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a b s t r a c t

Hypercycles’ dynamics have been widely investigated in the context of origins of life, especially using
time-continuous dynamical models. Different hypercycle architectures jeopardising their stability and
persistence have been discussed and investigated, namely the catalytic parasites and the short-circuits.
Here we address a different scenario considering RNA-based hypercycles in which cooperation is lost
and catalysis shifts to density-dependent degradation processes due to the acquisition of cleaving
activity by one hypercycle species. That is, we study the dynamical changes introduced by a functional
shift. To do so we use a discrete-time model that can be approached to the time continuous limit by
means of a temporal discretisation parameter, labelled C . We explore dynamical changes tied to the
loss of cooperation in two-, three-, and four-member hypercycles in this discrete-time setting. With
cooperation, the all-species coexistence in two- and three-member hypercycles is governed by an
internal stable fixed point. When one species shifts to directed degradation, a transcritical bifurcation
takes place and the other hypercycle members go to extinction. The asymptotic dynamics of the
four-member system is governed by an invariant curve in its cooperative regime. For this system,
we have identified a simultaneous degenerate transcritical-Neimark–Sacker bifurcation as cooperation
switches to directed degradation. After these bifurcations, as we found for the other systems, all the
cooperative species except the one performing degradation become extinct. Finally, we also found
that the observed bifurcations and asymptotic dynamical behaviours are independent of C . Our results
can help in understanding the impact of changes in ecological interactions (i.e., functional shifts)
in multi-species systems and to determine the nature of the transitions tied to co-extinctions and
out-competition processes in both ecosystems and RNA-based systems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Hypercycles [1] are nonlinear dynamical systems formed by
n polynucleotides with catalytic activity. Hypercycles have been
mainly studied within the framework of prebiotic evolution and
origins of life, providing a potential solution to the so-called pre-
biotic information crisis [1–4]. The generality of hypercycle (repli-
cator) equations has also allowed to employ this model in neural
networks [5,6], virus replication [7–10], immune system [11],
or ecosystem dynamics [4,12], among others. Also, parallelisms
about the error threshold and hypercycles have been discussed
within the framework of the emergence of language [13]. In-
terestingly, hypercycles have been experimentally built using
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coiled-coil peptides [14], yeast cell populations [15], and co-
operative engineered bacteria growing with catalytic parasites
[16].

It has been argued that hypercycle species may need two
minimal conditions in order to be evolutionary stable [3,17],
namely: (i) catalytic replication and (ii) capability of information
storage. These two properties are found simultaneously in RNA-
based replicons such as ribozymes (ribonucleic acid enzymes).
RNAs with loop and stem structures, similar to those of mod-
ern tRNAs [18], are known to be stable against hydrolysis [19]
also having replicability potential [20,21]. Indeed, smaller func-
tional RNAs have been found in viroids [22] and other RNAs [23].
Ribozymes are short RNA molecules able to catalyse specific
biochemical reactions, similar to the action of protein enzymes
[21,24]. Hence, ribozymes have been considered as potential can-
didates forming the first autonomous, self-replicating molecular
systems involved in the origins of life [3,17,20,25–28]. Some of
these hypothetic prebiotic RNAs were supposed to participate in
ribosome-free translation of an appropriate messenger [28,29].
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Different activities have been described for natural and in
vitro (e.g., peptide-bond formation [30]) evolved ribozymes. Cer-
tain introns can catalyse their own excision (self-cleavage) from
single-stranded RNA (ssRNA) [21] and ligase reactions by RNA
catalysts can occur even with short RNA sequences [31]. More-
over, the same RNA sequences can catalyse trans-esterification
reactions for elongation of one monomer [21], ligation of two
independent ssRNAs [32,33], and cleavage of RNA into smaller
sequences [21–23,34] (see [28,35] for reviews).

Despite the functional properties of ribozymes, RNA-catalysed
self-replication from RNA templates seems to be quite limited.
However, recent experiments evolving catalysts at sub-zero tem-
peratures have revealed that the combination of RNAs with cold-
adaptative mutations with a previously described 5′ extension
operating at ambient temperatures enabled catalysing the syn-
thesis of an RNA sequence longer than itself (adding up to 206
nucleotides) [36]. Moreover, recent experiments have shown the
spontaneous formation of catalytic cycles and networks from
mixtures of RNA fragments able to self-assemble into self-
replicating ribozymes [37], providing evidences for selective ad-
vantage of cooperative systems composed by ribozymes.

From the modelling point of view, hypercycles have been
mainly investigated with continuous time approaches, for both
well-mixed i.e., ordinary differential equations (ODEs) [1,38–
42] and spatially-resolved [43–45] systems. ODEs reveal that
the asymptotic coexistence for hypercycles with n = 2, 3, 4
species is typically governed by an interior stable equilibrium
[1,38,46]. More specifically, the case n = 2 has a stable node [38],
while cases n = 3 and n = 4 are governed by stable foci with fast
and hardly damped oscillations [1,42,46], respectively. Moreover,
a multitude of analyses (both numerical and analytical) have
revealed that for n > 4, populations undergo self-sustained oscil-
lations in its cooperative regime [1,40,41,47]. To date, very few
works have investigated hypercycles considering discrete time
(e.g., using difference equations or maps [48,49]), being mainly
analysed with cellular automata models [39,50,51]. Specifically,
the system studied by Hofbauer and others [48,49] revealed that
discrete-time hypercycles with n = 2, 3 have an interior stable
fixed point governing coexistence dynamics, while the case n = 4
involves oscillating coexistence governed by an invariant curve.

In this article we consider the discrete hypercycle model de-
veloped in [48] to investigate the impact on the dynamics and
the bifurcations when one of the species shifts from coopera-
tive to antagonistic interactions. By the cyclic character of the
system we can assume the species that shifts is the first one.
To date, different architectural changes having a negative im-
pact on hypercycles have been thoroughly investigated. These
include the so-called catalytic parasites [39,43,44,50] and short-
circuits [45,51], suggested to impair hypercycle’s stability thus
constraining the increase of information. The case we investi-
gate in this article is different since the cyclic structure of the
hypercycle is maintained but a given replicator instructs the
degradation of the next species of the system, instead of pro-
viding catalytic aid. This new system is inspired in the existence
of ribozymes with trans-cleaving functions. For example, min-
imal trans-cleaving RNA hammerheads were generated several
decades ago [52,53]. Also, both in vitro and in vivo hammerhead
ribozymes with trans-cleaving activity against viroids have been
described more recently [34].

As mentioned, we are interested in the dynamics when a
given species shifts from cooperative to antagonistic interactions
i.e., density-dependent degradation, focusing on small hypercy-
cles with n = 2, 3, 4 species. Although we are not modelling
this functional shift explicitly by considering mutations in the
catalytic motifs and their change to cleaving motifs, we investi-
gate this shift by taking a replication constant both either positive

(catalysis) or negative (cleavage). The paper is organised as fol-
lows. In Section 2 we introduce the studied model [48], showing
its relation with the ODEs model as the discretisation time pa-
rameter C → ∞. Then, we compute the fixed points and the
eigenvalues for the general model in Section 3.1. In Section 3.2 we
analytically prove that, for any number of species, when the first
species shifts to directed degradation, the asymptotic behaviour
is a fixed point in the corner of the phase space, involving the
out-competition of all other species providing catalytic aid. In
Section 3.3 we investigate the dynamics for the studied hyper-
cycles with n = 2, 3, 4 species. In particular, we analytically
determine the basin of attraction in the domain of the system.
In Section 3.4 we analytically obtain the rates of convergence
for those cases where the ω−limit is a fixed point, showing
the relevant parameters in the asymptotic expression. Numeri-
cal computations confirm the analytic findings. Specifically, we
illustrate the linear dependence of the number of iterations to
the fixed points with the parameter C . Finally, in Section 3.5 we
provide a numerical study of the invariant curves found for the
case n = 4 and ki > 0. The bifurcations tied to the functional
shifts are also discussed in Sections 3.3 and 3.5. Finally, Section 4
is devoted to final conclusions.

