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Weighted norm inequalities for integral transforms

D. Gorbachev, E. Liflyand, and S. Tikhonov

Abstract. Weighted (Lp, Lq) inequalities are studied for a variety of integral trans-
forms of Fourier type. In particular, weighted norm inequalities for the Fourier, Hankel,
and Jacobi transforms are derived from Calderón type rearrangement estimates. The ob-
tained results keep their novelty even in the simplest cases of the studied transforms, the
cosine and sine Fourier transforms. Sharpness of the conditions on weights is discussed.
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1. Introduction

The problem of characterizing the pairs of the weights governing strong-type norm
inequalities for classical integral operators is of considerable importance in analysis. This
problem can be formulated as follows. Let Lp

v := Lp
v(·)(Y ),

(1.1) ∥f∥p,v =
(∫

Y

|f(y)|pv(y) dy
)1/p

,
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where in our considerations Y = Rn, n ≥ 1, or R+. Given an operator F and 1 < p ≤
q < ∞, find necessary and sufficient conditions on a pair of the weights u and v, i.e.,
non-negative locally integrable functions, such that

(1.2) ∥Ff∥q,u . ∥f∥p,v.
Here and in the sequel, the expressions f . g, f & g, f ≍ g mean the inequalities f ≤ Cg,
f ≥ Cg, C−1g ≤ f ≤ Cg, respectively. Unless otherwise stated, C denotes a positive
constant, not necessarily the same at each occurrence. We remark that the expressions
x . 1, x & 1, x ≍ 1 mean that 0 < x ≤ x0, x ≥ x1, x0 ≤ x ≤ x1, respectively, for some
x0, x1 > 0.

We note that the usual Lp norm is given by

∥f∥p = ∥f∥p,1, 1 < p < ∞, ∥f∥∞ = ess sup
y∈Y

|f(y)|.

For the classical Fourier transform Ff = f̂ , both the Hausdorff-Young inequality

∥f̂∥p′ ≤ ∥f∥p, 1 ≤ p ≤ 2,

and the Hardy–Littlewood inequality (see, e.g., [54])

(1.3)

(∫
Rn

|f̂(x)|p|x|p−2 dx

)1/p

≤ C

(∫
Rn

|f(y)|p dy
)1/p

, 1 < p ≤ 2,

are particular cases of (1.2). Moreover, a non-weighted analogue of (1.3) is possible only
when p = 2, which is the Plancherel inequality.

For the power weights |x|−qγ and |y|pβ, inequality (1.2) becomes the classical Pitt
inequality [3, 5, 44, 48]. The problem of extending it to general weights for particular
transforms of Fourier type was intensively studied since the mid 70’s after the paper
[40], where Muckenhoupt stated this problem for the Fourier transform and found some
sufficient conditions. Later the study was continued in [5, 26, 27, 29, 31, 32, 35] as well
as in many other sources. In addition to various applications, inequalities of type (1.2)
describe the balance between the relative sizes of a function and its transform at infinity
and can be considered as a quantitative expression of the uncertainty principle.

1.1. Integral transforms of Fourier type. The main goal of this paper is to study
weighted norm inequality (1.2) for the integral operator F : Lp

v → Lq
u, given by

(1.4) Ff(x) =

∫ ∞

0

f(y)K(x, y)s(y) dy, x > 0,

where f is a locally integrable function, K is a continuous kernel, and s is a continuous
non-negative non-decreasing function satisfying the ∆2-condition. The latter means that

(1.5) s(2y) . s(y), y > 0.

In what follows, we are mainly concerned with the transforms (1.4) of Fourier type
(see, e.g., [54, Ch. 7], [25, 56]), written F -transform, which means that if f ∈ L2

s, then
there exists a non-negative non-decreasing function w satisfying

(1.6) w(x)s(1/x) ≍ 1, x > 0,

for which Bessel’s inequality

(1.7) ∥Ff∥2,w . ∥f∥2,s, or ∥w1/2Ff∥2 . ∥s1/2f∥2,
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is valid. It is also assumed that the kernel K satisfies the condition

(1.8) |K(x, y)| . min
{
1, [w(x)s(y)]−1/2

}
, x, y > 0.

It follows from (1.5) and (1.6) that w satisfies the ∆2-condition as well.
In the sequel, we assume that

s(y)f(y) ∈ L1
loc.

We remark that the functions s and w may also be considered as weights in certain
occurrences. However, in our study it is convenient to distinguish between the norm
generating weights u and v, and the operator generating weights s and w.

An important example of a weight s(·) satisfying (1.5) is s(y) = yν , ν ≥ 0, or more
generally, a piecewise power weight, i.e., the one of the form

(1.9) s(y) = yν :=

{
yν1 , y ≤ 1,

yν2 , y ≥ 1,
ν1, ν2 ≥ 0.

Throughout the paper we write

ν = (ν1, ν2) ∈ R2

and ν ≥ 0 in place of ν1, ν2 ≥ 0.
If s(y) ≍ yν , then, by (1.6), we have w(x) ≍ xν◦ , where

ν◦ := (ν2, ν1).

Power weights will play an important role in our study of the Hankel transform, while
piecewise power weights will be important for the analysis of the Jacobi transform. Note
that piecewise power weights were considered earlier in the study of weighted Fourier
inequalities, see, e.g., [9, 17].

The simplest example of an integral transform of Fourier type is the cosine Fourier
transform

f̂c(x) =

∫ ∞

0

f(y) cosxy dy,

for which K(x, y) = cos (xy), s(y) ≡ 1, and w(x) ≡ 2/π. Likewise, we can deal with the
sine Fourier transform

f̂s(x) =

∫ ∞

0

f(y) sin xy dy,

taking K(x, y) = (xy)−1 sin(xy), s(y) = y2, and w(x) = (2/π)x2. Both transforms are
particular cases of the Hankel and Mehler–Fock operators, or more generally, Jacobi
operators, which will further be considered in detail.

From the general point of view, the kernel K of the integral transform (1.4) can be
considered as an eigenfunction of the following Sturm–Liouville problem:

d

dy

(
s(y)

d

dy
K(x, y)

)
+ x2s(y)K(x, y) = 0, y ≥ 0,

K(x, 0) = 1,
d

dy
K(x, 0) = 0,

with spectrum x ≥ 0. Here the function x 7→ K(x, y), y > 0, is an even entire function
of exponential type y. It follows from the spectral theory of the Sturm–Liouville problem
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(see, e.g., [36]) that under certain additional assumptions on s an associated w exists.
Moreover, for an arbitrary f ∈ L2

s, we have Ff ∈ L2
w along with the inversion formula

f(y) =

∫ ∞

0

Ff(x)K(x, y)w(x) dx

and Parseval’s identity

∥Ff∥2,w = ∥f∥2,s.
Note that condition (1.8), needed in our study, follows from general properties of eigen-
functions of the Sturm–Liouville problem. First, the condition |K(x, y)| ≤ K(x, 0) = 1,
x, y ≥ 0, holds provided that, for example, s is non-decreasing (see [52, Th. 7.31.1]). On
the other hand, if the kernel K(x, y) can be represented as the following Mehler integral

K(x, y) =

∫ y

0

A(t, y) cos (xt) dt, K(0, y) = 1

with a continuous non-negative function A(t, y), then we have again |K(x, y)| ≤ 1, x, y ≥ 0
as well as K(x, y) ≍ 1, xy . 1. Second, the condition |K(x, y)| . [w(x)s(y)]−1/2 can be
derived from the asymptotic behavior of eigenfunctions for large x, y; say, for eigenvalues
of (1.18) type.

We will now outline the obtained Pitt’s inequalities for various integral transforms.

1.2. Weighted norm inequalities for the Fourier transforms. It is known that
for the power weights u(x) = |x|−qγ and v(y) = |y|pβ, the corresponding Pitt inequality
for the Fourier transform

(1.10) f̂(x) =

∫
Rn

f(y)e−ixy dx

manifests itself as

(1.11)

(∫
Rn

|f̂(x)|q|x|−qγdx

)1/q

.
(∫

Rn

|f(y)|p|y|pβ dy
)1/p

, 1 < p ≤ q < ∞,

that is valid if and only if

(1.12) max

{
0, n
(1
p
+

1

q
− 1
)}

≤ γ <
n

q

and

β − γ = n

(
1− 1

p
− 1

q

)
.

Since this inequality is the one of the basic results in Fourier analysis (in particular, it
contains Plancherel’s theorem (p = q = 2, γ = β = 0), the Hardy–Littlewood theorem
(1 < p = q ≤ 2, β = 0 or p = q ≥ 2, γ = 0), and the Hausdorff–Young theorem
(q = p′ ≥ 2, γ = β = 0)), the problem of extending the range of γ under additional
regularity of f has been intensively studied (see, e.g., [4, 16, 38, 45, 51]). In particular,
it turns out that for the Fourier transform of a radial function the sharp range for γ is
given by

(1.13)
n

q
− n+ 1

2
+max

{
1

p
,
1

q′

}
≤ γ <

n

q
,
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see discussion in Section 6 and Appendix. Moreover, for the Fourier transform of a radial
function which, in addition, is monotone (general monotone) the sharp range for γ is given
by

n

q
− n+ 1

2
< γ <

n

q
,

see [23].

For the cosine Fourier transform f̂c, our results applied to piecewise power weights
γ = (γ1, γ2) (see Theorem 7.1 below) yield the following estimates:
Let 1 < p ≤ q < ∞, γ = (γ1, γ2), β = (β1, β2), γ1 − β1 = γ2 − β2. Pitt’s inequality

∥x−γ◦
f̂c∥q . ∥yβf∥p

holds if and only if

β = γ +
1

p′
− 1

q
and

max

{
0,

1

q
− 1

p′

}
≤ γi <

1

q
, i = 1, 2.

In particular, for γ1 = γ2 = γ, we obtain

max

{
0,

1

q
− 1

p′

}
≤ γ <

1

q
,

which corresponds to (1.12) and (1.13) with n = 1. It is interesting that for the sine

Fourier transform f̂s the sharp range for γ is given by

max

{
0,

1

q
− 1

p′

}
≤ γ <

1

q
+ 1,

see Theorem 7.2 below. For monotone type functions, this result has earlier been proved
in [37], [38, (3.9)]; related results can be found in, e.g., [10, 11, 24, 28, 46, 53].

It is worth mentioning that the conditions on γ which guarantee Pitt’s inequality to
hold for the cosine Fourier transform are the same as the ones for the general Fourier
transform (1.10) in the case n = 1 (cf. (1.12)). On the other hand, for the sine Fourier
transform the range on γ is wider, see above. It is interesting that this result supplements
the one of Sadosky and Wheeden [45], which shows that if a function f satisfies∫

R
f(x) dx = 0,

Pitt’s inequality (1.11) holds if γ satisfies either (1.12) or 1/q < γ < 1/q + 1 but not
when γ = 1/q. Therefore, within the scope of Pitt’s inequality, considering odd functions
differs from dealing with all functions with mean zero.

Concerning the Fourier inequalities with general weights, the following result was
proved in 1983–84 by Heinig [26], Jurkat–Sampson [31] and Muckenhoupt [41, 42]: If
the weight u is non-increasing and the weight v is non-decreasing, then

(1.14) ∥u1/qf̂∥q . ∥v1/pf∥p
holds, for 1 < p ≤ q < ∞, if and only if

sup
r>0

(∫ 1/r

0

u(t) dt

)1/q (∫ r

0

v(t)1−p′ dt

)1/p′

< ∞.
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Another approach to obtain (1.14) with general weights has recently been considered in
[17]. It is based on restriction inequalities for the Fourier transform on the unit sphere of
Rn (see, e.g., [9]).

1.3. Weighted norm inequalities for the Hankel and Jacobi transforms. One
of the most important instances of the considered transforms, the Hankel transform, is
defined by setting

Hf(x) =

∫ ∞

0

f(y)K(x, y)s(y) dy, K(x, y) = jα(xy),

where

s(y) = yν , w(x) = bαx
ν , b−1

α = 22αΓ(α + 1)2, ν = 2α + 1 ≥ 0,

Here α ≥ −1/2 and the normalized Bessel function jα(t) is given by

(1.15) jα(t) = Γ(α + 1)(t/2)−αJα(t) =
∞∑
k=0

(−1)kΓ(α + 1)(t/2)2k

k! Γ(k + α+ 1)
,

where Jα is the classical Bessel function (see, e.g., [50, Ch. IV]). Note that H−1 = bαH,

w(x)s(1/x) = bα, x > 0, and ∥Hνf∥22,w = b−1
α ∥f∥22,s.

