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Chemical and electrical synapses shape the dynamics of neuronal networks. Numerous theoretical studies
have investigated how each of these types of synapses contributes to the generation of neuronal oscillations,
but their combined effect is less understood. This limitation is further magnified by the impossibility of tradi-
tional neuronal mean-field models —also known as firing rate models, or firing rate equations— to account for
electrical synapses. Here we introduce a novel firing rate model that exactly describes the mean field dynamics
of heterogeneous populations of quadratic integrate-and-fire (QIF) neurons with both chemical and electrical
synapses. The mathematical analysis of the firing rate model reveals a well-established bifurcation scenario for
networks with chemical synapses, characterized by a codimension-2 Cusp point and persistent states for strong
recurrent excitatory coupling. The inclusion of electrical coupling generally implies neuronal synchrony by
virtue of a supercritical Hopf bifurcation. This transforms the Cusp scenario into a bifurcation scenario char-
acterized by three codimension-2 points (Cusp, Takens-Bogdanov, and Saddle-Node Separatrix Loop), which
greatly reduces the possibility for persistent states. This is generic for heterogeneous QIF networks with both
chemical and electrical coupling. Our results agree with several numerical studies on the dynamics of large
networks of heterogeneous spiking neurons with electrical and chemical coupling.

PACS numbers: 05.45.Xt

I. INTRODUCTION

Collective oscillations and synchrony are prominent fea-
tures of neuronal circuits, and are fundamental for the
well-timed coordination of neuronal activity. Such oscil-
lations are profoundly shaped by the presence of chemical
synapses [1]. An increasing number of experimental stud-
ies indicate both the prevalence and functional importance of
electrical synapses (formed by gap junctions between neu-
rons) in many diverse regions of central nervous systems, es-
pecially in inhibitory interneurons [2–4]. Electrical synapses
participate in mediating synchronization of neuronal network
activity [5, 6], suggesting that electrical interaction may be
interrelated with the generation of oscillations via chemical
transmission.

The mechanisms by which chemical synapses mediate
large-scale synchronous activity have been extensively inves-
tigated, see e.g. [1, 7]. However, only a few studies ad-
dressed the synchronization of large networks in which neu-
rons are not only interacting via excitation and/or inhibition,
but also via electrical synapses [8–20]. This limited theo-
retical progress for networks of electrically coupled neurons,
compared to chemically coupled networks, is magnified due
to the technical challenges faced when developing simplified
mean field models —often called firing rate models, or fir-
ing rate equations (FRE)— for networks involving electrical
synapses. While firing rate models turned out to be very use-
ful to explain key aspects of the dynamics of spiking neuron

networks with chemical synapses [21–33], it remains an open
question whether there are similar simplified mean field theo-
ries for networks involving electrical interactions.

Recently, a novel method has been found to exactly derive
FRE for populations of heterogeneous quadratic integrate-
and-fire (QIF) neurons with chemical coupling [34]. The
method, related to the so-called Ott-Antonsen ansatz [35–41],
allows to obtain exact, low-dimensional firing rate equations
for ensembles of QIF neurons, see also [42–44]. The FRE for
QIF neurons have been used to investigate numerous problems
regarding the dynamics of networks of chemically coupled
QIF neurons [45–64]. Remarkably, previous work has also
sought to apply this approach to networks with both chemical
and electrical coupling [65]. However, in [65], the electrical
coupling has been treated by making use of an approximation
which renders the resulting FRE analytically intractable. We
build on this previous work and derive a set of FRE for net-
works with chemical and electrical coupling, but without the
need for any approximation. The resulting system is not only
analytically tractable but also allows, in a unified framework,
for carrying out a complete analysis of the possible dynamics
and bifurcations of networks with mixed chemical and elec-
trical synapses. In Appendix B we show that our exact FRE
are recovered by appropriately relaxing the approximation in-
voked in [65].

The structure of the paper is as follows: In Section II, we
describe the spiking neuron network under investigation, and
briefly illustrate the impact of electrical coupling in the dy-
namics of two nonidentical QIF neurons. In Section III, we in-
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troduce the FRE corresponding to the thermodynamic limit of
the QIF network. The detailed derivation is performed in Ap-
pendix A. In Section IV, we perform a comparative analysis of
the fixed points and their bifurcations in networks with electri-
cal coupling vs. networks with chemical coupling. Finally, we
investigate the dynamics of a QIF network with both electri-
cal and chemical synapses and demonstrate that the presence
of electrical coupling critically determines the bifurcation sce-
nario of the neuronal network. Finally, we discuss our results
in Section V.

II. QUADRATIC INTEGRATE-AND-FIRE NEURONS
WITH ELECTRICAL AND CHEMICAL SYNAPSES

We consider a large population of globally electrically and
chemically-coupled QIF neurons, with membrane potentials
{Vj}j=1,...,N and N�1. Their dynamics reads

τ V̇j = V 2
j + ηj + g(v − Vj) + Jτs, (1)

where τ denotes the cells’ common membrane time constant,
and parameter ηj represents an external input current flowing
into cell j. To model the action potential, the continuous dy-
namics Eq. (1) is supplemented by a discrete resetting rule.
Here, we assume that if Vj reaches infinity, neuron j emits
a spike and its membrane potential is reset to minus infin-
ity [79]. The mean membrane voltage

v =
1

N

N∑
k=1

Vk,

to which all cells are diffusively coupled with strength g ≥ 0,
mediates the electrical coupling. The constant J quantifies
the coupling strength of chemical synapses. The coupling via
chemical synapses is mediated by the mean synaptic activa-
tion function

s(t) =
1

N

N∑
j=1

1

τs

t∫
t−τs

∑
k

δ
(
t′ − tkj

)
dt′, (2)

where tkj denotes the time of the k-th spike of the j-th neuron,
δ(t) is the Dirac delta function, and τs is a synaptic time con-
stant [80]. The synaptic weight J can be positive or negative
depending on whether the chemical synapses are excitatory or
inhibitory, respectively

In the absence of coupling, J = g = 0, the QIF neurons
are either quiescent (ηi < 0), or oscillatory (ηi > 0) with
frequency

fi =
1

τπ

√
ηi. (3)

These two dynamical regimes of individual neurons are con-
nected by a saddle-node on the invariant circle (SNIC) bifur-
cation, which occurs when ηi = 0, with fi = 0.

Electrical coupling tends to equalize the membrane poten-
tials of the neurons they connect and may favor synchrony.

