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Abstract. We propose a model for the dynamics of the formation of rings of FtsZ on tubular liposomes
which produce constriction on the corresponding membrane. Our phase-field model is based on a simple
bending energy that captures the dynamics of the interplay between the protein and the membrane. The
short-time regime is analyzed by a linear dispersion relation, with which we are able to predict the number
of rings per unit length on a tubular liposome. We study numerically the long-time dynamics of the system
in the non-linear regime where we observe coarsening of Z-rings on tubular liposomes. In particular, our
numerical results show that, during the coarsening process, the number of Z-rings decreases as the radius
of tubular liposome increases. This is consistent with the experimental observation that the separation
between rings is proportional to the radius of the liposome. Our model predicts that the mechanism for
the increased rate of coarsening in liposomes of larger radius is a consequence of the increased interface
energy.

1 Introduction

Recent experimental results related to the origin of con-
strictive forces during cell division of rod-like bacteria have
revealed that such forces are induced by the emergence of
the so-called Z-rings. The major component of this struc-
ture is a filament formed by the FtsZ protein [1, 2].

A popular experimental setup to study this phe-
nomenon in vitro consists of using a mixture of lipids and
FtsZ protein. The lipids organise themselves into rod-like
liposomes which resemble the structure of the bacterium
membrane. The FtsZ protein, in turn, accumulates on
this rod-shaped structure forming rings scattered over the
length of the liposome. An important observation that re-
sults from these experiments is that the initially unstruc-
tured distribution of Z-rings evolves to a configuration
in which the separation between two consecutive Z-rings
is roughly equal to twice the radius of the liposome [1].
The results of these experiments demonstrate that FtsZ
is enough for assembling Z-rings and therefore to generate
constriction forces on the liposome.

There is a discussion in the literature as to what are
the mechanisms of force generation. One hypothesis pos-
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tulates that there are lateral bonds which induce lateral
attraction between protein filaments. If, in addition, the
overlapping ends are capable of sliding over each other and
reducing the radius of the liposome, constriction would
emerge as the increased number of lateral bonds makes
this configuration more stable. A very different hypothesis
consists of assuming that FtsZ protofilaments are curved
and, when tethered to the membrane or liposome, produce
a bending force [2].

These experimental results have motivated a number
of modelling and theoretical studies examining both sce-
narios. The mechanism based on lateral bonding has been
modelled and analysed by Hörger et al. using Langevin
computer simulations [3, 4].

Regarding the second scenario where bending energy is
the force-generating mechanism, Hörger et al. [3, 5] have
proposed a model based on the Helfrich energy formal-
ism with the addition of a constant spontaneous curvature
term. This equilibrium model leads to the result that the
constriction force is 50-100 pN in agreement with both in
vivo and in vitro experimental results.

Cytrynbaum et al. [6], based on previous models of
constriction generation via hydrolysis of FtsZ-GTP [7–9],
have proposed a method for calculating the value of
the bending modulus using a Langevin equation for the
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movement of the rings. Their results are consistent with
experimental data for the separation between Z-rings. The
vast number of experimental studies on FtsZ, and in par-
ticular on its role in bacterial cell division in E. coli, pro-
vides access to reliable data [2, 10,11].

Experiments have shown a dynamical evolution where
a homogeneous distribution of FtsZ protein induces a con-
striction of the membrane of liposomes by the formation
of Z-rings at regular spacings [1,2,11]. Several models have
explored this topic [7, 8, 12–15]. Shlomovitz and Gov [14]
have studied the role of the interaction between the mem-
brane and FtsZ rings on their condensation and coales-
cence. Liu and Guo [15], by means of a combined phase-
field model for the membrane and a kinetic description of
the FtsZ ring, have analysed morphodynamics in bacterial
cell division.