In this case, for ν ≥ 0 and for the power weights u(x) = x−qγ and v(y) = ypβ, Pitt’s
inequality

(1.16)(∫ ∞

0

|Hf(x)|qx−γqw(x) dy

)1/q

.
(∫ ∞

0

|f(y)|pyβps(y) dy
)1/p

, 1 < p ≤ q < ∞,

holds if and only if

β = γ + (ν + 1)

(
1

p′
− 1

q

)
and

ν + 1

q
− ν + 2

2
+ max

{
1

p
,
1

q′

}
≤ γ <

ν + 1

q
;

see Section 6.
As for the Jacobi transforms, their operator generating weight s (see (1.4)) is of piece-

wise power type. The Jacobi functions are defined by

φ
(α,β)
λ (t) = F

(
ρ+ iλ

2
,
ρ− iλ

2
;α + 1;−(sinh t)2

)
, t ≥ 0, α, β, λ ∈ C,

where ρ = α + β + 1 and

(1.17) F (a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk

is the hypergeometric Gauss function.
We consider the case α ≥ β ≥ −1/2. The direct and inverse Jacobi transforms are

defined by the identities

Jf(λ) =

∫ ∞

0

f(t)φ
(α,β)
λ (t)m(t) dt,

J−1f(t) =

∫ ∞

0

f(λ)φ
(α,β)
λ (t)n(λ) dλ,
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respectively, where

m(t) = (2π)−1/2∆(t), ∆(t) = 22ρ(sinh t)2α+1(cosh t)2β+1,

n(λ) = (2π)−1/2|c(λ)|−2, c(λ) =
2ρ−iλΓ(α + 1)Γ(iλ)

Γ
(
ρ+iλ
2

)
Γ
(
ρ+iλ
2

− β
) .

For both transforms Parseval’s identities are true:

∥Jf∥L2
n
= ∥f∥L2

m
, ∥f∥L2

n
= ∥J−1f∥L2

m
.

In the case α = β, the Jacobi transform is also known as the Mehler–Fock transform, see
[39], [55].

For the weight n(λ), λ > 0, we have (cf. (1.9))

n(λ) ≍

{
λ2, 0 < λ < 1,

λ2α+1, λ ≥ 1.

This shows that the use of piecewise power weights is essential. They appear in a natural
way and are within the framework of our theory. The weight m(x) is not reciprocal
for n(λ) in the sense of (1.6) (it is of exponential behavior); therefore, we modify the
Jacobi transforms in an appropriate way and then formulate Pitt’s inequalities for them
(see Theorem 8.1). For details, see Section 8.

As is mentioned, in the case of the Hankel transform we consider radial functions in
the Euclidean space Rn = M(n)/SO(n) [55]. The Jacobi transform [34] and the Mehler–
Fock transform as its partial case are, in turn, related to radial functions on hyperbolic
spaces, in particular on the hyperboloid Hn = SO0(n, 1)/SO(n). The obtained results
give an opportunity to establish Pitt’s inequality in this multidimensional case.

1.4. Structure of the paper. The paper is organized as follows. First, we obtain
results for the general Fourier type integral operators (Sections 2–5). We install the
needed machinery and we apply it to get weighted norm inequalities. Second, we make
use of the obtained results to analyze specific operators, namely, the Fourier, Hankel, and
Jacobi operators.

In Section 2, we give a Hausdorff–Young estimate for the operator (1.2) and prove
Calderón type characterization for a sublinear operator to be of type (1,∞) and (a, a′),
1 < a < ∞. Section 3 contains sufficient conditions on weights to ensure Pitt’s inequality
for a Fourier type operator. For operators with kernels K(x, y) ≍ 1, 0 ≤ xy . 1, a
necessary condition is obtained as well. In Section 4, we prove necessary conditions on
weights to have Pitt’s inequality for the operators with oscillating kernels, i.e., which
satisfy, for xy & 1,

(1.18) [w(x)s(y)]1/2K(x, y) =

{
C [cos (xy − c) +O(x−1)] , x & 1, y ≍ 1,

D [cos (xy − d(x)) +O(y−1)] , y & 1, x ≍ 1.

Note that such asymptotic relations ensure (1.8).
In Section 5, we concentrate on necessary and sufficient conditions for Pitt’s inequality,

where weights are power weights with piecewise exponent: u(x) = x−qγ and v(y) = ypβ.
As applications of general results in Sections 2–5, we are mainly concerned with Pitt’s

inequalities for the following Fourier type operators: Fourier, Hankel, and Jacobi trans-
forms. In Section 6, we deal with the Hankel transforms. In Section 7, we discuss special
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cases of the general result: the radial Fourier transform, the cosine and sine Fourier
transforms. Jacobi type transforms are studied in Section 8.

In a somewhat technical Appendix, we consider the conditions that ensure the Pitt
inequality (1.2) if one applies special Hardy’s inequalities for monotone functions rather
than general Hardy’s inequality.

2. Hausdorff–Young and Calderón’s inequalities

The results of this section provide us with a needed machinery for establishing weighted
norm estimates, and they are of interest by themselves.

2.1. Hausdorff–Young type results. The next lemma shows that the F -
transforms possess an important property of the Fourier transforms: the Hausdorff–Young
inequality, i.e., these operators are of (a, a′) type, where 1 ≤ a ≤ 2.

Lemma 2.1. There holds

∥Ff∥a′,w . ∥f∥a,s, 1 ≤ a ≤ 2,

with 1/a+ 1/a′ = 1.

Proof. It follows from (1.4) and (1.8) that

∥Ff∥∞ = sup
x>0

∣∣∣∣∫ ∞

0

f(y)K(x, y)s(y) dy

∣∣∣∣ . ∫ ∞

0

|f(y) s(y)| dy = ∥f∥1,s.

Interpolating this inequality and Bessel’s inequality (1.7) (see [49]), we arrive at the
assertion of the lemma. �

The following lemma asserts that the F -transforms are of (1,∞) type with respect to
weights s and w.

Lemma 2.2. Let 1 ≤ a ≤ 2. The inequality holds

∥w1/a′Ff∥∞ . ∥s1/af∥1.

Proof. It follows from (1.4) that, for x > 0,

Ff(x) =

∫ ∞

0

f(y)K(x, y)s(y) dy

=

∫ 1/x

0

f(y)K(x, y)s(y) dy +

∫ ∞

1/x

f(y)K(x, y)s(y) dy =: I1 + I2.

This and the first estimate in (1.8) yield

|I1| .
∫ 1/x

0

|f(y)|s(y) dy =

∫ 1/x

0

|f(y)|s(y)1/a′s(y)1/a dy . s(1/x)1/a
′
∫ 1/x

0

|f(y)|s(y)1/a dy.

where we used that the function s(·) is non-decreasing. Therefore, taking into account
(1.6), we obtain

w(x)1/a
′ |I1| . w(x)1/a

′
s(1/x)1/a

′
∫ 1/x

0

|f(y)|s(y)1/a dy .
∫ 1/x

0

|f(y)|s(y)1/a dy.
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Similarly, using the second estimate in (1.8) and that the function s(·)1/a′−1/2, with 1/a′−
1/2 ≤ 0, is non-increasing, we get

w(x)1/a
′|I2| . w(x)1/a

′
w(x)−1/2

∫ ∞

1/x

|f(y)|s(y)1/2 dy

. w(x)1/a
′−1/2s(1/x)1/a

′−1/2

∫ ∞

1/x

|f(y)|s(y)1/a dy .
∫ ∞

1/x

|f(y)|s(y)1/a dy.

Finally,

|w(x)1/a′Ff(x)| .
∫ 1/x

0

|f(y)|s(y)1/a dy +
∫ ∞

1/x

|f(y)|s(y)1/a dy

implies ∥w1/a′Ff∥∞ . ∥s1/af∥1, which completes the proof. �

2.2. Hardy’s inequalities. In this work we frequently use Hardy’s inequalities with
general weights [12]:

(2.1) ∥Pxg∥q,u . ∥g∥p,v

and

(2.2) ∥Qxg∥q,u . ∥g∥p,v.

Here 1 ≤ p ≤ q < ∞, u and v are weights, that is, non-negative locally integrable
functions, g ≥ 0, and

Pxg =

∫ x

0

g(y) dy, Qxg =

∫ ∞

x

g(y) dy

are the Hardy and Bellman operators, respectively. Inequality (2.1) holds if and only if,
for each r > 0,

(2.3) (Qru)
1/q
(
Prv

1−p′
)1/p′

. 1,

where here and in similar conditions the constant on the right does not depend on r. For
the p = 1 and q < ∞ see also [43, (5.12)]. Similarly, (2.2) holds if and only if, for each
r > 0,

(Pru)
1/q
(
Qrv

1−p′
)1/p′

. 1.

2.3. Calderón type results. Let us now proceed to Calderón type rearrangement
inequalities for the general sublinear operators T . As usual, the non-increasing rearrange-
ment of a function g is denoted by g∗ (see, e.g., [50]).

Theorem 2.1. Let T be a sublinear operator. T is of type (1,∞) and (a, a′), 1 < a <
∞, if and only if for each f , which belongs to both L1(Rn) and La(Rn),

(∫ x

0

(Tf)∗(t)a
′
dt

)1/a′

.
(∫ x

0

(∫ 1/t

0

f ∗(s) ds

)a

ta−2 dt

)1/a

, x > 0.(2.4)
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Proof. The case a = 2 can be found in [29, Th. 4.6], while another proof of the “if”
part for the Fourier transform can be found in [32, Th. 1 and (3.5)].

Let (2.4) hold. Since (Tf)∗ is non-increasing, we have

x(Tf)∗(x)a
′ ≤

∫ x

0

((Tf)∗(t)a
′
dt .

(∫ x

0

(∫ 1/t

0

f ∗(s) ds

)a

ta−2 dt

)a′/a

≤
(∫ x

0

(∫ ∞

0

f ∗(s) ds

)a

ta−2 dt

)a′/a

. x∥f∥a′1 .

By this, ∥Tf∥∞ = ∥(Tf)∗∥∞ . ∥f∥1.
Let now f ∈ La. Since (2.4) holds for all x, we get

(∫ ∞

0

(Tf)∗(t)a
′
dt

)1/a′

.
(∫ ∞

0

(∫ 1/t

0

f ∗(s) ds

)a

ta−2 dt

)1/a

=

(∫ ∞

0

(∫ t

0

f ∗(s) ds

)a

t−a dt

)1/a

=

(∫ ∞

0

(
1

t

∫ t

0

f ∗(s) ds

)a

dt

)1/a

.

By Hardy’s inequality (2.1), the last integral does not exceed

a

a− 1

(∫ ∞

0

f ∗(t)a dt

)1/a

=
a

a− 1
∥f∥a.

This yields T : La → La′ .
Conversely, let now T be such that T : L1 → L∞ and T : La → La′ . Fixing s > 0 and

decomposing f = f1 + f2 so that (cf. [32])

f ∗
1 (t) =

{
f ∗(t), 0 < t ≤ s,

0, t > s,

and f ∗
2 (t) = f ∗(t+ s), t > 0, we obtain for any measurable set E with |E| = x(∫

Rn

|(Tf)(ξ)|a′χE(ξ) dξ

)1/a′

.
(∫

Rn

|(Tf1)(ξ)|a
′
χE(ξ) dξ

)1/a′

+

(∫
Rn

|(Tf2)(ξ)|a
′
χE(ξ) dξ

)1/a′

≤ x1/a′∥Tf1∥∞ +

(∫
Rn

|(Tf2)(ξ)|a
′
χE(ξ) dξ

)1/a′

. x1/a′
∫ ∞

0

f ∗
1 (t) dt+

(∫ ∞

0

f ∗
2 (t)

a dt

)1/a

≤ x1/a′
∫ s

0

f ∗(t) dt+

(∫ ∞

s

f ∗(t)a dt

)1/a

.
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Taking s = 1/x, we get(∫ x

0

(Tf)∗(t)a
′
dt

)1/a′

≤ sup
E : |E|=x

(∫
Rn

|(Tf)(ξ)|a′χE(ξ) dξ

)1/a′

. x1/a′
∫ 1/x

0

f ∗(t) dt+

(∫ ∞

1/x

f ∗(t)a dt

)1/a

.

The last term can be rewritten as(∫ ∞

1/x

f ∗(t)a dt

)1/a

=

(∫ x

0

[
1

t
f ∗
(1
t

)]a
ta−2 dt

)1/a

.

In virtue of the monotonicity of f ∗ it is dominated by the right-hand side of (2.4).
For the first term, the monotonicity of f ∗ and Hölder’s inequality yield

x1/a′
∫ 1/x

0

f ∗(t) dt ≤ x−1/a

∫ x

0

[∫ 1/t

0

f ∗(s) ds t1−2/a

]
t−1+2/a dt

≤ x−1/a

(∫ x

0

(∫ 1/t

0

f ∗(s) ds

)a

ta−2 dt

)1/a(∫ x

0

t(−1+2/a)a′ dt

)a′

.
((∫ 1/t

0

f ∗(s) ds

)a

ta−2 dt

)1/a

,

the desired estimate. �

In particular, this result implies the following Calderón’s inequality ([15]; see also
[26]).

