prove our main theorem and a few corollaries.

2.1 Preliminary results

We will use the following theorem due to Heinig [26], Jurkat and Sampson [32] and Muck-
enhoupt [43].

Theorem 2.1 Let n ≥ 1. If 1 < p ≤ q < ∞ and the weights u and w satisfy

sup
s>0

(∫ 1
s

0
u∗(t) dt

) 1
q
(∫ 1

s

0
((1/w)∗(t))

1
p−1 dt

) 1
p′ =: A1 < ∞,

or if 1 < q < p < ∞, and

sup
s>0

(∫ ∞

0

(∫ 1
s

0
u∗(t)dt

) r
q
(∫ s

0
((1/w)∗(t))

1
p−1 dt

) r
q′

((1/w)∗(s))
1

p−1 ds

) 1
r =: A2 < ∞

(2.1)

where r = qp
q−p , then Pitt’s inequality

‖ f̂ u
1
q ‖q ≤ C j‖ f w

1
p ‖p, f ∈ C∞

0 (Rn), j = 1, 2,

holds with C j ≤ C p,q, j A j .

Recall that the non-increasing rearrangement of a measurable radially decreasing function
f (x) = f0(|x |) is defined as follows: let for λ > 0

μ f (λ) = μ{x : | f (x)| > λ} = μ{x : |x | < f −1
0 (λ)} = ( f −1

0 (λ))n Vn,

where Vn is the volume of the unit ball Bn = {x ∈ R
n : |x | ≤ 1}. Then for t > 0

f ∗(t) = inf{λ > 0 : μ f (λ) < t} = f0((t/Vn)
1
n ).

Note that the conditions on u and w are also necessary when u and w are radial, i.e.,
u = u0(|x |) and w(x) = w0(|x |), with u0(r) non-increasing and w0(r) non-decreasing.
See [26] and also [12, Theorem 1.2 ] for simpler and more general necessary conditions on
the weight u and w. We should also mention [38, Theorem 2.1] where a necessary condition
similar to that in [26], with u replaced by a measure dμ, was proved.

We also need the following

Lemma 2.2 Let ψ �≡ 0 be a non-increasing non-negative function; let β1, β2 > 0 and let
β ′
2 = min (β2, 1). If either

A = sup
s>0

s(−β1,−β2)

∫ s

0
ψ(t) dt < ∞,

123
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or

B = sup
s>0

s(1−β1,1−β ′
2)ψ(s) < ∞,

then β1 ≤ 1 and A � B.

Proof Assume A < ∞; then, for every s > 0,we have that
∫ s
0 ψ(t) dt ≤ As(β1,β2). Sinceψ is

non-increasing, sψ(s) ≤ ∫ s
0 ψ(t) dt , soψ(s) ≤ As(β1−1,β2−1). If β1 > 1, then lim

s→0+ ψ(s) =
0 and consequently ψ ≡ 0; since we assumed ψ �≡ 0, necessarily β1 ≤ 1.

Furthermore, from ψ(s) ≤ ψ(1) for s ≥ 1 we can see at once that ψ(s) � Asβ ′
2−1 and

so B � A.
If we assume B < ∞, for every s > 0 we have that ψ(s) ≤ Bs(β1−1,β ′

2−1) As above we
conclude that β1 ≤ 1. For 0 < s ≤ 1 we have

∫ s
0 ψ(t) dt � Bsβ1 . If s ≥ 1, then

∫ s

0
ψ(t) dt =

∫ 1

0
ψ(t) dt +

∫ s

1
ψ(t) dt � B + B

∫ s

1
tβ

′
2−1 dt � Bsβ ′

2 ≤ Bsβ2 .

Thus, sups≥1 s−β2
∫ s
0 ψ(t) dt � B and A � B. ��

2.2 Proof of Theorem 1.1

We can assume �(x) = 〈a, x〉, |a| = 1, without loss of generality.
(a) Let p ≤ γ ≤ q .
Step 1 For τ ≥ 0 and ξ ∈ R

n , define

wτ (ξ) = |ξ − iτa|γ = (|ξ |2 + τ 2)
γ
2 .

By Theorem 2.1(a), the inequality

(∫

Rn
|ĝ (x)|qu(x) dx

) 1
q � Au,wτ

(∫

Rn
wτ (ξ)|g(ξ)|γ dξ

) 1
γ

(2.2)

holds with

Au,wτ = sup
s>0

(∫ s

0
u∗(t) dt

) 1
q
(∫ 1

s

0
((1/wτ )

∗(t))
1

γ−1 dt
) 1

γ ′
< ∞.

The weight wτ is radially increasing, so

(1/wτ )
∗(t) = ((t/Vn)

2
n + τ 2)−

γ
2 � (t + τ n)−

γ
n

with the constant of equivalence independent of τ . This implies

∫ 1
s

0
((1/wτ )

∗(t))
1

γ−1 dt �
∫ 1

s

0
(t + τ n)−

γ ′
n dt, s > 0.

Therefore, for τ ≥ 0,

Aq
u,wτ

� sup
s>0

∫ s

0
u∗(t) dt

(∫ 1
s

0
(t + τ n)−

γ ′
n dt

) q
γ ′ = Aq

u(τ ). (2.3)

Since (t + τ n)−1 ≤ max (τ−n, 1)(t + 1)−1 for t, τ > 0, from (2.3) we conclude that

Au(τ ) ≤ max (τ−1, 1)Au(1), τ > 0.
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We can give a simple expression for Aq
u(0). Observing that I := ∫ 1/s

0 t−
γ ′
n dt is finite

when − γ ′
n > −1 or, equivalently, n

n−1 < γ , we have that I � s
γ ′
n −1. Therefore, (2.3) can

be rewritten as

Aq
u(0) � sup

s>0
s
−q( 1

γ ′ − 1
n )

∫ s

0
u∗(t) dt . (2.4)

By (2.4) and Lemma 2.2 with β1 = β2 = q( 1
γ ′ − 1

n ), there holds that q( 1
γ ′ − 1

n ) ≤ 1 or
1
γ ′ ≤ 1

n + 1
q and we can redefine Aq

u(0) as follows.

