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Abstract

It is well accepted that, at the global scale, the Gutenberg-Richter (GR) law describing the

distribution of earthquake magnitude or seismic moment has to be modified at the tail to

properly account for the most extreme events. It is debated, though, how much additional

time of earthquake recording will be necessary to properly constrain this tail. Using the

global CMT catalog, we study how three modifications of the GR law that incorporate a cor-

ner-value parameter are compatible with the size of the largest observed earthquake in a

given time window. Current data lead to a rather large range of parameter values (e.g., cor-

ner magnitude from 8.6 to 10.2 for the so-called tapered GR distribution). Updating this esti-

mation in the future will strongly depend on the maximum magnitude observed, but, under

reasonable assumptions, the range will be substantially reduced by the end of this century,

contrary to claims in previous literature.

Introduction

Statistics of earthquake occurrence, in particular of the most extreme events, must be a funda-

mental source to assess seismic hazard [1]. The cornerstone model for describing the earth-

quake-size distribution is the Gutenberg-Richter (GR) law [2, 3]. The original version of the GR

law states that earthquake magnitudes follow an exponential distribution, and since this is a per-

fectly “well-behaved” distribution, with all statistical moments (such as the mean and the stan-

dard deviation) being finite, the problem of earthquake sizes would seem a rather trivial one.

However, a physical interpretation of the meaning of the GR law needs a proper under-

standing of magnitude. In fact, magnitude presents several difficulties as a measure of earth-

quake size [4], and a true physical quantity is given instead by seismic moment [5, 6]. Due to

the logarithmic dependence of magnitude on seismic moment, the GR law for the latter trans-

forms into a power-law distribution, i.e.,

f ðxÞ /
1

x1þb
; for a � x <1; ð1Þ

where x is seismic moment, f(x) the seismic-moment probability density, a a lower cut-

off below which the power law does not hold (presumably because of the incompleteness of
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the considered catalog for small earthquakes), and 1 + β the power-law exponent, which

takes values close to 1.6 or 1.7 (and with the symbol “/” representing proportionality).

It turns out that the solution to the physical interpretation of the GR law has a price to be

paid: the power-law distribution, when 1 + β is smaller than 2 (which is indeed the case),

is not “well behaved”, in the sense that the mean value of the seismic moment becomes

infinite.

The reason is that, for power-law distributed seismic moments, events in the tail of the dis-

tribution, despite having very small probability, bring an enormous contribution to seismic-

moment release [7], and the seismic-moment sample mean does not converge, no matter how

large the number of data is, due to the inapplicability of the law of large numbers to power-law

distributions [8] such as that in Eq (1). In consequence, as when extended to the whole range

of earthquake sizes the GR law is unphysical, the tail of the distribution of seismic moment

must deviate from the GR power-law shape [9].

Due to scarcity of data, the problem has to be approached at a global scale, or at least for

a large subset of the global data (for instance, for subduction zones as a whole [9]). This

approach has been followed by a number of authors [3, 9–17]. Essentially, a new parameter

Mc> 0 is introduced, providing a scale for the seismic moment of the largest (“non-GR”)

earthquakes, in such a way that for x�Mc the GR law can be considered to hold but for x�
Mc the distribution clearly departs from this law, decaying faster than the GR power law. The

values of Mc are more easily read in terms of the corresponding (moment) magnitude mc [5,

6], through the formula mc = 2(log10 Mc − 9.1)/3, where the seismic moment is measured in

N�m. As mc is sometimes referred to as “corner magnitude”, so Mc would be the “corner seis-

mic moment” [9], independently of the specific probabilistic model (in practice, we will use

Mc for formulas and mc for reporting numeric values, and both will be referred to as “corner

parameters” or “corner values”).

In this article we aim to further clarify to what extent the available observations can con-

strain Mc or mc, and how many more earthquakes (and then, how many more years of record-

ing) would be likely necessary to yield reasonably precise values of such estimates. Before

proposing a rigorous statistical way to tackle these issues, we will need first to assess a previ-

ously proposed approach [16].

Probabilistic models

We define the probabilistic models in terms of the cumulative distribution function, F(x),

which gives the probability that the random variable (seismic moment) is equal or smaller

than a value x. This description is totally equivalent to the one in terms of the probability den-

sity, as both functions are related as f(x) = dF(x)/dx and FðxÞ ¼
R x
a f ðx

0Þdx0 (at some point we

will use also the complementary cumulative distribution function, S(x) = 1 − F(x)).