Theorem 2.2. Let T be a sublinear operator. If T is of type (1,∞) and (a, a′),
1 < a < ∞, then

(Tf)∗(x) .
∫ 1/x

0

f ∗(y) dy + x−1/a′
∫ ∞

1/x

y−1/a′f ∗(y) dy.(2.5)

Proof. Using a weaker form of (2.4), we have

(Tf)∗(x) . x−1/a′
(∫ ∞

1/x

(∫ t

0

f ∗(s) ds

)a

t−a dt

)1/a

.(2.6)

The right-hand side is bounded by

x−1/a′
(∫ ∞

1/x

(∫ 1/x

0

f ∗(s) ds

)a

t−a dt

)1/a

+ x−1/a′
(∫ ∞

1/x

(∫ t

1/x

f ∗(s) ds

)a

t−a dt

)1/a

.

The first summand is just the first integral on the right-hand side of (2.5). To show that
the second summand is controlled by

x−1/a′
∫ ∞

1/x

y−1/a′f ∗(y) dy,
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we use Hardy’s inequality (2.1). Note that in this case condition (2.3) reads as

sup
1/x<t<∞

[(∫ ∞

t

s−ads

)1/a

sup
1/x<ξ<t

ξ1/a
′
]
, which is finite. �

3. Pitt’s inequality

In this section, we obtain sufficient and necessary conditions on weights that guarantee
that a Pitt type inequality for the F -transform holds.

3.1. Sufficient conditions for Pitt’s inequality. Define v∗ = [(1/v)∗]−1.

Theorem 3.1. (A) Let 1 < p ≤ q < ∞, 1 < a ≤ 2, (p, q, a) ̸= (2, 2, 2). Let also u and
v be the weights, which satisfy(

P1/ru
∗)1/q (Prv

1−p′

∗

)1/p′
. 1, r > 0,(3.1) [

Q1/r(x
−q/a′u∗)

]1/q [
Qr(y

−p′/a′v1−p′

∗ )
]1/p′

. 1, r > 0.(3.2)

Then the following Pitt inequality holds

∥w1/a′Ff∥q,u . ∥s1/af∥p,v,
where s and w come from the definition of the F -transform (1.4).

(B) Let p = q = a = 2, u and v be the weights, which satisfy(
P1/ru

∗) (Prv
−1
∗
)
. 1, r > 0.(3.3)

Then the following Pitt’s type inequality holds

(3.4) ∥w1/2Ff∥2,u . ∥s1/2f∥2,v.

Recall that condition (3.1) assumes that u∗, v1−p′
∗ ∈ L1

loc, cf. Subsection 2.2.
To prove Theorem 3.1, in addition to (2.1), we will make use of Hardy’s inequality for

rearrangements (see, e.g., [5])

(3.5) ∥f∥p,u ≤ ∥f ∗∥p,u∗ , ∥f ∗∥p,v∗ ≤ ∥f∥p,v,
and the following auxiliary result.

Lemma 3.1. If f and g are two non-negative monotone functions for which∫ x

0

f(t) dt ≤
∫ x

0

g(t) dt

for all x > 0, then for any non-increase function u∗ there holds∫ ∞

0

f(t)u∗(t) dt ≤
∫ ∞

0

g(t)u∗(t) dt.

Let us now proceed to the proof of Theorem 3.1.

Proof. (A) Let

Tg = w1/a′Ff, g = s1/af.

Taking into account Theorem 2.2, we get that

(Tg)∗(x) .
∫ 1/x

0

g∗(y) dy + x−1/a′
∫ ∞

1/x

y−1/a′g∗(y) dy = P1/xg
∗ + x−1/a′Q1/x(y

−1/a′g∗).



WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS 13

The latter relation, the first Hardy inequality in (3.5), and Minkowski’s inequality yield

∥Tg∥q,u ≤ ∥(Tg)∗∥q,u∗ ≤
∥∥P1/xg

∗∥∥
q,u∗ +

∥∥∥x−1/a′Q1/x(y
−1/a′g∗)

∥∥∥
q,u∗

=: I1 + I2.

Let us begin with I1. Substituting 1/x → x, we obtain

I1 =

(∫ ∞

0

u∗(x)(P1/xg
∗)q dx

)1/q

=

(∫ ∞

0

u∗(x)(Pxg
∗)q dx

)1/q

= ∥Pxg
∗∥q,u∗ ,

where u∗(x) := x−2u∗(1/x). Applying inequality (2.1) with the weights u∗ and v∗ and the
second inequality in (3.5), we get

I1 = ∥Pxg
∗∥q,u∗ . ∥g∗∥p,v∗ . ∥g∥p,v.

This is true provided

(3.6) (Qru∗)1/q(Prv
1−p′

∗ )1/p
′ . 1, r > 0.

Observing that

Qru∗ =

∫ ∞

r

x−2u∗(1/x) dx =

∫ 1/r

0

u∗(x) dx = P1/ru
∗,

we rewrite (3.6) as

(3.7) (P1/ru
∗)1/q(Prv

1−p′

∗ )1/p
′ . 1, r > 0.

Let us now turn to I2. Using the obtained estimates for I1, we get

I2 =
∥∥∥x−1/a′Q1/x(y

−1/a′g∗)
∥∥∥
q,u∗

=
∥∥∥Q1/x(y

−1/a′g∗)
∥∥∥
q,x−q/a′u∗

=
∥∥∥Qx(y

−1/a′g∗)
∥∥∥
q,x−q/a′u∗

.

We then apply the second inequality in (2.1) with the weights x−q/a′u∗ and yp/a
′
v∗:

I2 .
∥∥∥y−1/a′g∗

∥∥∥
p,yp/a

′
v∗

= ∥g∗∥p,v∗ . ∥g∥p,v.

This holds true provided[
Pr(x−q/a′u∗)

]1/q [
Qr(y

p/a′v∗)
1−p′
]1/p′

. 1,

or, substituting x → 1/x,

(3.8)
[
Q1/r(x

−q/a′u∗)
]1/q [

Qr(y
−p′/a′v1−p′

∗ )
]1/p′

. 1.

We thus have
∥Tg∥q,u . I1 + I2 . ∥g∥p,v

under conditions (3.7) and (3.8). Hence, the part (A) of the theorem is proved.
(B) For p = q = a = 2, inequality (2.4) from Theorem 2.1 is∫ x

0

(Tg)∗(t)2 dt .
∫ x

0

(∫ 1/t

0

g∗(s) ds

)2

dt, x > 0.(3.9)

This gives ∫ ∞

0

(Tg)∗(t)2u∗(t) dt .
∫ ∞

0

(∫ 1/t

0

g∗(s) ds

)2

u∗(t) dt, x > 0,(3.10)

which follows from Lemma 3.1. To conclude the proof, we use the first Hardy inequality
(2.1). �



14 D. GORBACHEV, E. LIFLYAND, AND S. TIKHONOV

Corollary 3.1. If a′ < max(q, p′) or a = p = q = 2, then the assertion of Theorem
3.1 is valid only under condition (3.1). In particular, it is so for a = 2 and any 1 < p ≤
q < ∞.

Proof. The case a = p = q = 2 is part (B) of Theorem 3.1. We have to prove that
if a′ < max(q, p′), then (3.1) implies (3.2). Let first p < a. Then(

P1/ru
∗)1/q (Prv

1−p′

∗

)1/p′
. 1

implies, by monotonicity,

(3.11) u∗(1/r) . r

(∫ r

0

v1−p′

∗

)−q/p′

. r1−q/p′v∗(r)
q/p.

Therefore,

[
Q1/r(x

−q/a′u∗)
]1/q [

Qr(y
−p′/a′v1−p′

∗ )
]1/p′

.
(∫ ∞

1/r

x−q/a′(1/x)1−q/p′v∗(1/x)
q/p dx

)1/q (∫ ∞

r

y−p′/a′v∗(y)
−p′/p dy

)1/p′

.

Using the monotonicity of v∗, we continue this estimate as follows:

. v1/p∗ (r)

(∫ ∞

1/r

x−q(1/a′−1/p′)dx

x

)1/q

v−1/p
∗ (r)

(∫ ∞

r

y1−p′/a′ dy

y

)1/p′

. 1,

since a′ < p′.
If a′ < q, then (3.1) implies

r1/p
′
v−1/p
∗ (r) .

(∫ 1/r

0

u∗

)−1/q

. r1/qu∗(1/r)−1/q

or, equivalently,

v∗(r)
−1 . u∗(1/r)p/q rp/q−p/p′ .

Hence, [
Q1/r(x

−q/a′u∗)
]1/q [

Qr(y
−p′/a′v1−p′

∗ )
]1/p′

.
(∫ ∞

1/r

x−q/a′u∗(x) dx

)1/q (∫ ∞

r

y−p′/a′
(
u∗(1/y)p/q yp/q−p/p′

)−p′/p

dy

)1/p′

. u∗(1/r)1/q
(∫ ∞

1/r

x−q/a′ dx

)1/q

u∗(1/r)−1/q

(∫ ∞

r

yp
′(1/q−1/a′) dy

y

)1/p′

. 1,

since a′ < q. �
Let the positive functions u and v be non-increasing and non-decreasing, respectively.

Then we have

(3.12) u = u∗, v∗ = [(1/v)∗]−1 = v.

Thus, Theorem 3.1 and Corollary 3.1 lead to the following statement, cf. [26].
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Corollary 3.2. Let 1 < p ≤ q < ∞, 1 < a ≤ 2, u be non-increasing, and v be
non-decreasing. If

(3.13)
(
P1/ru

)1/q (
Prv

1−p′
)1/p′

. 1,

and for a′ ≥ max{q, p′}

(3.14)
[
Q1/r(x

−q/a′u)
]1/q [

Qr(y
−p′/a′v1−p′)

]1/p′
. 1,

then the following Pitt’s type inequality holds

(3.15) ∥w1/a′Ff∥q,u . ∥s1/af∥p,v.

If p = q = a = 2, then the condition (3.13) alone implies (3.15).

3.2. Necessary conditions for Pitt’s inequality. Conditions (3.13) and (3.14)
suffice to ensure Pitt’s inequality. It is natural to ask whether these conditions are also
necessary.

Recall that like in Subsection 2.2, (3.13) assumes that

(3.16) u ∈ L1
loc, v1−p′ ∈ L1

loc.

In what follows both conditions are assumed. Their importance is shown in [4, 6].
We now present the following conditions, which are necessary for Pitt’s inequality to

hold.

Theorem 3.2. Assume that the kernel K satisfies

(3.17) K(x, y) ≍ 1, 0 ≤ xy . 1,

and for every a ∈ (1, 2] Pitt’s inequality (3.15) is valid. Then condition (3.13) holds.

Proof. Setting

f(y) = v(y)1−p′s(y)−1χ(0,r](y), r > 0,

we derive from (3.17) that for x . 1/r

Ff(x) =

∫ r

0

f(y)K(x, y)s(y) dy ≍
∫ r

0

v1−p′(y)dy < ∞,

cf. (3.16). Taking into account that u, v1−p′ ∈ L1
loc, we derive from Pitt’s inequality (3.15)(∫ 1/r

0

w(x)q/a
′
u(x) dx

)1/q ∫ r

0

v(y)1−p′dy

(∫ r

0

s(y)−p/a′v(y)1−p′dy

)−1/p

. 1, r > 0.

If a → 1 the left-hand side of this inequality tends to
(
P1/ru

)1/q (
Prv

1−p′
)1/p′

, which
implies (3.13). This completes the proof. �
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4. F -transforms with oscillating kernels: necessary conditions for Pitt’s
inequality

In this section, we will show that oscillation of kernels of the F -transforms allows us
to get necessary conditions on weights in Pitt’s inequality which are different than those
in Theorem 3.2.

Theorem 4.1. Let 1 < p ≤ q < ∞ and let u and v be non-increasing and non-
decreasing, respectively. Given a ∈ (1, 2], let Pitt’s inequality

∥w1/a′Ff∥q,u . ∥s1/af∥p,v.
hold.

(A) If condition (3.17) is valid, and the asymptotic equality

(4.1) K(x, y) =
C

[w(x)s(y)]1/2
[
cos (xy − c) +O(x−1)

]
, x & 1, y ≍ 1,

holds, where C > 0 and c ∈ R are constants, then for any µ > 1/p′

(4.2)

∫ 1

0

w(x)q/a
′
u(x) dx+

∫ ∞

1

w(x)q(1/a
′−1/2)x−qµu(x) dx < ∞.

(B) Let the asymptotic equality

(4.3) K(x, y) =
D

[w(x)s(y)]1/2
[
cos (xy − d(x)) +O(y−1)

]
, y & 1, x ≍ 1,

hold, where D > 0 is a constant and d(x) is a continuous function. Then for µ ≥ 1/q

(4.4)

∫ ∞

1

s(y)p(1/a−1/2)y(µ−1)pv(y) dy = ∞.

Remark 4.1. If one sets a = 2 in Theorem 4.1, then (4.2) and (4.4) yield∫ ∞

1

x−qµu(x) dx < ∞ and

∫ ∞

1

y(µ−1)pv(y) dy = ∞,

respectively. It is important that these integrals are independent of the weights w and s.

