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Positive-sense, single-stranded RNA viruses are important pathogens infecting almost all types
of organisms. Experimental evidences from mutant distributions and amplification kinetics of viral
RNA suggest that these pathogens may follow different RNA replication modes, ranging from the
stamping machine replication (SMR) to the geometric replication (GR) modes. Despite previous the-
oretical works have focused on the evolutionary dynamics of RNA viruses amplifying their genomes
with different strategies, few is known in terms of the bifurcations and transitions involving er-
ror thresholds (mutation-induced dominance of mutants) and lethal mutagenesis (mutation-induced
extinction of all sequences). Here we analyze a dynamical system describing the intracellular am-
plification of viral RNA genomes evolving on a single-peak fitness landscape focusing on three cases
considering neutral, deleterious, and lethal mutants spectra. In our model, the different replication
modes are introduced with parameter α: with α & 0 for the SMR and α = 1 for the GR. We analyt-
ically derive the critical mutation rates causing lethal mutagenesis and error catastrophe, governed
by transcritical bifurcations that depend on parameters α, k1 (replicative fitness of mutants), and
on the spontaneous degradation rates of the sequences, ε. For the lethal case the critical mutation
rate involving lethal mutagenesis is µc = 1−ε√α−1

. Here, the SMR involves lower critical mutation
rates, being the system more robust to lethal mutagenesis replicating closer to the GR mode. This
result is also found for the neutral and deleterious cases, but for these later cases lethal mutage-
nesis can shift to the error catastrophe once the replication mode surpasses a threshold given by√
α = ε/k1.

Keywords: Bifurcations; Dynamical systems; Error threshold; Replication modes; RNA viruses; Single-peak
fitness landscape

I. INTRODUCTION

RNA viruses are characterized for being fast replica-
tors and reaching enormous populations sizes within in-
fected hosts. However, virus’ fast replication comes with
the cost of extremely high mutation rates due to the lack
of correction mechanisms of their RNA-dependent RNA
polymerases (RdRp) [1, 2]. Indeed, mutation rates are so
high that viral populations are thought to replicate close
to the so-called error threshold, beyond which it is not
possible to retain genetic information as mutant genomes
outcompete the mutation-free genome [3]. These muta-
tion rates are orders of magnitude higher than those char-
acteristic for their cellular hosts. While the combination
of fast replication, large population size and high muta-
tion rate create the potential for quick adaptation to new
environmental conditions (e.g., changes in host species
or the addition of an antiviral drug), in a stable envi-
ronment such strategy has the drawback of generating

∗Corresponding author: J. Sardanyés (jsardanyes@crm.cat)

a high load of deleterious mutations. Therefore, natural
selection may have favored life history traits that may
balance for the accumulation of deleterious mutations.

One of such life history traits that has received a good
deal of attention is the mechanism of within-cell viral
replication. In the continuous of possible modes of repli-
cation, the two extremes have been particularly well stud-
ied. At the one extreme, the stamping machine mode
[4], hereafter referred as SMR, implies that the first in-
fecting genome is transcribed into a reduced number of
molecules of opposite polarity that will then be used as
templates to generate the entire progeny of genomes. At
the other extreme, the geometric replication mode [5],
hereafter named as GR, means that the newly generated
progeny also serves as template to produce new oppo-
site polarity molecules that, themselves, will also serve to
generate new progeny genomes, repeating the cycle un-
til cellular resources are exhausted and replication ends.
The actual mode of replication of a given virus may lie
between these two extremes. Some RNA viruses such
as bacteriophages φ6 [6] and Qβ [7] and turnip mosaic
virus [8] tend to replicate closer to the SMR. In contrast,
for other RNA viruses such as poliovirus [9] or vesicular
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stomatitis virus [10], replication involves multiple rounds
of copying per cell, and thus a mode of replication that
should be closer to the GR. For DNA viruses, GR is the
most likely mechanism of replication given their double-
stranded nature, e.g., bacteriophage T2 [5]. Exception
maybe be single-stranded DNA viruses, such as bacterio-
phage φX174, that replicates via the SMR mode because
it uses a rolling circle mechanism [11].

At which point of the continuous between these two
extreme modes of genome replication is a virus has im-
portant evolutionary consequences. Under SMR the fre-
quency of mutants per infected cell follows expression
1− e−µ, being µ the genomic mutation rate. Under this
mode of replication, the distribution of mutants per in-
fected cell before the action of selection will follow a Pois-
son distribution. However, under GR this frequency is
also determined by the number of replication cycles, k, as
mutants become amplified every time they serve as tem-
plate: 1 − e−kµ. The resulting distribution of mutants
for GR follows the Luria-Delbruck distribution. Taken
together, these observations suggest that a given RdRp
will produce more mutations per cell if the mode of repli-
cation is closer to GR than if it is closer to SMR. For
this reason, it has been suggested that the SMR model
has been selectively favored in RNA viruses because it
compensates for the extremely high error rate of their
RdRps [12–14]. However, it remains unknown whether a
given virus can modify its replication mode in response to
specific selective pressures to promote or down-regulate
mutational output.

Despite some previous theoretical work aiming to ex-
plore the implications of the different modes of replica-
tion, the evolutionary dynamics tied to both the SMR
or the GR modes are not fully understood, specially the
role of the topography of the underlying fitness landscape
on error thresholds and, especially, on lethal mutagene-
sis which, to the extend of our knowledge, have not been
investigated in RNA viruses with asymmetric replication
modes. Indeed, the nature of the bifurcations respon-
sible for the error threshold and lethal mutagenesis for
this type of system remains unexplored. In this sense,
few works have explored the effect of the mode of repli-
cation on the population dynamics of viral genomes from
a dynamical point of view [15]. Recently, the analysis of
a dynamical system given by a model with two variables
identified a transcritical bifurcation at crossing a bifurca-
tion threshold. For this model, the bifurcation could be
either achieved by tuning the parameter that adjusted for
the mode of replication or by increasing the degradation
rate of the strands [16]. However, this model only consid-
ered the amplification dynamics of both (+) and (-) sense
RNA strands. That is, evolution was not considered in
the model.

In this article, we sought to investigate a quasispecies-
like model given by a dynamical system which considers
the processes of replication and mutation together with
an asymmetry parameter that determines the mode by
which viral RNA genomes are amplified. This parame-

ter allows to investigate the impact of different modes of
replication (either SMR, GR, or a combination of both
modes of replication, see Fig. 1a). The dynamics is as-
sumed to take place on a single-peak fitness landscape
(see Fig. 1b). This landscape, albeit being an oversim-
plification of reality, has been widely investigated [17, 18]
since it allows to group together the entire mutant spec-
trum in an average sequence with a lower or equal fitness
than the mutation-free (master) sequence, which is lo-
cated at the top of the only peak in the landscape. Such
a landscape allows to consider the three different cases
for the mutant sequences, given by a pool of (1) neutral,
(2) deleterious and (3) lethal mutants. This dynamical
system is investigated analytically and numerically focus-
ing on three main parameters, given by: mutation rates,
the mode of replication, and the fitness of the mutant
sequences which allow us to consider three different mu-
tational fitness effects mentioned above.