The distributions of our interests are:

1. the truncated power-law (TPL) distribution [16],

FtplðxÞ ¼ 1 �
a
Mc

� �b
" #� 1

1 �
a
x

� �b
� �

; for a � x � Mc; ð2Þ

2. the tapered (Tap) GR law [14, 16, 18], also called Kagan distribution [19],

FtapðxÞ ¼ 1 �
a
x

� �b
e� ðx� aÞ=Mc ; for a � x <1; ð3Þ
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3. the truncated gamma (TrG) distribution [12, 20],

FtrgðxÞ ¼ 1 �
Gð� b; x=McÞ

Gð� b; a=McÞ
; for a � x <1; ð4Þ

with Gðg; zÞ ¼
R1
z xg� 1e� xdx the upper incomplete gamma function, defined when γ< 0

only for z> 0. All three F(x) are zero for x< a and Ftpl(x) = 1 for x�Mc. The parameter β
has to be greater than zero, except in the TrG model, where it has no restriction. Of course,

Mc> 0 and a> 0.

The three distributions are graphically depicted in S1–S3 Figs of the supporting informa-

tion. Note that for the TPL distribution Mc is a truncation parameter, whereas for the Tap and

TrG it is a scale parameter (it sets the scale of F(x) in the x-axis) [12, 20]. Namely, ftpl(x) goes

abruptly (discontinuously) to zero at x = Mc, whereas for the other two distributions this point

sets the scale at which the power law transforms smoothly into an exponential decay. So, the

physical meaning of Mc in the TPL is quite different than in the other two models. Note also

that the TPL is truncated both from below and from above (but the adjective refers to the trun-

cation from above, x�Mc), whereas the TrG and Tap are truncated only from below (x� a).

Summarizing, all the considered distributions have two free parameters, β and Mc (or β and

mc), with the value of a fixed by the completeness of the earthquake catalog. In all cases, the

limit Mc!1 yields the usual power-law (PL) distribution [20], Fpl(x) = 1 − (a/x)β for x� a,

which is equivalent to Eq (1). Other works have considered different distributions, such as the

Gumbel in Ref. [21], for which the power-law limit is not so clear.

State of the art

Several authors have addressed the constraining of the value of Mc and related issues. In partic-

ular, Ref. [16] studied the TPL and the Tap distributions (called there GR and MGR, respec-

tively). It was claimed that, for global seismicity with magnitude above 5.75 (i.e., seismic-

moment lower cut-off a = 5.31 × 1017 N�m), an enormous amount of data would be necessary

in order to obtain reliable estimates of Mc or mc (200,000 years are mentioned for the Tap dis-

tribution with mc’ 8.5). Reasonable values proposed previously by other authors (for instance

mc’ 9 in Ref. [14] for the Tap distribution) were discarded.

The analysis was based on a single statistic: the maximum seismic moment Y of the N earth-

quakes with magnitude above 5.75 contained in the catalog; that is,

Y ¼ maxfX1;X2; . . .XNg:

Elementary probability theory allows one obtaining the probability distribution of the max-

imum Y when the N observations are independent [16, 22] (independence is the maximum-

entropy outcome when there is no constrain for the dependence between the observations

[23]). Namely, the cumulative distribution function of this maximum is given by

FmaxðyÞ ¼ Prob½Y � y� ¼ ½FðyÞ�N ; ð5Þ

where F(y) can be given by any of the distributions in Eqs (2)–(4), depending on the underly-

ing statistical model. This approach constitutes an “extreme” limit of the classical block-max-

ima procedure used in extreme-value theory, considering just one single block [24]. Fig 1

provides an illustration for Fmax(y); S4–S6 Figs in the supporting information provide a full

picture.

Given a set of N observations with empirical maximum yemp = max{x1, x2, . . .xN} and a

modeling probability distribution F(x), Zöller [16] correctly argued that, if the data come

The corner value of the global MS law
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indeed from F(x), then, Fmax(yemp) = Prob[Y� yemp] should not be too close to 1. The reason

is that proximity to 1 would mean that the empirical value yemp is too large in relation to the

values of Y that one can expect from the model distribution F(x) and the number of earth-

quakes observed. Subsequently, this author introduced an ad-hoc distinction between what he

called “not well-sampled” distributions, characterized by Fmax(yemp) = Prob[Y� yemp] large

(close to 1) and “well-sampled” distributions, characterized by Fmax(yemp) small. The latter can

be equivalently characterized by a large value of the complementary cumulative distribution at

yemp, that is, Smax(yemp) = 1 − Fmax(yemp) = Prob[Y> yemp] large (close to one). In practice [16],

SmaxðyempÞ ¼ Prob½Y > yemp� > 0:99 ð6Þ

for “well-sampled” distributions [16]. We will explain below that this criterion cannot be sus-

tained from a statistical point of view, and will introduce instead a robust criterion.

