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A NOTE ON QUASICONFORMAL MAPS WITH

HÖLDER-CONTINUOUS DILATATION

JAMES T. GILL AND STEFFEN ROHDE

Abstract. Recently J. Mateu, J. Orobitg, and J. Verdera showed that
a Hölder continuous complex dilatation supported on smooth domains
is a sufficient condition for the resulting quasiconformal map to be
bi-Lipschitz. Their proof is analytic and based on properties of the
Beurling-Ahlfors transform. We give an alternate, more geometric proof
and use it to extend their result to supporting domains with positive an-
gle corners.

1. Introduction

The Beltrami equation

∂Φ

∂z
= µ(z)

∂Φ

∂z
, a.e. z ∈ C

where µ is Lebesgue measurable in C, is an elliptic (uniformly elliptic if
‖µ‖∞ < 1) partial differential equation whose homeomorphic solutions are
the quasiconformal maps (finite distortion maps if ‖µ‖∞ = 1) of the plane.
The quasiconformal maps enjoy a variety of important properties (see the
recent book [1] for a modern treatment from the point of view of PDE theory
or the classic treatise [5]) and are often a useful tool for situations where
conformal maps turn out to be too rigid. They are, however, not a perfect
stand-in. They fail to be locally bi-Lipschitz, for example, and this is the
topic of our note.

A necessary and sufficent condition for a quasiconformal map to be bi-
Lipschitz is unknown. Perhaps the first step of understanding is due to J.
Schauder who showed that it is sufficient that µ be Hölder continuous and
compactly supported (see Chapter 15 of [1]). In [6], J. Mateu, J. Orobitg,
and J. Verdera prove

Theorem 1. Let {Ωj}, 1 ≤ j ≤ N , be a finite family of disjoint bounded
domains of the plane with boundary of class C1+ε, 0 < ε < 1, and let
µ =

∑n
j=1 µjχΩj , where µj are ε-Hölder continuous functions on Ωj and

‖µj‖∞ < 1 for each j = 1, . . . N . Then the principal solution associated
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modulus.
The authors were partially supported by the following NSF grants: the first author,

#1004721; the second author, #1068105.

1

C
R

M
 P

re
pr

in
t S

er
ie

s n
um

be
r 1

14
7



2 JAMES T. GILL AND STEFFEN ROHDE

to the µ-Beltrami equation (i.e. the one which is z + O(1/z) near ∞) is a
bi-Lipschitz quasiconformal map.

By ε-Hölder continuous on Ω we mean that there exists a C > 0 so that

|µ(x)− µ(y)| ≤ C|x− y|ε

for all pairs x, y ∈ Ω.
Informally, Theorem 1 extends the result of Shauder to allow the dilata-

tion to have jumps, provided that the jumps occur at reasonably smooth
curves. In this note we give an alternate proof of this theorem using the
more geometric methods of [8]. In addition we will also show that our
geometric methods extend Theorem 1 to domains with (properly defined)
corners if the dilatation takes certain allowable values (which depend on the
angle at the corner).

Theorem 2. The domains in Theorem 1 may be taken to each have finitely
many corners, provided the dilatation takes certain allowable values at each
corner.

We deliberately postpone the definition of both the allowable values of µ
and the type of corners allowed until later, when they will hopefully appear
natural to the reader.

The novelty of this theorem is that even the most trivial examples of
domains with corners prove to be quite complicated. For instance in [3], A.
Chéritat considers the case of the Beltrami equation which is a constant on
the unit square and zero elsewhere. The computation of these maps and
the image of the unit square under them are non-trivial. This is in direct
contrast with the case of a Beltrami equation supported on the unit disk, as
discussed in Sections 2.4 and 2.5 below.

The structure of this note is as follows: in Section 2 we outline some
examples and tools which will be useful in our proofs, in Section 3 we will
give an alternate proof of the theorem of Mateu, Orobitg, and Verdera, and
in Section 4 we extend this result to domains with corners.