The aim of this paper is to formulate a novel phase-
field model based on a simple bending energy that cap-
tures the dynamics of the interplay between the protein
and the membrane, which allows to study the dynamic
processes of ring formation and constriction. In particu-
lar, we propose a dynamic model where the spontaneous
curvature depends on the local concentration of FtsZ pro-
tein [14]. We study numerically the long-time behaviour of
the system where non-linear effects take over. The numer-
ical results indicate the presence of coarsening of Z-rings
in long tubular liposomes. Our results show that, during
the coarsening process, the number of Z-rings decreases as
the radius of tubular liposome increases, which is consis-
tent with the experiments where the separation between
rings has been observed to be proportional to the radius
of the liposome [1]. The fact that our model is capable
of reproducing this experimental results shows that our
phase-field model could be extended, by removing certain
constraints (e.g. membrane area conservation) and applied
to account for more complex situations.

This paper is organised as follows. Section 2 is devoted
to present the model and discuss its physical foundations.
In sect. 3 we discuss, by means of a linear stability anal-
ysis, the onset of constriction. Section 4 is devoted to a
numerical exploration of the non-linear behaviour that fol-
lows the initial instability. Last, in sect. 5, we discuss our
results and present our conclusions.

2 The model

We model the constriction of the vesicle membrane in the
presence of an external agent, the protein. We suppose
that the main contribution to the membrane energy is
bending, following the well-known approach of Canham-
Helfrich [16]. We implement a Canham-Helfrich minimiza-
tion scheme by means of a phase field that takes the value
φ = 1 inside the vesicle and φ = −1 outside. Hence, the
level set φ = 0 gives us the membrane location. The bend-
ing free energy is given by [17]

Fb = Ab

∫
V

Φ2
b dV (1)

and
Φb = −φ + φ3 − ε2∇2φ + C0ε(1 − φ2), (2)

where Ab is the bending modulus which is the charater-
istic energy associated to bending, ε is the width of the
interface, and C0 is the spontaneous curvature term.

In our case, in the absence of FtsZ, the vesicle is
a straight cilinder and hence the spontaneous curvature
term in eq. (2) is zero. However, as the protein concen-
trates on the membrane, the cilindrical vesicle acquires
curvature in the direction perpendicular to its axes, giv-
ing rise to the known constricted shapes shown in figs. 2
and 3 of refs. [1] and [2], respectively. Therefore, in our
case, this spontaneous curvature term is proportional to a
field u which gives the concentration of protein FtsZ in the
domain. A non-linear dependence on the FtsZ concentra-
tion is imposed in the form C0 = C0(u) = βu2, to enforce
the positivity of u, where β measures the strength of the
interaction, that is the ability of the protein to modify the
spontaneous curvature. The rationale for choosing C0(u)
to be a quadratic function of u can be given in terms of the
model formulated in [3,4]. This model proposes that con-
striction is produced by lateral bonding of two FtsZ fibers.
Therefore, the constriction produced by the protein on the
membrane, which, in our model, is accounted for through
the spontaneous curvature, should be proportional to the
protein concentration squared.

The protein-membrane adhesion free energy, Vs, has
two wells, at the fixed points u = umax (maximum con-
centration of protein per site) and u = umin (minimum
concentration of protein, usually taken to be zero). The
parameter umax measures the affinity of the protein for
the membrane. Since we know that FtsZ acts only on the
surroundings of the vesicle membrane where the Z-rings
locate to produce the constriction, further coupling of the
protein and the vesicle reads

Fsf =
∫

V

(AsVs + AfVf )dV, (3)

Vs = (φ2 − 1)2(u − umax)2(u − umin)2 + λ|∇u|2, (4)

Vf = φ2(u − ufar)2, (5)

where λ is the surface tension of the protein field and ufar

represents the average value of protein concentration in
the environment of the system and can also be taken to be
null. Similarly to Ab, As and Af are characteristic energy
scales. As is the energy associated to protein binding to
the membrane, whereas Af is the characteristic scale of
the energy cost associated to the presence of protein away
from the membrane (recall that ufar = 0). Therefore, the
total free energy of our vesicle-protein system is given by

F =
∫

V

(AbΦ
2
b + AsVs + AfVf + σ|∇φ|2)dV. (6)

We also impose a restriction on the vesicle area
(see [17]) that mimics the limited number of lipids that
form the membrane. This is done by means of the La-
grange multiplier σ that is calculated by imposing surface
area conservation of the membrane [18]. Both the protein
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concentration u and the order parameter for the vesicle φ
are conserved quantities and hence their evolution is given
by Cahn-Hilliard (or model B) equations [19,20]

∂φ

∂t
= Dφ∇2

(
δF

δφ

)
, (7)

∂u

∂t
= Du∇2

(
δF

δu

)
, (8)

where Dφ and Du are the corresponding diffusion coeffi-
cients, providing the time scales for the system.