−100

0

100

0 10 20 30 40 50

(a)

V
1

−4

−3

0 10 20 30 40 50

(b)

V
2

time (ms)

FIG. 1: Strong electrical coupling suppresses oscillatory activity for
negative mean currents, η̄ < 0. The panels show the time series
of the membrane voltages of N = 2 electrically coupled QIF neu-
rons. (a) Self-oscillatory neuron with η1 = π2; (b) Quiescent neuron
with η2 = −2π2. The two neurons are either uncoupled (black thin
curves, g = 0), weakly coupled (red curves, g = 1), or strongly
coupled (blue thick curves, g = 6). We used τ = 10 ms and J = 0.

Yet, if a large fraction of cells in the network is quiescent,
gap junctions may suppress oscillations and neural synchrony.
Next we illustrate this phenomenon for two nonidentical QIF
neurons that are coupled via a gap junction [81]. The results
of this analysis will later be useful to understand some aspects
of the dynamics of a large network of electrically coupled QIF
neurons.

A. Strong coupling limit of two electrically coupled QIF
neurons

We consider a network of N = 2 nonidentical QIF neu-
rons with dynamics Eq. (1). The neurons are coupled via gap
junctions only, i.e. J = 0 but g > 0. We are interested in the
strong coupling limit g � 0 when η1 > 0 and η2 < 0. In
Fig. 1 we depict the corresponding time series of cell 1 (panel
a) and cell 2 (panel b). Black thin curves correspond to the
dynamics of the uncoupled (g = 0) cells: cell 1 fires period-
ically, while cell 2 remains quiescent. When the neurons are
electrically coupled (red curves), the membrane voltage of cell
2 displays a series of so-called ‘spikelets’ [82]. Moreover, the
electrical interaction brings cell 1 closer to its firing threshold
and, hence, its frequency f1 is reduced. When g is increased
further, cell 1 becomes quiescent (blue thick curves).

Although analyzing the dynamics of the two cells for arbi-
trary coupling strength g is a challenge, there exists a simple
and general result valid in the large g limit, and of relevance
for the large-N analysis carried out below. Indeed, for large
g, the dynamics of the N = 2 network simply depends on the
sign of the mean current [66]

η̄ =
η1+η2

2
.

For η̄ > 0, the quiescent cell eventually becomes self-
oscillatory as g is increased from zero. By contrast, for η̄ < 0,
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the oscillatory cell eventually turns quiescent in the strong
coupling limit; see the blue lines in Fig. 1 [83].

III. FIRING RATE MODEL

In the following, we introduce the FRE corresponding to
the thermodynamic limit of Eqs. (1). The detailed derivation
of the model closely follows the lines of [34] and is given in
Appendix A.

For N → ∞, one can drop the indices in Eq. (1) and de-
fine a density function ρ such that ρ(V |η, t) dV denotes the
fraction of neurons with membrane potentials between V and
V +dV and parameter η at time t. In the limit of instanta-
neous synaptic processing, i.e. for τs → 0, Eq. (2) reduces to
s(t) = r(t) with r(t) being the population-mean firing rate. If
the external currents are distributed according to a Lorentzian
distribution centered around η = η̄ with half-width ∆,

L∆,η̄(η) =
1

π

∆

(η − η̄)2 + ∆2
, (4)

we find that the asymptotic mean-field dynamics evolves ac-
cording to the following FRE [84]

τ ṙ = ∆
τπ + 2rv − gr, (5a)

τ v̇ = v2 + η̄ − (πτr)2 + Jτr. (5b)

The variables r and v are the mean firing rate and mean mem-
brane potential, respectively. They determine the total volt-
age density for the network Eq. (1), which turns out to be
a Lorentzian distribution centered at v(t) and of half-width
πτr(t),

ρ(V, t) =
1

π

πτr(t)

[V − v(t)]
2

+ [πτr(t)]
2 . (6)

The structure of the FRE Eqs. (5) reveals an interesting fea-
ture: Electrical coupling is solely mediated by the firing rate
through the negative feedback term −gr in the r-dynamics
Eq. (5a), and not by membrane potential differences [85].
That is, electrical coupling leads to a narrowing of the voltage
distribution Eq. (6), i.e. a decrease in firing rate. This confirms
our initial sketch that electrical coupling tends to equalize the
neurons’ membrane potentials and, under suitable conditions,
this may promote synchrony. By contrast, chemical coupling
shifts the center of the distribution Eq. (6) of voltages via the
feedback term Jr in the v-dynamics Eq. (5b). The following
phase plane and bifurcation analysis of the FRE (5) allows for
understanding the collective dynamics of the QIF network.

IV. ANALYSIS OF THE FIRING RATE EQUATIONS

A. Electrical vs. chemical coupling

In the absence of chemical coupling, our previous discus-
sion of the case N=2 hints at two distinct dynamical regimes
for positive and negative values of η̄. With respect to the

0
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τ
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√

∆

FIG. 2: The sign of the mean current η̄ determines the behavior of
the fixed points of the FRE (5) with electrical coupling only, J = 0.
The panels show the nullclines of the FRE (5) with only electrical
coupling (J = 0) for negative (η̄/∆ = −2) and positive (η̄/∆ =

0.5) values of η̄ (panel a and b, respectively), and g/
√

∆ = 0, 2, 4.
The black points correspond to the intersections of r-nullclines (ṙ =
0, red) and v-nullclines (v̇ = 0, gray) and are fixed points of Eqs. (5).

fixed points (r∗, v∗) of the FRE (5) for J = 0, we find the
v-nullcline to be

πτr =
√
v2 + η̄.

Note that if η̄ is negative, there exists a range of ‘forbid-
den’ values of v. Fig. 2(a) shows the nullclines for η̄ < 0
and for different values of the ratio g/

√
∆. Since the ma-

jority of the neurons are quiescent, an increase in coupling
strength g causes active neurons to reduce firing, which leads
to a progressive decrease of the firing rate r∗. By contrast, in
Fig. 2(b) the majority of the cells are self-oscillatory, η̄ > 0,
and strong electrical coupling forces quiescent neurons to fire.
This yields an increase of v∗. Interestingly, the firing rate r∗ is
a non-monotonic function of g/

√
∆: While v∗ remains nega-

tive, the voltages are pushed to subthreshold values, decreas-
ing the firing rate. This behavior is reverted when v∗ becomes
positive and all voltages are pushed towards values above the
firing threshold. The different behaviors of Eqs. (5) with elec-
trical coupling for positive and negative values of η̄ are clearly
revealed in the corresponding bifurcation diagrams shown in
Figs. 3(a,c).

