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Foreword

This set of notes corresponds to the Advanced Courses held in June 2009 at the
Centre de Recerca Matemàtica (CRM) in Bellaterra (Barcelona). The Advanced
School was one of the main activities of the Research Semestre Harmonic Analysis,
Geometric Measure Theory and Quasiconformal Mappings, which took place in the
CRM from February to July 2009. The courses were the following:

– The Calderón’s Inverse Problem (10 hours), by Kari Astala (University of
Helsinki).

– The Heisenberg Group and Cortex Vision (5 hours), by Giovanna Citti
(Università di Bologna).

– Geometric Measure Theory (5 hours), by David Preiss (University of
Warwick).

– Second Order Operators in Divergence Form and Quasiconformal Mappings
(10 hours), by Xiao Zhong (University of Jyväskylä).

The four courses deal with questions which pertain to the flourishing field of
the so called geometric analysis. The one by Kari Astala explains the relationship
between quasiconformal mappings and impedance tomography. In this area one
wishes to obtain information of the internal structure of a body from electrical
measurements on its surface. As shown by A.P. Calderón, it turns out that this
problem admits a precise mathematical formulation in terms of partial differential
equations which can be studied using quasiconformal techniques.

The course by Giovanna Citti, on the relationship between the Heisenberg group
and cortex vision, is another instance of successful application of techniques of
geometric analysis to physical sciences.

We are also fortunate of having David Preiss in the CRM teaching a course on
geometric measure theory. In the last years, geometric measure theory has become
an essential ingredient of important results in analysis. For example, in the study
of the structure of harmonic measure the so called tangent measures have proved
to be a powerful tool; and in the last advances on analytic capacity, the use of
techniques of “quantitative rectifiability” has been essential.

Lastly, the course by Xiao Zhong on quasiconformal mappings and second order
divergence type operators focuses on the study of second order divergence type
operators using techniques of quasiconformal mappings. This course and the one
by Astala complement very well each other.

We wish to express our gratitude to the director and the staff of the CRM who
helped us in the organization of these courses. We thank the Ingenio-Mathematica
programme of the Spanish government and the Catalan Research Funding Agency
(AGAUR) for providing financial support for the organization of this Advanced
Courses.

The Coordinators

Joan Mateu, Joan Orobitg, Joan Verdera, and Xavier Tolsa

v





The Calderón’s Inverse Problem

Kari Astala
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THE CALDERON’S INVERSE PROBLEM

KARI ASTALA

Advanced course at CRM, June 2009

The material is based on joint works with:

• Lassi Päivärinta and Matti Lassas (inverse problems)

• Tadeusz Iwaniec and Gaven Martin (elliptic equations and
quasiconformal mappings)

• And many others !

1. Introduction

In impedance tomography one aims to determine the internal structure of a body from
electrical measurements on its surface. Such methods have a variety of different appli-
cations for instance in engineering and medical diagnostics. For a general expository
presentations see [12, 13], for medical applications see [15].

 

Medical imaging in two dimensions

In 1980 A.P. Calderón showed that the impedance tomography problem admits a clear
and precise mathematical formulation. Indeed, suppose that Ω ⊂ Rn is a bounded domain
with connected complement and let σ : Ω → (0,∞) be a measurable function that is
bounded away from zero and infinity.

Then the Dirichlet problem

∇ · σ∇u = 0 in Ω,(1)

u
∣∣
∂Ω

= φ ∈ W 1/2,2(∂Ω)(2)

The author was supported by the Academy of Finland, by the Finnish Center of Exellence Analysis
and Dynamics and project CODY of the European Commission.
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2 K. ASTALA

admits a unique solution u ∈ W 1,2(Ω). Here

W 1/2,2(∂Ω) = H1/2(∂Ω) = W 1,2(Ω)/W 1,2
0 (Ω)

stands for the space of elements φ+W 1,2
0 (Ω), where φ ∈ W 1,2(Ω). This is the most general

space of functions that can possibly arise as Dirichlet boundary values or traces of general
W 1,2(Ω)-functions in a bounded domain Ω.

In terms of physics, if we charge the “body” Ω with an electric current, then φ = u|∂Ω
represents the potential difference from ∂Ω to ∞. Furthermore, on the boundary the
electric current J is equal to

J = (σ∇u)|∂Ω

In practice, one can measure only the normal component of the current, σ∂u/∂ν, with ν
the unit outer normal to the boundary. For smooth σ this quantity is well defined point-
wise, while for general bounded measurable σ we need to use the (equivalent) definition

(3) 〈σ∂u
∂ν
, ψ〉 =

∫
Ω

σ∇u · ∇ψ , ψ ∈ W 1,2(Ω),

as an element of the dual of H1/2(∂Ω) = W 1/2,2(∂Ω).

The inverse conductivity problem of Calderón asks if we can recover the pointwise con-
ductivity σ(x) inside the domain Ω from voltage/current measurements on the boundary
∂Ω. In mathematical terms, the question is if the boundary data(

u
∣∣
∂Ω
, σ

∂u

∂ν

∣∣∣
∂Ω

)
, where u

∣∣
∂Ω
∈ W 1/2,2(∂Ω),

determines the coefficient σ(x) in (1) for all x ∈ Ω. Equivalently, we may express the
boundary data in terms of the operator

(4) Λσ : φ = u
∣∣
∂Ω
→ σ

∂u

∂ν
|∂Ω,

the Dirichlet-to-Neumann boundary map, which can be considered as an operator from
W 1/2,2(∂Ω) to W−1/2,2(∂Ω). Thus the question we have is if the boundary operator Λσ

determines the coefficient σ.
In this course we show how the Calderón can be solved in two dimensions. The pre-

sentation is based on the works [9, 5, 6] and the monograph [3], where more information
can be found.

The physical background of the problem requires divergence type equations where the
coefficients are not continuous, rather the assumption σ ∈ L∞ is the natural one. And it
is the L∞-setup that requires the quasiconformal techniques, in fact we shall make strong
use of them.

There are a number of earlier results on this problem, assuming greater regularity,
for instance by R. Brown, J. Sylvester, G. Uhlmann and A. Nachmann; [26, 27, 29]. in
higher dimensions Calderón’s problem remains open, unless some smoothness is assumed.
In higher dimensions the usual method is to reduce, by substituting v = σ1/2u, the
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THE CALDERON’S INVERSE PROBLEM 3

conductivity equation (1) to the Schrödinger equation and then to apply the methods of
scattering theory. Indeed, after such a substitution v satisfies

∆v − qv = 0,

where q = σ−1/2∆σ1/2. This substitution is possible only if σ has some smoothness. In
the case σ ∈ L∞, relevant for practical applications, in general there is no smoothness
and the reduction to the Schrödinger equation fails. Therefore one must turn to complex
analytic tools.

However, what we adopt from the scattering theory type approaches is the use of ex-
ponentially growing solutions, the so called geometric optics solutions to the conductivity
equation (1). These are specified by the condition

(5) u(z, ξ) = eiξz
(

1 +O
(

1

|z|

))
as |z| → ∞

Here we have set σ ≡ 1 outside Ω to get an equation defined globally. Studying the
ξ-dependence of these solutions then gives rise to the basic concept of these notes, the
nonlinear Fourier transform τσ(ξ). The detailed definition will be given Section 6.

Thus to start the study of τσ(ξ) we need first to establish the existence of exponential
solutions, for σ± ∈ L∞(C) or even for degenerate σ’s. Already here the quasiconformal
techniques are essential. The themes of these notes can (should!) be considered as a study
the non-linear Fourier transform: It is not difficult to show that the Dirichlet-to-Neumann
boundary operator Λσ determines the nonlinear Fourier transforms τσ(ξ) for all ξ ∈ C.
Therefore the main difficulty, and our main strategy, is to invert the nonlinear Fourier
transform, show that τσ(ξ) determines σ(z) almost everywhere.

The properties of the nonlinear Fourier transform depend on the underlying differential
equation. In one dimension the basic properties of the transform are fairly well under-
stood, while deeper results such as analogs of Carleson’s L2-converge theorem remain
open. The reader should consult the excellent lecture notes of Tao and Thiele [30] for an
introduction to the one-dimensional theory.

For (1) with nonsmooth σ, many basic questions concerning the nonlinear Fourier
transform, even such as finding a right version of the Plancherel formula, remain open.
What we are able to show is that for σ±1 ∈ L∞, with σ ≡ 1 near ∞, we have a Riemann-
Lebesgue type result,

τσ ∈ C0(C).

Indeed, this requires the asymptotic estimates of the solutions (5), and these are the key
point and main technical part of our argument. For results on related equations, see [25].

To avoid some of the technical complications, in these notes we shall assume that the
domain Ω = D, the unit disk. In fact, see [9], the reduction of general Ω to this case is
not difficult. A main result of these notes is the following:

5



4 K. ASTALA

Theorem 1.1. [9] Let σj ∈ L∞(D), j = 1, 2. Suppose that there is a constant c > 0 such
that c−1 ≤ σj ≤ c. If

Λσ1 = Λσ2 ,

then σ1 = σ2 almost everywhere. Here Λσi, i = 1, 2, are defined by (4).

For the first steps in numerical implementation of our method see [7].

The proof and the necessary auxiliary results to this theorem will take the most of the
time of this course. Towards the end we will also consider non-isotropic conductivities
as well as degenerate ones, and study the limits of Calderón problem and impedance
tomography.