1.1. Acknowledgement. Part of this work was done while the second au-
thor was visiting the Centre de Recerca Matemàtica, and he would like to
thank the CRM for their support and their hospitality. He would also like
to thank Tadeusz Iwaniec for stimulating discussions related to this work.
While this research was done the first author was supported by the Univer-
sity of Washington Department of Mathematics.

2. Tools and Examples

In this section we describe some standard properties of conformal moduli
which we will use in our proofs and discuss the role of both the Koebe
distortion theorem and the Lehto integral condition in what follows. Finally,
we describe specific examples of bi-Lipschitz quasiconformal maps which weC
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QUASICONFORMAL MAPS WITH HÖLDER CONTINUOUS DILATATION 3

will use in our proofs. The first example is rather simple, the second is more
delicate.

2.1. Modulus Estimates. Modulus is a conformal invariant for doubly
connected domains in the plane. Here we provide a brief overview of this
invariant and discuss some of the properties which will be of use to us.
Suppose we have an annulus centered at 0: A(0, r1, r2) := {z : 0 ≤ r1 <
|z| < r2 ≤ ∞}. The positive quantity

M(A) = log
r2

r1

is called the modulus of A. For other doubly connected domains B, there
is a (round) annulus centered at zero which is the conformal image of B.
We define the modulus of B, M(B), to be the modulus of such an annulus.
It can be shown that M(B) is well defined. This notion gives a simply
stated geometric definition for quasiconformal maps, which can be shown
(see Chapter I of [5]) to be equivalent to the other common definitions.

Definition 1. A K-quasiconformal map f is a sense-preserving homeomor-
phism of a domain D with the property that all doubly connected B with
B ⊂ D and their images, f(B), satisfy

M(f(B)) ≤ K ·M(B).

The calculation of the modulus of an arbitrary doubly connected region
is often difficult and the image of an annulus under a quasiconformal map
may no longer be an annulus. We will get around this difficulty by showing
here that if an annulus has modulus large enough, then its image under a
global K-quasiconformal map is quantitatively “almost round”.

Let f be a K-quasiconformal homeomorphism of C. Such global K-
quasiconformal maps are quasisymmetric, meaning there exists an increasing
homeomorphism η : [0,∞)→ [0,∞) such that for all z0, z1, z2 ∈ C,

|f(z0)− f(z1)|
|f(z0)− f(z2)|

≤ η
(
|z0 − z1|
|z0 − z2|

)
.

In fact, η = ηK depends only on K (see Chapter 3 of [1]).
Consider the annulus A = A(z0, r1, r2) with r1 < r2 and η(r1/r2) < 1

(this is the “large enough” condition). Let

ρ1 := min
|z−z0|=r1

|f(z)− f(z0)| and ρ2 := min
|z−z0|=r2

|f(z)− f(z0)|

and R1 and R2 given by replacing min with max above, respectively. As
η(r1/r2) < 1, we have R1 < ρ2. Let us define the annuli

B = A(f(z0), ρ1, ρ2), C = A(f(z0), R1, R2),

D = A(f(z0), ρ1, R2), E = A(f(z0), R1, ρ2).

A sketch of such annuli around a doubly connected region representing f(A)
is shown in Figure 1.C
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4 JAMES T. GILL AND STEFFEN ROHDE

Figure 1. A sketch of annuli B,C,D, and E, clockwise from
the upper left, around a single region f(A)

Note that E is the annulus of largest modulus centered at f(z0) contained
in f(A) and D is the annulus of smallest modulus centered at f(z0) which
contains f(A). Using the definition of quasisymmetry, the monotonicity of
the modulus with respect to inclusion, and the fact that r2/r1 is large we
get the following chain of inequalities:

0 ≤ log

(
1

ηK(r1/r2)

)
−log ηK(1) ≤M(C)−log ηK(1) ≤ log

ρ2

R1
= M(E)

(1) ≤M(f(A)) ≤M(D) = log
R2

ρ1
≤ log ηK

(
r2

r1

)
.

Of particular importance will be the difference between M(D) and M(E):

(2) 0 ≤M(D)−M(E) = log(R2/ρ1)− log(ρ2/R1) ≤ 2 log(ηK(1)) := CK .

This will be especially useful in concert with the following theorem due to the
second author in [8] which provides a geometric criterion for quasiconformal
bi-Lipschitz maps.