The structure of the paper is as follows. In Section II
we introduce the mathematical model. Equilibria for this
model are computed in Section III, while their stability
is analyzed in Section IV. In Section V we describe the
bifurcations found in the model. Section VI is devoted to
some conclusions. In the Appendix Section we provide
the proofs for the propositions developed in Sections III
and IV.

II. MATHEMATICAL MODEL

Here we introduce a minimal model describing the dy-
namics of symmetric and differential replication modes
between (+) and (-) RNA viral genomes. As a difference
from the model investigated in [13], which considered a
more detailed description of the intracellular amplifica-
tion kinetics, our model only considers the processes of
replication and mutation, together with the degradation
of RNA strands and their competition. The model con-
siders four state variables, given by two classes of (+)
and (-) sense viral genomes, labeled as p and n, respec-
tively, either master (subindex 0) and mutant (subindex
1) types (see Fig. 1). The dynamical equations are de-
fined by:

dp0
dt

= k0(1− µ)n0 · φ(~p, ~n)− ε0p0, (1)

dn0
dt

= αk0(1− µ)p0 · φ(~p, ~n)− ε0n0, (2)

dp1
dt

= (k0µn0 + k1n1) · φ(~p, ~n)− ε1p1, (3)

dn1
dt

= α(k0µp0 + k1p1) · φ(~p, ~n)− ε1n1. (4)

The concentration variables or population numbers span
the 4th-dimensional open space:

R4 : {p0, p1, n0, n1;−∞ < pi, ni <∞, i = 0, 1},
only part of which is biologically meaningful:

Π4 ⊂ R4; Π4 : {p0, p1, n0, n1; pj , nj ≥ 0, j = 0, 1}.
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FIG. 1: (a) Schematic diagram of the processes modeled by Eqs. (1)-(4), which consider (+) and (−) sense viral genomes
(denoted by variables p and n, respectively). Upon infection, the viral genome is released within the host cell. Such a genome
can be amplified following the Stamping Machine Replication (SMR) mode, the Geometric Replication (GR) model, or mixed
modes. Asymmetries in replication are introduced through parameter α (studied as

√
α): with 0 . α � 1 for SMR modes;

0 < α < 1 for mixed modes; and α = 1 for GR. (b) The model includes evolution on a single-peak fitness landscape with
master (p0, n0) and mutant (p1, n1) genomes. At low mutation, the quasispecies is located at the peak, but at high mutations
the quasispecies can suffer an error catastrophe and the population falls to the valley.

The constants k0 > 0 and k1 ≥ 0 are the replication
rates of the master and the mutant genomes, respec-
tively. Mutation rate is denoted by 0 ≤ µ ≤ 1. Since we
are studying deleterious fitness landscapes and lethality,
we will set k0 = 1. The term φ, present in all of the
equations, is a logistic-like constraint, which introduces
competition between the viral genomes and bounds the
growth of the system [16]. This term is given by

φ(~p, ~n) = 1−K−1
1∑

i=0

(pi + ni),

K being the carrying capacity (hereafter we assume
K = 1). Parameters ε0 and ε1 correspond to the sponta-
neous degradation rates of master and mutant genomes,
with 0 < ε0,1 � 1. Finally, constant α is the parameter
that introduces the mode of replication for the RNAs [16].
Two extreme cases can be identified: when α = 1, both
(+) and (-) sense strands replicate at the same rates,
following GR that results in initial exponential growth
phases (see Fig. 2) [13]. When 0 . α� 1, the contribu-
tion from positive to negative strands is much lower, and
thus the progeny of genomes is mainly synthesized from
(-) sense genomes, giving place to SMR mode. The ini-
tial replication dynamics for the SMR replication follows
sub-exponential growth (Fig. 2). Between these two ex-
tremes, our model considers a continuum of asymmetric
replication modes i.e., 0 < α < 1.

To simplify the exposition, we will assume the follow-
ing non-restrictive assumptions on our model: (H1) equal
degradation rates ε0 = ε1 = ε and, as mentioned, a fixed
fitness value for the master genomes, setting k0 = 1; (H2)

the degradation rate ε is smaller than the mutation rates
between positive and negative strands of the master and
the mutant genomes, that is, 0 < ε ≤ min {1− µ, k1}.
This last assumption involves that the dynamics is dom-
inated by the amplification of the viral genomes, consid-
ering that degradation rates are small.

Our model assumes no backward mutations, that is,
mutant sequences can not give place to master sequences.
The length of RNA viral genomes (about 106 nucleotides)
makes the probability of backward mutations to be ex-
tremely low. This is a common assumption in quasis-
pecies models that simplifies the dynamical equations
(see e.g., [17–19]).

The quasispecies studied here inhabits a single-peak
fitness landscape (FIg. 1b). Different heights of this fit-
ness landscape can be studied by tuning 0 ≤ k1 ≤ 1, con-
sidering different mutational fitness effects. It is known
that mutations can be deleterious, neutral, lethal, or ben-
eficial. Some quantitative descriptions of the fitness ef-
fects of mutations reveal that about 40% of mutations
are lethal, and about 20% are either deleterious or neu-
tral. For the within-cell replication time-scale, beneficial
mutations were produced with a very low percentage i.e.,
about 4% (see [20, 21] and references therein). Specif-
ically, in our model we will distinguish three different
cases:

1. Neutral mutants (k0 = k1 = 1). Mutations are
neutral and thus mutant genomes have the same
fitness than the master ones.

2. Deleterious mutants (0 . k1 < k0 = 1). This case
corresponds to the classical single-peak fitness land-
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FIG. 2: (a) Strands’ initial dynamics with µ = 0 and p0(0) = n0(0) = 0.005. The growth for the GR mode (α = 1) is
exponential, resulting in a straight line in a linear-log scale: here p0 (solid black line) and n0 (red circles). The two curves
below, which follow sub-exponential growth, correspond to the SMR with α = 0.05: p0 (dashed black) and n0 (red dashed).
(b-c) Initial amplification phase with µ = 0.25 and p0,1(0) = n0,1(0) = 0.005. In (b) we show the dynamics for GR with α = 1:
p0 (black solid); p1 (black circles); n0 (red solid); and n1 (red circles). In (c) we display the same results of (b) but considering
SMR with α = 0.05. For comparison, the blue dashed line corresponds to the growth of p0 with α = 1 shown in (b), which
results in a straight line. In all panels we set: k0,1 = 1 and ε0,1 = 10−5.

scape (see Fig. 1b), where mutations are deleteri-
ous and thus the quasispecies can be separated into
two classes: the master genome and an average se-
quence containing all mutant sequences with lower
fitness.

3. Lethal mutants (k1 = 0). For this case, mutations
are assumed to produce non-viable, lethal geno-
types which can not replicate.

