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Power Law Size Distributions in Geoscience Revisited

Alvaro Corral»?34> and Alvaro Gonzalez!

I Centre de Recerca Matematica, Edifici C, Campus Bellaterra, Barcelona, Spain, 2Departament de Matematiques,
Universitat Autonoma de Barcelona, Barcelona, Spain, 3Barcelona Graduate School of Mathematics, Edifici C, Campus
Bellaterra, Barcelona, Spain, *Complexity Science Hub Vienna, Vienna, Austria

Abstract The size or energy of diverse structures or phenomena in geoscience appears to follow
power law distributions. A rigorous statistical analysis of such observations is tricky, though. Observables
can span several orders of magnitude, but the range for which the power law may be valid is typically
truncated, usually because the smallest events are too tiny to be detected and the largest ones are limited
by the system size. We revisit several examples of proposed power law distributions dealing with
potentially damaging natural phenomena. Adequate fits of the distributions of sizes are especially
important in these cases, given that they may be used to assess long-term hazard. After reviewing the
theoretical background for power law distributions, we improve an objective statistical fitting method and
apply it to diverse data sets. The method is described in full detail, and it is easy to implement. Our analysis
elucidates the range of validity of the power law fit and the corresponding exponent and whether a power
law tail is improved by a truncated lognormal. We confirm that impact fireballs and Californian
earthquakes show untruncated power law behavior, whereas global earthquakes follow a double power
law. Rain precipitation over space and time and tropical cyclones show a truncated power law regime.
Karst sinkholes and wildfires, in contrast, are better described by truncated lognormals, although wildfires
also may show power law regimes. Our conclusions only apply to the analyzed data sets but show the
potential of applying this robust statistical technique in the future.

1. Introduction

Power law distributions, or more correctly, power law-like probability distributions, first appeared in the
study of the natural world in relation with some “human affairs.” It seems that the pioneer work was that
of Vilfredo Pareto, who, at the end of the nineteenth century, reported one of such distributions accounting
for the wealth of individuals (Kagan, 2014; Pareto, 1897). Some years later, Auerbach and Estoup showed
that the population of cities and the frequency of words in texts, respectively, follow essentially the same
statistical pattern (Newman, 2005). Since then, many social (Axtell, 2001; Clauset et al., 2009), technological
(Adamic & Huberman, 2002), communication (Corral et al., 2015; Moreno-Sanchez et al., 2016; Serra et al.,
2012), and biological systems (Camacho & Solé, 2001; Furusawa & Kaneko, 2003; Pueyo & Jovani, 2006)
have been found to display what is now called Zipf's law (Li, 2002), a type of power law-like distribution that
appears when counting the number of entities that constitute collections of entities, with the remarkable
characteristic that the power law exponent takes values close to 2. In geoscience, considerable interest in
power law distributions appeared in the 1980s of the past century. It was the appealing work of Mandelbrot
on fractals (Mandelbrot, 1983) which drew attention to the distribution of sizes of diverse geological objects
and structures, like lakes, faults, fault gouge, oil reservoirs, sedimentary layers, and even asteroids (Turcotte,
1997). Nevertheless, some of these systems had been explored much earlier; for instance, Bennet studied
fragments of broken coal in 1936, Korcak dealt with the distribution of islands in 1940, and the distribution
of lunar craters was reported in the 1930s separately by McDonald and Young (Cross, 1966). Turcotte (1997)
provides valuable bibliography on these issues. Remarkably, for these systems, when size is measured in
terms of a linear dimension (e.g., diameter), the power law exponents are considerably larger than 2; they
typically range from 2.4 to more than 4.

Around 1990, after the illuminating theory of Bak and coworkers on self-organized critical phenomena (Bak,
1996; Watkins et al., 2016), the interest in power law distributions was reinforced, in particular regarding the
“severity” or “size” of natural disasters and other catastrophic geophysical phenomena that can be consid-
ered to happen in terms of “avalanches” (events which suddenly release energy slowly accumulated in the
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system over a period). But it was 60 years earlier (1932) that Wadati had assumed a power law distribution
for the energy of earthquakes, whereas Ishimoto and Iida published in 1939 a power law for the distribution
of earthquake amplitudes recorded by a microseismograph (Utsu, 1999). Nowadays, these two power laws
are known to be different representations of the Gutenberg-Richter law of earthquake size (Kagan, 2002;
Kanamori & Brodsky, 2004). Following the seminal work of Bak (Bak, 1996; Bak et al., 1987), many authors
claimed power law distributions in systems as diverse as volcanic eruptions, rockfalls, landslides, forest fires,
solar flares, pulsar glitches, or biological extinctions (Bak, 1996; Malamud, 2004). Again, in contrast to Zipf's
law, the power law exponent is not constrained to be around 2 but shows considerable scatter between 1 and
2, depending on the system under consideration.

An important drawback of these studies has been statistical rigor. In most cases, the evidence for power law
distributions was just an apparent linear behavior in a log-log representation of the probability density or
of the complementary cumulative distribution. In some other cases, a linear regression straight line was fit
by the least squares method, a procedure which can lead to substantial biases and wrong inferences when
applied to probability distributions (Clauset et al., 2009; White et al., 2008). More recent works have made
an effort to improve the statistical methodology.

In this paper, we attempt to give an overview of power law distributions in geoscience; however, due to the
heterogeneity of the approaches, a proper and fair comparison of results is impossible, and we have opted
for a revision of paradigmatic systems using a rigorous statistical protocol, which is an improvement of a
previous one (Deluca & Corral, 2013). Although the definitive recipe to fit power law distributions does not
yet exist, the method developed here is reasonable enough and fully objective. Due to many limitations, our
overview of power laws is far from systematic and we have selected instead a few representative examples
across the geosciences.

We will concentrate on the (spatial) size of structures on the solid Earth and atmosphere (karst sinkholes and
rain clusters) and on the size, in terms of energy or severity, of diverse natural events (earthquakes, wildfires,
tropical cyclones, amount of rainfall, and impact fireballs). All these examples relate to potentially damaging
natural phenomena for which adequate fits of their size distribution are especially important, given that
these fits (together with the temporal occurrence rate) are used for assessing the long-term hazard these
phenomena pose. Further examples with potential power law distributions have been quoted in geology
(Burroughs & Tebbens, 2001; Turcotte, 1997), hydrology (Aban et al., 2006), ecology (White et al., 2008), and
astrophysics (Aschwanden, 2013). We will not be able to approach other interesting geophysical variables,
such as distances between events and jumps (Corral, 2006; Davidsen & Paczuski, 2005; Felzer & Brodsky,
2006) or such as durations and waiting times (Corral, 2015), which have also been related in some way to
power law distributions, for example, for earthquakes (Bak et al., 2002; Corral, 2004), volcanic eruptions
(Cannavo & Nunnari, 2016), solar flares (Baiesi et al., 2006; Boffetta et al., 1999), solar wind (Wanliss &
Weygand, 2007), or geomagnetic storms (Morifia et al., 2019). Possible power law distributions of so-called
intensive variables, such as rain rate (Peters et al., 2010; Yano et al., 2004), are also disregarded in this paper.

As mentioned in the first paragraphs, power law-like distributions are far from being exclusive of geoscience
(Li, 2002). The interested reader can find extensive bibliography for biological systems (Muiioz, 2018), neu-
roscience (Chialvo, 2010), economy (Farmer & Geanakoplos, 2008), and technology (Adamic & Huberman,
2002). The ubiquity of power law-like distributions has induced some authors to claim for a common origin
for them (Bak et al., 1987; Bak, 1996), although a large variety of alternative explanations has been proposed
(Corominas-Murtra et al., 2015; Ferrer-i-Cancho, 2016; Miller, 1957; Mitzenmacher, 2004; Newman, 2005;
Penland & Sardeshmukh, 2012; Saichev et al., 2009; Simkin & Roychowdhury, 2011; Simon, 1955; Sornette,
2004; Tria et al., 2014). Our statistical analysis will not allow us to enter into mechanistic and generative
models and the debate associated to them; nevertheless, in the last section we provide a summary of these
explanations.

Thus, in the next section we explain untruncated and truncated power law distributions and the nuances
that distinguish them from power law-like distributions. Then, we expose our procedure to fit power law-like
distributions (which also applies to the lognormal and could be immediately extended to any other distri-
bution). We also explain a likelihood-ratio test to distinguish between power law tails and lognormal tails.
Finally, section 4 explains the data sets analyzed as well as the results obtained from them. The conclusions
are at the end.
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2. Power Law Distributions and Power Law-Like Distributions

Let us recall that the probability density f{x) of a continuous random variable is defined as the probability that
the random variable is between the values x and x + dx, divided by dx, where dx is the width of the interval
(also called bin). In the ideal mathematical case dx goes to zero (Ross, 2010) but in practice dx has to be wide
enough to make it possible the counting of several events per interval. In geoscience x may represent the
size of some geological structure (faults, islands, lakes, etc.) or of some geophysical phenomenon (energy of
earthquakes, amount of rain, etc.). It is noteworthy that f{x) is not a probability but a density of probability,
so it is a physical quantity with units of x~1.

Equivalently, the probability distribution can be described in terms of the complementary cumulative dis-
tribution function, S(x), which provides the probability that the random variable takes a value above x. Both
functions are related by means of

Foo= -5

and S(x) = /oo FOHdx .

Note that f(x) fulfills f{x) > 0and f_°:o f()dx = 1 (normalization), whereas S(x) is a nonincreasing function
of x with lim,_,_ S(x) = 1 (normalization) and lim,_, _S(x) = 0. In some literature it is difficult to guess if
the authors are dealing with f{x) or S(x) or with some variation of any of them. Sometimes, when f(x) or S(x)
are estimated from data, their dependence on x is referred to as the frequency-size relationship or even the

size-frequency distribution.