Theorem A. Let f be a K-quasiconformal homeomorphism of C and E ⊂
C any set. Assume that there is a constant N such that the difference in
conformal modulus of A and f(A) is bounded by N , i.e.

(3) |M(f(A))−M(A)| ≤ N

holds for all annuli A centered at points of E with the property that both
boundary circles meet E. Then the restriction of f to E is bi-Lipschitz.

When we apply this result we will show this condition only for annuli
with large modulus, as the definition of quasiconformal maps above already
gives (3) for annuli with small modulus.C
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QUASICONFORMAL MAPS WITH HÖLDER CONTINUOUS DILATATION 5

2.2. The Koebe Distortion Theorem. The Koebe distortion theorem
(see Chapter 2 of [1]) is a powerful tool from conformal mapping theory. It
implies that if Λ is a compact set contained in a domain Ω, then there is an
M > 1, dependent on Λ inside Ω, such that for any conformal map f of Ω
and any pair of points z, w ∈ Λ,

1

M
|f ′(w)| ≤ |f ′(z)| ≤M |f ′(w)|.

Hence the modulus of the derivative of f at z cannot be far from the mod-
ulus of the derivative at w, and from this we can see that conformal maps
are locally bi-Lipschitz. Now consider two quasiconformal maps f1, f2 of a
common domain Ω with µf1 = µf2 on Ω. Assume that f2 is bi-Lipschitz on
a compact set Λ ⊂ Ω. The composition formula for dilatations (which we
will use often in the sequel) says that

(4) µf1◦f−1
2

(ζ) =
µf1(z)− µf2(z)

1− µf1(z)µf2(z)
e2i arg ∂f2(z)

where ζ = f2(z). Thus f1 ◦f−1
2 is bi-Lipschitz on f2(Λ) since it is conformal,

and f1 = (f1 ◦ f−1
2 ) ◦ f2 is bi-Lipschitz on Λ as the composition of two bi-

Lipschitz maps. So maps with identical dilatation on a domain share the
local bi-Lipschitz property. This will allow us to compare known bi-Lipschitz
solutions to the Beltrami equation with arbitrary solutions.

2.3. The Lehto Inequality. Another important tool for us will be an inte-
gral inequality originally discovered by O. Lehto in [4] but is perhaps more
easily found in Chapter V of [5]. Let f be a K-quasiconformal map on
some domain containing the annulus A = A(x, r,R). Let µf be the complex
dilatation of f . Then

(5) |M(f(A))−M(A)| ≤ C(K)

∫
A

|µf (y)|
|x− y|2

dy,

where dy here stands for 2-dimensional Lebesgue measure. Considering the
criterion described in Theorem A above, it is clear that (5) may prove to be
a useful tool. In fact, the singularity of the integral in (5) already hints at
the importance of Hölder continuity of µ in what follows.

2.4. A Simple Bi-Lipschitz Example. In order to apply the Lehto In-
equality (5) for all annuli around a given point, one needs µ to vanish at
that point in such a way to eliminate the singularity in the integral of (5).
This will be done through composing with known bi-Lipschitz maps. We
start with a simple known example where µ is compactly supported. Let
c ∈ D be given. Consider the map

(6) fc(z) :=

{
z + c

z in Dc
z + cz in D

This map is a homeomorphism of the plane and it can easily be seen to be
bi-Lipschitz. Note that the image of the unit circle is an ellipse and theC
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6 JAMES T. GILL AND STEFFEN ROHDE

map is conformal outside the unit disk. It is also the unique solution to the
Beltrami equation with dilatation c ·χD and f(z) = z+O(1/z), often called
the principal solution.

2.5. A More Complicated Bi-Lipschitz Example. While the solution
to the constant dilatation Beltrami equation supported on the disk is always
bi-Lipschitz, and this is also true of the half-plane, this is radically not true
of sectors of angle 6= π. We show this by constructing such a map.

Choosing the pricipal branch of the logarithm and θ0 ∈ [0, π) ∪ (π, 2π),
we let

Sθ00 = {z 6= 0 : 0 ≤ arg z < θ0}, S2π
θ0 = {z 6= 0 : θ0 ≤ arg z < 2π}.