The case of networks with only chemical coupling, g = 0,
is simpler [34]. The bifurcation diagram depicted in Fig. 3(d)
shows that v∗ remains always negative and converges asymp-
totically to zero as J increases. The firing rate r∗, depicted in
Fig. 3(b), also increases with J . For η̄ < 0 and strong recur-
rent excitatory coupling, the system undergoes a cusp bifurca-
tion and two saddle-node (SN) bifurcations are created. This
implies the existence of a parameter regime where a persistent,
high-activity state (stable focus) coexists with a low-activity
state (stable node) —see Fig. 7(a), and [34]. This coexistence
between persistent and low-activity states also occurs in net-
works with electrical synapses, but it is located in a very small
region of parameters as we show below, see Fig. 6(b).

We next explore the linear stability of the fixed points of
Eqs. (5), see also Appendix C. We find that a Hopf bifurcation
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FIG. 3: The bifurcation diagrams of the FRE (5) for networks with
(left) electrical and (right) chemical coupling are qualitatively differ-
ent. Top panels show the scaled firing rate r∗/(πτ

√
∆) versus the

ratio of (a) electrical g/
√

∆ and (b) chemical J/(π
√

∆) synaptic
strengths. Panels (c,d) show the same bifurcation diagrams for the
scaled mean membrane potential v∗/

√
∆.

occurs along the boundary( η̄
∆

)
H

=
4∆

g2
− g2

16∆
− 2J

πg
, (7)

with frequency

fH =
1

πτ

√
η̄ +

∆

π

J

g
. (8)

The Hopf boundary Eq. (7) is depicted in red in the phase
diagrams of Figs. 6, 7. Note that η̄/∆ → +∞ as g → 0
according to Eq. (7), which indicates that electrical coupling
is a necessary ingredient for the Hopf bifurcation to exist [86].

To confirm the presence of collective oscillations in the
original network of electrically coupled QIF neurons with
dynamics Eq. (1), we carried out numerical simulations and
compared them with those of the FRE (5). Fig. 4 shows
the time series of the firing rate in the full and in the re-
duced system, which display a very good agreement. In
panel (a) we considered a network with electrical coupling
only. The frequency of the oscillations, f ≈ 30.1 Hz, is
close to the theoretical value at criticality, given by Eq. (8):
fH = 100/π ≈ 31.8 Hz. Therefore, in absence of chemi-
cal coupling and near the Hopf bifurcation, the frequency of
the oscillations is almost independent of the coupling strength
g and closely follows Eq. (8). To further test the validity of
Eq. (8) far from criticality, we numerically evaluated the fre-
quency of the limit cycle of the FRE (5) (black solid line,
Fig. 5) as the the coupling strength g is increased from the
Hopf bifurcation (at gH ≈ 1.8). The black dotted line corre-
sponds to the Hopf frequency Eq. (8). We find that the fre-
quency of the limit cycle remains close to this for a broad
range of g values.

0
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FIG. 4: Electrical coupling promotes collective synchrony. The in-
clusion of inhibitory coupling degrades synchrony and slows down
oscillations. The figure shows the time series of the mean firing
rate r of a network of N = 104 QIF neurons with dynamics (1)
(black) and of the FRE (5) (red). Panel (a) shows collective oscilla-
tions (frequency f ≈ 30.1 Hz) of a network with gap junctions only
(J = 0). Panel (b) corresponds to a network with both gap junctions
and inhibitory chemical coupling (J = −π), which both slows down
(f ≈ 23.6 Hz) and reduces the amplitude of collective oscillations.
Parameters: g = 3, η̄ = 1, τ = 10 ms and ∆ = 1.

Hopf instability in networks of electrically coupled QIF
neurons occurs like the transition to synchronization in the
Kuramoto model of coupled phase oscillators [67]. Consider-
ing J = 0, we find the main features of the Kuramoto tran-
sition to collective synchronization: (i) In the limit of weak
electrical coupling g, the Hopf boundary Eq. (7) can be writ-
ten as

gH ≈
2∆√
η̄
. (9)

For η̄ = 1, Eq. (9) coincides with Kuramoto’s critical cou-
pling for synchrony. (ii) As previously discussed, macro-
scopic oscillations emerge with a frequency determined by the
most likely value of the natural frequencies in the network, see
Eq. (3). For the case of the Lorentzian distribution of currents,
Eq. (4), the most likely value of the frequency is

f̄ =

√
η̄

πτ
. (10)

(iii) The Hopf bifurcation is always supercritical; cf. Ap-
pendix D. Taken together, for η̄ > 0 and given a certain
level of heterogeneity ∆, synchronization occurs —at a criti-
cal coupling approximately given by Eq. (9)— with the nucle-
ation of a small cluster of oscillators with natural frequencies
Eq. (3) near f̄ . As electrical coupling g is further increased,
more and more oscillators become entrained to the frequency
f̄ , resulting in a continuous and monotonous increase in the
amplitude of the oscillations. This transition is in contrast to
that of networks with inhibitory coupling and synaptic kinet-
ics and/or delays, where synchrony is only achieved for weak
heterogeneity and weak coupling, see, e.g., [48, 49].

The phase diagram depicted in Fig. 6 characterizes the dy-
namics of the firing rate model Eq. (5) with only electrical
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FIG. 5: In the absence of chemical coupling (black), electrical cou-
pling g has little effect on the frequency of the oscillations Excita-
tory (red)/Inhibitory (blue) coupling speeds-up/slows-down collec-
tive oscillations. These effects tend to disappear for strong electrical
coupling. The figure shows the frequency of the oscillations f as
a function of the strength of electrical coupling g in networks with
Excitation, J = π, Inhibition, J = −π, and without chemical cou-
pling, J = 0. Symbols (◦) are frequencies obtained from numerical
simulations of a network of N = 104 QIF neurons Eqs. (1). Solid
lines are numerically obtained frequencies from the FRE (5). Dotted
lines correspond to the Hopf frequency given by Eq. (8). Parameters:
η̄ = 1, τ = 10 ms, and ∆ = 1.

coupling. The red curve corresponds to the Hopf bifurcation
line given by Eq. (7). According to Eq. (8), the frequency of
the collective oscillations approaches zero as η̄ → 0. This in-
dicates that the Hopf line ends in a Takens-Bogdanov (TB) bi-
furcation at η̄ = 0, see Fig. 6(b). At this codimension-2 point,
the Hopf boundary tangentially meets a SN bifurcation and a
homoclinic bifurcation. The homoclinic line moves parallel
to the Hopf line for a while, it makes a sharp backward turn
and then tangentially joins onto the upper branch of the SN bi-
furcation curve (two branches of SN bifurcations are created
at the Cusp point), at a saddle-node-separatrix-loop (SNSL)
point. At this point the SN boundary becomes a SNIC bound-
ary that, together with the Hopf and homoclinic lines, encloses
the region of synchronization (Sync) featuring collective os-
cillations. Note that in Fig. 6(b) we encounter a very small re-
gion of bistability between a Low-Activity State (LAS, node)
and a persistent state (focus). Electrical coupling destabilizes
the persistent state almost immediately after the SN line, lead-
ing to another small region of bistability between LAS and a
small amplitude limit cycle (Sync) —which disappears in the
homoclinic bifurcation.