2.1. Untruncated Power Law Distribution
A continuous variable x is power law (pl) distributed (Johnson et al., 1994) if its probability density is given

by
C
S = 7

forx > aand fpl(x) = Oforx < a,with # > 1 and a the lower cutoff or lower truncation, fulfillinga > 0.
Normalization implies that the normalization constant C is determined by a and , and so

=222 )

forx > a.

In terms of the complementary cumulative distribution the power law is defined as

= ()"

which is g for fpl (x)and g — 1 for Spi(x). We take the convention that the exponent of the distribution is f, the
exponent of the density. In order to distinguish the power law distribution from the (upper) truncated power
law, introduced below, sometimes we may talk about “untruncated power law,” referring to the former,
although both distributions are unavoidably truncated from below (a > 0).

forx > aand S, (x) = 1forx < a.Note that there is some ambiguity regarding the power law exponent,

Two important properties of power law distributions are scale invariance and divergence of moments. The
first one means that power laws remain the same after appropriate changes of scale in x and f(x); for instance,
if fix) « 1/x*?, the change x — 100x and f — f/1000 leaves the resulting function the same (this does not
happen with an exponential, e.g., nor with any other function different than the power law). Thus, scale
invariance implies that no characteristic scale exists (Christensen & Moloney, 2005; Corral, 2008; Takayasu,
1989). Nevertheless, strictly speaking, scale invariance holds for power laws defined in the whole range
x > 0(e.g., Newton's law of gravitation), whereas due to normalization, power law distributions are defined
forx > a > 0; this prevents true scale invariance; in other words, the value of a sets a characteristic scale,
so one only may talk of scale invariance above the lower cutoff a.

Interestingly, for some systems the cutoff a seems to be so small that its value is unknown, which implies
that no characteristic scale shows up. This is the case of earthquakes, for instance. So the question “which
is the typical size of earthquakes in Japan or California?” cannot be answered, as no characteristic size
can be defined. Due to their scale-invariant properties, power law distributions are sometimes called fractal
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distributions, as by Turcotte (1997); nevertheless, we prefer the former terminology, which does not contain
any implicit reminiscence of self-similar geometry (one can ignore spatial structure, if it exists).

Divergence of moments means that if, for instance, the exponent is f§ < 2, the mean or expected value
of the variable (the first moment), (x) = f_°:° X f(x)dx, becomes infinite, in the same way that all higher
moments, (x*) = [% xkf(x)dx, with k > 1.If2 < p < 3, the first moment is finite but the second
moment (x?) and higher moments become infinite, and so on. Divergence of moments has the annoying
consequence that some important results of probability theory do not hold, as the law of large numbers
when g < 2 (Corral, 2015; Shiryaev, 1996). So, in this case one cannot estimate the mean of the distribution
from the sample mean, simply because the mean of the distribution is infinite and the sample mean cannot
converge to this value (Corral & Font-Clos, 2013). If 2 < # < 3, the standard central limit theorem does
not apply and the sample mean neither follows Gaussian statistics nor has a finite variability (Bouchaud &
Georges, 1990). If one takes logarithms on the expressions of f,,,(x) or S, (x) for a power law distribution, one
immediately realizes that both In S () and In Spi(x) are linear functions of In x. If the least squares method
is applied to the logarithm of the empirical estimations of f(x) or S(x), one can get an estimation of the
parameters f and a. However, one cannot do inference with the resulting parameters, as some requirements
of the theory of linear regression are not fulfilled. In addition, obtaining an accurate empirical estimation
of f(x) is not straightforward, as one needs to choose bins in a proper way (Deluca & Corral, 2013; Wand,
1997). Let us clarify that the least squares method is inappropriate to estimate probability distributions but
not to establish linear correlation between two variables, x and y (or logx and log y), for instance, nor to
curve fitting in general.

Despite the peculiar properties of power law distributions, estimation of their parameters is straightforward
using maximum likelihood. This is a method of estimation of parameters that gathers a number of desirable
properties (Casella & Berger, 2002), such as invariance under reparameterization (the resulting estimated
distribution does not depend on the choice of parameters) and invariance under change of variables (the
resulting description of the phenomenon does not depend on the selected random variable). When applied
to probability distributions that belong to the so-called exponential family (both power laws and truncated
power laws belong to this family, as well as the lognormal, truncated or not), maximum likelihood estimators
turn out to fulfill consistency (they are unbiased and convergent, asymptotically; i.e., the estimation tends
to the true value if the number of data is large), due to the uniqueness of the maximum (Pawitan, 2001),
and also fulfill asymptotic efficiency (they achieve the Cramér-Rao lower bound asymptotically, i.e., the
estimation tends to have the smallest possible variance among all the unbiased estimators) under some
standard regularity conditions (Pawitan, 2001).

The maximum likelihood estimation of the power law exponent yields (Clauset et al., 2009; Deluca & Corral,
2013)

ﬂpl (3)

S I

In(g/a)’
where g is the geometric mean of the sample, defined asIng = n~! 2?:1 Inx;, with n the size of the sample
and x; the n observations of the random variable. As f is determined from the sample, it is subject to statistical
uncertainty (it is a “statistic”) and its standard deviation or standard error is

oy =21, @

where # has to be understood here as the true value of the exponent (not the estimated one, although they
will be very close if n is large). Regarding the cutoff a, it is estimated as a, = min(x,, ...x,). The reason is
that as long as x; > a for all i, the larger a, the higher the likelihood. However, if a single i fulfills x; < a,

then the likelihood becomes zero (as f;;(x;) = 0). This implies that a has to grow up to the smallest value of
X; but not more.

Which is then the problem with power laws, if this estimation procedure is so straightforward? The key issue
is that in practice one does not deal with (pure) power law distributions but with power law-like distribu-
tions. These constitute a loose family of distributions (Farmer & Geanakoplos, 2008) with the characteristic
that, for a certain range of x, the distribution resembles in some undefined way a power law. Consider the
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so-called full-tails gamma (ftg) distribution (del Castillo et al., 2017)

_ 1 92 s 61 + X
0™ = o a5 0,705 (91 +x> &P <_ 0, >

with6;, > 0,6, > 0,and -0 < f < oo and with I'(1 — S, 6,/6,) the (upper) incomplete gamma function
(Abramowitz & Stegun, 1965). This distribution is a truncated gamma distribution (Serra & Corral, 2017)
extended to 1 — f < 0 and shifted to have support in the interval [0, c0). Let us consider 6, < 6,. In this
case the distribution resembles a power law in some range a < x < b, withf;, <« aandb <« 6,, but,
strictly speaking, that part of the distribution is not a power law. Interestingly, recent work (Voitalov et al.,
2018) has identified power law-like distributions with regularly varying distributions, for which S(x) is a
power law multiplied by a slowly varying (unknown) function. This leads to asymptotic power laws, which
is a concept in some cases similar but certainly different to our power law-like behavior (for which b can be

finite).

In practice, the disadvantage is that the real underlying theoretical distribution f(x) is unknown. For
instance, simple branching processes (bp; which are mean field models by construction) yield discrete prob-
ability distributions for their total number of elements x, which (close to their critical point and for large x)
lead to truncated gamma tails, fbp(x) o« x3/2g~x/8 (Corral & Font-Clos, 2013); but branching processes with
finite-size effects lead to more complicated functional forms for the tail, even in the critical case (Corral et al.,
2018). Beyond mean field, little is known, and of course, real systems are more complicated than any model.
On the other side, incompleteness effects for small values of x may provoke an underestimation on the count
of x and a deviation from a power law behavior, as modeled, for instance, by the full-tails gamma distribu-
tion above or by the genuine Pareto (par) distribution fpar(x) = (f — 1)0?/(0 + x)’; nevertheless, this sort
of modeling is ad hoc.

In summary, there are a number of processes and factors that trigger deviations from power law behavior
both for small and large values of x; however, these factors are difficult to parameterize. If one can disregard
large —x deviations (perhaps because the number of data is so low that the scale of deviations is not sam-
pled), one can model the data by a (pure) untruncated power law distribution, equations (1) and (2), but the
meaning of the parameter a is totally different than in the original definition, as a defines the scale at which
the small —x deviations become negligible, and values of x below a need to be disregarded. The rest of values
of x, those above a, will be considered in this paper to define the tail of the distribution. The main problem
in fitting power law-like distributions is finding the lower cutoff a. Note that in this context we will need to
distinguish between the total number of data N and the number of data in the power law range, n.

2.2. Truncated Power Law Distribution

If, in addition, there are deviations from power law behavior for large values of x and there is no information
on the shape of the tail, the situation gets worse. An option is to fit a truncated power law (tpl) distribution
(Aban et al., 2006; Burroughs & Tebbens, 2001; Deluca & Corral, 2013; Johnson et al., 1994) given by

__B-1 (ay
Sip o) = 2 (1 _c/ffl) (;)

fora < x < band f;(x) = 0 otherwise, witha > 0,b > 0,c¢ = a/b,and —c0 < f < oo (nevertheless,
the case of negative exponent corresponds to an increasing power law and is of little interest; the case § < 1
allows @ > 0). The limiting case = 1 needs a separate formulation (Deluca & Corral, 2013). It has to
become clear that we apply this distribution to the central part of the data, disregarding values of x outside
the interval [a, b]. Of course, the major problem is to find appropriate values of a and b. Again, we will
distinguish between the total number of data N and the number of data in the power law range,a < x < b,

denoted as n.
The alternative description in terms of the complementary cumulative distribution yields
(afx) 7t = !
1-—cf1
fora < x < b; Sy (x) = 1forx < aand Sy, (x) = 0forx > b. The limitb — co when f > 1 returns to
the usual power law, equations (1) and (2). Note that for the truncated power law, In fi, (x) is still a linear

function of Inx but In S, (x) is not. When g > 1, linearity between In S, ;(x) and Inx only takes place for
X < b.

