
Title: Dynamics in a time-discrete food-chain model with
strong pressure on preys

Journal Information: Communications in Nonlinear Science and Numer-
ical Simulation,
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a b s t r a c t 

Discrete-time dynamics, mainly arising in boreal and temperate ecosystems for species 

with non-overlapping generations, have been largely studied to understand the dynamical 

outcomes due to changes in relevant ecological parameters. The local and global dynamical 

behaviour of many of these models is difficult to investigate analytically in the parameter 

space and, typically, numerical approaches are employed when the dimension of the phase 

space is large. In this article we provide topological and dynamical results for a map mod- 

elling a discrete-time, three-species food chain with two predator species interacting on 

the same prey. The domain where dynamics live is characterised, as well as the so-called 

escaping regions, which involve species extinctions. We also provide a full description of 

the local stability of equilibria within a volume of the parameter space given by the prey’s 

growth rate and the predation rates. We have found that the increase of the pressure of 

predators on the prey results in chaos via a supercritical Neimark-Sacker bifurcation. Then, 

period-doubling bifurcations of invariant curves take place. Interestingly, an increasing pre- 

dation directly on preys can shift the extinction of top predators to their survival, allowing 

an unstable persistence of the three species by means of periodic and chaotic attractors. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

Ecological systems display complex dynamical patterns both in space and time [1] . Although early work already pointed 

towards complex population fluctuations as an expected outcome of the nonlinear nature of species’ interactions [2,3] , the 

first evidences of chaos in species dynamics was not characterised until the late 1980’s and 1990’s [4,5] . Since pioneering 

works on one-dimensional discrete models [6–9] and on time-continuous ecological models, e.g., with the so-called spiral 

chaos [10,11] (already pointed out by Rössler in 1976 [12] ), the field of ecological chaos experienced a strong debate and 
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a rapid development [6,7,11,13–15] , with several key papers offering a compelling evidence of chaotic dynamics in Nature, 

from vertebrate populations [13,16–20] to plankton dynamics [21] and insect species [4,5,22,23] . 

Discrete-time models have played a key role in the understanding of complex ecosystems, especially for those organisms 

undergoing one generation per year i.e., univoltine species [6,7,9] . The reason for that is the yearly forcing, which effec- 

tively makes the population emerging one year to be a discrete function of the population of the previous year [23] . These 

dynamics apply for different organisms such as insects in temperate and boreal climates. For instance, the speckled wood 

butterfly ( Pararge aegeria ) is univoltine in its most northern range. Adult butterflies emerge in late spring, mate, and die 

shortly after laying the eggs. Then, their offspring grow until pupation, entering diapause before winter. New adults emerge 

the following year thus resulting in a single generation of butterflies per year [24] . Hence, maps can properly represent 

the structure of species interactions and some studies have successfully provided experimental evidence for the proposed 

dynamics [4,5,22,23] . 

Further theoretical studies incorporating spatial dynamics strongly expanded the reach of chaotic behaviour as an ex- 

pected outcome of discrete population dynamics [25,26] . Similarly, models incorporating evolutionary dynamics and mu- 

tational exploration of genotypes easily lead to chaotic attractors in continuous [27] and discrete [28] time. The so-called 

homeochaos has been identified in discrete multi-species models with victim-exploiter dynamics [29,30] . 

The dynamical richness of discrete ecological models was early recognised [6–8,31] and special attention has been paid 

to food chains incorporating three species in both continuous [11,32–36] and discrete [37–39] time systems. In this paper 

we address this problem by using a simple trophic model of three species interactions that generalises a previous two- 

dimensional predator-prey model, given by the difference Equations (4.5) in [40] (see also [41] ). The two-dimensional model 

assumes a food chain structure with an upper limit to the total population of preys, whose growth rate is affected by a single 

predator. The new three-dimensional model explored in this article introduces a new top predator species that consumes 

the predator and interferes in the growth of the preys. 

We provide a full description of the local dynamics and the bifurcations in a wide region of the three-dimensional 

parameter space containing relevant ecological dynamics. This parameter cuboid is built using the prey’s growth rates and 

the two predation rates as axes. The first predation rate concerns to the predator that consumes the preys, while the second 

predator rate is the consumption of the first predator species by the top predator. As we will show, this model displays 

remarkable examples of chaotic attractors. The route to chaos associated to increasing predation strengths are shown to be 

given by period-doubling bifurcations of invariant curves, which arise via a supercritical Neimark-Sacker bifurcation. 

Some of the analyses of this paper are complemented, as supplementary material, with 6 movies. 

2. Three species predator-prey map 

Discrete-time dynamical systems are appropriate for describing the population dynamics of species with non-overlapping 

generations [4,6,7,24,42] . Such species are found in temperate and boreal regions because of their seasonal environments. 

We here consider a food chain of three interacting species, each with non-overlapping generations. We specifically consider 

a population of preys x which is predated by a first predator with population y . We also consider a third species given 

by a top predator z that predates on the first predator y , also interfering in the growth of prey’s population according to 

Fig. 1 . Examples of top-predator → predator → prey interactions in univoltine populations can be found in ecosystems. For 

instance, the heteroptera species Picromerus bidens in northern Scandinavia [43] , which predates the butterfly Pararge aegeria 

by consuming on its eggs. Other species, such as spiders, can also act as top-predators (e.g., genus Clubiona sp. , with a wide 

distribution in northern Europe and Greenland). 

The next set of difference equations aims at modelling the three-species food chain displayed in Fig. 1 . This is a very 

simple model incorporating a minimum number of parameters that ease its analytical tractability. Despite other discrete 

time models have been employed to investigate dynamics of insects in experimental settings [4,5] , our approach is purely 

Fig. 1. Schematic diagram of the investigated dynamical system formed by a prey, a predator, and a top-predator. The diagram displays the ecological 

interactions modelled with Map (1) , given by predation (dashed arrow), growth inhibition (e.g., competition, red lines), and reproduction (closed arrows). 
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qualitative. This simple food chain can be described by the following system of nonlinear difference equations: ( 

x n +1 

y n +1 

z n +1 

) 

= T 

( 

x n 
y n 
z n 

) 

where T 

( 

x 
y 
z 

) 

= 

( 

μx (1 − x − y − z) 
βy (x − z) 

γ yz 

) 

(1) 

where x, y, z denote population densities with respect to a normalised carrying capacity ( K = 1 ). We note that populations 

densities need to be non-negative to be biologically-meaningful. 

Constants μ, β , γ are positive. In the absence of predation, as mentioned, preys grow logistically (with intra-specific 

competition) with an intrinsic reproduction rate μ. However, preys’ reproduction is decreased by the action of predation 

from both predators y and z . The effective growth rate of predators y is β . Finally, γ is the growth rate of predators z due 

to the consumption of species y . Notice that predator z also predates (interferes) on x , but it is assumed that the increase 

in reproduction of the top predator z is mainly given by the consumption of species y . Model (1) is defined on the phase 

space, given by the simplex 

U := 

{
(x, y, z) ∈ R 

3 : x, y, z ≥ 0 and x + y + z ≤ 1 

}
and, although it is meaningful for the parameters’ set {

(μ, β, γ ) ∈ R 

3 : μ > 0 , β > 0 and γ > 0 

}
of all positive parameters, we will restrict ourselves to the following particular cuboid 

Q = { ( μ, β, γ ) ∈ (0 , 4] × [2 . 5 , 5] × [5 , 9 . 4] } (2) 

which exhibits relevant biological dynamics (in particular bifurcations and routes to chaos). 

The next proposition lists some very simple dynamical facts about System (1) on the domain U with parameters in the 

cuboid Q . It is a first approximation to the understanding of the dynamics of this system. 

A set A ⊂ U is called T-invariant whenever T ( A ) ⊂ A . 

Proposition 1. The following statements hold for System (1) and all parameters (μ, β, γ ) ∈ Q . 

(a) The point (0 , 0 , 0) ∈ U is a fixed point of T which corresponds to extinction of the three species. 

(b) T ({ (1 , 0 , 0) } ) = T ({ (0 , y, 0) ∈ U } ) = T ({ (0 , 0 , z) ∈ U } ) = (0 , 0 , 0) . That is, the point (1,0,0) and every initial condition in U 

on the y and z axes lead to extinction in one iterate. 

(c) T ({ (x, 0 , z) ∈ U } ) ⊂ { (x, 0 , 0) ∈ U } ⊂ { (x, 0 , z) ∈ U } . In particular the sets { (x, 0 , z) ∈ U } and { (x, 0 , 0) ∈ U } are T-invariant. 

Proof. Statements (a) and (b) follow straightforwardly. To prove (c) notice that T ((x, 0 , z)) = (μx (1 − x − z) , 0 , 0) with 

μ ∈ (0, 4], x ≥ 0 and x + z ≤ 1 . Hence, 

0 ≤ μx (1 − x − z) = μx (1 − x ) − μxz ≤ 1 − μxz ≤ 1 , 

and thus (μx (1 − x − z) , 0 , 0) ∈ U . �

An important natural question is: what is the (maximal) subset S of U where the Dynamical System associated to 

Model (1) is well defined for all iterates (i.e. T n 
(
x, y, z 

)
∈ U for every n ∈ N and (x, y, z) ∈ S). Such a set is called the in- 

variant set of System (1) . The domain S has a complicated geometry and is difficult to characterise (see Fig. 2 ). 

To get a, perhaps simpler, definition of the invariant set S and to study the different scenarios leading to extinctions, 

we introduce the one-step escaping set � = �(μ, β, γ ) of System (1) defined as the set of points (x, y, z) ∈ U such that 

T (x, y, z) / ∈ U , and the escaping set � = �(μ, β, γ ) as the set of points (x, y, z) ∈ U such that T n (x, y, z) / ∈ U for some n ≥ 1. 

Clearly, 

� = U ∩ 

( 

∞ ⋃ 

n =0 

T −n ( �) 

) 

. 

We must notice that the escaping set � contains initial conditions of the phase space whose orbit, after some iterates, 

gets out of the domain U of System (1) . This can be achieved in two different ways: (i) the carrying capacity is surpassed, 

i.e., x + y + z > 1 ; and (ii) the variable y becomes negative (this happens if and only if, in the previous iterate, z > x ). In 

both cases, from a purely mathematical point of view, the orbits can not be iterated anymore because the orbit is out of the 

domain of definition of the Map (1) . However, from a biological perspective we note that after the orbit leaves the domain, 

extinctions take place (i.e., solutions will rapidly become negative). For Phenomenon (i), the surpass of the carrying capacity 

causes an immediate cascade of extinctions of the three species after (very) few more iterates (see Fig. 3 ). Indeed, once the 

carrying capacity is overcome, the prey becomes extinct and so do predators y and z consecutively. Phenomenon (ii) involves 

the extinction of the two predator species (first predator y and top predator at the next iterate), and the dynamics is then 

governed by the logistic map for preys x . As shown below, these escaping regions belong to a highly complex (apparently 

fractal) set. 

An example of the escaping set � (setting z 0 = 0 for the sake of a clear visualisation) is illustrated in Fig. 3 (see also 

Movie-1.mp4 to visualise how the escaping sets change with the parameters in the space ( x, y, z )). Specifically, the differ- 

ent colours in the spaces ( x, y ) indicate the number of iterates (here showing from 1 to 50) needed to leave the domain 
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Fig. 2. Plots of the intersection of S with the planes y = ctnt for several choices of the planes and the parameters μ, β and γ . Points drawn in dark green 

color converge to the fixed point (0,0,0), points in red converge to the fixed point ( μ−1 
μ , 0 , 0) , points in orange converge to the fixed point (β−1 , 1 − μ−1 −

β−1 , 0) , and points in black belong to the invariant set S but do not belong to the basin of attraction of any fixed point. The dashed magenta lines show 

the boundary of the cut of the plane y = ctnt with the domain E (which is defined in page 7). 