2. Mathematical model

In this section we introduce the discrete-time hypercycle
model proposed by Hofbauer [48], that will be employed in this
work to determine the impact of functional shifts in hypercycles.
Let xi denote the concentration of the ith species, Si, and ki
the kinetic constants that quantify the strength of catalysis that
the i − 1 species provides to the ith species. For notational
convenience the subindices i are modulo n, i.e., x0 = xn and
also xn+1 = x1. The system is determined by an n-dimensional
function F : Rn

→ Rn, Fi(x) being the concentration xi in the
next generation, i.e., Fi(x) represents the concentration after one
unit of time. This function considers replication rate of Si to be
proportional to the amount of Si−1, according to the product
xi xi−1 (catalytically-assisted replication), taking into account that
the (i−1)-th species contributes to the replication of the ith one.
We write

Fi(x) ∼ xi(C + kixi−1), C > 0.

Next, we determine the proportionality factor A(x) imposing the
total population to be a constant. So if

∑n
i=1 xi = 1 we want∑n

i=1 Fi(x) = 1. This means
n∑

i=1

A(x) xi(C + kixi−1) = A(x)

(
C +

n∑
i=1

kixixi−1

)
= 1.

We introduce

φ(x) =

n∑
i=1

kixixi−1

and then A(x) has to be equal to (C +φ(x))−1. Therefore, we have
the following discrete-time system:

Fi(x) =
C + kixi−1

C + φ(x)
xi, 1 ≤ i ≤ n. (1)

The dynamics of Map (1) spans the following (n− 1)-simplex:

Sn−1
=

{
x = (x1, . . . , xn) ∈ Rn

|

n∑
i=1

xi = 1 and xi ≥ 0

for i = 1, . . . , n
}

.
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To compare this map with an analogous continuous time model
we rewrite the ith component of F as follows:

Fi(x) − xi =
C + kixi−1

C + φ(x)
xi − xi =

kixi−1 − φ(x)
C + φ(x)

xi

so that
Fi(x) − xi

C−1 = xi(kixi−1 − φ(x))
C

C + φ(x)
.

Interpreting now C−1 as the time interval between two genera-
tions, Map (1) can be seen as the Euler C−1 step of the differential
equation

ẋi = xi(kixi−1 − φ(x)), 1 ≤ i ≤ n, (2)

where we have used that

lim
C→∞

C
C + φ(x)

= 1

because φ(x) is bounded. The term φ(x) is equivalent to the
dilution outflow used in time-continuous models, which intro-
duces competition between replicators also ensuring a constant
population.

We note that for large values of C, the discrete system in-
troduced above will have similar properties to system Eqs. (2).
As mentioned, the main goal of our article is to investigate how
dynamics change considering the range e.g., k1 ≥ −1 and ki > 0
for 2 ≤ i ≤ n. Due to the cyclic structure of hypercycles, setting
a negative k1 is the same that fixing any other single value of
ki̸=1 ≥ −1 and all others to kj̸=i > 0 (i.e., in this study we will
focus on the change of sign of one parameter). A positive value
of k1 means that species x1 receives catalytic aid from species
xn. For k1 = 0 no interaction happens between x1 and xn, and
the hypercycle becomes a catalytic chain (see [17]). For k1 < 0,
species xn degrades species x1 (i.e., by trans-cleaving ribozymes
activity). Since we admit k1 ≥ −1, in order to have C + φ(x) > 0
in Sn−1 when k1 < 0 we should take C > −k1/4. This leads us
to assume C > 1/4 in all cases.

3. Results and discussion

In the next Sections we will characterise the dynamics of
Map (1). In Section 3.1 we will study the fixed points and their
local stability. Section 3.2 discusses the behaviour of the system
setting a negative k1 value. In Section 3.3 we analyse the particu-
lar cases of two- three- and four-species systems, focusing on the
dynamics and the bifurcations identified in the studied hypercy-
cles. Section 3.4 provides analytical and numerical results of the
rates of convergence to the point attractors. Finally, Section 3.5
provides a study on the invariant curves and the bifurcations
for the case n = 4 when k1 = 0.

3.1. Fixed poins and eigenvalues

We begin studying the fixed points of Map (1). In this work we
assume C > 1/4, k1 ≥ −1 and ki > 0 for 2 ≤ i ≤ n. Let ∆n−1 be
the hyperplane {x ∈ Rn

|
∑n

j=1 xj = 1}. Note that Sn−1
⊂ ∆n−1. To

understand the bifurcation that occurs when k1 = 0 we consider
F defined in ∆n−1

\{x ∈ Rn
| C+φ(x) = 0}. For k1 ̸= 0 we introduce

the quantity

M =

n∑
j=1

1
kj

.

Proposition 1.

(a) If k1 ̸= 0, −1/(
∑n

j=2
1
kj
), then F has a unique fixed point pn

in ∆̃n−1
= {x ∈ ∆n−1

| xi ̸= 0, ∀i}. We have

pn = (p1, . . . , pn) with pi =
1

ki+1M
, 1 ≤ i ≤ n. (3)

The point pn ∈ Sn−1
\ ∂Sn−1 if and only if k1 > 0. Moreover,

when k1 → 0, pn converges to (0, . . . , 0, 1). If k1 = 0 or
k1 = −1/(

∑n
j=2

1
kj
) then F has no fixed points in ∆̃n−1.

(b) Let x ∈ ∆n−1
\ ∆̃n−1. Then, x is a fixed point if and only if

kixixi−1 = 0 for all i. If k1 > 0 the previous conditions are
also equivalent to φ(x) = 0. The points qn,m = (qm1 , . . . , qmn )
such that qmi = δm,i, 0 ≤ m ≤ n, are always fixed points (here
δ is the Kronecker delta).

Proof. (a) We assume xi ̸= 0 for all i. From the condition Fi(x) = xi
we get
C + kixi−1

C + φ(x)
= 1

and hence kixi−1 = φ(x) for all i. Then k2x1 = k3x2 = · · · =

knxn−1 = k1xn. If k1 = 0 there are no fixed points in ∆̃n−1. When
k1 ̸= 0 we can write xi = (k1/ki+1) xn and determine the value of
xn imposing the condition that the point is in ∆n−1:

k1xn
n−1∑
j=1

1
kj+1

+ xn = 1.

If k1 = −1/
∑n−1

j=1
1

kj+1
, there is not a fixed point in ∆̃n−1. Other-

wise k1xn = 1/M and we get (3).

(b) Let x ∈ ∆n−1
\ ∆̃n−1. There exists l such that xl = 0 and

xl+1 ̸= 0. If x is a fixed point we have

xl+1 =
C + kl+1 xl
C + φ(x)

xl+1

and hence φ(x) = kl+1 xl = 0. Therefore

xi =
C + kixi−1

C
xi = xi +

1
C

ki xi xi−1,

for all i and thus ki xi xi−1 = 0. Conversely, ki xi xi−1 = 0 for all
i implies φ(x) = 0 and one immediately gets that x is a fixed
point. □

To obtain the eigenvalues of DF (pn) and study the stability of
the fixed point pn obtained in (a) of Proposition 1 it is convenient
to use the following baricentric variables.

yi =
ki+1 xi∑n
j=1 kj+1 xj

, 1 ≤ i ≤ n.