Our model is fundamentally different from previous
ones such as [14] in a significant aspect, namely, they
consider that the radius of the liposome, r(z), where z
is the coordinate along the axis of the cilinder, is given by
r(z) = R + h(z) with h(z) is considered to be a small de-
viation. By contrast, our model does not make such an as-
sumption regarding small perturbations. On the contrary,
our model is formulated in terms of a phase-field theory
which is intrinsically non-linear and, therefore, accounts
for the dynamics of the membrane in an accurate way in all
the regimes of its evolution. In the next section, we carry
out a linear stability analysis in the standard form, i.e. we
linearise the phase-field dynamical equations and consider
a small, plain wave perturbation of a uniform state.

3 Onset of constriction

In order to analyse the stability of a membrane with ho-
mogeneous distribution of protein, one can study the effect
of small perturbations of a flat interface. A more detailed
description of the derivation of the dispersion relation is
given in appendix A. In particular, we consider that per-
turbations take the form of plane waves: φ = φ0e

ikz+ωt

and u = uh+u0e
ikz+ωt around the membrane (φ = 0) and

uh which is the concentration of protein, initially homoge-
neously distributed on the membrane. We further assume
that the amplitudes φ0 � 1 and u0 � 1. Substituting
these expression in the linearized version of eqs. (7), (8),
we obtain two different roots, ω1(k) and ω2(k), of the dis-
persion relation ω(k). One of them is shown to exhibit a
region of values of k such that ω1(k) > 0, which indicates
instability. The wavelength where w(k) changes sign is as-
sociated to the inverse of the characteristic length scale,
lc = π/k, of the separation between protein rings in our
system. In fig. 1 the unstable branch of the dispersion re-
lation is shown for typical values of the parameters. We
observe that the corresponding value of lc is l � 3.0.

4 Non-linear behaviour

We integrate numerically equations (7) and (8) using
second-order finite differences for the spatial dependence
and an Euler scheme for the time dependence. Since the
standard second-order finite diferences is a consistent fi-
nite difference method, the time step was chosen follow-
ing the Courant-Friedrichs-Lewy stability criterion: Δt ≤
cΔx, where Δx is the mesh size and c is a positive con-
stant [21]. We choose our units so that Δx = 1. We impose
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Fig. 1. Dispersion relation showing an unstable branch (red
line) for a finite interval of the wave number k. Parameter
values: Dφ = 1, Du = 2.7, Ab = 0.2, As = 2, Af = 2, ε = 0.01,
β = 0.1, umin = 0, umax = 1, λ = 0.45, ufar = 0, σ = 1, and
uh = umax/2.

Fig. 2. FtsZ ring formation as a function of length of the short
tubular liposome. Plot (a) corresponds to length l = 3 and plot
(b) to l = 4. Parameter values are given in fig. 1.

zero-flux boundary conditions on the edges of the planar
rectangular domain, within which the membrane is imbed-
ded. The initial condition for the membrane is formed by
a cylinder with two semispherical caps of constant radius
at its ends, corresponding to the shape of the membrane
of a short liposome. Regarding the variable u, i.e. the con-
centration of FtsZ protein, we consider it to be uniformly
distributed over the simulation domain. No-flux bound-
ary conditions are taken at the exterior boundaries of the
domain. The protein is uniformly distributed over the inte-
gration domain with a small random noise on the uniform
concentration uh. As time progresses, the protein gets at-
tached to the membrane forming rings. The short-time
behaviour is controlled by the length scale given by the lin-
ear dispersion relation, whereas the long-time behaviour
depends on the length of the cilindrical membrane.