S (in this case we have chosen initial conditions and parameter values involving the surpass of the carrying capacity, i.e., 

Phenomenon (i)). The time series show that, after an irregular dynamics, both preys and predator y become suddenly ex- 

tinct, as indicated by the vertical rectangles at the end of the time series. We want to emphasise that these extinctions 

are due to the discrete nature of time . That is, they have nothing to do with the ω-limit sets of the dynamical system. 

Similar phenomena are found in the full simplex with an initial presence of all the species. On the other hand, concerning 

Phenomenon (ii), Table 1 shows (as an example) some approximate iterates of the point (x 0 , y 0 , z 0 ) = (0 . 72 , 0 . 03 , 0 . 003) for 

(μ, β, γ ) = (3 . 43 , 4 , 7) . Observe that all these iterates belong to U because x n , y n , z n > 0 and x n + y n + z n < 1 . However, 
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Fig. 3. (Upper) Escaping sets, �, obtained by iteration for parameter values giving place to complex (fractal) shapes, computed on the phase plane z = 

0 . The colours display the time that a given orbit overcomes the carrying capacity then going to extinction (colour gradient indicates the number of 

iterations to extinction, from 1 (pink) to 50 (violet) iterations). The small circles connected by the dashed white line indicate how iterates move from the 

initial condition (x 0 , y 0 , z 0 ) = (0 . 25 , 0 . 39 , 0) towards extinction. (Bottom) Extinction time series for preys and predators, y . From left to right: (x 0 , y 0 , z 0 ) = 

(0 . 25 , 0 . 39 , 0) and (μ, β, γ ) = (3 . 0 , 4 . 5 , 7 . 5) ;(x 0 , y 0 , z 0 ) = (0 . 25 , 0 . 39 , 0) and (μ, β, γ ) = (3 . 5 , 4 . 5 , 7 . 5) ; and (x 0 , y 0 , z 0 ) = (0 . 215 , 0 . 24 , 0) and (μ, β, γ ) = 

(2 . 5 , 5 , 7 . 5) . Vertical bars indicate when iterates for x and y become negative after surpassing the carrying capacity (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.). 

Table 1 

Approximate iterates of the point (x 0 , y 0 , z 0 ) = (0 . 72 , 0 . 03 , 0 . 003) for (μ, β, γ ) = (3 . 43 , 4 , 7) . 

n ( x n , y n , z n ) x n + y n + z n x n − z n 

0 (0.72,0.03,0.003) 0.753 0.717 

1 (0.6099912,0.0860400,0.0006300) 0.6966612 0.6093612 

2 (0.6346666,0.2097178,0.0003794) 0.8447638 0.6342872 

3 (0.3379347,0.5320851,0.0005570) 0.8705768 0.3373777 

4 (0.1500165,0.7180545,0.0020747) 0.8701457 0.1479418 

5 (0.0668174,0.4249211,0.0104281) 0.5021666 0.0563892 

6 (0.1140953,0.0958439,0.0310180) 0.2409571 0.0830773 

7 (0.2970489,0.0318498,0.0208102) 0.3497089 0.2762388 

8 (0.6625672,0.0351926,0.0046396) 0.7023994 0.6579276 

9 (0.6763288,0.0926168,0.0011430) 0.7700885 0.6751858 

10 (0.5333505,0.2501341,0.0007410) 0.7842256 0.5326095 

11 (0.3947360,0.5328952,0.0012974) 0.9289286 0.3934386 

12 (0.0962267,0.8386461,0.0048398) 0.9397126 0.0913869 

13 (0.0198983,0.3065650,0.0284122) 0.3548755 -0.0085139 

since x 13 − z 13 < 0 , we have y 14 < 0 which implies the extinction of predator y which in turn implies the extinction of 

predator z in the iterate 15. 

The invariant set of System (1) can also be defined as: 

S := U \ � = U \ 
∞ ⋃ 

n =0 

T −n 
(
�
)
. 

In general we have �⊃� � = ∅ and, hence, S � U (that is, U may not be the invariant set of System (1) ). On the other hand, 

for every μ, β , γ > 0, S is non-empty (it contains at least the point (0,0,0)) and T -invariant. Moreover, since the map T is 

(clearly) non-invertible, a backward orbit of a point from S is not uniquely defined. 

As we have pointed out, the domain S is geometrically complicated and of difficult characterisation. However, despite 

of the fact that this knowledge is important for the understanding of the global dynamics, in this paper we will omit this 

challenging study and we will consider System (1) on the domain 

E = { (x, 0 , z) ∈ U } ∪ { (x, y, z) ∈ U : y > 0 and x ≥ z } . 
(see Fig. 4 ) which is an approximation of S better than U , as stated in the next proposition. 
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Fig. 4. Plot of the domain E . The “wall” y = 0 : { (x, 0 , z) ∈ U } is drawn in blue. The face z = 0 : { (x, y, 0) ∈ U } is drawn in olive color; The face x + y + z = 1 : 

{ (x, y, z) ∈ U : y > 0 , x ≥ z and x + y + z = 1 } in magenta, and the face x = z: { (x, y, x ) ∈ U : y > 0 } in gray. 

Proposition 2. For System (1) and all parameters (μ, β, γ ) ∈ Q we have 

{ (x, 0 , z) ∈ U } ∪ { (0 , y, 0) ∈ U } ⊂ S ⊂ E . 

Proof. The fact that { (x, 0 , z) ∈ U } ∪ { (0 , y, 0) ∈ U } ⊂ S follows directly from Proposition 1 . To prove the other inclusion ob- 

serve that 

E = U \ { (x, y, z) ∈ U : y > 0 and z > x } , 
and for every (x, y, z) ∈ U with y > 0 and z > x we have βy (x − z) < 0 because β > 0. Consequently, { (x, y, z) ∈ U : y > 

0 and z > x } ⊂ �, and hence, 

S = U \ 
∞ ⋃ 

n =0 

T −n ( �) ⊂ U \ � ⊂ U \ { (x, y, z) ∈ U : y > 0 and z > x } = E . 

�

Remark 3. If a periodic orbit is contained in the set U it is automatically contained in the set S, and by Proposition 2 it is 

also contained in E . 

3. Fixed points and local stability 

This section is devoted to compute the biologically-meaningful fixed points of T in E, and to analyse their local stability. 

This study will be carried out in terms of the positive parameters μ, β , γ . 

The dynamical system defined by (1) has the following four (biologically meaningful) fixed points in the domain E (see 

Fig. 5 ): 

P ∗1 = (0 , 0 , 0) , 

P ∗2 = 

(
μ − 1 

μ
, 0 , 0 

)
, 

P ∗3 = 

(
1 

β
, 1 − 1 

μ
− 1 

β
, 0 

)
, 

P ∗4 = 

(
1 

2 

(
1 − μ−1 + β−1 − γ −1 

)
, 

1 

γ
, 

1 

2 

(
1 − μ−1 − β−1 − γ −1 

))
. 

Notice that the system admits a fifth fixed point P ∗5 = (0 , 1 
γ , − 1 

β
) , which is not biologically meaningful since it has a negative 

coordinate (recall that β > 0), and thus it will not be taken into account in this study. 

The fixed points P ∗1 , P 
∗
2 , and P ∗3 are boundary equilibria, while P ∗4 is a boundary equilibrium if μ−1 + β−1 + γ −1 = 1 and 

interior otherwise. The fixed point P ∗1 is the origin, representing the extinction of all the species. P ∗2 is a boundary fixed 

point, with absence of the two predator species. The point P ∗
3 

is the boundary fixed point in the absence of the top-level 

predator z = 0 , while the point P ∗
4 
, when it is located in the interior of E, corresponds to a coexistence equilibrium. 

The next lemma gives necessary and sufficient conditions for the fixed points P ∗1 , P 
∗
2 , P 

∗
3 , and P ∗4 to be biologically mean- 

ingful (belong to the domain U and, hence, to E — see, for instance, Fig. 5 and Movie-2.avi ; see also the right part of 

Fig. 6 ). 
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Fig. 5. The fixed point P ∗1 in dark green color and the paths described by P ∗2 in red, P ∗3 in orange and P ∗4 in blue in the domain E (plotted in violet) when 

the parameters ( μ, β , γ ) follow the path (μ(t) , β(t) , γ (t)) = (3 . 3 , 2 . 5 , 4 . 4) t + (0 . 7 , 2 . 5 , 5) with t ranging from 0 to 1. The pieces of the paths outside 

the domain E, which correspond to non-biologically meaningful situations, are drawn with the soften color. The path described by the fixed point P ∗2 
in E bifurcates from P ∗1 when μ = 1 . The path described by P ∗3 in E bifurcates from P ∗2 when μ = 

β
β−1 

. The path of P ∗4 in E bifurcates from P ∗3 when 

μ−1 + β−1 + γ −1 = 1 (or, equivalently, when μ = 

βγ
(β−1) γ −β

). 

Lemma 4. The following statements hold for every parameters’ choice (μ, β, γ ) ∈ Q : 

P ∗1 : The fixed point P ∗1 belongs to E . 

P ∗2 :The fixed point P ∗
2 

belongs to E if and only if μ ≥ 1. Moreover, P ∗
2 

= P ∗
1 

if and only if μ = 1 . 

P ∗3 :The fixed point P ∗3 belongs to E if and only if μ ≥ β
β−1 

≥ 5 
4 (which is equivalent to 1 

μ + 

1 
β

≤ 1 and β ≤ 5 ). Moreover, 

P ∗
3 

= P ∗
2 

if and only if μ = 

β
β−1 

. 

P ∗4 : The fixed point P ∗4 belongs to E if and only if μ−1 + β−1 + γ −1 ≤ 1 (which is equivalent to μ ≥ βγ
(β−1) γ −β

). Moreover, 

P ∗4 = P ∗3 if and only if μ−1 + β−1 + γ −1 = 1 . 

Proof. The statements concerning P ∗
1 

and P ∗
2 

follow straightforwardly from their formulae (see also Fig. 5 ) since, for μ ≥ 1, 
μ−1 
μ ∈ [0 , 3 4 ] . 

For the fixed point P ∗3 when 

1 
μ + 

1 
β

≤ 1 we have 0 < 

1 
β

, 0 ≤ 1 − 1 
μ − 1 

β
, and 

1 
β

+ (1 − 1 
μ − 1 

β
) = 1 − 1 

μ < 1 . So, 

P ∗3 ∈ 

{
(x, y, 0) ∈ R 

3 : x, y ≥ 0 and x + y ≤ 1 

}
⊂ { (x, y, 0) ∈ E } ⊂ E . 

Moreover, when 

1 
μ + 

1 
β

= 1 we have 

P ∗3 = 

(
1 

β
, 1 − 1 

μ
− 1 

β
, 0 

)
= 

(
1 − 1 

μ
, 0 , 0 

)
= P ∗2 . 