Our approach will be based on quasiconformal methods, which also enables the use of
tools from complex analysis. These are not available in higher dimensions, at least to the
same extent, and this is one of the reasons why the problem is still open for L∞-coefficients
in D ≥ 3. The complex analytic connection comes as follows: From Theorem 2.2 below
we see that if u ∈ W 1,2(D) is a real-valued solution of (1), then it has the σ-harmonic
conjugate v ∈ W 1,2(D) such that

∂x v = −σ∂y u(6)

∂y v = σ∂x u(7)

Equivalently (see (24)), the function f = u+ iv satisfies the R-linear Beltrami equation

(8)
∂f

∂z̄
= µ(z)

∂f

∂z
,

where

µ =
1− σ
1 + σ

In particular, note that µ is real-valued and that the assumptions on σ in Theorem 1.1
imply ‖µ‖L∞ ≤ k < 1. This reduction to the Beltrami equation and the complex analytic
methods it provides will be the main tools in our analysis of the Dirichlet-to-Neumann
map and the solutions to (1).

2. Linear and non-linear Beltrami equations

The most powerful tool for finding the exponential growing solutions to the conductiv-
ity equation (including degenerate conductivities) are given by the non-linear Beltrami
equation. We therefore first review few of the basic facts here. For more details and
results see [3].

We start with general facts on the linear divergence-type equation

(9) divA(z)∇u = 0, z ∈ Ω ⊂ R2

where we assume that u ∈ W 1,2
loc (Ω) and that the coefficient matrix

(10) A = A(z) =

[
α11 α12

α21 α22

]
, α21 = α12,

6



THE CALDERON’S INVERSE PROBLEM 5

is symmetric and elliptic,

(11)
1

K(z)
|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K(z)|ξ|2, ξ ∈ R2,

almost everywhere in Ω. For much of this course A(z) is assumed to be isotropic, A(z) =
σ(z)I. The factor K here can be either a constant or a measurable function with 1 ≤
K(z) <∞ almost everywhere. Until further notice we let K to be a constant.

For many purposes it is convenient to express the above ellipticity condition, equiva-
lently, in terms of the following single inequality:

(12) |ξ|2 + |A(z)ξ|2 ≤
(
K +

1

K

)
〈A(z)ξ, ξ〉

for almost every z ∈ Ω and all ξ ∈ R2. For the symmetric matrix A(z) this is seen via
construction of the eigenbasis.

In these notes we will study the divergence equation (9) by reducing it to the complex
Beltrami system. For solutions to the divergence equation (9) a conjugate structure,
similar to harmonic functions, is provided by the Hodge star operator ∗, which here really
is nothing more than the (counterclockwise) rotation by 90 degrees,

(13) ∗ =

[
0 − 1
1 0

]
: R2 → R2, ∗∗ = −I

There are two vector fields associated with each solution to the homogeneous equation

divA(z)∇u = 0, u ∈ W 1,2
loc (Ω)

The first, E = ∇u, has zero curl (in the sense of distributions, the curl of any gradient field
is zero), while the second, B = A(z)∇u, is divergence-free as a solution to the equation.

It is the Hodge star ∗ operator that transforms curl-free fields into divergence-free fields,
and vice versa. In particular, if

E = ∇w = (wx, wy), w ∈ W 1,1
loc (Ω),

then ∗E = (−wy, wx) and hence

div(∗E) = div(∗∇w) = 0,

at least in the distributional sense. We recall here the following well-known fact from
calculus (the Poincaré lemma).

Lemma 2.1. Let E ∈ Lp(Ω,R2), p ≥ 1, be a vector field defined on a simply connected
domain Ω. If CurlE = 0, then E is a gradient field; that is, there exists a real-valued
function u ∈ W1,p(Ω) such that ∇u = E.

Thus in simply connected domains the A-harmonic equation divA(z)∇u = 0 implies
that the field ∗A∇u is curl-free and may be rewritten as

(14) ∇v = ∗A(z)∇u,

where v ∈ W 1,2
loc (Ω) is some Sobolev function unique up to an additive constant. This

function v we call the A-harmonic conjugate of u. Sometimes in the literature one also
finds the term stream function used for v.

7



6 K. ASTALA

The ellipticity conditions for A can be equivalently formulated for the induced complex
function f = u+ iv. We arrive, after a lengthy but quite routine purely algebraic manip-
ulation, at the equivalent complex first-order equation for f = u+ iv, which we record in
the following theorem.

Theorem 2.2. Let Ω be a simply connected domain and let u ∈ W 1,1
loc (Ω) be a solution to

(15) div A∇u = 0

If v ∈ W 1,1(Ω) is a solution to the conjugate A-harmonic equation (14), then the function
f = u+ iv satisfies the homogeneous Beltrami equation

(16)
∂f

∂z̄
− µ(z)

∂f

∂z
− ν(z)

∂f

∂z
= 0

The coefficients are given by

(17) µ =
α22 − α11 − 2iα12

1 + Trace(A) + detA
, ν =

1− detA

1 + Trace(A) + detA
.

Conversely, if f ∈ W 1,1
loc (Ω,C) is a mapping satisfying (16), then u = Re (f) and v =

Im (f) satisfy (14) with A given by solving the complex equations in (17),

α11(z) =
|1− µ|2 − |ν|2

|1 + ν|2 − |µ|2
(18)

α22(z) =
|1 + µ|2 − |ν|2

|1 + ν|2 − |µ|2
(19)

α12(z) = α21(z) =
−2 Im (µ)

|1 + ν|2 − |µ|2
,(20)

The ellipticity of A can be explicitly measured in terms of µ and ν. The optimal
ellipticity bound in (11) is

(21) K(z) = max {λ1(z), 1/λ2(z)},
where 0 < λ2(z) ≤ λ1(z) < ∞ are the eigenvalues of A(z). With this choice we have
pointwise

(22) |µ(z)|+ |ν(z)| = K(z)− 1

K(z) + 1
< 1.

The (usual) notational convention:

k := ‖|µ(z)|+ |ν(z)|‖∞, K :=
1 + k

1− k
. (when k < 1, equivalenty, K <∞).

From (16) ∣∣∣∣∂f∂z̄
∣∣∣∣ ≤ k

∣∣∣∣∂f∂z
∣∣∣∣

which is equivalent to

(23) ‖Df(z)‖2 ≤ KJ(z, f).

8



THE CALDERON’S INVERSE PROBLEM 7

A mapping f ∈ W 1,2
loc (Ω) satisfying (23) is called a K-quasiregular mappings. If f is

a homeomorphism, we call it K−quasiconformal. By Stoilow’s factorization Theorem
B.9 any K-quasiregular mapping is a composition of holomorphic function and a K-
quasiconformal mapping.

Note the following:

• In this correspondence, ν is real valued if and only if the matrix A is symmetric.

• A has determinant 1 if and only if ν = 0 (the C-linear Beltrami equation).

• A is isotropic, meaning A = σ(z)I with σ(z) ∈ R, if and only if µ = 0. The complex
equation now takes the form

(24)
∂f

∂z̄
− 1− σ

1 + σ

∂f

∂z
= 0

2.1. Existence and uniqueness for non-linear Beltrami equations. Solutions to
the Beltrami equation conformal near infinity are particularly useful in solving the equa-
tion.

Principal Solutions:

When µ and ν as above have compact support and we have a W 1,2
loc (C) solution to the

Beltrami equation fz̄ = µfz + νfz̄ normalized by the condition

f(z) = z +O(1/z)

near ∞, we call f a principal solution. Indeed, with the Cauchy and Beurling transform
(see the appendix) we have the identities

(25)
∂f

∂z
= 1 + S ∂f

∂z̄
,

and

(26) f(z) = z + C
(∂f
∂z̄

)
(z), z ∈ C

Principal solutions are necessarily homeomorphisms. In fact we have the following
fundamental Measurable Riemann Mapping Theorem,

Theorem 2.3. Let |µ| ≤ k < 1 be compactly supported and defined on C. Then there is
a unique principal solution to the Beltrami equation

∂f

∂z̄
= µ(z)

∂f

∂z
for almost every z ∈ C,

and the solution f ∈ W 1,2
loc (C) is a K-quasiconformal homeomorphism of C.

9



8 K. ASTALA

The result holds also for the general Beltrami equation with coefficients µ and ν, see
Theorem 2.4 below.

In constructing the exponentially growing solutions to the divergence and Beltrami
equations, the most powerful approach is by non-linear Beltrami equations which we next
discuss.

When one is looking for solutions to the general nonlinear elliptic systems

(27)
∂f

∂z̄
= H

(
z, f,

∂f

∂z

)
, z ∈ C

there are necessarily some constraints to be placed on the function H that we now discuss.
We write

H : C× C× C→ C.
We will not strive for full generality, but settle for the following special case. For the most
general existence results, with very weak assumptions on H, see [3]. Here we assume:

(1) The homogeneity condition, that fz̄ = 0 whenever fz = 0, equivalently,

H(z, w, 0) ≡ 0, for almost every (z, w) ∈ C× C

(2) The uniform ellipticity condition, that for almost every z, w ∈ C and all ζ, ξ ∈ C,

|H(z, w, ζ)−H(z, w, ξ)| ≤ k|ζ − ξ|, 0 ≤ k < 1

(3) The Lipschitz continuity in the function variable,

|H(z, w1, ζ)−H(z, w2, ζ)| ≤ C|ζ| |w1 − w2|
for some absolute constant C independent of z and ζ.