Finally, the SNIC curve asymptotically approaches η̄ = 0
as g/

√
∆ → ∞ (as suggested by the N = 2 analysis in

Section II A). In this limit, all neurons are strongly coupled
(g → ∞) and/or are nearly identical (∆ → 0) so that they
behave as a single QIF neuron with input current η̄ [87].
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FIG. 6: The phase diagram of the FRE (5) for electrical coupling
only (J = 0) is characterized by the presence of three codimension-
2 bifurcation points (Takens-Bogdanov, TB; Saddle-Node Separatix
Loop, SNSL; Cusp), all located at η̄ ≥ 0. The region of syn-
chronization (Sync) is limited by supercritical Hopf (red), SNIC
(black), and homoclinic (green) bifurcations. Dashed line: Focus-
Node boundary of the Asynchronous State. Panel (b) Enlargement
of the region near the three codimension-2 points. There are two
small regions of bistability between Asynchronous, low-activity-
states (LAS) and Asynchronous Persistent States, and between LAS
and Sync. Two Saddle-Node (SN) bifurcations are created at a Cusp
point, at (1/(3

√
3), 4
√

2/33/4) ≈ (0.192, 2.482). The upper SN
line meets the homoclinic (hom) bifurcation in a SNSL point. At this
point the upper SN becomes a SNIC bifurcation. The other SN bifur-
cation tangentially meets the homoclinic and the Hopf lines at a TB
point, at (0, 2

√
2) ≈ (0, 2.828). The Hopf boundary corresponds

to Eq. (7). SN/SNIC and Focus/Node boundaries are obtained in
parametric and explicit form, respectively, in Appendix C. The ho-
moclinic boundary has been obtained numerically. The symbol ×
indicates the parameter value considered in Fig. 4(a).

B. Networks with both chemical and electrical coupling

We finally analyze the dynamics of a population of
QIF neurons with mixed, chemical and electrical synapses.
Fig. 7(a) presents the possible dynamical regimes of a pop-
ulation with chemical synapses only, g = 0. In contrast to
networks with pure electrical coupling, where the bifurcation
scenario is determined by the presence of three codimension-2
points, cf. Fig. 6, here there is only a Cusp point, see also [34].
This entails the presence of a persistent state (focus) coexist-
ing with an asynchronous, LAS (node) within the cusp-shaped
region in the top-left corner of Fig. 7(a). Additionally, the
dashed line indicates that the asynchronous state is of focus
type in a vast region of parameters for excitatory coupling,
and always for inhibitory coupling.

Including electrical coupling, g > 0, yields the Hopf bi-
furcation given by Eq. (7), which joins onto the lower branch
of the SN bifurcation curve at a TB point, see Figs. 7(b,c).
Hence, the bifurcation scenario for networks with electrical
and chemical synapses matches that for networks with elec-
trical synapses only: Similar to Fig. 6, the Hopf line cuts
through the cusp-shaped region —the TB bifurcation demar-
cates the point where the Hopf boundary and the lower SN
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FIG. 7: The phase diagram for networks with only chemical cou-
pling, panel (a), is characterized by the presence of a Cusp bifurca-
tion point. The inclusion of electrical coupling, panels (b-d), trans-
forms the Cusp bifurcation scenario into that of Fig. 6, characterized
by the presence of three codimension-2 bifurcation points. The pan-
els show the phase diagrams of the FRE (5) with chemical coupling
(J > 0: Excitatory, J < 0: Inhibitory) for (a) g/

√
∆ = 0, (b)

g/
√

∆ = 1, (c) g/
√

∆ = 3, (d) g/
√

∆ = 5. The Hopf bound-
aries (red lines) are straight lines given by Eq. (7). SN/SNIC (black
lines) and Focus/Node (dashed) boundaries are obtained in paramet-
ric form in Appendix C. Hopf and SN boundaries meet at a TB bifur-
cation point. To lighten the diagrams, Cusp, SNSL and homoclinic
bifurcations are not shown. Symbols× and + indicate the parameter
values considered in Fig. 4.

line intersect. Then, due to the presence of electrical cou-
pling, the persistent state becomes only stable in a small pa-
rameter region confined between the Hopf and the lower SN
line, see Fig. 7(b). As electrical coupling is increased, the
TB point approaches the Cusp bifurcation, which results in
an even smaller range of parameters for which the persistent
state is stable. This agrees with numerical results using large
networks of noisy, conductance-based and QIF neurons, and
has been hypothesized to be a possible reason why electrical
synapses are rarely found between excitatory neurons [10].

Returning to the analysis of the FRE (5), we find for low
values of g that synchronization emerges predominantly for
excitatory coupling, J > 0, see Fig. 7(b). As electrical cou-
pling is increased, the Sync region extends to the inhibitory
region, J < 0, and to larger values of η̄ —note that in this cou-
pling regime the emergence of collective oscillations mainly
occurs via a SNIC bifurcation for excitation and via a Hopf
bifurcation for inhibition, see Fig. 7(c). For even larger elec-
trical coupling, the TB point moves further into the inhibitory
region. That is, for strong electrical coupling the J-coordinate
of the TB bifurcation rapidly decreases towards minus infin-
ity whereas the other coordinate stays relatively close to the
η̄ = 0 axis [88]. The SNIC bifurcation tilts towards a ver-
tical line close to the η̄ = 0 axis, because strong electrical
coupling coerces all neurons to behave as a single QIF neuron
with common input η = η̄. Then, the SNIC bifurcation be-
comes the only transition between the two possible dynamical
regimes, asynchrony or synchrony, see Fig. 7(d).

Fig. 4 shows how the addition of inhibitory coupling into a
network with only electrical synapses degrades synchrony —
parameters used in Fig. 4 correspond to the symbols shown in
Fig. 7(c). The presence of inhibition clearly slows down the
oscillations, as predicted by Eq. (8).