Aq
u(0) = sup

s>0
s
−q( 1

γ ′ − 1
n )

∫ s

0
u∗(t) dt � sup

s>0
s
1−q( 1

γ ′ − 1
n )

u∗(s).

Step 2 Let g(x) = e−〈τa,x〉 f (x). Then g ∈ C∞
0 (Rn) and

ĝ (ξ) =
∫

Rn
g(x)e−i〈ξ, x〉 dx =

∫

Rn
f (x)e−i〈ξ, x〉−〈τa, x〉 dx = f̂ (ξ − iτa). (2.5)

Since for g ∈ C∞
0 (Rn) the Fourier inversion formula holds, (2.2) and (2.3) imply

(∫

Rn
|g(x)|qu(x) dx

) 1
q � Au(τ )

(∫

Rn
|ξ − iτa|γ |ĝ (ξ)|γ dξ

) 1
γ

= Au(τ )
(∫

Rn

∣∣(ξ − iτa) f̂ (ξ − iτa)
∣∣γ dξ

) 1
γ
. (2.6)

Note that f̂ is entire analytic (and so it is defined at ξ − iτa) because f has compact support.
Since ∇̂ f (ξ) = iξ f̂ (ξ), from (2.5) with h(x) = (h1(x), . . . , hn(x)) = e−〈τa,x〉 ∇ f (x) we
get

ĥ (ξ) = ∇̂ f (ξ − iτa) = i(ξ − iτa) f̂ (ξ − iτa).

Hence

(∫

Rn

∣∣(ξ − iτa) f̂ (ξ − iτa)
∣∣γ dξ

) 1
γ

=
(∫

Rn
|ĥ (ξ)|γ dξ

) 1
γ =

(∫

Rn

( n∑

j=1

|ĥ j (ξ)|2
) γ

2
dξ

) 1
γ

≤
(∫

Rn

( n∑

j=1

|ĥ j (ξ)|
)γ

dξ
) 1

γ ≤
n∑

j=1

(∫

Rn
|ĥ j (ξ)|γ dξ

) 1
γ
,

where the first inequality holds trivially and the second is Minkowski’s inequality.
Let us use Pitt’s inequality with p ≤ γ :

‖ f̂ ‖γ ≤ C p,γ A1,v‖ f v
1
p ‖p, (2.7)

where

A1,v := sup
s>0

(∫ 1
s

0
dt

) 1
γ
(∫ s

0
(1/v)∗(t)

1
p−1 dt

) 1
p′

< ∞. (2.8)
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As in Step 1, we apply Lemma 2.2 with β1 = β2 = p′
γ
. We obtain p′

γ
≤ 1 and

Ap′
1,v � sup

s>0
s− p′

γ

∫ s

0
(1/v)∗(t)

1
p−1 dt � sup

s>0
s1−

p′
γ (1/v)∗(s)

1
p−1 .

It follows that

Ap
1,v = Ap′(p−1)

1,v � sup
s>0

s
p
γ ′ −1

(1/v)∗(s) = Ap
v < ∞.

Applying (2.7) with f replaced by h j , j = 1, . . . , n, we gather

(∫

Rn
|ĥ j (ξ)|γ dξ

) 1
γ � Av

(∫

Rn
|h j (x)|pv(x) dx

) 1
p

� Av

(∫

Rn

( n∑

k=1

|hk(x)|2
) p

2
v(x) dx

) 1
p

= Av

(∫

Rn
|e−〈τa,x〉∇ f (x)|pv(x) dx

) 1
p
. (2.9)

This, together with (2.6) proves part (a) of the theorem.
(b) Let 1 < γ ≤ q < p. We proceed as in the proof of part (a) to obtain (2.2), provided

that (2.3) holds. We note that we assume n
n−1 < γ when τ = 0.

Analogously, we get (2.9), but instead of (2.8) we use (2.1) with u = 1,w = v and γ < p.
Then we have

Ar
1,v =

∫ ∞

0
s− r

γ

(∫ s

0
(1/v)∗(t)

1
p−1 dt

) r
γ ′

(1/v)∗(s)
1

p−1 ds

�
∫ ∞

0
s− r

γ
d

ds

(∫ s

0
(1/v)∗(t)

1
p−1 dt

) r
γ ′ +1

ds,

where 1
r = 1

γ
− 1

p . After integrating by parts, we get

Ar
1,v �

∫ ∞

0
s− r

γ
−1

(∫ s

0
(1/v)∗(t)

1
p−1 dt

) r
p′

ds = Ãr
v < ∞.

This proves part (b) of the theorem.

2.3 Corollaries and remarks

Let usfirst discuss the conditions onγ inTheorem1.1.We recall that in part (a) ofTheorem1.1
we assume 1 < p ≤ q < ∞ and max (p, p′) ≤ γ ≤ q; when τ = 0 we assume also 1

n < 1
γ ′ .

Note that this extra assumption on γ is not necessary when n ≥ 3. Indeed, from
max (p, p′) ≤ γ ≤ q follows that 2 ≤ γ ≤ q and q ′ ≤ γ ′ ≤ 2; thus, 1

n < 1
γ ′ when-

ever n ≥ 3.
When n = 1, the inequality 1

n < 1
γ ′ (or: γ > n

n−1 ) can never be satisfied by γ ′ and only

the case 1
n ≥ 1

γ ′ is possible. In fact, the condition max (p, p′) ≤ γ ≤ q always implies
1
2 ≤ 1

γ ′ < 1.

If n = 2 we can either have 1
n < 1

γ ′ or 1
n ≥ 1

γ ′ . Note that 1
2 ≥ 1

γ ′ implies that p = γ = 2.