Theorem 2.4. Suppose H : C × C × C → C satisfies the conditions 1–3 above and is
compactly supported in the z-variable. Then the uniformly elliptic nonlinear differential
equation

(28)
∂f

∂z̄
= H

(
z, f,

∂f

∂z

)
admits exactly one principal solution f ∈ W 1,2

loc (C).

Proof. (Sketch). Uniqueness is easy. Suppose that both f and g are principal solutions
to (28), so

∂f

∂z̄
= H

(
z, f,

∂f

∂z

)
∂g

∂z̄
= H

(
z, g,

∂f

∂z

)
We set

F = f − g
and estimate

|Fz̄| = |H(z, f, fz)−H(z, g, gz)|
≤ |H(z, f, fz)−H(z, f, gz)|+ |H(z, f, gz)−H(z, g, gz)|
≤ k|fz − gz|+ CχR|gz||f − g|,

10



THE CALDERON’S INVERSE PROBLEM 9

where χR denotes the characteristic function of the disk D(0, R). Put briefly, F satisfies
the differential inequality

|Fz̄| ≤ k|Fz|+ CχR|gz||F |
By assumption, the principal solutions f, g ∈ W 1,2

loc (C) with

lim
z→∞

f(z)− g(z) = 0

Once we observe that

σ = CχR(z)|gz| ∈ L2(C)

and has compact support, Liouville type results such as Theorem B.8 in the Appendix
shows us that F ≡ 0, as desired.

The proof of existence we only sketch, for details, in the more general setup of Lusin
measurable H, see [3, Chapter 8].

We look for a solution f in the form

(29) f(z) = z + Cφ, φ ∈ Lp(C) of compact support,

where the exponent p > 2. Note that

fz̄ = φ, fz = 1 + Sφ.

Thus we need to solve only the following integral equation:

(30) φ = H
(
z, z + Cφ, 1 + Sφ

)
To solve this equation we first associate with every given φ ∈ Lp(C) an operator R :
Lp(C)→ Lp(C) defined by

RΦ = H
(
z, z + Cφ, 1 + SΦ

)
Through the ellipticity hypothesis we observe that R is a contractive operator on Lp(C).

Indeed, from (28) we have the pointwise inequality

|RΦ1 −RΦ2| ≤ k |SΦ1 − SΦ2|

Hence

‖RΦ1 −RΦ2‖p ≤ k Sp‖Φ1 − Φ2‖p, kSp < 1,

for p sufficiently close to 2. By the Banach contraction principle, R has a unique fixed
point Φ ∈ Lp(C). In other words, with each φ ∈ Lp(C) we can associate a unique function
Φ ∈ Lp(C) such that

(31) Φ = H
(
z, z + Cφ, 1 + SΦ

)
In fact, the procedure (31), φ 7→ Φ, gives a well-defined and nonlinear operator T :
Lp(C) → Lp(C) by simply requiring that Tφ = Φ. Further, solving the original integral
equation (30) means precisely that we have to find a fixed point for the operator T. This,
however, is more involved than in the case of the contraction R, and one needs to invoke
the celebrated Schauder fixed-point theorem, see [3, Chapter 8] for details. �

11



10 K. ASTALA

3. Complex Geometric Optics Solutions

We will use the following convenient notation

(32) eξ(z) = ei(zξ+z̄ ξ), z, ξ ∈ C

The main emphasize in these notes is on isotropic conductivities, corresponding to the
Beltrami equations of type (24). However, for later purposes it is useful to consider
exponentially growing solutions to divergence equations with matrix coefficients, hence
we are led to general Beltrami equations.

We will extend the coefficient matrix A(z) to the entire plane C by requiring A(z) ≡ I
when |z| ≥ 1. Clearly, this keeps all ellipticity bounds. Moreover, then

µ(z) ≡ ν(z) ≡ 0, |z| ≥ 1

As a first step toward Theorem 1.1, we establish the existence of a family of special
solutions to (16). These, called the complex geometric optics solutions, are specified by
having the asymptotics

(33) fµ,ν(z, ξ) = eiξzMµ,ν(z, ξ),

where

(34) Mµ,ν(z, ξ)− 1 = O
(

1

z

)
as |z| → ∞

Theorem 3.1. For each parameter ξ ∈ C and for each 2 ≤ p < 1 + 1/k, the equation

(35)
∂f

∂z̄
= µ(z)

∂f

∂z
+ ν(z)

∂f

∂z

admits a unique solution f = fµ,ν ∈ W 1,p
loc (C) that has the form (33) with (34) holding. In

particular, f(z, 0) ≡ 1.

Proof. Any solution to (35) is quasiregular. If ξ = 0, (33) and (34) imply that f is
bounded, hence constant by the Liouville theorem.

If ξ 6= 0, look for a solution f = fµ,ν(z, ξ) in the form

(36) f(z, ξ) = eiξψξ(z), ψξ(z) = z +O
(

1

z

)
as |z| → ∞

Substituting (36) into (35) indicates that ψξ is the principal solution to the quasilinear
equation

(37)
∂

∂z̄
ψξ(z) = µ(z)

∂

∂z
ψξ(z)− ξ

ξ
e−ξ
(
ψξ(z)

)
ν(z)

∂

∂z
ψξ(z)

The function H(z, w, ζ) = µ(z)ζ−(ξ/ξ) ν(z) eξ(w) ζ satisfies requirements 1–3 of Theorem

2.4. We thus obtain the existence and uniqueness of the principal solution ψξ in W 1,2
loc (C).

Equation (37) together with Theorem B.5 yields ψξ ∈ W 1,p
loc (C) for all p < 1 + 1/k since

|µ(z)| ≤ k and eξ is unimodular.

12



THE CALDERON’S INVERSE PROBLEM 11

Finally, to see the uniqueness of the complex geometric optics solution fµ,ν , let f ∈
W 1,2
loc (C) be a solution to (35) satisfying

(38) f = αeiξz
(

1 +O
(

1

z

))
as |z| → ∞

Denote then

µ1(z) = µ(z)
∂zf(z)

∂zf(z)

where ∂zf(z) 6= 0 and set µ1 = 0 elsewhere. Next, let ϕ be the unique principal solution
to

(39)
∂ϕ

∂z̄
= µ1

∂ϕ

∂z̄

Then the Stoilow factorization, Theorem B.9, gives f = h ◦ ϕ, where h : C → C is an
entire analytic function. But (38) shows that

h ◦ ϕ(z)

exp(iξϕ(z))
=

f(z)

exp(iξϕ(z))

has the limit α when the variable z →∞. Thus

h(z) ≡ αeiξz

Therefore f(z) = α exp(iξϕ(z)). In particular, If we have two solutions f1, f2 satisfying
(33), (34), then the argument gives

fε := f1 − (1 + ε)f2 = εeiξϕ(z),

The principal solutions are homeomorphisms withφ(z) = z + 1
z

as |z| → ∞, where the
error term is uniformly bounded by Koebe distortion, Theorem B.6. Letting now ε → 0
gives f1 = f2. �

It is useful to note that if a function f satisfies (35), then if satisfies not the same
equation but the equation where ν is replaced by −ν. In terms of the real and imaginary
parts of f = u+ iv, we see that

(40)
∂f

∂z̄
= µ(z)

∂f

∂z
+ ν(z)

∂f

∂z
if and only if

∇ · A(z)∇u = 0 and ∇ · A∗(z)∇v = 0, where A∗(z) = ∗A(z)−1∗ =
1

detA
A.

In case A(z) = σ(z)I is isotropic (µ = 0) we see that

∂f

∂z̄
=

1 − σ

1 + σ
⇔ ∇ · σ∇u = 0 and ∇ · 1

σ
∇v = 0.

From these identities we obtain the complex geometric optics solutions also for the con-
ductivity equation (1).

13



12 K. ASTALA

Corollary 3.2. Suppose A(z) is uniformly elliptic, so that (11) holds with K ∈ L∞(D).
Assume also that A(z) = I for |z| ≥ 1.

Then the equation ∇ ·A(z)∇u(z) = 0 admits a unique weak solution u = uξ ∈ W 1,2
loc (C)

such that

(41) u(z, ξ) = eiξz
(

1 +O
(

1

|z|

))
as |z| → ∞

Proof. For existence, in view of (40) the function

(42) u(z, ξ) = Re fµ,ν + i Im fµ,−ν

is precisely what we are looking for.
When it comes to uniqueness, if u ∈ W 1,2

loc is any function satisfying the divergence
equation ∇·A(z)∇u(z) = 0 with (41), then using Theorem 2.2 for the real and imaginary
parts of u, we can write it as

u = Re f+ + iIm f− =
1

2
(f+ + f− + f+ − f−),

where f± are quasiregular mappings with

∂f±
∂z̄

= µ(z)
∂f±
∂z
± ν(z)

∂f±
∂z

and where µ, ν are given by (17). Given the asymptotics (41), it is not hard to see that
both f+ and f− satisfy (33) with (34). Therefore f+ = fµ,ν and f− = fµ,−ν . �

The exponentially growing solutions of Corollary 3.2 can be considered σ-harmonic
counterparts of the usual exponential functions eiξz. They are the building blocks of the
nonlinear Fourier transform to be discussed in more detail in Section 6.