Remark 4.2. For symmetric kernels of Hankel type (see Subsection 6.1), which satisfy
w(x)s(y) ≍ w(y)s(x), asymptotic equality (4.3) follows from (4.1). In this case (B) is a
consequence of (A). It is not the case for the non-symmetric Jacobi kernels (see Subsection
8.3).

Let us begin with the following auxiliary statement.

Lemma 4.1. Let 0 < µ < 1. Define

(4.5) G(x) := Gµ(x, b(x)) =

∫ x

0

tµ−1 cos (t− b(x)) dt, x > 0,

where b(·) is a continuous function. Then

(4.6)
|G(x)| = O(xµ), x . 1,

G(x) = Γ(µ) cos
(
b(x)− πµ

2

)
+O(xµ−1), x & 1.

In particular, |G(x)| = O(1) for x > 0.
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Proof. The first equality in (4.6) is obvious. In order to prove the second one, let us
express G via the Bohmer integrals (generalized Frenel functions) [2, Ch. 9]

C(x, µ) =

∫ ∞

x

tµ−1 cos t dt, S(x, µ) =

∫ ∞

x

tµ−1 sin t dt.

We have

G(x) = cos (b(x))

∫ x

0

tµ−1 cos t dt+ sin (b(x))

∫ x

0

tµ−1 sin t dt

= cos (b(x)) [C(0, µ)− C(x, µ)] + sin (b(x)) [S(0, µ)− S(x, µ)] .

Since C(0, µ) = S(0, µ) = Γ(µ) cos (πµ/2), we get

G(x) = Γ(µ) cos
(
b(x)− πµ

2

)
− [C(x, µ) cos (b(x)) + S(x, µ) sin (b(x))] .

What remains is to take into account the asymptotic equalities [2, Ch. 9]

|C(x, µ)| = O(xµ−1), |S(x, µ)| = O(xµ−1), x & 1.

The lemma is proved. �

Proof of Theorem 4.1. (A) Assume that (3.17) and (4.1) hold. Consider the in-
terval y ∈ [r, 2r], r > 0, on which v(y) ≍ 1. For example, one can take r = 1. We
introduce the function

fµ(y) = s(y)−1/2(y − r)µ−1χ(r,2r](y), 0 < µ < 1,

and estimate its transform

Ffµ(x) =

∫ ∞

0

fµ(y)K(x, y)s(y) dy =

∫ 2r

r

(y − r)µ−1K(x, y)s(y)1/2 dy.

Because of (3.17) and (1.5), we have for x . 1/r,

(4.7) Ffµ(x) ≍
∫ 2r

r

(y − r)µ−1s(y)1/2 dy ≍ s(r)1/2
∫ 2r

r

(y − r)µ−1 dy ≍ 1.

Let x & 1/r. Then, by (4.1),

Ffµ(x) =
C

w(x)1/2

∫ 2r

r

(y − r)µ−1
[
cos (xy − c) +O(x−1)

]
dy =

C

w(x)1/2
[
I +O(x−1)

]
,

where

I :=

∫ 2r

r

(y − r)µ−1 cos (xy − c) dy = x−µ

∫ rx

0

tµ−1 cos (t+ rx− c) dt = x−µGµ(rx, c− rx).

This and Lemma 4.1 yield

I = x−µ
[
Γ(µ) cos (c− rx− πµ/2) +O((rx)µ−1)

]
, x & 1.

Hence, we have

(4.8) Ffµ(x) =
C0

xµw(x)1/2
[
cos (rx− c0) +O(xµ−1)

]
, x & 1/r.
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Now, we are going to check whether Pitt’s inequality ∥w1/a′Ffµ∥q,u . ∥s1/afµ∥p,v
holds. First, if 1/p′ < µ < 1 or, equivalently, −1 < (µ− 1)p < 0, we calculate

∥s1/afµ∥p,v =
(∫ 2r

r

s(y)−p/2(y − r)(µ−1)pv(y) dy

)1/p

.
(∫ 2r

r

(y − r)(µ−1)p dy

)1/p

. 1.

On the other hand,

∥w1/a′Ffµ∥q,u =

(∫ 1/r

0

|w1/a′Ffµ|qu dx+

∫ ∞

1/r

|w1/a′Ffµ|qu dx

)1/q

= (I1 + I2)
1/q ,

where, by (4.7), we have I1 ≍
∫ 1/r

0
wq/a′u dx. This implies that the function wq/a′u should

be integrable in a neighborhood of zero.
It follows from (4.8) that

I2 &
∫ ∞

1/r

w(x)q(1/a
′−1/2)x−qµ

∣∣cos (rx− c0) +O(xµ−1)
∣∣q u(x) dx.

Taking into account that both u(x) and x−qµ are non-increasing, the weight w(x) satisfies
the ∆2-condition, and the inequality

|cos (rx− c0)| ≥ cos 1, x ∈ A =
∞∪

k=−∞

[
πk − 1 + c0

r
,
πk + 1 + c0

r

]
,

holds, we can write

(4.9) I2 &
∫
[1/r,∞)∩A

w(x)q(1/a
′−1/2)x−qµu(x) dx &

∫ ∞

1/r

w(x)q(1/a
′−1/2)x−qµu(x) dx.

This gives that the finiteness of I2 relies on the integrability of the function
w(x)q(1/a

′−1/2)x−qµu(x) near infinity. This establishes condition (4.2).

(B) Assume now that (4.3) holds. Choose r > 0, d0 ∈ R, and sufficiently small number
ε > 0 such that∣∣∣cos(d(x)− d0 −

πµ

2

)∣∣∣ ≍ 1, u(x) ≍ 1, x ∈ [r, r + ε].

For 0 < µ < 1, consider the function

fµ(y) = s(y)−1/2yµ−1 cos (ry − d0)χ[r,R)(y),

where R > r is such that R0 = R/ lnR > ε−1. Let us estimate its transform for x ∈
[r, r + ε]:

Ffµ(x) =

∫ ∞

0

fµ(y)K(x, y)s(y) dy =

∫ R

r

yµ−1 cos (ry − d0)K(x, y)s(y)1/2 dy := I.

In virtue of (4.3),

I =
D

w(x)1/2

∫ R

r

yµ−1 cos (ry − d0)
[
cos (xy − d(x)) +O(y−1)

]
dy.

Note that Dw(x)−1/2 ≍ 1, x ∈ [r, r + ε]. Moreover, for arbitrary R,∣∣∣∣∫ R

r

yµ−1 cos (ry − d0)O(y−1) dy

∣∣∣∣ . ∫ ∞

r

yµ−2 dy = O(1),
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and∫ R

r

yµ−1 cos (ry − d0) cos (xy − d(x)) dy =

∫ R

0

−
∫ r

0

=

∫ R

0

+O(1) =
1

2
(I1 + I2) +O(1),

where

I1 :=

∫ R

0

yµ−1 cos
(
(x+ r)y − d(x)− d0

)
dy,

I2 :=

∫ R

0

yµ−1 cos
(
(x− r)y − d(x) + d0

)
dy.

Let ξ = x+ r, δ(ξ) = d(x) + d0. Then

I1 =

∫ R

0

yµ−1 cos
(
ξy − δ(ξ)

)
dy = ξ−µ

∫ Rξ

0

tµ−1 cos
(
t− δ(ξ)

)
dt = ξ−µGµ(Rξ, δ(ξ)),

where Gµ is given by (4.5). Since ξ ≍ 1 for x ∈ [r, r+ ε], taking into account Lemma 4.1,
we find out that |I1| = O(1). Therefore,

Ffµ(x) = (D/2)w(x)−1/2I2 +O(1) for x ∈ [r, r + ε].

Consider I2. Let now ξ = x − r δ(ξ) = d(x) − d0. Then, analogously to I1, we have
I2 = ξ−µGµ(ξR, δ(ξ)). For x ∈ [r + 1/R0, r + ε], we have that ξR ≥ R/R0 = lnR. It
follows from this and Lemma 4.1 that for sufficiently large R

|I2| = ξ−µ
∣∣∣Γ(µ) cos(δ(ξ)− πµ

2

)
+O((lnR)µ−1)

∣∣∣
& x−µ

[∣∣∣cos(d(x)− d0 −
πµ

2

)∣∣∣+O((lnR)µ−1)
]
& x−µ

and

Ffµ(x) & x−µ +O(1) for x ∈ [r + 1/R0, r + ε].

Applying Pitt’s inequality (3.15) to fµ, we obtain for its right-hand side

∥s1/afµ∥pp,v =

∫ R

r

s(y)p/a
[
s(y)−1/2yµ−1 cos (ry − d0)

]p
v(y) dy

≤
∫ ∞

r

s(y)p(1/a−1/2)y(µ−1)pv(y) dy,

while for the left-hand side

∥w1/a′Ffµ∥qq,u &
∫ r+ε

r+1/R0

w(x)q/a
′|Ffµ(x)|qu(x) dx ≍

∫ r+ε

r+1/R0

|Ffµ(x)|q dx & J +O(1),

where

J :=

∫ r+ε

r+1/R0

(x− r)−qµ dx =

∫ ε

1/R0

x−qµ dx ≍

{
Rµq−1

0 , µ ̸= 1/q,

lnR0, µ = 1/q,
.

If µ ≥ 1/q and R0 = R/ lnR → ∞, then J → ∞. This implies (4.4), which completes
the proof. �
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5. Pitt’s inequality for piecewise power weights

In this section, Pitt’s inequality is proved for the power type weights (see (1.9))

s(y) = yν :=

{
yν1 , y ≤ 1,

yν2 , y ≥ 1,
ν1, ν2 ≥ 0.

Set aν + b = (aν1 + b, aν2 + b) and (1/y)ν = y−ν◦ , where

ν = (ν1, ν2) and ν◦ = (ν2, ν1).

If the operator generating weight s is of the desired form s(y) ≍ yν then, by (1.6),

(5.1) w(x) ≍ xν◦ .

Such weights with different ν1 and ν2 appear while considering the Jacobi transform. The
case ν1 = ν2 is in agreement with the Hankel transform.

5.1. Interrelations of the parameters. Similarly to the Fourier and Hankel trans-
forms (see (1.11) and (1.16)), we obtain Pitt’s inequality in the form

(5.2) ∥x−γ◦
Ff∥q,xν◦ . ∥yβf∥p,yν ,

where ν ≥ 0 is as above, while γ = (γ1, γ2) and β = (β1, β2) are the varying parameters.
We are going to determine the domains for the validity of Pitt’s inequality (5.2) in terms
of these parameters. We will also establish sharpness of the corresponding conditions in
some cases.

Inequality (5.2) follows from the general results of Section 3 for monotone weights u
and v. Pitt’s inequality there (see Corollary 3.2) is of the form ∥w1/a′Ff∥q,u . ∥s1/af∥p,v,
where 1 < p ≤ q < ∞, 1 < a ≤ 2. Observe that it can be equivalently written as

(5.3) ∥w−tu1/qFf∥q,w . ∥srv1/pf∥p,s,
where

(5.4)

t =
1

q
− 1

a′
∈ [t0, t1), t0 =

1

q
− 1

2
, t1 =

1

q
,

r =
1

p′
− 1

a′
∈ [r0, r1), r0 =

1

p′
− 1

2
, r1 =

1

p′
.

Comparing (5.2) and (5.3), we set

(5.5) x−γ◦
= w(x)−tu(x)1/q, yβ = s(y)rv(y)1/p,

which implies

(5.6) u(x) = xq(tν◦−γ◦), v(y) = yp(β−rν).

The results of Section 3 that we are going to use are proven for the case where the
weight u is non-increasing, the weight v is non-decreasing, and u, v1−p′ ∈ L1

loc. This is
equivalent to

(5.7) γ ≥ tν, β ≥ rν

and

(5.8) γ2 < tν2 + t1, β1 < rν1 + r1.
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For each a ∈ (1, 2] (and corresponding ranges of t and r) conditions (5.7) and (5.8)
determine half-open strips

Ta := {tν1 ≤ γ1, tν2 ≤ γ2 < tν2 + t1} and Ra := {rν1 ≤ β1 < rν1 + r1, rν2 ≤ β2}
(see Figure 1). This justifies the following

Definition 5.1. The parameters γ and β will be called dual if there is a ∈ (1, 2] such
that simultaneously γ ∈ Ta and β ∈ Ra.

Varying a ∈ (1, 2] (along with t ∈ [t0, t1) and r ∈ [r0, r1)), we obtain the domains
where the corresponding parameters γ and β live, which is illustrated in Figure 1 (see
A1A2A3A4A5 and B1B2B3B4B5). Note that the left and right domains here are similarly
assigned by quadruplets of parameters (γ, ν, q, t) and

(
β◦, ν◦, p′, r

)
.

Figure 1. Ranges for γ and β (corresponding to conditions (5.7) and (5.8))

In order to formulate the basic results, let us sketch the domain for the validity of
Pitt’s inequality, written

Dp,q := Dp,q(ν1, ν2), 1 < p ≤ q < ∞.