We wish to find a solution to the Beltrami equation where µ is given by

µ =

{
c in Sθ00
0 in S2π

θ0

.

We start by setting

f1(z) =
z + cz

1 + c
in Sθ00 .

This conveniently gives f1(x) = x for real numbers x > 0 and µf1 = c in

Sθ00 . To extend f1 continuously to the second sector we examine

f1(reiθ0) =
eiθ0 + ce−iθ0

1 + c
r.

Let Reiθ1 := eiθ0+ce−iθ0
1+c for R > 0 and 0 ≤ θ1 < 2π, and a := Reiθ1

eiθ0
. Now we

set
f1(z) = az in S2π

θ0 .

This f1 would be our solution, but the values may not match up on the two
sides of the positive real axis. Our solution to this will be to slice open the
plane via a logarithm, then apply a rotation and dilation to get these two
parts to match up continuously, and then we sew the plane back together
with an exponential.

Using the principal branch of the logarithm we consider the image of the
two sides of R+:

log(f1(r)) = log r

log(f1(rei2π)) = log r + logR+ i(2π + θ1 − θ0)

In order to line up these two sides of the positive real line, we multiply by

λ = λ(c, θ0) :=
2πi

logR+ i(2π + θ1 − θ0)

and our Beltrami solution is

f∠(z) = eλ log(f1(z)),

so that the image of the sector Sθ00 is a logarithmic spiral. See Figure 2 for
a visual description of this map.C
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QUASICONFORMAL MAPS WITH HÖLDER CONTINUOUS DILATATION 7

Figure 2. The components of the map f∠

This map will be bi-Lipschitz if and only Re(λ) = 1. As λ depends on
c and θ0, it follows that when an angle for the sector is fixed, only certain
values for the dilatation in that sector give rise to bi-Lipschitz maps.

As maps with identical dilatation on a domain are simultaneously locally
bi-Lipschitz by the discussion in Section 2.2, any description of sufficient
conditions for a quasiconformal map to be bi-Lipschitz must take the rigidity
of this example into account.

Definition 2. Given an angle θ0 ∈ [0, 2π), we say that c ∈ D is allowable

for Sθ00 if Re(λ(θ0, c)) = 1.

The reader interested in dilatation supported on the unit square would
find the well-illustrated note [3] interesting.

3. Geometric Proof of the Theorem of Mateu, Orobitg, and
Verdera

Our proof of Theorem 1 begins with the simplifying assumption that j = 1
(see Section 7 of [6] for the standard details). Let Ω be a bounded domain
in C with ∂Ω a C1+ε curve and µ be ε-Hölder continuous in Ω and µ ≡ 0 in
Ωc. Let Φ be the solution of ∂Φ = µ∂Φ with Φ(z) = z +O(1/z) near ∞.

3.1. Reduction to the Unit Disk. We wish to reduce Theorem 1 to the
case where Ω = D, the unit disc. Let φ be a conformal map from Dc to
Ω
c

with φ(z) = z + O(1) near ∞ and let ψ be a conformal map from D toC
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8 JAMES T. GILL AND STEFFEN ROHDE

Ω. By the Kellog-Warschawski theorem on the boundary correspondence of
conformal maps (see Chapter 3 of [7]), both maps extend to ∂D as C1+ε

mappings with non-vanishing derivatives. So both maps extend to ∂D as
bi-Lipschitz conformal maps. Then ψ−1◦φ : ∂D→ ∂D is a C1+ε homeomor-
phism with a derivative which is never 0. By a pre-rotation of ψ, assume
that ψ−1◦φ(1) = 1. We wish to extend ψ−1◦φ to the whole unit disc so that
the extension is bi-Lipschitz, quasiconformal, and with ε-Hölder continuous
dilatation µ. Set γ(θ) = arg (ψ−1(φ(eiθ))) where the argument takes values

in [0, 2π). A simple bi-Lipschitz extension would be given by reiθ 7→ reiγ(θ),
but its Beltrami coefficient would not even be continuous at 0. For this
reason we define our extension as follows:

F (reiθ) = rei[rγ(θ)+(1−r)θ].