Sip(®) =

tpl tpl
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The maximum likelihood estimation of the exponent f cannot be solved explicitly, and one is faced to the
numerical maximization of the likelihood or, equivalently, of the per-datum log likelihood (Deluca & Corral,
2013)

p-1 g
T ﬂlna Ina. (5)

‘Ctpl(ﬂ) =In

Care with numerical overflows must be taken when g gets close to one; see Deluca and Corral (2013). An
analytical expression for the standard deviation of § can be derived (Aban et al., 2006; Deluca & Corral,
2013); nevertheless, we will not use it (the reasons will become clear later, section 3.2). In the same way, the
maximum likelihood estimators of a and b, which are ay,; = min{x,, ... x,} and by, = max{x,, ...x,}, will
be meaningless for us, as these estimations assume that the data set is fixed, but we need to find precisely
which subset of the data may follow a (truncated) power law.

2.3. Double Power Law Distribution

It may happen that some data set is well fit by a truncated power law from x = a up to some value x = b,
and from x > b the data are also well fit by an untruncated power law. Let us relabel this crossover point
as b = 0. Then, it is clear that the data are fit by two power law regimes for x > a, and we may define the
double power law (dpl) distribution as

fdpl(x) =(1- Q

Hh-1 1 (9

b
_— —) for a<x<9,
6 A —-1\x

-1 Iz
ﬁzg <Q>2 for 6 <x,

Jap1 ) =¢q X

and zero for x < a and where the parameter q is chosen to ensure continuity between the two regimes at
x = 0, leading to

p—-1
(B = Det=h — (B, = B)

q:

and the two exponents fulfilling —co < f; < wand g, > 1,¢ = a/f and witha > 0if §; > landa > 0
if f; < 1. The complementary cumulative distribution function leads to

/04 -1
cl-h -1

9\l
Sapi (%) = q(;) for 0 <x,

S =g+ (1 —q) for a<x<9,

and zero forx < a.The sudden change of slope atx = 6 isunlikely to fit real-world distributions with a large
number of data, so some refinement in the parameterization may be needed to fit properly the crossover in
this case.

2.4. Change of Variables

A noteworthy issue comes from the fact that the variable x is not uniquely defined. For example, in terms of
size of objects, x can be the linear size, denoted by L or can be the volume V. Assuming a general relation
between both, V' « L? (with z = 3 for spherical or cubic objects), it can be shown that if one of them is
power law distributed, so is the other, both for untruncated and for truncated power laws (and also for the
double power law), and the power law exponents are related by

_ pL-1 ' (6)

By -1
This relation explains, at least in part, why the exponents f; of the distributions of geological objects become
solarge (even larger than 4) when the size is defined in terms of the linear size L. In terms of the volume V the
exponents become smaller. Note that this simple relation does not apply to the more complicated scenario
that arises, for example, when volumes have to be calculated from random cross sections (Gaonac'h et al.,
1996); see also Baddeley and Vedel Jensen (2005).
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3. Fitting of Power Law-Like Distributions

3.1. Clauset et al.’s Procedure

Drawbacks in fitting power law distributions were pointed out by Clauset et al. (2009) but were previously
noticed by other authors, such as Goldstein et al. (2004), Bauke (2007), and White et al. (2008). There is
an important confusion regarding the method and achievements of Clauset et al. (2009), as many authors
claim that they are using this method while they are just fitting by plain maximum likelihood estimation.
Summarizing, the Clauset et al.'s method (for an untruncated power law distribution) proceeds in two parts.
For the first part one calculates a tentative fit as follows

1. Pick a value of the lower cutoff a.

2. Fit, by maximum likelihood, a power law to the range x > a (using equation (3)). A value of § is obtained.

3. Calculate the Kolmogorov-Smirnov distance between the empirical distribution (for x > a) and the
theoretical distribution (using the value of g obtained in the previous step).

Repeat the procedure for all possible values of the lower cutoff and select the one which yields the minimum
Kolmogorov-Smirnov distance. The selected value of a has an associated value of the exponent g, and both
parameters define the tentative fit.

The second part of the procedure assigns a p value to the fit. One only needs to generate samples with the
same number of data than the original empirical data. These samples are obtained from bootstrap of the
empirical data for x < a and are simulated synthetic power laws for x > a (with the resulting value of f).
Applying the first part of the procedure to any of the synthetic samples, one obtains a distribution of the
minimized Kolmogorov-Smirnov distance, which allows one to define a p value as the probability that the
minimized distance takes a value larger than the one obtained empirically. At the end, the recipe is: Reject
the tentative fit if the p value is too low, according to the desired significance level; otherwise, there is no

reason for rejection and the power law fit is “accepted.”

Unfortunately, we have encountered several drawbacks of the Clauset et al.'s method. First, the method is ad
hoc and there is no justification why the minimization of the Kolmogorov-Smirnov distance should work to
find a meaningful value of a (Deluca & Corral, 2013). Second, the method cannot be extended to truncated
power law distributions (i.e., it is only prescribed for b — o). And third, we have found the method to fail
when applied to simulated data with real power law tails, since the power law is rejected, despite it is a real,
synthetic power law (Corral et al., 2011). Other authors have criticized also Clauset et al.'s method (Voitalov
et al., 2018). In general, power law fitting is a controversial issue (Barabasi, 2018; Holme, 2019). Therefore,
despite the popularity of the Clauset et al.'s method, we have developed an alternative procedure.

3.2. Alternative Power Law Fitting Procedure
Our method is close somehow to the one of Clauset et al., in the sense that it is based on both maximum
likelihood estimation (Pawitan, 2001) and on the Kolmogorov-Smirnov goodness of fit test (Press et al.,
1992). The version presented here is a straightforward extension of a previous work (Deluca & Corral, 2013;
Peters et al., 2010). We explain the case of truncated power laws; simplification to untruncated power laws
is trivial:
1. Pick a value of the lower cutoff a and another value of the upper cutoff b.
2. Fit, by maximum likelihood, a truncated power law to the range a < x < b (maximizing equation (5)). A
value of f§ is obtained.
3. Calculate the Kolmogorov-Smirnov distance between the empirical distribution (restricted toa < x < b)
and the theoretical distribution (using the value of § obtained above).
4. Assign a p value to the resulting tentative fit, in the following way:
- Simulate a synthetic power law in the range a < x < b, with the value of g just obtained, and with
the same number of data n.
- Apply to the synthetic data the previous two steps (fit of # and calculation of Kolmogorov-Smirnov
distance with the new value of ).
Repeat the simulation procedure many times in order to obtain the distribution of the
Kolmogorov-Smirnov distance (the theoretical distribution cannot be used because f is calculated from
the same data to which we apply the test). The p value is obtained as the probability that this distance is
larger than the empirical distance.
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Repeat this procedure for all possible values of a and b. If more than one pair of values yield “acceptable” p
values (higher than the significance level p,;, ), choose the pair of a and b that leads to the largest ratio b/a
(this is the largest power law log-range), and the resulting values of a, b, and g give the resulting “accepted”
fit. If no high enough p values are found, the power law is rejected. In this paper we take a demanding
significance level p_,;, = 0.20. Note that this applies to continuous random variables, while the fitting of
discrete power laws is a bit more involving (Corral et al., 2012).

This is the original procedure (Deluca & Corral, 2013; Peters et al., 2010), which has an important drawback:
it does not allow to estimate the uncertainty of the cutoffs a and b. Moreover, the uncertainty in the exponent
p was obtained from the standard deviation of the maximum likelihood estimation, equation (4) or the
equivalent one for the truncated case (Aban et al., 2006), which assumed a and b fixed. Therefore, we expect
the real uncertainty in g to be larger.

This problem, or these two related problems, is solved here in a very simple way. We just take bootstrap
resamplings of the original data (Good, 2011) and repeat the whole procedure with them; this will allow
to obtain distributions for a, b, and g, from which their uncertainty can be estimated. This method will be
applied to diverse geophysical data in the next sections. Moreover, as the distributions of both cutoffs are
somewhat asymmetric, we consider their logarithms (which are more symmetric) and report the uncer-
tainty of the cutoffs using one standard deviation of the logarithms. Bootstrap was used in a similar context
by Woessner and Wiemer (2005), in order to estimate the uncertainty of the magnitude of completeness of
seismic catalogs. Note that although it has been recognized that bootstrap can lead to biased information
when dealing with extreme value distributions, our estimation procedure does not make use of those distri-
butions; in fact, the only statistic that is involved in the estimation is a mean value (that of the logarithm of
the random variable, equations (3) and (5)).

The method can be complemented by studying the dependence of the exponent # on both cutoffs (Bard &
Vives, 2012), taking cutoff values inside the power law range found (a, b). In a real power law,  should be
stable against increases in a and decreases in b; conversely, a trend of # as a function of a or b is an indication
of a spurious power law (it may happen when the number of data is low, as then rejection of the power
law gets more difficult). Interestingly, the resulting dependence on the cutoffs could be used to identify an
alternative distribution to the power law, if the resulting exponent does not show a flat behavior (Salje et al.,
2017).

For the fitting of an untruncated power law distribution we introduce an additional improvement. We
impose that the range of variation of the lower cutoff a does not cover the whole range of x but only the
range a > a,, for which an untruncated power law can be considered to be a better fit than a truncated
lognormal. This is developed in the next subsection.