4. The Hilbert Transform Hσ

Until further notice we will now assume that A is isotropic,

A(z) = σ(z)I, σ(z) scalar, and we let µ =
1− σ(z)

1 + σ(z)
.

Assume that u ∈ W 1,2(D) is a weak solution to ∇ · σ(z)∇u(z) = 0. Then, by Theorem
2.2, u admits a conjugate function v ∈ W 1,2(D) such that

∂xv = −σ∂yu
∂yv = σ∂xu

Let us now elaborate on the relationship between u and v. Since the function v is
defined only up to a constant, we will normalize it by assuming

(43)

∫
∂D
v ds = 0

This way we obtain a unique map Hµ : W 1/2,2(∂D)→ W 1/2,2(∂D) by setting

(44) Hµ : u
∣∣
∂D 7→ v

∣∣
∂D

14



THE CALDERON’S INVERSE PROBLEM 13

In other words, v = Hµ(u) if and only if
∫
∂D v ds = 0, and u + iv has a W 1,2-extension

f to the disk D satisfying fz = µfz. We call Hµ the Hilbert transform corresponding to
(35).

Since the function g = −if = v − iu satisfies gz̄ = −µgz, we have

(45) Hµ ◦ H−µu = H−µ ◦ Hµu = −u+
1

2π

∫
∂D
u ds

So far we have defined Hµ(u) only for real-valued functions u. By setting

Hµ(iu) = iH−µ(u),

we extend the definition of Hµ(·) to all C-valued functions in W 1/2,2(∂D). Note, however,
that Hµ still remains only R-linear.

As in the case of analytic functions, the Hilbert transform defines a projection, now on
the “µ-analytic” functions. That is, we define Qµ : W 1/2,2(∂D)→ W 1/2,2(∂D) by

(46) Qµ(g) =
1

2
(g − iHµg) +

1

4π

∫
∂D
g ds

Then it follows that Q2
µ = Qµ. Furthermore, we have the following lemma.

Lemma 4.1. If g ∈ W 1/2,2(∂D), the following conditions are equivalent:

(a) g = f
∣∣
∂D, where f ∈ W 1,2(D) satisfies fz = µfz

(b) Qµ(g) is a constant

Proof. Condition (a) holds if and only if g = u + iHµu + ic for some real-valued u ∈
W 1/2,2(∂D) and real constant c. If g has this representation, then Qµ(g) = 1

4π

∫
∂D uds+ ic.

On the other hand, if Qµ(g) is a constant, then we put g = u+ iw into (46) and use (45)
to show that w = Hµu+ constant. This shows that (a) holds. �

The Dirichlet-to-Neumann map (4) and the Hilbert transform (44) are closely related,
as the next lemma shows.

Theorem 4.2. Choose the counterclockwise orientation for ∂D and denote by ∂T the
tangential (distributional) derivative on ∂D corresponding to this orientation. We then
have

(47) ∂THµ(u) = Λσ(u)

In particular, the Dirichlet-to-Neumann map Λσ uniquely determines Hµ, H−µ and Λ1/σ.

Proof. By the definition of Λσ we have∫
∂D
ϕΛσu ds =

∫
D
∇ϕ · σ∇u , ϕ ∈ C∞(D)

Thus, by (6) and (7) and integration by parts, we get∫
∂D
ϕΛσu ds =

∫
D

(∂xϕ∂yv − ∂yϕ∂xv) = −
∫
∂D
v ∂Tϕ ds,

and (47) follows. Next,
−µ = (1− 1/σ)/(1 + 1/σ),

15



14 K. ASTALA

and so Λ1/σ(u) = ∂TH−µ(u). Since by (45) Hµ uniquely determines H−µ, the proof is
complete. �

With these identities we can now show that, for the points z that lie outside D, the
values of the complex geometric optics solutions fµ(z, ξ) and f−µ(z, ξ) are determined by
the Dirichlet-to-Neumann operator Λσ.

Theorem 4.3. Let σ and σ̃ be two conductivities satisfying the assumptions of Theorem
1.1 and assume Λσ = Λeσ. Then if µ and µ̃ are the corresponding Beltrami coefficients,
we have

(48) fµ(z, ξ) = feµ(z, ξ) and f−µ(z, ξ) = f−eµ(z, ξ)

for all z ∈ C \ D and ξ ∈ C.

Proof. By Theorem 4.2 the condition Λσ = Λeσ implies that Hµ = Heµ. In the same way
Λσ determines Λσ−1 , and so it is enough to prove the first claim of (48).

Fix the value of the parameter ξ ∈ C. From (46) we see that the projections Qµ = Qeµ,
and thus by Lemma 4.1

Qµ(f̃) = Qeµ(f̃) is constant

Here we have written
f̃ = (feµ)

∣∣
∂D

Using Lemma 4.1 again, we see that there exists a function G ∈ W 1,2(D) such that
Gz = µGz in D and

G
∣∣
∂D = f̃

We then define G(z) = feµ(z, ξ) for z outside D. Now G ∈ W 1,2
loc (C), and it satisfies

Gz = µGz in the whole plane. Thus it is quasiregular, and so G ∈ W 1,p
loc (C) for all

2 ≤ p < 2 + 1/k, k = ‖µ‖∞. But now G is a solution to (33) and (34). By the uniqueness
part of Theorem 3.1, we obtain G(z) ≡ fµ(z, ξ). �

Similarly, the Dirichlet-to-Neumann operator determines the complex geometric optics
solutions to the conductivity equation at every point z outside the disk D.

Corollary 4.4. Let σ and σ̃ be two conductivities satisfying the assumptions of Theorem
1.1 and assume Λσ = Λeσ.

Then
uσ(z, ξ) = ueσ(z, ξ) for all z ∈ C \ D and ξ ∈ C

Proof. The claim follows immediately from the previous theorem and the representation
uσ(z, ξ) = Re fµ(z, ξ) + iIm f−µ(z, ξ). �

5. Dependence on Parameters

Our strategy will be to extend the identities fµ(z, ξ) = feµ(z, ξ) and uσ(z, ξ) = ueσ(z, ξ)
from outside the disk to points z inside D. Once we do that, Theorem 1.1 follows via the
equation fz = µfz.

For this purpose we need to understand the ξ-dependence in fµ(z, ξ) and the quantities
controlling it. In particular, we will derive equations relating the solutions and their
derivatives with respect to the ξ-variable. For this purpose we prove the following theorem.

16
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Theorem 5.1. The complex geometric optics solutions uσ(z, ξ) and fµ(z, ξ) are (Hölder)-
continuous in z and C∞-smooth in the parameter ξ.

The continuity in the z-variable is of course clear since fµ is a quasiregular function of
z. However, for analyzing the ξ-dependence we need to realize the solutions in a different
manner, by identities involving linear operators that depend smoothly on the variable ξ.

Let fµ(z, ξ) = eiξzMµ(z, ξ) and f−µ(z, ξ) = eiξzM−µ(z, ξ) be the solutions of Theorem
3.1 corresponding to conductivities σ and σ−1, respectively. We can write (8), (33) and
(34) in the form

(49)
∂

∂z̄
Mµ = µ(z)

∂

∂z
(eξMµ), Mµ − 1 ∈ W 1,p(C)

when 2 < p < 1 + 1/k. By taking the Cauchy transform and introducing a R-linear
operator Lµ,

(50) Lµg = C
(
µ
∂

∂z̄

(
e−ξ g

))
,

we see that (49) is equivalent to

(51) (I− Lµ)Mµ = 1

Theorem 5.2. Assume that ξ ∈ C and µ ∈ L∞(C) is compactly supported with ‖µ‖∞ ≤
k < 1. Then for 2 < p < 1 + 1/k the operator

I− Lµ : W 1,p(C)⊕ C→ W 1,p(C)⊕ C

is bounded and invertible.

Here we denote by W 1,p(C) ⊕ C the Banach space consisting of functions of the form
f = constant + f0, where f0 ∈ W 1,p(C).

Proof. We write Lµ(g) as

(52) Lµ(g) = C
(
µ e−ξ gz − i ξ µ e−ξ g

)
Then Theorem B.2 shows that

(53) Lµ : W 1,p(C)⊕ C→ W 1,p(C)

is bounded. Thus we need only establish invertibility.
To this end let us assume h ∈ W 1,p(C). Consider the equation

(54) (I− Lµ)(g + C0) = h+ C1,

where g ∈ W 1,p(C) and C0, C1 are constants. Then

C0 − C1 = g − h− Lµ(g + C0),

which by (53) gives C0 = C1. By differentiating and rearranging we see that (54) is
equivalent to gz − µ(e−ξ g)z = hz + µ(C0e−ξ)z, or in other words, to

(55) gz − (I− µe−ξS)−1
(
µ(e−ξ)zg

)
= (I− µe−ξS)−1

(
hz + µ(C0e−ξ)z

)
We are now faced with the operator R defined by

R(g) = C
(
I− νS

)−1
(αg),

17



16 K. ASTALA

where ν(z) = µe−ξ satisfies |ν(z)| ≤ kχD(z) and α is defined by α = µ(e−ξ)z = −iξ µ e−ξ.
According to Theorem B.4, I− νS is invertible in Lp(C) when 1 + k < p < 1 + 1/k, while
the Cauchy transform requires p > 2. Therefore R is a well-defined and bounded operator
on Lp(C) for 2 < p < 1 + 1/k.

