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Abstract A non-linear PDE featuring flux limitation effects together with
those of the porous media equation (non-linear Fokker–Planck) is presented
in this paper. We analyze the balance of such diverse effects through the study
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58 J. Calvo et al.

of the existence and qualitative behavior of some admissible patterns, namely
travelingwave solutions, to this singular reaction–diffusion equation.We show
the existence and qualitative behavior of different types of traveling waves:
classical profiles for wave speeds high enough, and discontinuous waves that
are reminiscent of hyperbolic shock waves when the wave speed lowers below
a certain threshold. Some of these solutions are of particular relevance as they
provide models by which the whole solution (and not just the bulk of it, as it
is the case with classical traveling waves) spreads through the medium with
finite speed.

Mathematics Subject Classification Primary 35K57 · 35B36 · 35K67 ·
34Cxx · 70Kxx; Secondary 35B60 · 37Dxx · 76B15 · 35Q35 · 37D50 · 35Q99

1 Introduction, entropy solutions, main results

Reaction–diffusion equations assume that the behavior of the various popula-
tions described is ruled essentially by two processes: local reactions, in which
the populations interact between themselves, and diffusion, which makes the
populations spread out in the physical space. The concept of population is
understood here quite loosely, and several important examples can be found
in developmental biology, ecology, geology, combustion theory, physics or
computer sciences. Particles, free surface water waves, flames, cells, bacteria
or morphogen concentrations in chemical processes may qualify as such, see
for instance [6,18,32,37,42]. Reaction–diffusion equations constitute a usual
description for complex systems in all these areas. The prototypical model in
this context can be written down as

∂u

∂t
= div (D∇u) + F(u), u(t = 0, x) = u0(x). (1.1)

Here D is a coefficient that could be a constant (in the simplest case of linear
diffusion) [31,36,45,46], a function depending on the domain of definition
[10,12,13], a function depending on u [34,51,55,58], or in general a function
D = D(u, ∇u) [30,53], which includes the possibility of fractional diffusion
associatedwithLevy processes [16,17,52]. The function F represents the reac-
tion term. The different models expressed in Eq. (1.1) have been the object of
a intense study in the literature in order to clarify : (1) the qualitative differ-
ences when we consider non-linear diffusion operators like the p-Laplacian or
the one of the porous media equation in contrast with the behavior associated
with a linear diffusion term, (2) what kind of particular solutions (as traveling
waves, kinks, or solitons, for instance) can be obtained when different func-
tional forms for F(u) are proposed, (3) the behavior of systems of equations
of type (1.1), or even more complicated instances of them—this is a way to
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Pattern formation in a flux limited equation 59

describe pattern formation and cooperative behavior, see [32] for instance,
(4) the effect of noise on front propagation, see for example [47], (5) the sta-
bility or long time asymptotic properties of the patterns, see [11,29,33], for
instance.

Our research in this paper falls into the first and second categories above.
We analyze the existence of traveling wave solutions associated to a non-linear
diffusion PDE coupled to a reaction term of Fisher–Kolmogorov–Petrovskii–
Piskunov (FKPP) type [31,36], namely

∂u

∂t
= ν div x

⎛
⎝ um∇u√

|u|2 + ν2

c2
|∇u|2

⎞
⎠ + F(u), in QT =]0, T [×R

N , (1.2)

where m > 1 and F(u) is a Lipschitz continuous function such that F(0) =
F(1) = 0. Here ν is a kinematic viscosity and c > 0 is a characteristic speed
[53]. Note that (1.2) is a renormalization with respect to the carrying capacity
v0 of the equation

∂u

∂t
= νv0 div x

⎛
⎜⎝

(
u
v0

)m ∇xu√
|u|2 + ν2

c2
|∇u|2

⎞
⎟⎠ + F

(
u

v0

)
. (1.3)

The reaction term in the FKPP case would be given by F = Kv0u (1 − u),
where K is the growth rate. Although the results and techniques introduced in
this paper can be extended to more general cases, we focus our attention on
the FKPP case to deal with concrete numerical examples.

Equation (1.2) belongs to the class of flux-limited diffusion equations. Flux
limited diffusion ideas were introduced by Rosenau in [26,53] in order to
restore the finite speed of propagation of signals in a medium. This property is
lost in the classical transport theory that predicts the non-physical divergence
of the flux with the gradient, as it happens also with the classical theory of
heat conduction (based in Fourier’s law) and with the linear diffusion theory
(based in Fick’s law). Besides Rosenau’s derivation [53], the particular case
of (1.2) where m = 1 was also formally derived by Brenier by means of
Monge–Kantorovich’s mass transport theory in [15] (this has been done later
in a rigorous way in [44]), where he named it as the relativistic heat equation.
More recently, (1.2) has been shown (m = 1) to be an effective model to
describe the transport of morphogens in cellular communication to induce
distinct cell fates in a concentration-dependent manner [59].

The model (1.2) (with F = 0) was introduced in [53] (whenm = 3/2) as an
example of flux limited diffusion equation in the context of heat diffusion in a
neutral gas. As shown in [53] the acoustic speed is a function of the temperature
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60 J. Calvo et al.

and the front is convected nonlinearly. This has been shown mathematically
in [22] and it has been proved in [24] that solutions of (1.2) converge to
solutions of the classical porous medium equation as c → ∞. Thus, this
model offers a novel dynamical behavior to describe diffusion and propagation
phenomena in real media. The finite propagation property is at the basis of this
behavior.

Other flux-limited versions of the porous medium equation, namely

ut = νdiv

⎛
⎝ u∇um√

1 + ν2

c2
|∇um |

⎞
⎠ , m > 0, (1.4)

were introduced in [26,53] and further studied in [23,24] (where convergence
to the classical porous medium equation is proved). They can be also derived
using transport theory as proposed in [15] (see also [24]). In this case, the
acoustic speed is the constant c [23] and thus independent of u. The different
behavior between both types of models is not yet fully understood, but numer-
ical evidence [5,26,43] shows that model (1.2) may have a richer behavior
creating discontinuity fronts starting from smooth initial conditions, while the
model (1.4) exhibits a behavior more similar to the corresponding standard
porous medium equation [26]. Based on this fruitful dynamical behavior, our
purpose here is to concentrate on the study of (1.2) leaving the study of trav-
eling waves for model (1.4) for future research.

The dynamics produced by the combined effects of flux limitation and the
non-linearities of porous media type in (1.2) (F = 0) (non-linear Fokker–
Planck) may be relevant for its potential applicability in the study of other
similar operators. From a mathematical point of view, this combination
demands the use of different techniques and ideas coming from the fields
of non-linear diffusion (non-linear semigroups) and scalar conservation laws,
e.g. front propagation and entropy solutions. This concept of entropy solution
determines the geometrical features of the admissible solutions because the
structure of the singularities that a solution may eventually display is strongly
restricted, by virtue of a series of constraints that are ultimately relatedwith the
physical principle stating that solutions cannot violate causality. To be more
precise, jump discontinuities are characterized by having a vertical profile that
moves according to a Rankine–Hugoniot law.

As we will show, the reaction–diffusion equation (1.2) exhibits new prop-
erties with respect to the classical reaction terms coupled with linear diffusion
mechanisms. The existence of singular traveling waves is one of these new
properties, and it is object of study in this paper. The construction of such
singular patterns requires the development of novel arguments in dynamical
systems. These involve the use of invariant manifolds and blow-up control to
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Pattern formation in a flux limited equation 61

analyze the singular phase diagrams associated to the ODE satisfied by travel-
ing wave solutions of (1.2). In fact, for some choices of the physical constants
the classical theory breaks down and we need to use the concept of entropy
solution in the dynamical system context and the Rankine–Hugoniot jump
condition to construct our profiles, producing discontinuous traveling waves
(which, for some particular speed values, may have their support in a half
line). This behavior is reminiscent of shock waves in hyperbolic conservation
laws. Our analysis gives further insight into the properties of the solutions of
(1.2) that were experimentally studied in [5,26,43] when F = 0, in particular
on the existence of solutions which are discontinuous in the interior of their
support.

Let us recall that there are several instances of traveling wave solutions
not supported in the whole line arising in models with non-linear diffusion
mechanisms coupledwith reaction terms, amongwhichwemention [7,30,48–
50,54–57]. This is an issue of great relevance in several contexts where an
infinite speed of propagation of the support is inconsistent with the exper-
imental observations. The traveling waves supported on a half line that are
constructed in the previous references are all continuous functions. To our
knowledge, only the results in [19,39,40] and the ones in this paper are able
to produce traveling waves that are not only supported on a half line but also
exhibit sharp discontinuity fronts. The papers [39,40] study traveling waves
for models including directly hyperbolic terms of Burger’s type coupled with a

diffusion operator of curvature type

(
ux√

1+|ux |2

)

x
and no reaction term. They

exhibit the existence of a critical regime above which discontinuous transi-
tions in the traveling wave show up. The research carried in [41] is also related
to these issues, as discontinuous steady states, which are not traveling waves,
supported in a half line are obtained out of a reaction–diffusion equationwhose
diffusionmechanism is very similar to that in (1.2), but avoiding the singularity
at u = 0 (say of curvature type); however the reaction term is not of FKPP type,
using cubic and quintic non-linearities, and the techniques based on numeri-
cal and asymptotic methods are different. Note that the cubic non-linearity of
the Allen–Cahn term produces a bistability effect, which helps in the study
of the unique associated traveling wave. The case of the reaction FKPP term
is different as regards the stability of traveling waves and their uniqueness.
Studying these phenomena may open new perspectives of application of these
models to biology or traffic flow frameworks, for instance.

Let us now introduce our assumptions on the reaction term F .

1.1 Assumptions on the reaction term

We will be concerned with the analysis of traveling wave solutions to a family
of one-dimensional non-linear flux limited diffusion equations coupled with
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62 J. Calvo et al.

a reaction term of FKPP type. Concretely, we are interested in the non-linear
diffusion equation which can be written down as (1.2), with m > 1. The
analysis of such models with F ≡ 0 was the object of [4,5]. We assume that
F(u) satisfies the following properties:

• F ∈ C1([0, 1]), F(0) = F(1) = 0, and F(u) > 0 for every u ∈]0, 1[.
• F ′(1) < 0.

Note that we can write F(u) = uK (u) with

• K ∈ C1(]0, 1]) ∩ C0([0, 1]).
• K (1) = 0 and K (u) > 0, ∀u ∈]0, 1[.
• K (0) = F ′(0) ≥ 0, K ′(1) = F ′(1) < 0.

This allows for traveling fronts that connect the constant state u = 1 [which,
before normalization, would correspond to the state u = v0, see (1.3)] with the
zero state. This can be justified by the comparison principle given in Theorem
4.5, which ensures that we can restrict ourselves to the study of solutions
between these two constant states. We suggest the reader to keep in mind the
prototypical case F(u) = u p(1−uq), where p, q ≥ 1 (see [46] and references
therein for applications). The conditions on function F classify it as a “Type
A” reaction function according with the characterization of [14].

The next thing we do is to analyze the structure of discontinuous solutions
to (1.2). This will make clear what kind of traveling fronts are to be expected.

1.2 Entropy solutions and the Rankine–Hugoniot condition

Equation (1.2) is a particular instance of the class of flux limited diffusion equa-
tions for which the correct concept of solution, allowing to prove existence
and uniqueness results, is the notion of entropy solution [4,20,21]. Although
somewhat involved, this notion is necessary since (1.2) (as many other flux
limited diffusion equations) has a parabolic-hyperbolic behavior, with solu-
tions that may exhibit moving discontinuity fronts [5,26]. In particular, we
notice in passing that the right function space to study this class of solutions
is the space of functions of bounded variation.

As usual, the notion of entropy solution of (1.2) is described in terms of
a set of inequalities of Kruzhkov type [38] that are well adapted to prove
uniqueness results. But, as proved in [22] for F = 0, we can give a geometric
characterization of entropy conditions on the jump set of solutions of (1.2).
Indeed, in their jump set, entropy solutions of (1.2) have a vertical graph and
this is equivalent to the entropy inequalities there. This permits also to give
an explicit form to Rankine–Hugoniot condition that expresses the velocity of
moving discontinuity fronts [22]. Both things, the geometric characterization
of entropy solutions and the Rankine–Hugoniot condition, are relevant for us
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Pattern formation in a flux limited equation 63

here. Indeed, they will guide us in the search for traveling waves of (1.2), after
reducing it to the study of an associated dynamical system (see Sect. 2). Thus,
our approach is based on the analysis of that system, taking into account the
properties of entropy solutions of (1.2).

Let us briefly recall both theRankine–Hugoniot condition and the geometric
characterization of entropy solutions of (1.2) in a context that is suitable for our
purposes here. Since we follow the presentation in [22] we will skip the proofs
of the given statements. For continuity of the presentation, the notation and
basic background on the functional setting, the definition of entropy solutions
and basic existence and uniqueness results for (1.2) are given in the appendix in
Sect. 4 (see also [1]). Although the case we are interested in here corresponds
to N = 1, let us write them in the general case N ≥ 1.

Let QT =]0, T [×R
N . Assume that u ∈ BVloc(QT ). Let us denote by Ju

the jump set of u as a function of (t, x). For any t > 0, we denote by Ju(t)
the jump set of u(t) ∈ BVloc(RN ). Let ν := νu = (νt , νx ) be the unit normal
to the jump set of u so that the jump part of the distributional derivative reads
D j
t,xu = [u]νHN |Ju , where HN is the N -dimensional Hausdorff measure in

R
N .Wedenote by ν Ju(t) the unit normal to the jump set of u(t) so that D j

xu(t) =
[u(t)]ν Ju(t)HN−1|Ju(t) . Here [u](t, x) := u+(t, x)−u−(t, x) denotes the jump
of u at (t, x) ∈ Ju and [u(t)](x) := u(t)+(x) − u(t)−(x) denotes the jump of
u(t) at the point x ∈ Ju(t).

Let us recall the definition of the speed of the discontinuity set of u [22].

Definition 1.1 Let u ∈ BVloc(QT ), F ∈ L1
loc(R

N ), and let z ∈ L∞([0, T ] ×
R

N ,RN ) be such that ut = div z + F in D′(QT ). We define the speed of the
discontinuity set of u as v(t, x) = νt (t,x)|νx (t,x)| H

N -a.e. on Ju .

This definition has a sense since, when u ∈ BVloc(QT ), F ∈ L1
loc(R

N ),
z ∈ L∞([0, T ] ×R

N ,RN ) and ut = div z+ F inD′(QT ), we have (see [22],
Lemma 6.4) that

HN {(t, x) ∈ Ju : νx (t, x) = 0} = 0.