When k1 > 0, this change of variables sends Sn−1 to Sn−1

bijectively and, more generally, for k1 ∈ R, sends the points
of Sn−1 except the ones on the hyperplane

∑n
j=1 kj+1 xj = 0

to Sn−1. Whenever defined, i.e., when
∑n

j=1 kj+1 xj ̸= 0, the
differential of the change has rank n − 1 and, actually it is a
(local) diffeomorphism from Sn−1 to Sn−1. This means that we can
compute the eigenvalues of DF at pn in baricentric coordinates. In
such coordinates F reads

Fi(y) =
C +

yi−1
Ψ (y)

C +
1

Ψ (y)

∑n
j=1 yj−1 yj

yi, where

Ψ (y) =

n∑
j=1

1
kj+1

yj,
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and the fixed point pn is located at (1/n, . . . , 1/n). It is not
difficult to compute the partial derivatives and obtain
∂Fi
∂yi

(pn) = 1 −
2

n(CM + 1)
,

∂Fi
∂yi−1

(pn) =
1

CM + 1
−

2
n(CM + 1)

,
∂Fi
∂yl

(pn) =
−2

n(CM + 1)
,

l ̸= i, i − 1.

Then, the differential DF (pn) is a circulant matrix⎛⎜⎜⎜⎝
c0 c1 . . . cn−1

cn−1 c0 . . . cn−2
cn−2 cn−1 . . . cn−3

. . .

c1 c2 . . . c0

⎞⎟⎟⎟⎠ (4)

with

c0 = 1 −
2

n(CM + 1)
, cn−1 =

1
CM + 1

−
2

n(CM + 1)
, and

ci =
−2

n(CM + 1)
for 1 ≤ i ≤ n − 2.

It is known [54] that the eigenvalues of a circulant matrix as (4)
are

λm =

n−1∑
j=0

cj e2π ijm/n, 0 ≤ m ≤ n − 1,

where i denotes the imaginary unit
√

−1, with corresponding
eigenvectors

(1, e−2π im/n, . . . , e−2π i (n−1)m/n).

In our case

λm = 1 +
1

CM + 1
e2π im/n, 0 ≤ m ≤ n − 1.

The eigenvalue λ0 corresponds to the eigenvector (1, 1, . . . , 1)
which is transversal to Sn−1. The other eigenvalues correspond to
eigenvectors tangent to Sn−1. Indeed, whenm ̸= 0,

∑n−1
l=0 e−2π i l m/n

= 0.
To compute the eigenvalues of DF (qn,n) we first look for

the linearisation of F (in the original coordinates) at qn,n =

(0, 0, . . . , 1). To do so, we translate it to the origin by means of
the change of coordinates xn = ξn + 1, xi = ξi, 1 ≤ i ≤ n − 1. In
these variables the map is expressed as:

F̃1(ξ ) =
C + k1(ξn + 1)

C + φ̃(ξ )
ξ1,

F̃i(ξ ) =
C + kiξi−1

C + φ̃(ξ )
ξi, 2 ≤ i ≤ n − 1,

F̃n(ξ ) =
C + knξn−1

C + φ̃(ξ )
(ξn + 1) − 1,

where φ̃(ξ ) =
∑n

j=1 kj ξj ξj−1 + k1 ξ1 + kn ξn−1. From these expres-
sions we readily obtain

DF (qn,n) =

⎛⎜⎜⎝
1 +

k1
C 0 . . . 0

0 1 . . . 0
. . .

−k1
C 0 . . . 1

⎞⎟⎟⎠ .

The eigenvalues are 1+ k1/C and 1. The eigenvalue 1+ k1/C cor-
responds to the eigenvector (1, 0, . . . , 0, −1). The eigenvalue 1
corresponds to the (linearly independent) eigenvectors (0, 1, −1,
0, . . . , 0), (0, 1, 0, −1, . . . , 0), . . . , (0, 1, 0, . . . , 0, −1) and (0,
. . . , 0, 1). All these vectors are tangent to Sn−1 except the last
one. Proceeding in an analogous way, we can check that the
eigenvalues of DF (qn,i) are 1 + ki+1/C and 1.

3.2. When k1 ≤ 0 the basin of attraction of qn,n contains Sn−1
\∂Sn−1

In this section we will prove that for k1 ≤ 0 the dynamics
achieves the fixed point qn,n. This involves that the species that
performs directed degradation will outcompete all of the others.
Let us go back to Map (1). As mentioned, by the cyclic structure of
the map we only deal with the case k1 ≤ 0. But, by the symmetry,
in the same way we have that if kj ≤ 0 and ki̸=j > 0 the dynamics
achieves qj−1,j−1. We now assume that −1 ≤ k1 ≤ 0, and ki > 0
for 2 ≤ i ≤ n. These conditions ensure that for x ∈ Sn−1 both
C + kixi−1 and C + φ(x) are positive.

Proposition 2. Assume C > 1/4, −1 ≤ k1 ≤ 0, and ki > 0
with 2 ≤ i ≤ n. If x0 ∈ Sn−1

\ ∂Sn−1 then {Fm(x0)} converges to
qn,n = (0, 0, . . . , 1).

Proof. We write xm = (xm1 , . . . , xmn ) = Fm(x0). Since x0 /∈ ∂Sn−1,
0 < x0i < 1 for all i. Moreover, by the form of F , 0 < xmi < 1
for all m and i. First, we check that {xm1 } is strictly decreasing and
converges to 0. Indeed, since k1 ≤ 0 and xm1 < 1, k1xmn x

m
1 ≥ k1xmn

and since ki > 0 for 2 ≤ i ≤ n, φ(xm) > k1xmn . Then

0 <
C + k1xmn
C + φ(xm)

< 1 and xm+1
1 =

C + k1xmn
C + φ(xm)

xm1 < xm1 ,

m ≥ 1.

By compactness of Sn−1 there is a subsequence {xmk} of {xm}

which converges to some x̃ = (x̃1, . . . , x̃n) ∈ Sn−1. Note that, by
monotonicity, {xm1 } converges to x̃1. We assume that x̃1 > 0 to get
a contradiction. Taking limit in

xmk+1
1 =

C + k1x
mk
n

C + φ(xmk )
xmk
1

we get

C + k1x̃n
C + φ(x̃)

= 1

which implies k1x̃n = φ(x̃), or equivalently k1x̃n(1−x̃1) = k2x̃2x̃1+
k3x̃3x̃2 + · · · + knx̃nx̃n−1. The left hand side is less than or equal
to zero while the right hand one is bigger or equal than zero.
Therefore kix̃ix̃i−1 = 0, 2 ≤ i ≤ n, and, in particular, x̃2x̃1 = 0
which gives x̃2 = 0.

From

xm+1
1

xm+1
2

=
C + k1xmn
C + k2xm1

xm1
xm2

and

0 <
C + k1xmn
C + k2xm1

< 1

we have that
{

xm1
xm2

}
is strictly decreasing, in particular is bounded

from above. Then

xmk
1 =

xmk
1

xmk
2

xmk
2

converges to 0 which provides the desired contradiction.
Now, we claim that, for 1 ≤ i ≤ n − 1,

{
xmi
xmi+1

}
is strictly

monotone for m ≥ M for some M (depending on i) and xi → 0.
Indeed, by the previous arguments the statement is true for i = 1.
We assume it is true for 1 ≤ i ≤ n − 2. Let

γi = lim
m→∞

ki+1xmi
ki+2xmi+1

, 1 ≤ i ≤ n − 2.
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Note that 0 ≤ γi ≤ ∞. If γi > 1, or γi = 1 and
{

xmi
xmi+1

}
is

decreasing, then
ki+1 xmi
ki+2 xmi+1

> 1,

for m ≥ M̃ for some M̃ and then
{

xmi+1
xmi+2

}
is strictly increasing for

m ≥ M̃ .
If γi < 1, or γi = 1 and

{
xmi
xmi+1

}
is increasing, then

ki+1 xmi
ki+2 xmi+1

< 1,

for m ≥ M̂ for some M̂ and then
{

xmi+1
xmi+2

}
is strictly decreasing for

m ≥ M̂ .
Now, to prove that {xmi+1} converges to zero we distinguish two

cases: γi > 0 and γi = 0.
When γi > 0 there exists m0

i such that

ki+1xmi
ki+2xmi+1

>
γi

2
, m ≥ m0

i ,

and then, from

xmi+1 <
ki+1

ki+2

2
γi

xmi ,

we get xmi+1 → 0.
When γi = 0, there exists m̃0

i such that

ki+1xmi
ki+2xmi+1

<
1
2

for m ≥ m̃0
i .