3.3. Comparison of Untruncated Power Law Versus Truncated Lognormal

In addition to evaluate if a power law distribution is a good fit in some range of a particular data set, one may
compare the power law in front of diverse alternative distributions (Clauset et al., 2009). Particularly impor-
tant and widely used in the same context (Corral et al., 2008; Hantson et al., 2016; Malevergne et al., 2011;
Turcotte, 1997) is the lognormal case (Johnson et al., 1994; Limpert et al., 2001) for which a likelihood-ratio
test can be applied in a very simple way, comparing the untruncated power law with the truncated lognormal
(the term truncated here refers to a lower truncation of the lognormal; the power law is always lower trun-
cated, due to normalization). In the most general case, the truncated lognormal (tln) distribution is defined
by the probability density

-1
2 Ina— Inb - Inx — u)?
San ™) = \/; {erfc( n\j}g”) - erfc( n\/ig” >] %C exp (_%)

fora < x < b (and zero otherwise), with —co < u < o0, ¢ positive, the cutoffs a and b also positive,
and erfc(y) = % fy * e~ dx the complementary error function (unfortunately, with this parameterization u
T

and & have no clear physical meaning). Except in one particular case, we consider b™" fixed to 0, for which
the second erfc term goes to zero. This distribution will be sometimes simply referred here as lognormal,
for economy of language. The true (untruncated) lognormal distribution is recovered in the limita — 0
and b — oo. Note that in contrast to other fitting methods, where the normalization constant can be an
additional parameter, both maximum likelihood estimation and the Kolmogorov-Smirnov test require the
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exact computation of the normalization constant (this is the reason of the apparent complication of the
expression for f;, (x)).

The comparison procedure is based in the calculation of the residual coefficient of variation cv, of the loga-
rithm of the rescaled random variable (Malevergne et al., 2011). We need to define x;) as the ith value of the

variable when this is sorted in an increasing way, that is, X1y £ X2 £ - 2 Xy Then,
S
CV{ = _f’
m,

with m, the mean of the new variable ¢ defined as the logarithm of the variable rescaled by x,, that is,
¢ = log(x/xy,), which is calculated for the n = N — k values of the original variable fulfilling x > X,
(we assume the variable x is continuous and disregard the case in which some value of x is repeated in
the data set), so

i *®

In addition, si is the unbiased variance of Z, that is,

The base of the logarithm does not matter, as long as it is the same in the computation of m, and s,.

The test is based on the idea that, for an untruncated power law distribution, the logarithmic coefficient of
variation of a sample is close to 1 (it is exactly equal to 1 in theory). The critical values of the test can be
obtained simulating a power law distribution (the exponent does not matter) and calculating the distribution
of cv,. In practice, this is equivalent to calculating the usual coefficient of variation (standard deviation
divided by mean, without logarithms) of an exponential distribution with unit scale parameter, which is
obtained from — In(1—u), with u a uniform random number in [0, 1). If the empirical value of the logarithmic
coefficient of variation is between the percentiles 5th and 95th of the simulated values, the power law null
hypothesis cannot be rejected, with a 90% confidence. If the logarithmic coefficient of variation is too small
(below percentile 5), the power law must be rejected in favor of the lognormal, and if it is too high (above
percentile 95) the power law is rejected, but the alternative is not the lognormal (this latter option does not
happen in any of the cases analyzed here).

This simple test is the uniformly most powerful unbiased test for comparing the two alternatives and is
rooted on the facts that the power law distribution is nested into the truncated lognormal and that their
likelihood-ratio is a decreasing function of the logarithmic coefficient of variation (del Castillo & Puig, 1999).
The former fact means that the power law can be understood as a special case of a truncated lognormal (with
its parameters u and ¢ fulfilling y —Ina — —co0, 62 — o0, and # = 1+ |u —Ina|/c?, taking into account that
In(x/a) is a truncated normal), and one evaluates whether the parameters of the lognormal are significantly
different from the power law limit of the lognormal. So strictly speaking, one never rejects a lognormal but
rejects a lognormal different than its power law limit. When performing the test for different values of k in
order to find a transition from lognormal to power law (when increasing the cutting index k or the opposite
transition when decreasing k), the test becomes somehow “subjective” as sometimes the crossing of the
critical region is erratic. In any case, this will provide us with a value of the cutoff a, called now a, in order
to distinguish it from the one coming from the fit, signaling the value above which a lognormal fit does not
bring any improvement with respect an untruncated power law. In consequence, the range of variation of
a in the previous section will be a > a,, (for the untruncated power law only). In some cases, although
a power law tail cannot be rejected in front of the lognormal for some range, the lognormal will provide a
much larger fitting range (beyond the tail) and will be therefore preferred.

Note that, in general, a likelihood-ratio test does not tell us if any of the two fits is good or bad; rather, it
yields which one of the two options has higher likelihood and if the difference is significant or not. So, even
if the power law is rejected in front of the lognormal, the latter can be a bad fit, or on the contrary, the power
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Table 1
Results of the Untruncated Power Law Fit
Data set N Units X(N) agy r n p p Qe
EQ CMT global 48,636 dyn cm 53102  4.010%7  2.12 97 2087 033 "2.107
EQ California 179,255 dyn cm 11102  1.510?! 589 2,883  1.655  0.30 3-10%0
TD Florida 163,019 km? 45.7 1.0 1.66 476 2472  0.39 0.8
SH Kentucky 101,095 km? 31.3 0.2 216 511 2485 0.7 0.2
SH Dead Sea 1,033 km? 0.0041  0.00044  0.98 48 2.804 059  0.0002
Fires Angola 17,643 ha 271,000 63 3.63 1,294 1818 022 30
Fires Canada 408 ha 67,600 12,600  0.73 13 2277 025  *10,000
TC NAtl 771 1019 m3/s? 25 12.6 0.31 16 5145 022 10
TC EPac 594 1019 m3/s? 31 5.0 0.79 76 3275 035 5
TC NAtl4+EPac 1,065 100 m3/s? 31 7.9 0.59 56 3.578  0.55 8
Rain CA 5,037,333 km? 238,000 100,000 0.38 165  6.479  0.50 100,000
TP land 6,385,195 km?3 177 33 073 286 4109 0.38 30
TP ocean 10,372,063 km?3 2,080 200 1.02 555 3250  0.47 200
TP land+ocean 16,757,258 km3 2,080 200 1.02 555 3250 0.47 *200
Fireballs 748 kt 440 0.3 314 278 2022 021 0.2

Note. The data sets contain N events, the maximum value of the variable is X(NY» the number of data in the power law
range is n, the lower cutoff of the fit is ag;, the exponent is g, and the p value is p. The logarithmic range of the fit
or number of orders of magnitude is r = log;((x)/ag;)- The number of simulations is 1,000, and 50 values of ag,
equispaced in logarithmic scale, are swept for each order of magnitude. The approximated value of the transition from
lognormal to power law tail is also included and denoted a,,. When this value is marked by an asterisk (in the rightmost
column), it means that in principle (when no restriction was applied on ag;) we found a,, > ag then we enforced
ag; > ag. In the rest of cases this was not required. EQ, TD, SH, TC, CA, and TP denote earthquakes, topographic
depressions, sinkholes, tropical cyclones, rain cluster areas, and rain total precipitation, respectively. CMT = centroid
moment tensor.

law can be a good fit and the lognormal an even better one. The likelihood-ratio test presented here, based
on the logarithmic coefficient of variation of the tail, has the peculiarity that it does not need the calculation
of the fitting parameters; this is an advantage from the computational point of view, as its implementation
is very simple, but if one is interested in the parameters, these have to be obtained separately. Then, in order
to obtain the truncated lognormal fits, we proceed in a way totally analogous as for the truncated power law
(sweeping different values of a, applying Kolmogorov-Smirnov goodness of fit test, etc.).

4. Data and Results

The phenomena analyzed in this paper and their corresponding data sets are described below. Complete
information about the outcome of our statistical analysis is provided in Tables 1-6. Table 1 shows the results
of the fitting of an untruncated power law distribution. Table 2 complements these results with the uncer-
tainty of the parameters obtained from bootstrap. Table 3 shows the results for a truncated lognormal, only
for the data sets for which this distribution yields a better fit than the untruncated power law. Table 4 cor-
responds to the fitting of a truncated power law, only when this distribution leads to a different fit than the
untruncated case. Table 5 gives the uncertainty obtained by bootstrap of the resulting parameters. Table 6
summarizes the results with the preferred distribution for each data set.

Figures 1 and 2 display the empirical distributions together with the preferred fits in each case. These figures
play no role in the fitting procedure and are shown only for the sake of illustration, to have a visual and
intuitive perspective. The empirical distributions are properly normalized; the fits, as defined in general over
a smaller range, are not normalized but adapted to the normalization of the empirical distributions (see the
captions for detailed information).