III. EQUILIBRIUM STATES

First of all, let us compute the equilibrium points of
Eqs. (1)-(4) and characterize their existence conditions.
That is, under which parameter values the fixed points
live at the boundaries or inside the phase space Π. Let us
define the following constants, which will appear in the
equilibrium states (see Proposition 1) and also in their
stability discussion

ν0 =
ε

1− µ, ν1 :=
ε

k1
, cα =

1√
α(1 +

√
α)
, (5)

and

δ :=
µν0

k1(ν1 − ν0)
, δ0 :=

µν0
ε
. (6)

From these definitions, one has the equivalences:

k1 < (1− µ) ⇐⇒ ν0 < ν1, (7)

k1 = (1− µ) ⇐⇒ ν0 = ν1 = ν, (8)

k1 > (1− µ) ⇐⇒ ν1 < ν0. (9)

Moreover hypothesis (H2) implies that 0 < ν0 ≤ 1 and
0 < ν1 ≤ 1.
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FIG. 3: Existence of equilibria in four different scenarios:
(deleterious and neutral) 0 < k1 < 1−µ, k1 = 1−µ, k1 ≥ 1−µ
and (lethal) k1 = 0, respectively. The result are displayed in-
creasing

√
α from the SMR model, with 0 . √α� 1) to the

GR, with
√
α = 1) models. Here ν0 = ε/(1−µ) and ν1 = ε/k.

Proposition 1 System (1) presents the following equi-
libria:

1. In the Deleterious (0 < k1 < 1) and neutral (k1 =
1) cases, there are three possible equilibrium points:

• Total extinction: the origin, O = (0, 0, 0, 0).

• Master sequences’ extinction: if
√
α > ν1 one

has the point P1 = p∗1(0, 0, 1,
√
α), where p∗1 =

cα(
√
α− ν1).

• Coexistence of genomes: if
√
α > ν0 and

ν0 < ν1, we have P2 = q0 (1,
√
α, δ, δ

√
α),
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p0(t)/(n0(t) + p0(t)) (green); and p1(t)/(n1(t) + p1(t)) (blue).

where q0 =
cα(
√
α− ν0)

1 + δ
.

2. Lethal case (k1 = 0). We have two equilibrium
states:

• Total extinction: the origin, O = (0, 0, 0, 0).

• Coexistence of genomes: if
√
α > ν0 we have

the point P0
2 = q00

(
1,
√
α, δ0, δ0

√
α
)

where

q00 =
cα(
√
α− ν0)

1 + δ0
.

Note that for the lethal case no equilibrium state corre-
sponding to an error threshold is found, and only lethal
mutagenesis is the alternative state to the persistence of
all sequences. Figure 3 displays a diagram with the exis-
tence of the different equilibria in terms of the values of√
α and the parameters ν0, ν1.

Remark 1 The coexistence points P2 and P0
2 are located

on straight lines passing through the origin and director
vectors (1,

√
α, δ, δ

√
α) and (1,

√
α, δ0, δ0

√
α).

In the case µ = 1, there are no master sequences p0 ↔
n0, since all master sequences mutate with probability 1.
For this case, the equilibria are:

Proposition 2 If µ = 1, system (1) presents the follow-
ing equilibria:

1. In the deleterious and neutral cases: the origin O
(for any value of

√
α ∈ [0, 1]) and the point P1

given at the Proposition 1 provided
√
α > ν1.

2. In the lethal case, the unique equilibrium is the ori-
gin O, for any value of

√
α ∈ [0, 1].

Figure 4 displays time series achieving the equilibrium
points previously described. For low mutation rates, both
(+) and (-) sense strands persist, and thus P2 is stable
(Fig. 4a). Note that close to the SMR the relative fre-
quency of (+) and (-) strands is asymmetric, as expected,
while for GR both polarities achieve similar population
values at equilibrium (see also Fig. 2). The increase in
mutation rates can involve the entry into error thresholds
(since P1 becomes stable), and the quasispecies is dom-
inated by the mutant sequences (Fig. 4b with α = 0.1
and Fig. 4c for α = 0.1 and α = 0.9). The relative pop-
ulation of master (green) and mutant (blue) (+) sense
sequences is displayed in the second and fourth columns
of Fig. 4. Here also the relative frequencies of p0,1 achieve
values close to 0.5 for the GR model, indicating that the
production of both strands polarities occurs at similar
rates.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 26, 2017. ; https://doi.org/10.1101/239921doi: bioRxiv preprint 

https://doi.org/10.1101/239921
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0 0,2 0,4 0,6 0,8 1
0

0,1

0,2

0,3

0,4

0,5

0 0,2 0,4 0,6 0,8 1
0

0,1

0,2

0,3

0,4

0,5

0 0,2 0,4 0,6 0,8 1
0

0,1

0,2

0,3

0,4

0,5

− µ)

E
q

u
ili

b
ri
u

m
 p

o
p

u
la

ti
o

n
s

E
q

u
ili

b
ri
u

m
 p

o
p

u
la

ti
o

n
s

E
q

u
ili

b
ri
u

m
 p

o
p

u
la

ti
o

n
s

− µ)

a

− µ)

− µ) − µ)

− µ)

b

c

FIG. 5: Equilibrium populations at increasing mutation rate
µ, with α = 0.1 (first column) and α = 0.9 (second col-
umn). We analyze three different cases with: k1 = 0.1 (a);
k1 = 0.5 (b); and k1 = 0.9 (c). In all of the panels we have set
ε = 0.1 and the initial condition (p0(0), n0(0), p1(0), n1(0)) =
(0.1, 0, 0, 0). Here, as in Fig. 4: (+) sense master (solid
black line); (+) sense mutant (solid red line); (-) sense master
(dashed black line); and (-) sense mutant (dashed red line).

Figure 5 displays the equilibrium populations of the
four state variables at increasing mutation rates com-
puted numerically. The first column displays the results
for the SMR model (α = 0.1) while the second one dis-
plays the same results for α = 0.9, a case close to the GR
model. When the fitness of the mutants is low, the SMR
is less robust to extinction i.e., lethal mutagenesis, at in-
creasing mutation, and extinction under GR takes place
at higher mutation rates (see Fig. 5a). For the cases in
which the fitness of mutants is higher (Fig. 5b,c) the full
extinction of genomes is replaced by an error threshold,
since there exists a critical value of µ involving the dom-
inance of the mutant genomes and the extinction of the
master sequences.

In the following sections we generalize the results dis-
played in Figs. 4-6 by means of a deep analysis of the
stability and the bifurcations of Eqs. (1)-(4).

IV. LOCAL STABILITY OF THE EQUILIBRIA

This section is devoted to the study of the linear (and
also in the majority of cases of the nonlinear) stability
of the equilibria found in the previous section. We will

consider separately the three equilibrium points O, P1

and P2. As it is standard, it will performed by con-
sidering the linearized system around them. Particular
attention will be given to the change of stability of the
equilibrium points that can indicate the presence of bifur-
cations, which are investigated in Section V. From now
on we denote by F the vector field related to our system
given by Eqs. (1)-(4).

A. Stability of the origin

Proposition 3 Let us consider the constants ν0, ν1, cα
defined in (5). Then, the jacobian matrix at the origin
DF (O) has the following eigenvalues:

λ1 = −ε+
√
α(1− µ),

λ2 = −ε−√α(1− µ),

λ3 = −ε+ k1
√
α,

λ4 = −ε− k1
√
α.