For applications, it is important to simplify the expression for Aq
u(1) in (1.5). Recall that,

when τ > 0, Au(τ ) ≤ max (τ−1, 1)Au(1) (see Remark 1.2). We prove the following

123



Weighted gradient inequalities and unique continuation… Page 11 of 24 89

Corollary 2.3 Let 1 < p ≤ q < ∞ and let max (p, p′) ≤ γ ≤ q.

(i) If n ≥ 2 and 1
n < 1

γ ′ , then 1
γ ′ ≤ 1

n + 1
q and

Aq
u(1) � sup

s>0
s
(1−q( 1

γ ′ − 1
n ), 0)

u∗(s).

(ii) If n = 2 and p = γ = 2, then

Aq
u(1) = sup

s>0

(
ln (s−1 + 1)

)q/2
∫ s

0
u∗(t) dt .

(iii) If n = 1, then

Aq
u(1) � sup

s>0
s
(0,− q

γ ′ )
∫ s

0
u∗(t) dt .

Proof (i) Recall that

Aq
u(τ ) = sup

s>0

∫ s

0
u∗(t) dt

(∫ 1
s

0
(t + τ n)−

γ ′
n dt

) q
γ ′

, τ > 0.

For τ = 1 and 1
n < 1

γ ′ , we have

(∫ 1
s

0
(t + 1)−

γ ′
n dt

) q
γ ′ � (

(s−1 + 1)1−
γ ′
n − 1

) q
γ ′

� s
(−q( 1

γ ′ − 1
n ),− q

γ ′ ), s > 0.

Hence

Aq
u(1) � sup

s>0
s
(−q( 1

γ ′ − 1
n ), − q

γ ′ )
∫ s

0
u∗(t) dt,

where q( 1
γ ′ − 1

n ) > 0 and q
γ ′ ≥ 1, since γ ′ ≤ 2 ≤ q .

Nowwe can apply Lemma 2.2 with β1 = q( 1
γ ′ − 1

n ), β2 = q
γ ′ ≥ 1.We obtain q( 1

γ ′ − 1
n ) ≥

1 or 1
γ ′ ≤ 1

n + 1
q and

Aq
u(1) � sup

s>0
s
(1−q( 1

γ ′ − 1
n ), 0)

u∗(s).

Part (ii) is obvious. To prove part (iii), we note that γ ′ > 1, which gives
∫ 1

s
0 (t +1)−γ ′

dt �
s(0,−1). ��
Proof of Corollary 1.2 Recall that in this corollary u(x) = |x |(−α1,−α2), v(x) = |x |(β1,β2) with
α j , β j ≥ 0. We consider the case when 1 < p ≤ q < ∞ and γ ∈ [max (p, p′), q], with
1
n < 1

γ ′ ≤ 1
n + 1

q , and we let τ = 0 or τ = 1.

Since w∗(s) � w0(s
1
n ), s > 0, for any non-increasing radial weight function w(x) =

w0(|x |) we have
u∗(s) � s(− α1

n ,− α2
n ), (1/v)∗(s) � s(− β1

n ,− β2
n ).

whenever α j , β j ≥ 0.
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The expression (1.5), Corollary 2.3(i), and (1.6) imply that for s > 0

u∗(s) �

⎧
⎨

⎩
s

q( 1
γ ′ − 1

n )−1
, τ = 0,

s
(q( 1

γ ′ − 1
n )−1,0)

, τ = 1,
(1/v)∗(s) � s

1− p
γ ′ .

It is easy to see that when a j , b j ≥ 0, the inequality s(−a1,−a2) � s(−b1,−b2), holds if and
only if a1 ≤ b1, a2 ≥ b2. It follows that

α1 ≤ n
(
1 − q

γ ′ + q

n

)
,

{
α2 ≥ n

(
1 − q

γ ′ + q
n

)
, τ = 0,

α2 ≥ 0, τ = 1,

and

0 ≤ β1 ≤ n
( p

γ ′ − 1
)
, β2 ≥ n

( p

γ ′ − 1
)

which proves (1.14) and (1.15).
To prove (1.16) we use a standard homogeneity argument. Let us consider (1.12) (which

by Remark 1.4 is equivalent to (1.7)) with f = fλ(x) = f (λx) for some f ∈ C∞
0 (Rn) and

λ > 0. We obtain

‖|x |− α
q fλ‖q ≤ cτ‖|x | β

p (τa fλ + λ(∇ f )λ‖p.

After the change of variables x �→ λ−1x , we get

λ
α
q − n

q + β
p + n

p −1‖|x |− α
q f ‖q ≤ cτ‖|x | β

p (λ−1τa f + ∇ f )‖p. (2.10)

The limits of the two sides of the inequality (2.10), as λ → 0 or as λ → ∞, must be
the same. If τ = 0 the right-hand side of (2.10) does not depend on λ, so we must have
α
q − n

q + β
p + n

p − 1 = 0.
If τ > 0, we must have

λ
α
q − n

q + β
p + n

p −1 �
{

λ−1, λ → 0,

1, λ → ∞.

so necessarily α
q − n

q + β
p + n

p − 1 ≤ 0. ��

3 Uniqueness problems

In this section and in Sect. 4 we use the inequality (1.1) to prove uniqueness questions for
solutions of partial differential equations and systems. First, we state some definitions and
preliminary results.

Let α = (α1, . . . , αn) be a vector with non-negative integer components; we use the
notation |α| = α1 + · · · + αn and ∂α

x f = ∂α1

∂
α1
x1

· · · ∂αn

∂
αn
xn

f .