In our next result we state the Rankine–Hugoniot condition in a context that
covers the case of Eq. (1.2). The proof follows as in [22] and we omit it.

Proposition 1.2 Assume that F : R → R is Lipschitz. Let u ∈ BVloc(]0, T
[×R

N ) and let z ∈ L∞([0, T ] × R
N ,RN ) be such that ut = div z + F(u).

For L1 almost any t > 0 we have

[u(t)](x)v(t, x) = [[z · ν Ju(t)]]+− HN−1-a.e. in Ju(t), (1.5)

where [[z · ν Ju(t)]]+− denotes the difference of traces from both sides of Ju(t).
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64 J. Calvo et al.

We call outer side of Ju(t) the one to which ν Ju(t) is pointing. Thus, the outer
trace is u(t) = u(t)+. Notice that with this notation, the Rankine–Hugoniot
condition (1.5) is expressed in an invariant way. We have denoted as [z · ν Ju(t)]
the weak trace of the normal component of z on Ju(t). This notion is well
defined since z is a bounded vector field whose divergence is a Radon measure
[8,22,25]. This is covered by the results in [8,25] if Ju(t) is locally a Lipschitz
surface. In the present case, we need the further developments in [22].

Assume that m > 1. As in [22], the notion of entropy solution of (1.2) (see
Sect. 4) can be expressed as a set of inequalities that can be translated into a
geometric condition on the jump set of the solution. Informally, one can say
that jump discontinuities are fronts with a vertical contact angle moving at
the speed given by the Rankine–Hugoniot condition. This can be proved as in
[22].

Proposition 1.3 Let F : R → R be a Lipschitz function. Let u ∈ C([0, T ];
L1
loc(R

N )) ∩BVloc(]0, T [×R
N ). Assume that Du = Dau + D ju, that is,

Du has no Cantor part. Assume that ut = div z + F(u) in D′(QT ), where
z = a(u, ∇u) is the flux of (1.2). Then u is an entropy solution of (1.2) if and
only if for L1-almost any t > 0

[z · ν Ju(t)]+ = c(u+(t))m and [z · ν Ju(t)]− = c(u−(t))m (1.6)

hold HN−1 a.e. on Ju(t). Moreover, from Proposition 1.2, the velocity of the
discontinuity fronts is

v = c
(u+(t))m − (u−(t))m

u+(t) − u−(t)
. (1.7)

To conclude, let us rephrase the conditions (1.6) in a more geometric way.
Under some additional assumptions they amount to a vertical profile of u on
its jump set. This is the case if we assume that forHN almost all x ∈ Ju there
is a ball Bx centered at x such that either (a) or (b) hold, where

(a) u|Bx ≥ α > 0,
(b) Ju ∩ Bx is the graph of a Lipschitz function with Bx\Ju = B1

x ∪ B2
x ,

where B1
x , B

2
x are open and connected, u ≥ α > 0 in B1

x , while the trace
of u on Ju ∩ ∂B2

x computed from B2
x is zero.

In both cases, under the assumptions of Proposition 1.3, by Lemma 5.6 in [22]
we can cancel um on both sides of the identities in (1.6) and obtain

⎡
⎣ ∇u√

u2 + ν2

c2
|∇u|2

· ν Ju(t)

⎤
⎦

+

= c

ν
on Ju ∩ B(x, r). (1.8)
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If (a) holds we also have

⎡
⎣ ∇u√

u2 + ν2

c2
|∇u|2

· ν Ju(t)

⎤
⎦

−

= c

ν
on Ju ∩ B(x, r). (1.9)

In dimension one, assuming that the jump point is isolated and that u is smooth
out of the discontinuity, the above conditionsmean that the graph ofu is vertical
at the discontinuity points. The same can be said in any dimension if Ju is a
regular surface and u is smooth out of the discontinuity set. In themore general
case, the traces in (1.8), (1.9) are interpreted in a weak sense [8,22,25].

We conclude this first section by introducing the main results of this paper.

1.3 Statement of the main results

We assume thatm > 1.We look for one-dimensional incomingwave solutions
of (1.2) with range in [0, 1], traveling at constant speed σ > 0, with their
shape being completely unaltered. That is, we look for solutions of the form
u(x − σ t) ≡ u(ξ). In a first step we will study decreasing traveling profiles,
but we will prove that monotonicity is not a real constraint because these are
the only piecewise smooth entropy solutions of (1.2) having a traveling wave
structure. In fact, these profiles will connect 1 at −∞ and 0 at ∞ and satisfy
a null-flux-at-infinity condition (see Definition 4.4 in Appendix 4.3.3), which
assures the uniqueness of entropy solution for system (1.2). Let usmake precise
that when we say that a function is piecewise smooth, up to a finite number
of points, we understand that at those singular points there is a jump either of
the function or of its first derivative. Let us also remark that the existence of a
traveling wave profile implies the existence of a parametric family of traveling
wave solutions due to spatial translations. For this type of solutions our main
result (see Fig. 1) is the following:

Theorem 1.4 Let m > 1. The following results are verified

i) Existence: There exist two values 0 < σent < σsmooth < mc, depending
on c, ν,m and F, such that:

(1) for σ > σsmooth there exists a unique smooth traveling wave solution
of (1.2),

(2) for σ = σsmooth there exists a traveling wave solution of (1.2), which
is continuous but not smooth,

(3) for σsmooth > σ ≥ σent there exists a traveling wave solution of (1.2),
which is discontinuous.

ii) Uniqueness: for any fixed value of σ ∈ [σent , +∞[, after normalization
(modulo spatial translations) there is just one traveling wave solution in
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the class of piecewise smooth solutions (that is, smooth except maybe at
a finite number of points) with range in [0, 1] and satisfying the entropy
conditions.

iii) Continuity: Assume that there is a value p ≥ 1 such that

lim inf
u→0

F(u)

u p
= k ∈]0, +∞]. (1.10)

After suitable normalization (see Definition 3.6 below), there is a family
of traveling wave profiles uNσ (ξ) for σ ∈ [σent , +∞[ which enjoys the
following property:

lim
σ1→σ2

‖uNσ1 − uNσ2‖L p(R) + ‖uNσ1 − uNσ2‖L∞(R) = 0,

for any σ1, σ2 ∈ [σent , +∞[.
Remark 1.5 Note that condition (1.10) has been introduced to complement the
uniform convergence with a convergence in some L p space. Other possible
assumptions could involve different spaces. Let us point out that when the
condition (1.10) holds for some p ≥ 1, then it is also verified for any value of
p above this one. When F is analytic, we can take p as the order of the zero
of F at u = 0. In the general case, we may not be able to find a minimal value
of p such that (1.10) is fulfilled, an example of this situation being given by
F(u) = u2 log

( 1
u

)
. In any case, the convergence will be at least uniform, see

Sect. 3.

From the perspective of applications, the most interesting and novel solutions
are those corresponding to σ ∈ [σent , σsmooth[, which are discontinuous. In
particular, those corresponding to σ = σent are supported on a half line for
each t , and they encode processes in which the propagation of information
(whatever it may be) takes place at finite speed.

Let us remark that form = 1 the catalog of possible travelingwave solutions
is restricted to cases a and d in Fig. 1. This was discussed in [19] by studying
the corresponding dynamical system, which has a simpler behavior than for
m > 1.

1.4 Plan of the paper

Let us finally explain the plan of the rest of the paper. In Sect. 2 we reduce the
study of traveling wave solutions of (1.2) to the study of an associated dynam-
ical system. We prove the existence of different types of maximal solutions
for this system, depending on the speed of the traveling wave, which will be
smooth for high enough wave speeds and discontinuous when the wave speed
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A
u

ξ

1
B

u

ξ

1

C
u

ξ

1
D

u

ξ

1

Fig. 1 Traveling wave profiles for (1.2), see Theorem 1.4: a σ > σsmooth , b σ = σsmooth , c
σ ∈]σent , σsmooth[, d σ = σent . Vertical dotted lines show points with infinite slope. These
profiles are in correspondence with the orbits depicted in Fig. 2b

lowers below a certain threshold. In Sect. 3 we combine the different wave pro-
files obtained in Sect. 2 and construct the traveling waves of (1.2). Moreover,
we also prove uniqueness of piecewise smooth traveling waves with a given
speed, and their continuous dependence on it. We also give some numerical
insights about how the patterns can be attractors of time-dependent solutions
and how saturation of diffusion in competition with reaction originate shocks.
Finally, in Sect. 4 we provide an appendix with the necessary background
on entropy solutions of (1.2) in order to give sense to the statements in this
Introduction.

2 The associated planar dynamical system

In order to construct traveling wave profiles we substitute the traveling wave
ansatz u(x − σ t) into (1.2). This leads to the study of the following equation:

ν

⎛
⎝ umu′

√
u2 + ν2

c2
|u′|2

⎞
⎠

′
+ σu′ + F(u) = 0 in D′(R). (2.1)

We can use (2.1) to construct piecewise smooth entropy solutions of (1.2). For
that, it suffices to join together smooth solutions of (2.1) defined on intervals
of R fulfilling the following rules:

(i) If solutions corresponding to two consecutive intervals match in a con-
tinuous way, then the first derivative cannot have a jump discontinuity.
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Otherwise the term

⎛
⎝ umu′√

u2+ ν2

c2
|u′|2

⎞
⎠

′
would contribute with a Dirac delta

at the matching point, while the terms σu′ + F(u) would be in L1
loc(R),

and (2.1) could not hold in D′(R). The same argument shows that when
two solutions match in a continuous way and the first derivative is +∞
(resp. −∞) on one side then it must be also +∞ (resp. −∞) on the other
side.

(ii) If solutions corresponding to two consecutive intervals match forming a
jump discontinuity, then the speed of the moving front should obey the
Rankine–Hugoniot condition (1.7) and the slope of the profile at both
sides of the discontinuity must be infinite with the same sign [see (1.8)–
(1.9)], except when one of the solutions we are matching with is the
zero solution. In that case, when looking for decreasing profiles, we only
have to worry about the infinite slope condition on the left side of the
discontinuity.

In order to search for smooth solutions of (2.1) in intervals of R, we write
(2.1) as an autonomous planar system. For that we set

r(ξ) = −ν

c

u′(ξ)√
|u(ξ)|2 + ν2

c2
|u′(ξ)|2

.

When looking for decreasing profiles, we observe that r(ξ) ∈ [0, 1] for all
ξ ∈ R (while r(ξ) ∈ [−1, 1] for all ξ ∈ R if no monotonicity assumption
is made). Moreover, if u(−∞) = 1, u(+∞) = 0 and u is smooth, then
u(ξ) ∈ [0, 1] for all ξ ∈ R. Then, for smooth solutions, (2.1) is equivalent to
the following first order planar dynamical system:

⎧⎪⎨
⎪⎩
u′ = − c

ν

ru√
1 − r2

,

r ′ = 1

um−1

r√
1 − r2

(
mum−1 c

ν
r − σ

ν

)
+ F(u)

cum
.

(2.2)

In what follows only decreasing traveling profiles will be studied, for these
are the only reasonable traveling waves that can be obtained, as we show in
forthcoming Proposition 3.2. Thus, through the present section we restrict the
study of (2.2) to the set [0, 1]× [0, 1]; this will be implicitly assumed in every
statement referring to (2.2). We notice that the flux related to the previous
system is singular at the boundaries r = 1 and u = 0. The first difficulty that
we meet is precisely to give a sense to (2.2) at those points. Indeed, it will turn
out that solutions of (2.2) eventually hit either u = 0 or r = 1. Thus, we will
start considering solutions defined in 0 < r < 1 and 0 < u < 1, which give
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rise to smooth (classical) traveling wave solutions of (2.1) in intervals of R.
Then, entropy solutions of (1.2) can be constructed by pasting those solutions
while satisfying rules (i) and (i i) above. If the solutions of (2.1) are defined
in all R, they are smooth entropy solutions.

Remark 2.1 We note that the change of variables above does not coincide with
the standard one in this type of problems.

In the next two subsections we analyze the planar system (2.2). The knowl-
edge of the Rankine–Hugoniot relation (1.7) will be crucial to match solutions
of (2.2) producing discontinuous profiles that satisfy the entropy conditions.

2.1 The blow-up sets of the planar system

The following characterization of the clustering points of the orbits solving
(2.2) constitutes a key result in order to analyze the behavior of such orbits.

Proposition 2.2 Let (u, r) :]ω−, ω+[→]0, 1[×]0, 1[ be a maximal solution
of (2.2) with σ > 0. Then it satisfies the following:

(1) if ω− = −∞, then limξ→ω−(u(ξ), r(ξ)) = (1, 0),
(2) if ω+ = +∞, then limξ→ω+(u(ξ), r(ξ)) = (0, r∗),
(3) if ω+ < +∞, then limξ→ω+(u(ξ), r(ξ)) = (u+, 1) for some u+ ∈

[u∗, 1[,
(4) if ω− > −∞, then the limit of (u(ξ), r(ξ)), as ξ → ω−, belongs to one

of the sets ]0, u∗] × {1}, ]0, 1[×{0}, or {1}×]0, 1[.

The points (u∗, 1) and (0, r∗) are defined by

u∗ := u∗(σ ) =
( σ

cm

) 1
m−1

and

r∗ := r∗(σ ) =
νK (0)
cσ√

1 +
(

νK (0)
cσ

)2

where, as we mentioned before, K (0) = F ′(0).
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Proof Westart the proof by justifying the existenceof the limits limξ→ω±(u(ξ),

r(ξ)) = (u±, r±) for any solution of (2.2), then we deal with the four specific
assertions of the proposition. We do this in a series of steps.

Step 1. Using standard arguments on continuation of solutions of an ODE,
it is straightforward to deduce that the pairs (u±, r±) should belong to the
boundary of [0, 1]×[0, 1] in case they exist. To show that these limits exist we
pass to an equivalent system which is absent of singularities. This is achieved
formally multiplying both equations in (2.2) by um−1

√
1 − r2. Thus, we end

up with a system on ]0, 1[×]0, 1[ which is not singular,
{
U ′ = − c

ν
RUm,

R′ = R
(
mUm−1 c

ν
R − σ

ν

) + K (U )
c

√
1 − R2.

(2.3)

Solutions of (2.3) are related to solutions of (2.2) bymeans of r(ξ) = R(φ(ξ)),
u(ξ) = U (φ(ξ)),where φ is an strictly increasing reparametrization governed
by φ′(ξ) = 1

u(ξ)m−1
√

1−r2(ξ)
. The analysis of the directions of the flux on the

boundaries of the (U, R)-domain is the same as the one we would perform
for the (u, r)-system, but having the advantage that the flux is continuous in
[0, 1] × [0, 1].