First, let (p, q) ̸= (2, 2). With (5.7) and (5.8) in hand, we additionally assume that γ
and β satisfy

(5.9) β1 − γ1 ≤
(
1

p′
− 1

q

)
(ν1 + 1), β2 − γ2 ≥

(
1

p′
− 1

q

)
(ν2 + 1),

(5.10)

{
γ1 ≥ tν1 + t∗, t ∈ [t0, t∗),

γ1 > tν1 + t, t ∈ [t∗, t1),

and

(5.11)

{
β2 ≥ rν2 + r∗, r ∈ [r0, r∗),

β2 > rν2 + r, r ∈ [r∗, r1),

where

t∗ = max

{
0,

1

q
− 1

p′

}
, r∗ = max

{
0,

1

p′
− 1

q

}
.
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For p = q = 2, we have t0 = t∗ = 0, r0 = r∗ = 0 in conditions (5.10) and (5.11). Let
us define the domain D2,2 as above with (5.10) and (5.11) replaced by

(5.12)

{
γ1 ≥ 0, t = 0,

γ1 > tν1 + t, t ∈ (0, t1),
and

{
β2 ≥ 0, r = 0,

β2 > rν2 + r, r ∈ (0, r1),

In Figure 2, the projections of the domain Dp,q on the planes γ and β are drawn
(see A1A

∗
1A

∗
2A

∗
3A

∗
4A5 and B1B

∗
1B

∗
2B

∗
3B

∗
4B5). They are subdomains of the corresponding

domains in Figure 1.

Figure 2. Projections of the domain Dp,q

The geometry of Dp,q may vary in accordance with the values of parameters. Figures 1
and 2 are drawn for q < 2 < p′. In this case the point A2 lies in the 1st quadrant, while
its dual B2 in the 3rd one. Note also that the domains may become simpler. For instance,
if q = p′, then it follows from t∗ = r∗ = 0 that A∗

1 → A2, A
∗
2 → A3, and A∗

3 ∈ [A3, A4).

5.2. The main result. We are now in a position to formulate the main result of this
section. Our goal is to establish sufficient conditions for the validity of Pitt’s inequality
and similarly the necessary ones. These conditions not always coincide.

Theorem 5.1. Suppose 1 < p ≤ q < ∞, ν ≥ 0.
(A) Let γ and β be dual and such that (γ, β) ∈ Dp,q. Then Pitt’s inequality (5.2)

holds.
(B1) Let the kernel K satisfy (3.17). Then condition (5.9) is necessary for Pitt’s

inequality (5.2) to be valid.
(B2) If the kernel K satisfies (4.1) and (4.3), then the conditions

γ1 ≥
(
1

q
− 1

2

)
ν1 +

1

q
− 1

p′
, β2 ≥

(
1

p′
− 1

2

)
ν2 +

1

p′
− 1

q

are necessary for Pitt’s inequality (5.2) to be valid.

Remark 5.1. Figure 1 presents the conditions of monotonicity and local integrability
of the weights (5.7) and (5.8), respectively. Moreover, Theorem 5.1 shows that the parame-
ters determining the dark-grey domain in Figure 2 (A1A

∗
1A

∗
2A

∗
3A

∗
4A5 and B1B

∗
1B

∗
2B

∗
3B

∗
4B5)
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correspond to the sufficient conditions which ensure the validity of Pitt’s inequality. Simi-
larly, the parameters for the dark-grey domain along with those on the plain grey domain
correspond to the necessary ones provided conditions (3.17), (4.1) and (4.3) take place
(see A1A

∗
1A

∗
2A6A4A

∗
4A5 and B1B

∗
1B

∗
2B

∗
3B4B

∗
4B5). In particular, it follows from this that

the border lines γ1 ≥ t0ν1 + t∗ and β2 ≥ r0ν2 + r∗ (A2A3 and B1B2 in Figure 2) and
γ2 < t1ν2 + t1 and β1 < r1ν1 + r1 (the upper ones in Figure 2) of Dp,q cannot be shifted.

Proof. We derive (A) from Corollary 3.2 with monotone weights (5.5). More pre-
cisely, we verify that conditions (3.13) and (3.14) applied to our weights lead to (5.8)–
(5.11).

Condition (3.13) is of the form

(5.13)
(
P1/rx

q(tν◦−γ◦)
)1/q (

Pry
p′(rν−β)

)1/p′
. 1, r > 0,

where

xq(tν◦−γ◦) =

{
xq(tν2−γ2), x ≤ 1,

xq(tν1−γ1), x ≥ 1,
yp

′(rν−β) =

{
yp

′(rν1−β1), y ≤ 1,

yp
′(rν2−β2), y ≥ 1.

For r ≤ 1, we have
(5.14)

P1/rx
q(tν◦−γ◦) =

∫ 1

0

xq(tν2−γ2)dx+

∫ 1/r

1

xq(tν1−γ1)dx, Pry
p′(rν−β) =

∫ r

0

yp
′(rν1−β1)dy.

These values exist provided the corresponding functions are integrable near the origin.
This leads to conditions (5.8):

q(tν2 − γ2) > −1, p′(rν1 − β1) > −1

or, equivalently,

γ2 < tν2 +
1

q
, β1 < rν1 +

1

p′
.

This and (5.14) yield, for 0 < r < 1,

(
P1/ru

)1/q ≍

(1/r)(q(tν1−γ1)+1)/q , q(tν1 − γ1) + 1 > 0,

(ln (1/r))1/q , q(tν1 − γ1) + 1 = 0,

1, q(tν1 − γ1) + 1 < 0,(
Prv

1−p′
)1/p′

≍ r(p
′(rν1−β1)+1)/p′ .

Since by (5.8) there holds p′(rν1−β1)+1 > 0, we have, for 0 < r < 1 and q(tν1−γ1)+1 ≤ 0,(
P1/ru

)1/q (
Prv

1−p′
)1/p′

. 1,

and condition (3.13) (and, equivalently (5.13)) is satisfied. In the case of q(tν1−γ1)+1 > 0,
we get (

P1/ru
)1/q (

Prv
1−p′
)1/p′

≍ r(p
′(rν1−β1)+1)/p′−(q(tν1−γ1)+1)/q.

For small r, this value is bounded provided

p′(rν1 − β1) + 1

p′
− q(tν1 − γ1) + 1

q
≥ 0,
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which is equivalent to

(5.15) γ1 − β1 ≥ (t− r)(ν1 + 1) =

(
1

q
− 1

p′

)
(ν1 + 1).

Thus, (3.13) is valid for r ≤ 1 if and only if (5.8) and (5.15) are.
By duality, or, as above, by straightforward calculations, we obtain, for r ≥ 1,

(5.16) γ2 − β2 ≤ (t− r)(ν2 + 1) =

(
1

q
− 1

p′

)
(ν2 + 1).

Now we deal with condition (3.14). Note that in case p = q = a = 2, this condition
can be skipped by Corollary 3.2. Changing variables x → 1/x, y → 1/y, and r → 1/r in
(3.14), we arrive at[

P1/r(x
q/a′−2u(1/x))

]1/q [
Pr(y

p′/a′−2v(1/y)1−p′)
]1/p′

. 1,

which is equivalent to (3.14) if a′ ≥ max{q, p′}. Inserting then our weights

u(1/x) = (1/x)q(tν
◦−γ◦) = xq(γ−tν), v(1/y) = (1/y)p(β−rν) = yp(rν

◦−β◦),

we get (
P1/rx

q/a′−2+q(γ−tν)
)1/q (

Pry
p′/a′−2−p′(rν◦−β◦)

)1/p′
. 1.

The inequality above is of the same form as (5.13), with obvious alterations. Hence, the
same operations that we used for deriving (5.15) and (5.16) imply

q

a′
− 2− q(tν1 − γ1) > −1,

p′

a′
− 2− p′(rν2 − β2) > −1.

Using
1

a′
=

1

q
− t and

1

a′
=

1

p′
− r,

we derive from this

(5.17) γ1 > t(ν1 + 1), β2 > r(ν2 + 1).

Finally, if r ≤ 1, then

p′/a′ − 2− p′(rν2 − β2) + 1

p′
− q/a′ − 2 + q(γ2 − tν2) + 1

q
≥ 0

or, equivalently,

γ2 − β2 ≤
(
1

q
− 1

p′

)
(ν2 + 1),

which is just (5.16). For r ≥ 1, we get (5.15) in a similar manner.
Thus, conditions (5.7), (5.8), (5.9) and (5.17), with a′ ≥ max{q, p′}, imply Pitt’s

inequality (5.2). Let us show that these conditions are equivalent to (5.7)–(5.11). In fact,
what is to be proved are (5.10) and (5.11). We restrict ourselves to inequalities for γ,
since, by Definition 5.1, those for β are similar.

Conditions (5.9) and (5.7) along with 1/q − 1/p′ = t− r yield

γ1 ≥ (t− r)(ν1 + 1) + β1 ≥ (t− r)(ν1 + 1) + rν1 = tν1 +
1

q
− 1

p′
.



WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS 25

Together with γ1 ≥ tν1 this gives

(5.18) γ1 ≥ tν1 + t∗, t ∈ [t0, t1),

which ensures the first inequality in (5.10). We then observe that a′ ≥ max{q, p′} is
equivalent to

1

a′
≤ min

{
1

q
,
1

p′

}
,

and, in turn, to

t ≥ max

{
0,

1

q
− 1

p′

}
= t∗.

Taking into account this and (5.17), we derive the second inequality in (5.10):

(5.19) tν1 + t < γ1, t ∈ [t∗, t1).

The latter is more restrictive than (5.18) for t ≥ t∗, which completes the proof of (A) in
Theorem 5.1 for all cases except p = q = a = 2.

In the case p = q = a = 2, which corresponds to t = r = t∗ = r∗, the conditions in
(5.17) are not needed, as mentioned above. Therefore, one should set t ∈ (t∗, t1) in (5.19).
This explains why (5.12) fits this case.

Let us proceed to (B).
(B1) If the kernel K satisfies (3.17), then (3.13) (and, correspondingly, (5.13)) holds.

It is proved in (A) that (5.15) and (5.16) follow from (5.13), and hence we have (5.9).
(B2) Let the kernel K satisfy (4.1) and (4.3). Rewriting (4.2) and (4.4) in present

notation, we have∫ 1

0

xν2q/a′+q(tν2−γ2) dx+

∫ ∞

1

xν1q(1/a′−1/2)−qµ+q(tν1−γ1) dx < ∞, µ >
1

p′
,∫ ∞

1

yν2p(1/a−1/2)+(µ−1)p+p(β2−rν2) dy = ∞, µ ≥ 1

q
.

What follows from this is ν2q
a′

+ q(tν2 − γ2) > −1, which is equivalent to

γ2 <
1

q
+ ν2

(
t+

1

a′

)
=

ν2 + 1

q
,

and ν1q
(

1
a′
− 1

2

)
− qµ+ q(tν1 − γ1) < −1, which is equivalent to

γ1 >
1

q
− µ+ ν1

(
1

q
− 1

2

)
.

Letting µ → 1
p′
, we derive

γ1 ≥
(
1

q
− 1

2

)
ν1 +

1

q
− 1

p′
,

and

ν2p

(
1

a
− 1

2

)
+ (µ− 1)p+ p(β2 − rν2) ≥ −1,

which is equivalent to

β2 ≥ −1

p
+ rν2 + ν2

(
1

a′
− 1

2

)
+ 1− µ.
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Letting now µ → 1
q
, we obtain

β2 ≥
(
1

p′
− 1

2

)
ν2 +

1

p′
− 1

q
,

which completes the proof of the theorem. �

5.3. The special case: Hausdorff–Young-type inequalities. There is one case
of special interest, the one where q = p′. In this case, we have t = r, t0 = r0 ≤ 0, t1 = r1,
and t∗ = r∗ = 0. Then the condition (5.7)-(5.9) as well as (5.10)–(5.11) for (p, q) ̸= (2, 2)
or (5.12) for (p, q) = (2, 2), that define the domain Dp,q, reduce to

(5.20) tν2 ≤ γ2 < tν2 + t1, tν1 ≤ β1 < tν1 + t1, t ∈ [t0, t1),

(5.21) γ1 ≥ β1, β2 ≥ γ2,

(5.22) γ1 > tν1 + t, β2 > tν2 + t, t ∈

{
(0, t1), p = 2,

[0, t1), p ̸= 2.

Observe that (5.7) and (5.8) in this situation reduce to (5.20).

Corollary 5.1. Suppose q = p′ ≥ 2. Let γ and β be dual and such that (γ, β) ∈ Dp,q

described by (5.20)–(5.22). Then Pitt’s inequality (5.2) holds.

The case t = 0 is a good example of the application of Corollary 5.1. In this case, the
conditions

0 ≤ γ2, β1 <
1

p′
, γ1 ≥ β1, β2 ≥ γ2

guarantee the validity of Pitt’s inequality

∥x−(γ2,γ1)Ff∥p′,x(ν2,ν1) . ∥y(β1,β2)f∥p,y(ν1,ν2) , 1 < p ≤ 2.