Although Eq. (8) is strictly valid only at the Hopf bifur-
cation, it is a good estimate of the frequency of the oscilla-
tions of the FRE (5). Fig. 5 depicts the comparison between
Eq. (8) as a function of g (dotted lines), with the actual fre-
quencies numerically obtained using the FRE (5) (solid lines)
and the QIF network Eq. (1) (symbols). In excitatory net-
works, the oscillations already emerge for weak values of g. In
contrast, synchronizing inhibitory networks requires a much
larger value of g, i.e. inhibition does not promote synchro-
nization. Remarkably, only the presence of chemical coupling
allows the frequency of the oscillations to deviate from f̄ , see
Eqs. (8,10). Oscillations emerge with f > f̄ for excitation
and with f < f̄ for inhibition, while they remain f ≈ f̄ for
networks with only electrical coupling. As g increases, the
effects of chemical coupling are gradually washed out since
an increasing number of neurons are entrained by electrical
coupling to the most-likely frequency of the uncoupled net-
work, f̄ . This dependence is well described by Eq. (8). Fi-
nally, since the level of heterogeneity ∆ degrades synchrony,
in Eq. (8) this term favors the deviation of the frequency from
f̄ , and compensates for the homogenizing effect of electrical
coupling. In the limit of identical neurons ∆→ 0, the effects
of instantaneous chemical coupling on the frequency vanish,
since neurons synchronize in-phase and, at the instant of fir-
ing, all neurons become refractory.

V. CONCLUSION AND DISCUSSION

Firing rate models are very useful tools for investigating
the dynamics of large networks of spiking neurons that inter-
act via excitation and inhibition, see e.g. [21–33]. Remark-
ably, using a recently proposed approach to derive exact fir-
ing rate equations for networks of excitatory and/or inhibitory
QIF neurons [34, 42], Laing has found that electrical synapses
can also be incorporated in the framework of firing rate mod-
els [65]. Yet, the FRE in [65] are not exact, and their mathe-
matical form makes the analysis intractable.

Here we showed that the FRE corresponding to a network
of QIF neurons with both chemical and electrical synapses can
be exactly obtained, without the need for any approximation.
Much in the spirit of firing rate models, the resulting FRE (5)
are simple in form and highly amenable to analysis. More-
over, in Appendix B, we demonstrate that relaxing the approx-
imation invoked in [65] the FRE derived by Laing simplify to
our Eqs. (5).

At first glance, the mathematical form of Eqs. (5) already
unveils two interesting features of electrical and chemical cou-
pling, see also Eq. (6): (i) Chemical coupling tends to shift
the center of the distribution of membrane potentials (given
by v), while electrical coupling tends to reduce the width of
the distribution (given by r), potentially promoting the emer-
gence of synchronization; (ii) While in the original network
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of QIF neurons electrical coupling is mediated by membrane
potential differences, at the mean-field level the electrical in-
teraction is solely mediated by the mean firing rate r.

The mathematical analysis of the FRE (5) unravels how
chemical and electrical coupling shape the dynamics of glob-
ally coupled populations of QIF neurons with Lorentzian het-
erogeneity. Some of our results were already reported in
previous work, and confirm the value and the validity of
the FRE (5). An important conclusion of our study is that
the presence of electrical coupling, g 6= 0, generally im-
plies the appearance of a supercritical Hopf bifurcation, see
Eq. (7). This Hopf bifurcation meets a SN bifurcating line in
a codimension-2 TB point, causing a drastic reduction of the
region of bistability between low-activity and persistent asyn-
chronous states, see Figs. 6 and 7. The Hopf bifurcation desta-
bilizes the persistent state producing synchronous oscillations,
which then are abolished via a homoclinic bifurcation. Previ-
ous studies of networks of excitatory and inhibitory neurons
showed that synchrony often destroys persistent states [68–
72]. Moreover, the generality of the bifurcation scenario of
Figs. 6 and 7 —characterized by three codimension-2 points,
TB, Cusp and SNSL—, is confirmed in previous studies ana-
lyzing closely related systems [73–76].

Networks of spiking neurons with strong excitatory cou-
pling display robust persistent states. These states emerge at a
Cusp bifurcation, see Fig. 7(a). Of particular relevance to our
study is the work by Ermentrout [10]. He found that electri-
cal coupling tends to synchronize neurons, and that this anihi-
lates persistent states via the bifurcation scenario described in
Figs. 6 and 7. Persistent activity may underlie important cog-
nitive functions such as working memory, and has been sug-
gested as a possible reason for the lack of electrical coupling
between excitatory neurons [10]. According to [10], ‘the main
role for gap junctions is to encourage synchronization during
rhythmic behavior. Synchrony, because it leads to a shared
refractory period between neurons can lead to the extinction
of persistent activity’.

The Hopf bifurcation is always supercritical. In [17], Os-
tojic et al. analyzed the super- or sub-critical character of the
Hopf bifurcation in networks of electrically coupled leaky in-
tegrate and fire (LIF) neurons. At variance with QIF neurons,
LIF neurons do not have spikes and, hence, modeling electri-
cal coupling requires an additional parameter [15]. This pa-
rameter enables one to adjust the shape of the spikelet elicited
in the postsynaptic cell due to an action potential in the presy-
naptic cell. Ostojic et al. [17] found that the Hopf bifurca-
tion is supercritical when the spikelets are effectively excita-
tory, while inhibitory spikelets lead to subcritical Hopf bifur-
cations. For the QIF model, the spikelet elicited in a postsy-
naptic cell by the transmission of a presynaptic spike has a
net excitatory effect —see Fig. 1(b)—, and hence our result
that the Hopf bifurcation is supercritical is in agreement with
the results in [17]. Yet, we note that our result also includes
networks with chemical synapses, and not only networks with
electrical synapses, as in [17].

Another important result by Ostojic et al. [17] is that elec-
trical coupling can lead to oscillations even in the presence
of strong heterogeneity. Our Eq. (7) is consistent with this.

Kopell and Ermentrout [8] also investigated the robustness of
synchrony against current heterogeneities in networks with
both electrical and inhibitory synapses. They found that
a small amount of electrical coupling, added to an already
significant inhibitory coupling, can increase synchronization
more than a very large increase in the inhibitory coupling. In
Fig. 4 we show that increasing inhibition reduces the ampli-
tude of the oscillations in a network with g 6= 0. In addition,
Fig. 7 shows that, for a given value of g, increasing inhibition
leads to asynchrony. This level of inhibition increases with
electrical coupling, in line with the results in [8]. Two stud-
ies [11, 17] also investigated the frequency of the emerging
oscillations in networks with electrical synapses. This fre-
quency remains tied to the mean firing rate fi in the network
(i.e. near f̄ ), as our Eq. (8) suggests. In Fig. 5 we confirm
that, in networks with only electrical synapses, the frequency
of the oscillations remains near the most likely fi-value: f̄ .