Fig 1. Probability distributions for the maximum of N = 7, 585 values of seismic moment (as in the global CMT catalog

considered), assuming that these are independent and distributed according to truncated power laws with lower cut-off

a = 5.31 × 1017 N�m and diverse values of mc ranging from 8.5 to 12. The value of the exponent is fixed to 1 + β = 1.67, very close

to the maximum-likelihood solution. The largest empirical value in the catalog, is shown as a vertical line. (a) Complementary

cumulative distributions Smax(y) and critical values 0.025 and 0.975 (horizontal lines). Note that 0.025< Smax(yemp)<0.975 at least

for mc� 9.2, in contrast with the results of Ref. [16], so these values of mc cannot be ruled out. (b) The corresponding probability

densities fmax(y).

https://doi.org/10.1371/journal.pone.0220237.g001

The corner value of the global MS law

PLOS ONE | https://doi.org/10.1371/journal.pone.0220237 August 19, 2019 4 / 15

https://doi.org/10.1371/journal.pone.0220237.g001
https://doi.org/10.1371/journal.pone.0220237


Analyzing global data from the centroid moment tensor (CMT) catalog [25, 26], from Janu-

ary 1, 1977 to June 30, 2012 (including shallow, intermediate and deep events, N = 7, 585 for

x� a), Zöller [16] found that the value of the maximum magnitude corresponds to the 2011

Tohoku earthquake, with magnitude 9.1 (note that the 2004 Sumatra earthquake had a com-

bined multiple-source moment magnitude of 9.3, but only 9.0 with the standard CMT deter-

mination [27]). In our work, we will analyze the same dataset, for the sake of comparison.

Then, this author [16] evaluated the performance of the TPL and the Tap distributions for dif-

ferent fixed values of the parameter Mc. The considered values correspond to mc = 8.5, 9, 9.5,

. . .12, in addition to mc = 9.2. In contrast, it was stated that β was estimated by maximum like-

lihood for fixed Mc.

For the TPL model, a value of mc = 9.2 resulted in Prob[Y> yemp] = 0.55 [16], whereas mc =

9.5 and mc = 10 led to Prob[Y> yemp] very close to one, and even closer-to-one values were

obtained for mc� 10.5. Following the “well-sampledness” criterion, the value mc = 9.2 was

discarded for the TPL model, despite of having the maximum likelihood among all the values

of the parameters considered, and values with mc� 10.5, with much smaller likelihood, were

preferred. However, no preference was shown between mc = 10.5 and any other higher value

(for instance mc = 12) and all the models were considered equally likely. For the Tap model,

the previous results and the conclusions [16] were similar to those for the TPL model, and in

this way the value mc = 9 (proposed in Ref. [14]) was rejected despite of yielding maximum

likelihood.

The calculation of the required number of data to perform a reliable estimation of parame-

ter Mc (or mc) was obtained by imposing a minimum number of events Nm such that the distri-

bution becomes “well-sampled” [16], in the sense of Eq (6). So, introducing Eq (5) into Eq (6),

SmaxðyempÞ ¼ Prob½Y > yemp� ¼ 1 � ½FðyempÞ�
Nm > 0:99: ð7Þ

Note that, no matter the value of F(yemp), if this is strictly smaller than 1, for sufficiently

large Nm we will have ½FðyempÞ�
Nm < 0:01 and the condition will be fulfilled by any model, with

any parameter value, if enough data are gathered (except truncated models with F(yemp) = 1).

Imposing that the previous condition becomes an equality one gets

Nm ¼
j ln 0:01j

j lnFðyempÞj
¼

7; 585j ln0:01j

j ln ð1 � Prob½Y > yemp�Þj
: ð8Þ

We will argue below that this Eq (8), used (but not made explicit) in previous research [16],

does not hold for the problem under consideration.