It is of great interest to figure out what conditions are necessary and sufficient for Pitt’s
inequality (3.15) to hold in the case of usual power weights u(x) = x−γ and v(y) = yβ.
We have γ1 = γ2 and β1 = β2 there, which results in drawing in Figure 2 the lines crossing
the origin on the angle 45◦. Analyzing the coordinates of the points A∗

1, A
∗
4, B

∗
1 , and B∗

4

in Figure 2, one can see that necessary and sufficient conditions coincide only if ν1 = ν2.
And this is what next section focus on.

6. Weighted inequalities for Hankel transforms

Let α ≥ −1/2. Recall (see (1.15)) that the normalized Bessel function is defined by
jα(t) = Γ(α + 1)(t/2)−αJα(t), where Jα is the classical Bessel function. In terms of this
normalized Bessel function, the direct and inverse Hankel transform are defined by

Hf(λ) := Hνf(λ) =

∫ ∞

0

f(t)jα(λt)t
ν dt, ν = 2α+ 1 ≥ 0,

H−1f(t) = bα

∫ ∞

0

f(λ)jα(λt)λ
ν dλ, b−1

α = 22αΓ(α + 1)2;
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for a convenient presentation, see [36, Ch. 5]. By this, Parseval’s identity holds true∫ ∞

0

|f(t)|2tν dt = bα

∫ ∞

0

|Hf(λ)|2λν dλ.

In particular cases, the Hankel transform reduces to the cosine Fourier transform (α =
−1/2) and the sine Fourier transform (α = 1/2). For α = −1/2, we have j−1/2(t) = cos t,
ν = 0, and

(6.1) f̂c(λ) := Fcf(λ) =

∫ ∞

0

f(t) cos (λt) dt, F−1
c f(λ) =

2

π

∫ ∞

0

f(λ) cos (λt) dλ.

If α = 1/2, then j1/2(t) = t−1 sin t, ν = 2,

Hf(λ) =

∫ ∞

0

f(t)(λt)−1 sin(λt)t2 dt = λ−1Fs[tf(t)](λ), H−1f(t) = t−1F−1
s [λf(λ)](t),

where

(6.2) f̂s(λ) := Fsf(λ) =

∫ ∞

0

f(t) sin(λt) dt, F−1
s f(t) =

2

π

∫ ∞

0

f(λ) sin(λt) dλ

denote the sine Fourier transform and its inverse, respectively.

6.1. Properties of the normalized Bessel function. The kernel K(xy) = jα(xy)
satisfies all the properties from Subsection 1.1. This follows from the corresponding
properties of the classical Bessel function Jα [2, Ch. 7]. Let us list the main ones.

1) The functions jα(λt) are the eigenfunctions of the Sturm–Liouville problem

d

dt

(
tν

d

dt
jα(λt)

)
+ λ2tνjα(λt) = 0, jα(0) = 1,

d

dt
jα(0) = 0;

2) For α > −1/2, the Poisson integral representation holds

jα(t) =
2Γ(α + 1)

π1/2Γ(α + 1/2)

∫ 1

0

(1− u2)α−1/2 cos (tu) du;

3) If t → +∞,

jα(t) =
2αΓ(α + 1)(2/π)1/2

tα+1/2

[
cos (t− cα) +O(t−1)

]
, cα =

π(α + 1/2)

2
.

6.2. Sharp weighted inequalities. Since the Hankel transform coincides with its
inverse up to a constant, we will present weighted inequalities only for the direct transform.

Setting for ν = 2α + 1 ≥ 0, x, y ≥ 0

Ff(x) =

∫ ∞

0

f(y)K(x, y)s(y) dy, K(x, y) = jα(xy), s(y) = yν , w(x) = bαx
ν ,

we have
w(x)s(1/x) = bα, ∥f∥22,s = bα∥Ff∥22,w.

It follows from Subsection 6.1 that

|K(x, y)| ≍ 1, xy . 1, |K(x, y)| . [w(x)s(y)]−1/2 , xy & 1.

By this, the kernel K satisfies (1.8).
The main result of this section is the sharp Pitt’s inequality for the Hankel transform.

It comes as a consequence of Theorem 5.1 for the case where ν1 = ν2 = ν ≥ 0 (for ν = 0,
we have the case of the cosine Fourier transform).
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In the sequel, let 1 < p ≤ q < ∞, ν ≥ 0, and, as usual, γ = (γ1, γ2), and β = (β1, β2).

Corollary 6.1. Let β1 = β2 = β and γ1 = γ2 = γ. Pitt’s inequality

(6.3) ∥x−γHf∥q,xν . ∥yβf∥p,yν

holds true if and only if

(6.4) γ − β =

(
1

q
− 1

p′

)
(ν + 1),

and

(6.5)

(
1

q
− 1

2

)
ν +max

{
0,

1

q
− 1

p′

}
≤ γ <

ν + 1

q
.

In [16], this assertion has been proved by different means.

Proof. This result may be considered as a reformulation of Theorem 5.1, whereas
(6.4) follows from (5.9), while (6.5) follows from (5.10) and (5.11). �

Let us investigate one more interesting case. Consider Figure 3, where

(6.6)
a1(t0ν + t∗, t0ν + t∗), a2(t0ν + t∗, t0ν + t1),

a3(t∗(ν + 1), t∗ν + t1), a4(t1(ν + 1), t1(ν + 1)),

and the points ai are symmetric to ai with respect to the line a1a4, i = 1, 2.

Figure 3. The case of the Hankel transform for γ1 − β1 = γ2 − β2

Corollary 6.2. Let γ1 − β1 = γ2 − β2. If

β = γ +

(
1

p′
− 1

q

)
(ν + 1)

and parameter γ lies in the domain a1a2a3a4a3a2a1 symmetric with respect to the line a1a4
(see Figure 3), then Pitt’s inequality holds:

(6.7) ∥x−γ◦
Hf∥q,xν . ∥yβf∥p,yν .

In addition, for the points which are off the domain a1a2a5a6a4a7a3a2a1, outlined in
Figure 3, Pitt’s inequality does not hold.
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Proof. By (5.9), we have

γi − βi =

(
1

q
− 1

p′

)
(ν + 1), i = 1, 2,

that implies

(6.8) β = γ +

(
1

p′
− 1

q

)
(ν + 1).

To complete the proof, it remains to use the fact that Figure 3 is the intersection of
the two domains in Figure 2: one is in the γ coordinates, while the other is in the β
coordinates but is drawn shifted in accordance with (6.8).

Let us give a more detailed explanation. It is routine to show that (5.10) and (5.11)
(for (p, q) ̸= 2) or (5.12) (for p = q = 2) imply, for γi, i = 1, 2,

(6.9) tν + t∗ ≤ γi < tν + t1, t ∈ [t0, t∗), tν + t < γi < tν + t1, t ∈ [t∗, t1),

and t∗ν + t∗ ≤ γi for p = q = 2.
Figure 3 presents two coordinates γ1 and γ2. However, in the inequalities (6.9) there is

also the parameter t. It expresses how the results and conditions depend on a. Generally,
inequalities (6.9) define a polytope in that spatial coordinate system (γ1, γ2, t). What
we see in Figure 3 is the projection of that polytope on the plane (γ1, γ2) (i.e., t = 0).
Observe that for each t, the sets of (γ1, γ2) that satisfy (6.9) form a half-open square with
the sides parallel to the coordinate axes γ1 and γ2, two vertices on the bisectrix γ1 = γ2,
and two other vertices symmetric with respect to this bisectrix.

If t = t0, the points a1, a2, a2 in Figure 3 are three vertices of the initial square.
If t = t∗, two symmetric vertices a3 and a3 of the corresponding square are denoted in
Figure 3. Finally, if t = t1, the corresponding square degenerates into one point, whose
projection in Figure 3 is denoted by a4(t1(ν+1), t1(ν+1)). By this, the projection of the
whole polytope Dp,q is exactly a1a2a3a4a3a2a1, as claimed.

The optimality condition follows from Theorem 5.1 and relation (6.8) between the
parameters γi and βi. �

Note that Corollary 6.1 is illustrated in Figure 3 by the interval a1a4.

6.3. The Hankel transform of the Bochner–Riesz kernel. The goal of this
subsection is to show that necessity in Corollary 6.1, i.e., the sharpness of condition (6.5)
can easily be observed by means of the Bochner–Riesz kernel

(6.10) fσ(t) = (1− t2)σ+, σ > −1.

It follows from the formula (see, e.g., [50, Ch. IV, Lemma 4.13])∫ 1

0

(xy)1/2Jα(xy)x
α+1/2(1− x2)σ dx = 2σΓ(σ + 1)y−σ−1/2Jα+σ+1(y), σ > −1,

that ∫ 1

0

(1− t2)σjα(λt)t
ν dt = cασjα+σ+1(λ), cασ =

Γ(α + 1)Γ(σ + 1)

2Γ(α+ σ + 2)
.

This implies

(6.11) Hfσ(λ) = cασjα+σ+1(λ).
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Note that σ = 0 gives the Hankel transform of the indicator function χ[0,1](t).
To prove the sharpness of the range in (6.5), we take the Bochner–Riesz kernel (6.10).

We have

∥yβfσ∥p,yν =

(∫ 1

0

yβp(1− y2)σpyν dy

)1/p

≍

(∫ 1/2

0

yβp+ν dy +

∫ 1

1/2

(1− y)σp dy

)1/p

.

It follows from (6.11), properties of the normalized Bessel function (see Subsection 6.1
and also [17]), and arguments similar to (4.9) that

∥x−γFfσ∥q,xν ≍
(∫ ∞

0

|jα+σ+1(x)|qx−γq+ν dx

)1/q

≍
(∫ 1

0

x−γq+ν dx+

∫ ∞

1

x−q(α+σ+3/2)−γq+ν dx

)1/q

.

Therefore, if βp+ ν > −1 and σp > −1, that is, ∥yβfσ∥p,yν < ∞, then the inequality

∥x−γFfσ∥q,xν . ∥yβfσ∥p,yν
does not hold if either −qγ + ν ≤ −1 or −q(α + σ + 3/2) − γq + ν ≥ −1. Taking into
account how β and γ are related as well as the equality α + 3/2 = (ν + 2)/2, we derive
that the inequality (6.3) in Corollary 6.1 does not hold if

γ ≥ ν + 1

q
,

ν + 1

q
− (ν + 1) < γ ≤ ν + 1

q
− ν + 2

2
− σ <

ν + 1

q
− ν + 2

2
+

1

p
.

Interchanging f and Ff and using that the Hankel transform coincides with its inverse,
we get that the inequality (6.3) in Corollary 6.1 is invalid also when

−p

(
ν + 2

2
+ σ

)
+ βp+ ν < −1, σq > −1 =⇒ γ <

ν + 1

q
− ν + 2

2
+

1

q′
.

Summarizing, we see that (6.3) does not hold for

γ <
ν + 1

q
− ν + 2

2
+ max

{
1

p
,
1

q′

}
, γ ≥ ν + 1

q
,

which proves the sharpness of condition (6.5).

7. Weighted inequalities for Fourier transforms

In this section, we discuss well-known special cases of the Hankel transform each of
which corresponds to the particular case of the Fourier transform: cosine and sine in
dimension one and the radial case in several dimensions.

7.1. The Fourier transform of a radial function. We start with the case ν =
n− 1. This is the very important case of the Fourier transform of a radial function in the
n-dimensional Euclidean space.

Corollary 7.1. For ν = n− 1 and 1 < p ≤ q < ∞, Pitt’s inequality

(7.1) ∥x−γ f̂∥q,xν . ∥yβf∥p,yν
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holds if and only if

β = γ + n

(
1− 1

p
− 1

q

)
,

n

q
− n+ 1

2
+ max

{
1

p
,
1

q′

}
≤ γ <

n

q
.

This is the result in [16]. We remark that it does not follow from the known techniques
dealing with the Fourier transforms, like in [5, 26]. Indeed, taking in Theorem 4 (i) and
(iii) in [5] the weights to be the powers of |x| and |y|, we obtain the classical Pitt inequality
(1.11), which corresponds to (7.1) in the case of radial functions, under the more restrictive
condition (1.12). This is also shown in Examples 4 and 5 in [5].

Let us assume 1 < p ≤ q < ∞, and, as above, γ = (γ1, γ2) and β = (β1, β2).

7.2. The cosine Fourier transform. It is worth getting a closer look at the case
ν = 0, which corresponds to the cosine Fourier transform.

Theorem 7.1. Let γ1 − β1 = γ2 − β2. Pitt’s inequality

∥x−γ◦
f̂c∥q . ∥yβf∥p

holds if and only if

(7.2) β = γ +
1

p′
− 1

q

and

max

{
0,

1

q
− 1

p′

}
≤ γi <

1

q
, i = 1, 2.

These inequalities correspond to the half-open square in Figure 4.