The result that the Hopf bifurcation is always supercritical,
and that the frequency of the emerging oscillations is given by
f̄ evoke the paradigmatic synchronization transition in the Ku-
ramoto model [67]. For weakly electrically-coupled networks,
we find that the onset of oscillations occurs at the Kuramoto’s
critical coupling for synchrony, Eq. (9). When considering
chemical coupling, the frequency of the oscillations deviates
from f̄ , increasing/decreasing for excitatory/inhibitory cou-
pling. The intensity of this deviation depends on the ratio of
chemical to electrical coupling, as Eq. (8) suggests. Fig. 5
confirms that strong electrical coupling overcomes the effect
of excitation/inhibition onto the frequency of the oscillations,
approximately as dictated by Eq. (8).

Together with the firing rate model derived in [65], the
FRE (5) constitute a unique example of a firing rate model
with both electrical and chemical coupling. The numerical
simulations of the original QIF network Eq. (1) are in agree-
ment with the FRE (5) —see Figs. 4, 5—, underlining the va-
lidity of the reduction method applied. Interestingly, the fixed
points of the FRE (5) with chemical synapses (g = 0, J 6= 0)
can be cast in the form of a traditional firing rate model

r∗ = Φ(η̄ + Jτr∗), (11)

where Φ(x) =
√
x+
√
x2 + ∆2/(

√
2πτ) is the so-called

transfer function of the heterogeneous QIF network [48–50].
The FRE (5) with electrical synapses (g 6= 0), however, can-
not be written in the form of Eq. (11). Therefore, the link
pointed by Eq. (11) between traditional firing rate models and
Eqs. (5) is lost when electrical coupling is considered.
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Biology 13 (2017).
[50] J. M. Esnaola-Acebes, A. Roxin, D. Avitabile, and E. Montbrió,
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Appendix A: Derivation of the Firing Rate Equations

In the thermodynamic limit, N → ∞, we drop the in-
dices for the individual neuronal dynamics Eq. (1), and de-
note ρ(V |η, t)dV as the fraction of neurons with membrane
potentials between V and V + dV , and parameter η at time t.
Accordingly, the parameter η becomes a continuous random
variable that is distributed according to a probability distri-

bution function, which here is considered to be a Lorentzian
L∆,η̄(η) of half-width ∆ and centered at η̄, see Eq. (4). The
conservation of the number of neurons leads to the continuity
equation

τ∂tρ+ ∂V
[
(V 2 + η + g(v − V ) + Jτr)ρ

]
= 0, (A1)

where we explicitly included the velocity given by the contin-
uous equivalent of Eq. (1). We also defined the mean value of
the membrane potential as

v(t) =

∫ ∞
−∞

∫ ∞
−∞

ρ(V |η, t) V L∆,η̄(η) dV dη. (A2)

Next, we consider the family of conditional density func-
tions [34]

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]
2

+ x(η, t)2
, (A3)

which are Lorentzian functions with time-dependent half-
width x(η, t), centered at y(η, t). Substituting (A3) into the
continuity equation (A1), we find that, for each value of η,
variables x and y must obey two coupled equations,

τ ẋ(η, t) = 2x(η, t)y(η, t)− gx(η, t), (A4a)
τ ẏ(η, t) = η − x(η, t)2 + y(η, t)2 (A4b)

−g
[
y(η, t)− v

]
+ Jτr,

that can be written in complex form as

τ∂tw(η, t) = i
[
η−w(η, t)2 +Jτr

]
+ g
[
iv−w(η, t)

]
(A5)

where w(η, t) ≡ x(η, t) + iy(η, t). For a particular value of
η, the firing rate r of the population of QIF neurons is related
to the width x of the Lorentzian ansatz (A3). Specifically, the
firing rate r(η, t) for each η value at time t is the probability
flux at infinity: r(η, t) = ρ(V → ∞|η, t)V̇ (V → ∞|η, t),
which yields the identity

x(η, t) = πτr(η, t). (A6)

Hence, integrating this quantity over the distributions of cur-
rents Eq. (4) provides the mean firing rate

r(t) =
1

τπ

∫ ∞
−∞

x(η, t)L∆,η̄(η)dη. (A7)

Likewise, we can link the center y(η, t) of the Lorentzian
ansatz Eq. (A3) with the mean of the (conditional) membrane
potential via

y(η, t) = p.v.
∫ ∞
−∞

ρ(V |η, t)V dV. (A8)

Note that the Lorentzian distribution does not have finite mo-
ments so that the integral in Eq. (A8) needs to be taken
as the Cauchy principal value (i.e. p.v.

∫∞
−∞ ρV dV =

limR→∞
∫ R
−R ρV dV ). Then, Eq. (A2) becomes

v(t) =

∫ ∞
−∞

y(η, t)L∆,η̄(η)dη. (A9)
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The integrals in (A7,A9) can be evaluated closing the in-
tegral contour in the complex η-plane and using Cauchy’s
residue theorem. The integrals must however be performed
carefully, so that the variable x(η, t) remains non-negative.
To make the analytic continuation of w(η, t) from real to
complex-valued η, we define η ≡ ηr + iηi. This contin-
uation is possible into the lower half-plane ηi < 0, since
this guarantees the half-width x(η, t) to remain non-negative:
∂tx(η, t) = −ηi > 0, at x = 0. Therefore, we perform con-
tour integration in Eq. (A7) and Eq. (A9) along the arc |η|eiϑ
with |η| → ∞ and ϑ ∈ (−π, 0). This contour encloses one
pole of the Lorentzian distribution Eq. (4). Then, we find that
the firing rate and the mean membrane potential depend only
on the value of w at the pole of L∆,η̄(η) in the lower half
η-plane:

πτr(t) + iv(t) = w(η̄ − i∆, t),

As a result, we only need to evaluate Eq. (A5) at η = η̄ −
i∆, and obtain a system of FRE composed of two ordinary
differential equations as given in Eq. (5),

τ ṙ =
∆

τπ
+ 2rv − gr,

τ v̇ = v2 + η̄ − (πτr)2 + Jτr,

in terms of the population-mean firing rate r and the
population-mean membrane potential v. Multiplying the
Lorentzian ansatz Eq. (A3) by L∆,η̄(η) and integrating over
η, we finally obtain the total density of neurons Eq. (6) as

ρ(V, t) =
1

π

πτr(t)

[V − v(t)]2 + π2τ2r(t)2
,

where we again applied Cauchy’s residue theorem by using
that the ansatz Eq. (A3) is analytic in the lower η-complex
plane. Hence, the total density of the population of QIF neu-
rons is a Lorentzian distribution centered at v(t) and half-
width πτr(t), which evolves according to the FRE (5).

Appendix B: Connection between the FRE in [65] and Eq. (5)

The derivation of the FRE (5) is exact in the thermodynamic
limit, and does not rely on any approximation. Here we show
that the Eqs. (2.35&2.36) in [65] reduce to our Eq. (5) after
adopting a limit in which the derivation performed in [65] be-
comes exact.