Observe that all of them are real and that λ2, λ4 are al-
ways negative since 0 < µ < 1 and k1 ≥ 0. This means
that the linear (and local nonlinear) stability of the ori-
gin will be determined by the signs of λ1 and λ3. Let us
consider the following two cases:

1. Deleterious and neutral case (0 < k1 ≤ 1): the
three following scenarios hold:

(i) If k1 < 1 − µ or, equivalently, ν0 < ν1: The
origin O is asymptotically stable (a sink) for√
α < ν0 and unstable for

√
α > ν0. For√

α = ν0 we have the birth of P2. More pre-
cisely, if ν0 <

√
α < ν1 then dimWu

loc(O) = 1
and if

√
α > ν1 then dimWu

loc(O) = 2, where
Wu

loc(O) denotes the local unstable invariant
manifold of the equilibrium point O.

(ii) If k1 = 1 − µ or, equivalently, ν0 = ν1 = ν:
In this situation, O is asymptotically stable (a
sink) for

√
α < ν and unstable for

√
α > ν.

This change in its stability coincides with the
birth of P1. Recall that if ν0 = ν1 the point
P2 does not exist. Moreover, when crossing
the value

√
α = ν one has that dimWu

loc(O)
passes from 0 to 2.

(iii) If k1 > 1−µ or, equivalently, ν1 < ν0: Again,
the origin is asymptotically stable (a sink) for√
α < ν1 and unstable for

√
α > ν1, coinciding

with the birth of the equilibrium point P1. As
in the precedent case, no point P2 exists. As
above, if ν1 <

√
α < ν0 then dimWu

loc(O) = 1
and if

√
α > ν0 then dimWu

loc(O) = 2,

2. Lethal case (k1 = 0): Taking into account again
Proposition 1, the origin O changes its stability
from asymptotically stable (a sink) to unstable (a
saddle) when

√
α crosses ν0. As above, this coin-

cides with the birth of P2.
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FIG. 6: Local stability of the origin O in three different scenarios: (a) 0 < k1 < 1 − µ; (b) k1 = 1 − µ; (c) k1 ≥ 1 − µ (AS
means “asymptotically stable”; U denotes “unstable” and in all these cases means saddle type). Below each case we plot the
eigenvalues of DF (O) increasing

√
α with µ = 0.5, ε = 0.1, and: k1 = 0.25 (a); k1 = 0.5 (b); and k1 = 0.75 (c). Here λ1 (red),

λ2 (blue), λ3 (green), and λ4 (magenta). Phase portraits projected in the subspace (p1, n1) of the phase space Π are displayed
setting µ = 0.6, ε = 0.1, and k1 = 0.15 (a), k1 = 0.4 (b), and k1 = 0.75 (c). Each panel corresponds to a value of

√
α: 0.15

(a.1); 0.25 (a.2); 0.75 (a.3); 0.15 (b.1); 0.5 (b.2); 0.95 (b.3); 0.09 (c.1); 0.2 (c.2); 0.5 (c.3). Fixed points: O (magenta); P1

(blue); P2 (orange). The red orbit in panel a.2 shows a trajectory that approaches the origin O but then returns to P2.

Cases (i), (ii), and (iii) are displayed in Fig. 6a, b,
and c, respectively. Specifically, the local stability of the
origin for each case is shown as a function of

√
α: the

upper panels in Fig. 6 display how the origin becomes

unstable as the replication model changes from SMR to
mixed modes. This means that under SMR the sequences
are more prone to extinction, as suggested in [16]. These
stability diagrams are also represented by means of the
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Section IV.B. given by: k1 < 1− µ (a); k1 = 1− µ (b), and k1 > 1− µ (c), respectively, with µ = 0.5 and k1 = 0.25, 0.5, and
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FIG. 8: (a) Eigenvalues of DF (P2) (deleterious case) in the
√
α-axis and 0 < k1 < 1−µ: λ1 (red), λ2 (blue), λ+ (green) and λ−

(magenta). The parameters have been set to µ = 0.5, k1 = 0.25, and ε = 0.1. Remind that ν0 = ε/(1− µ). (b-c) Eigenvalues
of DF (P0

2 ) (lethal case) in the
√
α-axis: λ1 (red), λ2 (blue), λ3 (green) and λ4 (magenta). From left to right: (i) λ1, λ2; (ii)

λ+, λ− and (iii) all four eigenvalues with µ = 0.5 and k1 = 0.25. The value of the parameter ε as been set to 0.1.

eigenvalues λ1...4. The phase portraits display the orbits
in the subspace (p1, n1). Note that the label of each phase
portrait corresponds to the letters in the upper panels.
Panels a.1, b.1, and c.1 show results when the origin is
a global attractor. Panels a.2 and a.3 display the orbits
when the origin is unstable and the stable fixed point is
P2, where the four genomes coexist. Finally, panels b.2,
c.2, b.3, and c.3 display examples of a full dominance of
the mutant genomes. For these latter examples, the in-
crease of

√
α involves the change from the full extinction

towards the survival of the mutant sequences.

B. Stability of the point P1

Proposition 4 Let us assume
√
α > ν1, in order the

equilibrium points P1 to exist. Then, the eigenvalues
of the jacobian matrix DF (P1) are all real and they are
given by

λ1 = −ε+ (1− µ)ν1,

λ2 = −ε− (1− µ)ν1,

λ3 = −2ε,

λ4 = ε− k1
√
α.

The eigenvalues λ2 and λ3 are always negative. λ4 < 0
since

√
α > ν1 = ε/k1. Having in mind that ν0 = ε/(1−

µ), it is easy to check that:

λ1 < 0 if ν1 < ν0,

λ1 = 0 if ν1 = ν0,

λ1 > 0 if ν1 > ν0.

Therefore, in the deleterious-neutral case we have the fol-
lowing subcases:

(i) If k1 < 1 − µ or, equivalently, ν0 < ν1: P1 is
unstable (saddle). Indeed, dimW s

loc(P1) = 3 and
dimWu

loc(P1) = 1, where W s,u
loc (P1) denote the sta-

ble and unstable local invariant manifolds of P1.

(ii) If k1 = 1 − µ or, equivalently, ν0 = ν1 = ν: P1

has a 1-dimensional neutral direction (tangent to
the eigenvector associated to the eigenvalue λ1 = 0)
and a 3-dimensional local stable manifold.

(iii) If k1 > 1−µ or, equivalently, ν1 < ν0: In this case
P1 is a sink so, therefore, a local attractor.