For the fixed point P ∗
4 

= ( 1 2 (1 − μ−1 + β−1 − γ −1 ) , 1 
γ , 1 2 (1 − μ−1 − β−1 − γ −1 )) when μ−1 + β−1 + γ −1 ≤ 1 we have 

0 < 

1 

γ
, 

0 ≤ 1 

2 

(
1 − μ−1 − β−1 − γ −1 

)
, 

0 < β−1 ≤ 1 

2 

(
1 − μ−1 + β−1 − γ −1 

)
, and 

1 

2 

(
1 − μ−1 + β−1 − γ −1 

)
+ 

1 

γ
+ 

1 

2 

(
1 − μ−1 − β−1 − γ −1 

)
= 1 − 1 

μ
< 1 . 

So, 

P ∗4 ∈ { (x, y, z) ∈ U : y > 0 and x ≥ z } ⊂ E . 

Moreover, when μ−1 + β−1 + γ −1 = 1 (that is, 1 − μ−1 − β−1 − γ −1 = 0 ) we have 
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Fig. 6. (Left) Eigenvalues λj,i of the fixed points P ∗
j 
, with j = 1 , . . . , 4 and i = 1 , . . . , 3 (for typical values of β and γ ). (Right) Zones of local structural stability 

in the parameter space. The blue, reddish, and violet surfaces intersect at the unique point 
(
5 , 5 , 5 

3 

)
. For every other value of ( β , γ ) ∈ [2.5, 5] × [5, 9.4] 

are pairwise disjoint. The grey box above the surface μ = 2 β
(
β − 1 −

√ 

β(β − 2) 
)

is the region where the eigenvalues λ3,2 and λ3,3 are complex. The 

eigenvalues λ4,2 and λ4,3 are complex whenever P ∗4 is in the positive octant. The red thick dashed lines (left) represent | λ3 , 2 | = | λ3 , 3 | and | λ4 , 2 | = | λ4 , 3 | . In 
the left pictures the “complexity region” of λ3,2 and λ3,3 corresponds to the values of μ above the green thick dashed line. The dynamics tied to the zones 

crossed by the thick, dashed, blue arrow is shown in Movie-3.mp4 . 

γ −1 = 1 − μ−1 − β−1 , and 

1 − μ−1 + β−1 − γ −1 = 1 − μ−1 − β−1 − γ −1 + 2 β−1 = 2 β−1 . 

Consequently, 

P ∗4 = 

(
1 

2 

(
1 − μ−1 + β−1 − γ −1 

)
, 

1 

γ
, 

1 

2 

(
1 − μ−1 − β−1 − γ −1 

))
= 

(
β−1 , 1 − μ−1 − β−1 , 0 

)
= P ∗3 . 

�

Henceforth, this section will be devoted to the study of the local stability and dynamics around the fixed points P ∗
1 
, . . . , P ∗

4 
for parameters moving in Q . This work is carried out by means of four lemmas ( Lemmas 5 –8 ). The information provided by 

them is summarised graphically in Figs. 6 and 7 . 

The study of the stability around the fixed points is based on the computation of the eigenvalues of its Jacobian matrix. 

In our case, the Jacobian matrix of map (1) at a point ( x, y, z ) is 

J(x, y, z) = 

( 

μ(1 − 2 x − y − z) −μx −μx 
βy β(x − z) −βy 
0 γ z γ y 

) 

and has determinant det (J(x, y, z)) = μβγ xy (1 − 2 x − 2 z) . 

The first one of these lemmas follows from a really simple computation. 

Lemma 5. The point P ∗
1 

= (0 , 0 , 0) is a boundary fixed point of System (1) for any positive μ, β , γ . Moreover, P ∗
1 

is: 

• non-hyperbolic when μ = 1 , 
• a locally asymptotically stable sink node when 0 < μ < 1, and 
• a saddle with an unstable invariant manifold of dimension 1, locally tangent to the x-axis, when μ > 1. 

Proof. The Jacobian matrix of System (1) at P ∗
1 

is 

J(P ∗1 ) = 

( 

μ 0 0 

0 0 0 

0 0 0 

) 

, 
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Fig. 7. Changes in the existence and local stability of the fixed points tied to the transitions between the zones identified in Fig. 6 . The tables display, for 

each fixed point, the stability nature along the thick arrows displayed in the cuboid Q . The fixed points are classified as follows: asymptotically stable sink 

(AS); saddle with a 1-dimensional ( S 1 ) and 2-dimensional ( S 2 ) unstable invariant manifolds; and spirals (stable in blue; unstable in red), see the legend 

below the table framed in light blue. Stable and unstable manifolds are displayed with blue and red arrows, respectively. The small violet arrows in the 

lower table denote transcritical bifurcations, with collision of fixed points and stability changes. The small orange arrows indicate changes in stability. Here 

numerical evidences for supercritical Neimark-Sacker bifurcations have been obtained (indicated with an asterisk). 

which has an eigenvalue λ1 , 1 = μ with eigenvector (1,0,0), and two eigenvalues λ1 , 2 = λ1 , 3 = 0 with eigenvectors (0,1,0) and 

(0,0,1) (see Fig. 6 ). Hereafter we will label the j−th eigenvalue of a fixed point P ∗
i 

as λi,j , with i = 1 , . . . , 4 and j = 1 , . . . , 3 . 

The assertion of the lemma follows from the Hartman-Grobman Theorem. �

Lemma 6. The point P ∗
2 

= (1 − μ−1 , 0 , 0) is a boundary fixed point of the System (1) for all parameters such that μ ≥ 1. In 

particular, for all parameter values in Q , the fixed point P ∗2 is non-hyperbolic if and only if: 

• μ = 1 , that is, when P ∗
2 

= P ∗
1 

; 

• μ = 

β
β−1 

, that is, when P ∗
2 

= P ∗
3 

; 

• μ = 3 . 

The region of the parameter’s cuboid where P ∗
2 

is hyperbolic is divided into the following three layers: 

1 < μ < 

β
β−1 

: P ∗
2 

is a locally asymptotically stable sink node that corresponds to the extinction of the two predator species. 

β
β−1 

< μ < 3 : P ∗2 is a saddle with an unstable invariant manifold of dimension, 1 locally tangent to the x-axis. 

3 < μ ≤ 4: P ∗
2 

is a saddle with an unstable invariant manifold of dimension 2 locally tangent to the plane generated by the 

vectors (1,0,0) and (1 , 2 −μ
μ−1 − β

μ , 0) . 

From Lemmas 5 and 6 it follows that when P ∗
2 

bifurcates from P ∗
1 

(exactly at μ = 1 ), P ∗
1 

changes its stability from attractor to 

saddle in a transcritical bifurcation. 
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Proof. The Jacobian matrix of System (1) at P ∗2 is 

J(P ∗2 ) = 

( 

2 − μ 1 − μ 1 − μ

0 β
(
1 − 1 

μ

)
0 

0 0 0 

) 

, 

which has: 

• an eigenvalue λ2 , 1 = 2 − μ with eigenvector (1,0,0), 

• an eigenvalue λ2 , 2 = β(1 − 1 
μ ) with eigenvector (1 , 2 −μ

μ−1 − β
μ , 0) , 

• and an eigenvalue λ2 , 3 = 0 with eigenvector (1 , 0 , 2 −μ
μ−1 ) . 

Moreover, for 1 ≤ μ ≤ 4 we have 2 − μ ∈ [ −2 , 1] and β(1 − 1 
μ ) ≥ 0 . Clearly (see Fig. 6 ) one has: 

• 2 − μ = ±1 if and only if μ = 2 ∓ 1 , and | 2 − μ| < 1 if and only if 1 < μ < 3; 

• β(1 − 1 
μ ) = 1 if and only if μ = 

β
β−1 

, and 0 ≤ β(1 − 1 
μ ) < 1 if and only if 1 ≤ μ < 

β
β−1 

;
• 1 < 

β
β−1 

< 3 for every β ∈ [2.5, 5]. 

Then the lemma follows from the Hartman-Grobman Theorem. �

Lemma 7. The point P ∗3 = (β−1 , 1 − β−1 − μ−1 , 0) is a boundary fixed point of the System (1) for all positive parameters such 

that μ−1 + β−1 ≤ 1 . In particular, for all the parameters in Q , the fixed point P ∗
3 

is non-hyperbolic if and only if: 

• μ = 

β
β−1 

, that is, when P ∗3 = P ∗2 ; 

• μ = 

βγ
(β−1) γ −β

, that is, when P ∗
3 

= P ∗
4 

; 

• μ = 

β
β−2 

. 

The region in Q where P ∗
3 

is hyperbolic is divided into the following four layers: 

β
β−1 

< μ ≤ 2 β(β − 1 −
√ 

β(β − 2) ) : P ∗
3 

is a locally asymptotically stable sink node. Here preys x and predators y achieve a 

static equilibrium. 

2 β(β − 1 −
√ 

β(β − 2) ) < μ < 

βγ
(β−1) γ −β

: P ∗
3 

is a locally asymptotically stable spiral-node sink. Here preys x and predators y 

achieve also a static equilibrium, reached via damped oscillations. 
βγ

(β−1) γ −β
< μ < min { 4 , β

β−2 
} : P ∗3 is an unstable spiral-sink node-source. 

min { 4 , β
β−2 

} < μ ≤ 4 : P ∗
3 

is an unstable spiral-node source. 

From Lemmas 6 and 7 it follows that when P ∗
3 

bifurcates from P ∗
2 

(at μ = 

β
β−1 

) ,P ∗
2 

changes its stability from an attractor to a 

saddle again in a transcritical bifurcation. 

Proof of Lemma 7 . The Jacobian matrix of System (1) at P ∗3 is 

J(P ∗3 ) = 

⎛ ⎝ 

1 − μ
β

−μ
β

−μ
β

β
(
1 − 1 

μ

)
− 1 1 β

(
1 
μ − 1 

)
+ 1 

0 0 γ
(
1 − 1 

β
− 1 

μ

)
⎞ ⎠ , 

and has eigenvalues 

λ3 , 1 = γ
(
1 − 1 

β
− 1 

μ

)
, and 

λ3 , 2 , λ3 , 3 = 1 − μ

2 β
±

√ (
β + 

μ
2 

)2 − β2 μ

β
. 

For β
β−1 

≤ μ ≤ 4 we have γ (1 − 1 
β

− 1 
μ ) ≥ 0 and γ (1 − 1 

β
− 1 

μ ) = 1 if and only if μ = 

βγ
(β−1) γ −β

(see Fig. 6 ). On the other 

hand, (β + 

μ
2 ) 

2 − β2 μ = 0 if and only if μ = 2 β(β − 1 ±
√ 

β(β − 2) ) . 

Now let us study the relation between 

β
β−1 

, 2 β(β − 1 ±
√ 

β(β − 2) ) , βγ
(β−1) γ −β

and 

β
β−2 

. First we observe that, since 

β ≥ 2.5, 

2 β
(
β − 1 + 

√ 

β(β − 2) 
)

≥ 5(1 . 5 + 

√ 

1 . 25 ) > 13 > 4 ≥ μ. 

Consequently, we simultaneously have (β + 

μ
2 ) 

2 − β2 μ = 0 and μ ≤ 4 if and only if μ = 2 β(β − 1 −
√ 

β(β − 2) ) . 



Ll. Alsedà, B. Vidiella and R. Solé et al. / Commun Nonlinear Sci Numer Simulat 84 (2020) 105187 11 

Second, since β(β − 2) = (β − 1) 2 − 1 , it follows that 

β(β − 2) < (β − 1) 2 − 1 + 

1 

4(β − 1) 2 
= 

(
(β − 1) − 1 

2(β−1) 

)2 
. 