Moreover, the right hand side of (55) belongs to Lp(C) for each h ∈ W 1,p(C). Hence
this equation admits a unique solution g ∈ W 1,p(C) if and only if the operator I − R is
invertible in Lp(C), 2 < p < 1 + 1/k.

To get this we will use Fredholm theory. First, Theorem B.3 shows that R is a compact
operator on Lp(C) when 2 < p < 1 + 1/k. Therefore it suffices to show that I − R is
injective. Suppose now that g ∈ Lp(C) satisfies

g = Rg = C
(
I− νS

)−1
(αg)

Then g ∈ W 1,p(C) by Theorem B.2 and gz =
(
I− νS

)−1
(αg). Equivalently

(56) gz − νgz = αg

Thus the assumptions of Theorem B.8 are fulfilled, and we must have g ≡ 0. Therefore
I − R is indeed injective on Lp(C). As a Fredholm operator, it therefore is invertible in
Lp(C). Therefore the operator I− Lµ is invertible in W 1,p(C), 2 < p < 1 + 1/k. �

A glance at (50) shows that ξ → Lµ is an infinitely differentiable family of operators.
Therefore, with Theorem 5.2, we see thatMµ = (I−Lµ)−11 is C∞-smooth in the parameter
ξ. Thus we have obtained Theorem 5.1.

6. Nonlinear Fourier Transform

The idea of studying the ξ-dependence of operators associated with complex geometric
optics solutions was introduced by Beals and Coifman [10] in connection with the inverse
scattering approach to KdV-equations. Here we will apply this method to the solutions
uσ to the conductivity equation (1) and show that they satisfy a simple ∂-equation with
respect to the parameter ξ.

We start with the representation uσ(z, ξ) = Re fµ(z, ξ) + i Im f−µ(z, ξ), where f±µ are
the solutions to the corresponding Beltrami equations; in particular, they are analytic
outside the unit disk. Hence with the asymptotics (34) they admit the following power
series development,

(57) f±µ(z, ξ) = eiξz
(

1 +
∞∑
n=1

b±n (ξ)z−n
)
, |z| > 1,

where b+
n (ξ) and b−n (ξ) are the coefficients of the series, depending on the parameter ξ.

For the solutions to the conductivity equation, this gives

uσ(z, ξ) = eiξz +
a(ξ)

z
eiξz +

b(ξ)

z̄
e−iξ̄z̄ + eiξz O(

1

|z|2
)

as z →∞, where

(58) a(ξ) =
b+

1 (ξ) + b−1 (ξ)

2
, b(ξ) =

b+
1 (ξ)− b−1 (ξ)

2 z̄
.

18



THE CALDERON’S INVERSE PROBLEM 17

Fixing the z-variable, we take the ∂ξ-derivative of uσ(z, ξ) and get

(59) ∂ξ uσ(z, ξ) = −iτσ(ξ) e−iξ̄z̄
(
1 +O(

1

|z|
)
)
,

where the coefficient

(60) τσ(ξ) := b(ξ)

However, the derivative ∂ξ uσ(z, ξ) is another solution to the conductivity equation! From
the uniqueness of the complex geometric optics solutions under the given exponential
asymptotics, Corollary 3.2, we therefore have the simple but important relation

(61) ∂ξ uσ(z, ξ) = −i τσ(ξ)uσ(z, ξ) for all ξ, z ∈ C

The remarkable feature of this relation is that the coefficient τσ does not depend on the
space variable z. Later, this phenomenon will become of crucial importance in the solution
to the Calderón problem.

In analogy with the one-dimensional scattering theory of integrable systems and asso-
ciated inverse problems (see [10, 26, 27]), we call τσ the nonlinear Fourier transform
of σ.

To understand the basic properties of the nonlinear Fourier transform, we need to
return to the Beltrami equation. We will first show that the Dirichlet-to-Neumann data
determines τσ. This is straightforward. Then the later sections are devoted to showing
that the nonlinear Fourier transform τσ determines the coefficient σ almost everywhere.
There does not seem to be any direct method for this, rather we will have to show that
from τσ we can determine the exponentially growing solutions f±µ defined in the entire
plane. From this information the coefficient µ, and hence σ, can be found.

In any case it seems that most properties of τσ are important and interesting in and of
themselves. We have the usual transformation rules under scaling and and translation,

σ1(z) = σ(Rz) ⇒ τσ1(ξ) =
1

R
τσ(ξ/R),

σ2(z) = σ(z + p) ⇒ τσ2(ξ) = ei(pξ+p̄ξ̄)τσ(ξ).

but not much is known concerning questions such as the possibility of a Plancherel
formula.

However, in the first instance some simple bounds can be achieved. We will show that
for σ as above, τσ ∈ L∞. For this we need the following result, which is useful also
elsewhere.

Here let fµ(z, ξ) = eiξzMµ(z, ξ) and f−µ(z, ξ) = eiξzM−µ(z, ξ) be the solutions of The-
orem 3.1 corresponding to conductivities σ and σ−1, respectively, holomorphic outside
D.

Theorem 6.1. For every ξ, z ∈ C we have M±µ(z, ξ) 6= 0. Moreover,

(62) Re

(
Mµ(z, ξ)

M−µ(z, ξ)

)
> 0
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Proof. First, note that (8) implies, for M±µ,

(63)
∂

∂z̄
M±µ ∓ µe−ξ

∂

∂z
M±µ = ∓iξµe−ξM±µ

Thus we may apply Theorem B.8 to get

(64) M±µ(z) = exp(η±(z)) 6= 0,

and consequently Mµ/M−µ is well defined. Second, if (62) is not true, the continuity of
M±µ and the fact limz→∞M±µ(z, ξ) = 1 imply the existence of z0 ∈ C such that

Mµ(z0, ξ) = itM−µ(z0, ξ)

for some t ∈ R \ {0} and ξ ∈ C. But then, g = Mµ − itM−µ satisfies

∂

∂z̄
g = µ(z)

∂

∂z

(
eξg
)
,

g(z) = 1− it+O
(

1

z

)
, as z →∞

According to Theorem B.8, this implies

g(z) = (1− it) exp(η(z)) 6= 0,

contradicting the assumption g(z0) = 0. �

The boundedness of the nonlinear Fourier transform is now a simple corollary of
Schwarz’s lemma.

Theorem 6.2. The functions f±µ(z, ξ) = eiξzM±µ(z, ξ) satisfy, for |z| > 1 and for all
ξ ∈ C,

(65)

∣∣∣∣Mµ(z, ξ)−M−µ(z, ξ)

Mµ(z, ξ) +M−µ(z, ξ)

∣∣∣∣ ≤ 1

|z|
Moreover, for the nonlinear Fourier transform τσ, we have

(66) |τσ(ξ)| ≤ 1 for all ξ ∈ C

Proof. Fix the parameter ξ ∈ C and denote

m(z) =
Mµ(z, ξ)−M−µ(z, ξ)

Mµ(z, ξ) +M−µ(z, ξ)

Then by Theorem 6.1, |m(z)| < 1 for all z ∈ C. Moreover, m is holomorphic for z ∈ C\D,
m(∞) = 0, and thus by Schwarz’s lemma we have |m(z)| ≤ 1/|z| for all z ∈ C \ D.

On the other hand, from the development (57),

Mµ(z, ξ) = 1 +
∞∑
n=1

bn(ξ)z−n for |z| > 1,

and similarly for M−µ(z, ξ). We see that

τσ(ξ) =
1

2

(
b+

1 (ξ)− b−1 (ξ)
)

= lim
z→∞

z m(z)

Therefore the second claim also follows. �
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THE CALDERON’S INVERSE PROBLEM 19

With these results the Calderón problem reduces to the question whether we can invert
the nonlinear Fourier transform.

Theorem 6.3. The operator Λσ uniquely determines the nonlinear Fourier transform τσ.

Proof. The claim follows immediately from Theorem 4.3, from the development (57)
and from the definition (60) of τσ. �

From the relations −µ = (1− 1/σ)/(1 + 1/σ), we have the symmetry

τσ(ξ) = −τ1/σ(ξ)

It follows that the functions

(67) u1 = Re fµ + i Im f−µ = uσ and u2 = iRe f−µ − Im fµ = iu1/σ

form a “primary pair” of complex geometric optics solutions.

Corollary 6.4. The functions u1 = uσ and u2 = iu1/σ are complex-valued W 1,2
loc (C)-

solutions to the conductivity equations

(68) ∇ · σ∇u1 = 0 and ∇ · 1

σ
∇u2 = 0,

respectively. In the ξ-variable they are solutions to the same ∂ξ -equation,

(69)
∂

∂ξ
uj(z, ξ) = −i τσ(ξ)uj(z, ξ), j = 1, 2,

and their asymptotics, as |z| → ∞, are

uσ(z, ξ) = eiξz
(

1 +O
(

1

|z|

))
, u1/σ(z, ξ) = eiξz

(
i+O

(
1

|z|

))
7. Subexponential Growth

A basic obstacle in the solution to Calderón’s problem is to find methods to control
the asymptotic behavior in the parameter ξ for complex geometric optics solutions. If we
knew that the assumptions of the Liouville type Theorem B.8 were valid in (69), then
the equation, hence the Dirichlet-to-Neumann map, would uniquely determine uσ(z, ξ)
with u1/σ(z, ξ), and we would be done. However, we only know from Theorem 6.2 that
τσ(ξ) is bounded in ξ. It takes considerably more effort to prove the counterpart of the
Riemann-Lebesgue lemma, that

τσ(ξ)→ 0, as ξ →∞.
Indeed, this will be one of the consequences of the results in the present section.