Step 2. Existence for the initial (and final) value problem for (2.3) is granted
in the whole closed set. The regularity of the flow ensures uniqueness in the
set ]0, 1] × [0, 1[. We also have uniqueness in the set {0} × [0, 1[. This is
seen as follows: First, if an orbit verifies that U (ξ0) = 0 for some ξ0 in its
domain, then it is easily seen using the first equation of (2.3) that U = 0 in
its whole domain of existence. Next, we notice that for every such orbit the
second equation in (2.3) gives the value of R′ as a smooth function of R alone,
thus we have uniqueness of solutions for it.

Step 3.Note that r∗ andu∗ appearwhenwe study the equilibria and bouncing
points—see below—of the (U, R)-system. In fact, the points (0, r∗) and (1, 0)
are equilibria. In addition, the flow in ]0, 1[×]0, 1[ points to the left, except at
the boundaries, where we have the following flux analysis (see Fig. 2a):

(1) If R = 0,U ∈]0, 1[, the flux is completely vertical and pointing inwards.
(2) If U = 1, R ∈]0, 1[, the flux is always pointing inwards.
(3) If R = 1, there are two possibilities depending on the value of σ . If

σ ≥ cm the flux is always heading SW; notice that u∗ ≥ 1 in such a case.
On the other hand, if σ < cm and U ∈]0, u∗[ the flux points SW while
for U ∈]u∗, 1[ the flux points NW.

(4) IfU = 0, we have a positively invariant manifold. For R ∈]0, r∗[ the flux
is completely vertical and pointing upwards.While for R ∈]r∗, 1[ the flux
is again completely vertical but pointing downwards. Solutions of (2.3)
constrained to this manifold are globally attracted by (U = 0, R = r∗).
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A r

u
1

1
u∗(σ)

r∗(σ)

B r

u
1

1

u∗(σsmooth)

u∗(σent)

Fig. 2 a Normalized direction field of the flux related to (2.2) for ν = c = 1, m = 2,
F(u) = u(1 − u) and σ = 4/3. Different types of arrows were used to stress the fact that
the actual flux is singular at the boundaries r = 1 and u = 0. b Numerical solutions to Type I
(solid), II (dashed) and III (dotted) orbits of (2.2) for several values of σ ; see Definitions 2.7 and
2.9 for an explanation of the terminology. The parameters are the same as those on a; with that
choice σent = 0, 437803 and σsmooth = 0, 661621. The lowest Type II and III orbits are those
corresponding to σsmooth . The uppermost Type II orbit corresponds to σent . The intermediate
Type II orbit and the uppermost Type III orbit correspond to a value σ ∈]σent , σsmooth[ and
are related by the jump law (1.7). The values σent and σsmooth are defined in Propositions 2.16
and 2.18

(5) The point (u∗, 1) is a regular bouncing point in the sense that the vector
field is horizontal and pointing to the left. At this level of discussion we
do not have tools to precise if (u±, r±) could be identified with (u∗, 1)
for some solution. As we will specify later, these possibilities can appear
for some types of solutions.

Step 4. If (u, r) is a solution of (2.2) defined in ]ω−, ω+[, then the monotone
change of variables φ : ]ω−, ω+[→]ω(U,R)

− , ω
(U,R)
+ [ allows to obtain -

(U (φ(ξ)), R(φ(ξ)))= (U (ξ ′), R(ξ ′)), which is a solution of (2.3) in the inter-
val ]ω(U,R)

− , ω
(U,R)
+ [. Now we show that the limits lim

ξ ′→ω
(U,R)
±

(U (ξ ′), R(ξ ′))
exist. This is immediate for the component U (ξ ′) as it is monotone. Thanks
to our knowledge of the flux diagram at the boundaries and its continuity on
[0, 1] × [0, 1], we are able to rule out wild oscillations of the orbits close to
their hypothetical clustering points, thus the existence of lim

ξ ′→ω
(U,R)
±

R(ξ ′)
follows easily.

Then we can ensure that

(u±, r±) = lim
ξ→ω±

(u(ξ), r(ξ)) = lim
ξ ′→ω

(U,R)
±

(U (ξ ′), R(ξ ′)).
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From the previous flux analysis (see Fig. 2a) we know that (u−, r−) ∈]0, 1]×
{0}∪]0, u∗]×{1}∪{1}×]0, 1[. The event (u−, r−) = (0, r∗) cannot take place
since u is decreasing. Note also that (u+, r+) ∈ {(0, r∗)}∪ [u∗, 1[×{1}. In the
same way as above (u+, r+) = (1, 0) is excluded since u is decreasing. We
also observe that no solution starting at any point in ]0, 1[×]0, 1[ can reach
the point (1, 1) –it is never an exit point. It only can be an entrance point when
σ ≥ mc. Then, it will be always considered in the entrance set.

Step 5. Now we are ready to prove the precise assertions of the proposition.
We start with the first one. To begin, we note that (u−, r−) does not belong to
]0, 1[×{0}∪{1}×]0, 1[ and that the flow (2.2) at (1, 0) is regular. To show that
(u−, r−) /∈]0, u∗] × {1} we will argue by contradiction (having proved that,
the first assertion follows). For this purpose, we can use the monotonicity of
u and the mean value theorem to construct a sequence ξn → −∞ for which
u′(ξn) → 0. This contradicts the fact that

lim
n→+∞ − r(ξn)u(ξn)√

1 − r(ξn)2
= −∞.

Thus the first assertion is verified.
To prove the second assertion, it is enough to remark that (u+, r+) /∈

[u∗, 1[×{1}. This can be proved by a similar contradiction argument as in
the previous case but taking here a sequence ξn → ∞ for which u′(ξn) → 0.

The third assertion follows if we can prove that limξ→ω+(u(ξ), r(ξ)) =
(0, r∗) cannot hold for ω+ < +∞. Integrating for u(ξ) in (2.2) leads us to

u(ξ) = u(ξ̄ ) exp

{
− c

ν

∫ ξ

ξ̄

r(s) ds√
1 − r2(s)

}
(2.4)

where ξ̄ ∈]ω−, ω+[. If we are to have u(ω+) = 0 for some ω+ < +∞, then
we need the above integral to be divergent for ξ = ω+. But this cannot happen
as r(ξ) tends to r∗ < 1 when ξ goes to ω+.

Finally, to prove the fourth assertionwe have to exclude the case (u−, r−) =
(1, 0). But this is an easy consequence of the fact that (1, 0) is a regular
equilibrium of (2.2). ��

Remark 2.3 Note that when σ = 0 we have that r∗ = 1 and then the proof
of Proposition 2.2 breaks down, namely (2.4) is no longer useful. However, in
this case the behavior of the orbits is simpler as we will show in Proposition
2.15 below.

Remark 2.4 In the proof of Proposition 2.2 we have introduced an auxiliary
regular system in order to analyze the direction fields in [0, 1] × [0, 1]. Note
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that the cases r = 1 and u = 0 are singular for (2.2), but we can analyze the
direction fields on these sets as “limits” of those in the regular regions. These
direction fields coincide with those of the regular system (2.3), see Fig. 2a.

2.2 Solutions to the planar system defined on a half line

It will be proved that the construction of piecewise smooth traveling waves
to (1.2) uses only maximal orbits of (2.2) (see Proposition 3.2). In Fig. 3
we have compiled the different options given by Proposition 2.2, that defines
maximal solutions as well as their corresponding orbits. Only the cases a and b
in Fig. 3 are useful to construct piecewise solutions, while the remaining cases
cannot be taken into account because they violate that requirement of entropy

A
u

ξ

1

u

r

B
u

ξ

1

u

r

C
u

ξ

1

u

r

D
u

ξ

1

u

r

E
u

ξ

1

u

r

F
u

ξ

1

u

r

Fig. 3 This figure shows different situations that follow from Proposition 2.2. Each curve
represents the decreasing solutions (2.1) in the plane (ξ, u), where the dashed line is u ≡ 1.
The small window in each graph represents the orbit, i.e. the inclusion of these solutions as a
first component of the system (2.2) in (0, 1)2. Vertical dotted lines in a, b, e and f show points
with infinite slope.Horizontal dotted lines in c and e show points with zero slope. These graphs
are obtained by combining the options (1) and (4) with (2) and (3) of Proposition 2.2. Option
(1) + (2) is skipped in this chart, because it was already shown in Fig. 1a, and corresponds to
the classic profile of a traveling wave defined inR. a Stems from the combination of (1) and (3)
and is a solution defined on a half-line bounded to the right. b, c and d Correspond to (2) + (4),
in which the various options of (4) are combined. All of these cases are solutions defined in a
half-line bounded to the left. e and f Are obtained by combining (3) with the latest options of (4).
The first option of (4) cannot appear together with (3) because u is necessarily decreasing and
not constant. By adding to these figures the solutions u = 0 and u = 1 we have the full range
of possible admissible (decreasing and constant) solutions of (2.2) in u ∈ [0, 1]. Notice that c
and e, viewed as solutions of (2.2), are not maximal as they can be continued by a downward
branch at the lower end point. Also, extending the reaction term F to a neighborhood of u = 1,
neither d nor f are maximal. Therefore, there only remain a and b as maximal solutions not
defined globally
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solutions consisting of having a vertical graph in the possible matching points
(see the Step 2 in the proof of Proposition 3.2).

So, in this section we will deal with solutions globally defined in the whole
R, or with solutions defined in a half line (that is ] − ∞, ω+[ or ]ω−, +∞[)
and such that their slope at ω± is infinite.

The following theorem describes all those orbits defined inR or ]−∞, ω+[.
Theorem 2.5 For each value of σ ≥ 0 there exists, up to reparametrization,
a unique solution of (2.2) defined in ] − ∞, ω+[ with ω+ ≤ ∞. Furthermore,
this solution satisfies:

lim
ξ→−∞(u(ξ), r(ξ)) = (1, 0) (2.5)

and limξ→−∞ u′(ξ) = 0. Finally, we have that

lim
ξ→−∞

r ′(ξ)

u′(ξ)
= λσ = 1

c

2νK ′(1)
σ + √

σ 2 − 4K ′(1)ν
< 0. (2.6)

Proof Let us observe that if any such orbit is to exist, then it has to verify (2.5),
thanks to Proposition 2.2. The linearization of the system near (u = 1, r = 0)
gives the following Jacobian matrix:

⎛
⎜⎝

0 − c

ν
K ′(1)
c

−σ

ν

⎞
⎟⎠ .

After computing its eigenvalues

λ±
σ = − σ

2ν
± 1

2

√
σ 2

ν2
− 4K ′(1)

ν
,

we learn that this point is hyperbolic. This allows to apply the unstable
manifold theorem (see [35]). Since the eigenvector associated with λ+

σ is

(c σ+
√

σ 2−4νK ′(1)
2νK ′(1) , 1), the solutions starting at (1, 0) enter the diagram, and

they do it with a slope given by (2.6). Thanks to the Hartman–Großman theo-
rem, these solutions are uniquely determined for a given value of σ . ��
Remark 2.6 The lower the value of σ , the higher the entrance angle (measured
with respect to the u-axis). There is a maximum value for σ = 0, namely

λ0 = −
√

ν|K ′(1)|
c

.

We also stress that λσ is increasing as a function of σ .
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At this pointwe introduce some terminology thatwill be useful in the sequel,
see Fig. 2. We name the particular types of trajectories we will be interested
in.

Definition 2.7 Let (u(ξ), r(ξ)) ∈]0, 1[×]0, 1[ be a maximal solution of
(2.2)–(2.5) for a given value of σ . We shall say that:

• (u, r) is a Type I orbit if (u, r) is defined inR and limξ→+∞(u(ξ), r(ξ)) =
(0, r∗(σ ))

• (u, r) is a Type II orbit if (u, r) is defined in ] − ∞, ω+[, with ω+ < ∞,
and limξ→ω+(u(ξ), r(ξ)) = (u+, 1) for some 0 < u+ < 1.

For a given value of σ only one of these two possibilities occurs.

Note that no Type II orbit can show up for σ ≥ mc, since u∗(σ ) ≥ 1.

Remark 2.8 Any Type I orbit induces a smooth solution to (2.1) and satisfies
limξ→+∞ u(ξ) = 0. Such profiles are depicted in Fig. 1a. Type II orbits can
be found in Fig. 1 too; they correspond to the left branches (with respect to
the vertical dotted line) in the cases b, c and d.

We stress that all profiles coming from Type I orbits are regular solutions of
(2.2) supported in the whole line. Type II orbits may also give rise to traveling
wave solutions, after a suitablematching procedure to extend them to thewhole
real line is performed. This will be explained in Sect. 3, but before that we
need the following:

Definition 2.9 We will say that a maximal solution (u(ξ), r(ξ)) of (2.2) for
a given value of σ is a Type III orbit if (u, r) is defined in ]ω−, +∞[,
limξ→ω−(u(ξ), r(ξ)) = (u−, 1) for some 0 < u− ≤ u∗(σ ) and
limξ→+∞(u(ξ), r(ξ)) = (0, r∗(σ )).

As regards the uniqueness of Type II and III orbits with respect to the beginning
or ending point (in the limit sense established in Proposition 2.2) we will
describe the orbits of the planar system as graphs u �→ r(u) whenever this is
possible. This is always the case if we are prepared to allow some derivatives to
become infinite eventually (and this may happen only at the boundaries of the
domain). Indeed, if a trajectory can be expressed locally as a graph u �→ r(u),
its derivative is given by

dr(u)

du
= r ′

u′ = σ

cum
− m

r

u
− K (u)

um
ν

c2

√
1 − r2

r
. (2.7)

Lemma 2.10 The formulations (2.2) and (2.7) are equivalent. Moreover, reg-
ular solutions to (2.2)–(2.5) correspond to solutions of (2.7) such that
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lim
u→1

r(u) = 0. (2.8)

In addition, limu→1 r ′(u) = λσ holds.

Proof This is straightforward once we notice that u′ < 0 in the domain. ��
Oncewe are able to pass to the formulation given by (2.7), we get the following
result.

Lemma 2.11 Existence and uniqueness for (2.7) holds backwards at any point
of the form (ũ, 1) with u∗(σ ) ≤ ũ < 1. Existence and uniqueness for (2.7)
holds forwards at any point of the form (ũ, 1) with 0 < ũ ≤ u∗(σ ) and ũ < 1.

Proof The existence problem is addressed by solving the initial value problem
for (2.7) with r(ũ) = 1, being ũ �= u∗(σ ). To do this we will use Peano’s
existence theorem, and for that we need a continuous extension of (2.7) to
values r > 1.

In the case ũ > u∗(σ ) we have r ′(ũ) < 0 and, therefore, the function
r defined on ]ũ, ũ + ε[, for some small ε > 0, maps into ]0, 1[, solving
our original problem. This solution can be extended to ]ũ, 1[ and it verifies
r(u) < 1; otherwise we could find a first value u0 > ũ such that r(u0) = 1
and r ′(u0) < 0, which would give us a contradiction.