In agreement with our analytical results, short tubular
liposome (l = 3, close to the critical length scale provided
by the dispersion relation, lc) show no ring formation and,
the protein distributes homogeneously over the surface of
the membrane, and, therefore, there is no constriction (see
fig. 2(a)). For lengths of the larger than lc (l = 4), we
observe that only one constriction is produced where, as
time progresses, all the protein will eventually accumulate
(see fig. 2(b)).
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Fig. 3. FtsZ ring formation as a function of time in long tubu-
lar liposomes. This figure shows the emergence of long-time
coarsening as the number of rings is observed to decrease in
time. Parameter values as given in fig. 1.

Longer tubular liposomes whose length is several times
lc, show a richer behaviour. Initially, in agreement with
the behaviour predicted by the linear analysis, a number
of rings are formed, located at distances approximately
given by lc. At longer times, a non-linear regime ensues in
which rings exhibit coarsening where rings move over the
membrane and eventually fuse, as shown in fig. 3.

We could also investigate the number of Z-rings when
varying the surface tension parameter of the protein, keep-
ing the length of the liposome constant, since this term
gives an important contribution to the dispersion relation.
In fig. 4, we show that the number of rings that appear
increases as λ decreases. This is to be expected, since the
energy associated to create an interface is smaller.

The non-linear regime is particularly relevant for
longer systems (e.g. tubular liposomes several times lc
in length). In these systems, according to the results of
the linear analysis, a periodic pattern of peaks in protein
concentration is formed. As time progresses, this periodic
structure goes through a process of coarsening which leads
to the movement of rings over the membrane which even-
tually merge. The coarsening rate is, according to our nu-
merical results, increased in tubular liposomes with larger
radius as shown in fig. 5. In accordance with experimen-
tal results by [1], the long-time behaviour of the distance
between rings is bigger in tubular liposomes with larger ra-
dius since the number of rings is observed to be inversely
proportional to the radius. Our model predicts that the
mechanism for the increased rate of coarsening in bigger
liposomes is a consequence of the increased interface en-
ergy, as determined by the surface tension parameter λ.
Z-rings on tubular liposomes with larger radius will have
a larger interface than rings on smaller radius, thus yield-
ing a larger contribution to the total energy, which in turn
leads to an increase of the effective diffusion coefficient of
the rings.

5 Discussion and conclusions

We have proposed a model to study the dynamics of the
constriction and ring formation on tubular liposomes. This

Fig. 4. The dependence of Z-ring formation as a function of
the value of the surface tension of the protein field λ. From top
left to bottom right: λ = 1.89, 0.54, 0.36, and 0.225. Parameter
values are as in fig. 1.

Fig. 5. This figure shows the increase of the coarsening rate
with the radius of liposome. We show the state at a given
time of two tubular liposomes with different radius: Plot (a)
corresponds to radius R and plot (b) to radius 2R. Parameter
values as given in fig. 1.

model is based on a free energy functional accounting for
the bending energy of the membrane including sponta-
neous curvature. The FtsZ protein is coupled to the mem-
brane through the spontaneous curvature term. Addition-
ally, there are two terms in the free energy, one describes
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the adhesion of the protein to the membrane, and the
other determines the concentration of protein in the bulk,
far from the membrane. Furthermore, there is a term that
takes into account the energy to create a surface of FtsZ
ring on the membrane.

The dynamical model has been studied analytically
by means of a linear stability analysis. The results show
the occurrence of an instability which leads to a periodic
pattern of the concentration of protein and to the onset
of constriction, eventually leading to the formation of Z-
rings.

By means of a dispersion relation found in the lin-
ear analysis we determined a minimum length, lc, which
depends on the model parameters, below which the mem-
brane would not be able to constrict.