In this way, for the TPL model with mc = 9.2, accepting the value Prob[Y> yemp] = 0.55, the

approach just outlined, Ref. [16] [Eq (8) here], yields that Nm has to be higher than 45,000 (cor-

responding to 212 years of earthquake recording, with about 214 earthquakes with x� a per

year). For the Tap model with mc = 8.5, for which Prob[Y> yemp] = 0.0007, one obtains that

more than 200,000 years would be needed (from Nm = 50 × 106, roughly). Note the counterin-

tuitive results that this approach leads to: the larger the corner seismic moment Mc, the less

data are required for its estimation, as contained in Eq (8) (due to the decrease of F(yemp) with

mc) and illustrated for the TPL model in Fig 2.

Proper testing using the maximum seismic moment

First, let us show that the previously used “well-sampledness” criterion [16], reproduced here

in Eq (6), is not appropriate. If the distribution F(x) is a good model for the empirical data,

what one expects is that both Prob[Y� yemp] and Prob[Y> yemp] are not too close to 1, let us

The corner value of the global MS law
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say, below 1 − (1 − r)α and 1 − rα, respectively, at significance level α (with r = 1/2 in the usual

symmetric case and α = 0.05 or 0.01). As both probabilities add to one, the conditions can be

written as

ra < Prob½Y � yemp� < 1 � ð1 � rÞa: ð9Þ

or, equivalently, as

ð1 � rÞa < Prob½Y > yemp� < 1 � ra;

i.e., the random variable Y takes not too extreme values with probability 1 − α (e.g. 0.95 or

0.99). Note the profound difference between these conditions and the “well-sampledness” cri-

terion [16], Eq (6) here.

Note that, following this “new” criterion, previous numerical results for the truncated

power-law distribution [16] seem to indicate (in contrast to the conclusions there) that all

tested values of mc should be rejected at the 0.05 significance level (as Ref. [16] reports Prob[Y
> yemp]>0.975), except mc = 9.2 (the value of Prob[Y> yemp] for mc = 9.5 displayed in Fig 3 of

Ref. [16] seems to be slightly above 0.975 and should be rejected as well, at least in the symmet-

ric case r = 1/2). For the Tap distribution, the only values of mc that should not be clearly

rejected from the numerical results of Ref. [16] (again in contrast with the conclusions of that

reference) are mc = 9 and mc = 9.2 (for the rest of mc values Ref. [16] reports Prob[Y> yemp]

above 0.975 or below 0.025). But the numerical results of Ref. [16] are not in correspondence

Fig 2. Number of years necessary to obtain a reliable estimation of the truncation parameter Mc for the TPL model with β =

0.67 as a function of the hypothetical true value of Mc (represented by mc), according to Ref. [16] (decreasing curve) and

according to our results [inverting Eq (11), increasing curves], assuming an average rate of 213.7 events per year. In the latter

case we impose that 95%-probability intervals have magnitude width Δ = 0.2 and 0.4. The resulting values of N guarantee no

undersampling (i.e., mp+0.95’mc, not shown). Note the totally different outcomes of the two approaches.

https://doi.org/10.1371/journal.pone.0220237.g002
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with ours; our maximum-likelihood estimations for β do not lead to Prob[Y> yemp]’1 when

mc is large (mc� 10). What we find for those values is Prob[Y> yemp]<0.975, see Fig 1 and S5

Fig (and S6 Fig for the TrG), so all large values of mc are allowed, in principle.

Regarding the number of earthquakes required to constrain the corner parameters (Mc or

mc), what is implicit behind Eq (8) is that a “not well-sampled” distribution (with Prob[Y>
yemp] close to zero) is “not well-sampled” just because of “bad luck”, that is, the largest earth-

quake had yemp much larger than expected from both the model F(x) and the actual value of

N. This bad luck is what leads to the rejection of the null hypothesis in usual statistical testing

(and corresponds to the significance level, see Eq (9)). But, in Ref. [16]’s argument, gathering

more data would eventually lead to the accommodation of the theoretical distribution of the

maximum to the empirical value yemp, regardless of the model. Thus, in that assumption yemp

is considered quenched, i.e., it does not grow despite the fact that the number of data increases.

This is hard to justify.

Proper constraining of the corner seismic-moment: TPL case

In this section we derive a proper statistical way to evaluate the number N of earthquakes nec-

essary to constrain the estimated value of Mc or mc for the TPL distribution. In this case, our

approach uses the distribution of the estimator of these quantities (Mc and mc) to calculate

their statistical uncertainty as a function of N, and looks for the value of N that reduces the

uncertainty down to a desired range. This will necessary depend on the true values of the

parameters, which are unknown, and is also based on the assumption that the sample is repre-

sentative of the whole population (otherwise, no inference is possible).