Clearly, F is a homeomorphism of D. Using polar coordinates we calculate

µF (reiθ) =
r(1− γ′(θ)) + ir(γ(θ)− θ)

2− r(1− γ′(θ)) + ir(γ(θ)− θ)
e2iθ .

From these formulae it is not hard to check that F is indeed bi-Lipschitz,
quasiconformal, and has ε-Hölder continuous dilatation. Let

f =

{
φ outside D

ψ ◦ F inside D .

Then f is a bi-Lipschitz map from C to itself with ε-Hölder continuous µ
supported on the unit disk, and the image of the unit disk under f is Ω.
This f allows us to reduce Theorem 1 to the case of Ω = D, as Φ ◦ f fulfills
the assumptions of Theorem 1 with Ω = D (note that via the composition
rule (4) the criterion on ε-Hölder continuity of µΦ◦f still holds), and because
if Φ ◦ f is bi-Lipschitz, then so is Φ.

3.2. Proof on the Unit Disk. Let f be a homeomorphism satisfying ∂f =
µf∂f almost everywhere in C with µf an ε-Hölder continuous function in
D, µf ≡ 0 outside D, k = ‖µf‖∞ < 1 and f = z + O(1/z) near ∞. The
Koebe distortion theorem automatically gives that f is bi-Lipschitz outside,
say, 3

2D. We will show that f is bi-Lipschitz in C by applying Theorem A
with E = 2D. First, as pointed out in Section 2.1, K−quasiconformal maps
distort the modulus of annuli by a factor less than or equal to K so we may
assume that A = A(x0, r, R) with x0 ∈ 2D has M(A) large. We must find
an upper bound for |M(f(A))−M(A)| independent of the specific annulus
A. If A ∩ D = ∅, then M(f(A)) = M(A) as the modulus is a conformal
invariant.

Let A ∩ D be non-empty with x0 ∈ 2D. In order to apply the Lehto
condition (5), we first reduce to the case µ(x0) = 0 by precomposing f with
an appropriate bi-Lipschitz fc from Section 2.4. Set

x∗ :=

{
x0 if x ∈ D
x0
|x0| elseC
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QUASICONFORMAL MAPS WITH HÖLDER CONTINUOUS DILATATION 9

and µ0(·) = µf (x∗) · χD(·), where µf is understood to take its unique limit
value on ∂D via approaching the boundary from the inside as µ is uniformly
Hölder continuous in D. Let c = µf (x∗) and fc the bi-Lipschitz principal

solution to ∂fc = µ0∂fc given in Section 2.4. We now consider the map
f̃ = f ◦ f−1

c . We wish to show f̃ is bi-Lipschitz as well. If y /∈ fc(D), then
µf̃ (y) = 0. Otherwise, y = fc(x) for some x ∈ D. Via the composition

formula for dilatations (4) and the ε-Hölder continuity of µf

(1−k2)|µf̃ (y)| ≤ |µf (x)−µfc(x)| = |µf (x)−µf (x∗)| ≤ C|x−x∗|ε ≤ C|x−x0|ε.

Since fc is bi-Lipschitz, |x − x0| ≤ L|y − fc(x0)| for some L = L(‖µf‖∞).
Thus

(7) |µf̃ (y)| ≤ C ′|y − fc(x0)|ε.

Consider the doubly connected region fc(A) and the related annuli E and
D defined by fc(A) via Section 2.1. Then via the triangle inequality

|M(f(A))−M(A)| ≤

(8) |M(f(A))−M(f̃(E))|+ |M(f̃(E))−M(E)|+ |M(E)−M(A)|.

We work on each of these quantities on the right hand side of (8) sepa-

rately. Let k = ‖µf‖∞ and K = 1+k
1−k . The second quantity, |M(f̃(E)) −

M(E)|, can be estimated by using the Lehto inequality (5) in Section 2.3:

(9) |M(f̃(E))−M(E)| ≤ C(K)

∫
E

|µf̃ (y)|
|fc(x0)− y|2

dy ≤ N

by (7) where the constant N depends on ‖µf‖∞ and the ε-Hölder constant
of µf , but not on x0 or E.