4.1. Earthquakes

As mentioned in section 1, earthquake size distributions have been related to power laws since the 1930s
(Utsu, 1999). In 1944 Gutenberg and Richter published their celebrated relation for the number of earth-
quakes in terms of their magnitude (Gutenberg & Richter, 1944), which turns out to be an exponential
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Table 2
Application of the Bootstrap Procedure to the Untruncated Power Law Fit
Data set ag; S P
EQ CMT global 2.6:10%7 4.4-10%7 7.4-10%7 2.05 + 0.16 0.35
EQ California 2.1-10%1 7.2:10%1 2.6-10%2 1.65 + 0.04 0.29
TD Florida 0.52 1.0 1.9 2.50 + 0.16 0.33
SH Kentucky 0.07 0.2 0.5 2.47 + 0.24 0.33
SH Dead Sea 241074 4.51074 81074 2.89 + 0.66 0.32
Fires Angola 40 120 370 1.79 + 0.07 0.29
Fires Canada 12,000 15,300 19,500 2.85 + 0.65 0.30
TC NAtl 11.1 12.6 14.4 5.88 + 1.62 0.39
TC EPac 4.7 6.5 8.9 3.89 + 1.14 0.38
TC NAtl+EPac 8.0 10.8 14.7 4.54 + 1.61 0.41
TP land 27 34 44 4.29 + 0.57 0.38
TP ocean 190 270 380 3.47 + 031 0.40
TP land+ocean 190 270 380 3.47 £ 0.31 0.40
Fireballs 0.4 0.6 1.0 1.95 + 0.35 0.37

Note. The exponent f is represented by the mean of all bootstrap results, f, and variability in # by 1 standard deviation
op. The p value is also given in terms of the mean value p. The variability of lower cutoff a is calculated by taking
its logarithm, calculating the mean and the standard deviation, and transforming back taking the exponential of the
results. The three values reported are associated to the mean of the logarithm and to this +1 standard deviation. The
number of bootstrap samples is 100.

relation (some literature shows a certain confusion when mentioning “power law earthquake magnitudes”).
The reason for the exponential relation is that magnitude is a logarithmic measure of size, for exam-
ple, magnitude is proportional to the logarithm of energy (Kanamori & Brodsky, 2004) and when the
Gutenberg-Richter relation is represented in terms of a more physical size (energy, seismic moment, rupture
area, etc.) a power law should be recovered (Burridge & Knopoff, 1967). The Gutenberg-Richter relation,
or law, has revealed as a very robust pattern of earthquake occurrence, and it has been claimed that their
power law exponent turns out to be nearly universal, in the sense that for many regions of the world and
for different ranges of sizes, it takes values close to 5/3 ~ 1.67 (Godano & Pingue, 2000; Kagan, 1999; 2002;
2010). However, other authors have claimed systematic variation of the power law exponent (Schorlemmer
& Wiemer, 2005), which may be related to different tectonic stress regimes (Schorlemmer et al., 2005).

Some authors have argued that an untruncated power law distribution is problematic, as extrapolation of
this relation to the largest earthquakes would lead to an infinite release of energy in the long term, due to
the divergence of the mean value of power law distributions when f < 2 (Knopoff & Kagan, 1977; Serra
& Corral, 2017). So deviations from the Gutenberg-Richter power law behavior should be expected for the
largest earthquakes; nevertheless, we will show that the untruncated power law is not such a bad model for
earthquake sizes.

Table 3
Results of the Lognormal Fit for the Data Sets for Which This Leads to Better Results than the Untruncated Power Law, in
the Sense that the Fitting Range is Remarkably Larger

Data set N ag bgi r n H o p

TD Florida 163,019 0.018 [+3) 3.40 35,167 -9.85 2.84 0.59
SH Kentucky 101,095 0.0095 [=3) 3.51 17,624 -9.70 2.54 0.22
SH Dead Sea 1,033 1.3-107° 0.005 3.60 964 -10.4 1.64 0.23
Fires Angola 17,643 8.7 o 4.49 5,349 -13.2 4.96 0.32
Fires Canada 408 3.3 o 4.3 314 3.36 3.29 0.45

Note. The p and o are the lognormal parameters; note that other researchers prefer to report e# and e” instead (Limpert
et al., 2001). The upper cutoff is fixed to b~ = 0, except for the Dead-Sea sinkholes. The number of simulations is
1,000, and 50 values of ag;, equispaced in logarithmic scale, are swept for each order of magnitude.
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Table 4
Results of the Truncated Power Law Fit, Only for the Data Sets Which Lead to Power Law Ranges Clearly Different Than
the Untruncated Case

Data set N agq bgit r n p D

EQ CMT global 48,636 1.3.10% 2.10%7 3.20 22,061 1.655 0.46
SH Dead Sea 1,033 2.5-1077 1.3-107° 1.7 323 0.391 0.24
Fires Canada 408 1.0 12,600 4.1 395 1.153 0.23
TC NAtl 771 0.16 10 1.8 534 1.224 0.27
TC EPac 594 0.08 10 2.1 511 1.085 0.37
TC NAtl+EPac 1,065 0.16 10 1.8 777 1.156 0.26
Rain CA 5,037,333 6,310 50,100 0.9 15,817 1.711 0.32
TP ocean 10,372,063 0.126 12.6 2.0 1,273,883 1.721 0.66

Note. The number of data in the truncated power law range is n, the lower cutoff of the fit is ag;, the upper cutoff is bg;,
the exponent is #, and the p value is p. The number of orders of magnitude covered by the fit is r = log; (b /ag,). The
number of simulations is 1,000 (except for the case of total precipitation of ocean rain clusters, which is 100), and 10
values of ag;, are swept equispaced in logarithmic scale for each order of magnitude.

We analyze the centroid moment tensor catalog (Ekstrom et al., 2012), which records (among other vari-
ables) the seismic moment of earthquakes across the globe (so x is the seismic moment, measured in dyn cm,
noting that 1 dyn cm = 107 N m). The temporal period of our study goes from 1 January 1977 to 21 August
2017. A refined analysis would have separated shallow, intermediate, and deep events or, even better, differ-
ent tectonic zones (Kagan et al., 2010); however, we have considered the overall catalog. In addition, we also
analyze seismicity from Southern California (USA), using the catalog of Yang et al. (2012), which covers the
30-year period 1981-2010, contains focal mechanisms, and includes the moment magnitude m, which can
be directly converted to seismic moment x (in dyn cm) by means of the formula (Hanks & Kanamori, 1979):

X = 101.5m+16.10

The logarithmic coefficient of variation test applied to the centroid moment tensor catalog indicates that an
untruncated power law distribution is not preferred in front of a lognormal for a cutoff a smaller than 2-10%’
dyn cm (corresponding to 7.5 in moment magnitude). So the power law fitting procedure with a restricted
to be above this value leads to f ~ 2.1, for 2 orders of magnitude (this is significantly different than the usual
value # ~ 5/3). Nevertheless, this does not preclude that other distributions can fit the data even better
(Serra & Corral, 2017). In any case, the lognormal is not one of this, and no lognormal fit is found. The fit
of a truncated power law restricted to upper cutoffs b below the crossover value 2 - 10%” dyn cm leads this
time to the usual value, namely, # = 1.655, for 3 orders of magnitude (with a lower cutoff corresponding
to 5.3 in moment magnitude). As the fitting ranges of both power laws (untruncated and truncated) almost
overlap, we can conclude that a double power law distribution with a crossover at 7.6 in magnitude is a
satisfactory result; this is in agreement with previous literature (Pacheco et al., 1992; Yoder et al., 2012). This

Table 5

Application of the Bootstrap Procedure to the Truncated Power Law Fit

Data set ag: b b+ oy b
EQCMTglobal 1.2-10%* 32-10%* 8.9.10* 1.0-107 16-107 26-10*7 1.66 + 0.02 0.34
Fires Canada 1.5 7.1 33 9,400 27,000 78,000 1.21 + 0.08 0.29
TC NAtl 0.06 0.14 0.35 2.1 6.1 17 1.16 + 0.25 0.31
TC EPac 0.06 0.10 0.17 3.8 7.9 17 1.08 + 0.12 0.30
TC NAtl+EPac 0.06 0.14 0.30 2.0 6.4 20 1.08 + 0.26 0.32
TP ocean 0.08 0.27 0.91 2.5 6.3 16 1.73 + 0.03 0.35

Note. Only cases which lead to meaningful power laws are included. The exponent f is represented by the mean of all
bootstrap results, £, and variability in g by 1 standard deviation ¢. The p value is also given in terms of the mean value
P. The variability of both cutoffs a and b is calculated as in the untruncated case by the mean +1 standard deviation of
their logarithms. The number of bootstrap samples used is 100, except for the total precipitation over the ocean, which
is 30.
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Table 6

Summary of Results Showing the Preferred Distribution for Each
Data Set

Data set Preferred distribution

EQ CMT global Double power law

EQ California Untruncated power law

TD Florida Truncated lognormal

SH Kentucky Truncated lognormal

SH Dead Sea Truncated lognormal (with bl # 0)

Fires Angola

Fires Canada

Truncated lognormal

Truncated power law + truncated lognormal

10.1029/2018EA000479

TC NAtl Truncated power law
TC EPac Truncated power law
TC NAtl+EPac Truncated power law
Rain CA None

TP land None

TP ocean Truncated power law
TP land+ocean None

Fireballs Untruncated power law

Note. For the Canadian wildfires, there is a truncated power law
regime starting at the minimum x followed by a truncated lognor-
mal covering up to the largest x, without a clear transition between
both distributions.

double power law, in addition, avoids the problem of the divergence of the mean energy, as the exponent of
the power law tail is §, > 2. On the other hand, the fitting of an untruncated power law to the whole range
of the data would have not lead to the rejection of it (f ~ 1.67), due to the small weight of the deviations at
the tail in front of the rest of the distribution. This case illustrates the convenience of using the test on the
logarithmic coefficient of variation in order to guide the fitting procedure based on maximum likelihood
and goodness of fit. For California we find an untruncated power law with # = 1.655 for almost 6 orders
of magnitude, starting ata = 1.5-10?! dyn cm (3.4 moment magnitude). This constitutes the largest fitting
range found in this article. The truncated power law leads to very similar results. Moreover, the lognormal
fit is not preferred in this range, as indicated by the computation of cv, and the corresponding test.

4.2. Karst Sinkholes and Closed Topographic Depressions

Sinkholes are ground depressions produced by subsidence due in most cases to karst, that is, by dissolution
of soluble rocks by groundwater. Sinkholes pose a hazard since they may form under buildings and infras-
tructure (such as roads, railways, and pipelines) and are particularly dangerous if they collapse suddenly,
causing even human casualties (Brinkmann, 2013; Galve et al., 2011).