We further study the phenomenon of ring formation
by means of extensive numerical analysis, which allowed
us to examine the coarsening phenomena that occur as
a result of the non-linear dynamics. As coarsening pro-
gresses, some rings coalesce so the number of rings de-
creases with time. The number of rings could be controlled
by the surface tension parameter λ, which increases as λ
decreases.

The radius of the tubular liposome is also important
in the coarsening process. We found that the number of
rings in a liposome of fixed length decreases as its radius
increases, in such a way that for a liposome twice the
radius, we get half the rings (see fig. 5), which has been
reported in in vitro experiments in liposomes [1].

This model allows the study the dynamics of forma-
tion of FtsZ rings, which is relevant to explain and pre-
dict phenomena observed in experiments with liposomes
in vitro. This is an indispensable step if one is interested
in understanding pinching of the membrane in bacterial
division.
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tial financial support from MINECO (Spain) under project
FIS2013-47949-C01-01-P and AGAUR project 2014SGR-878.
R.A.B. and A.H.M. acknowledge financial support from
Conacyt (Mexico) through project No. 179616. T.A. grate-
fully acknowledges the spanish Ministry for Science and In-
novation (MICINN) for funding under grants MTM2011-
29342 and Generalitat de Catalunya for funding under grant
2014SGR1307.

Appendix A. Linear stability analysis

In this appendix, we present the details of our analytical
calculation of the dispersion relation by means of a lin-
ear stability analysis of our model. We present the model
equations corresponding to the short-time regime and dis-
cuss the linear stability analysis for infinite systems.

The model equations in explicit form can be derived
from eqs. (7) and (8), and taking into account the defini-
tion δ

δφF (φ,∇φ,∇2φ) = ∂F
∂φ −∇ ∂F

∂∇φ +∇2 ∂F
∂∇2φ , we obtain

the expression of our dynamical equations:

∂φ

∂t
= Dφ∇2(Ab(2Φb(−1 + 3φ2 − 2εβu2φ) − 2ε2∇2Φb)

+ As4φ(φ2 − 1)(u − umin)2(u − umax)2

+ Af2φ(u − ufar)2 − 2σ∇2φ), (A.1)
∂u

∂t
= Du∇2(Ab4εβu(1 − φ2)Φb + As2((u − umin)

× (u − umax)(2u − (umin + umax))(φ2 − 1)2

− λ∇2u) + Af2φ2(u − ufar)). (A.2)

By following the standard linearisation procedure (see
sect. 3), we obtain a system of two linear equations. The
linear stability of the flat interface state is analysed by
diagonalising the associated 2 × 2 matrix, A = (aij).

By means of this linear analysis, we can determine that
the spontaneous curvature, which couples perturbations
on a homogeneous concentration of protein with the per-
turbation of the shape of the membrane, is responsible
for the onset of the instability. Intuitively, the local in-
crease in the concentration of protein increases the spon-
taneous curvature. Mathematically, this can be seen from
the above equations, in particular the terms which ex-
plicitely depend on β in eqs. (A.1) and (A.2) are the ones
which give positive contribution to the linearised equa-
tions, and, therefore responsible for unstable behaviour.

The variables used in our model are different form the
ones considered in [14]. Whereas [14] use the variable h(z),
our model considers an order parameter within the phase-
field framework, φ, which takes values between −1 and
+1 with the membrane located in the geometrical locus of
points that satisfy φ = 0.

In order to make a comparison with the linear analysis
carried out in [14], we consider the ε → 0 limit of our lin-
earised dynamical equations, which corresponds to study
the limit of small wave numbers. After performing this
limit, we derive that the entries of the matrix A = (aij)
have the following form:

aij = Aijk
2 + Bijk

4.

Note that the signs of the quantities Aij and Bij are de-
termined by the values of the model parameters.

We observe, as a consequence of eqs. (7) and (8) our
model variables are both conserved, which is reflected in
the depence on k of aij . This is in contrast with the lin-
ear result obtained in [14], where instability is generated
by the growth of the perturbation h(z) (which is propor-
tional to k0) due to the presence of the protein, and non-
homogeneous diffusion of the protein on the surface of the
liposome (which is proportional to k2).
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