Obviously, for m ≥ m̃0
i ,

C + ki+1xmi
C + ki+2xmi+1

<
C + (1/2)ki+2xmi+1

C + ki+2xmi+1
< 1.

If we assume that {xmi+1} does not converge to 0, then there exist
ε > 0 and infinitely many indices m such that ki+2xmi+1 > ε and
therefore infinitely many factors
C + ki+1xmi
C + ki+2xmi+1

<
C + (1/2)ε

C + ε
.

This means that, given q,

xmi+1

xmi+2
<

(
C + (1/2)ε

C + ε

)qm xqi+1

xqi+2
, m > q,

with qm → ∞ as m → ∞. Clearly,
{

xmi+1
xmi+2

}
→ 0 and xmi+1 <

xmi+1
xmi+2

gives that {xmi+1} converges to 0.
Finally, since xm ∈ Sn−1, xmn → 1. □

3.3. Case studies: Hypercycles with n = 2, n = 3, and n = 4 members

3.3.1. Case n = 2
In this case the model is essentially one dimensional. When

ki > 0 it has a unique inner fixed point

p2 =

(
k1

k1 + k2
,

k2
k1 + k2

)
,

and the fixed points q2,1 = (1, 0) and q2,2 = (0, 1). The eigenvalue
at p is

1 +
1

CM + 1
e2π i/2

=
CM

CM + 1
=

C(k1 + k2)
C(k1 + k2) + k1k2

< 1.

The eigenvalues at q2,1 and q2,2 are 1 + k2/C and 1 + k1/C ,
respectively. Actually, p2 attracts all points of S1 \ ∂S1. When

k1 → 0 with k2 fixed, the fixed point p2 tends to q2,2 and they
undergo a transcritical bifurcation. When k1 ≤ 0 all points of
S1\∂S1 tend to q2,2. The bifurcation diagram obtained by iteration
of Map (1) and tuning −1 ≤ k1 ≤ 1 is displayed in Fig. 2(a). Here,
for 0 < k1 ≤ 1 the coexistence equilibrium is given by the fixed
point p2. At k1 = 0 the points p2 and q2,2 collide in a transcritical
bifurcation. Then, for negative values of k1 the point q2,2 is stable.

3.3.2. Case n = 3
When ki > 0 the inner fixed point is given by

p3 =

(
1

k2M
,

1
k3M

,
1

k1M

)
,

and the corresponding eigenvalues are

λ1,2 = 1 +
1

CM + 1
eiθ1,2 , θ1 =

2π
3

, θ2 =
4π
3

.

We have

|λ1,2|
2

= 1 +
2

CM + 1
cos θ1,2 +

(
1

CM + 1

)2

= 1 −
1

CM + 1

(
1 −

1
CM + 1

)
< 1.

The other fixed points, according to Proposition 1, satisfy
φ(x) = 0. The only possibilities are q3,1 = (1, 0, 0), q3,2 = (0, 1, 0)
and q3,3 = (0, 0, 1). They have an eigenvalue of modulus greater
than 1. The point p3 is an attractor. In Ref. [48] it is proved, by
using a strict Lyapunov function, that S2 \ ∂S2 is the basin of
attraction of p3. When k1 → 0 with k2 and k3 fixed, p3 tends
to q3,3 and they undergo a (degenerate) transcritical bifurcation.
At the bifurcation, the two eigenvalues are 1. A special feature is
that at the bifurcation there is a segment of fixed points {x2 =

0, x1 + x3 = 1} with q3,3 in an extreme of it. After the bifurcation,
i.e., when k1 < 0, p3 is outside S2, it is unstable. Moreover, when
k1 ≤ 0, q3,3 attracts all points of S2 \ ∂S2. The dynamics for
n = 3 is displayed in Fig. 3(a) by means of a bifurcation diagram
built iterating Map (1). Here, similarly to the case n = 2, the
hypercycle persists for 0 < k1 ≤ 1 because the point p3 is stable.
At k1 = 0, there is a degenerate transcritical bifurcation between
the points p3 and q3,3, and for negative values of k1 the third
member outcompetes all other species i.e., the fixed point q3,3
attracts all points of S2 \ ∂S2.

3.3.3. Case n = 4
For ki > 0 the dynamics is governed by an invariant curve

[48,49] that allows the coexistence of all of the species by means
of an oscillatory regime (see Figs. 1, 4(a), and 6). When ki > 0,
the inner fixed point is given by

p4 =

(
1

k2M
,

1
k3M

,
1

k4M
,

1
k1M

)
,

and its eigenvalues are

λj = 1 +
1

CM + 1
eiθj with θj = ei2π j/4, 1 ≤ j ≤ 3.

We have

|λ1|
2

= |λ3|
2

= 1 +

(
1

CM + 1

)2

> 1 and

|λ2|
2

=

(
1 −

1
CM + 1

)2

< 1.

Moreover, on ∂S3 we have the fixed points q4,i, with q4,ii = δij
(δ being the Kronecker delta) and the segments of fixed points
{(α, 0, 1 − α, 0)| α ∈ [0, 1]}, {(0, α, 0, 1 − α)| α ∈ [0, 1]}. When
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Fig. 1. Schematic diagram of the studied hypercycles formed by (ribozyme) species Si (with i = 1, ..., 4) and their dynamical outcomes displayed in phase portraits
considering cooperation (heterocatalysis represented with solid black arrows at the left, setting k1 = 0.5 and ki̸=1 = 1), and emergence of directed degradation
(trans-cleaving activity, indicated by dashed red arrows at the right, using k1 = −0.5 and ki̸=1 = 1). (a) Two-member hypercycle: the insets display time series for
x1 (black) and x2 (red) using the same initial conditions of the orbits of the phase portrait. The insets for directed degradation show time series also for x1 (black)
and x2 (red) using different initial conditions that achieve the stable fixed point q2,2 = (0, 1) (small orange dot). (b) Three-member hypercycle with a stable focus as
coexistence attractor (fixed point p3). The three-species system with directed degradation displays a stable fixed point at q3,3 = (0, 0, 1). (c) Four-member hypercycle
with oscillatory coexistence governed by an attracting invariant curve (shown in black). Two different initial conditions are shown: one spiralling towards (green
iterations) the periodic attractor and another spiralling outwards (blue iterations) displayed in a two-dimensional projection. Directed degradation for this case has
a single point attractor at q4,4 = (0, 0, 0, 1). In all panels we have set C = 10. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. (a) Bifurcation diagram obtained by iteration of Map (1) when n = 2 using k1 as a control parameter with k2 = 1 and C = 10. Black and red lines denote
the equilibrium population of species x1 and x2 respectively. For 0 < k1 ≤ 1 the dynamics is attracted by the fixed point p2 , while for −1 ≤ k1 < 0 the stable fixed
point is q2,2 , involving the persistence of the second replicator and the extinction of S1 . At k1 = 0 the fixed points p2 and q2,2 collide in a transcritical bifurcation.
(b) Linear dependence of parameter C on the number of iterations needed to achieve the attractors fixing k2 = 1 and: (upper panel, for attractor p2) k1 = 1 (black),
k1 = 0.75 (red), k1 = 0.5 (blue), k1 = 0.25 (green); (lower panel, for attractor q2,2) we have used the same values of k1 than in the upper panel but with negative
sign. We consider δ = 10−6 . In all panels we have used x1(0) = 0.75, x2(0) = 0.25 as initial conditions. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 3. (a) Bifurcation diagram obtained by iteration of Map (1) when n = 3 using k1 as a control parameter with k2 = 1, k3 = 0.5, and C = 10. Here we show
equilibria for variables x1 (black), x2 (red), and x3 (green). For positive k1 the dynamics achieve the fixed point p3 . At k1 = 0 there is a degenerate transcritical
bifurcation between the fixed points p3 and q3,3 . For negative k1 the fixed point q3,3 is an attractor. (b) Linear dependence of parameter C on the number of iterations
needed to achieve the attractor q3,3 fixing k2 = 1 and: (upper panel, for attractor p3) k1 = 1 (black), k1 = 0.75 (red), k1 = 0.5 (blue), k1 = 0.25 (green); (lower
panel, for attractor q3,3) here we have used k1 = −1. Due to the extremely long transients obtained for k1 < 0 we here consider δ = 10−5 and a shorter range for
C . Here the four values of k1 < 0 give place to very similar transient times, which are displayed overlapped and also have a linear dependence on C . In all panels
we have used x1(0) = 0.5, x2(0) = 0.35, and x3(0) = 0.15 as initial conditions. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Bifurcation diagram for the four-member hypercycle obtained by iteration of Map (1) using −1 ≤ k1 ≤ 1 as control parameter, setting k2,3,4 = 1 and using
the initial condition x0(0) = x1(0) = x2(0) = 0.025 and x4(0) = 0.925. The black and red dots display, respectively, the local maxima and minima of each variable
obtained from time series once the dynamics has settled on the invariant curve for k1 > 0 (right y-axis). For 1 ≤ k1 < 0, the equilibrium of each coordinate is also
displayed (left y-axis). Here the only species that persists is x4 . In all panels we set C = 10. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