In contrast to our Eq. (5b), note that Eq. (2.36) in [65] con-
tains a diffusive term,

g[Q(t)− v(t)], (B1)

where the function Q(t) is defined as

Q(t) =
i

2

∞∑
m=1

ρm+1 − ρm−1

ρ+ 1 + ε
[zm − z̄m] (B2)

with 0 < ε � 1, and ρ =
√

2ε+ ε2 − 1 − ε. The variable
z in Eq. (B2) is the complex Kuramoto order parameter (the

bar denotes complex conjugation), which is related to the vari-
ables r and v in the FRE (5) via the change of variables [34]

πr + iv =
1− z̄
1 + z̄

. (B3)

The parameter ε, defined in Eq. (2.7) in [65], was used to ap-
proximate the mean voltage v, see also [10]. In the limit ε→ 0
this approximation becomes exact, but this limit was not con-
sidered in [65]. In consequence, to use the Eqs. (2.35&2.36)
in [65], the infinite series Eq. (B2) was truncated after 100
terms, and the bifurcation analysis of the mean-field model
could only be performed numerically.

Using the geometric series formula (|z| < 1) and the trans-
formation of variables Eq. (B3), we find

lim
ε→0

Q(t) = i

∞∑
m=1

(−1)m [zm − z̄m] =
2Im(z)

(1 + z)(1 + z̄)
= v.

Hence we have showed that the diffusive term Eq. (B1) iden-
tically vanishes when the mean-field reduction becomes exact
(i.e. in the limit ε→ 0), and the FRE in [65] reduce to Eqs. (5).

Appendix C: Bifurcation analysis of the Firing Rate Equations

The FRE (5) have five free parameters. The number of
effective parameters can be reduced to three through non-
dimensionalization, defining

η̃ = η̄/∆, g̃ = g/
√

∆, J̃ = J/(π
√

∆),

and rescaling variables as

r̃ = τπr/
√

∆, ṽ = v/
√

∆, t̃ =
√

∆t/τ.

Then, the firing rate model becomes

dr̃

dt̃
= 1 + 2r̃ṽ − g̃r̃, (C1a)

dṽ

dt̃
= ṽ2 + η̃ − r̃2 + J̃ r̃, (C1b)

The fixed points (r̃∗, ṽ∗) of Eq. (C1) satisfy

ṽ∗ =
g̃

2
− 1

2r̃∗
. (C2)

Linearization about the fixed points Eq. (C2) gives the eigen-
values

λ± =
1

2

(
4ṽ∗ − g̃ ±

√
g̃2 + 8r̃∗(J̃ − 2r̃∗)

)
. (C3)

For networks with only chemical synapses (i.e. g = 0), the
real part of the eigenvalues remains always negative (since
v∗ < 0), and a Hopf bifurcation is not possible. However,
chemical coupling has a direct influence on the real part of the
eigenvalues Eq. (C3), and may produce oscillatory instabili-
ties if the argument of the square root is a real number.
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A. Hopf boundaries and Takens-Bogdanov point

The Hopf boundaries can be obtained when imposing
Re(λ±) = 0 in Eq. (C3), which gives g̃ = 4ṽ∗. Then, us-
ing Eq. (C2), we find

g̃H = 2/r̃∗. (C4)

Substituting Eq. (C4) in the v-fixed point equation Eq. (C1b),
and solving for η̃, we obtain

η̃H = r2
∗ − J̃ r̃∗ −

1

4r̃2
∗
. (C5)

Solving Eq. (C4) for r̃∗ and substituting it into Eq. (C5) we
obtain the Hopf boundaries in explicit form

η̃H = −2J̃

g̃
+

4

g̃2
− g̃2

16
. (C6)

The frequency of the oscillations is given by the imaginary
part of the eigenvalues Eq. (C3) at criticality that, using the
fixed points of Eqs. (C1) and Eq. (C4), reduces to the explicit
formula

f̃H =
1

π

√
η̃ +

J̃

g̃
. (C7)

The frequency becomes zero at a Takens-Bogdanov (TB)
point, when η̃ = −J̃/g̃. Inserting this condition into Eq. (C6)
we obtain the coordinates of the TB point(

η̃, J̃
)

TB
=

(
g̃2

16
− 4

g̃2
,

4

g̃
− g̃3

16

)
, (C8)

see also Fig. 7. For J̃ = 0, the TB point is located at

(η̃, g̃)TB =
(

0, 2
√

2
)

(C9)

in the phase diagram Fig. 6.

B. Saddle-node boundaries

The boundaries of the saddle-node bifurcations are ob-
tained by setting λ± = 0 in Eq. (C3), using Eq. (C2), and
solving for g̃:

g̃sn =
1

r̃∗
− 2J̃ r̃2

∗ + 4r̃3
∗ . (C10)

Substituting (C10) in the v-fixed point Eq. (C1b), and solving
for η̃, we obtain

η̃sn = r̃2
∗ − 4r̃6

∗ + J̃ r̃∗
(
4r̃4
∗ − Jr̃3

∗ − 1
)
. (C11)

The saddle node boundaries are plotted in the (η̃, g̃) phase di-
agram in Fig. 6. The same boundaries can be represented in
the (η̃, J̃) phase diagram when solving Eq. (C10) for J̃

J̃sn =
1

2r̃3
∗
− g̃

2r̃2
∗

+ 2r̃∗ (C12)

and replacing J̃ by Eq. (C12) in Eq. (C11) gives

η̃sn =
g̃

r̃∗
− g̃2

4
− 3

4r̃2
∗
− r2
∗.

These saddle-node boundaries are shown in black for different
values of g̃ in Fig. 7.

C. Focus-Node boundaries

The boundaries in the phase diagram Fig. 7 in which the
stable asynchronous state changes from Focus to Node can
be obtained in parametric form equating the square root in
Eq. (C3) to zero. This gives

J̃FN =
16r̃2
∗ − g̃2

8r̃∗
.

Substituting J̃FN into the v-fixed point Eq. (C1b), and using
Eq. (C2) we find

η̃FN =
1

8r̃2
∗

(
−2 + 4g̃r̃∗ − g̃2r̃2

∗ − 8r̃4
∗
)
.

For networks without chemical coupling, J̃ = 0, the Focus-
Node boundary can be obtained in explicit form

η̃FN = 2− 4

g̃2
− 3g̃2

16
.

This is the dashed boundary depicted in Fig. 6.