In a similar way, for ũ < u∗ we find a solution of (2.7) on ]ũ − ε, ũ[ such
that r ′(ũ) > 0, which can be extended to ]0, ũ[.

The case ũ = u∗(σ ) can be treated by approximation. In fact, taking a
sequence ũn → u∗(σ ), ũn �= u∗(σ ) and depending on either ũn < u∗ or
ũn > u∗, we find a solution on ]0, u∗(σ )[ or on ]u∗(σ ), 1[. Note that the
approximating sequence has a partial subsequence which is convergent, via
Peano’s theorem on continuous dependence with respect to initial conditions
and parameters. The limit verifies r(u) ≤ 1 either on the case of solutions in
]0, u∗(σ )[ or on the case of solutions in ]u∗(σ ), 1[. Let us analyze this last
case: a solution of the extended problem (2.7) cannot be equal to 1 on an
interval having u∗(σ ) as its left end, since this is not coherent with the values
of the flux defined by (2.3) at the boundary. On the other hand, the fact that
r(u) < 1 for some value u implies that r(u) < 1 for greater values and thus
for u ∈]u∗(σ ), 1[.

In every case, the uniqueness follows from the change of variable√
1 − r2(u) = s(u) leading to the following differential equation:

s′ = 1

s

(
− σ

cum
+ m

u

)
− σ

(−s2
)

cums
(√

1 − s2 + 1
) − ms

u
+ k(u)

um
ν

c2

= 1

s

(
− σ

cum
+ m

u

)
+ h(u, s),
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where h(u, s) is a Lipschitz function in the second variable in a neighborhood
of (u, s = 0), and s → 1

s

(− σ
cum + m

u

)
is a decreasing function if u > u∗(σ ),

resp. increasing if u < u∗(σ ). We conclude by the classical uniqueness results
for equations with right hand side given by a Lipschitz part plus a monotone
part [35]. ��

The following result allows to construct Type III orbits which start at any
point of ]0, u∗(σ )] × {1}.
Proposition 2.12 For any u− ∈]0, u∗(σ )], there exists a Type III orbit that
satisfies (2.2) and such that

lim
t→ω−

(u(t), r(t)) = (u−, 1). (2.9)

Moreover, this orbit is unique up to reparametrizations.

Proof Let u− ∈]0, u∗(σ )]. Consider the solution of (2.7) such that

r(u−) = 1, (2.10)

and let (r0, u0) be a point on the graph of r , with u0 ∈]0, u−[. It is easy to see
that the solution of

u′ = − c

ν

r(u)u√
1 − r(u)2

(2.11)

verifying u(t0) = u0, for any given t0 ∈ R, supplemented with r(t) = r(u(t)),
is a solution of (2.2) which blows up in ω− > −∞ (singular in u−) and
which satisfies (2.9). We have also that any Type III orbit verifying (2.9) is a
reparametrization of the above one. Thus, a solution (r, u) of (2.2)–(2.9) is a
Type III orbit such thatu′(t) < 0 in ]ω−, +∞[. Therefore,we can deduce thatu
is a diffeomorphismwith its image, which necessarily is ]0, u−[. Then, we can
invert it and take r ◦u−1 :]0, u−[→]0, 1[, which verifies (2.7)–(2.10). Hence,
r ◦ u−1 ≡ r(t) and, as a consequence, u is a solution of (2.11). This allows
to assure that u differs from the previous solution just by a reparametrization.
The same happens with r , as it is obtained from u(t). ��

2.3 Bifurcation from Type I to Type II orbits

The goal of this section is to analyze the structure of discontinuous solutions
of (1.2), in terms of the special classes of orbits defined in Sect. 2.2. Our first
aim is to describe the set of values of σ for which these singular solutions can
be constructed.
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Definition 2.13 Let

�I = {σ ≥ 0 : the associated solution of 2.2–2.5 is a Type I orbit}.
Also, let

�I I = {σ ≥ 0 : the associated solution of 2.2–2.5 is a Type II orbit}.
Note that �I I is bounded from above by mc.

According to Lemma 2.10, for every σ ∈ �I the corresponding solution of
(2.2)–(2.5) derives from a solution rσ :]0, 1[→]0, 1[ of (2.7)–(2.8) satisfying

lim
u→0

rσ (u) = r∗.

Whenσ ∈ �I I , we consider the escape point u+(σ ) of (2.2)–(2.5) through r =
1 as introduced in Definition 2.7. Then, rσ :]u+(σ ), 1[→]0, 1[ is a solution
of (2.7)–(2.8). The function u+ is, therefore, defined from �I I to ]0, 1[ and
verifies u+(σ ) ≥ u∗(σ ). The way to recover the solutions of (2.2)–(2.5) from
the solutions of (2.7)–(2.8) is to integrate the differential equation (2.11) as in
Proposition 2.12.

Nowwe show that the orbits which are candidates for representing traveling
wave profiles are ordered with respect to σ .

Lemma 2.14 If σ1 < σ2, then rσ1(u) > rσ2(u) in their common domain of
definition.

Proof Recall that λσ increases strictly as σ increases (Remark 2.6). Then
rσ1(u) > rσ2(u) in a neighborhood of u = 1. If our thesis is false then there
exists a first value 0 < ũ < 1 such that rσ1(ũ) = rσ2(ũ). Then, the hypoth-

esis σ1 < σ2 implies by (2.7) that
drσ1
du (ũ) <

drσ2
du (ũ), which constitutes a

contradiction. ��
The above result implies that �I and �I I are intervals, i.e., given a value of
σ such that the corresponding orbit is a Type I (resp. Type II) orbit, then this
is also the case for upper (resp. lower) values of σ ; we have also that u+(σ )

is a decreasing function of σ . Moreover, �I ∪ �I I = [0, +∞[ (it is in fact a
Dedekind cut) and in the sense of sets �I I < �I , i.e., if σ ∈ �I I , then �I I
contains all values below this σ , [0, σ ] ⊂ �I I and if σ ∈ �I , then�I contains
all values above this σ , [σ, +∞[⊂ �I ; moreover all the elements of �I I are
below those of �I . Note that at this stage we have not ruled out the possibility
of having �I I = ∅ yet. The following result takes care of this issue.

Proposition 2.15 The maximal orbit associated with σ = 0 verifying (2.7)–
(2.8) exits the phase diagram by a point (u+(0), 1) with u+(0) > 0.
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Proof The Eq. (2.7) can be recast after multiplication by um as

umr ′(u) + mum−1r(u) = − ν

c2
K (u)

√
1 − r2

r
.

This implies

d

du
(umr(u)) ≤ 0.

Assume now that r(u) is defined for u ∈]0, 1[. Then limu→0 umr(u) = 0 and
thus umr(u) is identically equal to zero, which contradicts the fact that the
slope at u = 1 is known to be strictly negative. This shows that r(u) is defined
only in an interval ]u+(0), 1[ and that limu→u+(0) r(u) = 1. ��
The previous result shows that �I I is not empty, at least it contains the value
zero. In the next Proposition we prove that it contains a non-trivial interval of
values and we characterize its supremum.

Proposition 2.16 The value σsmooth = sup{σ : σ ∈ �I I } verifies mc >

σsmooth > 0. Moreover:

(1) any maximal solution satisfying (2.2)–(2.5) with σ > σsmooth is a Type I
orbit,

(2) any maximal solution satisfying (2.2)–(2.5) with σ ≤ σsmooth is a Type II
orbit.

Furthermore, σsmooth is the unique value of σ having the property that the
associated solution, which is a Type II orbit, terminates at the point (u∗(σ ), 1).
Then u+(σsmooth) = u∗(σsmooth).

Proof We notice that for σ > σsmooth we get Type I orbits, while for σ <

σsmooth we get Type II orbits. By Remark 2.8 we also know that σsmooth < mc.
It only remains to prove that σsmooth > 0, that this value belongs to �I I ,
and to verify that u+(σsmooth) = u∗(σsmooth). These claims follow from the
continuous dependence of solutions of (2.2)–(2.5) w.r.t σ . More precisely, ��
Lemma 2.17 Consider the maximal solutions of (2.7) extended to the right
end by means of rσn (1) = 0. The following assertions are satisfied:

(1) Let {σn}n≥0 be a monotonically decreasing sequence such that σn →
σ∞, with σ∞ ∈ �I I . Then the sequence {rσn } of solutions to (2.7)–(2.8)
converges uniformly on compact sets of ]u+(σ∞), 1] to rσ∞ . Moreover, if
σn ∈ �I for all n, then u+(σ∞) = u∗(σ∞), and if σn ∈ �I I for advanced
n, then u+(σn) → u+(σ∞).
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(2) Let {σn}n≥0 be a monotonically increasing sequence such that σn → σ∞,
with σn ∈ �I I . Then, σ∞ ∈ �I I and u+(σn) → u+(σ∞). In addi-
tion, the sequence rσn :]u+(σn), 1] →]0, 1] converges on compact sets
of ]u+(σ∞), 1] to rσ∞ .

Proof As we pointed in the statement of the lemma, in this proof we will
consider the functions rσ to be extended by continuity to their value at u = 1,
even if the differential equation (2.7) is defined only on the open interval, being
singular at r = 0. We split the proof into two steps.

Step 1. Let us start by proving the second assertion. We stress that, due to
Lemma 2.14 and to the monotonicity of σn , the sequence rσn has increasing
intervals of definition ]u+(σn), 1]. Define α = infn∈N

{
u+(σn)

} ; our aim is
to prove that u+(σ∞) is well defined and coincides with α.

As a consequence of Lemma 2.14 we have

⎧⎨
⎩
either rσ∞(u) is defined on u ∈]0, 1]

or u+(σ∞) ≤ α.

(2.12)

Moreover, given u ∈]α, 1], from Lemma 2.14 we deduce that the value rσn (u)

is defined for n ∈ N large enough. Furthermore, these values constitute a
decreasing sequence. Then, we define

⎧⎨
⎩
r̃ : ]α, 1] →]0, 1]

r̃(u) = lim
n→∞ rσn (u).

The alternative (2.12) implies that the domain of any rσn is contained in that
of r̃ . Using again Lemma 2.14 we obtain

rσ∞(u) ≤ r̃(u), ∀u ∈]α, 1]. (2.13)

Now, the inequality u+(σn) ≥ u∗(σn) leads to

α ≥ u∗(σ∞) > 0. (2.14)

We also have the following estimate which is independent of n

K (u)

rσn(u)

≤ sup
u∈]α,1[

K (u)

rσ∞(u)
, ∀u ∈]u+(σn), 1[. (2.15)

Note that the function u ∈]α, 1[�→ K (u)
rσ∞ (u)

is bounded at both endpoints –recall

that K ′(1) exists– and thus on its whole domain.

123



Pattern formation in a flux limited equation 81

Combining (2.14), (2.15) and (2.7) we deduce

|r ′
σn

(u)| ≤ M, ∀u ∈]u+(σn), 1[, (2.16)

where M is independent of n. Then, Ascoli’s theorem ensures that rσn con-
verges to r̃ uniformly on compact sets of ]α, 1]; the bound (2.16) is also valid
at the boundary once all the objects are properly extended. In particular, r̃ is a
continuous function verifying (2.8). At the same time, (2.13) ensures that r ′

σn
also converges uniformly on compact sets of ]α, 1[. Hence, r̃ satisfies (2.7)
and thanks to Lemma 2.10 we have r̃ ≡ rσ∞ on ]α, 1].

Finally, let us prove that α = u+(σ∞). For that, it suffices to check that

lim
u→α

r̃(u) = 1. (2.17)

To do this, let ε > 0 and let u ∈]α, α + ε[. Then for n large enough we have
that |rσn (u) − r̃(u)| < ε. Since also u+(σn) > α for n large enough, we have
that |u−u+(σn)| ≤ ε. Then, the mean value theorem and estimate (2.16) yield
that |rσn (u) − 1| ≤ Mε. Since u ∈]α, α + ε[ we find |r̃(u) − 1| ≤ ε + Mε,
and (2.17) follows. This finishes the proof of the second assertion.

Step 2. We are now concerned with the proof of the first assertion. Due
to Lemma 2.14 the sequence of functions {rσn }n∈N is defined on a common
interval: either ]α, 1] with α = supσn∈�I I

{
u+(σn)

}
> 0 or ]0, 1] when σn ∈

�I for any n ∈ N.
In the first case, the same argument as in the previous step leads to

K (u)

rσn (u)
≤ sup

u∈]α,1[
K (u)

rσ1(u)
,

which allows to prove the uniform convergence of rσn to a function r̃ on ]α, 1].
Note that the uniform convergence on compact sets of the sequence r ′

σn
allows

to deduce that r̃ verifies (2.7); this is possible because r̃(u) ≥ rσ1(u) > 0,
∀u ∈]α, 1[. This function r̃ coincides (because it is a pointwise limit) with rσ∞
on ]u+(σ∞), 1[ since in this case Lemma 2.14 ensures that

α ≤ u+(σ∞). (2.18)

The case α �= u+(σ∞) can be excluded by a contradiction argument. In fact,
r̃ is a C1 function such that r̃(u+(σ∞)) = 1 and r̃ ≤ 1. Thus, this value is a
maximum and, therefore, r̃ ′(u+(σ∞)) = 0. Taking into account (2.7) and

r̃ ′(u+(σ∞)) = lim
u→u+(σ∞)

r̃ ′(u)
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we find u+(σ∞) = u∗(σ∞). Therefore, limn→∞ u∗(σn) ≤ α = limn→∞
u+(σn) < u+(σ∞) = u∗(σ∞), which is in contradiction with (2.18).

It remains to study the case σn ∈ �I , for any n ∈ N. Then, we use a value
α ∈]0, u+(σ∞)[ to argue in a similar way as we did above and we finish once
we find that u+(σ∞) = u∗(σ∞). ��
(Proof of Proposition 2.16, continued)

Assertion 1) in Lemma 2.17 together with Proposition 2.15 prove that
σsmooth > 0, because u∗(σ = 0) < u+(σ = 0). Then we can apply
Lemma 2.17.(2) to any sequence that converges to σsmooth and we conclude
that this value belongs to �I I . Finally, σsmooth is the only value σ such
that u∗(σ ) = u+(σ ). This follows from Lemma 2.17.(1) and the facts that
σ �→ u+(σ ) is strictly decreasing (see the paragraph after Lemma 2.14) and
σ �→ u∗(σ ) is strictly increasing. At this point we can use Proposition 2.12 to
show that the orbit associated to σsmooth can be extended as a continuous curve
further to the right (matching with a Type III orbit). More is true, as we show
in our next result, which is paramount in order to characterize completely the
discontinuous traveling wave solutions of (1.2).