Let D ⊂ R
n open and connected and let 1 ≤ p < ∞. Recall that W m,p

0 (D) is the closure
of C∞

0 (D) with respect to the Sobolev norm ‖ f ‖W m,p
0 (D) = ∑m

|α|=0 ‖∂α
x f ‖p , When m = 1,

and D is bounded in at least one direction, the classical Poincare’ inequality states that
‖ f ‖L p(D) ≤ C‖∇ f ‖L p(D) (see e.g. [2]); thus, the Sobolev norm in W 1,p

0 (D) is equivalent
to ‖∇ f ‖L p(D).
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Given the weight v : D → [0,∞] and 1 ≤ p < ∞, we let W m,p,v
0 (D) be the closure

of C∞
0 (D) with respect to the norm ‖ f ‖

W 1,p,v
0 (D)

= ∑m
|α|=0 ‖v 1

p ∂α
x f ‖p . We use the stan-

dard notation L p,v(D) or L p(D, v dx) for the closure of C∞
0 (D) with respect to the norm

‖v 1
p f ‖p .
Let P(∂) = ∑m

|α|=0 aα∂α
x be a linear partial differential operator of order m > 0 with

complex constant coefficients. We let P(−∂)u = ∑m
|α|=0 aα (−1)|α|∂α

x u.
A weak solution (or: a solution in distribution sense) of the equation P(∂) f = 0 on a

domain D ⊂ R
n is a distribution f ∈ W m,p(D) that satisfies

∫
D f (x) P(−∂)φ(x) dx = 0

for every φ ∈ C∞
0 (D). Weak solutions for non linear partial differential operators can be

defined on a case-by-case basis. See e.g. [18] or other standard textbooks on partial differential
equations for details.Wewill often consider differential inequalities in the form of |P(∂) f | ≤
|V f | on a given domain D; by that we mean that the inequality |P(∂) f (x)| ≤ |V f (x)| is
satisfied a.e. in D, i.e., it is satisfied pointwise with the possible exception of a set of measure
zero.

3.1 Unique continuation and Carlemanmethod

Let P(∂) be a homogeneous partial differential operator of order m ≥ 1. Clearly, f ≡ 0 is
a solution of the equation P(∂) f = 0 on any domain D ⊂ R

n . It is natural to ask whether
this equation has also nontrivial solutions, i.e., distributions in some suitable Sobolev space
that satisfy the equation in distribution sense and are not identically = 0. In particular it is
natural to ask whether (1), (2) or (3) below are satisfied or not on a given domain D.

(1) Uniqueness for the Dirichlet problem. The only solution of the Dirichlet problem{
P(∂) f = 0,

f ∈ W m,p
0 (D)

is f ≡ 0.

(2) Weak unique continuation property (or: unique continuation from an open set). Every
solution of the equation P(∂) f = 0 which is ≡ 0 on an open subset of D is ≡ 0.

(3) Strong continuation property (or: unique continuation from a point). Let x0 ∈ D. Every
solution of the equation P(∂) f = 0 that satisfies

lim
r→0

r−N
∫

|x−x0|<r
| f (x)|2 dx = 0

for every N > 0 is ≡ 0.

For other relevant unique continuation problems see the survey paper [55].
Historically, the study of unique continuation originated from the uniqueness for the

Cauchy problem; an equally strong motivation arose from some fundamental questions in
mathematical physics, with the study of the eigenvalues of the time-independent Schrödinger
operator H = −
 + V as a notable example. See [50,51] and also [36] and the references
cited there.

Carleman [4] a new weighted Sobolev inequality to show that the Schrödinger operator
H = −
 + V has the strong unique continuation property when n = 2 and V is bounded.
Carleman’s original idea has permeated the large majority of results on unique continuation.
The weighted Sobolev inequality that he used in his proof has been widely generalized and
applied to a vast array of problems in unique continuation and control theory.
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A Carleman-type inequality for a differential operator P(∂) is a weighted inequality of
the form of

‖ητk f ‖q ≤ C‖ητk P(∂) f ‖p, f ∈ C∞
0 (D), (3.1)

where η : D → [0, 1), the sequence {τk}k∈N ⊂ (0,∞) increases to +∞, the constant C is
independent of the sequence of the τk and of f , and 1 ≤ p ≤ q < ∞. If (3.1) holds with
a suitable function η, a version of the argument used in the proof of Theorem 1.3 can be
applied to show that the operator Q(∂) = P(∂)− V (x) has the unique continuation property

(2) or (3) (or some variation of these properties) whenever V ∈ L
pq

q−p (D).
The literature on Carleman inequalities and unique continuation is very extensive. A

sample of references on unique continuation problems for second order elliptic operators
include the important [30,31,35,52] and the survey papers [37,55,57].

The inequality (1.7) in Theorem1.1 can be viewed as aweightedCarleman-type inequality
for the operator P(∂) f = |∇ f |. To the best of our knowledge, the inequality (1.7) is new in
the literature, even when u(x) � v(x) � 1.

3.2 Proof of Theorem 1.3

In this section we prove Theorem 1.3 and some corollary.

Proof of Theorem 1.3 Assume for simplicity that f ≡ 0 when xn < 0 (the proof is similar
in the general case). It is enough to show that f ≡ 0 also on the strip Sε = {x : 0 <

xn < ε}, where ε > 0 will be determined during the proof. Using Theorem 1.1(a) with
a = (0, . . . , 0, 1), τ ≥ 1 and cτ ≤ c1 (see Remark 1.2), the differential inequality (1.18) and
Hölder’s inequality with 1

p = 1
q + 1

r , we can write the following chain of inequalities:

‖e−τ xn f u
1
q ‖Lq (Sε ) ≤ c1‖e−τ xn ∇ f v

1
p ‖L p(Rn)

≤ c1‖e−τ xn ∇ f v
1
p ‖L p(Sε ) + c1‖e−τ xn ∇ f v

1
p ‖L p({xn>ε})

≤ c1‖e−τ xn f V v
1
p ‖L p(Sε ) + c1e−τε‖∇ f v

1
p ‖L p({xn>ε})

≤ c1‖V v
1
p u− 1

q ‖Lr (Sε∩supp f )‖e−τ xn f u
1
q ‖Lq (Sε ) + C ′e−τε .