Regarding the lethal case (k1 = 0), the eigenvalue λ4 = ε
is always positive and so P1 is unstable (saddle).
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FIG. 9: Bifurcations of the equilibrium points O,P1,P2 (deleterious-neutral cases) and P0
2 (lethal case). From top to bottom

and left to right: deleterious-neutral case, (i) 0 < k1 < 1− µ, (ii) k1 = 1− µ, (iii) k1 > 1− µ; and (iv) lethal case. The phase
portraits correspond to the parameter values indicated with the letters in the bifurcation diagrams with: k1 and

√
α = 0.85

(a); k1 = 0.4 and
√
α = 0.5 (b); k1 = 0.75 and

√
α = 0.5; and k1 = 0,

√
α = 0.5 (b). Initial conditions: p1(0) = n1(0) = 0

(a); p0(0) = n0(0) = 0.1 (b); and p0(0) = n0(0) = 0 (c-d). In all of the panels we use µ = 0.6 and ε = 0.1. Fixed points: O
(magenta); P1 (blue); P2 (orange); P0

2 (green).

The proof follows from straightforward computations.
Figure78 provides the computation of the eigenvalues

λ1...4 for the fixed point P1.

C. Stability of the points P2 and P0
2

From Section III we know that the equilibrium point
P2 exists if

√
α > ν0 and in the following two cases:

1. In the deleterious case (0 < k1 < 1) provided that
0 < k1 < 1− µ (or, equivalently, ν0 < ν1).

2. In the lethal case (k1 = 0).

Next proposition determines the local stability of P2 in
these two situations.

Proposition 5 Let us assume that
√
α > ν0 in order P2

and P0
2 to exist. Then, the eigenvalues of the differential

DF (P2) and DF (P0
2 ) are, respectively:

1. In the deleterious case (0 < k1 < 1) provided that
0 < k1 < 1− µ (or, equivalently, ν0 < ν1):

λ1 = −2ε, λ2 = −ε− k1ν0,
λ± = − 1

2(1− µ)
(A± |A− 2((1− µ)− k1)ε|) ,

where A =
√
α(1− µ)2 − k1ε. Notice that assump-

tions
√
α > ν0 and 0 < k1 < 1 − µ imply that

A > 0.
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FIG. 10: Two-dimensional parameter spaces displaying the stability of the fixed points. (a) (
√
α, k1)-plane bifurcation diagram

for the deleterious-neutral cases. The thick red line indicates the boundary for the full dominance of the mutant sequences
as a function of k1. Crossing this boundary (vertical red arrows) causes the extinction of the master sequences p0, n0 and
the dominance of the pool of mutants (green surface). Below this line all genomes coexist (blue area). (b) (

√
α, 1 − µ)-plane

bifurcation diagram indicating the stability of the fixed points for the lethal case. The vertical black lines indicate the entry
into lethal mutagenesis, where full extinctions occur (light blue). The regions with survival of all sequences is colored in orange.

2. In the lethal case (k1 = 0):

λ1 = −2ε,

λ2 = −ε,

λ± = − (1− µ)

2

√
α±

∣∣∣∣
(1− µ)

2

√
α− ε

∣∣∣∣ .

Then, in both cases all four eigenvalues are real and neg-
ative, and so the equilibrium points P2 and P0

2 are sinks
for any

√
α > ν0.

Figure 8 displays the eigenvalues λ1...4 as a function of√
α for the fixed point P2 (Fig. 8a), and for the point P0

2

(Fig. 8b,c).

V. BIFURCATIONS

Essentially the system suffers transcritical bifurca-
tions. These bifurcations coincide with the appearance of
a new equilibrium point, P1, P2 or P0

2 . It is remarkable
that the latter equilibria does not suffer, in principle, any
bifurcation. Let us detail them in all our cases. Namely,

1. Deleteterious-neutral case (0 < k1 ≤ 1):

(i) Case 0 < k1 < 1−µ (that is, ν0 < ν1): the ori-
gin O is a sink up to

√
α = ν0. At that point,

the equilibrium point P2 appears. Then, O

changes its stability by means of a transcrit-
ical bifurcation, becomes a saddle point (un-
stable), with dimWu

loc(O) = 1. The coexis-
tence equilibrium point P2 is a sink (i.e., an
attractor) for

√
α ∈ (ν0, 1]. At

√
α = ν1,

the equilibrium point P1 appears. It will be
a saddle point (with dimWu

loc(P1) = 1) for√
α ∈ (ν1, 1]. At this point,

√
α = ν1, the di-

mension of Wu
loc(O) increases to 2, remaining

like this up to
√
α = 1.

(ii) Case k1 = 1 − µ (that is, ν0 = ν1): in
this situation there are only two equilibrium
points, O and P1, the latter appearing at√
α = ν0 = ν1. As above, the origin O is

a sink up to
√
α = ν0. With the appearing

of P1 it undergoes a transcritical bifurcation
leading it to unstable, precisely, a saddle point
with dimWu

loc(O) = 2. Concerning the point
P1, linearisation criterium does not decide its
nonlinear local stability since it has (linear)
centre and stable local invariant manifolds of
dimension 1 and 3, respectively. No others bi-
furcations show up.

(iii) Case k1 > 1 − µ (that is, ν1 < ν0): similarly
to the precedent cases, the origin is a sink (an
attractor) until the appearance of the equilib-
rium P1 at

√
α = ν1. At this point, O be-

comes unstable, a saddle with dimWu
loc(O) =
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√
α,

< k11 -

(1− µ)

< k1

= ε

µ = µc = 1− ε
√
α
−1

coexistence of sequences

FIG. 11: Phase diagrams for the deleterious-neutral case com-
puted numerically in the parameter space (

√
α, µ). The equi-

librium state is represented using the same colors than in Fig.
10a. The critical mutation rates involving the entrance into
error threshold is displayed in red. The yellow arrows indicate
the entrance into lethal mutagenesis. This plot has been built
using (p0(0) = 0.1, n0(0) = 0, p1(0) = 0, n1(0) = 0) as initial
conditions. The same results are obtained with initial condi-
tions (1, 0, 0, 0). Notice that lethal mutagenesis is replaced by
the error catastrophe as α increases.

1. Later on, at
√
α = ν1, the dimension of

Wu
loc(O) increases to 2, keeping this dimension

until
√
α = 1. No bifurcations undergone by

the point P1, which is a sink for
√
α ∈ (ν0, 1].

2. Lethal case (k1 = 0): there are only two equilibria:
the origin O and the coexistence point P0

2 , this lat-
ter appearing at

√
α = ν0. The origin is a sink for√

α ∈ (0, ν0), undergoes a transcritical bifurcation
at
√
α = ν0, becoming unstable (saddle point) with

dimWu
loc(O) = 1. The point P0

2 is always a sink.

Figure 9 summarizes the bifurcations found in Eqs. (1)-
(4) obtained by choosing different values of k1 and tuning
α from the SMR to the GR model. Here, for complete-
ness, we overlap the information on stability for the ori-
gin, O, displayed in Fig. 6. Several phase portraits are
displayed for each case. The panel in FIg. 9a shows the
orbits for

√
α = 0.85 in the subspace (p0, n0), close to the

GR mode. Here the attractor is P2, which is asymptoti-
cally globally stable and involves the coexistence between
master and mutant genomes. For the case k1 = 1−µ and
for
√
α = 0.5 the attractor achieved is P1, indicating that

the population is dominated by the pool of mutants at
equilibrium (Fig. 9b). The same asymptotic dynamics is
found in the phase portrait of Fig. 9c. Finally, for k1 = 0
we plot a case for which P2 is also globally asymptotically
stabe, while O is unstable (Fig. 9d).