k1 = 0 we also have the segment of fixed points {(α, 0, 0, 1 −

α)| α ∈ [0, 1]}. When k1 → 0, p tends to q4,4 and at the
bifurcation value k1 = 0 all eigenvalues are equal to 1. At the
bifurcation and after it, i.e. when k1 ≤ 0, q4,4 attracts all points
of S3 \ ∂S3.

Fig. 4 displays how local maxima and minima obtained from
time series for the dynamics on the invariant curve change at
decreasing k1 from 1 to 0. Notice that the invariant curve shrinks
(see also Fig. 6(a)), finally collapsing at k1 = 0 (the stability of the

invariant curve as well as the bifurcations occurring at crossing
k1 = 0 are discussed in Section 3.5).

3.4. Rates of convergence to the point attractors

In this section we study the rates of convergence of the attract-
ing fixed points of the system. For that, given an initial condition
x0 ∈ Sn−1

\ ∂Sn−1, we compute the number of iterations m to ar-
rive to a ball of radius δ centred at the attractor. We have several
cases depending on m and on whether the attractor is the inner
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Fig. 5. Number of iterations to reach the attractor q4,4 for n = 4 and their
relation with C , setting 1 ≤ C ≤ 103 and k2 = 1, k3 = 0.5, k4 = 1, with; k1 = −1
(black line), k1 = −0.8 (red) dots, and k1 = −0.6 (black squares). Here we have
used δ = 10−6 and the initial conditions x0(0) = x1(0) = x2(0) = 0.025 and
x4(0) = 0.925. See Section 3.4 for details. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

fixed point or a vertex. Also, the computations are different if the
fixed point is hyperbolic or not. For n = 2 and n = 3, if k1 > 0,
the attractors are p2 and p3, respectively, which are hyperbolic. If
k1 ≤ 0, the attractors are q2,2 and q3,3. The point q2,2 is hyperbolic
if k1 < 0 while both q2,2 and q3,3 have eigenvalues equal to one in
the other cases. When n = 4, if k1 > 0, there is not an attracting
fixed point. If k1 ≤ 0, the attractor is q4,4, which has eigenvalues
equal to 1. Here attractor is understood as a fixed point, which
attracts all points of the interior of the simplex. Notice that,
in some cases, they have eigenvalues equal to 1. Together with
the analytical derivations developed along this section, we also
provide numerical results computing the number of iterations to
achieve the attractors, showing their linear dependence with the
discretisation parameter C (and with replication constants, see
below). Specifically, Fig. 2(b) displays this linear relation between
C and the iterations to the coexistence attractor p2 (upper panel)
and to the out-competition attractor q2,2 (lower panel). Also, we
have found the linear relation between C and the iterations to
the coexistence attractor p3 (upper panel in Fig. 3(b)) and the
out-competition one q3,3 (lower panel in Fig. 3(b)). Finally, Fig. 5
also displays the linear relation between constant C and the out-
competition attractor q4,4. Specifically, we have obtained that for
the points p2, p3 the times are proportional to C(

∑n
i=1

1
ki
), n =

2, 3, and for the points qn,n, n = 2, 3, 4, the times are proportional
to C/kn.

Next, we describe in detail the computation of the number of
iterations in the more involved cases i.e., for p3 when n = 3 and
q4,4 when n = 4. The other cases are studied using the same
ideas in a much simpler way. For the latter we will just make
some comments on the variations on the arguments and give the
results.

3.4.1. Convergence to p3
When n = 3 the system is essentially two dimensional. We

use the variables x1, x2 to describe S2. The eigenvalues at p3 have
already been computed and are

λ1 = 1 −
1

2(CM + 1)
+ i

√
3

2(CM + 1)
, λ2 = λ̄1,

with

|λ1| = |λ2| = 1 −
1

CM + 1
+

1
(CM + 1)2

< 1.

Since p3 is a hyperbolic attractor (without resonances) we can
apply Poincaré’s theorem [55] and get that the system is locally
conjugated to its linear part L by an analytical conjugation h
defined in a neighbourhood of 0 sending 0 to p3 and satisfying
Dh(0) = Id. Specifically, we have

F ◦ h = h ◦ L in a neighbourhood of 0. (5)

From basic algebra we know that there exists a non-singular
matrix B such that B−1 L B = L̃ with

L̃ = |λ1|

(
cosϕ1 − sinϕ1
sinϕ1 cosϕ1

)
, ϕ1 = arg λ1.

Clearly,

L̃m = |λ1|
m
(
cos(mϕ1) − sin(mϕ1)
sin(mϕ1) cos(mϕ1)

)
.

We take h̃ = h ◦ B and we have

F ◦ h̃ = F ◦ h ◦ B = h ◦ L ◦ B = h ◦ B ◦ L̃ = h̃ ◦ L̃. (6)

We assume that h̃ is defined in a ball of radius r , Br (0). Using
(6) we can extend the domain of h̃ to a neighbourhood U of 0
such that h̃(U) is contained in the image by F of its domain of
invertibility. Indeed, we start with h̃ defined on Br (0) and we
inductively use h̃ = F−1

◦ h̃ ◦ L̃ to extend, at step j, the domain
of h̃ from B

|λ1|−j+1r (0) to B
|λ1|−jr (0). This can be done while F−1

exists. Then, eventually we have to stop at some step j0. Notice
that if the parameter C is big enough, F is globally invertible in
the simplex and in such case the domain of h̃ can be extended
to R2.

We denote U = h̃
(
B

|λ|
−j0 r (0)

)
. Let x0 ∈ S2 \ ∂S2. Since p3 is

a global attractor (Theorem 3 of [48]) there exists m0 ≥ 1 such
that Fm0 (x0) ∈ U . We can write

Fm(x0) = Fm−m0 (Fm0 (x0)) = Fm−m0 (h̃(y0)), m ≥ m0

for some y0 ∈ B
|λ|

−j0 r (0). Then

∥Fm(x0)− p3∥ = ∥Fm−m0 (h̃(y0))− h̃(0)∥ = ∥h̃ ◦ L̃m−m0 (y0)− h̃(0)∥.