It is clear that some control of the parameter ξ is needed for uσ(z, ξ). Within the
category of conductivity equations with L∞-coefficients σ, the complex analytic and qua-
siconformal methods provide by far the most powerful methods. Therefore we return
to the Beltrami equation. The purpose of this section is to study the ξ-behavior in the
functions fµ(z, ξ) = eiξzMµ(z, ξ) and to show that for a fixed z, Mµ(z, ξ) grows at most
subexponentially in ξ as ξ →∞. Subsequently, the result will be applied to uj(z, ξ).
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For some later purposes we will also need to generalize the situation a bit by considering
complex Beltrami coefficients µλ of the form µλ = λµ, where the constant λ ∈ ∂D and
µ is as before. Exactly as in Theorem 3.1, we can show the existence and uniqueness of
fλµ ∈ W 1,p

loc (C) satisfying

(70)
∂

∂z̄
fλµ = λµ

∂

∂z
fλµ and

(71) fλµ(z, ξ) = eiξz
(

1 +O
(

1

z

))
as |z| → ∞

In fact, we have that the function fλµ admits a representation of the form

(72) fλµ(z, ξ) = ei ξ ϕλ(z,ξ),

where for each fixed ξ ∈ C \ {0} and λ ∈ ∂D, ϕλ(z, ξ) = z + O
(

1
z

)
for z → ∞. The

principal solution ϕ = ϕλ(z, ξ) satisfies the nonlinear equation

(73)
∂

∂z̄
ϕ(z) = κλ,ξ e−ξ

(
ϕ(z)

)
µ(z)

∂

∂z
ϕ(z)

where κ = κλ,ξ = −λ ξ 2|ξ|−2 is constant with |κλ,ξ| = 1.

The main goal of this section is to show the following theorem.

Theorem 7.1. If ϕ = ϕλ and fλµ are as in (70)–(73), then

ϕλ(z, ξ)→ z

uniformly in z ∈ C and λ ∈ ∂D as ξ →∞.

From the theorem we have the immediate consequence,

Corollary 7.2. If σ, σ−1 ∈ L∞(C) with σ(z) = 1 outside a compact set, then

τσ(ξ)→ 0, as ξ →∞.

Proof of Corollary 7.2. Let λ = 1. The principal solutions in (72) have the development

ϕ(z, ξ) = z +
∞∑
n=1

cn(ξ)

zn
, |z| > 1,

where by Cauchy integral formula and Theorem 7.1 we have

cn(ξ)→ 0, ξ →∞, n ∈ N.

Comparing now with (57)-(60) proves the claim. �

It remains to prove Theorem 7.1, which will the rest of this section. We shall split the
proof up into several lemmas.
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Lemma 7.3. Suppose ε > 0 is given. Suppose also that for µλ(z) = λµ(z), we have

(74) fn = µλSnµλSn−1µλ · · ·µλS1µλ,

where Sj : L2(C) → L2(C) are Fourier multiplier operators, each with a unimodular
symbol. Then there is a number Rn = Rn(k, ε) depending only on k = ‖µ‖∞, n and ε
such that

(75) |f̂n(η)| < ε for |η| > Rn

Proof. It is enough to prove the claim for λ = 1. By assumption,

Ŝjg(η) = mj(η)ĝ(η),

where |mj(η)| = 1 for η ∈ C. We have by (74),

(76) ‖fn‖L2 ≤ ‖µ‖nL∞‖µ‖L2 ≤
√
πkn+1

since supp(µ) ⊂ D. Choose ρn so that

(77)

∫
|η|>ρn

|µ̂(η)|2 dη < ε2

After this, choose ρn−1, ρn−2, . . . , ρ1 inductively so that for l = n− 1, . . . , 1,

(78) π

∫
|η|>ρl

|µ̂(η)|2 dη ≤ ε2

(
n∏

j=l+1

πρj

)−2

Finally, choose ρ0 so that

(79) |µ̂(η)| < επ−n

(
n∏
j=1

ρj

)−1

when |η| > ρ0

All these choices are possible since µ ∈ L1 ∩ L2.
Now, we set Rn =

∑n
j=0 ρj and claim that (75) holds for this choice of Rn. Hence

assume that |η| >
∑n

j=0 ρj. We have

|f̂n(η)| ≤
∫
|η−ζ|≤ρn

|µ̂(η − ζ)| |f̂n−1(ζ)| dζ

+

∫
|η−ζ|≥ρn

|µ̂(η − ζ)| |f̂n−1(ζ)| dζ(80)

But if |η − ζ| ≤ ρn, then |ζ| >
∑n−1

j=0 ρj. Thus, if we denote

∆n = sup

{
|f̂n(η)| : |η| >

n∑
j=0

ρj

}
,
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it follows from (80) and (76) that

∆n ≤ ∆n−1(πρ2
n)1/2‖µ‖L2 +

(∫
|ζ|≥ρn

|µ̂(ζ)|2 dζ
)1/2

‖f̂n−1‖L2

≤ πρnk∆n−1 + kn
(
π

∫
|ζ|≥ρn

|µ̂(ζ)|2 dζ
)1/2

for n ≥ 2. Moreover, the same argument shows that

∆1 ≤ πρ1 k sup{|µ̂(η)| : |η| > ρ0}+ k

(
π

∫
|ζ|>ρ1

|µ̂(ζ)|2 dζ
)1/2

In conclusion, after iteration we will have

∆n ≤ (kπ)n

(
n∏
j=1

ρj

)
sup{|µ̂(η)| : |η| > ρ0}

+ kn
n∑
l=1

(
n∏

j=l+1

πρj

)(
π

∫
|ζ|>ρl

|µ̂(ζ)|2 dζ
)1/2

With the choices (77)–(79), this leads to

∆n ≤ (n+ 1)knε ≤ ε

1− k
,

which proves the claim. �

Our next goal is to use Lemma 7.3 to prove the asymptotic result required in Theorem
7.1 for the solution of a closely related linear equation.

Theorem 7.4. Suppose ψ ∈ W 1,2
loc (C) satisfies

∂ψ

∂z̄
= κµ(z) e−ξ(z)

∂ψ

∂z
and(81)

ψ(z) = z +O
(

1

z

)
as z →∞,(82)

where κ is a constant with |κ| = 1.
Then ψ(z, ξ)→ z, uniformly in z ∈ C and κ ∈ ∂D, as ξ →∞.

To prove Theorem 7.4 we need some preparation. First, since the Lp-norm of the
Beurling transform Sp → 1 when p → 2, we can choose a δk > 0 so that kSp < 1
whenever 2− δk ≤ p ≤ 2 + δk. With this notation we then have the following lemma.

Lemma 7.5. Let ψ = ψ(·, ξ) be the solution of (81) and let ε > 0. Then ψz̄ can be
decomposed as ψz̄ = g + h, where

(1) ‖h(·, ξ)‖Lp < ε for 2− δk ≤ p ≤ 2 + δk uniformly in ξ.
(2) ‖g(·, ξ)‖Lp ≤ C0 = C0(k) uniformly in ξ.
(3) ĝ(η, ξ)→ 0 as ξ →∞.

In statement 3 convergence is uniform on compact subsets of the η-plane and also uniform
in κ ∈ ∂D. The Fourier transform is with respect to the first variable only.
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Proof. We may solve (81) using a Neumann series, which will converge in Lp,

∂ψ

∂z̄
=
∞∑
n=0

(κµ e−ξ S)n (κµ e−ξ)

Let

h =
∞∑

n=n0

(κµe−ξ S)n (κµ e−ξ)

Then

‖h‖Lp ≤ π1/p
kn0+1Sn0

p

1− kSp
We obtain the first statement by choosing n0 large enough.

The remaining part clearly satisfies the second statement with a constant C0 that is
independent of ξ and λ. To prove statement 3 we first note that

S(e−ξ φ) = e−ξ Sξ φ,

where (̂Sξφ)(η) = m(η − ξ) φ̂(η) and m(η) = η/η. Consequently,

(µe−ξ S)nµ e−ξ = e−(n+1)ξ µSnξ µS(n−1)ξ · · ·µSξ µ,

and so

g =

n0∑
j=1

κj e−jξ µS(j−1)ξ µ · · ·µSξµ

Therefore

g =

n0∑
j=1

e−jξGj,

where by Lemma 7.3, |Ĝj(η)| < ε̃ whenever |η| > R = maxj≤n0 Rj. As ̂(ejξGj)(η) =

Ĝj(η+jξ), for any fixed compact set K0, we can take ξ so large that jξ+K0 ⊂ C\D(0, R)
for each 1 ≤ j ≤ n0. Then

sup
η∈K0

|ĝ(η, ξ)| ≤ n0ε̃

This proves the lemma. �

Proof of Theorem 7.4. We show first that when ξ → ∞, ψz̄ → 0 weakly in Lp,
2 − δk ≤ p ≤ 2 + δk. For this suppose that f0 ∈ Lq, q = p/(p − 1), is fixed and choose
ε > 0. Then there exists f ∈ C∞0 (C) such that ‖f0 − f‖Lq < ε, and so by Lemma 7.5,

|〈f0, ψz̄〉| ≤ εC1 +
∣∣ ∫ f̂(η)ĝ(η, ξ) dη

∣∣,
First choose R so large that ∫

C\D(0,R)

|f̂(η)|2 dη ≤ ε2
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and then |ξ| so large that |ĝ(η, ξ)| ≤ ε/(
√
πR) for all η ∈ D(R). Now,∣∣∣∣∫ f̂(η)ĝ(η, ξ) dη