For this purpose, let us focus in the truncated-power-law model, which has the peculiar

property that the random variable Y (the maximum seismic moment of the N earthquakes)

constitutes the maximum-likelihood estimator, M̂c, of the truncation parameter Mc, that is

Y ¼ M̂c for the TPL (or, equivalently, m̂c for the magnitude). Then, inverting Fmax(yp) = p,

with yp defining the 100p–th percentile of the distribution of the maximum seismic moment

(i.e., the distribution of M̂c), one can get the probability of any interval for M̂c. The limiting

points for these intervals are, from Eqs (5) and (2),

yp;tpl ¼
a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � p1=N ½1 � ða=McÞ
b
�

q

;

and in terms of the magnitude,

mp;tpl ¼
2

3
log

10

a
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � p1=N ½1 � ða=McÞ
b
�

q

0

B
@

1

C
A � 9:1

2

6
4

3

7
5; ð10Þ

using the relation between magnitude and seismic moment, with mp the 100p–th percentile of

the distribution of the maximum magnitude. For the true distribution, the resulting 95%-prob-

ability intervals, (mp,tpl, mp+0.95,tpl), should contain the empirical value of the maximum with

a 0.95 probability. These intervals are shown in Fig 3, using the empirical value of N in the

global CMT catalog and different values of Mc, with β fixed to 0.67, and p = 0.025 for symmet-

ric intervals (we have checked that the final results do not depend too much on this choice).

Fig 3 shows that the ideal situation happens when the distribution of the maximum-likeli-

hood estimator is very narrow, and then m̂c ’ mc, leading to the automatic recovering of the

true value (a value very close to it, but below, in fact). When N is equal to the empirical value

(considering the case previously studied in the literature [16], up to mid 2012) this happens for

The corner value of the global MS law
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mc< 8.5. One could refer to this case as “sampled enough” (in sharp contrast with previous

terminology [16]). On the contrary, when the upper limit of the interval, mp+0.95, departs

clearly from the true value of mc, we may talk of undersampling (there is no hint of the real

maximum mc after the N observations, again in contrast with previous research [16]). This is

the case for mc> 10.5 (for N = 7, 585), for which the intervals do not include the true value of

mc (for instance, for mc = 12 the interval of the maximum goes from 9 to 11, roughly, see Fig

3). But note this kind of undersampling still would allow ruling out the values of the parame-

ters of the undersampled distributions, if the empirical value of the maximum were outside the

resulting interval (nevertheless, this is not the case for the actual value, see below). In the inter-

mediate case (8.5 <mc< 10.5 for the period under consideration), the intervals are wide but

they reach the true value.

We can use the previous argument to find the value of N that leads to narrow 95%-probabil-

ity intervals for the estimation of Mc or mc in the TPL model. Using Eq (10), the width of the

magnitude intervals, Δ = mp+0.95 −mp, is obtained as

Dtpl ¼
2

3b
log

10

1 � ½1 � ða=McÞ
b
�p1=N

1 � ½1 � ða=McÞ
b
�ðpþ 0:95Þ

1=N : ð11Þ

Isolating N as a function of Δtpl for given values of Mc and β yields the desired result. Notice

that, in contrast to Ref. [16] [Eq (6)], our approach does not need any empirical information

Fig 3. 95%-probability intervals, represented by the starting and ending points (mp, mp+0.95) for the truncation parameter Mc of

a TPL distribution with N = 7, 585 earthquakes (in terms of the corresponding truncation magnitude mc), as a function of the

hypothetical true values of mc. The value of the exponent is 1 + β = 1.67. Two kinds of intervals are shown: symmetric (r = 1/2 in Eq

(9)) and of minimum width (the r that gives minimum width is selected), labeled with mpm
. The empirical value of the maximum

observed magnitude in the global CMT catalog for the 7,585 considered earthquakes is shown as a horizontal line. When the line is

outside the interval, the parameter value mc should be rejected.

https://doi.org/10.1371/journal.pone.0220237.g003
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(except the value of β). Going back to Fig 2, this includes the number of events necessary to

obtain intervals of a fixed width after numerical inversion of Eq (11), as a function of Mc. The

results are clearly different to the previous ones [16], as shown in the figure.

Fig 2 is particularly useful for testing a specific value of mc. If the real value of mc were 9.5

(the largest earthquake in the historical record [28], but not contained in the CMT catalog) a

95%-probability interval with width Δ = 0.4 (from 9.1 to 9.5, roughly) would be obtained after

about N = 14, 000 events (corresponding to 65 years, reached in 2042). If one wants instead a

width of Δ = 0.2 (yielding an interval from 9.3 to 9.5) the necessary N is 36, 400, to be reached

around the year 2147 (assuming that the TPL were the right model, that there is no depen-

dence between the magnitudes, and that the long-term global earthquake rate and β were

constant).