Since we look for m such that L̃m−m0 y0 is very close to 0 and
we have Dh̃(0) = B,

∥B−1
∥

−1
∥L̃m−m0 y0∥ ≲ ∥h̃ ◦ L̃m−m0 (y0) − h̃(0)∥ ≲ ∥B∥ ∥L̃m−m0 (y0)∥.

Moreover, ∥L̃m−m0 y0∥ = δ is equivalent to

m =
log δ − log ∥y0∥

log |λ1|
+ m0.

If C is big,

log |λ1| =
−1
CM

+
3
2

1
(CM)2

−
1
3

1
(CM)3

+ O
(

1
(CM)4

)
,

and then m is of order CM(log δ−1
− log ∥h̃−1(Fm0 (x0))∥−1) + m0.

Here, and in the following cases, log h̃−1(Fm0 (x0)) should be
interpreted as a constant depending on the initial condition.

3.4.2. Convergence to p2 (when k1 > 0)
In this case p2 is a hyperbolic fixed point (k1 > 0) and the

corresponding eigenvalue is λ = (CM)/(1 + CM). Using the same
strategy as before, we obtain

m ≈
log δ − log h̃−1(Fm0 (x0))

log λ
+ m0

= CM
[
log δ−1

− log(h̃−1(Fm0 (x0)))−1
](

1 + O
(

1
CM

))
+ m0.
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Fig. 6. (a) Evolution of the invariant curve in a projection of the phase space (x1, x4) as k1 → 0 using: k1 = 0.8 (black); k1 = 0.4 (red); k1 = 0.2 (blue); k1 = 0.1
(green); k1 = 0.05 (magenta); and k1 = 0.01 (orange). Insets: (orange) k1 = 0.01; (violet) k1 = 10−4; and (green) k1 = 10−5 . Here we have set k2,3,4 = 1.
(b) Time series on the attractor for x4 (blue) and x1 (black), x2 (red), x3 (green), with k1 = 0.1, k2 = 0.9, k3 = 0.6, and k4 = 0.8. In all panels we used C = 10. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.4.3. Convergence to q2,2 (when k1 < 0)
The eigenvalue corresponding to q2,2 is 1+k1/C < 1. Similarly

as before we now have

m ≈
C

(−k1)

[
log δ−1

− log(h̃−1(Fm0 (x0)))−1
](

1 + O
(
k1
C

))
+m0.

3.4.4. Convergence to q4,4 (when k1 ≤ 0)
The point q4,4 is not hyperbolic and this fact forces to in-

troduce several technicalities. We start with a lemma which
provides control on the convergence of some sequences.

Lemma 3. Let γ > 0, m0 ≥ 0 and {zm} be a sequence of positive
numbers. If zm+1

≥
zm

1+γ zm for m ≥ m0 then

zm ≥
zm0

1 + (m − m0)γ zm0
, m ≥ m0.

If zm+1
≤

zm
1+γ zm for m ≥ m0 then

zm ≤
zm0

1 + (m − m0)γ zm0
, m ≥ m0.

The same statement is true with strict inequalities with the conclu-
sions for m > m0.

Proof. Let {ξm
} be the auxiliary sequence defined by ξm0 = zm0

and

ξm+1
=

ξm

1 + γ ξm , m ≥ m0.

We easily check by induction that ξm
=

ξm0

1+(m−m0)γ ξm0 . We claim
that zm ≥ ξm for all m ≥ m0. Indeed, when m = m0 this is
obviously true. Assuming it is true for m ≥ m0, and using that
ϕ(t) =

t
1+γ t is strictly increasing in (0, ∞) we have

zm+1
≥

zm

1 + γ zm
≥

ξm

1 + γ ξm = ξm+1.

Then the result is obtained. The second part follows in the same
way. □

Let (x01, x
0
2, x

0
3, x

0
4) ∈ S3 \ ∂S3. We already know from the proof

of Proposition 2 that the sequences {xm1 /xm2 }, {xm2 /xm3 } and {xm3 /xm4 }

are strictly monotone from some index on, that {xm1 }, {xm2 }, {xm3 }

converge to 0 and {xm4 } converges to 1.
In the next claims we will use a small constant ε > 0 and

an integer m0 sufficiently big. They will be the ones needed for

certain conditions on sequences to be met, and may be different
at different places. We will require a finite (small) number of such
conditions. Given ε ∈ (0, 1) there exists m0 such that xm1 < ε,
xm2 < ε, xm3 < ε and xm4 > 1 − ε for m ≥ m0. Since {xm1 /xm2 }m≥0 is
strictly decreasing, xm1 /xm2 < β1 for some β1 > 0.

Moreover, since xm3 /xm4 → 0, {xm3 /xm4 } is strictly decreasing for
m ≥ m0 and then C+k3xm2

C+k4xm3
< 1 and hence k3xm2 < k4xm3 for m ≥ m0.

Claim 4. {xm1 /xm3 }m≥0 converges to 0.

Proof. First we consider the case k1 = 0. We have that

xm+1
1

xm+1
3

=
C

C + k3xm2

xm1
xm3

and hence {
xm1
xm3

}m≥0 is strictly decreasing. We know that xm1
≤ β1xm2 .

To get a contradiction we assume that limm→∞ xm1 /xm3 = β2 >

0. Then xm1 > β2xm3 for m ≥ 0 and φ(xm) = k2xm2 x
m
1 + k3xm3 x

m
2 +

k4xm4 x
m
3 < (k2 + k3/β2 + k4/β2)xm1 . Then xm+1

1 =
C

C+φ(xm)x
m
1 >

1
1+γ1xm1

xm1 , where γ1 = (k2 + k3/β2 + k4/β2)/C for all m ≥ 0. By
Lemma 3, xm1 > x01/(1 + mγ1x01)

−1. Then

xm1
xm3

=

(
m−1∏
j=0

C

C + k3x
j
2

)
x01
x03

=

(
exp

m−1∑
j=0

log
C

C + k3x
j
2

)
x01
x03

. (7)

Assume ε is small enough so that (k3/(β1C))ε < 1. Using that
log 1

1+t < −(log 2)t for t ∈ (0, 1) we have log C
C+k3x

j
2

<

log C
C+(k3/β1)x

j
1

< −(log 2)(k3/(β1C))x
j
1 < −(log 2)(k3/(β1C))

x01
1+jγ1x01

for m ≥ 0 and therefore the sum in (7) diverges to −∞ when
m → ∞ and hence xm1

xm3
→ 0 which is a contradiction.

When k1 < 0, we use that given ε > 0 there exists m0 such
that if m ≥ m0 then xm4 > 1 − ε. Then

xm+1
1

xm+1
3

≤
C + k1(1 − ε)

C
xm1
xm3

, m ≥ m0.

Since C+k1(1−ε)
C < 1, we also have xm1

xm3
→ 0. □

Claim 5. {xm2 /xm3 }m≥0 converges to 0.
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Proof. We assume that lim xm2 /xm3 = β3 > 0. By the condition
k3xm2 < k4xm3 for m ≥ m0 we have β3 ≤ k4/k3.