∣∣∣∣ ≤ ∫
D(R)

f̂(η)ĝ(η, ξ) dη +

∫
C\D(R)

f̂(η)ĝ(η, ξ) dη

≤ ε(‖f‖L2 + ‖g‖L2) ≤ C2(f)ε(83)

The bound is the same for all κ, hence

(84) sup
κ∈∂D
|〈f0, ψz̄〉| → 0

as |ξ| → ∞.
To prove the uniform convergence of ψ itself, we write

(85) ψ(z, ξ) = z − 1

π

∫
D

1

ζ − z
∂

∂ζ
ψ(ζ, ξ)

Here note that supp(ψz̄) ⊂ D and χD(ζ)/(ζ − z) ∈ Lq for all q < 2. Thus by the weak
convergence we have

(86) ψ(z, ξ)→ z as ξ →∞
for each fixed z ∈ C, but uniformly in κ ∈ ∂D. On the other hand, as

sup
ξ

∥∥∥∥∂ψ∂z̄
∥∥∥∥
Lp
≤ C0 = C0(p, ‖µ‖∞) <∞

for all z sufficiently large, |ψ(z, ξ) − z| < ε, uniformly in ξ ∈ C and κ ∈ ∂D. Moreover,
(85) shows also that the family {ψ(·, ξ) : ξ ∈ C, κ ∈ ∂D} is equicontinuous. Combining
all these observations shows that the convergence in (86) is uniform in z ∈ C and κ ∈ ∂D.
�

Finally, we proceed to the nonlinear case: Assume that ϕλ satisfies (70) and (72). Since
ϕ is a (quasiconformal) homeomorphism, we may consider its inverse ψλ : C→ C,

(87) ψλ ◦ ϕλ(z) = z,

which also is quasiconformal. By differentiating (87) with respect to z and z̄ we find that
ψ satisfies

∂

∂z̄
ψλ = −ξ

ξ
λ (µ ◦ ψλ) e−ξ

∂

∂z
ψλ and(88)

ψλ(z, ξ) = z +O
(

1

z

)
as z →∞(89)

Proof of Theorem 7.1. It is enough to show that

(90) ψλ(z, ξ)→ z

uniformly in z and λ as ξ →∞. For this we introduce the notation

(91) Σk = {g ∈ W 1,2
loc (C) : gz̄ = ν gz, |ν| ≤ kχD(2) and g = z +O

(
1

z

)
as z →∞}

Note that all mappings g ∈ Σk are principal solutions and hence homeomorphisms.
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The support of the coefficient µ ◦ ψλ in (88) need no longer be contained in D. However,
by Koebe distortion theorem, see e.g. [3, p. 44], ϕλ(D) ⊂ D(0, 2) and thus supp(µ◦ψλ) ⊂
D(0, 2). Accordingly, ψλ ∈ Σk.

Since normalized quasiconformal mappings form a normal family, we see that the family
Σk is compact in the topology of uniform convergence. Given sequences ξn → ∞ and

λn ∈ ∂D, we may pass to a subsequence and assume that κλn,ξn = −λn ξn
2|ξn|−2 → κ ∈ ∂D

and that the corresponding mapping ψλn(·, ξn)→ ψ∞ uniformly, with ψ∞ ∈ Σk. To prove
Theorem 7.1 it is enough to show that for any such sequence ψ∞(z) ≡ z.

Hence we assume that there is such a limit function ψ∞. We consider the W 1,2
loc -solution

Φ(z) = Φλ(z, ξ) of

∂Φ

∂z̄
= κ (µ ◦ ψ∞) e−ξ

∂Φ

∂z̄

Φ(z) = z +O
(

1

z

)
as z →∞

This is now a linear Beltrami equation which, by Theorem 2.4 has a unique solution
Φ ∈ Σk for each ξ ∈ C and |λ| = 1. According to Theorem 7.4,

(92) Φλ(z, ξ)→ z as ξ →∞
Further, when 2 < p < 1 + 1/k, by Lemma B.7,

|ψλn(z, ξn)− Φλ(z, ξn)|

=
1

π

∣∣∣∣ ∫
D

1

ζ − z
∂

∂z̄

(
ψλn(ζ, ξn)− Φλ(ζ, ξn)

)
dζ

∣∣∣∣
≤ C1

∥∥∥∥ ∂∂z̄ (ψλn(ζ, ξn)− Φλ(ζ, ξn)
)∥∥∥∥

Lp

≤ C2

∣∣κλn,ξn − κ|
+ C2

(∫
2D

∣∣µ (ψλn(ζ, ξn)
)
− µ

(
ψ∞(ζ)

)∣∣ p(1+ε)ε dζ

) ε
p(1+ε)

(93)

Finally, we apply our higher-integrability results, such as Theorem B.5. Thus for all
2 < p < 1 + 1/k and for all g = ψ−1, ψ ∈ Σk, we have the estimate for the Jacobian
J(z, g):

(94)

∫
D
J(z, g)p/2 ≤

∫
D

∣∣∣∣∂g∂z
∣∣∣∣p ≤ C(k) <∞,

where C(k) depends only on k. We use this estimate in the cases ψ(z) = ψλn(z, ξn) and
ψ = ψ∞. Namely, we have for each γ ∈ C∞0 (D) that∫

2D
|µ(ψ)− γ(ψ)|

p(1+ε)
ε =

∫
D
|µ− γ|

p(1+ε)
ε Jg

≤
(∫

D
|µ− γ|

p2(1+ε)
ε(p−2)

)(p−2)/p(∫
D
Jp/2g

)2/p

Since µ can be approximated in the mean by smooth γ, the last term can be made
arbitrarily small. By uniform convergence γ(ψλn(z, ξn))→ γ(ψ∞(z)), and so we see that
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the last bound in (93) converges to zero as κλn,ξn → κ. In view of (92) and (93), we have
established that

ψλn(z, ξn)→ z

and that ψ∞(z) ≡ z. The theorem is proved. �

8. The Solution to Calderón’s Problem

The Jacobian J(z, f) of a quasiregular map can vanish only on a set of Lebesque
measure zero. Since J(z, f) = |fz|2 − |fz̄|2 ≤ |fz|2, this implies that once we know the
values fµ(z, ξ) for every z ∈ C, then we can recover the values µ(z) and hence σ(z) almost
everywhere, from fµ by the formulas

(95)
∂fµ
∂z̄

= µ(z)
∂fµ
∂z

and σ =
1− µ
1 + µ

On the other hand, considering the functions

u1 = uσ = Re fµ + i Im f−µ and u2 = iu1/σ = iRe f−µ − Im fµ

that were described in Corollary 6.4, it is clear that the pair {u1(z, ξ), u2(z, ξ)} determines
the pair {fµ(z, ξ), f−µ(z, ξ)}, and vice versa. Therefore to prove Theorem 1.1 it will suffice
to establish the following result.

Theorem 8.1. Assume that Λσ = Λeσ for two L∞-conductivities σ and σ̃. Then for all
z, ξ ∈ C,

uσ(z, ξ) = ueσ(z, ξ) and u1/σ(z, ξ) = u1/eσ(z, ξ)

For the proof of the theorem, our first task it to determine the asymptotic behavior of
uσ(z, ξ). We state this as a separate result.

Lemma 8.2. We have uσ(z, ξ) 6= 0 for every (z, ξ) ∈ C× C. Furthermore, for each fixed
ξ 6= 0, we have with respect to z

uσ(z, ξ) = exp(iξz + v(z)),

where v = vξ ∈ L∞(C). On the other hand, for each fixed z we have with respect to ξ

(96) uσ(z, ξ) = exp(iξz + ξε(ξ)),

where ε(ξ)→ 0 as ξ →∞.

Proof. For the first claim we write

uσ =
1

2

(
fµ + f−µ + fµ − f−µ

)
= fµ

(
1 +

fµ − f−µ
fµ + f−µ

)−1(
1 +

fµ − f−µ
fµ + f−µ

)
Each factor in the product is continuous and nonvanishing in z by Theorem 6.1. Taking
the logarithm and using f±µ(z, ξ) = eiξz(1 +Oξ(1/z)) leads to

uσ(z, ξ) = exp

(
iξz +Oξ

(
1

z

))
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For the ξ-asymptotics we apply Theorem 7.1, which governs the growth of the functions
fµ for ξ →∞. We see that for (96) it is enough to show that

(97) inf
t

∣∣∣∣fµ − f−µfµ + f−µ
+ eit

∣∣∣∣ ≥ e−|ξ|ε(ξ)

For this, define

Φt = e−it/2(fµ cos t/2 + if−µ sin t/2)

Then for each fixed ξ,

Φt(z, ξ) = eiξz
(

1 +Oξ
(

1

z

))
as z →∞,

and
∂

∂z̄
Φt = µe−it

∂

∂z
Φt

Thus for λ = e−it, the mapping Φt = fλµ is precisely the exponentially growing solution
from (70) and (71). But

(98)
fµ − f−µ
fµ + f−µ

+ eit =
2eit Φt

fµ + f−µ
=
fλµ
fµ

2eit

1 +M−µ/Mµ

By Theorem 7.1,

(99) e−|ξ|ε1(ξ) ≤ |M±µ(z, ξ)| ≤ e|ξ|ε1(ξ)

and

(100) e−|ξ|ε2(ξ) ≤ inf
λ∈∂D

∣∣∣∣fλµ(z, ξ)

fµ(z, ξ)

∣∣∣∣ ≤ sup
λ∈∂D

∣∣∣∣fλµ(z, ξ)

fµ(z, ξ)

∣∣∣∣ ≤ e|ξ|ε2(ξ),

where εj(ξ) → 0 as ξ → ∞. Since Re (M−µ/Mµ) > 0, the inequality (97) follows,
completing the proof of the lemma. �

As discussed earlier, the functions u1 = uσ and u2 = iu1/σ satisfy a ∂ξ̄-equation as a
function of the parameter ξ, but it is clear that for a fixed z the asymptotics in (96) are
not strong enough to determine the individual solution uj(z, ξ). However, if we consider
the entire family {uj(z, ξ) : z ∈ C}, then, somewhat surprisingly, uniqueness properties
do arise.