Here, 1
r = 1

p − 1
q and we have let C ′ = c1‖∇ f v

1
p ‖L p({xn>ε}). Note that C ′ does not depend

on τ .
Since V ∈ Lr (supp f , v

r
p u− r

q dx)we can chose ε > 0 so that c1‖V v
1
p u− 1

q ‖Lr (Sε∩supp f )

< 1
2 . From the chain of inequalities above, follows that

‖e−τ xn f u
1
q ‖Lq (Sε ) ≤ 1

2
‖e−τ xn f u

1
q ‖Lq (Sε ) + C ′e−τε .

We gather

1

2
‖eτ(ε−xn) f u

1
q ‖Lq (Sε ) ≤ C ′.

Since ε − xn > 0 on Sε , if f �≡ 0 the left-hand side of this inequality goes to infinity when
τ goes to infinity; this is a contradiction because C ′ does not depend on τ and so necessarily
f ≡ 0 in Sε . ��
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Corollary 3.1 Let p, q and γ be as in Theorem 1.1(a). Let u = |x |(−α1,−α2) and v = |x |(β1, β2),
with 0 ≤ α1 ≤ n

(
1 − q

γ ′ + q
n

)
, α2 ≥ 0 and 0 ≤ β1 ≤ n

( p
γ ′ − 1

)
, β2 ≥ n

( p
γ ′ − 1

)
. Let

V = |x |(s1,s2), with

s1 > −n

r
− α1

q
− β1

p
, (3.2)

and, if supp f is unbounded,

s2 < −α2

q
− β2

p
− n

r
. (3.3)

Then, every solution of the differential inequality |∇ f | ≤ V | f | is ≡ 0.

Proof The weights u and v are as in Corollary 1.2, so the inequality (1.7) holds with τ > 0.
By Theorem 1.3, every solution of the differential inequality |∇ f | ≤ V | f | is ≡ 0 whenever

V v
1
p u− 1

q ∈ Lr (supp f ). We can see at once that V v
1
p u− 1

q = |x |(t1,t2) ∈ Lr (supp f ) if and
only if t1 = s1 + α1

q + β1
p > − n

r and, if supp f is unbounded, t2 = s2 + α2
q + β2

p < − n
r ,

which is equivalent to (3.2) and (3.3). This concludes the proof. ��
Remark 3.1 From the inequalities above and the assumptions on α j , β j , and γ ′ (see Corol-
lary 1.2) follows that

t1 ≤ s1 + n

q

(
1 − q

γ ′ + q

n

)
+ n

p

( p

γ ′ − 1
)

= s1 − n

r
+ 1.

t2 ≥ s2 + n

p

( p

γ ′ − 1
)

= s2 + n

γ ′ − n

p
> s2 − n

p
+ 1.

The condition t1 > − n
r yields s1 > −1. We can see at once that t2 < − n

r yields s2 < n
q − 1.

In particular, V = |x |−1+ε with 0 < ε < n
q , satisfies the assumptions of Corollary 3.1. If f

has compact support, then we can omit the condition on t2 and assume only ε > 0.
Potentials V (x) = C |x |−s , with s, C > 0 are known as Hardy potentials in the literature.

They appear in the relativistic Schrödinger equations and in problem of stability of relativistic
matter in magnetic fields. See e.g. [27] and the introduction to [20,21], just to cite a few.

It is proved in [16] that when L is the Dirac operator in dimension n ≥ 2 (see Sect. 4.2)
the differential inequality |L f | ≤ C |x |−1| f | has the strong unique continuation property
from the point x0 = 0 whenever C ≤ 1. We conjecture that also the differential inequalities
|∇ f | ≤ C |x |−1| f | has the strong unique continuation property from the origin when C is
sufficiently small.

3.3 Proof of Theorem 1.4

Recall that the solution f of the Dirichlet problem (1.19) is intended in distribution sense,
i.e., f satisfies

∫

D
〈∇ψ,∇ f 〉|∇ f |p−2 v dx =

∫

D
ψ V f | f |p−2 v dx (3.4)

for every ψ ∈ C∞
0 (D). To prove Theorem 1.4 we need two important lemmas:

Lemma 3.2 Suppose that the weighted gradient inequality

‖u
1
q f ‖q ≤ c0‖v

1
p ∇ f ‖p, f ∈ C∞

0 (D) (3.5)
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holds with exponents 1 ≤ p, q < ∞. Then the space W 1,p,v
0 (D) embeds into Lq(D, u dx)

and ‖ f ‖Lq (D, u dx) ≤ c0‖∇ f ‖L p(D, v dx).

Proof Fix f ∈ W 1,p,v
0 (D); let { fn}n∈N ⊂ C∞

0 (D) be a sequence that converges to f in the

Sobolev norm ‖ · ‖
W 1,p,v

0 (D)
. Thus, { fn} is a Cauchy sequence in W 1,p,v

0 (D); for every ε > 0

we can chose N > 0 such that

‖ fn − fm‖W 1,p,v(D) = ‖v 1
p ( fn − fm)‖L p(D) + ‖v 1

p ∇( fn − fm)‖L p(D) < ε

whenever n, m > N ; thus, ‖v 1
p ∇( fn − fm)‖L p(D) < ε. By (3.5),

‖u
1
q ( fn − fm)‖Lq (D) ≤ c0‖v

1
p ∇( fn − fm)‖L p(D) < c0ε.