The first quantity on the right hand side of (8) can be rewritten |M(f̃fc(A))−
M(f̃(E))|. By monotonicity of the modulus, M(f̃fc(A)) ≥ M(f̃(E)), and

M(f̃(D)) ≥M(f̃fc(A)) so

|M(f̃fc(A))−M(f̃(E))| ≤

|M(f̃(D))−M(D)|+ |M(D)−M(E)|+ |M(E)−M(f̃(E))|.
The first and last terms are bounded by a constant from the Lehto inequality
(5) as above in (9). By (2) the middle term is bounded by a constant as

well. So |M(f̃fc(A))−M(f̃(E))| ≤ 2N + CK .
For the third quantity in (8), |M(E)−M(A)|, we again use the triangle

inequality to get

|M(E)−M(A)| ≤ |M(E)−M(fc(A))|+ |M(fc(A))−M(A)|.

The first is less than a constant depending on K by (2) and the second is
bounded by a constant depending on K by using the geometric criterion for
bi-Lipschitz maps from [8], as fc is bi-Lipschitz.C
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10 JAMES T. GILL AND STEFFEN ROHDE

Taken altogether, |M(A)−M(f(A))| ≤ P , for some constant P depending
only on ‖µf‖∞ and the ε-Hölder constant of µf . So by Theorem A, a quasi-
conformal map with ε-Hölder continuous µ supported on D is bi-Lipschitz.
We reduced Theorem 1 to this case, so Theorem 1 is proved.

4. Domains with Corners

4.1. Definitions and Precise Statement of Theorem 2. One of the
nice outcomes of this geometric proof to Theorem 1 is that its methods are
amenable to domains without smooth boundary, as long as we have some
knowledge of the behavior of conformal maps on such domains. The theory
of O. Kellogg and S. Warschawski discussed in Chapter 3 of [7] will give us
the needed tools. We state the definition of a corner from [7]:

Definition 3. Let Ω be any bounded simply connected domain in C with a
locally connected boundary and f : D→ Ω be a conformal map onto Ω which
is continuous in D. Let ζ = eiθ ∈ ∂D. We say that ∂Ω has a corner of
opening α, 0 ≤ α ≤ 2, at f(ζ) if

arg[f(eit)− f(eiθ)]→
{

β as t→ θ+,
β + απ as t→ θ−

for some β, 0 ≤ β ≤ 2π. In addition, we say that ∂Ω has a Hölder-
continuous corner at f(ζ) if there are closed arcs A± ⊂ ∂D ending at ζ
and lying on opposite sides of ζ that are mapped onto C1+ε Jordan arcs C+

and C− forming a corner of opening α at f(ζ) for some ε > 0.

If the boundary of a domain Ω is composed of finitely many C1+ε closed
arcs meeting at corners, then each corner is Hölder-continous. Domains
with Hölder-continuous corners are nice because of the following theorem
due originally to Warschawski but found as Exercise 3.4.1 in [7]:

Theorem B. Let ∂Ω have a Hölder continous corner of opening α > 0 at
f(ζ) with Hölder constant ε > 0, where f is a conformal map from D onto
Ω. Then, for some a 6= 0,

(10) f(z) = f(ζ) + a(z − ζ)α +O(|z − ζ|(α+αε))

as z → ζ in D.

We are almost ready to state and prove our theorem concerning domains
with corners, but we must first be careful of the fact that pre-composing a
quasiconformal map with a conformal map does not leave the dilatation in-
variant. We refine our definition of allowable dilatations taking into account
the composition formula for complex dilatations (4):

Definition 4. Let Ω be a bounded domain with a corner of opening α at
z0 = f(ζ). Let f(z) = e−iβ(z − z0) be the conformal map of the plane that
moves the corner to 0 and one of the arcs forming the corner to an arc
tangent with the real line at 0 and the other tangent to a ray at positiveC
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QUASICONFORMAL MAPS WITH HÖLDER CONTINUOUS DILATATION 11

angle απ from the first. We say that c ∈ D is allowable for (Ω, z0) if c ·e−2iβ

is allowable for Sαπ0 .