Let us now focus our attention on the bifurcation dia-
gram for the deleterious-neutral case. In this context, for
a given value 0 < µ < 1 we consider a plane in the pa-
rameters

√
α and k1. By hypothesis (H2), the diagram

is restricted to the rectangle (
√
α, k1) ∈ [0, 1] × [ε, 1].

The bifurcation curves
√
α = ν1 and

√
α = ν0 are, re-

spectively, the hyperbola
√
αk1 = ε and the vertical line√

α = ε/(1 − µ). The three colored areas in Fig. 10a
correspond to the ω-limit of the solution starting with
initial conditions p0(0) = 1, n0(0) = p1(0) = n1(0) = 0
(the same result hold with p0(0) = 0.1, n0(0) = p1(0) =
n1(0) = 0). Namely, convergenc to the origin O (red area
); convergence to the equilibrium point P1 (light green
area); attraction by the equilibrium point P2 (blue area).
Observe that, when crossing these two bifurcation curves
the equilibrium points change stability - by means of a
transcritical bifurcation - or change the dimension of its
associated local unstable invariant manifold (when they
are saddles).

Similarly, we can plot a bifurcation diagram in the
lethal case (k1 = 0, Fig. 10b), now depending on the
parameters (

√
α, 1− µ). Again, hypothesis (H2) implies

that it takes places in the rectangle [0, 1] × [ε, 1]. The
bifurcation curve

√
α = ν0 becomes a branch of the hy-

perbola
√
α(1 − µ) = ε. This curve also divides the

domain in two coloured areas: a blue one, at the left-
hand side of the hyperbola, characterized by the fact
that the equilibrium point O, the origin, is the ω-limit of
the solution starting at the initial conditions p0(0) = 1,
n0(0) = p1(0) = n1(0) = 0; an orange one, located on
the right-hand side of the hyperbola, where the equilib-
rium point P0

2 is this ω-limit. Figure 11 displays the
regions in the parameter space (

√
α, µ) where the dif-

ferent asymptotic states (obtained numerically) can be
found for the detelerious-neutral cases: sequences extinc-
tion (red); dominance of mutant sequences (green); and
coexistence of sequences (blue). Notice that these regions
obtained numerically perfectly match with the analytical
results derived in the article. In this plot we can identify
the critical mutation values causing lethal mutagenesis
(yellow arrows in Fig. 11), which occurs for

√
α < ε/k1.

Above this threshold, lethal mutagenesis is replaced by
the error catastrophe (red line in Fig. 11), with a critical
mutation rate not depending on α. Notice that when the
replication mode is close to the SMR lethal mutagenesis
is achieved for lower mutation rates. This means that
replication modes departing from the SMR provide the
sequences with more resistance to lethal mutagenesis.

Finally, in Fig. 12 we display the basins of attraction of
the fixed points for the neutral and deleterious mutants
displayed in Fig. 10a. The red arrows indicate those
values of k1 responsible for the dominance of the mutant
sequences (first and second rows in Fig. 12). Also, we
computed numerically the relative populations for the
master genomes (second row in Fig. 12), as well as of
the mutants (third row) and the master and mutant (+)
sense sequences.
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FIG. 12: Phase diagrams for the deleterious-neutral case displayed in Fig. 10a. We display the asymptotic dynamics in the
parameter space (

√
α, k1), with (a) µ = 0.25 and ε = 0.1; (b) µ = 0.5 and ε = 0.1; (c) µ = 0.75 and ε = 0.15; (d) µ = 0.9 and

ε = 0.09. Legend: origin O (dark blue); P1 (light-blue); P2 (light-grey); P0
2 (light-red) and “no convergence” (dark red). Below

the phase diagrams we display the equilibrium populations obtained numerically for variables: p0 + n0 (upper row); p1 + n1

(mid row); and p0 + p1 (lower row) O. The horizontal white lines in the upper row display those critical values k1 involving
the dominance of the mutant sequences.

VI. CONCLUSIONS

The evolutionary dynamics of RNA viruses has been
largely investigated seeking for critical thresholds involv-
ing error catastrophes and lethal mutagenesis [17, 18, 22].
Previous research on viral RNA replication modes has
focused on theoretical and computational studies aim-
ing at describing the evolutionary outcome of RNA se-
quences under the Stamping Machine Replication (SMR)
and Geometric Replication (GR) modes. Smooth transi-
tions have been identified [13, 19]. For instance, a simple
model considering (+) and (-) sense genomes under dif-
ferential replication modes identified a transcritical bi-
furcation [16]. This model, however, did not consider
evolution. In this article we have studied a simple model
considering both (+) and (-) sense sequences with dif-
ferential replication modes and evolving on a single-peak
fitness landscape. Despite the simplicity of this land-

scape, being highly unrealistic, it has been used in mul-
tiple models as a simple approach to the dynamics of
RNA viruses [17, 18]. The model studied here has al-
lowed us to derive the critical mutation values involving
error thresholds and lethal mutagenesis considering three
different types of mutants spectra, given by neutral, dele-
terious, and lethal mutants.

In the deleterious case, there are three possible scenar-
ios when increasing the value of µ (we omit the trivial
total extinction solution which is always assumed as a
possible equilibrium): if 0 < k1

√
α < ε, that is, close

to the SMR mode, there is no nontrivial equilibrium so-
lution. This happens for any µ > 0. In the region of
parameters ε <

√
α < ε/k1, between the SMR and GR

modes (depending on the particular values of ε and k1),
the bifurcation undergone by the equilibria is quite steep.
It passes from a situation with coexistence equilibrium
to total extinction equilibrium when crossing the curve
µ = µc = 1 − (ε/

√
α). For ε/k1 <

√
α < 1, which
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includes always the GR case. When increasing µ, the
systems evolves from coexistence to master sequences’
extinction when crossing the critical value µ = 1− k1.

Summarizing, the error threshold is achieved when the
mutation rate is above the critical value µc, in the delete-

rious case is given by µc = 1− ε√
α

if ε <
√
α <

ε

k1
; and

µc = 1− k1 if
ε

k1
<
√
α < 1. In the lethal case, there are

only two scenarios: for 0 <
√
α < ε (that is, almost pure

SMR-mode), there are no nontrivial equilibria. For the
rest of cases, that is, ε <

√
α < 1 the possible equilibrium

solution goes from coexistence to total extinction. Our
results have allowed us to relate the processes of lethal
mutagenesis and error catastrophe, establishing the para-
metric conditions making theoretical viral quasispecies to
shift from one phenomenon to the other.
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VII. APPENDIX

A. Proof of Proposition 1

Let us deal, first, with the deleterious case (0 < k1 <
1). In this framework, equilibrium states will come from
the solutions of the following system of non-linear equa-
tions:

(1− µ)n0φ = εp0, (10)

α(1− µ)p0φ = εn0, (11)

(µn0 + k1n1)φ = εp1, (12)

α(µp0 + k1p1)φ = εn1. (13)

It is clear that the origin O is a fixed point of our system
in all the cases. To find nontrivial solutions we distin-
guish three different scenarios for these equilibria: (i)
master sequences extinction; (ii) mutant sequences ex-
tinction and (iii) coexistence among all sequences.