Proposition 2.18 There exists a value 0 < σent < σsmooth such that the
following assertions hold true in the range σent ≤ σ ≤ σsmooth:

(1) Any Type II orbit can be extended to the whole R matching it with a Type
III orbit.

(2) There is only one way to perform the aforementioned matching. It is given
by the following formula:

σ = c
(u+(σ ))m − (u−(σ ))m

u+(σ ) − u−(σ )
. (2.19)

Here (u+(σ ), 1) is the arrival point for the Type II orbit and (u−(σ ), 1)
is the departure point for the Type III orbit.

(3) Moreover σ �→ u−(σ ) is a continuous, strictly increasing mapping, and
the value σent is defined as the value of σ ≥ 0 for which

lim
σ→σent

u−(σ ) = 0.

In addition, we have

lim
σ→σsmooth

u−(σ ) = u+(σsmooth) = u∗(σsmooth).

The proof of this result is just a consequence of the previous ideas, together
with Proposition 1.3 and the following statement.
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Lemma 2.19 Let σ ≤ σsmooth. Then, if (2.19) is fulfilled, there must hold that
σ > σsmooth/m. Whenever (2.19) holds, the pair (u+(σ ), u−(σ )) is unique
and the mapping σ → u−(σ ) is strictly increasing. Finally, (2.19) holds at
least for a neighborhood ]σsmooth − ε, σsmooth] of σsmooth.

Proof For the sake of clarity we will denote u+(σ ), u−(σ ) by u+, u− when-
ever this creates no confusion. Given the value u+, we want to figure out the
value of u− in order that (2.19) holds. It may happen that no such value exists.
To deal with this issue, we consider the continuous function

ψ(u+, x) =
⎧⎨
⎩

(u+)m−xm

u+−x if x �= u+

m(u+)m−1 if x = u+

defined for x ∈ [0, ∞[. The first thing to note is that (2.19) is trivially satisfied
for σ = σsmooth with u+ = u−. Note that once u+ is fixed ψ is a strictly
increasing function, since

∂ψ(u+, x)

∂x
= (u+)m

(u+ − x)2

(
(m − 1)

( x

u+
)m − m

( x

u+
)m−1 + 1

)
> 0 for x �= u+ .

Thus, ψ(u+, ·) is a bijection, ψ(u+, ·) : [0, u+] → [(u+)m−1,m(u+)m−1].
We must check if σ/c belongs to the latter interval. As σ < σsmooth , u∗ =
u+ > (σ/(mc))

1
m−1 we deduce that

σ

c
< m(u+)m−1.

It remains to be determined when do we have that (u+)m−1 ≤ σ/c. Notice
that for σ = σsmooth the above inequality is strict. Thus, it continues to hold
for some neighborhood ]σsmooth − ε, σsmooth], thanks to Lemma 2.17 (more
precisely, we know that the value of u+ increases as σ decreases). The previous
arguments ensure that in such a case there is a unique pair (u+, u−) verifying
(2.19). We can also prove that the mapping σ �→ u−(σ ) is strictly increasing,
because if this is not the case the existence of values σ1 < σ2 such that
u−(σ1) ≥ u−(σ2) leads to the following contradiction:

σ1

c
= ψ(u+(σ1), u

−(σ1)) > ψ(u+(σ2), u
−(σ2)) = σ2

c
,

where we have used that the function ψ is increasing in both variables (by
symmetry) and the fact that u+(σ1) > u+(σ2).
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Now we show that u− ≤ u∗, so that (u−, 1) can be a departure point for a
Type III orbit. More precisely, either u+ = u∗ = u− or u+ > u∗ > u−. To
show that, we write

(u+)m − (u−)m =
∫ u+

u−
msm−1 ds.

Under any of the events u+ ≥ u− > u∗ or u+ > u− ≥ u∗ we have

(u+)m − (u−)m > m(u∗)m−1(u+ − u−).

Then we learn that σ/c > m(u∗)m−1 = σ/c, which constitutes a contra-
diction. This implies that u+ > u∗ > u− or u+ = u∗ = u−. Finally, the
necessary condition σ > σsmooth/m shows up at once, since σsmooth/mc =
(u+(σsmooth))

m−1 and thus the relation u+(σ )m−1 ≤ σ/c (which was seen to
be required in order that an admissible choice of u− exists) cannot hold for
σ = σsmooth/m, being the map σ �→ u+(σ ) strictly decreasing. ��
Remark 2.20 When m = 2 the condition (2.19) reduces to

u− = σ

c
− u+.

Remark 2.21 Estimates so far show that

σsmooth/m < σent < c and σent < σsmooth < mc.

This is coherent with the case m = 1 [19].

3 Construction of traveling wave solutions

The purpose of this section is to prove Theorem 1.4. Let us first precise that
our solutions satisfy the property of having null flux at infinity. First of all, we
have proved in Theorem 2.5 that limξ→−∞ u′(ξ) = 0, but it is also true that

limξ→∞ u′(ξ) = 0 because u′(ξ)
u(ξ)

→ − K (0)
σ

holds, as ξ → ∞, and r∗ < 1.
Then

lim|ξ |→∞
u′(ξ)um(ξ)√

|u(ξ)|2 + ν2

c2
|u′(ξ)|2

= 0,

and our claim follows. Thanks to our study of dynamical system (2.2) we have
all the tools required to describe the traveling wave solutions of (1.2). This is
the object of our next results.
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Proposition 3.1 The following statements hold true:

(1) Any Type I orbit induces a smooth traveling wave u(x − σ t) which is an
entropy solution of (1.2) with null flux at infinity (see Definition 4.4 in
Appendix 4.3.3). Hence they are unique in the sense of the initial value
problem, with initial condition u(x). This is the case for σ > σsmooth.

(2) For any σent ≤ σ ≤ σsmooth, there exists a traveling wave solution
u(x − σ t) with null flux at infinity. These traveling waves are unique
entropy solutions in the sense of the initial value problem, with initial
condition u(x). Moreover:
• When σent < σ < σsmooth the traveling wave is discontinuous at the
junction x − σ t = 0 and smooth off of it. The slope is infinite at both
sides of this point.

• When σ = σsmooth the traveling wave is continuous in the whole line,
x − σ t = ξ ∈ R, and smooth off of the junction at x − σ t = 0. The
slope is infinite at both sides of this point.

• If σ = σent , then u−(σ ) = 0 and the corresponding solution is sup-
ported on a half line x − σ t = ξ ∈ R

−.

Proof (1) is a consequence of Remark 2.8 and Proposition 2.16. The unique-
ness result follows from Theorem 4.5 (see Appendix 4.3.3).

(2)When σ < σsmooth we have that u ∈ C([0, T ]; L1
loc(R

N ))∩BVloc(]0, T
[×R

N ) and Du has no Cantor part. Since by Proposition 2.18 the speed of the
discontinuity fronts satisfies (1.7), then Proposition 1.3 implies that u(x −σ t)
is an entropy solution of (1.2). As a concatenation of Type II and Type III
orbits, it is smooth out of the discontinuity set and has a null flux at infinity.
When σ = σsmooth , the traveling wave satisfies u ∈ C([0, T ]; L1

loc(R
N )) ∩

W 1,1
loc (]0, T [×R

N ). Hence, by Proposition 1.3, it is an entropy solution. As
a concatenation of Type II and Type III orbits, it has a null flux at infinity.
Uniqueness follows from Theorem 4.5 (see Appendix 4.3.3). The additional
statements are consequences of Proposition 2.18. ��

Nowwewonder about the number of travelingwaves that can be constructed
with a given speed. Let us recall that when we say that a function is piecewise
smooth, up to a finite number of points, we understand that at those singular
points there is a jump either of the function or of its first derivative.

Proposition 3.2 Given any σ ∈ [σent , +∞[, the only non-trivial entropy solu-
tion of (1.2) with the form u(x − σ t), having its range in [0, 1] and being
piecewise smooth –up to a finite number of points– is (up to spatial shifts) the
one provided by Proposition 3.1.

Proof The proof is divided into a series of steps.
Step 1. Precise setting of the problem. Let σ ∈ [σent , +∞[ and let u(x−σ t)

be a traveling wave which is piecewise smooth, up to a finite number of
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points, and satisfies the entropy conditions. Recall that, as it was shown in
Sect. 2, traveling wave solutions of (1.2) with range in [0, 1] are in close
correspondence with solutions of the system (2.2) considered over the range
0 ≤ u ≤ 1, −1 ≤ r ≤ 1 (here we are not making any monotonicity assump-
tion). Thus, during this proof we consider the system (2.2) to be defined on
[0, 1] × [−1, 1].

Let Ii =]ξi , ξi+1[, i = 1, . . . , p, be maximal intervals of smoothness of
u, so that ξ1 = −∞, ξp+1 = +∞, and either u or u′ has a jump point at
ξ = ξi for all i = 2, . . . , p. Since Du has no Cantor part, entropy solutions
are characterized by Proposition 1.3 and so observations (i) and (i i) in Sect.
2 hold. Moreover, u is a solution of (2.1) in D′(R) and the pair (u(ξ), r(ξ)) is
a solution of (2.2) in each interval Ii .

Step 2.Weshow that eachof the intervals Ii is amaximal interval of existence
for the system (2.2). Let i be a fixed value. As Ii is a maximal interval of
smoothness, then it is a subset of a maximal interval of existence of (2.2).
Assume for instance that the maximal interval of existence has the form ]ξi , ξ [
for some ξ > ξi+1, the other possibilities can be handled in a similar way.
Then, there exists a smooth pair (u(ξ), r(ξ)) defined on ]ξi , ξ [ as a maximal
solution to (2.2), such that (u, r) and (u, r) coincide over Ii , but (u, r)(ξ+

i+1) �=
(u, r)(ξ+

i+1). As r(ξ
−
i+1) = r(ξ−

i+1) we get that u
′(ξ−

i+1) is finite. Being u(x −
σ t) an entropy solution of (1.2), in case that u(ξ+

i+1) = u(ξ+
i+1) we must have

that u′(ξ+
i+1) = u′(ξ+

i+1) ∈ R thanks to observation (i) at the beginning of
Sect. 2; thus u(ξ) could be extended smoothly to the right of Ii , which would
be a contradiction. Then, this means that u(ξ+

i+1) �= u(ξ+
i+1). Knowing that

u(x − σ t) is an entropy solution of (1.2), observation (ii) at the beginning
of Sect. 2 shows that |u′(ξ−

i+1)| = ∞, but this is again a contradiction as we
already knew that this value was finite. Thus, the only way out is to conclude
that Ii is a maximal interval of existence.

Step 3. Let us prove that (u(ξ), r(ξ)) → (1, 0) as ξ → −∞. Proceeding
as in Proposition 2.2, the analysis of the flow given by (2.2) at the boundaries
of [0, 1] × [−1, 1] is straightforward. This can be combined with arguments
similar to those in Proposition 2.2 to show that either (u(ξ), r(ξ)) tends to
{u = 0} × [−1, 1] when ξ → −∞ or (u(ξ), r(ξ)) → (1, 0) as ξ → −∞.

The first possibility yields only the zero solution: note that the set {u =
0}×[−1, 1] is positively invariant under the flow (2.2). So, no attempt to try to
construct a non-trivial solution such that (u(ξ), r(ξ)) tends to {u = 0}×[−1, 1]
as ξ → −∞ is successful. Indeed, any such solution would be equal to zero
in I1, with ξ2 < +∞, and being not identically zero we have to extend it
further to the right in a non-trivial way. Being {u = 0} × [−1, 1] positively
invariant under the flow, the only way to do this is performing a discontinuous
matching with some other orbit defined in I2. The matching to be performed
has to satisfy the requirements set up in Proposition 1.3, which implies that
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the profile must be traveling from right to left, i.e. σ < 0. This contradicts the
assumptions of the current proposition. Thus, the only chance that is left is to
have (u(ξ), r(ξ)) → (1, 0) as ξ → −∞.

Step 4. By Theorem 2.5 and our assumption on the range of the traveling
wave, the solution (u, r) in I1 is unique and satisfies that (u(ξ), r(ξ)) → (1, 0)
as ξ → −∞. The solution has a decreasing profile in I1 and a limit u(ξ−

2 )

as ξ → ξ−
2 . By Proposition 2.16, if σ > σsmooth , then ξ2 = +∞, and u is

smooth in allR and coincides with the solution constructed in Proposition 3.1.
If σ ∈ [σent , σsmooth], then u is a Type II orbit in I1. Let us prove that p = 2
and the statement of the proposition holds. We distinguish three cases.

a) If σ ∈]σent , σsmooth[, then by Proposition 2.18 we have that u(ξ−
2 ) =

u+(σ ) > u∗(σ ). As in Lemma 2.19, it holds that 0 < u(ξ+
2 ) < u∗(σ )

and then, by Proposition 2.12 (see also Lemma 2.11), I2 =]ξ2, +∞[ and
uniqueness of (2.2) holds in I2. Thus, the solution u of (2.1) in I2 coincides
with the solution of (2.2) in that interval.

b) If σ = σsmooth , then by Proposition 2.18 we have that u(ξ−
2 ) = u+(σ ) =

u∗(σ ) and r(ξ−
2 ) = 1. By the Rankine–Hugoniot condition (2.19) and

observation (i) in Sect. 2, respectively, we have u(ξ+
2 ) = u−(σ ) = u∗(σ )

and r(ξ+
2 ) = 1. Again, by Proposition 2.12 (see also Lemma 2.11), I2 =

]ξ2, +∞[ and uniqueness of (2.2) holds in I2. Thus, the solution u of (2.1)
in I2 coincides with the solution of (2.2) in that interval. In this case, u
has an infinite slope at both sides of ξ2 but r matches continuously there.

c) If σ = σent , then u(ξ−
2 ) = u+(σ ) > u∗(σ ) (see the proof of Lemma

2.19). Recall that, by our definition of σent , we have u−(σent ) = 0. Since
u is an entropy solution, then r(ξ−

2 ) = 1 andRankine–Hugoniot condition
(2.19) holds. Finally,we can ensure that u(ξ) = 0 for ξ ∈]ξ2, ∞[ as the set
{0} × [−1, 1] is a positively invariant manifold of the dynamical system.
The solution coincides with the traveling wave found in Proposition 3.1.

This concludes the proof. ��
Remark 3.3 We stress that as a consequence of Proposition 3.2, no traveling
structures (soliton-like solutions in particular) with range in [0, 1] and speed
σ ≥ 0 other than the ones given by Proposition 3.1 can be constructed (Fig. 4).
Regarding the case σ < 0, a similar analysis could be carried to show that the
only admissible traveling profiles in our framework are mirror images of those
constructed for σ > 0.