We have proved that { fn} is a Cauchy sequence in Lq(D, u dx) (which is complete) and so
it converges to f also in Lq(D, u dx). We gather

‖ f ‖Lq (D, u dx) = lim
n→∞ ‖ fn‖Lq (D, u dx) ≤ c0 lim

n→∞ ‖∇ fn‖L p(D, v dx)

= c0‖∇ f ‖L p(D, v dx)

as required. ��
Lemma 3.3 Suppose that the weighted gradient inequality (3.5) holds with 1 < p < q. Let

f be a solution to the Dirichlet problem (1.19), with |V | 1p ∈ Lr (D, v
r
p u− r

q dx). We have
∫

D
|∇ f |pv dx =

∫

D
V | f |pv dx .

Proof Let {ψn} be a sequence of functions in C∞
0 (D) that converges to f , the complex

conjugate of f , in W 1,p,v
0 (D). We show first that limn→∞

∫
D〈∇ψn,∇ f 〉|∇ f |p−2v dx =∫

D |∇ f |pv dx . Indeed,
∫

D

(〈∇ψn,∇ f 〉|∇ f |p−2 − |∇ f |p)v dx

=
∫

D

(〈∇ψn,∇ f 〉|∇ f |p−2 − 〈∇ f ,∇ f 〉|∇ f |p−2)v dx

=
∫

D
〈∇ψn − ∇ f , ∇ f |∇ f |p−2〉 v dx

≤ ‖(∇ψn − ∇ f )v
1
p ‖p ‖|∇ f |p−1 v

1
p′ ‖p′

= ‖∇(ψn − f )v
1
p ‖p ‖ |∇ f | v 1

p ‖
p
p′
p

and limn→∞ ‖∇(ψn − f )v
1
p ‖p = 0, as required.

In view of (3.4), we have that
∫

D
〈∇ψn,∇ f 〉|∇ f |p−2v dx =

∫

D
ψn V f | f |p−2 v dx;

to complete the proof it suffices to show that

lim
n→∞

∫

D
ψn V f | f |p−2 v dx =

∫

D
V | f |p v dx
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when |V | 1p ∈ Lr (D, v
r
p u− r

q dx). By Lemma 3.2, ψn converges to f̄ in Lq(D, u dx). Using
Holder’s inequality with p

r + p
q = 1, we gather

∫

D

(
ψn V f | f |p−2 − V | f |p) v dx ≤

∫

D
|V vu− p

q | | f |p−1 |ψn − f̄ |u p
q dx

≤
(∫

D
|vV u− p

q | r
p dx

) p
r
(∫

D
| f |(p−1) q

p |ψn − f̄ | q
p u dx

) p
q

=
(∫

D
(|V | 1p v

1
p u− 1

q )r dx
) p

r
(∫

D
| f |

q
p′ |ψn − f̄ | q

p u dx
) p

q
.

We let C = (∫
D(|V | 1p v

1
p u− 1

q )r dx
) p

r and we apply Hölder’s inequality (with 1
p + 1

p′ = 1)
to the remaining integral. We obtain

∫

D

(
V f | f |p−2ψn − V | f |p) v dx

≤ C
(∫

D
| f |qu dx

) p
qp′ (

∫

D
|ψn − f̄ |qu dx

) 1
q

= C‖ f u
1
q ‖p−1

q ‖(ψn − f̄ )u
1
q ‖q . (3.6)

By assumption, limn→∞ ‖(ψn − f̄ )u
1
q ‖q = 0; by Lemma 3.2, ‖ f u

1
q ‖q < ∞, and so the

right-hand side of (3.6) goes to zero when n → ∞ as required. ��
Proof of Theorem 1.4 Since the weights u and v are as in Theorem 1.1, the weighted gradient
inequality (3.5) holds. By Lemma 3.3 and Hölder’s inequality (with p

q + p
r = 1) we have

the following chain of inequalities

‖ f u
1
q ‖p

Lq (D) ≤ cp
0 ‖∇ f v

1
p ‖p

L p(D) = cp
0

∫

D
v|∇ f |pdx

= cp
0

∫

D
V v| f |p dx ≤ cp

0

∫

D
V+vu− p

q | f |pu
p
q dx

≤ cp
0

(∫

D
V

r
p

+ v
r
p u− r

q dx
) p

r
(∫

D
| f |qu dx

) p
q

≤ cp
0 ‖V

1
p

+ ‖p

Lr (D, v
r
p u

− r
q dx)

‖ f u
1
q ‖p

Lq (D).

We obtain ‖ f u
1
q ‖Lq (D)

(
1− cp

0 ‖V
1
p

+ ‖
Lr (D, v

r
p u

− r
q dx)

) ≤ 0; this inequality is possible only if

either cp
0 ‖V

1
p

+ ‖
Lr (D, v

r
p u

− r
q dx)

≥ 1 or f ≡ 0 in D. ��

4 Linear systems of PDE and the Dirac operator

We use the following notation: If �p = (p1, . . . , pm) ∈ R
m , we let | �p | = (p21 + · · · + p2m)

1
2 .

If A is a matrix with rows A1, . . . , AN , we will let |A| = (|A1|2 + · · · + |AN |2) 1
2 . Note that,

by Cauchy Schwartz inequality,

‖A �p | = (〈A1, �p 〉2 + · · · + 〈AN , �p 〉2) 1
2 ≤ (|A1|2 + · · · + |AN |2) 1

2 | �p | = |A| | �p |.
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Let �F = ( f1, . . . , fN ) ∈ C∞
0 (Rn, R

N ). We denote with ∇ �F the N × n matrix whose
rows are ∇ f1, . . . ,∇ fN .

Unless otherwise specified, we assume that p, q , u and v are as in Theorem 1.1(a) and
that 1

r = 1
p − 1

q .
In this sectionweuse theCarleman inequality (1.1) to prove unique continuation properties

of systems of linear partial differential equations of the first order.