(i) Case p0 = n0 = 0 (master sequences extinction):
If we assume p1 = 0, substituting in equation (13)
and using that ε 6= 0, we get n1 = 0 and there-
fore, the equilibrium is O = (0, 0, 0, 0), the trivial
solution. A symmetric situation undergoes when
we start taking n1 = 0.

Thus, let us assume that p1n1 6= 0. Replacing p0 =
n0 = 0 in (12)–(13) and dividing such equations
we get p1/n1 = n1/(αp1) and so n1 =

√
αp1. This

division is well-defined since p1 > 0, k1 > 0 and φ 6=
0 (if φ = 0 it is straightforward to check that it leads
to the origin O as fixed point). From equation (13)
we obtain ε

√
α = αk1(1−√αp1 − p1) and thus

p1 = p∗1 =
1√

α(1 +
√
α)

(
√
α− ν1)

= cα(
√
α− ν1),

where ν1 and cα have been defined in (5). There-
fore, since n1 =

√
αp1 we get the equilibrium point

P1 = p∗1 (0, 0, 1,
√
α) provided

√
α > ν1 (since we

are interested in nontrivial equilibrium points with
biological meaning).

(ii) Case p1 = n1 = 0 (mutant sequence extinction): in
this scenario one has to solve

(1− µ)n0(1− p0 − n0) = εp0,

α(1− µ)p0(1− p0 − n0) = εn0,

µn0(1− p0 − n0) = 0,

αµp0(1− p0 − n0) = 0.

As before, both cases p0 = 0 and n0 = 0 lead to
the equilibrium point O. So let us consider the
case of p0n0 6= 0. From the last two equations it
follows that p0+n0 = 1 and substituting in the two
ones we get p0 = n0 = 0, which is a contradiction.
So there is no nontrivial equilibrium points with
p1 = n1 = 0.

(iii) Coexistence sequences equilibria: multiplying
equation (11) by p0 and subtracting equation (10)
multiplied by n0 it turns out that (1 − µ)φ(αp20 −
n20) = 0. Since 0 < µ < 1, this leads to three possi-
bilities, namely, (a) φ = 0 (that is p0+n0+p1+n1 =
1) or (b) n0 =

√
αp0 with φ 6= 0 and (c) φ = 0 and

n0 =
√
αp0.

Case (c) does not apply. Indeed, substituting φ = 0
and n0 =

√
αp0 into equation (10) one gets that

p0 = 0 and so n0 = 0, which is not possible. A
similar argument shows that case (a) does not hap-
pen. In fact, taking φ = 0 in equations (10)–(13)
leads to p0 = n0 = p1 = n1 = 0 which contradicts
φ = 0 ⇔ p0 + n0 + p1 + n1 = 1. Thus, let us deal
with case (b).

Substituting n0 =
√
αp0 in (10) and using that

p0 6= 0 (if p0 = 0 ⇒ n0 = 0, which corresponds
to the master sequences extinction case) it turns
out that

(1− µ)
√
αφ = ε⇒ φ

√
α =

ε

1− µ ⇒ φ
√
α = ν0.

It is straightforward to check that equation (11)
leads to the same condition. Performing again the
change n0 =

√
αp0 onto equations (12) and (13)

one gets

µ
√
αp0φ+ k1n1φ = εp1, (14)

αµp0φ+ αk1p1φ = εn1.

Computing the division between equation (12)
and (13), namely,

µ
√
αp0 + k1n1

α(µp0 + k1p1)
=
p1
n1

⇒ µ
√
αp0n1 + k1n

2
1 = p1α(µp0 + k1p1)

⇒ µp0
√
α(n1 −

√
αp1) = k1(αp21 − n21),

one gets

µp0
√
α(n1 −

√
αp1)

= −k1(n1 −
√
αp1)(

√
αp1 + n1).

So now we have two possibilities: n1 =
√
αp1 or

n1 6=
√
αp1. Observe that the latter cannot be since

in that case we would have that p0 = − k1
µ
√
α

(n1 −√
αp1) < 0, which is not possible because p0 is pos-

itive. Therefore, it must be n1 =
√
αp1. Substi-

tuting it into (14) we have µp0ν0 + k1p1ν0 = εp1,
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which implies

µp0 +

(
k1 −

ε

ν0

)
p1 = 0.

Notice that k1 − (ε/ν0) = 0⇔ ν0 = ν1. In fact, we
have that ν0 6= ν1. Indeed, if this term vanished we
would have p0 = 0 and thus n0 = 0, which gives
rise to point P1.

Hence, if k1 − (ε/ν0) 6= 0, it follows that

p1 =
µ

ε
ν0
− k1

p0 (15)

=
µν0

ε− k1ν0
p0 =

µν0
k1(ν1 − ν0)

p0 = δp0.

Thus, φ = 1−(p0+n0+p1+n1) = 1−(1+
√
α)p0−

(1 +
√
α)p1 and so

p0 + p1 = cα(
√
α− ν0)

Combining the previous relation with (15) the fol-
lowing solution is obtained

p0 = q0 =
cα(
√
α− ν0)

1 + δ
,

n0 =
√
αq0,

p1 = δq0,

n1 = δ
√
αq0,

with ν0, cα, δ defined in (5)–(6), which leads to the
coexistence equilibrium state

P2 = q0
(
1,
√
α, δ, δ

√
α
)
,

for
√
α > ν0 and ν0 < ν1.

Concerning the neutral case (k1 = 1), it is easy to check
that all the computations carried out for the deleterious
context are also valid for this case.

And the last, but not least, case corresponds to the lethal
framework (k1 = 0). Equilibrium states must be solution
of the system

(1− µ)n0φ− εp0 = 0, (16)

α(1− µ)p0φ− εn0 = 0, (17)

µn0φ− εp1 = 0, (18)

αµp0φ− εn1 = 0. (19)

Again, the origin O is a trivial fixed point. To seek for
nontrivial equilibria we take into account two scenarios:
(a) p0 = 0; (b) p0 6= 0.

(a) Case p0 = 0: From the equation (16) we get
(1 − µ)n0φ = 0. Since 0 < µ < 1 we have three
possibilities: n0 = 0, φ = 0 or both. It is ob-
vious that first and third cases lead to the origin
O. Regarding to the case with φ = 0, it follows
that n0 + n1 + p1 = 1. Substituting it into equa-
tions (17)–(19) we get n0 = p1 = n1 = 0, which
contradicts the previous equality.

(b) Case p0 6= 0: From (16) we have that neither n0 nor
φ vanish. Performing n0× (16) minus p0× (17) one
gets that (1−µ)φ(n2

0−αp20) = 0 and so n0 =
√
αp0

since 0 < µ < 1 and φ 6= 0. Substituting the latter
equality into (16) it follows that (1−µ)

√
αφ = ε⇒√

αφ = ν0.