Power law frequency-size relations have recently been proposed for sinkholes, considering either their diam-
eter or their area as a measure of size (Galve et al., 2011; Wall & Bohnenstiehl, 2014; Yizhaq et al., 2017),
and their exponents have been proposed to vary as new sinkholes develop, grow, and coalesce (Yizhaq et al.,
2017). The frequency-size relation of topographic depressions in Florida shows a similar behavior (Wall &
Bohnenstiehl, 2014). These depressions are used as proxies to karst features, albeit not all of them are sink-
holes (Arthur et al., 2007). Notice that a logarithmic function between cumulative frequency and sinkhole
diameter proposed for other sinkhole data sets (Gutiérrez et al., 2016; Taheri et al., 2015) is equivalent to a
power law with unit exponent.

Sinkhole maps can be either delineated manually or by automatically identifying topographic depressions
in digital elevation models, which may lead to differences in the resulting inventories (Wall et al., 2017).
Here we use the Kentucky (USA) sinkhole database, mapped manually and probably the largest sinkhole
data set available, with over 100,000 sinkholes (Paylor et al., 2003); the database of Florida (USA) closed
topographic depressions, based on automatic mapping, comprising more than 160,000 depressions (Florida
Department of Environmental Protection, 2004); and a compound data set of more than 1000 sinkholes
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Figure 1. Estimation of empirical probability densities of size together with the preferred fits for some of the data sets analyzed in this study. Solid lines indicate
power law fits and dashed lines lognormal fits. The theoretical distributions are rescaled as nf(x)/N in order to properly fit the representation of the empirical
distributions, which are normalized over a different range. The uncertainty of the empirical density represents one standard deviation (Deluca & Corral, 2013).

next to the Dead Sea (Yizhaq et al., 2017). The size is measured in terms of the area (x A), in square
kilometers. Sinkholes may have a minimum area on the order of 0.1-1 m?, which is observed in the Dead
Sea database and in other detailed studies (Galve et al., 2009). In contrast, for the Kentucky and Florida
databases, the smallest reported areas are expected to be limited by the resolution of the maps used for their
compilation. Meanwhile, the largest sinkhole size mapped may be affected by border effects, especially in

small geographic areas.

Our results show that the two largest data sets (Florida and Kentucky), although not corresponding exactly
to the same geological phenomenon, lead to similar results. An untruncated power law distribution can be
fit for 1.5 and 2 orders of magnitude, respectively, with exponent f very close to 2.5. The cv, test confirms
these results, in the sense that in the resulting range the power law fit is preferred in front of the lognor-
mal. However, as the lognormal holds for a much larger range, this distribution is, overall, preferred, with
u ~ —10and o ~ 2.5-2.8. Results for the truncated power law distribution are similar to the ones of the
untruncated case, with a somewhat smaller exponent (f ~ 2.3) for Kentucky. A spurious power law that
appeared for the Florida data in the range of very small areas has been disregarded.
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Figure 2. Number of structures or events with “size” larger or equal than the value of x pointed in the axis, together with the preferred fits for all data sets
analyzed in this study (except for the area of rain clusters and the total precipitation by clusters over land+ocean, which lead to no fit; the total precipitation
over land is included for visual comparison with the ocean case). Solid lines indicate power law fits and dashed lines lognormal fits. Note that truncated power
laws can be far from linear in the log-log plots, especially for tropical cyclones. In order to properly fit the empirical results, the fits need to be rescaled and
shifted as nS(x) + NSemp(b), with NS,,(b) the number of data with size at b or larger.
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The description of the Dead Sea data set in terms of the power law is poorer. An untruncated power law
distribution is not rejected for the last order of magnitude (being generous) but with less than 50 data points
and with a larger exponent (f =~ 2.8). The logarithmic coefficient of variation confirms this range for which
the lognormal tail is not preferred; nevertheless, as the lognormal leads to a much larger fitting range, the
latter is preferred to describe the distribution globally. In this case, though, the lognormal needs and upper
cutoff, b ~ X (otherwise, for b — oo, the lognormal is rejected).

On the other hand, note that if the areas A are transformed into linear dimensions L by means of the relation
L « A2, equation (6) with z = 2 indicates than a range of f from 2.5 to 2.8 transforms to the range 4-4.6
for g;.

4.3. Wildfires

Forest-fire models were one of the most popular topics in the field of self-organized criticality; however, as
far as we know, simulation results from these toy models were not contrasted with observational data until
the work of Malamud et al. (1998). Before the self-organized criticality epoch, fire size distributions had
been plotted by Minnich (1983). Malamud et al. (1998) found that areas burned by wildland fires in different
places of the United States and Australia (including paleofire records) follow (untruncated) power law distri-
butions with exponent g ranging from 1.3 to 1.5. Later, Malamud et al. (2005) studied 18 different ecoregions
of the United States, finding power law distributions with exponents from 1.3 to 1.75. Many other statistical
studies have been performed; see, for instance, the citations of Malamud et al. (2005). Interestingly, some
authors have claimed that burned areas in other regions are better described by the lognormal distribution
(Corral et al., 2008; Hantson et al., 2016).

Hantson et al. (2016) generated burned-area maps of high resolution (30 m) from satellite (Landsat) imagery,
for some of the most important fire occurrence regions in the world. The resulting database comprised
eight regions from different ecosystems and climates, in all continents (except Anctarctica). The burned
area A, in ha (1 ha = 0.01 km?), was used as a measure of fire size (x = A). After their careful statistical
analysis, the authors found that only two regions were compatible with the truncated power law hypothesis
(in Canada and Kazakhstan), with exponents f equal to 1.0 a 1.3, respectively. Four other sites showed a
lognormal behavior, whereas the remaining two (in Angola and Australia), where not compatible with any
of the two statistical models. Here we select as representative sites those at Angola and Canada, and we
reanalyze their wildfire records. The former site is associated to open woodland, with data gathered along 4
(nonconsecutive) years, whereas the Canada data correspond to boreal forest monitorized for 14 years.

In contrast to the original results, our analysis shows that the wildfire data from Angola can be well rep-
resented both by an untruncated power law and by a lognormal distribution. The untruncated power law
holds for burned areas greater than about 60 ha (corresponding to more than 3.5 orders of magnitude), with
an exponent f ~ 1.8. In the comparison with the lognormal fit, the power law is not rejected in this range.
However, the lognormal is valid for a larger range, starting at about 10 ha, covering 4.5 orders of magnitude
and comprising more than 4 times the number of points comprised by the power law. The fit of the trun-
cated power law distribution does not lead to remarkable differences with respect the untruncated power
law. Therefore, the lognormal is the preferred distribution.

In contrast, the Canada data yield a very short power law tail, with a larger exponent and for a more limited
range, starting at about 12,000 ha and containing very few data points. We can disregard this power law as
spurious and embrace the lognormal fit which is valid for x > 3.3 ha up to the largest value (67,000 ha) and
covers a significant part of the data (77% of all data points). In addition, and in agreement with the original
work, a truncated power law with g ~ 1.15 gives a good fit between 1 and 12,000 ha, covering 97% of all data
points. As the truncated power law and the lognormal are defined over different ranges we have no way to
decide between them, and we consider the two fits as valid. That is, we can say that the truncated power law
holds for small x and the lognormal for large x but without a clear transition between them.

These results, together with those of many other previous researchers, make it clear that, in contrast to earth-
quakes, wildfires cannot be characterized by nearly universal power law exponents, as originally noticed in
a qualitative way by Minnich (1983).

4.4. Tropical Cyclones
The term tropical cyclone applies to hurricanes and typhoons, which are the same phenomenon, with the
only difference that the former happens in the North Atlantic and the Northeast Pacific and the latter in the
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Northwest Pacific. But the term also comprises weaker systems, as tropical storms and tropical depressions.
The categorization is established by the maximum sustained wind speed, which in tropical depressions is
less than 34 knots and in tropical storms is between 34 and 64 knots (1 knot = 0.5144 m/s); otherwise, the
tropical cyclone is considered a hurricane or a typhoon (or a severe tropical cyclone or a severe cyclonic
storm, in other ocean basins) (Emanuel, 2005a).

Emanuel (2005b) introduced the so-called power dissipation index (PDI) as a rough estimation of the energy
released by tropical cyclones in some ocean basin during a whole tropical cyclone season. Later, the PDI was
applied to estimate the energy of individual tropical cyclones (Corral et al., 2010). It is defined as
K
PDI = ) vAt,

j=1
where the index j denotes the K different records of a tropical cyclone, at different times, separated by inter-
vals of 4t = 6 hr and v; is the maximum sustained wind speed of record j. We will use then the PDI as a
measure of tropical cyclone size (that is, x = PDI) and will convert the PDI units to cubic meter per square
second, although a rough conversion factor to Joules has been proposed (PDI multiplied by 5 - 10° should
yield energy in Joules) (Corral & Turiel, 2012; Emanuel, 1998). A truncated power law distribution of PDI
was previously proposed (Corral et al., 2010).

Tropical cyclone records analyzed here correspond to the North Atlantic (NAtl) and the Northeastern Pacific
(EPac) basins, for the periods 1966-2016 and 1986-2016, respectively, and are obtained from the NOAA
(USA) HURDAT? data set (Atlantic Oceanographic and Meteorological Laboratory, 2018). We also consider
an aggregated data set joining the two basins (NAtl+EPac), for the period 1986-2016. A map view of the
trajectories of the tropical cyclones in both basins indicates that it may make sense to consider the two basins
together, as a single unified mega-basin, in some sense.