Remark 3.4 Let u(t, x) be the entropy solution of (1.2) corresponding to an
initial condition u0 with compact support and such that ‖u0‖∞ < 1. By Propo-
sition 3.1, we know that there is an entropic singular traveling wave, moving
with velocity σent , bounding u0 from above. As a consequence of the compar-
ison principle in Theorem 4.5, there exists a positive constant β, depending on
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u

ξ

1

Fig. 4 An example of a piecewise smooth traveling wave profile which is not monotone that
arises from a solution of (2.2) and for which the wave speed obeys (1.7) for ν = c = 1, m = 2,
F(u) = u(1 − u) and σ = 0, 641233. Vertical dotted lines show points with infinite slope.
Note that the observation (ii) at the beginning of Sect. 2 is not fulfilled, thus this profile does
not solve (1.2) in the entropic sense

the support of u0 and on the shape of the entropic traveling wave, such that the
support of u(t, ·) is contained in (−∞, β + σent t). Using a similar argument
based on waves traveling to the left, the value β can be chosen so that the
support of u(t, ·) is contained in (−β − σent t, β + σent t). Thus u(t, x) has
compact support for any t > 0.

Note also that the traveling waves with support in a half line can be used to
prove that solutions of

∂u

∂t
= ν

⎛
⎝ umux√

u2 + ν2

c2
|ux |2

⎞
⎠

x

, in ]0, T [×R, (3.1)

corresponding to initial data with compact support are compactly supported.
Let us sketch the proof of this fact. Let u0 ∈ (L1(R) ∩ L∞(R))+ and assume
that u0 is supported in [a, b]. Let u(t, x) be the entropy solution of (3.1) with
u(0, x) = u0(x). Observe first that the homogeneity (of degree m > 1) of the
operator in (3.1) implies that for any λ > 0, uλ(t, x) = λ1/(m−1)u(λt, x) is the
entropy solution of (3.1) with initial datum uλ(0, x) = λ1/(m−1)u0(x). By an
appropriate choice of λ depending on ‖u0‖∞ and after a suitable translation of
the initial profile of uσent (eventually with [a, b] in the interior of the support of
uσent ) we may ensure that uλ(0, x) ≤ uσent(x), x ∈ R. Since uσent(x −σentt) is
a super-solution of (3.1), by the comparison principle in Theorem 4.5.(ii) we
have that uλ(t, x) ≤ uσent(x − σentt) for any t > 0. Writing this inequality in
terms of u(t, x) we have u(t, x) ≤ λ−1/(m−1)uσent(x − σent

t
λ
). By comparing

with a traveling wave moving to the left with speed σent we deduce that for
any t > 0 the support of u(t) is contained in

[
a − ε − σent

t
λ
, b + ε + σent

t
λ

]
for some ε, λ > 0 determined by u0.
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3.1 Numerical insights about traveling waves viewed as attractors

Studying the stability of traveling wave solutions and their dynamic ability to
attract other solutions is a very interesting problem that is beyond the scope
of this paper. Another problem that will surely open new lines of research
is to understand how the saturation of diffusion produces shocks (and the
role played by the reaction terms, if any). The idea of this paragraph is to
give some insights of how these two problems raise new challenges in this
context. To do that we use the numerical solutions of the dynamical system
associated with traveling waves (2.2) together with those associated to the
partial differential equation (1.2). In Fig. 5 we have represented both curves
associated to different settings. The travelingwave profiles have been displaced
by matching its discontinuities with those of the time dependent solutions. For
the numerical solution of the time-dependent problem we have used a WENO
solver together with a Runge–Kutta scheme.

Figure 5a describes the evolution of an initial data with compact support
and how does it evolve into an entropic jump which locally around the front
behaves like a traveling wave. By using the comparison principle for solutions
in Theorem 4.5, we deduce that the traveling wave will be above the time
dependent solution of the system (1.2). The entropic traveling wave provides
an upper estimate of the growth rate of the support. Let us precise in the
following result the order of the singularity of the traveling wave solution near
the jump ξ2, where we use the notation of Step 4 in Proposition 3.2.

A
u(t, x)

x

1
B

u(t, x)

x

1

Fig. 5 Dotted lines represent time dependent solutions for (1.2) (the smaller the dots, the more
advanced the times ). Dashed lines describe traveling wave profiles obtained from (2.2) for
different values of σ . In all cases we have used ν = c = 1, F(u) = u(1 − u) and m = 2.
a Time evolution of a compactly supported initial condition with null Dirichlet conditions.
The traveling wave profile depicted, corresponding to σent = 0, 437803, constitutes a super-
solution for the time-dependent solution. b Time evolution of a regular initial condition, with
Neumann boundary conditions. The traveling wave profile depicted corresponds to σ = 0, 57 ∈
]σent , σsmooth [
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Lemma 3.5 Let u be an entropic traveling wave for σ ∈ [σent , σsmooth[. Then,
the vertical angle near the jump ξ2 is of order |ξ − ξ2|− 1

3 .

Proof Using (2.7), we obtain that the points u± at which r(u) touches the edge
r = 1 verify

lim
u→u±

∣∣∣∣
r(u) − 1

u − u±

∣∣∣∣ = lim
u→u±

∣∣r ′(u)
∣∣ = α,

where α = 1
cu±

∣∣∣mc − σu1−m±
∣∣∣. Hence, combining (2.11) together with the

approximation
√
1 − r2 ∼ √

1 − r
√
2 we deduce for σent < σ < σsmooth ,

which implies u± �= u∗, the following equality

lim
ξ→ξ±

2

∣∣u(ξ) − u∓
∣∣ 12 |u′(ξ)| = cu∓√

2α ν
= (c u∓)

3
2

√
2 ν

∣∣∣mc − σu1−m∓
∣∣∣
1
2

.

Then, we have

lim
ξ→ξ±

2

2
3

∣∣u(ξ) − u∓
∣∣ 32

|ξ − ξ2| = (c u∓)
3
2

√
2 ν

∣∣∣mc − σu1−m∓
∣∣∣
1
2

or equivalently

lim
ξ→ξ±

2

|u(ξ) − u∓|
|ξ − ξ2| 23

=

⎛
⎜⎜⎝

3(c u∓)
3
2

2
√
2 ν

∣∣∣mc − σu1−m∓
∣∣∣
1
2

⎞
⎟⎟⎠

2
3

.

Letting β± =
⎛
⎝ 3(c u±)

3
2

2
√
2 ν

∣∣∣mc−σu1−m±
∣∣∣
1
2

⎞
⎠

2
3

, we find

u(ξ) ∼ u+ + β+ |ξ − ξ2| 23 , ξ < ξ2,

u(ξ) ∼ u− − β− |ξ − ξ2| 23 , ξ > ξ2.

For σ = σent , since u(ξ) = 0 = u− = 0 for ξ > ξ2, taking into account that
σ = cum−1+ , we analogously obtain
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u(ξ) ∼
(σ

c

) 1
m−1 + 1

2

(
3c

ν (m − 1)
1
2

) 2
3 (σ

c

) 1
m−1 |ξ − ξ2| 23 , ξ < ξ2, (3.2)

which provides an estimate of the order of approximation of the traveling wave
profile near the front. ��

The numerical time dependent solutions given in Fig. 5a has the same power
law behavior near the front than the corresponding traveling wave (3.2).

In Fig. 5b the numerical calculations show spontaneous singularization of
solutions and the convergence of an initial data towards a traveling wave solu-
tion to the type described in Fig. 1c.

3.2 The L p-continuity w.r.t. the wave speed

The purpose of this paragraph is to prove the continuity of the traveling profiles
constructed in Proposition 3.1 with respect to the wave velocity. In order to
do that it is convenient to choose a privileged normalization for the traveling
profiles, so that we get a family uN (σ ) defined in a unique way. We do this as
follows:

Definition 3.6 Let uNσ with σ ∈ [σent , +∞[ be the family of traveling wave
solutions constructed in Proposition 3.1 and enjoying the following additional
properties:

• If σ > σsmooth we set uNσ (0) = u∗(σsmooth) = u+(σsmooth) =
u−(σsmooth),

• If σsmooth ≥ σ > σent we set limξ→0∓ uNσ (ξ) = u±(σ ).
• If σ = σent we set limξ↑0 uNσ (ξ) = u+(σ ) and uNσ (ξ) = 0, for ξ > 0.

We assume in this section that F satisfies

there is some p ≥ 1 such that lim inf
u→0

F(u)

u p
= k ∈]0, +∞]. (3.3)

Nowwe are going to prove that this specially parameterized family of traveling
wave profiles has the property of continuous dependence with respect to the
wave speed stated in Theorem 1.4, that is,

lim
σ1→σ2

‖uNσ1 − uNσ2‖L p(R) + ‖uNσ1 − uNσ2‖L∞(R) = 0, ∀σ1, σ2 ∈ [σent , +∞[.
(3.4)
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Fig. 6 Numerical
representation of the set D
for ν = c = 1, m = 2,
F(u) = u(1 − u).
Continuous and dashed lines
represent, respectively, the
inverse of the mappings
u+(σ ) and u−(σ )

σ

u
1u+(σsmooth)

σent

σsmooth

D1

D2

D3

To prove the previous result we will need to argue with pairs of the form
(u, σ ) ∈]0, 1[×]0, +∞[ (Fig. 6). We consider the following subsets:

D1 = ]0, 1[×]σsmooth, +∞[,
D2 = {(u, σ ) ∈]0, 1[×]0, +∞[: σent < σ ≤ σsmooth, 0 < u < u−(σ )},
D3 = {(u, σ ) ∈]0, 1[×]0, +∞[: 0 < σ ≤ σsmooth, u+(σ ) < u < 1},

and finally we let D = D1 ∪ D2 ∪ D3.
We observe that the map (u, σ ) �→ rσ (u) is defined at least on D1 ∪ D3. To

extend it to D2 we choose rσ (u) as the solution of (2.7) defined over ]0, u−(σ )[
and such that rσ (u−(σ )) = 1. This extension is justified by Lemma 2.11.

Lemma 3.7 The function (u, σ ) ∈ D �→ rσ (u) is continuous. Moreover, it
has the following properties:

(i) Let σent < σ1 < σ2 ≤ σsmooth, then rσ1(u) > rσ2(u), for any u ∈
]0, u−(σ1)[ (which is their common interval of definition).

(ii) Let σn → σ0 ≥ 0, then there exist u0 ∈]0, 1[ and L > 0 such that

(1 − u)
√
1 − r2σn (u)

u rσn (u)
≥ L , ∀ u ∈]u0, 1[ and n ∈ N. (3.5)

Let σn, σ0 > σent and σn → σent . Then, there exist u0 ∈]0, 1[ and L > 0
such that √

1 − r2σn (u)

rσn (u)
≥ L , ∀ u ∈]u0, 1[ and n ∈ N. (3.6)

Proof Note that the continuity in D1 ∪ D3 follows from the uniform conver-
gence on compact sets given in Lemma 2.17. On the other hand, the continuity
on D2 follows from Peano’s theorem on continuous dependence with respect
to initial conditions, which we apply to any continuous extension of (2.7).
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Thus, our claim will be proved if we are able to ensure that the values of rσ (u)

in ]0, u−(σsmooth)[×{σsmooth} obtained by its extension to D2 coincide with
the values obtained by performing limits of points in D1.

We pick sequences σn ↓ σsmooth and un → u0 ∈]0, u−(σsmooth)[. Coming
back to Lemma 2.11, after bounding r ′

σn
and using Ascoli’s theorem, we notice

that the limit of rσn in ]0, u−(σsmooth)[ (recall that rσn (·) is defined over ]0, 1[)
gives a Type III orbit such that r(u+(σsmooth) = u∗(σsmooth)) = 1. Noting
that the convergence is uniform over compact sets, this allows to conclude.

To prove assertion (i), we argue by contradiction. For that we consider that
there exists ũ ∈]0, u−(σ1)[ such that

rσ1(ũ) ≤ rσ2(ũ). (3.7)

As rσ2(u
−(σ1)) < 1 = rσ1(u

−(σ1)), we can assume that ũ is the last point
for which (3.7) is verified. Then rσ1(ũ) = rσ2(ũ) and r ′

σ2
(ũ) ≤ r ′

σ1
(ũ). By Eq.

(2.7), this contradicts the fact that σ1 < σ2.
Next we move to assertion (ii); we consider the upper bound (3.5) in first

place. Let u0 ∈]0, 1[ such that the left hand side of (3.5) is defined in [u0, 1[,
for any n. To do that, let σ̄ = infn∈N σn and we choose u0 ∈]u+(σ̄ ), 1[, or
u0 ∈]0, 1[ if σ̄ > σsmooth . Now we use the monotonicity of rσ with respect

to σ together with the monotonicity of the function r �→
√
1−r2
r to devise the

following estimate

(1 − u)
√
1 − r2σn (u)

u rσn (u)
≥ 1 − u

u

√
1 − r2σ̄ (u)

rσ̄ (u)
, ∀u ∈]u0, 1[. (3.8)

The right hand side of the (3.8) is positive and bounded from below by a
constant L > 0, since it is bounded at both ends of the interval ]u0, 1[ (note
that limu→1

1−u
u

√
1−r2σ̄ (u)

rσ̄ (u)
= − 1

r ′̄
σ (1) > 0).

To deal with the second estimate (3.6), let u0 ∈]0, 1[ in such a way that the
left hand side of (3.6) is well-defined in ]0, u0[. To do that, we consider again
σ̄ = infn∈N σn and u0 ∈]0, u−(σ̄ )[, or u0 ∈]0, 1[ if σ̄ > σsmooth , which is
consistent with the fact that σ̄ > σent . Then, as in the previous case we can
estimate from below

√
1 − r2σn (u)

rσn (u)
≥

√
1 − r2σ̄ (u)

rσ̄ (u)
, ∀u ∈]0, u0[. (3.9)

123



94 J. Calvo et al.

Now, taking into account

lim
u→0

√
1 − r2σ̄ (u)

rσ̄ (u)
=

⎧⎨
⎩

√
1 − (r∗)2

r∗ , if r∗ > 0,

+∞, if r∗ = 0,

we can deduce that the right hand side of the (3.9) is positive and bounded
from below by a constant L > 0, which concludes the proof. ��

Making use of the graphs u �→ rσ (u)we are able to introduce the following
function:

G(u, σ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
∫ u

u∗(σsmooth)

√
1 − r2σ (v)

vrσ (v)
dv, in D1,

−
∫ u

u−(σ )

√
1 − r2σ (v)

vrσ (v)
dv, in D2,

−
∫ u

u+(σ )

√
1 − r2σ (v)

vrσ (v)
dv, in D3.