4.1 Linear systems of PDE

Most of the first order systems considered in the literature are in the form of

n∑

j=1

L j (x)∂x j
�F = V (x) �F, (4.1)

where �F = ( f1, . . . , fN ) and the L j (x) and V are M × N matrices defined in a domain
D ⊂ R

n . We let L(x)( �F) = ∑n
j=1 L j (x)∂x j

�F . Differential inequalities in the form of

|L(x) �F | ≤ |V(x) �F | (4.2)

are also considered. In some of early papers on the subject, it is proved that solutions of
elliptic systems in the form of (4.1) that vanish of sufficiently high order at the origin are
≡ 0; see [7,15,47] and the references cited in these papers for definitions of elliptic systems.
A classical method of proof is to reduce the systems to (quasi-) diagonal form; this approach
requires conditions on the regularity and the multiplicity of the eigenvalues of the system that
are often difficult to check; see [9,24,29,56]. The strong continuation properties of systems
of complex analytic vector fields in the form of �Lu = 0 defined on a real-analytic manifold
is proved in [1].

We have found only a few papers in the literature where the Carleman method is used
to prove unique continuation properties of first-order systems. The Carleman method often
allows to prove unique continuation results for the differential inequality (4.2), often with
a singular potential V . In [14, Theorem 4.1] Carleman estimates are used to prove that
(4.2) has the weak unique continuation property when �L is a system of vector fields on a
pseudoconcave Cauchy–Riemann (CR) with some specified conditions and V is bounded.
Okaji [44,45] considers systems in two independent variables, Maxwell’s equations, and the
Dirac operator; he proved that the differential inequalities (4.2) with |V (x)| � |x |−1 has the
strong unique continuation property using sophisticated L2 → L2 Carleman estimates. See
also [54], which improves results in [44].

We prove the following

Theorem 4.1 Let �F ∈ W 1,p,v
0 (Rn, R

N ) be a solution of the differential inequality (4.2).
Assume that �F satisfies also

|∇ �F | � |L(x) �F |. (4.3)

If |V| ∈ Lr (supp �F, u− r
q v

r
p dx), with 1

p = 1
r + 1

q and �F vanishes on one side of a hyperplane,

then �F ≡ 0.

In particular, for power weights u, v as in Remark 3.1, the differential inequality (4.2)
does not have solutions with compact support support that satisfy also (4.3) if V � |x |−1+ε

for some ε > 0.
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Our unique continuation result is weaker than other results in the literature, but it applies
to first-order systems of linear partial differential equations that satisfy only the assump-
tions (4.3). Furthermore, we consider solutions in weighted Sobolev spaces and potential in
weighted Lr spaces that, to the best of our knowledge, have not been considered in other
papers.

Before provingTheorem4.1weprove the followingLemma,which is an easy consequence
of Theorem 1.1.

Lemma 4.2 Let A be a N × N invertible matrix. Under the assumptions of Theorem 1.1(a),
the following inequality holds for all �F ∈ C∞

0 (Rn, R
N ) and τ ≥ 0

‖e−τ�(x)u
1
q �F ‖q ≤ cτ,N ,A‖e−τ�(x)v

1
p A∇ �F‖p, (4.4)

where cτ,N ,A = NCAcτ and cτ is the constant in (1.7).

Proof Using Theorem 1.1(a), the elementary inequalities

| �F | = ( f 21 + · · · + f 2N )
1
2 ≤ | f1| + · · · + | fN |, | f j | ≤ | �F |,

and Minkowsky’s inequality, we obtain

‖e−τ�(x)u
1
q �F ‖q ≤

N∑

j=1

‖e−τ�(x)u
1
q f j ‖q ≤ cτ

N∑

j=1

‖e−τ�(x)v
1
p ∇ f j ‖p

≤ cτ N‖e−τ�(x)v
1
p ∇ �F ‖p.

If A is invertible, then, for every ξ ∈ R
n , we have that |A�ξ | ≥ C−1

A |ξ | for some CA > 0;
thus,

‖e−τ�(x)u
1
q �F ‖q ≤ cτ NCA‖e−τ�(x)v

1
p A∇ �F ‖p

as required. ��
Proof of Theorem 4.1 We argue as in the proof of Theorem 1.3. Without loss of generality,
we can assume that �F ≡ 0 when xn < 0 and A = I, where I is the N × N identity matrix.
For simplicity of notation, we denote with c1 the constant c1,N , I in Lemma 4.2. We show
that �F ≡ 0 also on the strip Sε = {x : 0 < xn < ε}, for some ε > 0 to be determined during
the proof.

Using (4.4) with �(x) = xn and τ ≥ 1, the differential inequality (4.3), Hölder’s inequality
and Remark 1.2, we obtain

‖e−τ xn �Fu
1
q ‖Lq (Sε )

≤ c1‖e−τ xn ∇ �F v
1
p ‖L p(Rn)

≤ c1‖e−τ xn ∇ �F v
1
p ‖L p(Sε ) + c1‖e−τ xn ∇ �F v

1
p ‖L p({xn>ε})

≤ c1C‖e−τ xnL(x)(∇ �F) v
1
p ‖L p(Sε ) + c1e−τε‖∇ �Fv

1
p ‖L p({xn>ε})

≤ c1C‖e−τ xnV �F v
1
p ‖L p(Sε ) + c1e−τε‖∇ �Fv

1
p ‖L p({xn>ε})

≤ c1C‖|V| v 1
p u− 1

q ‖Lr (Sε∩supp �F)
‖e−τ xn �Fu

1
q ‖Lq (Sε ) + C ′e−τε,

where we have let C ′ = c1‖∇ �F v
1
p ‖L p({xn>ε}).
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Since |V| ∈ Lr (supp �F, u− r
q v

r
p dx) we can chose ε > 0 so that

c1C‖|V| v 1
p u− 1

q ‖Lr (Sε∩supp �F)
< 1

2 . We have obtained

‖e−τ xn �Fu
1
q ‖Lq (Sε ) ≤ 1

2
‖e−τ xn �Fu

1
q ‖Lq (Sε ) + C ′e−τε .