We are now ready for the precise statement of our theorem concerning
domains with corners:

Theorem 2. Let Ω be a bounded domain whose boundary consists of N
closed sub-arcs of C1+ε arcs. Let the endpoints of these sub-arcs be labeled
zj and let ∂Ω have a corner of opening αj ∈ (0, 2) at zj. Assume the zj
are distinct. Let µ be an ε-Hölder continuous function on Ω with the values
µ(zj) each allowable for (Ω, zj) and µ ≡ 0 outside Ω. Assume, in addition,
that ‖µ‖∞ < 1. Then the principal solution associated to the µ-Beltrami
equation is a bi-Lipschitz quasiconformal map.

We first show that it suffices to prove Theorem 2 for N = 1, that is,
a domain with one corner. Suppose Ω is as assumed in Theorem 2 with
corners of opening αj at zj for j = 1, . . . , N . Let rj > 0 be small enough so
that D(zj , rj) contains only one corner, zj , and that D(zj , rj)∩Ω connected.
Let Ωj be a domain contained in D(zj , rj) with one corner which coincides
with Ω in a neighborhood of zj . Let Ω′ be a C1+ε domain which coincides
with Ω outside ∪D(zj , rj) and such that the symmetric difference of Ω′ and
∪Ωj consists of N + 1 connected components of positive pairwise distance.
Then Theorem 1 and the N = 1 version of Theorem 2 apply to Ω′ and Ωj

respectively, and we use the discussion in Section 2.2 to extend these local
results to the whole domain Ω.

We now prove the N = 1 version of Theorem 2 in two steps. We first
prove it for a special type of domain with one corner, and then use this
version and conformal mapping to show the general case.

4.2. Proof of Theorem 2 for Ice Cream Cone Domains. Let Λ be
a bounded domain in C which coincides with Sαπ0 for some α ∈ (0, 2) in a
neighborhood of 0, and whose boundary is C1+ε except at 0. When α ∈ (0, 1)
one may think of the domain as an ice cream cone with a smoothly meeting
smooth scoop of ice cream on top. Hence we refer to these Λ as ice cream
cone domains. Let µ be a dilatation function supported on Λ with µ(0)
allowable for Sαπ0 and ε-Hölder continuous. We wish to show that Φ, the
quasiconformal map with dilatation µ with Φ(z) = z + O(1/z) near ∞, is
bi-Lipschitz.

By Theorem 1 and the discussion in Section 2.2, it suffices to show that
Φ is bi-Lipschitz in a neighborhood of 0, call such a neighborhood U . Let
f∠ be the bi-Lipschitz solution to µf∠ = µ(0) · χSαπ0 constructed in Section
2.5. Then f∠(U) takes Sαπ0 to a logarithmic spiral. Consider

h := Φ ◦ f−1
∠ .

If we show that h is bi-Lipschitz in f∠(U), then Φ will be bi-Lipschitz in U .C
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12 JAMES T. GILL AND STEFFEN ROHDE

By the composition formula for dilatations, as µ is ε-Hölder continuous
in Λ, µh is ε-Hölder continuous in f∠(U). In particular

|µh(z)| ≤ C|z|ε

in f∠(U) since µh(0) = 0. Thus by the Lehto inequality (5) for all annuli
centered at 0 in f∠(U),

|M(A)−M(h(A))| ≤ C1

where C1 does not depend on the specific annulus. Using this inequality
with A = A(0, r, 1) for small r, via the inequalities in (1), we find some
M > 1 for which

(11)
1

M
|z| ≤ |h(z)| ≤M |z|

for z ∈ f∠(U). We now let z1, z2 ∈ f∠(U) be given and set ε < 1/M2. If
|z1| ≤ ε|z2| or |z2| ≤ ε|z1|, we may use (11) to find

1

M̃
|z1 − z2| ≤ |h(z1)− h(z2)| ≤ M̃ |z1 − z2|

for M̃ = M2/(M − 1).
Now assume that |z1| > ε|z2| and |z2| > ε|z1|. We will make use of the

self-similarity of the logarithmic spiral with respect to dilations.
Consider f∠(Sαπ0 ) ∩ A(0, ε/2, 1 + 2ε). There is a domain ∆ with C1+ε

boundary such that

f∠(Sαπ0 ) ∩A(0, ε/2, 1 + 2ε) ⊂ ∆ ⊂ f∠(Sαπ0 ).