We can use this function to recover the traveling wave profiles uσ (ξ).

Lemma 3.8 For any σ > σent and ξ �= 0 we have that

c

ν
G(uNσ (ξ), σ ) = ξ.

Proof We argue first for ξ > 0. Choose 0 < ξ1 < ξ , and integrate (2.11)
between ξ1 and ξ to get

− c

ν

∫ ξ

ξ1

√
1 − r2σ (uNσ (η))

uNσ (η)rσ (uNσ (η))
(uNσ )′(η)dη = ξ − ξ1.

Now, after the change of variables v = uNσ (η), we arrive to

− c

ν

∫ uN
σ (ξ)

uN
σ (ξ1)

√
1 − r2σ (v)

vrσ (v)
dv = ξ − ξ1.

Finally, we let ξ1 → 0; observe that the integrand is positive and in particular
the integral exists. We can argue in a similar way if ξ < 0. ��
Remark 3.9 Note that for σent ≤ σ < σsmooth the traveling wave solutions
uNσ are not well defined for ξ = 0.

Let us focus now on the properties of G.
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Proposition 3.10 The following properties are satisfied:

(1) The function G is continuous over D.
(2) The following assertions give the behavior of G at the boundary of D:

i) G tends to zero when we approach any point of the set

{(u+(σ ), σ ) : 0 < σ ≤ σsmooth} ∪ {(u−(σ ), σ ) : σent < σ ≤ σsmooth} ,

ii) G tends to −∞ when we approach any point of the set {1} × [0, ∞[ ,
iii) G tends to+∞when we approach any point of the set {0}×]σent , ∞[.

Proof Since the function (u, σ ) ∈ D �→ rσ (u) is continuous (Lemma 3.7),
then rσ can be extended continuously by 1 to ]0, 1[×]0, ∞[\D. Thus, G is
also continuous because it is given by the integral of a continuous function
depending continuously on σ , the integral being extended to intervals that also
depend continuously on (u, σ ). This proves assertions (1). and (2).i).

To prove (2). ii), let σn → σ0 and un → 1. By Lemma 3.7.(i i)

√
1 − r2σn (u)

urσn (u)
≥ L

1 − u

is satisfied on some interval ]u0, 1[. This leads us to
G(u, σn) ≤ h + L ln(1 − u),

which holds for u0 < u < 1, where h, L are positive constants not depending
on n. Then, (2). ii) follows.

Let now σn → σ0 > σent and un → 0. Using Lemma 3.7.(i i) again we
find an interval ]0, u0[ for which

√
1 − r2σn (u)

urσn (u)
≥ L

u
.

After integration in [u∗(σsmooth), u] if σ0 ≥ σsmooth or in [u−(σ ), u] if σ0 <

σsmooth (both intervals coincide if σ0 = σsmooth) we obtain

G(u, σn) ≥ h − L ln(u),

for some positive constants h, L which do not depend on n. This proves (2).
iii). ��
Lemma 3.11 The map σ �→ uNσ (ξ) is monotonically increasing for ξ > 0
and monotonically decreasing for ξ < 0.
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Proof Thanks to Lemma 3.7. (i) we have that the mapping σ �→
√

1−r2σ (v)

rσ (v)
is monotonically increasing for any fixed v ∈ [0, 1]. Next, we note that u <

u−(σ ) in D2, with σ �→ u−(σ ) increasing. We also have that u > u+(σ ) in
D3, with σ �→ u+(σ ) decreasing. We combine the previous information with
the representation formula for G given by Lemma 3.8 to obtain the result. ��
Proposition 3.12 Let {σn} ⊂ [σent , +∞[ and σn → σ0 > σent . Then for any
T > 0 the sequence uNσn converges uniformly on [−T, T ]\{0}.
Proof To check the uniform convergence of uNσn on ]0, T ] we argue on [0, T ],
after extending the functions uNσn to ξ = 0 using either u∗(σsmooth), in case
that σ0 ≥ σsmooth , or u−(σn), in case that σ0 ∈]σent , σsmooth[.

We use the characterization of the uniform convergence by sequences: given
any fixed sequence ξn ≥ 0 that converges to some ξ0 > 0, we are to show that
uNσn (ξn) − uσ0(ξn) converges to zero. Since

c

ν
G

(
uNσn (ξn), σn

) = ξn

is bounded, then uNσn (ξn) stays in ]0, 1[ thanks to Proposition 3.10. Any con-
vergent subsequences of uNσn (ξn) will converge to a point u0 ∈]0, 1[, which
may in principle depend on the subsequence. Taking the limit along any such
subsequence we get

c

ν
G(u0, σ0) = ξ0. (3.10)

This relation is solved only by u0 = uNσ0(ξ0), no matter if we are on 0 < u ≤
u−(σ0) or on 0 < u ≤ u∗(σsmooth) – note that G does not change sign within
D2 nor in D3, D1 ∩ {u > u∗} or D1 ∩ {u < u∗}. This shows that in fact
uNσn (ξn) → uNσ0(ξ0) for the whole sequence, and our claim follows.

The case ξn → ξ0 = 0 requires a more detailed analysis because in this
case (3.10) may have two solutions: u+(σ0) and u−(σ0). However, in this case
uNσn (ξn) ≤ limξ↓0 uNσn (ξ) = u−(σn) and, as a consequence, the corresponding
limit ū0 verifies ū0 ≤ u−(σ0). Using (3.10) for ξ0 = 0, we deduce that
ū0 = u−(σ0), which coincides with the extension we made at the beginning
of this proof.

The proof of the uniform convergence over [−T, 0[ is similar and we omit
the details. ��
Remark 3.13 The above result is still valid in the case σn → σ0 = σent in the
interval ] − T, 0[, for any T > 0.

Let us now prove the uniform continuity of the traveling wave profiles with
respect to σ . Consider a sequence σn → σ0 ≥ σent . In a first step we study the
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case σ0 > σent . By Proposition 3.12, it is enough to prove that uNσn (ξn) → 0
as ξn → +∞, and uNσn (ξn) → 1 as ξn → −∞, since this obviously implies
that

∣∣uNσn (ξn) − uNσ0(ξn)
∣∣ → 0. Being both assertions similar, let us prove only

the first one. For that, we note that given ε > 0, there exists ξ̄ such that
uNσ0(ξ̄ ) < ε. Since, by Proposition 3.12, uNσn (ξ̄ ) → uNσ0(ξ̄ ), there is a value n0
such that uNσn (ξ̄ ) < ε for n > n0. Let n1 ∈ N be such that ξn ≥ ξ̄ for any
n > n1. Then, choosing n > max{n0, n1}, we find that uNσn (ξn) ≤ uNσn (ξ̄ ) < ε.

In case that σn → σent we have to distinguish between ]−∞, 0[ and ]0, ∞[.
If ξ ∈] − ∞, 0[ we use Remark 3.13 and Lemma 3.11 to deduce the same
result. For ξ ∈]0, ∞[ we conclude by using the bound uNσn (ξ) ≤ u−(σn).

Finally we end the proof of (3.4) by proving the continuity of the traveling
waveswith respect toσ in L p(R) , where p is given by (3.3). Thiswill conclude
the proof of the continuity assertions of Theorem 1.4.

First, let us prove that

uNσ ∈ L p(R+) and 1 − uNσ ∈ L1(R−). (3.11)

For that we notice that (3.11) holds if F(uNσ ) ∈ L1(R). This is a consequence
of the fact

lim
ξ→∞

F
(
uNσ (ξ)

)
(
uNσ (ξ)

)p = lim inf
u→0

F(u)

(u)p
= k ∈]0, +∞] ,

lim
ξ→−∞

F
(
uNσ (ξ)

)
1 − uNσ (ξ)

= lim
u→1

F(u)

1 − u
= −F ′(1) > 0 .

Now we prove the integrability of F(uNσ ) over the whole real line. For that we
rewrite (2.1) as

F(u(ξ)) = (
cum(ξ)r(ξ) − σu(ξ)

)′
.

Integrating the previous relation and using the boundedness of F , and the
finiteness of lim±∞ u and lim±∞ r , we get that F(uNσ ) ∈ L1(R). Hence,
(3.11) holds.

Since 1 − uNσ ∈ L1(R−) and |1 − uNσ | ≤ 1, we also have that

1 − uNσ ∈ L p(R−). (3.12)

This allowsus to conclude the convergence of any sequenceuNσn tou
N
σ0
in L p(R)

as σn → σ0 ≥ σent . Indeed, by Proposition 3.12 and (3.12) the sequence∣∣uNσn − uNσ0
∣∣p is dominated by a function in L p(R) and converges pointwise
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to 0. The result follows as a consequence of the Dominated Convergence
Theorem thanks to Lemma 3.11.

Remark 3.14 Note that in the proof of the uniform convergence of uNσn we
have not used any hypothesis on the asymptotic behavior of F at 0. Note also
that under the hypothesis K (0) > 0 the L1(R) convergence holds, since this
hypothesis implies that (3.3) is fulfilled for p = 1.

4 Appendix: Entropy solutions

Our purpose in this Appendix is to give the necessary background in order to
introduce the notion of entropy solutions to (1.2), to state some existence and
uniqueness results for them, and to give sense to the properties stated in Sect.
1.2.

Equation (1.2) belongs to the more general class of flux limited diffusion
equations, which has been extensively studied in [2,4,5,21,22]. As shown in
those papers, the notion of entropy solution is the right one in order to prove
existence and uniqueness results and to describe the qualitative features of
solutions. In particular, and closely related to this work, the so-called rela-
tivistic heat equation [which corresponds to m = 1 in (1.2)] coupled with a
Fisher–Kolmogorov type reaction term has been studied in [3,19]. Existence
and uniqueness results for that model were proved in [3], the construction of
traveling waves being the object of [19].

Thus, our first purpose is to give a brief review of the concept of entropy
solution for flux limited diffusion equations. Although we are only concerned
with the case N = 1, we state the results in the more general context where
N ≥ 1 since this may be useful for future reference. For a more detailed
treatment we refer to [4,21]. We consider parabolic equations of the form

⎧⎪⎨
⎪⎩

∂u

∂t
= div a(u, ∇u) + F(u), in QT =]0, T [×R

N

u(0, x) = u0(x), in x ∈ R
N

(4.1)

where F(u) is a Lipschitz continuous function such that F(0) = 0 and
a(z, ζ ) = ∇ζ f (z, ζ ) is associated to a Lagrangian f satisfying a set of tech-
nical assumptions. Let us give a brief account of them, referring to [4,21] for
a thorough presentation. Thus, we assume that

(H) f is continuous on [0, ∞[×R
N and is a convexdifferentiable function

of ζ such that ∇ζ f (z, ζ ) ∈ C([0, ∞[×R
N ). Further, we require f to

satisfy the coercivity and linear growth conditions

C0(z)|ζ | − D0(z) ≤ f (z, ζ ) ≤ M0(z)(|ζ | + 1), (4.2)
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for any (z, ζ ) ∈ [0, ∞[×R
N , and some positive and continuous functions

C0, D0, M0 ∈ C([0, ∞[) with C0(z) > 0 for any z �= 0. Notice that |ζ |
denotes the Euclidian norm of ζ ∈ R

N . We assume that

C0(z) ≥ c0z
m, for some c0 > 0, m ≥ 1, z ∈ [0, ∞[.

Let a(z, ζ ) = ∇ζ f (z, ζ ), (z, ζ ) ∈ [0, ∞[×R
N . We assume that there is a

vector field b(z, ζ ) and a constant M > 0 such that

a(z, ζ ) = zmb(z, ζ ) with |b(z, ζ )| ≤ M, ∀ (z, ζ ) ∈ [0, ∞[×R
N . (4.3)

We consider the function h : [0, ∞[×R
N → R defined by

h(z, ζ ) := a(z, ζ ) · ζ. (4.4)

From the convexity of f in ζ , (4.2) and (4.3), it follows that

C0(z)|ζ | − D1(z) ≤ h(z, ζ ) ≤ Mzm |ζ |,
for any (z, ζ ) ∈ [0, ∞[×R

N , where D1(z) = D0(z)+ f (z, 0).We also assume
that the recession functions f 0, h0 exist, being the recession function g0 of a
function g defined as

g0(x, z, ζ ) = lim
t→0+ tg

(
x, z,

ζ

t

)
.

It is convex and homogeneous of degree 1 in ζ .
Other technical assumptions on f, h are required:

• f 0(z, ζ ) = h0(z, ζ ) for all z ∈ R and ζ ∈ R
N

• h(z, ζ ) = h(z, −ζ ) for all z ∈ R and ζ ∈ R
N

• ∂ai
∂ζi

(z, ζ ) ∈ C(R × R
N ) for any i = 1, . . . , N

• a(z, ζ ) · η ≤ h0(z, η) for all z ∈ R and ζ, η ∈ R
N

• h0(z, ζ ) can be written as h0(z, ζ ) = ϕ(z)ψ0(ζ ), where ϕ is a Lipschitz
continuous function such that ϕ(z) > 0 for any z �= 0 and ψ0 is a convex
function which is homogeneous of degree one

• For any R > 0 there exists a constant C > 0 such that

|(a(z, ζ ) − a(ẑ, ζ )) · (ζ − ζ̂ )| ≤ C |z − ẑ|‖ζ − ζ̂‖
for any (z, ζ ), (z, ζ ) ∈ R × R

N , |z|, |ẑ| ≤ R.

Whenwe say that assumption (H) holds,we refer to the complete set of assump-
tions above.
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For the generalized relativistic heat equation (1.2) the function

f (z, ζ ) = c2

ν
zm

√
z2 + ν2

c2
|ζ |2 (4.5)

satisfies all the assumptions that allow to work in the context of entropy solu-
tions (see [2,4]). In this case

a(z, ζ ) = ν
zmζ√

z2 + ν2

c2
|ζ |2

and h(z, ζ ) = a(z, ζ ) · ζ = ν
zm |ζ |2√

z2 + ν2

c2
|ζ |2

.

Due to the linear growth condition on the Lagrangian, the natural energy space
to study the solutions of (4.1) is the space of functions of bounded variation,
or BV functions. In Sect. 4.1 we recall some basic basic facts about them.

The notion of entropy solutions is based on a set of Kruzkov’s type inequal-
ities and it requires to define a functional calculus for functions whose
truncations are in BV. We briefly review in Sect. 4.2 this functional calcu-
lus which is based on the works [27,28], which prove lower semicontinuity
results for functionals on BV . After this, in Sect. 4.3 we state without proof
an existence and uniqueness result for entropy solutions of (4.1). The proof
can be obtained by a suitable adaptation of the techniques in [3]. Since the
traveling wave solutions we construct are functions in L∞(RN )+, we give a
uniqueness result for solutions in that space (see Sect. 4.3.3). A similar result
was proved in [3] for the case m = 1.