It is important to realize that, in all the cases shown in the figure, the top value of the inter-

val coincides with the real value. Although the probability that the estimated value is between

mp+0.95 and mc is 0.05 − p, the two values are very close, i.e., mp+0.95’mc; this is due to the

extreme sharpness of the density of the observed maximum close to mc (for instance, as in Fig

1, where the vertical axis is logarithmic). So, the value of N provided in the figure guarantees

no undersampling. Note also that a 95%-probability interval is a much more strict requirement

than an interval corresponding to one standard deviation.

We have just calculated the number of earthquakes required to estimate Mc with a given

uncertainty, for different hypothetical values of the true Mc. This does not make use the empir-

ical value yemp obtained in 35.5 years. A different issue then is how yemp discards or not the

possible values of Mc. Fig 3 shows (in addition to the intervals of the maximum magnitude

obtained from Eq (10)) the empirical value obtained for the period 1977-2012.5. If the

observed maximum magnitude (9.1 in the global CMT catalog) is inside the interval, there is

no reason to reject the parameters of the model (with a 95% confidence); on the contrary, if

the empirical value is outside, we should reject the parameters.

The figure shows how, for the TPL model, no value of mc� 9.1 can be rejected, i.e., any

value of mc between 9.1 and1 is compatible with the empirical result, and therefore the data

do not allow to determine an upper bound for mc, although values of mc above 10 are close to

rejection (with a 95% confidence; if we decreased the confidence or increased the number of

data an upper bound would appear). Indeed, considering the most recent data at the time of

writing, up to the end of 2017 (where no other earthquake of magnitude larger than 9.1 has

taken place) the range of compatible values of mc turns out to be 9.1–10.8, as reported in

Table 1.

As an illustration, we also analyze what an hypothetical yemp corresponding to a 9.1 magni-

tude in a 71-year period (from 1977 to 2047, let us say) would imply. Table 1 shows that that

would constrain mc to be between 9.1 and 9.5, for 95%-probability intervals, but if the maxi-

mum in the same period were 9.3, the allowed range would be between 9.3 and 10.3. In con-

trast, a maximum empirical value of 9.5 (or higher) in that period would yield mc unbounded

from above again. Needless to say, we need to wait about 30 years to chose between these three

answers.

Proper constraining of the corner seismic-moment: Tap and TrG

cases

Note that, although the maximum empirical value of the seismic moment is the maximum-

likelihood estimator of Mc only for the TPL distribution (out of the three considered models),

we can still use the previous procedure to constrain the value of Mc for any distribution, but

with the resulting values of Mc not related to maximum likelihood estimation, in general.
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Thus, for the Tap distribution, the percentiles of the maximum seismic moment turn out to

be, using Eqs (3) and (5),

yp;tap ¼ bMcW
aea=ðbMcÞ

bMcð1 � p1=NÞ
1=b

 !

;

with W the Lambert W function [29], fulfilling z = W(zez). And for the truncated gamma we

get, using Eq (4),

yp;trg ¼ McG
� 1

2
ð� b; ð1 � p1=NÞGð� b; a=McÞÞ;

with G� 1

2
the inverse, respect to its second argument, of the incomplete gamma function. In

the same way as for the TPL, the empirical value yemp leads to an unbounded range of the val-

ues of mc compatible with yemp for the original value of N (7,585). These ranges go from 8.65 to

1 for the Tap distribution and from 8.8 to1 for the TrG, with β = 0.67. However, when one

extends the analysis up to 2017 the ranges become bounded, although large, see Table 1.

This table also explores the values of these ranges in the future, depending on the hypotheti-

cal value of the maximum magnitude observed. We see that, in general, the ranges provided

by the Tap distribution are somewhat wider than those provided by the TPL, whereas the

TrG yields rather larger ranges. This means that the number of data necessary to constrain the

value of mc is larger in the TrG than in the other two distributions. The table also allows us to

rule out the scenario that there will be no earthquakes larger than magnitude 9.1 before 2097

for a TPL distribution, as this scenario leads to the implausibility of having events larger than

9.3, contrary to what was observed in the 9.5 1960 event in Chile (although the CMT catalog

would probably underestimate the seismic moment of such an event [27]).