Moreover, β(β − 2) > 0 and (β − 1) − 1 
2(β−1) 

> 0 (which follows from the inequality 2(β − 1) 2 > 1 ). So, the above inequality 

is equivalent to √ 

β(β − 2) < (β − 1) − 1 

2(β − 1) 
⇐⇒ 

1 

2(β − 1) 
< (β − 1) −

√ 

β(β − 2) 

which, in turn, is equivalent to 

β

β − 1 

< 2 β
(
β − 1 −

√ 

β(β − 2) 
)
. 

Third, we will show that 

2 β
(
β − 1 −

√ 

β(β − 2) 
)

< 

βγ

(β − 1) γ − β
. (3) 

To this end observe that 

∂ 

∂γ

γ

(β − 1) γ − β
= − β

((β − 1) γ − β) 2 
< 0 . (4) 

Hence, by replacing 9.4 by 47 
5 , 

47 

42 β − 47 

= 

47 
5 

47(β−1) 
5 

− β
≤ γ

(β − 1) γ − β
. 

So, to prove (3) , it is enough to show that 

β − 1 −
√ 

β(β − 2) < 

47 

2(42 β − 47) 
≤ 1 

2 β

βγ

(β − 1) γ − β
. 

This inequality is equivalent to 

84 β2 − 178 β + 47 

84 β − 94 

= β − 1 − 47 

84 β − 94 

< 

√ 

β(β − 2) . 

Since β ≥ 2.5, 84 β2 −178 β+47 
84 β−94 

is positive and thus, it is enough to prove that 

(84 β2 − 178 β + 47) 2 

(84 β − 94) 2 
< β(β − 2) , 

which is equivalent to 

0 < β(β − 2)(84 β − 94) 2 − (84 β2 − 178 β + 47) 2 = 840 β2 − 940 β − 2209 . 

This last polynomial is positive for every 

β > 

47 

√ 

235 + 235 

420 

≈ 2 . 27499 · · · . 

This ends the proof of (3) . On the other hand, since γ ≥ 5 ≥ β , we have −βγ ≤ −β2 which is equivalent to 

βγ (β − 2) = β2 γ − 2 βγ ≤ β2 γ − βγ − β2 = β((β − 1) γ − β) , 

and this last inequality is equivalent to 

βγ

(β − 1) γ − β
≤ β

β − 2 

(with equality only when γ = 5 = β). Thus, summarizing, we have seen: 

1 < 

β

β − 1 

< 2 β
(
β − 1 −

√ 

β(β − 2) 
)

< 

βγ

(β − 1) γ − β
≤ β

β − 2 

(5) 

and the last inequality is an equality only when γ = 5 = β. 

Next we study the modulus of the eigenvalues to determine the local stability of P ∗
3 
. First observe (see Fig. 6 ) that 

| λ3 , 1 | = | γ (1 − 1 
β

− 1 
μ ) | < 1 if and only if β

β−1 
< μ < 

βγ
(β−1) γ −β

. On the other hand, on 

β
β−1 

< μ ≤ 2 β(β − 1 −
√ 

β(β − 2) ) , 
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the discriminant (β + 

μ
2 ) 

2 − β2 μ is non-negative and the eigenvalues λ3,2 and λ3,3 are real. Moreover, β > 2 is equivalent 

to −βμ > βμ − β2 μ and this to (
β − μ

2 

)2 
> 

(
β + 

μ
2 

)2 − β2 μ ⇔ β − μ

2 

> 

√ (
β + 

μ
2 

)2 − β2 μ

(observe that β − μ
2 > 0 because β > 2 and μ ≤ 4, and recall that 

(
β + 

μ
2 

)2 − β2 μ is non-negative in the selected region). 

The last inequality above is equivalent to 

1 − μ

2 β
> 

√ (
β + 

μ
2 

)2 − β2 μ

β
⇔ 0 < 1 − μ

2 β
−

√ (
β + 

μ
2 

)2 − β2 μ

β
= λ3 , 3 . 

On the other hand, the following equivalent expressions hold: 

β

β − 1 

< μ ⇔ β2 < μβ(β − 1) ⇔ 

(
β + 

μ
2 

)2 − β2 μ = β2 + 

μ2 

4 

+ μβ − μβ2 < 

μ2 

4 √ (
β + 

μ
2 

)2 − β2 μ

β
< 

μ

2 β
⇔ λ3 , 2 = 1 − μ

2 β
+ 

√ (
β + 

μ
2 

)2 − β2 μ

β
< 1 . 

Summarizing, when 

β
β−1 

< μ ≤ 2 β(β − 1 −
√ 

β(β − 2) ) we have 

0 < λ3 , 3 = 1 − μ

2 β
−

√ (
β + 

μ
2 

)2 − β2 μ

β
≤ 1 − μ

2 β
+ 

√ (
β + 

μ
2 

)2 − β2 μ

β
= λ3 , 2 < 1 . 

Consequently, P ∗3 is a locally asymptotically stable sink node by (5) , meaning that top predators ( z ) go to extinction and the 

other two species persist. 

Now we consider the region 2 β(β − 1 −
√ 

β(β − 2) ) < μ ≤ 4 . In this case the discriminant (β + 

μ
2 ) 

2 − β2 μ is negative 

and the eigenvalues λ3,2 and λ3,3 are complex conjugate with modulus √ (
1 − μ

2 β

)2 + 

β2 μ −
(
β + 

μ
2 

)2 

β2 
= 

√ 

μ(β − 2) 

β
. 

Clearly ∣∣∣∣∣
√ 

μ(β − 2) 

β

∣∣∣∣∣ < 1 ⇔ 2 β
(
β − 1 −

√ 

β(β − 2) 
)

≤ μ ≤ min 

{
4 , 

β

β − 2 

}
(with equality only when γ = 5 = β). Then the lemma follows from the Hartman-Grobman Theorem. �

Lemma 8. The point P ∗4 = (ρ, γ −1 , ρ − β−1 ) with ρ = 

1 
2 (1 − μ−1 + β−1 − γ −1 ) is a fixed point of the System (1) for all positive 

parameters satisfying that μ−1 + β−1 + γ −1 ≤ 1 . Moreover, for all the parameters in Q , there exists a function ψ 4 : [2 . 5 , 5] ×
[5 , 9 . 4] −→ [ 

βγ
(β−1) γ −β

, 4) (whose graph �4 is drawn in reddish colour in Fig. 6 ) such that P ∗
4 

is non-hyperbolic if and only if: 

• μ = 

βγ
(β−1) γ −β

, that is, when P ∗
4 

= P ∗
3 

; 

• μ = ψ 4 (β, γ ) . 

Furthermore, the region of the parameter’s cuboid where P ∗4 is hyperbolic is divided into the following two layers: 

βγ
(β−1) γ −β

< μ < ψ 4 (β, γ ) : P ∗
4 

is a locally asymptotically stable sink of spiral-node type. Within this first layer the three 

species achieve a static coexistence equilibrium with an oscillatory transient. 

ψ 4 ( β , γ ) < μ ≤ 4: P ∗
4 

is an unstable spiral-source node-sink. 

Proof. The Jacobian matrix of System (1) at P ∗
4 

is 

J(P ∗4 ) = 

⎛ ⎝ 

1 − μρ −μρ −μρ
β
γ 1 − β

γ

0 γ
(
ρ − 1 

β

)
1 

⎞ ⎠ . 

The matrix J(P ∗
4 
) has eigenvalues 
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λ4 , 1 : = 1 − μρ

3 

+ 

3 
√ 

α

3 

3 
√ 

2 

√ 

γ
+ 

3 
√ 

2 

(
μ2 ρ2 γ − 3 β(μ + γ ) ρ + 3 γ

)
3 

√ 

γ 3 
√ 

α
, 

λ4 , 2 , λ4 , 3 : = 1 − μρ

3 

−
3 
√ 

α

3 

3 
√ 

16 

√ 

γ
(1 ∓

√ 

3 i ) − μ2 ρ2 γ − 3 β(μ + γ ) ρ + 3 γ

3 

3 
√ 

4 

√ 

γ 3 
√ 

α

(
1 ±

√ 

3 i 
)
, 

where 

α = −2 γ 3 / 2 ρ3 μ3 − 45 γ 3 / 2 βμρ2 + 9 μ2 ρ2 β
√ 

γ + 45 γ 3 / 2 ρμ + 

√ 

27 ̃

 α, and 

˜ α : = 8(ρ β − 1) 

(
μ4 ρ4 + 

71(ρβ − 1) ρ2 μ2 

8 

+ 

(βρ − 1) 2 

2 

)
γ 3 

− 38(ρβ − 1) 

(
μ2 ρ2 − 6(ρβ − 1) 

19 

)
ρβμγ 2 

−μ2 ρ2 β2 
(
μ2 ρ2 − 12(ρβ − 1) 

)
γ + 4 β3 μ3 ρ3 . 

When μ = 

βγ
(β−1) γ −β

we clearly have 

J(P ∗4 ) = 

⎛ ⎝ 

1 − μρ −μρ −μρ
β
γ 1 − β

γ

0 0 1 

⎞ ⎠ 

and ⎛ ⎝ 

1 − μρ −μρ −μρ
β
γ 1 − β

γ

0 0 1 

⎞ ⎠ 

( 

1 

−2 

1 

) 

= 

( 

1 

−2 

1 

) 

. 

Thus, for every ( β , γ ) ∈ [2.5, 5] × [5, 9.4], λ4 , 1 = 1 when μ = 

βγ
(β−1) γ −β

. Moreover, it can be seen numerically that for every 

( β , γ ) ∈ [2.5, 5] × [5, 9.4], λ4,1 is a strictly decreasing function of μ such that λ4 , 1 > −1 when μ = 4 . So, λ4,1 only breaks 

the hyperbolicity of P ∗
4 

in the surface μ = 

βγ
(β−1) γ −β

and | λ4,1 | < 1 in the region 

(β, γ , μ) ∈ [2 . 5 , 5] × [5 , 9 . 4] ×
(

βγ
(β−1) γ −β

, 4 

]
. 

Next we need to describe the behaviour of | λ4 , 2 | = | λ4 , 3 | as a function of μ. The following statements have been ob- 

served numerically: 

(i) | λ4 , 2 | = | λ4 , 3 | < 1 for every 

(β, γ , μ) ∈ [2 . 5 , 5] × [5 , 9 . 4] ×
{

βγ
(β−1) γ −β

} \ {(5 , 5 , 
βγ

(β−1) γ −β

)}
and | λ4 , 2 | = | λ4 , 3 | = 1 at the point (β, γ , μ) = (5 , 5 , 

βγ
(β−1) γ −β

) . 

(ii) | λ4 , 2 | = | λ4 , 3 | > 1 for every ( β , γ , μ) ∈ [2.5, 5] × [5, 9.4] × {4}. 

(iii.1) There exists a Non-Monotonic ( NM ) region denoted NM 4 which is contained in the rectangle [2.5, 2.59597 ���] × [5, 

6.49712 ���] such that for every (β, γ ) ∈ NM 4 there exists a value μ∗(β, γ ) ∈ ( βγ
(β−1) γ −β

, 4) with the property that 

| λ4 , 2 | = | λ4 , 3 | is a strictly decreasing function of the parameter μ ∈ [ 
βγ

(β−1) γ −β
, μ∗(β, γ )] , and a strictly increasing 

function of μ for every value of μ ∈ [ μ∗( β , γ ), 4]. In particular, from (i) it follows that | λ4 , 2 | = | λ4 , 3 | < 1 holds for 

every point (β, γ , μ) ∈ NM 4 × [ 
βγ

(β−1) γ −β
, μ∗(β, γ )] . 