Subtracting n0× (19) from αp0× (18) one has
εp0
√
α(
√
αp1 − n1) = 0, so then n1 =

√
αp1. On

the other hand,

√
αφ = ν0 ⇒ 1− (1 +

√
α)(p0 + p1)

=
ν0√
α
⇒ p0 + p1 =

√
α− ν0√

α(1 +
√
α

= cα(
√
α− ν0).

And last, from (19) and using that
√
αφ = ν0 and

n1 =
√
αp1 we get αµp0φ = εn1 ⇒ p1 = δ0p0.

Therefore the equilibrium point is given by

P0
2 = q00

(
1,
√
α, δ, δ

√
α
)
,

where q00 = cα(
√
α−ν0)/(1+δ0) and provided that√

α > ν0 (to have biological meaning).

B. Proof of Proposition 2

As mentioned before, the case µ = 1 corresponds to the
situation when there is no autocatalysis in the master
sequence and so it mutates with probability 1. Thus,
concerning their equilibrium points we have:

• In the deleterious and neutral cases, substituting
µ = 1 into equations (10)–(13), one gets the equa-
tions

ε0p0 = 0, εn0 = 0,

(n0 + k1n1)φ = εp1,

α(p0 + k1p1)φ = εn1.

From the two first equations it follows that p0 =
n0 = 0 and, consequently

k1n1φ = εp1, αk1p1φ = εn1. (20)

Again, we distinguish several possibilities:

– If n1 = 0 then p1 = 0 and so we obtain the
origin.

– If p1 = 0 then n1 = 0 and therefore the equi-
librium point is again the origin.

– In case that n1 + p1 = 1, n1 6= 0, p1 6= 0 it
follows that φ = 0 and so p1 = n1 = 0 which is
a contradiction with the fact that n1 +p1 = 1.

– Finally, if n1 6= 0, p1 6= 0, φ 6= 0, we can divide
them and get αp1/n1 = n1/p1. Consequently,
n1 =

√
αp1. This gives rise to an equilib-

rium of the form (0, 0, p1,
√
αp1). Substituting
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this form into the first equation of (20), one
obtains p1 = cα(

√
α − ν1), defined provided√

α > ν1, which corresponds to the point P1

in Proposition 1.

• In the lethal case, equilibria system (16)-(19) re-
duces to εp0 = 0, εn0 = 0, n0φ = εp1, αp0φ = εn1.
From the first two equations we have p0 = n0 = 0
and substituting in the second ones, it turns out
p1 = n1 = 0, that is, the origin.

C. Proof of Proposition 3

As usual, we use stability analysis of the linearised sys-
tem around the equilibrium to determine, when possible,
the local nonlinear stability of the point for the complete
system.

1. Deleterious and neutral case (0 < k1 ≤ 1): the
eigenvalues of the differential matrix

AO = DF (O) =




−ε 1− µ 0 0
α(1− µ) −ε 0 0

0 µ −ε k1
αµ 0 αk1 −ε


 ,

are λ1 = −ε +
√
α(1 − µ), λ2 = −ε − √α(1 − µ),

λ3 = −ε + k1
√
α, and λ4 = −ε − k1

√
α. It is

easy to verify that v3 = OP1 = (0, 0, 1,
√
α) and

v4 = (0, 0,−1,
√
α) are eigenvectors of λ3 and λ4,

respectively. It is also straightforward to check that




λ1 < 0 if
√
α < ν0,

λ1 = 0 if
√
α = ν0,

λ1 > 0 if
√
α > ν0,

and




λ3 < 0 if
√
α < ν1,

λ3 = 0 if
√
α = ν1,

λ3 > 0 if
√
α > ν1.

Thus, we have the following three cases:

• Case 0 < k1 < 1 − µ or, equivalently, ν0 <
ν1: the origin is a sink (an attractor) for α ∈
(0, ν0) and unstable (saddle) for

√
α ∈ (ν0, 1).

For α ∈ (ν0, ν1) one has dimWu
loc(O) = 1 and

if
√
α > ν1 then dimWu

loc(O) = 2.

• Case k1 = 1− µ or, equivalently, ν0 = ν1: the
origin is a sink for

√
α ∈ (0, ν0) and unstable

(saddle) for
√
α ∈ (ν0, 1). The dimension of

Wu
loc(O) is 2 in this interval.

• Case 1− µ < k1 < 1 or, equivalently, ν1 > ν0:
the origin is a sink if

√
α < ν1 and unsta-

ble (a saddle) for
√
α > ν1. The dimension

dimWu
loc(O) goes from 1 to 2 when

√
α crosses

ν0.

2. Lethal case (k1 = 0): The eigenvalues of

AO = DF (0, 0, 0, 0) =




−ε 1− µ 0 0
α(1− µ) −ε 0 0

0 µ −ε 0
αµ 0 0 −ε




are in this case

λ1 = −ε+
√
α(1− µ),

λ2 = −ε−√α(1− µ),

λ3 = −ε,
λ4 = −ε.

Observe that λ2 < 0, λ3 < 0 and λ4 < 0 so the
stability of O depends only on λ1. Indeed:





λ1 < 0 if
√
α < ν0,

λ1 = 0 if
√
α = ν0,

λ1 > 0 if
√
α > ν0.

Therefore, the origin is asymptotically stable for√
α < ν0 and becomes unstable for

√
α > ν0. This

situation is represented in Fig. 6.

D. Proof of Proposition 5

Remind that
√
α > ν0 since P2 exists. We distinguish

two cases:

1. Case 1: deleterious mutants (0 < k1 < 1) with
0 < k1 < 1 − µ (that is, equivalently, ν0 < ν1).
The expression of the eigenvalues can directly from
algebraic computations. They are all real. Observe
that λ1, λ2 and λ+ are negative. Concerning λ−,
notice that

|A− 2((1− µ)− k1)ε| < A

⇔ 0 < A− ((1− µ)− k1)ε < A.

The second inequality is trivially satisfied since (1−
µ)−k1 > 0 and ε > 0. Regarding the first one, one
can check that

0 < A− ((1− µ)− k1)

⇔ √α(1− µ)2 − k1ε > (1− µ)ε− k1ε
⇔ √α > ν0,

which is satisfied by hypothesis. Therefore, A−|A−
2((1 − µ) − k1)ε| > 0 and, consequently, λ− < 0.
This implies that the point P2 is a sink for any√
α > ν0.

2. Case 2: lethal mutants (k1 = 0). As above, the
expression for the eigenvalues follows from linear
algebra and straightforward computations. Again,
λ1, λ2, and λ− are all three real and negatives. Con-
cerning λ+ (real), we define B = (1−µ)

√
α/2. This
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implies that λ+ = −B + |B − ε|. Observe that
|B − ε| < B ⇔ 0 < 2B − ε. Right-hand inequal-
ity is trivial since ε > 0. Left-hand is also satisfied
since it is equivalent to

√
α > ν0. So, all four eigen-

values are real and negative which means that the
point P0

2 is a sink for any
√
α > ν0.
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