As µh is an ε-Hölder continuous dilatation function supported on f∠(Sαπ0 ),

µ∆ = µh · χ∆

is an ε-Hölder continuous dilatation supported on a domain ∆ with a C1+ε

smooth boundary. So the principal solution corresponding to µ∆, Φ∆, is
bi-Lipschitz via Theorem 1. The bi-Lipschitz constant depends on ‖µ‖∞,
µ’s ε-Hölder constant, and the geometry of ∂∆.

Writing z1 = seiθ1 and z2 = teiθ2 with t < s < 1 consider the map

H(w) =
h(sw)

s

for w ∈ D(0, 1 + 2ε). Let

µ̃∆ = µHχ∆.

Then Φ̃∆, the principal µ̃∆-Beltrami solution, is bi-Lipschitz with constant
dependent only on ‖µ‖∞, µ’s ε-Hölder constant, and ∂∆ as above with Φ∆.
As A(0, ε, 1 + ε) is compactly contained in A(0, ε/2, 1 + 2ε), we get that H is

similarly bi-Lipschitz on A(0, ε, 1 + ε) to Φ̃∆ via Section 2.2. So there exists
an N > 1 not dependent on t, s, θ1, or θ2 such that

1

N
|eiθ1 − t

s
eiθ2 | ≤ |H(eiθ1)−H(

t

s
eiθ2)| ≤ N |eiθ1 − t

s
eiθ2 |C
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QUASICONFORMAL MAPS WITH HÖLDER CONTINUOUS DILATATION 13

and multiplying by s gives

1

N
|z1 − z2| ≤ |h(z1)− h(z2)| ≤ N |z1 − z2|

for z1, z2 ∈ f(U). By choosing L = max(M̃,N) we have h is L-bi-Lipschitz
in f∠(U). Hence Φ = h ◦ f−1

∠ is bi-Lipschitz in U as desired. So Theorem 2
is valid for the ice cream cone domain Λ.

4.3. Proof of Theorem 2. Let Ω be a domain with a single ε-Hölder
continuous corner of opening α ∈ (0, 2) at, without loss of generality, 0 and
C1+ε boundary elsewhere. Let Λ be an ice cream cone domain with corner
at 0 with opening α. Suppose we can construct a quasiconformal map Ψ, bi-
Lipschitz in C, taking Λ to Ω, Ψ(0) = 0, with ε-Hölder continuous dilatation
µ supported on Λ with µ(0) = 0. Then we have reduced Theorem 2 to the
case of ice cream cone domains in the same manner that we reduced Theorem
1 to the case of the unit disc. We construct such a Ψ.

Let φΩ (φΛ) be a conformal map from Dc to Ω
c (

Λ
c)

which is z + O(1)
near ∞. By Theorem B, we have extensions for φΩ and φΛ so that

φΩ ◦ φ−1
Λ : Λc → Ωc

is C1+ε on the boundary and so is bi-Lipschitz on Λc. We may assume each
maps 1 to 0, and hence the singularities of the derivatives at the corner are
canceled due to (10).

Now let ψΩ (ψΛ) be a conformal map from D to Ω (Λ) with 1 mapped to
0. Again, by Theorem B,

(12) ψ−1
Ω ◦ φΩ ◦ φ−1

Λ ◦ ψΛ

is a C1+ε homeomorphism of ∂D to itself. We extend this homeomorphism
precisely as we did in Section 3.1 above. Call this extension f . By freedom
of choice of the particular conformal map ψΩ, we may force µf (1) = 0 by
making the derivative of (12) at 1 equal to 1. Set

Ψ :=

{
φΩ ◦ φ−1

Λ outside Λ
ψΩ ◦ f ◦ ψ−1

Λ inside Λ
.

This Ψ is our desired map.
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