Consequently, for every (β, γ ) ∈ NM 4 , there exists a unique value of the parameter μ = ψ 4 (β, γ ) > μ∗(β, γ ) such 

that | λ4 , 2 | = | λ4 , 3 | = 1 at the point ( β , γ , ψ 4 ( β , γ )). 
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The region NM 4 , as shown in the picture at the side, is delimited by the axes β = 2 . 5 , γ = 5 and, approximately, by 

the curve γ ≈ 19 . 6981 β2 − 115 . 98 β + 173 . 334 . 

(iii.2) For every (β, γ ) ∈ ([2 . 5 , 5] × [5 , 9 . 4]) \ NM 4 , | λ4 , 2 | = | λ4 , 3 | is a strictly increasing function of μ. In particular, from (i) 

it follows that there exists a unique value of μ = ψ 4 (β, γ ) > 

βγ
(β−1) γ −β

such that | λ4 , 2 | = | λ4 , 3 | = 1 at the point ( β , 

γ , ψ 4 ( β , γ )). 

Then the lemma follows from the Hartman-Grobman Theorem. �

4. Local bifurcations: three dimensional bifurcation diagram 

Due to the mathematical structure of the Map (1) and to the number of parameters one can provide analytical infor- 

mation on local dynamics within different regions of the chosen parameter space. That is, to build a three-dimensional 

bifurcation diagram displaying the parametric regions involved in the local dynamics of the fixed points investigated above. 

These analyses also provide some clues on the expected global dynamics, addressed in Sections 5 and 6 . To understand the 

local dynamical picture, the next lemma relates all the surfaces that play a role in defining the local structural stability 

zones in the previous four lemmas. It justifies the relative positions of these surfaces, shown in Fig. 6 . 

We define 

H 4 := { (β, γ ) : ψ 4 (β, γ ) ≥ 3 } . 
Lemma 9. The relations between the surfaces defined in Lemmas 5 –8 are the following: 

(i) For every ( β , γ ) ∈ [2.5, 5] × [5, 9.4], 

1 < 

β

β − 1 

< 2 β
(
β − 1 −

√ 

β(β − 2) 
)

< 

βγ

(β − 1) γ − β
. 

H 4 is the region contained in [2.5, 2.769 ���] × [5, 6.068 ���] and delimited by the axes β = 2 . 5 and γ = 5 , and the curve 

γ ≈ 2 . 13725 β2 − 15 . 2038 β + 30 . 7162 . 

(ii) For every (β, γ ) ∈ ([2 . 5 , 8 3 ] × [5 , 9 . 4]) ∩ H 4 , 

βγ

(β − 1) γ − β
< 3 ≤ ψ 4 (β, γ ) < 4 ≤ β

β − 2 

. 

On the other hand, for every (β, γ ) ∈ ([2 . 5 , 8 3 ] × [5 , 9 . 4]) \ H 4 , 

βγ

(β − 1) γ − β
< ψ 4 (β, γ ) < 3 < 4 ≤ β

β − 2 

. 

(iii) For every (β, γ ) ∈ (( 8 3 , 3) × [5 , 9 . 4]) ∩ H 4 , 

βγ

(β − 1) γ − β
< 3 ≤ ψ 4 (β, γ ) < 

β

β − 2 

< 4 

For every (β, γ ) ∈ (( 8 3 , 3) × [5 , 9 . 4]) \ H 4 , 

βγ

(β − 1) γ − β
< ψ 4 (β, γ ) < 3 < 

β

β − 2 

< 4 . 
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(iv) For every ( β , γ ) ∈ {3} × [5, 9.4], 

βγ

(β − 1) γ − β
< ψ 4 (β, γ ) < 3 = 

β

β − 2 

. 

(v) For every ( β , γ ) ∈ (3, 5] × [5, 9.4], 

βγ

(β − 1) γ − β
≤ ψ 4 (β, γ ) ≤ β

β − 2 

< 3 . 

Moreover, all the above inequalities are strict except in the point (β, γ ) = (5 , 5) where 
βγ

(β−1) γ −β
= ψ 4 (β, γ ) = 

β
β−2 

. 

Proof. Statement (i) follows from Eq. (5) and the fact that H 4 is the region delimited by the axes β = 2 . 5 and γ = 5 , and 

the curve 

γ ≈ 2 . 13725 β2 − 15 . 2038 β + 30 . 7162 

can be checked numerically. 

On the other hand, observe that for every γ ∈ [5, 9.4] we have ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

β
β−2 

≥ 4 for β ∈ 

[
2 . 5 , 8 

3 

]
, 

4 > 

β
β−2 

> 3 for β ∈ 

(
8 
3 
, 3 

)
, 

β
β−2 

= 3 for β = 

8 
3 

, 

3 > 

β
β−2 

for β ∈ (3 , 5] . 

Moreover, 7 β > 15 is equivalent to 12 β − 15 > 5 β, and Eq. (4) implies 

3 > 

5 β

4 β − 5 

= β
5 

5(β − 1) − β
≥ β

γ

(β − 1) γ − β
. 

So, Statements (ii–v) follow from these observations, from Eq. (5) and by checking numerically the various relations of 

ψ 4 ( β , γ ) with μ = 

βγ
(β−1) γ −β

, μ = 3 , and μ = 

β
β−2 

for the different regions considered in Statements (ii–v). �

The detailed description of the local dynamics in the zones of Fig. 6 (see also Fig. 7 ) is given by the following (see 

Lemmas 5 –9 ): 

Theorem 10. The following statements hold: 

Zone A: ( β , γ , μ) ∈ [2.5, 5] × [5, 9.4] × (0, 1). 

In this layer the system has P ∗
1 

= (0 , 0 , 0) as a unique fixed point. This fixed point is a locally asymptotically stable 

sink node, meaning that the three species go to extinction. Indeed, it is proved in Theorem 11 that this is a globally 

asymptotically stable (GAS) point. 

Zone B: (β, γ , μ) ∈ [2 . 5 , 5] × [5 , 9 . 4] × (1 , β
β−1 

) . 

In this zone the system has exactly two fixed points: the origin P ∗
1 

and P ∗
2 

= (1 − 1 
μ , 0 , 0) .P ∗

1 
is a saddle ( dim W 

u (P ∗
1 
) = 

1 ) with an invariant manifold locally tangent to the x-axis. P ∗2 is a locally asymptotically stable sink node. Hence, in this 

zone only preys will survive. Theorem 15 proves that in this zone P ∗2 is a GAS point. 

Zone C: (β, γ , μ) ∈ [2 . 5 , 5] × [5 , 9 . 4] × ( β
β−1 

, 2 β(β − 1 −
√ 

β(β − 2) )) . 

In this region the system has exactly three fixed points: the origin P ∗1 , P ∗2 and P ∗3 = (β−1 , 1 − β−1 − μ−1 , 0) .P ∗1 and P ∗2 
are saddles with dim W 

u (P ∗1 , P 
∗
2 ) = 1 and P ∗3 is a locally asymptotically stable sink node. Here top predators can not 

survive, being the system only composed of preys and the predator species y . 

Zone D: (β, γ , μ) ∈ [2 . 5 , 5] × [5 , 9 . 4] × (2 β(β − 1 −
√ 

β(β − 2) ) , βγ
(β−1) γ −β

) . 

In this zone the system still has three fixed points: P ∗
1 
, P ∗

2 
and P ∗

3 
. P ∗

1 
and P ∗

2 
are saddles with dim W 

u (P ∗
1 
, P ∗

2 
) = 1 but 

P ∗
3 

is a locally asymptotically stable spiral-node sink. In this region the prey and predator y reach a static equilibrium of 

coexistence achieved via damped oscillations, while the top predator z goes to extinction. 

Zone E: (β, γ , μ) ∈ [2 . 5 , 5] × [5 , 9 . 4] × ( βγ
(β−1) γ −β

, min { 3 , ψ 4 (β, γ ) } ) . 
In this layer the system has exactly four fixed points: the origin P ∗

1 
, P ∗

2 
, P ∗

3 
and P ∗

4 
= (ρ, γ −1 , ρ − β−1 ) .P ∗

1 
and P ∗

2 
are 

saddle points with dim W 

u (P ∗1 , P 
∗
2 ) = 1 , the fixed point P ∗3 is an unstable spiral-sink node-source and P ∗4 is a locally 

asymptotically stable sink of spiral-node type. Under this scenario, the three species achieve a static coexistence state 

also via damped oscillations. 

Zone F: (β, γ , μ) ∈ (([2 . 5 , 5] × [5 , 9 . 4]) \ H 4 ) × (ψ 4 (β, γ ) , min { 3 , β
β−2 

} ) . 
In this layer the system has exactly four fixed points: the origin P ∗

1 
, P ∗

2 
, P ∗

3 
and P ∗

4 
= (ρ, γ −1 , ρ − β−1 ) . The fixed points 

P ∗1 and P ∗2 are saddles with dim W 

u (P ∗1 , P 
∗
2 ) = 1 , the point P ∗3 is an unstable spiral-sink node-source and P ∗4 is an unstable 

spiral-source node-sink. Here, due to the unstable nature of all fixed points, fluctuating coexistence of all of the species 

is found. As we will see in Section 6 , this coexistence can be governed by periodic or chaotic fluctuations. 
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Zone G: (β, γ , μ) ∈ (3 , 5] × [5 , 9 . 4] × ( β
β−2 

, 3) . 

In this zone the system has four fixed points: P ∗
1 
, P ∗

2 
, P ∗

3 
and P ∗

4 
.P ∗

1 
and P ∗

2 
are a saddles with dim W 

u (P ∗
1 
, P ∗

2 
) = 1 , P ∗

3 
is an unstable spiral-node source and P ∗

4 
is an unstable spiral-source node-sink. The expected coexistence dynamics here 

are like those of zone F above. 

Zone H: (β, γ , μ) ∈ H 4 × (3 , ψ 4 (β, γ )) . 

In this region the system has four fixed points: P ∗
1 
, P ∗

2 
, P ∗

3 
and P ∗

4 
. The fixed points P ∗

1 
and P ∗

2 
are saddles 

dim W 

u (P ∗1 , P 
∗
2 ) = 1 ,P ∗3 is an unstable spiral-sink node-source and P ∗4 is a locally asymptotically stable sink of spiral- 

node type. The dynamics here are the same as the ones in zone E. 

Zone I: (β, γ , μ) ∈ (2 . 5 , 3) × [5 , 9 . 4] × ( max { 3 , ψ 4 (β, γ ) } , min { 4 , β
β−2 

} ) . 
In this zone the system has four fixed points: P ∗

1 
, P ∗

2 
, P ∗

3 
and P ∗

4 
.P ∗

1 
is a saddle with dim W 

u (P ∗
1 
) = 1 , P ∗

2 
is a saddle 

with dim W 

u (P ∗2 ) = 2 , P ∗3 is an unstable spiral-sink node-source and P ∗4 is an unstable spiral-source node-sink. Here the 

dynamics can be also governed by coexistence among the three species via oscillations. 

Zone J: (β, γ , μ) ∈ ( 8 3 , 5] × [5 , 9 . 4] × ( max { 3 , β
β−2 

} , 4) . 