In view of ε − xn > 0 on Sε , the left-hand side of this inequality goes to infinity with τ unless
�F ≡ 0 on Sε ; this is a contradiction because C ′ does not depend on τ , and so �F ≡ 0 in Sε .

��
Let G1(x), . . . ,Gn(x) be N × n matrices defined on a domain D ⊂ R

n . We consider the
operator

G( �F) = G( f1, . . . , fN ) =
N∑

j=1

G j (x) f j

with f j ∈ C∞
0 (D).

In [39], systems in the form of ∇F = G �F are considered. These systems can be used to
model linear elasticity (in curvilinear coordinates) of linearly elastic shells. See [5] and the
references cited there. We prove the following

Theorem 4.3 Let �F ∈ W 1,p,v
0 (D, R

N ) be a solution of the differential inequality

|∇ �F | � |G �F |. (4.5)

If |G| ∈ Lr (supp �F, u− r
q v

r
p dx), with 1

p = 1
r + 1

q , and �F vanishes on one side of a

hyperplane, then �F ≡ 0.

Proof Assume for simplicity that �F ≡ 0 when xn < 0 (the proof is similar in the general
case). We show that �F ≡ 0 also on the strip 0 < xn < ε, for some ε > 0 to be determined
during the proof. As in the proof of Theorem 4.1, we use (4.4) with A = I, �(x) = xn

and τ ≥ 1. For each j = 1, . . . , N , we use the differential inequality (4.5) and Hölder’s
inequality in the following chain of inequalities

‖e−τ xn �Fu
1
q ‖Lq (Sε )

≤ c1‖e−τ xn ∇ �F v
1
p ‖L p(Rn)

≤ c1‖e−τ xn ∇ �F �v 1
p ‖L p(Sε ) + c1‖e−τ xn ∇ �F v

1
p ‖L p({xn>ε})

≤ c1C‖e−τ xnG �F v
1
p ‖L p(Sε ) + c1e−τε‖∇ �Fv

1
p ‖L p({xn>ε})

≤ c1C
N∑

j=1

‖e−τ xn |G j | f j v
1
p ‖L p(Sε ) + c1e−τε‖∇ �Fv

1
p ‖L p({xn>ε})

≤ c1C
N∑

j=1

‖|G j | v
1
p u− 1

q ‖Lr (Sε∩supp �F)
‖e−τ xn f j u

1
q ‖Lq (Sε ) + C ′e−τε

≤ c1C N‖|G| v 1
p u− 1

q ‖Lr (Sε∩supp �F)
‖e−τ xn | �F |u 1

q ‖Lq (Sε ) + C ′e−τε,

where we have let C ′ = c1‖∇ �F v
1
p ‖L p({xn>ε}).
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We chose ε > 0 so that c1C N‖|G| v 1
p u− 1

q ‖Lr (Sε∩supp �F)
< 1

2 . We gather

‖e−τ xn �Fu
1
q ‖Lq (Sε ) ≤ 1

2
‖e−τ xn �Fu

1
q ‖Lq (Sε ) + C ′e−τε

which gives

1

2
‖eτ(ε−xn) �Fu

1
q ‖Lq (Sε ) ≤ C ′,

and we can conclude the proof as in Theorem 4.1. ��
Remark 4.1 It is shown in [39] that the W 1,1(D, R

n) solutions of the system ∇ �F = G �F ,
with G ∈ L1(D, R

(n×n)×n), cannot vanish on an open set. The proof in [39] does not use
Carleman inequalities.

4.2 The Dirac operator

Let α j , j = 0, . . . , n, be N × N matrices which satisfy the following relations.

α∗
j = α j , α2

j = I , α jαk + αkα j = 0, j �= k (4.6)

(we also say that the α j form a basis of a Clifford algebra). It is known that for (4.6) to hold,

N must be in the form 2[ n+1
2 ]m, with m > 0 integer

The (n-dimensional)Dirac operator associated to thematricesα j is amatrix value operator,
initially defined on C∞

0 (Rn, R
N×N ) as follows.

LU = −i
n∑

j=1

α j∂x j U .

Here, ∂xi U is a matrix whose entries are the partial derivative of the entries of U . We can use
(4.6) to show that L ◦ LU = −
U I , where I is the identity matrix. When U = f I , where
f ∈ C∞

0 (Rn), we can see at once that (L( f I ))2 = −I |∇ f |2, Thus, a Dirac operators can
be viewed as a generalization of the gradient operator and a square root of the Laplacian.

There is a lot of literature on theDirac operator and its role in several domains ofmathemat-
ics and physics See e.g. [6]. For example, the Dirac equation which describes free relativistic
electrons is represented by

i�∂tψ(t, x) = H0ψ(t, x),

where H0 is given explicitly by the 4 × 4 matrix-valued differential expression

H0 = −i�c
3∑

j=1

α j∂x j + α0mc2.

Here, c is the speed of light, m is a mass of a particle and � is the Planck’s constant.
In [16] is proved that the the differential inequality

|LU | ≤ |V U | (4.7)

where V (x) is a N × N matrix, has the strong unique continuation property from the origin
whenever V (x) ≤ C |x |−1, with 0 ≤ C ≤ 1. It is also proved in [16] that the condition C ≤ 1
cannot be improved. See also [33] and the references cited there. We prove the following
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Theorem 4.4 Let f ∈ W 1,p,v
0 (D) be a solution of the differential inequality (4.7). If |V| ∈

Lr (supp f , u− r
q v

r
p dx) with 1

p = 1
r + 1

q and f vanishes on one side of a hyperplane, then
f ≡ 0.

Proof Since L( f I ) · L( f I ) = −I |∇ f |2, we can see at once that
|∇ f | = |L( f I ) · L( f I )| ≤ |L( f I )|2

With this observation, the proof of Theorem 4.4 is almost a line-by-line repetition of the
proof of Theorem 4.1. We leave the details to the reader. ��
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