Discussion

Before concluding, we briefly explore the implications of our results for the assesment of

seismic hazard. Considering as an illustration the case of the tapered model, we have seen

(Table 1) how the CMT data, up to 2017, is compatible with a range of values of the corner

magnitude, from mcmin = 8.6 to mcmax = 10.2 (with a 95% confidence). Therefore, the resulting

seismic-moment distribution (or, in the same way, the resulting magnitude distribution) will

be a mixture (or combination) of the different Stap(x|Mc) (now we use the complementary

Table 1. Values of the corner parameter mc compatible (for 95%-probability intervals) with a maximum observed

magnitude m(yemp) in a time period starting in 1977 and ending in the indicated final year, for the truncated

power law (TPL), tapered (Tap) and truncated gamma (TrG) distributions. The values of m(yemp) marked with an

asterisk (�) indicate hypothetical values (the rest corresponds to the real observed value, 9.1). The value of β is 0.67. The

final year is estimated assuming a global rate of 213.7 earthquakes with moment magnitude�5.75 per year.

mc mc mc

final year m(yemp) TPL Tap TrG

2012.5 9.1� 9.1–1 8.6–1 8.8–1

2017 9.1� 9.1–10.8 8.6–10.2 8.8–11.2

2047 9.1� 9.1–9.5 8.6–9.3 8.7–9.7

2047 9.3� 9.3–10.3 8.8–9.95 9.0–10.6

2047 9.5� 9.5–1 9.1–1 9.2–1

2097 9.1� 9.1–9.3 8.6–9.1 8.7–9.4

2097 9.3� 9.3–9.6 8.8–9.4 8.9–9.8

2097 9.5� 9.5–10.3 9.0–10.0 9.2–10.6

https://doi.org/10.1371/journal.pone.0220237.t001
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cumulative distribution function and make explicit in the notation the dependence on the cor-

ner seismic moment Mc), with Mc ranging from Mcmin to Mcmax. Thus,

SmixðxÞ ¼
Z Mc max

Mc min

StplðxjMcÞrðMcÞdMc; ð12Þ

where the resulting distribution Smix(x) is no longer a Tap distribution but a mixture of Tap’s

with different Mc. The term ρ(Mc) gives weight to the different values of Mc. The same equa-

tion holds for any other probabilistic model (such as TPL and TrG).

One could assume a uniform distribution of corner magnitudes (all its values would be

equally likelly from mcmin to mcmax). Interestingly, for the corner seismic-moment distribution,

this leads to the Jeffreys prior of a scale parameter, ρ(Mc)/ 1/Mc. Under this choice, the inte-

gral in Eq (12) can be easily evaluated by the Monte-Carlo method. For the Tap model, the

probability of an earthquake of magnitude 9.1 or larger (among all earthquakes with magni-

tude larger than 5.75) turns out to be Smix(x) = 2.6 × 10−4, corresponding to about 1 in 20

years. In comparison with the CMT catalog itself (1 of such events in 35.5 years) this probabil-

ity seems somewhat large. Even higher values of the magnitude or other models (TPL or TrG)

also seem to lead to an overestimation of these probabilities. Naturally, this is the core problem

in the statistics of extreme events, one has very few extreme events to contrast estimations. As

the result is highly sensitive to the choice of the distribution ρ(Mc), this is a topic that deserves

further study.

Our results can also have applications for time-dependent hazard [18]. If we know when

the last earthquake of a given seismic moment x or higher happened (a time t ago), we can

obtain the probability of recurrence in a given time period Δ from the present as

Px;t;D ¼ Prob½t < waiting time � t þ D j waiting time > t� ¼ 1 �
Swðt þ D j xÞ
Swðt j xÞ

;

where the subindex w denotes that the distribution refers to the waiting time (not to the seis-

mic moment). For a Poisson process Sw is exponential with rate λx and then we recover

Px;t;D ¼ 1 � e� lxD ’ lxD ¼ RaSðxÞD;

which turns out to be independent on t and becomes essentially the same formula used above

for time independent hazard, with Ra = 213.7 year−1 (we have assumed D� l
� 1

x ).

In order to obtain time-dependent hazard one needs to go beyond Poisson occurrence. At a

global scale it has been pointed out that the gamma distribution can describe well earthquake

waiting times [30, 31]; nevertheless, for the sake of simplicity, we are going to illustrate the cal-

culation with the Weibull distribution, which can give similar fits [32]. In this way, from the

equation ago we can write

Px;t;D ¼ 1 � exp
t
cx

� �g

�
t þ D
cx

� �g� �

; ð13Þ

with γ and cx the shape and scale parameters of the Weibull distribution, respectively (the latter

depending on x). The Poisson case is included in the particular limit γ = 1.