Figure 4. The case of the cosine Fourier transform

In particular, for γ1 = γ2 = γ, we get the bisectrix

(7.3) max

{
0,

1

q
− 1

p′

}
≤ γ <

1

q
,

which gives the necessary and sufficient condition.

Proof. Indeed, it follows from (6.9) that for i = 1, 2,

(i) t∗ ≤ γi < t1, t ∈ [t0, t∗), (ii) t < γi < t1, t ∈ [t∗, t1).

We again have a polytope (cf. Remark 5.1) for the whole range of a (or t). However,
its form is different. Inequalities (i) define the same square with the sides of length t1− t∗.
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For t varying from t∗ to t1, the squares defined by (ii) become smaller and smaller, with
just a point for t = t1. This polytope has no slope, contrary to that in Figure 3, and
all the projections fall down into the large square in Figure 4. Equivalently, we take the
widest range of inequalities corresponding to (7.2). In the case γ1 = γ2 = γ, the bisectrix
(7.3) is the intersection of the necessary and sufficient conditions. �

It is important to note that (7.3) coincides with (1.12) and (1.13) for n = 1. We
also remark that Theorem 7.1 can be derived from results in [26]. Indeed, let w = C1

and s = C2, where C1 and C2 are some constants. This is the case of the cosine Fourier
transform. Condition (3.13) in Corollary 3.2 is the same as condition (2.7) in [26]. Then
Theorem 3.1 from [26] implies Pitt’s inequality.

7.3. The sine Fourier transform. The other interesting case is ν = 2, which cor-
responds to the sine Fourier transform. Using the relation between the Hankel transform
for ν = 2 and the sine Fourier transform, we can prove the following assertion.

Theorem 7.2. Let γ1 − β1 = γ2 − β2. Pitt’s inequality

(7.4) ∥x−γ◦
f̂s∥q . ∥yβf∥p

holds for

(7.5) β = γ +
1

p′
− 1

q
,

where γ belongs to the domain a1a2a3a4a3a2a1 (see Figure 5) with

a1(t∗, t∗), a2(t∗, t1), a3(3t∗ − 2t1 + 1, 2t∗ − t1 + 1), a4(t1 + 1, t1 + 1),

(7.6) t∗ = max

{
0,

1

q
− 1

p′

}
, t1 =

1

q
.

Figure 5. The case of the sine Fourier transform

Remark 7.1. This assertion is similar to Corollary 6.2 with respect to assumptions
on β and γ. Of course, necessary conditions for (7.4) are the conditions provided by (B1)
and (B2) in Theorem 5.1 (if γ belongs to the domain a1a5a6a4a7a2a1).

Note that for γ1 = γ2 = γ, we get the bisectrix a1a4

(7.7) max

{
0,

1

q
− 1

p′

}
≤ γ <

1

q
+ 1,
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which gives the necessary and sufficient condition.

Proof. The sine transform can be represented via the Hankel transform of the func-
tion H2. Indeed, we have

∥x−γ◦
f̂s∥q = ∥x−(γ◦−1+2/q)H2g∥q,x2 ,

where g(y) = y−1f(y). Applying now (6.7) in Corollary 6.2 for ν = 2, γ◦ − 1 + 2/q in
place of γ◦ and β + 1− 2/p in place of β, and taking into account (7.6), we obtain (7.5).
The rest of the conditions follow from (6.9) taken with ν = 2. �

In [37], the right-hand bound in (7.7) has been obtained only for functions satisfying
special type monotonicity conditions. This result is also new as compared with that in
[45] for functions with mean zero.

8. Jacobi transforms: basic properties and Pitt’s inequalities

Let us begin with the needed prerequisites; they can be found in [19], [20], [33], [34]
(see also [8], [13], [14]). The Jacobi functions are defined by

φ
(α,β)
λ (t) = F

(
ρ+ iλ

2
,
ρ− iλ

2
;α + 1;−(sinh t)2

)
, t ≥ 0, α, β, λ ∈ C,

where ρ = α + β + 1 and F (a, b; c; z) is the hypergeometric Gauss function (1.17). We
consider the case

α ≥ β ≥ −1

2
.

In particular cases, we have more transparent representations for the Jacobi functions:

(8.1) φ
(−1/2,−1/2)
λ (t) = cos (λt), φ

(1/2,1/2)
λ (t) =

2 sin(λt)

λ sinh 2t
,

φ
(α,α)
λ (t) = φ

(α,−1/2)
λ/2 (2t) =

2αΓ(α + 1)P−α
−1/2+iλ/2(cosh 2t)

(sinh 2t)α
,

where P µ
ν is the Legendre function.

The direct and inverse Jacobi transforms are defined by the identities

Jf(λ) =

∫ ∞

0

f(t)φ
(α,β)
λ (t)m(t) dt, J−1f(t) =

∫ ∞

0

f(λ)φ
(α,β)
λ (t)n(λ) dλ,

respectively. Here

(8.2) m(t) = (2π)−1/2∆(t), ∆(t) = 22ρ(sinh t)2α+1(cosh t)2β+1,

(8.3) n(λ) = (2π)−1/2|c(λ)|−2, c(λ) =
2ρ−iλΓ(α + 1)Γ(iλ)

Γ
(
ρ+iλ
2

)
Γ
(
ρ+iλ
2

− β
) .

Note that the Jacobi transform is a bijection between the space of even infinitely differen-
tiable functions with compact support and the space of even entire functions of exponential
type with rapid decay. It can be extended to the isomorphism between the two weighted
spaces L2

m and L2
n, the norm in which is defined by (1.1). Parseval’s identities are true as

well:

(8.4) ∥Jf∥L2
n
= ∥f∥L2

m
, ∥f∥L2

n
= ∥J−1f∥L2

m
.
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When α = β, the Jacobi transform is also known as the Mehler–Fock transform. If
α = β = −1/2, then (8.1), (8.2), and (8.3) reduce the Jacobi transform to the cosine
Fourier transform. Since this case has been studied in detail in the previous section, in
what follows we will be interested in the case α > −1/2.

The Jacobi transform does not immediately fit the general outline given in Sections 2–
5, since the weightm does not satisfy the ∆2-condition. However, it can easily be modified
to become such. We postpone this to Subsection 8.2.

8.1. Properties of Jacobi functions. Let us list several useful properties of the
Jacobi functions

φλ(t) := φ
(α,β)
λ (t), α ≥ β ≥ −1/2, α > −1/2.

There is a substantial similarity of their properties with those of the normalized Bessel
functions jα(λt):

1. For t ≥ 0, the functions φλ(t) are eigenfunctions of the Sturm–Liouville problem

(8.5)
d

dt
∆(t)

d

dt
φλ(t) + (ρ2 + λ2)∆(t)φλ(t) = 0, φλ(0) = 1, φ′

λ(0) = 0.

2. Mehler’s integral representation is true:

(8.6) φλ(t) =
2

∆(t)

∫ t

0

A(s, t) cos (λs) ds, A(s, t) ≥ 0

(see [34], where the explicit expression for A(s, t) is given).
3. Let us establish the asymptotic behavior of the weight n(λ), λ > 0. It follows from

the identity Γ(z + 1) = zΓ(z) that

|c(λ)| = 2ρΓ(α + 1)

Γ(ρ/2)Γ(ρ/2− β)
λ−1 (1 +O(λ)) , as λ → 0.

For |z| → ∞, | arg z| < π, we have (see, e.g., [1, Ch. 1])

ln Γ(z + a) =

(
z + a− 1

2

)
ln z − z +

1

2
ln (2π) +O(z−1).

This yields, as λ → ∞,

ln c(λ) = (ρ+ α) ln 2 + ln Γ(α + 1)−
(
α +

1

2

)
ln iλ− 1

2
ln (2π) +O(λ−1)

and

|c(λ)| = 2ρ+αΓ(α + 1)(2π)−1/2

λα+1/2

[
1 +O(λ−1)

]
.

Hence, using (8.3), we obtain

(8.7) n(λ) = (2π)−1/2

(
Γ(ρ/2)Γ(ρ/2− β)

2ρΓ(α + 1)

)2

λ2 [1 +O(λ)] , λ . 1,

(8.8) n(λ) =
(2π)1/2

(2ρ+αΓ(α + 1))2
λ2α+1

[
1 +O(λ−1)

]
, λ & 1.

4. We now give some asymptotic properties of Jacobi functions. They result from the
following asymptotic formulas for hypergeometric functions:

(8.9) F (a, b; c; z) = 1 +O(|z|), as |z| → 0;
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while for | arg(−z)| < π and |z| → ∞, we have the following two relations:

(8.10) F (a, a; c; z) = B0(−z)−a ln (−z)
[
1 +O(| ln (−z)|−1)

]
, c− a /∈ Z, a ̸= 0,

(8.11) F (a, b; c; z) = B1(−z)−a
[
1 +O(|z|−1)

]
+B2(−z)−b

[
1 +O(|z|−1)

]
, a− b /∈ Z,

B0 =
Γ(c)

Γ(a)Γ(c− a)
, B1 =

Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
, B2 =

Γ(c)Γ(a− b)

Γ(a)Γ(c− b)

(see [1, Ch. 2]);

(8.12) F

(
a+ µ, b− µ; c;

1− z

2

)
=

Γ(c)2(a+b−1)/2 (θ sinh θ)1/2

γc−1 (z − 1)c/2 (z + 1)(a+b+1−c)/2
[Ic−1(γθ) + ε1] ,

where

z = cosh θ, γ =
a− b

2
+ µ, |ε1| ≤

A1e
A2/|γ|

θ|γ|2|Kc(γθ)|
, θ > 0, | arg µ| < π,

with A1 and A2 being positive constants independent of θ and γ. Here Iν and Kν are
modified Bessel functions (see [30]).

Proposition 8.1. The following properties of the Jacobi functions hold true:

(8.13)

φ0(t) = 1 +O(t2), 0 ≤ t . 1,

φ0(t) =
2ρ+1Γ(α + 1)

(2π)1/4Γ(ρ/2)Γ(ρ/2− β)

t

m(t)1/2
[
1 +O(t−1)

]
, t & 1;

and for λt & 1,

(8.14) φλ(t) =
(2/π)1/2

[m(t)n(λ)]1/2
[
cos (λt+ arg c(λ)) +O(e−2t)

]
, 0 < λ . 1,

and

(8.15) φλ(t) =
(2/π)1/2

[m(t)n(λ)]1/2
[
cos (λt− cα) +O(λ−1)

]
, λ & 1, t > 0.

Proof. 1. Set in (8.9) and (8.10)

a = b =
ρ

2
, c = α + 1, z = −(sinh t)2.

In virtue of (8.9), we have φ0(t) = 1 +O(t2), t . 1. Using (8.10), asymptotic equalities

(8.16) sinh t = cosh t
(
1 +O(e−2t)

)
, −z = (sinh t)2 =

e2t

4

(
1 +O(e−2t)

)
, t → ∞,

and (8.2), we obtain for t & 1

φ0(t) =
Γ(α + 1)2t

Γ(ρ/2)Γ(ρ/2− β)(sinh t)ρ
[
1 +O(t−1)

]
=

2ρ+1Γ(α + 1)

(2π)1/4Γ(ρ/2)Γ(ρ/2− β)

t

m(t)1/2
[
1 +O(t−1)

]
.

By this, (8.13) is established.
2. Let λt & 1, 0 < λ . 1. Then t & 1. Set in (8.11)

a =
ρ+ iλ

2
, b =

ρ− iλ

2
, c = α+ 1, z = −(sinh t)2.
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It follows from (8.11), the properties of the Gamma function and (8.3) that

φλ(t) = 2Re
(
B2(sinh t)

−ρ+iλ
) [

1 +O
(
(sinh t)−2

)]
,

where

B2 = B1 =
Γ(α + 1)Γ(iλ)

Γ
(
ρ+iλ
2

)
Γ
(
ρ+iλ
2

− β
) = 2−ρ+iλc(λ).

This yields

φλ(t) = 2Re
(
2−ρ+iλc(λ)(sinh t)−ρ+iλ

) [
1 +O(e−2t

]
= 2(2 sinh t)−ρ|c(λ)|Re

(
ei[λ ln (2 sinh t))+arg c(λ)]

) [
1 +O(e−2t)

]
.

Here arg c(λ) is a continuous function when 0 < λ . 1 because of the analyticity of the
function c(λ). Making use of (8.2), (8.3), and (8.16), we get

φλ(t) =
(2/π)1/2

[m(t)n(λ)]1/2
[cos (λ ln (2 sinh t) + arg c(λ))]

[
1 +O(e−2t)

]
,

where ln (2 sinh t) = t+O(e−2t) and

cos (λ ln (2 sinh t) + arg c(λ)) = cos (λt+ arg c(λ)) +O(e−2t), t & 1.

Thus, the proof of (8.14) is complete.
3. Let λt & 1, λ & 1, t > 0. Putting in (8.12)

a = b =
ρ

2
, µ =

iλ

2
, c = α+ 1, θ = 2t,

we have

z = cosh 2t,
1− z

2
= −(sinh t)2, γ =

iλ

2
, γθ = iλt, Ic−1(γθ) = iαJα(λt).