Then xm2 > (β3 − ε)xm3 for m > m0. Moreover, since xm1 /xm3 < ε

for m ≥ m0 we also have that xm1 < (ε/(β3 − ε))xm2 . Then φ(xm) ≤

k2xm2 x
m
1 +k3xm3 x

m
2 +k4xm4 x

m
3 < (k2+k3+k4/(β3−ε))xm2 . Then xm+1

2 =
C+k2xm1
C+φ(xm)x

m
2 > 1

1+γ3xm2
xm2 , where γ3 = (k2 + k3 + k4/(β3 − ε))/C for

all m ≥ m0.
By Lemma 3, xm2 ≥

x
m0
2

1+(m−m0)γ3x
m0
2

for m ≥ m0. Moreover, using

again that k3xm2 < k4xm3 ,

xm3 ≥
(k3/k4)x

m0
2

1 + (m − m0)γ3x
m0
2

. (8)

On the other hand, using that if A > 0 and −1+2A < B < 1+2A

1 + A
1 + B

<
1

1 + B − 2A
, (9)

we have

C + k2x
j
1

C + k3x
j
2

≤
C + εk2x

j
3

C + k3(β3 − ε)xj3
≤

1

1 + γ3x
j
3

, j ≥ m0,

with γ3 = (k3(β3 −ε)−2εk2)/C and ε so small that γ3 > 0. Then

xm2
xm3

=

(
m−1∏
j=j0

C + k2x
j
1

C + k3x
j
2

)
xj02
xj03

=

(
exp

m−1∑
j=j0

log
C + k3x

j
2

C + k3x
j
2

)
xj02
xj03

. (10)

Assume j0 is big enough so that γ3x
j0
3 < 1. Using that log 1

1+t <

−(log 2)t for t ∈ (0, 1) we have log C+k2x
j
1

C+k2x
j
2

≤ log 1
1+γ3x

j
3

<

−(log 2)γ3x
j
3. Taking into account (8) we get that the sum in (10)

diverges to −∞ when m → ∞ and hence xm2
xm3

→ 0 which is a
contradiction. □

To estimate the distance from Fm(x0) to q4,4 we write

∥ (xm1 , xm2 , xm3 , xm4 ) − (0, 0, 0, 1) ∥
2
= (xm1 )

2
+ (xm2 )

2
+ (xm3 )

2

+ (xm1 + xm2 + xm3 )
2

= 2(xm3 )
2

[
1 +

xm1
xm3

+
xm2
xm3

+
xm1
xm3

xm2
xm3

+

(
xm1
xm3

)2

+

(
xm2
xm3

)2 ]
(11)

so that the asymptotic behaviour depends on how {xm3 } tends to 0.

Claim 6. Given ε > 0 there exists m0 ≥ 1 such that

xm0
3

1 + (m − m0)((k4 + ε ν2)/C)xm
0

3

≤ xm3

≤
xm0
3

1 + (m − m0)((k4 + ε ν1)/C)xm
0

3

, m ≥ m0, (12)

where ν1 = k1 − 2k3 − k4 and ν2 = k3 + εk2.

Proof. By the previous claims we have that xm1 < εxm3 and
xm2 < εxm3 for m ≥ m0. Also xm1 , xm2 , xm3 < ε for m ≥ m0. First
we establish the bounds

φ(xm) ≥ εk1xm3 + k4(1 − ε)xm3 , m ≥ m0,

and

φ(xm) ≤ ε2k2xm3 + ε k3xm3 + k4xm3 , m ≥ m0.

Then, using (9),

C + k3xm2
C + φ(xm)

≤
C + εk3xm3

C + (k4 + ε(k1 − k4))xm3
≤

1
1 + ((k4 + εν1)/C)xm3

which gives

xm+1
3 ≤

1
1 + ((k4 + εν1)/C)xm3

xm3 ,

and by Lemma 3, we obtain the right hand side inequality of the
claim. On the other hand
C + k3xm2
C + φ(xm)

≥
C

C + (k4 + ε(k3 + εk2))xm3
=

1
1 + ((k4 + εν2)/C)xm3

,

and, using Lemma 3 again, we obtain the other inequality. □

With the information on the rate of convergence of {xm3 } we
can now estimate, given x0 ∈ Sn−1

\ ∂Sn−1, the number of
iterations m for Fm(x0) to arrive to a distance δ from q4,4. The
condition for m is obtained putting xm3 = δ in (12). From this we
get

C
k4 + εν2

(1/δ − 1/xm0
3 )+m0 < m <

C
k4 + εν1

(1/δ − 1/xm0
3 )+m0.

That is, apart from a transitory, the number of iterations for xm3 to
get δ is essentially proportional to C/k4, and by (11), the number
of iterations for xm to arrive to a neighbourhood of q4,4 of radius
δ is given by the previous formula changing δ by δ/

√
2.

3.4.5. Convergence to q3,3 (when k1 ≤ 0)
Following the same scheme as before, to estimate the distance

from Fm(x0) to q3,3 we write

∥(xm1 , xm2 , xm3 ) − (0, 0, 1)∥2
= (xm1 )

2
+ (xm2 )

2
+ (xm1 + xm2 )

2

= 2(xm2 )
2

[
1 +

xm1
xm2

+

(xm1
xm2

)2]
so that the asymptotic behaviour depends on how {xm2 } tends to
0. We first prove, as in the previous case, that {xm1 /xm2 } converges
to 0. Next we prove that

1

1 + ((k3 + εν4)/C)x
j
2

≤
1 + k2xm1
C + φ(xm2 )

≤
1

C + ((k3 + εν3)/C)xm2

for m ≥ m0, with ν3 = k1 − 2k2 − k3 and ν4 = k2. We then check
that the number m of iterations to converge from x0 to a ball of
radius δ centred at q3,3 satisfies

C
k3 + εν4

(
√
2/δ − 1/xm0

2 ) + m0 < m

<
C

k3 + εν3
× (

√
2/δ − 1/xm0

2 ) + m0.

3.4.6. Convergence to q2,2 (when k1 = 0)
This case is very particular since the map is one dimensional.

Written in terms of x1 it has the form

xm+1
1 =

C
C + k2xm1 (1 − xm1 )

xm1 .

For m ≥ m0 we have
1

1 + (k2/C)xm1
xm1 ≤ xm+1

1 ≤
1

1 + (k2(1 − ε)/C)xm1
xm1 .

Arguing in a similar way, the number of iterations satisfies

C
k2

(
√
2/δ − 1/xm0

1 ) + m0 < m <
C

k2 − ε
(
√
2/δ − 1/xm0

1 ) + m0.
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Fig. 7. The two eigenvalues, λ1,2 , of the fixed point resulting from the study of the invariant curve on a Poincaré-like section for the case n = 4 (see Section 3.5).
Note that the two eigenvalues are smaller than one within the range 0 < k1 ≤ 1, indicating that the invariant curve is stable.

3.5. Invariant curve and study of bifurcations for n = 4

As previously mentioned and, as a difference from time-
continuous models (where oscillations appear for n ≥ 5 [40,41,
47]), the dynamics of the map F defined in (1) for n = 4 and
ki > 0 (i = 1, . . . , 4) is governed by an invariant curve [48,49].
The bifurcation diagrams in Fig. 4 display how the local maxima
and minima of all the variables, obtained from time series once
the invariant curve has been reached, change at decreasing k1. For
0 < k1 ≤ 1 the dynamics is governed by self-sustained, periodic
oscillations (see also Fig. 6). Fig. 4 also displays how the invariant
curve changes within the range 0 < k1 ≤ 1. The invariant curve
shrinks to q4,4 = (0, 0, 0, 1) as k1 → 0. This change in the
size of the invariant curve can be visualised in Fig. 6(a), where
projections of the attractor in the phase space (x1, x4) are shown
for decreasing values of k1. Note that the invariant curve changes
in size until it collapses at k1 = 0 (see also Fig. 4). Fig. 6(b)
displays time series setting k1 = 0.1, k2 = 0.9, k3 = 0.6, and
k4 = 0.8.