In all three cases we find that an untruncated power law may fit the tail of the distributions, with expo-
nent # around 4 or larger, with great uncertainty (as shown by bootstrap). Nevertheless, this power law is
rather marginal, as it extends for less than 1 order of magnitude; in addition, the increase of the appar-
ent value of the exponent with a shows that we are not dealing with a genuine power law. Notice that the
power law exponent of the joined data set does not fulfill the law of harmonic means reported previously
(Navas-Portella et al., 2018), because the fitting ranges of each data set are somewhat different. Nevertheless,
the lognormal fit is not preferred for the tail. Other works have fit a truncated gamma distribution (which
contains an exponential tail) to this kind of data (Corral & Turiel, 2012; del Castillo et al., 2017). When fitting
a truncated power law, the results are in agreement with the original reference (Corral et al., 2010), with an
exponent f in the range 1.1-1.2, for about 2 orders of magnitude. On the other side, a truncated lognormal
distribution with b — oo does not fit the data. Finally, note that, from the figure and the conversion factor
presented above, the most extreme tropical cyclones (in terms of energy) release an energy around 3 x 10
m3/s? ~ 1.5 x 1018 J.

4.5. Rain

Rainfall has been traditionally studied in terms of rain collected during a fixed time period (1 day or 1 month)
at a single site (i.e., a point measure in space). Peters and coauthors (Peters et al., 2002; Peters & Christensen,
2002; 2006), and previously Andrade et al. (1998), challenged that approach, defining the rain event over
some site as a continuum of rain occurrence in time. In the ideal case, one should be able to measure rain
with high resolution in time, for instance, 1 min. In this way, for a single site in the Baltic Sea, Peters et al.
(2002) obtained a power law exponent § =~ 1.35 for the total rain collected during rain events. A subsequent
analysis for different sites of the globe, where rain was recorded using different instruments, found a nearly
universal exponent f§ in the range 1.0-1.2.

Later, Peters et al. (2012) took a different view, defining the rain event not along time but across space, that is,
they considered the instantaneous area of precipitation clusters. This was obtained as in percolation theory,
aggregating nearest-neighbor precipitating pixels corresponding to one time slice. The resulting areas A4, in
square kilometers were measured (i.e., x = A). The data used came from the precipitation radar of the
Tropical Rainfall Measuring Mission satellite. Peters et al. (2012) noticed a power law-like regime for the
areas, with exponent f ~ 2.05. In fact, a similar result was claimed much earlier by Lovejoy (1981) for (radar)
rain areas in the tropical Atlantic, stating power law behavior with f ~ 1.82. Few years later Lovejoy and
Mandelbrot (1985) reported f ~ 1.75 in the same context.
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Our reanalysis of Peters et al.'s (2012) data shows that the fit of an untruncated power law distribution leads
to poor results. The power law can only be fit to the most extreme events, comprising less than 200 data
points (out of more than 5 million) and covering less than half an order of magnitude. Moreover, the apparent
exponent shows an increase with the cutoff value. The truncated power law fit does not lead either to very
positive results, despite the fact that the graphical representation of the distribution shows a decreasing
linear trend in a log-log plot. The reason of this failure may be due to the astronomically large number of
clusters. This means that the uncertainty associated with the empirical distribution is very tiny, and the
goodness of fit test can detect the smallest differences with respect a real (ideal) power law behavior. The
best truncated power law obtained (the one having larger ratio b/a) holds for less than 1 order of magnitude
and comprises less than 1% of the clusters, showing significant variation with the change of a and b; thus,
we disregard the obtained power law as not relevant.

More recently, Traxl et al. (2016) obtained the total volume of precipitated water in rain events defined over
space and time. They employed the Tropical Rainfall Measuring Mission records, calculated in space time
cells with a resolution of 3 hr in time and 0.25° in (two-dimensional) space, covering the globe from —50°
to 50° in latitude, for the time period 1998-2014. Spatiotemporal rain clusters were defined via next-nearest
neighboring “occupied” cells in space and nearest neighbors occupied cells in time (with a total of 26 neigh-
bors per cell). Cell occupation was understood as occupation by extreme rain, that is, with high rain rates,
above certain rain-rate thresholds. These thresholds were defined locally, using the per-cell 90th percentile
of rain rate (restricted to values above 0.1 mm/hr). The resulting thresholds ranged from 2 to 10 mm/hr. The
volume of rain for each cluster, measured in cubic kilometers, was calculated by integrating the rain rate
over the spatiotemporal cluster. In a formula,

V= / RdSdt
cluster

(sox = V), where the integral is understood as summation over the cells with the mentioned resolution and
Ris the rain rate defined over space (dS) and time (d¢). We stress that V' is not the spatial volume of the cluster
but the volume of rain precipitated by the spatiotemporal cluster. Notice that one can convert precipitated
volume into energy through the latent heat of condensation of water (approximately 2,500 J/g); thus, 1 km?
of precipitation is roughly equivalent to 2.5 x 10 J of latent heat release. Precipitation depth measured by
Peters et al. (2002, 2010) can be transformed into energy per unit area by means of 1 mm ~ 2.5 x 10° J/m?2.

The resulting rain events were classified into two groups: land events (with 90% or more of their cells cor-
responding to land) and ocean events (defined in an analogous way); the rest of clusters (2.5% of the total)
were disregarded. The authors obtained that a truncated gamma distribution (called truncated power law
by them) is what better fitted the ocean data set, whereas the Weibull distribution (called there stretched
exponential) fitted both the land data set and the aggregated land+ocean data set. The corresponding power
law exponent given by the gamma distribution was g ~ 1.71 (the Weibull distribution does not have a clear
power law regime when its shape parameter goes to zero, which is what the authors found).

We reanalyze the data of Traxl et al. (2016), kindly updated by the authors for the 20-year period 1998-2017.
The land and ocean data sets were defined by 80% or more cells in there. Our results for the untruncated
power law fit lead to very short power law tails (1 order of magnitude or less) with values of g rather large
(again, the bootstrap method shows large variability in these values, and a dependence of g on a is also
present). The tail of the combined data set land+ocean is constituted exclusively by ocean events and leads
to the same results as the ocean data set. The logarithmic coefficient of variation test indicates that the
lognormal fit is not preferred for those short tails.

On the other side, for the ocean clusters, a truncated power law distribution with exponent § = 1.7 holds
for 2 orders of magnitude, comprising more than 1 million data points. As far as we are aware, this is one
of the power law distributions with more data ever found (Clauset et al., 2009) using rigorous statistical
procedures. The other two files do not show any truncated power law behavior, due to the great amount of
data (taking smaller random subsamples, one may find that truncated power laws are accepted, as well as
lognormal tails, but that would mean disregarding the majority of data). Regarding the overall shape of the
probability density, it is a remarkable fact that this displays a great similarity with the probability density of
the PDI of tropical cyclones (Corral et al., 2010), both shown in Figure 1. Note from there that the energy
released by the most extreme rainfall events is of the order of 2 x 10° km =~ 5 x 10% J. This large difference
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with respect to tropical cyclones may be due to the fact that in that case the energy referred to kinetic energy
(Emanuel, 1998), whereas for rainfall we consider total latent heat released.

The reason of the difference between our results and those of the original reference (Traxl et al., 2016) is that
these authors were comparing different distributions by means of likelihood-ratio tests but without testing
the goodness of fit of any of the distributions individually. So they determine a relative comparison about
which distribution is preferred in comparison with the others, but they do not provide absolute judgements.

4.6. Impact Fireballs

Fireballs are exceptionally bright meteors produced by the impact of asteroids or comets on Earth's atmo-
sphere and are usually called bolides if they explode midair. Large enough impact air bursts, even if the
impactor does not reach the surface, can produce damage and casualties by a variety of mechanisms, espe-
cially by wind blast, thermal radiation, and atmospheric shock wave overpressure (Rumpf et al., 2017), being
the latter recently illustrated by the damaging 2013 Chelyabinsk impact (Brown et al., 2013; Heimann et al.,
2013; Popova & the Chelyabinsk Airburst Consortium, 2013).

The distribution of energy of asteroid and comet impacts with Earth is usually reported as a power law
(Boslough et al., 2015; Brown et al., 2013) composed by different data sets which span different parts of the
energy range (from small meteors to fireballs to calculated impact rates from known near-Earth objects).

Here we use the fireball and bolide data provided by Center for Near Earth Object Studies (2018), based on
reports by U.S. Government sensors (Boslough et al., 2015; Brown et al., 2002, 2013). The total impact energy
(x) for each event is reported in kt (kilotons of TNT), extrapolated from the measured total optical radiated
energy using an empirical fit (Brown et al., 2002). The largest fireball included there is Chelyabinsk (with a
reported total energy of 440 kt), which was also independently located and characterized, even at regional
or global distances, using the records of ground shaking produced by the shock wave (Brown et al., 2013;
Heimann et al., 2013) and atmospheric infrasound (Le Pichon et al., 2013).

The data set includes events since April 1988, albeit, as other authors (Boslough et al., 2015; Brown et al.,
2002, 2013) we use only the data since 1994, as earlier years are substantially incomplete. Until July 2018,
the database contains 748 events. The percent of the Earth's surface covered by the sensors has varied over
that period (Brown et al., 2002) and on average may be on the order of 80% for events with total energy > 1
kt (Brown et al., 2013).

Our statistical analysis shows that fireballs are well described by an untruncated power law distribution for
about 3 orders of magnitude, with exponent # ~ 2 but with large uncertainty. The truncated power law
leads to practically the same results as the untruncated case. The fit of the lognormal distribution is also not
rejected over more or less the same range as the power law; however, the cv, test confirms that the power
law is preferred in front of the lognormal distribution over that range.

5. Conclusions and Discussion

We have revisited the important problem of power law distributions in the size of geological and geophysical
structures and of catastrophic phenomena of geoscience. Due to the delicate issues involved with power
law fitting and the variety of approaches in the literature, we have undertaken a revision of some relevant
examples of previously proposed power laws, in order to treat all systems within a unified framework and
to facilitate the comparison between the results of different systems.