In this zone the system has four fixed points: P ∗
1 
, P ∗

2 
, P ∗

3 
and P ∗

4 
. The fixed point P ∗

1 
is a saddle with dim W 

u (P ∗
1 
) = 1 , 

the point P ∗
2 

is a saddle with dim W 

u (P ∗
2 
) = 2 , P ∗

3 
is an unstable spiral-node source and P ∗

4 
is an unstable spiral-source 

node-sink. Dynamics here can also be governed by all-species fluctuations, either periodic or chaotic. 

Fig. 7 provides a summary of the changes in the existence and local stability of the fixed points for each one of the zones 

identified. Also, we provide an animation of the dynamical outcomes tied to crossing the cuboid following the direction of 

the dashed thick blue arrow represented in Fig. 6 . Specifically, Movie-3.mp4 displays the dynamics along this line for 

variable x n , as well as in the phase space ( x, y ) and ( x, y, z ). 

5. Some remarks on global dynamics 

In this section we study the global dynamics in Zones A and B from the preceding section. 

Theorem 11 (Global dynamics in Zone A) . Assume that μ < 1 and let ( x, y, z ) be a point from S. Then, 

lim 

n →∞ 

T n (x, y, z) = (0 , 0 , 0) = P ∗1 . 

In what follows, λμ(σ ) := μσ (1 − σ ) will denote the logistic map. 

Proof of Theorem 11 . From Fig. 6 (or Lemmata 5 –8 ) it follows that (0,0,0) is the only fixed point of T whenever μ < 1 and 

it is locally asymptotically stable. 

We denote (x 0 , y 0 , z 0 ) = (x, y, z) ∈ S and (x n , y n , z n ) = T n (x, y, z) ∈ S ⊂ E for every n ≥ 1. Assume that there exists n ≥ 0 

such that y n = 0 . Then, substituting ( x n , 0, z n ) into Eq. (1) it follows that y n +1 = z n +1 = 0 and so 

T n +1 (x, y, z) = (x n +1 , 0 , 0) ∈ [0 , 1] × { 0 } × { 0 } , 
and T n +1+ k (x, y, z) = (λk 

μ(x n +1 ) , 0 , 0) for every k ≥ 0. Since, μ < 1, one gets lim k →∞ 

λk 
μ(σ ) = 0 for every σ ∈ [0, 1]. So, the 

proposition holds in this case. 

In the rest of the proof we assume that y n > 0 for every n ≥ 0. We claim that 

x n ≤ μn 

4 

for every n ≥ 1. Let us prove the claim. Since (x, y, z) ∈ S ⊂ E ( Proposition 2 ) with y > 0 we have x ≥ z ≥ 0 and x + y + z ≤ 1 . 

Thus, 

x 1 = μx (1 − x − y − z) ≤ μx (1 − x ) ≤ μ

4 

, 

which proves the case n = 1 . Assume now that the claim holds for some n ≥ 1 and prove it for n + 1 . As before, (x n , y n , z n ) ∈ 

E with y n > 0 implies x n ≥ z n ≥ 0 and x n + y n + z n ≤ 1 . Hence, 

x n +1 = μx n (1 − x n − y n − z n ) ≤ μx n ≤ μ
μn 

4 

= 

μn +1 

4 

. 

On the other hand, by using again the assumption that (x n , y n , z n ) ∈ E with 1 ≥ y n > 0 for every n ≥ 0, and the definition 

of T in (1) , we get that x n > z n ≥ 0 for every n ≥ 0. Moreover, y n +1 = βy n (x n − z n ) ≤ βy n x n ≤ βx n . Hence, for every n ≥ 0, 

0 ≤ z n < x n ≤ μn 

4 

and 0 < y n ≤ βx n −1 ≤ β
μn −1 

4 

. 

This implies that lim n →∞ 

(x n , y n , z n ) = (0 , 0 , 0) because μ < 1. �

To study the global dynamics in Zone B we need three simple lemmas. The first one is on the logistic map; the second 

one relates the first coordinate of the image of T with the logistic map; the third one is technical. 
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Lemma 12 (On the logistic map ) . Let 1 < μ < 2 and set I 0 := [ αμ, ̃  αμ] where 0 < αμ = 1 − 1 
μ < 

1 
2 is the stable fixed point 

of λμ and 1 
2 < ̃

 αμ < 1 is the unique point such that λμ( ̃  αμ) = αμ. Set also I n +1 := λμ(I n ) ⊂ I n for every n ≥ 0. Then, for every 

ε > 0 there exists N ≥ 1 such that I N ⊂ [ αμ, αμ + ε) . 

Proof. The fact that 0 < αμ = 1 − 1 
μ < 

1 
2 is a stable fixed point of λμ for 1 < μ < 2 is well known. Also, since λμ| 

[ αμ, 
1 
2 ] 

is 

increasing and 1 < μ < 2, it follows that 

αμ = λμ

(
αμ

)
< . . . < λn +1 

μ

(
1 
2 

)
< λn 

μ

(
1 
2 

)
< . . . < λ2 

μ

(
1 
2 

)
< λμ

(
1 
2 

)
< 

1 
2 
. 

Therefore, 

I 1 = λμ

(
I 0 
)

= λμ

([
αμ, 1 

2 

])
= 

[
αμ, λμ

(
1 
2 

)]
⊂
[
αμ, 1 

2 

]
⊂ I 0 

and, for every n ≥ 1, one gets 

I n +1 = λμ

(
I n 
)

= 

[
αμ, λn +1 

μ

(
1 
2 

)]
� 

[
αμ, λn 

μ

(
1 
2 

)]
= I n ⊂

[
αμ, 1 

2 

]
. 

Then, the lemma follows from the fact that lim n →∞ 

λn 
μ

(
1 
2 

)
= αμ. �

Lemma 13. Let (x 0 , y 0 , z 0 ) ∈ S and set 

(x n , y n , z n ) = T (x n −1 , y n −1 , z n −1 ) ∈ E 
for every n ≥ 1. Then, for every n ≥ 1, 

0 ≤ x n = λμ(x n −1 ) − μx n −1 (y n −1 + z n −1 ) ≤ λμ(x n −1 ) 

and, when μ ≤ 2, it follows that 0 ≤ x n ≤ λn 
μ(x 0 ) ≤ 1 

2 . 

Proof. The first statement can be proved as follows: 

x n = μx n −1 (1 − x n −1 ) − μx n −1 (y n −1 + z n −1 ) 

= λμ(x n −1 ) − μx n −1 (y n −1 + z n −1 ) ≤ λμ(x n −1 ) 

(notice that μ, x n , x n −1 , y n −1 , z n −1 ≥ 0 because (x n , y n , z n ) ∈ E for every n ). 

The second statement for n = 1 follows directly from the first statement and from the fact that λμ([0 , 1]) = λμ([0 , 1 2 ]) ⊂
[0 , 1 2 ] whenever μ ≤ 2. 

Assume now that the second statement holds for some n ≥ 1. Then, from the first statement of the lemma and the fact 

that μ ≤ 2 we have 

0 ≤ x n +1 ≤ λμ(x n ) ≤ λμ

(
λn 

μ(x 0 ) 
)

= λn +1 
μ (x 0 ) ≤ λμ

(
1 
2 

)
≤ 1 

2 
, 

because λμ| 
[0 , 

1 
2 ] 

is increasing. �

The proof of the next technical lemma is straightforward. 

Lemma 14 (The damped logistic map) . Let λμ,s (σ ) := sλμ(σ ) = μsσ (1 − σ ) denote the damped logistic map defined on the 

interval [0,1]. Assume that 1 < μ < 2 and 1 
μ < s < 1 . Then the following properties of the damped logistic map hold: 

(a) λμ,s ( σ ) < λμ( σ ) for every 0 < σ < 1. 

(b) λμ,s (0) = 0 and λμ,s 

∣∣∣[ 
0 , 

1 
2 

] is strictly increasing. 

(c) λμ,s has exactly one stable fixed point αμ,s := 1 − 1 
μs with derivative 

λ′ 
μ,s (αμ,s ) = λ′ 

μ,s (σ ) 
∣∣
σ= αμ,s 

= μs (1 − 2 σ ) 
∣∣
σ= αμ,s 

= 2 − μs < 1 . 

(d) For every σ ∈ (0, αμ, s ) we have 

σ < λμ,s (σ ) < λ2 
μ,s (σ ) < . . . < αμ,s 

and lim k →∞ 

λk 
μ,s (σ ) = αμ,s . 

Theorem 15 (Global dynamics in Zone B) . Assume that 1 < μ < 

β
β−1 

and let ( x, y, z ) be a point from S. Then, either 

T n (x, y, z) = (0 , 0 , 0) for some n ≥ 0 or 

lim 

n →∞ 

T n (x, y, z) = 

(
1 − μ−1 , 0 , 0 

)
= P ∗2 . 

Remark 16. From Lemma 4 it follows that the unique fixed points which exist in this case are P ∗
1 

and P ∗
2 
. 

Proof. From Fig. 6 (or Lemmata 5 –14 ) it follows that ( αμ, 0, 0) with αμ := 1 − 1 
μ is the only locally asymptotically stable 

fixed point of T . In the whole proof we will consider that αμ is the unique stable fixed point of λμ. As in previous proofs, 

we denote (x 0 , y 0 , z 0 ) = (x, y, z) ∈ S and (x n , y n , z n ) = T n (x, y, z) ∈ E for every n ≥ 1. 
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If there exists n ≥ 0 such that (x n , y n , z n ) = (0 , 0 , 0) we are done. Thus, in the rest of the proof we assume that ( x n , y n , 

z n ) � = (0, 0, 0) for every n ≥ 0. 

Assume that there exists n ≥ 0 such that y n = 0 . By the definition of T , it follows that T n +1 (x, y, z) = (x n +1 , 0 , 0) ∈ [0 , 1] ×
{ 0 } × { 0 } , and, consequently, T n +1+ k (x, y, z) = (λk 

μ(x n +1 ) , 0 , 0) for every k ≥ 0. Thus, since 

1 < μ < 

β
β−1 

≤ 5 
3 

< 2 , 

it turns out that lim k →∞ 

λk 
μ(x n +1 ) = αμ (recall that we are in the case ( x n , y n , z n ) � = (0, 0, 0) for every n ≥ 0 and, conse- 

quently, λk 
μ(x n +1 ) � = 0 for every k ≥ 0). So, the proposition holds in this case. 

In the rest of the proof we are left with the case (x n , y n , z n ) ∈ E and y n > 0 for every n ≥ 0. Moreover, suppose that 

x n = 0 for some n ≥ 0. Since (x n , y n , z n ) ∈ E we have that 0 ≤ z n ≤ x n = 0 implies z n = 0 . Consequently, (x n +1 , y n +1 , z n +1 ) = 

T (x n , y n , z n ) = (0 , 0 , 0) , a contradiction. Thus, x n , y n > 0 for every n ≥ 0. 

Observe that, since μ < 

β
β−1 

we have 

αμ = 

μ − 1 

μ
< 

μ − 1 

μ

∣∣∣∣
μ= β

β−1 

= 

1 
β

. 

On the other hand, λ′ 
μ(αμ) = μ(1 − 2 x ) | 

x = μ−1 
μ

= 2 − μ < 1 because μ > 1. Thus, there exist r ∈ (2 − μ, 1) and 0 < δ < αμ

such that αμ + δ < 

1 
β

≤ 2 
5 < 

1 
2 , and λ′ 

μ(x ) < r for every x ∈ (αμ − δ, αμ + δ) . 