Appendix D: Small-amplitude equation near the Hopf
bifurcation

In this Appendix we derive the small amplitude equation
near the Hopf bifurcation, and show that the Hopf bifurca-
tion is always supercritical. The derivation is performed using
multiple-scales analysis, see e.g. [78]. We first expand the so-
lution (

r̃

ṽ

)
=

(
r0

v0

)
+ ε

(
r1

v1

)
+ ε2

(
r2

v2

)
+ . . . (D1)

in powers of a small parameter ε � 1, about a fixed point
(r0, v0) of Eqs. (C1) at the Hopf bifurcation. In addition, we
introduce the deviation from the Hopf bifurcation Eq. (C6) of
parameter η̃ as

η̃ − η̃H = χε2, (D2)

where χ determines the sign of the deviation. Finally, we de-
fine the slow time

T = ε2t. (D3)

Then, the time differentiation is transformed as

d

dt
→ ∂t + ε2∂T . (D4)
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Plugging Eqs. (D1,D2,D4) into Eq. (C1) gives

[
∂t + ε2∂T − L0

] [
ε

(
r1

v1

)
+ ε2

(
r2

v2

)
+ . . .

]
− ε2

(
0

χ

)
=

= ε2N2 + ε3N3 + . . . , (D5)

where

L0 =

(
2v0 − g̃ 2r0

J̃ − 2r0 2v0

)
. (D6)

and

N2 =

(
2r1v1

v2
1 − r2

1

)
, N3 =

(
2r1v2 + 2r2v1

2v1v2 − 2r1r2

)
. (D7)

Critical eigenvectors

Using Eqs. (C3,C4), we define the critical frequency as

ω0 =
1

2g̃

√
64− g̃4 − 16J̃ g̃, (D8)

so that the matrix Eq. (D6) can be written as

L0 =

(
−g̃/2 4/g̃

−g̃/16(g̃2 + 4ω2
0) g̃/2

)
. (D9)

The right-eigenvector of Eq. (D9) is

uR =

(
4/g̃

g̃/2 + iω0

)
. (D10)

Imposing the condition uLuR = 1, the left-eigenvector of L0

is

uL =
1

2ω0

(
2g̃ω0 + ig̃2

8
,−i
)
. (D11)

Analysis of multiple scales

At order ε, Eq. (D5) is(
ṙ1

v̇1

)
− L0

(
r1

v1

)
=

(
0

0

)
. (D12)

This system of differential equations has a general solution

(
r1

v1

)
= Aeiω0 t̃uR + c.c, (D13)

which is the so-called neutral solution.

At order ε2, Eq. (D5) is

(
ṙ2

v̇2

)
− L0

(
r2

v2

)
−
(

0

χ

)
= N2. (D14)

Substituting the neutral solution Eq. (D13) into Eq. (D7) we
find

N2 =

(
8

(g̃4 + 4g̃2ω2
0 − 64)/(2g̃2)

)
|A|2

+

(
4 + 8iω0/g̃

g̃2/4 + ig̃ω0 − ω2
0 − 16/g̃2

)
A2e2iω0 t̃

+ c.c.

Next we use the following ansatz

(
r2

v2

)
=

(
r20

v20

)
+

(
r22

v22

)
e2iω0 t̃ + c.c. (D15)

and substitute it into Eq. (D14). We find

r20 =
2

g̃3ω2
0

[
2g̃2χ− (64 + g̃4 − 4g̃2ω2

0)|A|2
]
,

v20 =
1

4g̃ω2
0

[
2g̃2χ− (64 + g̃4 + 4g̃2ω2

0)|A|2
]
,

r22 =
A2

3g̃3ω2
0

[
64 + g̃2(g̃ + 2iω0)(g̃ − 10iω0)

]
,

v22 =
A2

24g̃2ω2
0

[
g̃(64 + g̃(g̃ + 2iω0)2(g̃ − 8iω0)) + 256iω0

]
.

Substituting Eqs. (D13,D15) into the cubic term N3 in
Eq. (D7), we find

N3 =

(
(g̃ + 2iω0)Ar20 + 8

g̃ (Av20 +A∗v22) + (g̃ − 2iω0)A∗r22

(g̃ + 2iω0)Av20 − 8
g̃ (Ar20 +A∗r22) + (g̃ − 2iω0)A∗v22

)
eiω0 t̃ + c.c. +

( 8
g̃v22 + (g̃ + 2iω0)r22

− 8
g̃ r22 + (g̃ + 2iω0)v22

)
Ae3iω0 t̃ + c.c.

(D16)

The solvability condition at order ε3 is∫ 2π/ω0

0

uL

[
∂T

(
r1

v1

)
−N3

]
e−iω0 t̃ dt̃ = 0. (D17)

Substituting Eqs. (D11,D13,D16) into Eq. (D17), we find the
amplitude equation

∂TA = (a+ ib)χA− (c+ id)A|A|2, (D18)
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with the coefficients

a =
4g̃3

64− g̃4 − 16g̃J̃
,

b =
32g̃(8− g̃J̃)

(64− g̃4 − 16g̃J)3/2
,

c =
16g̃(8− g̃J̃)

64− g̃4 − 16g̃J
,

d =
16

3

3(64− g̃4)J̃ − 8g̃J̃ + 40g̃3

(64− g̃4 − 16g̃J)3/2
,

where we used Eq. (D8) to express a− d in terms of J̃ and g̃.
Defining the amplitude R and the phase Ψ via

A = Reiψ,

one may alternatively write Eq. (D18) as

R′ = χaR− cR3,

ψ′ = χb− dR2.

where primes refer to differentiation with respect to T . An
oscillatory solution with amplitude R = Rs and phase ψ =
ωT + ψ0, with

Rs =

√
a

|c| , ω = χb− dR2
s,

appears in the supercritical (χ > 0) region for c > 0, and in
the subcritical region for c < 0.

Remarkably, the coefficient c is always positive and hence
the Hopf bifurcation is always supercritical. This can be seen
as follows: First, note that the denominator of c remains al-
ways positive along the Hopf boundary Eq. (C6), and becomes
zero at the Takens-Bogdanov point Eq. (C8). Second, note
that the numerator of c is positive for J̃ = 0 and may po-
tentially change sign at J̃c = 8/g̃. However, this change of
sign always occurs after the TB point (J̃c > J̃TB) in which the
Hopf bifurcation ends, see Eq. (C8).

Finally, the approximate solution in terms of the original
variables reads

(
r

v

)
≈
(
r0

v0

)
+ ε

(
r1

v1

)
=

(
r0

v0

)
+ εRsuRe

i(ω0+ε2ω)t̃ + c.c.,

which describes an oscillatory motion in the critical eigen-
plane, with a small amplitude firing rate (for η̃ ≥ η̃H )

rA = εRs
g

4
= 2

√
η̃ − η̃H
8− g̃J̃

. (D19)
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