The scale parameter of the waiting-time distribution can be directly related to the seismic-

moment distribution: On the one hand, the number of events per unit time (with seismic

moment above x) is Ra S(x). On the other hand, this number is also given by 1/ht(x)i, where

ht(x)i is the mean waiting time for events above x. In the particular case of the Weibull
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distribution, this is given by ht(x)i = cxg(γ) with g(γ) = Γ(1 + γ−1). Thus,

cx ¼
1

gðgÞRaSðxÞ
;

which substituting into Eq (13) allows the calculation of the probability Px;t;D. In the case

Δ� t this can be simplified to

Px;t;D ’ 1 � exp ½� gDðgðgÞRaSðxÞÞ
gtg� 1�:

In the context of this article, the seismic-moment distribution S(x) could be substituted by

the mixture for different values of Mc given by Eq (12). Nevertheless, the calculation of these

probabilities needs the accurate fitting of the waiting time distributions Sw(t | x) (i.e., the fitting

of γ and cx in the case of the Weibull distribution). This is left to future works.

Conclusions

Summarizing the main results of the article, we have reconsidered to what extent the available

earthquake record can constrain the parameter that characterizes the tail of the global seismic-

moment distribution: a corner seismic moment (Mc, or its corresponding moment magnitude

mc), for three different distributions (truncated power law, tapered GR, and truncated

gamma). We have corrected some of the drawbacks of previous literature, regarding the num-

ber of events necessary for such a purpose.

The key point in our approach is to obtain the percentiles of the distribution of the maxi-

mum seismic moment of N earthquakes, and to derive from there probability intervals that

can be compared with the maximum seismic moment observed, yemp. If yemp is inside the inter-

val there is no reason to reject the considered value of the corner parameter. Although cur-

rently (up to the end of 2017), the range of values of mc is rather wide, in 80 years from now

these ranges are expected to decrease substantially, but depending crucially on the maximum

value to be observed. For instance, if this were 9.3, the tapered model would lead to mc’ 9.1 ±
0.3 (95% confidence), and the truncated gamma model to 9.35 ± 0.45 (see Table 1 for more

hypothetical examples). From here we conclude that the much larger periods of time estimated

earlier are not justified. In addition, for the same reasons elaborated in this article, the standard

errors of corner parameters that we [20] calculated previously for almost 37 years of shallow

global seismicity using asymptotic likelihood theory do not provide a convenient description

of the range of uncertainty in those parameters.

Supporting information

S1 Fig. ccdf S(x) and pdf f(x) of TPL distribution with β = 0.67, a corresponding to moment

magnitude 5.75, and Mc corresponding to the values of mc shown in the legend.

(EPS)

S2 Fig. ccdf S(x) and pdf f(x) of Tap distribution with β = 0.67, a corresponding to moment

magnitude 5.75, and Mc corresponding to the values of mc shown in the legend.

(EPS)

S3 Fig. ccdf S(x) and pdf f(x) of TrG distribution with β = 0.67, a corresponding to moment

magnitude 5.75, and Mc corresponding to the values of mc shown in the legend.

(EPS)
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S4 Fig. ccdf Smax(y) and pdf fmax(y) of the maximum of 7,585 TPL observations with β =

0.67, a corresponding to moment magnitude 5.75, and Mc corresponding to the values of

mc shown in the legend. Critical values at the 95% confidence level are shown as horizontal

lines. Empirical value of maximum seismic moment observed is shown as a vertical line. Note

that this is exactly Fig 1 of the main text, repeated here for completeness.

(EPS)

S5 Fig. ccdf Smax(y) and pdf fmax(y) of the maximum of 7,585 Tap observations with β =

0.67, a corresponding to moment magnitude 5.75, and Mc corresponding to the values of

mc shown in the legend. Critical values at the 95% confidence level are shown as horizontal

lines. Empirical value of maximum seismic moment observed is shown as a vertical line.

(EPS)

S6 Fig. ccdf Smax(y) and pdf fmax(y) of the maximum of 7,585 TrG observations with β =

0.67, a corresponding to moment magnitude 5.75, and Mc corresponding to the values of

mc shown in the legend. Critical values at the 95% confidence level are shown as horizontal

lines. Empirical value of maximum seismic moment observed is shown as a vertical line.

(EPS)
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