Set τ := β(αμ + δ) < 1 . To show that lim n →∞ 

(x n , y n , z n ) = (αμ, 0 , 0) we will prove that the following two statements 

hold: 

(i) There exists a positive integer N such that 

0 ≤ y n < τ n −N and 0 ≤ z n < γ τ n −1 −N , 

for every n ≥ N + 2 . 

(ii) For every 0 < ε < δ there exists a positive integer M such that 
∣∣x n − αμ

∣∣ < ε for all n ≥ M . 

To prove (i) and (ii) we fix 0 < ε < δ < αμ and we claim that there exists a positive integer N = N(ε) such that 

x n < αμ + ε for every n ≥ N . Now we prove the claim. Assume first that x 0 ∈ 

[
0 , αμ] ∪ 

[˜ αμ, 1 
]
, where 1 

2 < ̃

 αμ < 1 is the 

unique point such that λμ

(˜ αμ

)
= αμ. Since 

λμ

([
0 , αμ] ∪ 

[˜ αμ, 1 

])
= λμ

([
0 , αμ] 

)
= 

[
0 , αμ] , 

λn 
μ(x 0 ) ∈ 

[
0 , αμ

]
for every n ≥ 1. Thus, if we set N = N(ε) = 1 and we take n ≥ N , by Lemma 13 we have 

0 ≤ x n ≤ λn 
μ(x 0 ) ≤ αμ < αμ + ε. 

Assume now that x 0 ∈ 

(
αμ, ̃  αμ

)
. By Lemmas 13 and 12 , there exists N = N(ε) ≥ 1 such that 

0 ≤ x n ≤ λn 
μ(x 0 ) ∈ I n ⊂ I N ⊂ [ αμ, αμ + ε 

)
for every n ≥ N . This ends the proof of the claim. 

Now we prove (i). From the above claim we have 

βx n < β
(
αμ + ε 

)
< β

(
αμ + δ

)
= τ < 1 for every n ≥ N. (6) 

Consequently, by the iterative use of (6) , for every n ≥ N + 2 we have 

y n = βy n −1 (x n −1 − z n −1 ) ≤ βy n −1 x n −1 < τy n −1 < 

τ 2 y n −2 < · · · < τ n −N y 
N 

≤ τ n −N , 

and z n = γ y n −1 z n −1 ≤ γ y n −1 < γ τ n −1 −N . 

Now we prove (ii). In this proof we will use the damped logistic map λμ,s with parameter 1 > s > 

1 
με+1 . From (i) it 

follows that there exists a positive integer ˜ M ≥ N + 2 such that 

y n + z n < min 

{
β(1 − r) 

μτ
ε, (1 − s ) 

(
1 − (αμ − ε) 

)}
for every n ≥ ˜ M . Observe that if there exists M ≥ ˜ M such that | x M 

− αμ| < ε, then | x n − αμ| < ε for every n ≥ M . To prove 

it assume that there exists n ≥ M such that | x k − αμ| < ε for k = M, M + 1 , . . . , n and prove it for n + 1 . By Lemma 13 , 

Eq. (6) and the Mean Value Theorem, 



Ll. Alsedà, B. Vidiella and R. Solé et al. / Commun Nonlinear Sci Numer Simulat 84 (2020) 105187 19 

Fig. 8. (a, upper) Bifurcation diagram displaying the dynamics of preys x when increasing the predation intensity of predator z on predator y , given by 

γ , using μ = 2 . 1 and β = 3 . 36 . This range of γ covers zones E and F, separated by the vertical dashed line. The values of the fixed points are shown 

overlapped, with P ∗2 : red; P ∗3 : orange; and P ∗4 : blue. (a, lower) Spectrum of Lyapunov exponents, �1,2,3 computed for the same range of γ used in the 

bifurcation diagram (for clarity only �1,2 are displayed, in black and red respectively). In both panels the initial conditions are: x 0 = 0 . 1 , y 0 = 0 . 02 , and 

z 0 = 0 . 03 . (b) A cut of the parameter space at β = 3 . 36 showing the path (μ = 2 . 1 , β = 3 . 36 , γ ) followed by the bifurcation diagram of (a). The dynamics 

for this parameter range can be visualised in Movie-4.mp4 . 

| x n +1 − αμ| = 

∣∣λμ

(
x n 
)

− αμ − μx n 
(
y n + z n 

)∣∣
≤
∣∣λμ

(
x n 
)

− λμ

(
αμ

)∣∣+ μx n 
(
y n + z n 

)
= λ′ 

μ(ξ ) | x n − αμ| + μx n 
(
y n + z n 

)
< λ′ 

μ(ξ ) ε + μ
τ

β

β(1 − r) 

μτ
ε = ε 

(
λ′ 

μ(ξ ) + (1 − r) 
)
, 

where ξ is a point between x n and αμ. Since | ξ − αμ| ≤ | x n − αμ| < ε < δ it follows that λ′ 
μ(ξ ) < r. So, | x n +1 − αμ| < 

ε(λ′ 
μ(ξ ) + (1 − r)) < ε. 

To end the proof of the proposition we have to show that there exists M ≥ ˜ M such that | x M 

− αμ| < ε. By the above 

claim we know that x ˜ M 

< αμ + ε. So, the statement holds trivially with M = 

˜ M whenever x ˜ M 

> αμ − ε. 

In the rest of the proof we may assume that 0 < x ˜ M 

≤ αμ − ε. Observe that ε < δ < αμ = 

μ−1 
μ implies με < μ − 1 , which 

is equivalent to με + 1 < μ and, consequently, 1 
μ < 

1 
με+1 < s < 1 . So, s verifies the assumptions of Lemma 14 . Moreover, 

since 1 
με+1 < s, we have 

1 < s (με + 1) ⇐⇒ μs − 1 > μs − μsε − s ⇐⇒ μ(μs − 1) > μs 
(
μ(1 − ε) − 1 

)
, 

which is equivalent to αμ,s = 

μs −1 
μs > 

μ(1 −ε) −1 
μ = αμ − ε. Summarising, we have, 0 < x ˜ M 

≤ αμ − ε < αμ,s . 

By Lemma 14 (d), there exists L > 0 such that λL 
μ,s (x ˜ M 

) > αμ − ε. If there exists N < 

˜ M < M < 

˜ M + L such that x M 

> αμ − ε
then, | x M 

− αμ| < ε because, by the above claim, x M 

< αμ + ε. Hence, we may assume that x ˜ M + k ≤ αμ − ε for every k = 

0 , 1 , . . . , L − 1 . Then, 

μx ˜ M 

(
y ˜ M 

+ z ˜ M 

)
< μx ˜ M 

(1 − s ) 
(
1 − (αμ − ε) 

)
≤ (1 − s ) μx ˜ M 

(
1 − x ˜ M 

)
= (1 − s ) λμ

(
x ˜ M 

)
, 

which, by Lemmas 13 and 14 (b), is equivalent to 

0 < λμ,s 

(
x ˜ M 

)
= sλμ

(
x ˜ M 

)
< λμ

(
x ˜ M 

)
− μx ˜ M 

(
y ˜ M 

+ z ˜ M 

)
= x ˜ M +1 . 

Moreover, by iterating these computations and using again Lemma 14 (b) we have 

0 < λ2 
μ,s 

(
x ˜ M 

)
< λμ,s 

(
x ˜ M +1 

)
< x ˜ M +2 
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Fig. 9. Three-dimensional bifurcation diagram plotting the population values ( x, y ) using the predator rate of predator z as control parameter, setting 

μ = 2 . 1 and β = 3 . 36 . The attractors above the bifurcation diagram are displayed using: (a) γ = 7 . 3 ; (b) γ = 7 . 46 ; (c) γ = 8 . 14 , and (d) γ = 9 . 14 . All of 

the attractors are in zone F . The fixed points are shown in the phase space, with P ∗2 : red; P ∗3 : orange; and P ∗4 : blue. The initial conditions are the same 

than in Fig. 8 . In (e) we display the full chaotic attractor using γ = 9 . 14 (note that the full attractor is a discrete Shilnikov-like connection). Here the color 

gradient corresponds to time: red dots are longer times. See also Movie-4.mp4 . 

(notice that x ˜ M +1 < 

1 
2 by Lemma 13 ). Thus, by repeating the process we get 0 < λk 

μ,s (x ˜ M 

) < x ˜ M + k for every k = 0 , 1 , . . . , L. 

This implies that 

αμ − ε < λL 
μ,s 

(
x ˜ M 

)
< x ˜ M + L , 

and the statement holds with M = 

˜ M + L. �

6. Chaos and Lyapunov exponents 

As expected, iteration of Map (1) suggests the presence of chaotic attractors (see Fig. 9 (c-e) and Fig. 10 (e,f)). In order to 

identify chaos we compute Lyapunov exponents, labelled �i , using the computational method described in [44, pages 74–

80] , which provides the full spectrum of Lyapunov exponents for the Map (1) . 

Let us explore the dynamics of the system focusing on the strength of predation, parametrised by constants γ and 

β . To do so we first investigate the dynamics increasing the predation rate of predator z on predator y , given by γ . We 

have built a bifurcation diagram displaying the dynamics of the prey species x by iterating Eq. (1) when increasing γ , 
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Fig. 10. (a) Bifurcation diagram displaying preys’ dynamics when increasing the rate of predation of predator y (constant β) on the prey x . The explored 

range of β goes from zones D to G (changes between zones are indicated with vertical dashed lines). Here the values of the fixed points when increasing 

β are also displayed ( P ∗2 : red; P ∗3 : orange; and P ∗4 : blue). Below we plot the spectrum of Lyapunov exponents, �i , for the same range of β . Here we fix 

μ = 2 . 1 and γ = 6 . 5 . The initial conditions are the same than in the previous figure. (b) A cut of the parameter space at γ = 6 . 5 showing the path (2.1, β , 

6.5). Three projected attractors are shown with: (c) β = 3 . 52 (zone F); (d) β = 4 . 99 and (e, f) β = 3 . 89 (zone G). The dynamics tied to the increase of β

can be visualised in Movie-5.mp4 . 

setting μ = 2 . 1 and β = 3 . 36 (see Fig. 8 (a)). The increase in γ for these fixed values of μ and β makes the dynamics 

to change between zones E → F (see also Fig. 8 (b)). For 5 < γ < 5.673555 ���, populations achieve a static coexistence 

equilibrium at P ∗4 , which is achieved via damped oscillations (see the properties in zone E). Increasing γ involves the entry 

into zone F, where all of the fixed points have an unstable nature and thus periodic and chaotic solutions are found. Here 

we find numerical evidences of a route to chaos driven by period-doubling of invariant closed curves that appears after 

a supercritical Neimark-Sacker (Hopf-Andronov) bifurcation for maps (flows) [45,46] . This bifurcation happens when the 

maximal Lyapunov exponent is zero (see the range 5.673555 < γ � 7.25) and the eigenvalues at the fixed point P ∗
4 

(which is 

locally unstable) are complex. Notice that the first Neimark-Sacker bifurcation marks the change from zones E to F (indicated 

with a vertical dashed line in Fig. 8 ). This means that an increase in the predation rate of species z unstabilises the dynamics 

and the three species fluctuate chaotically. Fig. 9 displays the same bifurcation diagram than in Fig. 8 , represented in the 

three-dimensional space ( γ , x, y ), where it can be shown how the attractors change by increasing γ . Here we also display 

several projections of periodic ( Fig. 9 (a)) and chaotic ( Fig. 9 (b-d)) attractors. Fig. 9 (e) displays the full chaotic attractor. For 

an animated visualisation of the dynamics dependence on γ we refer the reader to Movie-4.mp4 . 