For that purpose, we have extended an existing method for fitting and goodness of fit testing of power law-like
distributions. The important issue regarding these distributions is that the range over which a power law dis-
tribution may fit the data is unknown. The method, previously proposed by Peters et al. (2010) and Deluca
and Corral (2013), uses the same tools as the so-famous procedure of Clauset et al. (2009) (maximum like-
lihood estimation and the Kolmogorov-Smirnov test) but is different in spirit, allowing the fitting of both
untruncated and truncated power laws (generalization to other distributions is straightforward).

Three important improvements related with the cutoffs are included. First, for untruncated power laws the
fitting range is constrained by a complementary likelihood-ratio test (based on the residual coefficient of
variation) that compares a general power law tail with a general lognormal tail (Malevergne et al., 2011).
Only lower cutoffs for which the power law is preferred in front of the lognormal are contemplated. Second,
the variation of the apparent power law exponent with the cutoffs is studied in order to rule out spurious
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power laws that appear when the number of data is low. And third, the uncertainty in the lower and upper
cutoffs of the power law distributions is evaluated by bootstrap.

The results show a large diversity of outcomes. The energy released by impact fireballs is well fitted by an
untruncated power law; nevertheless, as the size of the database is low, this result could change if much
larger databases become available. An important issue here is the completeness of the records for all impact
energies or at least the proper evaluation of incompleteness for the different energy ranges.

For the seismic moment of global earthquakes, we find two power law regimes, the first ranging up to about
7.6 in moment magnitude, with the usual exponent # = 1.655, and the second power law defined above
the previous value, with exponent f =~ 2. This was previously proposed by some authors, due to geometric
constraints of earthquake ruptures above that threshold magnitude, such as Pacheco et al. (1992) and Yoder
et al. (2012). In contrast, Southern California seismicity shows a unique untruncated power law range,
starting at around 3.4 in moment magnitude. This value, which can be interpreted as a measure of the com-
pleteness threshold of the analyzed catalog, may seem to be somewhat large, but let us recall that our fitting
procedure is rather demanding, rejecting any power law fit whose p value is below 0.20. Indeed, the value
is coincident with the independent estimates of the detection threshold of the Southern California Seismic
Network during the period considered (Schorlemmer & Woessner, 2008). Despite the relatively large com-
pleteness threshold, we find the resulting power law holds for almost 6 orders of magnitude (for seismic
moment), which is a rather impressive result.

Energy of tropical cyclones in two different ocean basins (Corral et al., 2010) is found to display truncated
power law behavior over the central part of their distributions. Here, problems at small energies are espe-
cially important due to incompleteness of the records for small storms, whereas the largest events (the most
extreme hurricanes) are strongly influenced by the boundary conditions imposed by the finite size of the
basins over which they develop. Note that the size measure used here is a proxy for the cyclone energy, while
the cyclone radius (influenced by other factors, see Chavas et al., 2016), is not necessarily correlated with
the energy. The small size of the tropical cyclone databases does not allow to guarantee that the power law
behavior is maintained if much larger records become available in the far future.

Rainfall clusters (Peters et al., 2012; Traxl et al., 2016) are in the opposite side of the spectrum regarding
the number of data, which is “astronomical.” Except in one case, we are unable to find meaningful power
law or lognormal fits. The reason, naturally, is the millions of events comprising the databases, which make
almost impossible for goodness of fit test to accept (i.e., not reject) any proposed distribution. The remarkable
exception is that of the total precipitation released by spatiotemporal rainfall clusters over the oceans (Traxl
et al., 2016), for which we find a truncated power law ranging only for two decades but comprising more
than 1 million data points. We are not aware of a power law distribution established with rigorous statistical
protocols containing more points.

On the other hand, sinkholes and topographic depressions (Florida Department of Environmental Protec-
tion, 2004; Paylor et al., 2003; Yizhaq et al., 2017) are better described by truncated lognormal distributions,
down to minimum area thresholds probably controlled by the resolution of the databases used. Although
power law tails may fit narrow ranges of the largest areas reported, the lognormal distributions are preferred,
as their fits cover a much larger range (including therefore a larger fraction of the entries contained in the
catalogs).

The two examples of wildfires analyzed here (Hantson et al., 2016) are also well fitted by truncated lognor-
mals over large ranges, although for the Canada record this is not incompatible with a power law regime
(due in part to the low number of wildfires recorded there, both fits overlap over a significant range).

As this paper was pretended as an essentially statistical one, an issue that we have not considered so far
is the physical reason behind power law distributions. Now we pay some attention to that before ending.
For earthquakes and wildfires it is recognized that one feasible mechanism can be self-organized criticality
(SOC) (Bak, 1996; Bak et al., 1987), as both phenomena are characterized by an activity front that propa-
gates (somewhat fast) through a substrate, in an avalanche-like manner. The activation can be modeled as a
branching process, but these processes only yield power law distributions if they are precisely at their criti-
cal point (Corral & Font-Clos, 2013). So the self-organization mechanism ensures that criticality is achieved
“spontaneously” in these systems, through a balance between driving and dissipation, and so the substrate
has to be at the onset of instability (all the time). But although the SOC mechanism is a plausible one for
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these systems (Bak & Tang, 1989; Ito & Matsuzaki, 1990; Sornette & Sornette, 1989), it is a extraordinarily
difficult task to establish that SOC is the responsible of power law size distributions in earthquakes, as there
is a big gap in the simplicity of SOC models (Olami et al., 1992) and the enormous complexity of the real
phenomenon.

Regarding wildfires, we have already seen (as some previous authors) that these seem to be better described
by lognormals, at least for some particular data sets. We are not aware of modifications of SOC models that
yield lognormal distributions, although the non-applicability of the SOC mechanism for wildfires in some
cases was discussed by Pueyo et al. (2010). Notice also that the sinkhole model proposed by Yizhaq et al.
(2017) was claimed to lead to power law distributions, although no goodness-of-fit was performed there and
the results could be compatible also with the lognormal (remember that our preferred model in that case
was lognormal). It is noteworthy that the lognormal distribution arises naturally for simple multiplicative
random growth process, where the rate of growth is proportional to size multiplied by a random factor, as
reviewed by Mitzenmacher (2004). This can easily be seen just applying the classical central limit theorem
to evolution of the logarithm of the size.

The fact that power law distributions, similar to the Gutenberg-Richter law for earthquakes, also seemed
to characterize rainfall led some authors to speculate that precipitation could be a sort of earthquake
(avalanche) process in the sky (Peters et al., 2002; Peters & Christensen, 2002; 2006). The metaphor is very
appealing, but we are not aware of any physical model of rainfall production in terms of avalanches (for
an alternative explanation; see Dickman, 2003). Nevertheless, indirect proof has been gathered by the iden-
tification of a critical point in the transition to strong convection, to which the atmosphere seems to be
“attracted” (Peters & Neelin, 2006). Interestingly, tropical cyclones are related to rainfall (they are a particu-
lar instance of it, an extreme case); so one can expect a connection between a SOC description of rainfall and
a SOC description of tropical cyclones, although there are different options about which are the variables
that would support the SOC description (Corral, 2010; Peters et al., 2012). For rainfall, one may consider that
the release of energy takes place in the clouds, whereas for tropical cyclones one could locate the interaction
in the ocean-air interface. Moreover, an important difference between tropical cyclones and earthquakes is
that the former are dynamical and thermodynamical organized structures (one may talk about dissipative
structures), whereas earthquakes lack this sort of machinery.

Needless to say, nowadays, it is well known that criticality and SOC are not the only mechanisms able to
generate power law distributions (Mitzenmacher, 2004; Newman, 2005; Simkin & Roychowdhury, 2011;
Sornette, 2004). A particularly simple but interesting alternative was proposed by Reed and Hughes (2002).
In the context of Zipf's law, different power law-like models were proposed much earlier than SOC (Miller,
1957; Simon, 1955), like preferential growth or cumulative advantage (rich-get-richer) (Cattuto et al., 2007;
Simon, 1955; Zanette, 2014; Zanette & Montemurro, 2005), which could make sense as well applied to growth
processes in geophysics. Another interesting option, if the power law exponent is larger than 2, is stochastic
differential equations with additive and multiplicative noises (Penland & Sardeshmukh, 2012; Sardeshmukh
et al., 2015). However, other Zipf-like models are more difficult if not impossible to translate into geophysics
(Corominas-Murtra et al., 2015; Ferrer-i-Cancho, 2016; Miller, 1957; Tria et al., 2014).

Finally, several authors have used some limit theorems in probability theory to justify the origin of power
law distributions. For instance, the generalized central limit theorem ensures that when a fixed number
of (independent and identically distributed) random variables are added, the result converges to a Lévy
distribution if some conditions (that invalidate the application of the classical central-limit theorem) are
fulfilled (Bouchaud & Georges, 1990). An analogous (but different) limit exists when the number of added
random variables is not fixed but random, according to some prescribed distribution; the limit distributions
for a geometric-distributed number of terms (geometric stable distributions) turn out to be the Mittag-Leffler
distributions (Corral, 2009; 2015; Gnedenko & Korolev, 1996). In the same way, if instead of summing, one
considers maximization, then the extremal types theorem applies, leading to the generalized extreme value
distribution; and if one considers threshold exceedances and shifting, then the Pickands-Balkema-de Haan
theorem leads to the generalized Pareto distribution (Coles, 2001). All these limit distributions contemplate
power law-like tails; however, these tails are only obtained when the tails of the individual distributions
(those that are added, maximized, etc.) are of the same kind. This fact excludes limit theorems as a genuine
mechanism to generate power laws, as they ultimately deal with the trivial case of “power law-in, power
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law-out,” in which a power law-like distribution is obtained from the input of another, unexplained, power
law-like distribution.
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