It follows from this and from the expression for the normalized Bessel function (1.15) that

φλ(t) =
tα+1/2

(sinh t)α+1/2(cosh t)β+1/2
[jα(λt) + ε̃1] ,

where

(8.17) ε̃1 = 2αΓ(α + 1)(iλt)−αε1, |ε̃1| ≤
A12

α+1Γ(α + 1)e2A2/λ

λα+2tα+1|Kα+1(iλt)|
.

For z & 1, α ≥ −1/2, we have |Kα+1(iz)| ≍ z−1/2. This, (8.17) and λt & 1, λ & 1 yield

|ε̃1| .
1

λ(λt)α+1/2
.

Finally, using the asymptotics of the normalized Bessel function and (8.2), we obtain

φλ(t) =
(2/π)1/2

[m(t)n(λ)]1/2
[
cos (λt− cα) +O(λ−1)

]
, λ & 1.

We now have (8.15), which completes the proof of the proposition. �
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8.2. The modified Jacobi transform. The Jacobi transform can be reduced to a
transform with weights of power type (1.9). For this, set

(8.18) φ̃λ(t) := φ̃
(α,β)
λ (t) =

φλ(t)

φ0(t)
, m̃(t) = [φ0(t)]

2m(t), ñ(λ) = n(λ).

The modified Jacobi transforms are thus defined by the relations

J̃f(λ) =

∫ ∞

0

f(t)φ̃λ(t)m̃(t) dt, J̃−1f(t) =

∫ ∞

0

f(λ)φ̃λ(t)ñ(λ) dλ.

From (8.18), (8.2), (8.13) and (8.7), (8.8), we find out that

(8.19) m̃(t) ≍ m(t) ≍ t2α+1, t . 1, m̃(t) ≍ (tm(t)−1/2)2m(t) ≍ t2, t & 1.

This and definition (1.9) yield

(8.20) m̃(t) ≍ t(2α+1,2), t > 0.

It follows from (8.7), (8.8) and (8.18), (8.3) that

(8.21) ñ(λ) ≍ λ(2,2α+1), λ > 0.

The appropriate relation between the weights

(8.22) m̃(t)ñ(1/t) ≍ 1, t > 0

follows now from (8.20) and (8.21). Therefore, the modified weights satisfy all the required
properties.

We have the following simple connection between the transforms:

(8.23) J̃f(λ) = J [f(t)φ0(t)] (λ), J̃−1f(t) = φ0(t)
−1J−1f(t).

It follows from (8.4) that

∥J̃f∥L2
ñ
= ∥f∥L2

m̃
, ∥f∥L2

ñ
= ∥J̃−1f∥L2

m̃
.

For α = β = −1/2, using the duplication formula for the Gamma function, we obtain

φ̃λ(t) = cos (λt), m̃(t) ≡ (2π)−1/2, ñ(λ) ≡ 22(2π)−1/2.

As mentioned, this is the case of the cosine Fourier transform, or, which is the same, the
Hankel transform with α = −1/2. For α = β = 1/2, we have

φ̃λ(t) =
sin(λt)

λt
, m̃(t) = 24(2π)−1/2t2, ñ(λ) = 2−2(2π)−1/2λ2.

This case reduces to the Hankel transform with α = 1/2, or the sine Fourier transform.

8.3. Properties of the modified Jacobi functions. Let us give basic properties
of the modified Jacobi functions when α ≥ β ≥ −1/2, α > −1/2. They simply follow
from the corresponding properties of the (standard) Jacobi functions. By this, we will see
that the kernel K(xy) = φ̃x(y) satisfies all the properties from Subsection 1.1.

1. It follows from (8.5) for Jacobi functions that the modified Jacobi functions are
eigenfunctions of the Sturm–Liouville problem

(8.24)
d

dt

(
m̃(t)

d

dt
φ̃λ(t)

)
+ λ2m̃(t)φ̃λ(t) = 0, φ̃λ(0) = 1,

d

dt
φ̃λ(0) = 0.
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2. Mehler’s representation for the modified Jacobi function

φ̃λ(t) =

∫ t

0

Ã(s, t) cosλs ds, Ã(s, t) =
A(s, t)∫ t

0
A(u, t) du

≥ 0

follows from (8.6). This and (8.24) yield

|φ̃λ(t)| ≤ φ̃0(t) = φ̃λ(0) = 1, φ̃λ(t) ≍ 1, λt . 1

(see also Subsection 1.1).
3. It follows from Proposition 8.1 (properties (8.14) and (8.15)) and (8.18) that for

λt & 1

φ̃λ(t) =
(2/π)1/2

[m̃(t)ñ(λ)]1/2

{
cos (λt− cα) +O(λ−1), λ & 1, t > 0,

cos (λt+ arg c(λ)) +O(t−1), t & 1, 0 < λ . 1,

cf. Subsection 1.1. Here we also used e2t & t for t & 1.

8.4. Pitt’s inequalities for the Jacobi transforms. We first write the modified
Jacobi transforms in a different notation. Let ν = 2α + 1 > 0.

Direct transform. In this case

(8.25) K(x, y) = φ̃(α,β)
x (y), s(y) = m̃(y) ≍ yν , ν = (ν, 2), w(x) = ñ(x) ≍ xν′ .

Inverse transform. In this case

K(x, y) = φ̃(α,β)
y (x), s(y) = ñ(y) ≍ yν , ν = (2, ν), w(x) = m̃(x) ≍ xν′ .

All the properties of the kernel and weights of the integral transform given in the
introduction needed for deriving Pitt’s inequality are valid in both cases. In particular,
the assumptions of Theorems 3.2 and 4.1 take place, which follows from the above results
of this section.

Applying the results for general power weights from Section 5, we derive from Theo-
rem 5.1 the following Pitt’s inequalities for the modified Jacobi transforms.

Theorem 8.1. Suppose 1 < p ≤ q < ∞, ν > 0.
(A) Let γ and β be dual and (γ, β) ∈ Dp,q(ν, 2), then

(8.26) ∥x−γ◦
J̃f∥q,x(2,ν) . ∥yβf∥p,y(ν,2)

for the direct transform. If (γ, β) ∈ Dp,q(2, ν), then

(8.27) ∥x−γ◦
J̃−1f∥q,x(ν,2) . ∥yβf∥p,y(2,ν)

for the inverse one.
(B) Let (ν1, ν2) = (ν, 2) or (ν1, ν2) = (2, ν) for the direct Jacobi transform or the

inverse one, respectively. Then the conditions

β1 − γ1 ≤
(
1

p′
− 1

q

)
(ν1 + 1), β2 − γ2 ≥

(
1

p′
− 1

q

)
(ν2 + 1),

and

γ1 ≥
(
1

q
− 1

2

)
ν1 +

1

q
− 1

p′
, β2 ≥

(
1

p′
− 1

2

)
ν2 +

1

p′
− 1

q

are necessary for Pitt’s inequalities (8.26) and (8.27) to be valid.



WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS 39

It is easy to rewrite Theorem 8.1 for the standard Jacobi transforms J and J−1. We
omit this.

Appendix. Observations concerning conditions on weights

In order to prove Pitt’s inequality ∥w1/a′Ff∥q,u . ∥s1/af∥p,v in Theorem 3.1, we have
used Hardy’s inequalities (2.1) applied to the Calderón type estimate (2.5) in Theorem 2.2.
However, the same result follows from the more general inequality (cf. (2.6))

(8.28) (Fg)∗(x) . x−1/a′
(∫ x

0

(∫ 1/t

0

g∗(ξ) dξ

)a

ta−2 dt

)1/a

.

Using (8.28) instead of the inequality (2.5) in Theorem 2.2, we wish to obtain the condi-
tions on weights such that the following inequalities hold:(∫ ∞

0

(Fg)∗(x)qu∗(x) dx

)1/q

.
(∫ ∞

0

(∫ x

0

(∫ 1/t

0

g∗(ξ) dξ

)a

ta−2 dt

)q/a

x−q/a′u∗(x) dx

)1/q

.
(∫ ∞

0

(
t

∫ 1/t

0

g∗(ξ) dξ

)p

v∗(1/t)t
−2 dt

)1/p

.
(∫ ∞

0

g∗(t)pv∗(t) dt

)1/p

.(8.29)

Indeed, the left-hand side controls ∥Fg∥q,u, by the first inequality in (3.5), while the
second inequality in (3.5) ensures the veracity of Theorem 3.1.

On the other hand, since all the functions in (8.29) are rearrangements (that is, only
monotone functions are involved in (8.29)), we can apply a special version of Hardy’s
inequality for monotone functions instead of (2.1). Such a version is given in [47, Th. 2]
(see also [5, Th. D]; recent developments may be found in [22, Th. 1.2], [18], [7], and
some other works; all these are surveyed in [21], where large bibliography is given). To
this end, we rewrite the second inequality in (8.29) as

(8.30)

(∫ ∞

0

(∫ x

0

G(t) dt

)q/a

x−q/a′u∗(x) dx

)a/q

.
(∫ ∞

0

G(t)p/a t2
p
a
−2v∗(1/t) dt

)a/p

,

where

G(t) :=

(∫ 1/t

0

g∗(ξ) dξ

)a

ta−2.

To obtain necessary and sufficient conditions for this, we employ the following

Lemma 8.1. For

(8.31)

(∫ ∞

0

(∫ x

0

G(t)h(t) dt

)q

w(x) dx

)1/q

.
(∫ ∞

0

G(x)pz(x) dx

)1/p

to be valid for a monotone G, it is necessary and sufficient that for all r > 0,
(i) if 1 < p ≤ q < ∞ and h(t) ≡ 1, then(∫ r

0
xqw(x) dx

)1/q(∫ r

0
z(x) dx

)1/p . 1



40 D. GORBACHEV, E. LIFLYAND, AND S. TIKHONOV

and (∫ ∞

r

w(x) dx

)1/q (∫ r

0

(
1

x

∫ x

0

z(t) dt

)−p′

z(x) dx

)1/p′

. 1;

(ii) if 0 < p ≤ q < ∞, 0 < p ≤ 1, H(t) =
∫ t

0
h(x) dx and Z(t) =

∫ t

0
z(x) dx, then

Z−1/p(r)

(∫ ∞

0

Hq(min(x, r))w(x) dx

)1/q

. 1.

Part (a) of this lemma is Theorem 2 in [47], while part (b) is (d) in [21, Th. 2.5].
In particular, if 1 < p = q < ∞, h(t) ≡ 1 and w(x) := x−qz(x), then (8.31) holds for a
monotone G if and only if z ∈ Bp, i.e.,

∞∫
r

z(t)

tp
dt ≤ C

xp

r∫
0

z(t)dt, r > 0.

Now, using Lemma 8.1 with h(t) ≡ 1, w(x) = x
q
a
−qu∗(x) and z(x) = x

2p
a
−2v∗(1/x)

gives the following result.
Theorem 3.1′. Let 1 < p ≤ q < ∞, 1 < a ≤ 2, (p, q, a) ̸= (2, 2, 2). Let also u and v

be the weights such that v∗ ∈ Bp and, for all t,
(i) for a < p,

(8.32)

(∫ t

0
ξq/au∗(ξ) dξ

)1/q(∫ t

0
ξ2p/a−2v∗(1/ξ) dξ

)1/p . 1

and
(8.33)(∫ t

0

[
τ−1

∫ τ

0

ξ
2p
a
−2v∗(1/ξ) dξ

] p
a−p

τ
2p
a
−2v∗(1/τ) dτ

) p−a
p
(∫ ∞

t

ξ
q
a
−qu∗(ξ) dξ

)a
q

. 1;

(ii) for a ≥ p,

(8.34)

(∫ t

0

x2p/a−2v∗(1/x) dx

)a−p
p
(∫ ∞

0

min(x, t)q/ax−q/a′u∗(x) dx

)a/q

. 1.

Then
∥w1/a′Ff∥q,u . ∥s1/af∥p,v

holds.
Let us figure out what these conditions yield for the power weights. Taking u(x) =

xq/a−q−qγ+(1/q−1/a′)qν and v(x) = xpβ−(1/p′−1/a′)pν and checking (8.32), (8.33) and (8.34) for
them, in each of them we arrive at the familiar

γ − β =

(
1

q
− 1

p′

)
(ν + 1),

as expected.
There are other delicate tests, but they present much more technical difficulties. For

example, one may try to apply [22, Th. 1.2] to the left-hand side of (8.30). For some
cases (not for the considered power weights, where the results are presumably the same for
every method), one may expect less restrictive conditions than (8.32)–(8.34) but verifying
them seems to be very difficult.



WEIGHTED NORM INEQUALITIES FOR INTEGRAL TRANSFORMS 41

Acknowledgement

The authors are grateful to an unknown referee for extremely thorough reading.
The authors wish to thank MFO at Oberwolfach for its hospitality and excellent

working conditions.

References
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