To further investigate the dynamics considering another key ecological parameter, we study the dynamics increasing the 

predation strength of predator y on preys x , which is given by parameter β . As an example we have selected the range 

2.5 ≤ β ≤ 5, which corresponds to one of the sides of Q . Here the range of β follows the next order of crossing of the 

zones in Q when increasing β: D → E → F → G . Fig. 10 (a) shows the bifurcation diagram also obtained by iteration. In 

Fig. 10 (b) we also provide a diagram of the stability zones crossed in the bifurcation diagram. Here, for 2.5 ≤ β < 273/101 

the dynamics falls into zone D, for which the top predator z goes to extinction and the prey and predator y achieve a static 

equilibrium. Increasing β involves the entry into zone E (exactly at β = 273 / 101 ), the region where the fixed point of all- 

species coexistence is asymptotically locally stable. Counter-intuitively, stronger predation of y on x makes the three species 



22 Ll. Alsedà, B. Vidiella and R. Solé et al. / Commun Nonlinear Sci Numer Simulat 84 (2020) 105187 

Fig. 11. Route to chaos when increasing predation rates governed by period-doubling of invariant curves. We display the local maxima of time series x n on 

the attractor for γ (left diagram with β = 3 . 36 ) and β (diagram at the right with γ = 6 . 5 ). Above the diagrams we display the attractors projected on the 

phase planes ( x, y ) and ( x, z ), with: (a) γ = 6 . 8 , (b) γ = 7 . 1 , (c) γ = 7 . 18 , (d) γ = 7 . 21 , (e) β = 3 . 425 , (f) β = 3 . 6 , (g) β = 3 . 685 , and (h) β = 3 . 7 . In all 

the plots the initial conditions are x 0 = 0 . 2 , y 0 = 0 . 02 , z 0 = 0 . 03 . See Movie-6.mp4 for a visualisation of the full attractor and the time series x n , y n , and z n 
undergoing period-doubling of closed curves tied to the bifurcations diagram at the left, shown within the range 6.75 ≤ γ ≤ 8. 

to coexist, avoiding the extinction of the top predator z . At β ≈ 3.1804935 there is another change to zone F, where all 

of the fixed points are unstable and thus periodic dynamics can occur. As we previously discussed, this is due to a series 

of bifurcations giving place to chaos. We notice that further increase of β involves another change of zone. Precisely, at 

β = 42 / 11 = 3 . 81 the system changes from zone F to G. Several attractors are displayed in Fig. 10 : a period-two invariant 

curve (panel c) with β = 3 . 52 and �1 = 0 projected onto the phase space ( x, y ), found in zone F ; and two attractors in zone 

G , given by a chaotic attractor with β = 4 . 99 and �1 = 0 . 0044 · · · (panel (d) in Fig. 10 ); and another chaotic attractor found 

at β = 3 . 89 (here �1 = 0 . 047 · · · ), shown in a projection (panel e) and in the full phase space (panel f). Movie-5.mp4 

displays the dynamics tied to the bifurcation diagram shown in Fig. 10 . 

6.1. Route to chaos: period-doublings of invariant curves 

It is known that some dynamical systems can enter into a chaotic regime by means of different and well-defined routes 

[45] . The most familiar ones are: (i) the period-doubling route (also named Feigenbaum scenario); (ii) the Ruelle-Takens- 

Newhouse route; (iii) and the intermittency route (also named Manneville-Pomeau route). The Feigenbaum scenario is the 

one identified in the logistic equation for maps, which involves a cascade of period doublings of fixed points that ultimately 

end up in chaos [7] . The Ruelle-Takens-Newhouse involves the appearance of invariant curves that change to tori and then 

by means of tori bifurcations become unstable and strange chaotic attractors appear. Finally, the intermittency route, tied to 

fold bifurcations, involves a progressive appearance of chaotic transients which increase in length as the control parameter 

is changed, finally resulting in a strange chaotic attractor. 

The bifurcation diagrams computed in Figs. 8 and 10 seem to indicate that after a Neimark-Sacker bifurcation, the new 

invariant curves undergo period-doublings (see e.g., the beginning from Zone F until the presence of chaos in Fig. 10 (a)). In 

order to characterise the routes to chaos at increasing the predation parameters γ and β , we have built bifurcation diagrams 

by plotting the local maxima of time series for x n for each value of these two parameters. The time series have been chosen 

after discarding a transient of 3 · 10 4 iterations to ensure that the dynamics is in the attractor. The plot of the local maxima 

allows to identify the number of maxima of the invariant curves as well as of the attractors, resulting in one maximum for 

a period-1 invariant curve, two maxima for period-2 curves, etc. In the chaotic region the number of maxima appears to be 

extremely large (actually infinite). The resulting bifurcation diagram thus resembles the celebrated period-doubling scenario 

of periodic points (Feigenbaum scenario). We must notice that previous works have found period doublings of tori towards 

chaotic transitions [47–49] . 

The results are displayed in Fig. 11 by using γ and β as bifurcation parameters. We note that the bifurcation diagram 

for γ , despite clearly showing the branches after the first period-doubling, presented a noisy aspect. This could be due to a 

sampling of the local maxima on the invariant curve not being perfectly closed. That is, the invariant curve for the selected 

parameter values seems to be much more hyperbolic (i.e., attracting) for the diagram computed with β in Fig. 11 , since this 
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Fig. 12. Period-doublings of invariant curves represented with the time series of the prey x for the values of γ : (a) γ = 6 . 8 , (b) γ = 7 . 1 , and (c) γ = 7 . 18 

(the same values of the left picture in Fig. 11 ). For better visualisation we have overlapped blue horizontal lines indicating the maxima of the time series. 

Note that in (c) the highest periods appear to be very close (see also the attractor (c) in the previous figure). The fast Fourier transforms for these three 

curves seem to show numerical evidence of a period doubling phenomenon. The FFT analysis of time series (c) contains an enlarged view of the peak at 

index 45.75, which is half the one found at 91.5 and a quarter of 183, all of them providing the most relevant coefficients (their modulus, in fact) of their 

DFT and, therefore, the main frequency of each discrete curve. 
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noisy effect was not observed at all. To smooth this effect we have used running averages, which, despite showing these 

small waves, produced a better bifurcation diagram. For both γ and β , it seems clear that the invariant curves undergo 

period doublings. We also have plotted the resulting attractors for period-1,2,4,8 orbits (see e.g. Fig. 11 (a–d) for the case 

with γ using projections on the ( x, y ) space). 

We have finally performed a Fast Fourier Transform (FFT) of the time series for x n on the attractor corresponding to 

the attractors displayed in Fig. 11 (a–d) and Fig. 11 (e–h). The FFT emphasises the main frequencies (or periods) composing 

the signal by showing the modulus of their Fourier coefficients. Remember that FFT provides an efficient and fast way to 

compute the Discrete Fourier Transform, DFT in short, of a discrete signal: given x 0 , x 1 , . . . , x N−1 complex numbers, its DFT 

is defined as the sequence f 0 , f 1 , . . . , f N−1 determined by 

f j = 

N−1 ∑ 

k =0 

x k exp 

(
−2 π i jk 

N 

)
. 

The FFTs have been computed using times series of 2 11 points after discarding the first 3 · 10 4 iterations of the map (a 

transitory). The results are displayed in Fig. 12 for the dynamics displayed in panels (a-d) of Fig. 11 . Similar results have 

been obtained for the dynamics in panels (e-h) of Fig. 11 (results not shown). These FFTs have been performed using a 

rectangular data window, and we have plotted the index of the signal versus its magnitude. It can be observed, by direct 

inspection, that the first relevant coefficient (in fact, its modulus) appear at each graph at half the index of the previous one 

(upper). This can be a numerical evidence of a period doubling (see also the animation in Movie-6.mp4 to visualise the 

changes in the time series and in the attractor at increasing γ ). Here the period doubling of the curves can be clearly seen. 

A deeper study on the characterisation of this period-doubling scenario will be carried out in future work by computing the 

linking and rotation numbers of the curves. 

7. Conclusions 

The investigation of ecological dynamical systems has been of wide interest as a way to understand the dynamical 

complexity of ecosystems, which are inherently nonlinear. Such nonlinearities arise from density-dependent processes typi- 

cally given by intra- or inter-specific competition between species, by cooperative interactions, or by antagonistic processes 

such as prey-predator or host-parasite dynamics. Three-species food chain systems have been widely investigated, espe- 

cially for time-continuous systems [11,32–36] . Key aspects of the complexity of the dynamics such as topological entropy 

measures [32] as well as of different chaos-generating mechanisms [32–36] have been discussed for these systems, which 

considered in many cases functional responses for predators and different time scales i.e., slower dynamics at the higher 

trophic levels [33–36] . Discrete models have been also widely used to model the population dynamics of species with non- 

overlapping generations [6,7,9] . Indeed, several experimental research on insect dynamics revealed a good matching between 

the observed dynamics and the ones predicted by discrete dynamical models such as maps [4,5,22,23] . 

Typically, discrete models can display irregular or chaotic dynamics even when one or two species are considered [6,7,37–

39] . Additionally, the study of the local and global dynamics for multi-species discrete models is usually performed numer- 

ically (by iterating the associated map) and most of the times fixing the rest of the parameters to certain values. Hence, a 

full analysis within a given region of the parameter space is often difficult due to the dimension of the dynamical system 

and to the number of model parameters. In this article we extend a previous two-dimensional map describing predator- 

prey dynamics [40] . The extension consists in including a top predator to a predator-prey model, resulting in a three species 

food chain. This new model considers that the top predator consumes the predators that in turn consume preys. Also, the 

top predator interacts negatively with the growth of the prey e.g., due to predation or competition. Finally, the prey also 

undergoes intra-specific competition. 

We here provide a detailed analysis of local and global dynamics of the model within a given volume of the full param- 

eter space containing relevant dynamics. The so-called escaping set , causing sudden populations extinctions, is identified. 

These escaping sets contain zones in which the iterates go out of the domain of the invariant set (e.g., surpassing the car- 

rying capacity), then making population densities to become negative (these scenarios are here considered as extinctions, 

albeit the discrete nature of time). For some parameter values these escaping regions appear to have a complex, fractal 

structure. 

Several parametric zones are identified, for which different dynamical outcomes exist: all-species extinctions, extinction 

of the top predator, extinction of both predators, and persistence of the three species in different coexistence attractors. 

Periodic and chaotic regimes are identified by means of numerical bifurcation diagrams and of Lyapunov exponents. We 

have identified a period-doubling route of invariant curves to chaos tuning the predation rates of both predators. This route 

involves a supercritical Neimark-Sacker bifurcation giving rise to a closed invariant curve responsible of all-species coexis- 

tence. Despite this route to chaos has been found for parameters which tune predation rates, future work should address 

how robust is this route to chaos for other parameter combinations of Map (1) . Interestingly, we find that this route to chaos 

for the case of increasing predation directly on preys (tuning β) can involve an unstable persistence of the whole species 

via periodic or chaotic dynamics, avoiding the extinction of top predators. This result is another example that unstable dy- 

namics (such as chaos) can facilitate species coexistence or survival, as showed by other authors within the frameworks of 

homeochaotic [29,30] and metapopulation [15] dynamics. 
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