So far, the invariant curve when n = 4, described in Ref. [48],
was obtained by numerical iteration. Also, the emergence of
periodic oscillations for this hypercycle dimension were provided
by the presence of a ‘Hopf’ bifurcation [49] in the asymptotic
limit C → ∞. Nowadays, many authors call Neimark–Sacker
to the bifurcation of families of maps analogous to the Hopf
bifurcation for differential equations. The collapse of the invariant
curve at k1 = 0 is through a degenerate transcritical-Neimark–
Sacker bifurcation different from the one found in [49] when
C → ∞. There are several methods to look for invariant curves
(and invariant tori). See [56–59] for description and history of
these methods. They are based either on conjugating the map to
a rotation (parameterisation method), on studying the iterations
that fall in a thin region (slices method) or interpolating the map
in some way. Our results have been obtained using a method
based on interpolation similar, but simpler, to the one proposed
in [60]. A further elaboration in a much more sophisticated way
is found in [61].

To compute the invariant curve we choose a suitable transver-
sal section M (depending on the parameters) close to the ex-
pected invariant curve. We choose it as a hyperplane (intersected
with S3) determined by the first variable x1 fixed at x1 = xh1.
Since the invariant curve should be not so far from the inner
fixed point p4, we take xh1 as the first component of p4. Since the
domain of the map is S3 we will work with the variables x2, x3,
the variable x4 being recovered from x1 + x2 + x3 + x4 = 1. Now,
given a point x0 ∈ M , we iterate it until the iterations cross M
in the same sense as x0 goes to F (x0). This means the second
time they cross M . We consider the previous three iterations
before reaching M and the three ones after crossing it. To obtain a

point in M we interpolate the six points by a (vector) polynomial
p(t) = (p1(t), p2(t), p3(t), p4(t)), and then look for t∗ such that
P1(t∗) = xh1; solving the equation using Newton’s method. Then
p(t∗) ∈ M . We call G : M → M the map that sends x0 to p(t∗)
obtained by the previous procedure. It can be seen as a pseudo
Poincaré map. We emphasise that it is a two dimensional map.

Next we look for a fixed point of G by using Newton’s method,
approximating the derivatives numerically by the central dif-
ference quotient. In this way we have an approximation of a
point on the invariant curve. Iterating this point we recover it.
In our example two iterations are sufficiently close so that the
polynomial interpolation gives a good local representation of the
curve. Moreover, the derivative of G at the fixed point provides
a good estimate of the hyperbolicity of the invariant curve. The
corresponding eigenvalues, computed as a function of k1, are
displayed in Fig. 7.

When k1 → 0, as we have already mentioned, the invariant
curve shrinks to q4,4 and disappears for k1 ≤ 0 in a Neimark–
Sacker bifurcation. At the same time p4 collides with q4,4 under-
going a transcritical bifurcation. All eigenvalues of DF (q4,4) are 1
except 1+ k1/C which passes from bigger to less than 1 when k1
decreases. As for p4, for k1 > 0, DF (p4) has two eigenvalues bigger
than 1 and one less than 1. For k1 < 0, all its eigenvalues are
bigger than 1 (note that in this case p4 no longer belongs to Sn−1).
Also, q4,4 belongs to the line of fixed points {(0, α, 0, 1 − α)| α ∈

R}. Moreover, just at the bifurcation (k1 = 0) a new line of fixed
points {(α, 0, 0, 1 − α)| α ∈ R} containing q4,4 appears, making
the bifurcation even more degenerate.

4. Conclusions

Hypercycles have been a subject of intensive research within
the last 40 years. This theory has become of paramount impor-
tance since it suggests a plausible path towards the origins of
life from biochemical self-organisation [1–4]. One of the most
important properties of hypercycles is their potential to overcome
the so-called error threshold, suggested to be a major constraint
in the increase of complexity of the first self-replicating systems
in prebiotic ages [1–3]. The hypercycle may allow the stable
coexistence of all its members, and thus larger information con-
tents could be stored, as a difference from self-replicating, non-
cooperative systems, in which the survival of the fittest may limit
species’ coexistence and thus genetic diversity [1,2,17].

It has been suggested that catalytic RNAs (i.e., ribozymes)
could have been the first self-replicating systems in prebiotic
evolution [25–28]. RNAs are good candidates since this macro-
molecules are known to have catalytic activities [21–23,30–35] as
well as the capacity of genetic information storage. The dynamics
and stability of catalytic networks is largely determined by its
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graph structure [17]. For example, several works have investi-
gated the impact of catalytic parasites (i.e., replicators receiving
catalytic aid but not providing catalysis to the next members of
the cycle) in hypercycles persistence [39,43,44,50]. Also, the so-
called catalytic short-circuits [45,51], although less explored, have
been studied to determine its impact on hypercycles’ persistence.
In this contribution, we have analysed a different scenario in
which a functional shift in a given species changes the coop-
erative interaction to an antagonistic one. Specifically, we have
studied small hypercycles in which a heterocatalytic interaction
shifts to a density-dependent degradation (trans-cleaving activ-
ity). Several experimental studies have described trans-cleaving
activities in ribozymes [34,52,53].

Despite hypercycle dynamics have been widely investigated,
most of the research has been performed using time-continuous
approaches [1,38–42,44,45]. Only few discrete-time hypercycle
systems have been explored [48,49]. We here have considered
that discrete-time hypercycle introduced by Hofbauer [48]. How-
ever, here, in contrast with [48], we have investigated how func-
tional shifts impact the dynamics of small hypercycles with n =

2, 3, 4 species. Fixed points and stability analyses are developed
for these systems. In this discrete-time setting, hypercycles with
n = 4 display an oscillatory state allowing the coexistence of
all the species via an invariant curve, while smaller hypercycles
achieve coexistence via an interior fixed point. We provide a proof
for the ω−limit of hypercycles when one replicator undergoes di-
rected degradation, shown to be given by the out-competition of
all the cooperative species by the one conducting the degradation.
This functional change from cooperation to directed degradation
makes the hypercycle become more similar to a catalytic chain.
Our results are in agreement with previous research describing
the impossibility of replicators’ coexistence in linear catalytic
chains [17].

The convergence times to the fixed points have been analyt-
ically obtained and the relevant parameters in the asymptotic
expressions identified. Concretely, we have obtained that for the
points pn, n = 2, 3, the times are proportional to C(

∑n
i=1

1
ki
), n =

2, 3, and for the points qn,n, n = 2, 3, 4, the times are proportional
to C/kn. Numerical computations confirm the results and illus-
trate the behaviour. We have also described the bifurcations tied
to the functional shift in one of the replicators. For cases n = 2, 3
a transcritical bifurcation is responsible for the extinction of the
hypercycle. When n = 4, the analytical/numerical computations
lead us to conclude there is a degenerate transcritical-Neimark–
Sacker bifurcation when k1 → 0 as described at the end of
Section 3.5. We emphasise that this bifurcation is different from
the one described in [49] that occurs when C → ∞.

As mentioned in the Introduction, hypercycle equations have
been used to model the dynamics of different nonlinear sys-
tems such as cooperativity in ecosystems [4,12], virus replication
[7–10], and, more recently, experimentally-built synthetic sys-
tems using bacteria [16] and yeast [15]. We want to notice
that our contribution, albeit carrying a deep mathematical back-
ground, aims to model the changes introduced by functional
shifts that can occur in molecular replicators by mutation pro-
cesses. Indeed, functional shifts are found in ecological systems
and are usually caused by behavioural or environmental changes.
We are here focusing on changes in ribozymes switching their
phenotype from the cooperative to the degradative one (self-
cleaving). In terms of complex ecosystems, such functional shifts
can be given by transitions between cooperation and competition.
These shifts have been described in plants in semiarid ecosys-
tems (the so-called stress-gradient hypothesis), in which facilita-
tion (cooperation) increase as resources (e.g., water availability)
decrease [62].
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