This section gives the necessary background for the characterization of
entropy conditions given in Sect. 1.2.

4.1 Functions of bounded variation and some generalizations

Denote by LN andHN−1 the N -dimensional Lebesgue measure and the (N −
1)-dimensional Hausdorff measure in R

N , respectively. Given an open set �

in RN we denote byD(�) the space of infinitely differentiable functions with
compact support in�. The space of continuous functionswith compact support
in R

N will be denoted by Cc(R
N ).

Recall that if � is an open subset of RN , a function u ∈ L1(�) whose
gradient Du in the sense of distributions is a vector valued Radon measure
with finite total variation in � is called a function of bounded variation. The
class of such functions will be denoted by BV (�). For u ∈ BV (�), the
vector measure Du decomposes into its absolutely continuous and singular
parts Du = Dau + Dsu. Then Dau = ∇u LN , where ∇u is the Radon–
Nikodym derivative of the measure Du with respect to the Lebesgue measure
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LN . We also split Dsu in two parts: the jump part D ju and the Cantor part
Dcu. It is well known (see for instance [1]) that

D ju = (u+ − u−)νuHN−1 Ju,

where u+(x), u−(x) denote the upper and lower approximate limits of u at
x , Ju denotes the set of approximate jump points of u (i.e. points x ∈ �

for which u+(x) �= u−(x)), and νu(x) = Du
|Du|(x), being

Du
|Du| the Radon–

Nikodym derivative of Du with respect to its total variation |Du|. For further
information concerning functions of bounded variation we refer to [1].

We need to consider the following truncation functions. For a < b, let
Ta,b(r) := max(min(b, r), a). We denote

Tr := {Ta,b : 0 < a < b}.

Given any function w and a, b ∈ R we shall use the notation {w ≥ a} = {x ∈
R

N : w(x) ≥ a}, {a ≤ w ≤ b} = {x ∈ R
N : a ≤ w(x) ≤ b}, and similarly

for the sets {w > a}, {w ≤ a}, {w < a}, etc.
We need to consider the following function space

T BV+
r (RN ) :=

{
w ∈ L1(RN )+ : Ta,b(w) − a ∈ BV (RN ), ∀ Ta,b ∈ Tr

}
.

Notice that T BV+
r (RN ) is closely related to the space GBV (RN ) of gener-

alized functions of bounded variation introduced by Di Giorgi and Ambrosio
(see [1]) Using the chain rule for BV-functions (see for instance [1]), one can
give a sense to ∇u for a function u ∈ T BV+(RN ) as the unique function v

which satisfies

∇Ta,b(u) = vχ {a<u<b} LN − a.e., ∀ Ta,b ∈ Tr .

We refer to Lemma 2.1 of [9] or [1] for details.

4.2 Functionals defined on BV

In order to define the notion of entropy solutions of (4.1) and give a charac-
terization of them, we need a functional calculus defined on functions whose
truncations are in BV .

Let � be an open subset of RN . Let g : � ×R×R
N → [0, ∞[ be a Borel

function such that

C(x)|ζ | − D(x) ≤ g(x, z, ζ ) ≤ M ′(x) + M |ζ |
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for any (x, z, ζ ) ∈ � × R × R
N , |z| ≤ R, and any R > 0, where M is a

positive constant and C, D, M ′ ≥ 0 are bounded Borel functions which may
depend on R. Assume that C, D, M ′ ∈ L1(�).

Following Dal Maso [27] we consider the functional:

Rg(u) :=
∫

�

g(x, u(x), ∇u(x)) dx +
∫

�

g0
(
x, ũ(x),

Du

|Du|(x)
)

|Dcu|

+
∫
Ju

(∫ u+(x)

u−(x)
g0(x, s, νu(x)) ds

)
dHN−1(x),

for u ∈ BV (�) ∩ L∞(�), being ũ is the approximated limit of u [1].
In case that� is a bounded set, and under standard continuity and coercivity

assumptions, DalMaso proved in [27] thatRg(u) is L1-lower semi-continuous
for u ∈ BV (�).More recently, DeCicco, Fusco, andVerde [28] have obtained
a very general result about the L1-lower semi-continuity of Rg in BV (RN ).

Assume that g : R × R
N → [0, ∞[ is a Borel function such that

C |ζ | − D ≤ g(z, ζ ) ≤ M(1 + |ζ |) ∀(z, ζ ) ∈ R
N , |z| ≤ R, (4.6)

for any R > 0 and for some constants C, D, M ≥ 0 which may depend on R.
Observe that both functions f, h defined in (4.5), (4.4) satisfy (4.6).

Assume that

χ {u≤a} (g(u(x), 0) − g(a, 0)) , χ {u≥b} (g(u(x), 0) − g(b, 0)) ∈ L1(RN ),

for any u ∈ L1(RN )+. Let u ∈ T BV+
r (RN ) ∩ L∞(RN ) and T = Ta,b ∈ Tr .

For each φ ∈ Cc(R
N ), φ ≥ 0, we define the Radon measure g(u, DT (u)) by

〈g(u, DT (u)), φ〉 := Rφg(Ta,b(u)) +
∫

{u≤a}
φ(x) (g(u(x), 0) − g(a, 0)) dx

+
∫

{u≥b}
φ(x) (g(u(x), 0) − g(b, 0)) dx . (4.7)

If φ ∈ Cc(R
N ), we write φ = φ+ − φ− with φ+ = max(φ, 0), φ− =

−min(φ, 0), and we define 〈g(u, DT (u)), φ〉 := 〈g(u, DT (u)), φ+〉 −
〈g(u, DT (u)), φ−〉.

Recall that, if g(z, ζ ) is continuous in (z, ζ ), convex in ζ for any z ∈ R, and
φ ∈ C1(RN )+ has compact support, then 〈g(u, DT (u)), φ〉 is lower semi-
continuous in T BV+(RN ) with respect to L1(RN )-convergence [28]. This
property is used to prove existence of solutions of (4.1).
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We can now define the required functional calculus. We follow [21] and
note that it represents an extension of the functional calculus in [2,4] that uses
a more restrictive class of test functions.

Let us denote byP the set of Lipschitz continuous functions p : [0, +∞[→
R satisfying p′(s) = 0 for s large enough.We writeP+ := {p ∈ P : p ≥ 0}.

Let S ∈ C([0, ∞[) and p ∈ P ∩ C1([0, ∞[). We denote

fS:p(z, ζ ) = S(z)p′(z) f (z, ζ ), hS:p(z, ζ ) = S(z)p′(z)h(z, ζ ).

If Sp′ ≥ 0, then the function fS:p(z, ζ ) satisfies the assumptions implying the
lower semicontinuity of the associated energy functional [28].

Assume that p(r) = p(Ta,b(r)), 0 < a < b. We assume that u ∈
T BV+

r (RN ) and

χ {u≤a}S(u) ( f (u(x), 0) − f (a, 0)) , χ {[u≥b}S(u) ( f (u(x), 0) − f (b, 0)) ∈ L1(RN ).

Since h(z, 0) = 0, the last assumption clearly holds for h.
Finally, we define fS:p(u, DTa,b(u)), hS:p(u, DTa,b(u)) as the Radonmea-

sures given by (4.7) with g(z, ζ ) = fS:p(z, ζ ) and g(z, ζ ) = hS:p(z, ζ ),
respectively.

4.3 Existence and uniqueness of entropy solutions

4.3.1 The class of test functions

Let us introduce the class of test functions required to define entropy sub- and
super-solutions. If u ∈ T BV+

r (RN ), we define T SUB (resp. T SUPER ) as
the class of functions S, T ∈ P such that

S ≥ 0, S′ ≥ 0 and T ≥ 0, T ′ ≥ 0,

( resp. S ≤ 0, S′ ≥ 0 and T ≥ 0, T ′ ≤ 0)

and p(r) = p̃(Ta,b(r)) for some 0 < a < b, where p̃ is differentiable in a
neighborhood of [a, b] and p represents either S or T .

Although the proof of uniqueness and the development of the theory requires
only the use of test functions S, T ∈ T + and this was the family used in [4],
the analysis of the entropy conditions is facilitated by the use of more general
test functions in T SUB and T SUPER.
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4.3.2 Entropy solutions in L1 ∩ L∞

Let L1
w(0, T, BV (RN )) be the space of weakly∗ measurable functions w :

[0, T ] → BV (RN ) (i.e., t ∈ [0, T ] → 〈w(t), φ〉 is measurable for every φ

in the predual of BV (RN )) such that
∫ T
0 ‖w(t)‖BV dt < ∞. Observe that,

since BV (RN ) has a separable predual (see [1]), it follows easily that the map
t ∈ [0, T ] → ‖w(t)‖BV is measurable. By L1

loc,w(0, T, BV (RN )) we denote

the space of weakly∗ measurable functions w : [0, T ] → BV (RN ) such that
the map t ∈ [0, T ] → ‖w(t)‖BV is in L1

loc(]0, T [).
Definition 4.1 Assume that u0 ∈ (L1(RN )∩L∞(RN ))+. Ameasurable func-
tion u :]0, T [×R

N → R is an entropy sub-solution (resp. super-solution)
of (4.1) in QT =]0, T [×R

N if u ∈ C([0, T ]; L1(RN )), Ta,b(u(·)) − a ∈
L1
loc,w(0, T, BV (RN )) for all 0 < a < b, and

(i) u(0) ≤ u0 (resp. u(0) ≥ u0), and
(ii) the following inequality is satisfied

∫ T

0

∫
RN

φhS:T (u, DTa,b(u)) dt +
∫ T

0

∫
RN

φhT :S(u, DSc,d (u)) dt

≤
∫ T

0

∫
RN

{
JT S(u(t))φ′(t) − a(u(t),∇u(t)) · ∇φ T (u(t))S(u(t))

}
dxdt

+
∫ T

0

∫
RN

φ(t)T (u(t))S(u(t))F(u(t)) dxdt, (4.8)

for truncation functions (S, T ) ∈ T SUB (resp. (S, T ) ∈ T SUPER)
with T = T̃ ◦ Ta,b, S = S̃ ◦ Sc,d , 0 < a < b, 0 < c < d, and any
smooth function φ of compact support, in particular those of the form
φ(t, x) = φ1(t)ρ(x), φ1 ∈ D(]0, T [), ρ ∈ D(RN ).

We say that u :]0, T [×R
N → R is an entropy solution of (4.1) if it is an

entropy sub- and super-solution.

Notice that if u is an entropy sub-solution (resp. super-solution), then ut ≤
div a(u(t), ∇u(t)) + F(u(t)) (resp. ≥) inD′(QT ). We notice also that u is an
entropy solution if ut = div a(u(t), ∇u(t)) + F(u(t)) in D′(QT ), u(0) = u0
and the inequalities (4.8) hold for truncations (S, T ) ∈ T SUB and any test
functions as in (i i) [21].

Wehave the following existence anduniqueness result,which is an extension
of those in [3].

Theorem 4.2 Let the set of assumptions (H) be satisfied and let F be Lipschitz
continuous with F(0) = 0. Then, for any initial datum 0 ≤ u0 ∈ L∞(RN ) ∩
L1(RN ) there exists a unique entropy solution u of (4.1) in QT for every
T > 0 such that u(0) = u0, satisfying u ∈ C([0, T ]; L1(RN )) and F(u(t)) ∈
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L1(RN ) for almost all 0 ≤ t ≤ T . Moreover, if u(t), u(t) are entropy solutions
corresponding to initial data u0, u0 ∈ (

L∞(RN ) ∩ L1(RN )
)+

, respectively,
then

‖u(t) − u(t)‖1 ≤ et‖F‖Lip ‖u0 − u0‖1 for all t ≥ 0.

4.3.3 Entropy solutions in L∞

In order to cover the case of bounded traveling waves, we extend the notion
of entropy solutions to functions in L∞(RN )+. We follow the presentation in
[3].

Definition 4.3 Given 0 ≤ u0 ∈ L∞(RN ), we say that a measurable func-
tion u :]0, T [×R

N → R is an entropy sub-solution (respectively, entropy
super-solution) of the Cauchy problem (4.1) in QT =]0, T [×R

N if u ∈
C([0, T ]; L1

loc(R
N )), u(0) ≤ u0 (resp. u(0) ≥ u0), F(u(t)) ∈ L1

loc(R
N )

for almost every 0 ≤ t ≤ T , Ta,b(u(·)) − a ∈ L1
loc,w(0, T, BVloc(RN )) for

all 0 < a < b, a(u(·), ∇u(·)) ∈ L∞(QT ), and the inequalities (4.8) are
satisfied for truncations (S, T ) ∈ T SUB (resp. (S, T ) ∈ T SUPER) with
T = T̃ ◦ Ta,b, S = S̃ ◦ Sc,d , 0 < a < b, 0 < c < d, and any smooth function
φ of compact support, in particular those of the form φ(t, x) = φ1(t)ρ(x),
φ1 ∈ D(]0, T [), ρ ∈ D(RN ).

We say that u :]0, T [×R
N → R is an entropy solution of (4.1) if u is an

entropy sub-solution and super-solution.

Definition 4.4 Let u be a sub- or a super-solution of (4.1) in QT . We say that
u has a null flux at infinity if

lim
R→+∞

∫ T

0

∫
RN

|a(u(t), ∇u(t))| |∇ψR(x)| dxdt = 0

for allψR ∈ D(RN ) such that 0 ≤ ψR ≤ 1,ψR ≡ 1 on BR , supp(ψR) ⊂ BR+2
and ‖∇ψR‖∞ ≤ 1.

We have uniqueness of entropy solutions for initial data in L∞(RN )when they
have null flux at infinity.

Theorem 4.5 Let the set of assumptions (H) be satisfied and let F be Lipschitz
continuous with F(0) = 0.

(i) Let u(t), u(t) be two entropy solutions of (4.1) with initial data u0, u0 ∈
L∞(RN )+, respectively. Assume that u(t) and u(t) have null flux at infin-
ity. Then

‖u(t) − u(t)‖1 ≤ et‖F‖Lip ‖u0 − u0‖1, for all t ≥ 0.
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(ii) Assume that u0 ∈ (L1(RN ) ∩ L∞(RN ))+, u0 ∈ L∞(RN )+. Let u(t) be
the entropy solution of (4.1) with initial datum u0. Let u(t) be an entropy
super-solution of (4.1) with initial datum u0 ∈ L∞(RN )+ having a null
flux at infinity. Assume in addition that u(t) ∈ BVloc(RN ) for almost
every 0 < t < T . Then

‖(u(t) − u(t))+‖1 ≤ et‖F‖Lip ‖(u0 − u0)
+‖1, for all t ≥ 0.
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