To prove this assume that the Dirichlet-to-Neumann operators are equal for the con-
ductivities σ and σ̃. By Lemma 8.2, we have uσ(z, ξ), ueσ(z, ξ) 6= 0 at every point (z, ξ).
Therefore we can take their logarithms δσ and δeσ, respectively, where for each fixed z ∈ C,

δσ(z, ξ) = log uσ(z, ξ) = iξz + ξε1(ξ)(101)

δeσ(z, ξ) = log ueσ(z, ξ) = iξz + ξε2(ξ)(102)

Here, for |ξ| → ∞, εj(ξ)→ 0. Moreover, by Theorem 3.1,

δσ(z, 0) ≡ δeσ(z, 0) ≡ 0

for all z ∈ C.
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In addition, z 7→ δσ(z, ξ) is continuous, and we have

(103) δσ(z, ξ) = iξz

(
1 +

vξ(z)

iξz

)
, ξ 6= 0,

where by Lemma 8.2, vξ ∈ L∞(C) for each fixed ξ ∈ C. Since δσ is close to a multiple of
the identity for |z| large, an elementary topological argument shows that z 7→ δσ(z, ξ) is
surjective C→ C.

To prove the theorem it suffices to show that, if Λσ = Λeσ, then

(104) δeσ(z, ξ) 6= δσ(w, ξ) for z 6= w and ξ 6= 0

If this property is established, then (104) and the surjectivity of z 7→ δσ(z, ξ) show that
we necessarily have δσ(z, ξ) = δeσ(z, ξ) for all ξ, z ∈ C. Hence ueσ(z, ξ) = uσ(z, ξ).

We are now at a point where the ∂ξ -method and (69) can be applied. Substituting
uσ = exp (δσ) in this identity shows that ξ → δσ(z, ξ) and ξ → δeσ(w, ξ) both satisfy the
∂ξ -equation

(105)
∂δ

∂ξ
= −iτ(ξ) e( δ−δ), ξ ∈ C,

where by Theorem 4.3 and the assumption Λσ = Λeσ, the coefficient τ(ξ) is the same for
both functions δσ and δeσ. The difference

g(ξ) := δeσ(w, ξ)− δσ(z, ξ)

thus satisfies the identity

∂g

∂ξ
= −iτ(ξ) e( δ−δ) [e( g−g) − 1

]
In particular,

(106)

∣∣∣∣∂g∂ξ
∣∣∣∣ ≤ | g − g| ≤ 2|g|

From (101) we have g(ξ) = i(w − z)ξ + ξε(ξ). Now we only need to apply Theorem A.1
(with respect to ξ) to see that for w 6= z the function g vanishes only at ξ = 0. This
establishes (104).

According to Theorem 4.2 (or by the identity τσ = −τ1/σ), if Λσ = Λeσ, the same
argument works to show that u1/eσ(z, ξ) = u1/σ(z, ξ) as well. Theorem 8.1 is thus proved.
As the pair {u1(z, ξ), u2(z, ξ)} pointwise determines the pair {fµ(z, ξ), f−µ(z, ξ)}, we find
via (95) that σ ≡ σ̃. Therefore the proof of Theorem 1.1 is complete. �
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9. Non-isotropic conductivities

Let us then consider the anisotropic conductivity equation in two dimensions

∇ · σ∇u =
2∑

j,k=1

∂

∂xj
σjk(x)

∂

∂xk
u = 0 in Ω,(107)

u|∂Ω = φ.

The conductivity σ = [σjk]
2
j,k=1 is a now symmetric, positive definite matrix function.

Applying the divergence theorem, we have

Qσ(φ) :=

∫
Ω

n∑
j,k=1

σjk(x)
∂u

∂xj
∂u

∂xk
dx =

∫
∂Ω

Λσ(φ)φ dS,(108)

where dS denotes arc length on ∂Ω. The quantity Qσ(φ) represents the power needed
to maintain the potential φ on ∂Ω. By symmetry of Λσ, knowing Qσ is equivalent with
knowing Λσ; thus for general Ω and σ ∈ L∞(Ω), formula (108) may be used to define the
map Λσ. Moreover, the Dirichlet-to-Neumann quadratic form corresponding to (Ω, σ) is

Qσ[φ] = inf Aσ[u], where Aσ[u] =

∫
Ω

σ(x)∇u · ∇u dx,(109)

and the infimum is taken over u ∈ L1(Ω) such that ∇u ∈ L1(Ω)3 and u|∂Ω = φ. In the
case where A[u] reaches its minimum at some u, we say that u is a W 1,1(Ω) solution of the
conductivity problem. This definition actually generalizes to degenerate conductivities to
be discussed in the next section.

If F : Ω→ Ω, F (x) = (F 1(x), F 2(x)), is a diffeomorphism with F |∂Ω = Identity, then
by making the change of variables y = F (x) and setting v = u ◦ F−1 in the first integral
in (108), we obtain

∇· (F∗σ)∇v = 0 in Ω,

where

(110) (F∗σ)jk(y) =
1

det [∂F
j

∂xk
(x)]

n∑
p,q=1

∂F j

∂xp
(x)

∂F k

∂xq
(x)σpq(x)

∣∣∣∣∣
x=F−1(y)

,

or

(111) F∗σ(y) =
1

JF (x)
DF (x)σ(x)DF (x)t

∣∣∣∣
x=F−1(y)

,

is the push-forward of the conductivity σ by F . Moreover, since F is identity at ∂Ω, we
obtain from (108) that

(112) ΛF∗σ = Λσ,

Thus, the change of coordinates shows that there is a large class of conductivities which
give rise to the same electrical measurements at the boundary.

We consider here the converse question, that if we have two conductivities which have
the same Dirichlet-to-Neumann map, is it the case that each can be obtained by pushing
forward the other, by a mapping that is the identity on the boundary.
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If Ω ⊂ R2 is a bounded domain, it is convenient to consider the class of matrix functions
σ = [σjk] for which (11) holds for some constant 1 ≤ K <∞.

[σij] ∈ L∞(Ω; R2×2), [σij]
t = [σij], K−1I ≤ [σij] ≤ KI(113)

In sequel, the minimal possible value of K is denoted by K(σ). We use the notation

Σ(Ω) = {σ ∈ L∞(Ω; R2×2) | K(σ) <∞}.
Note that it is necessary to require some control on the distortion as otherwise there would
be counterexamples showing that even the equivalence class of the conductivity can not
be recovered.

The main goal of this section is to show that an anisotropic L∞–conductivity can be
determined up to a W 1,2-diffeomorphism:

Theorem 9.1. [5] Let Ω ⊂ R2 be a simply connected bounded domain and σ ∈ L∞(Ω; R2×2).
Suppose that the assumptions (113) are valid. Then the Dirichlet-to-Neumann map Λσ

determines the equivalence class

Eσ = {σ1 ∈ Σ(Ω) | σ1 = F∗σ, F : Ω→ Ω is W 1,2-diffeomorphism and

F |∂Ω = I}.
Note that the W 1,2–diffeomorphisms F preserving the class Σ(Ω) are precisely the

quasiconformal mappings. Namely, if σ0 ∈ Σ(Ω) and σ1 = F∗(σ0) ∈ Σ(F (Ω)) then

1

K0

||DF (x)||2I ≤ DF (x)σ0(x)DF (x)t ≤ K1JF (x)I(114)

and we obtain

||DF (x)||2 ≤ KJF (x), a.e. x ∈ Ω(115)

where K = K1K0 <∞. Clearly the converse is also true.

Proof of Theorem 9.1 (Sketch) From (42) we have the complex geometric optics solutions
u(z, ξ) = Re fµ,ν + i Im fµ,−ν where the f ’s are exponentially growing solutions to the
appropriate Beltrami equations. One can find a quasiconformal change of coordinates F
such that F∗σ is isotropic, see e.g. [3, Theorem 10.2.1].

Now, if we have two (anisotropic) conductivities such that the Dirichlet-to-Neumann
operators Λσ1 = Λσ2 , the by (112) and Theorem 1.1 the corresponding isotropic conduc-
tivites, obtained by a quasiconformal coordinate change, satisfy

(F1)∗σ1 = (F2)∗σ1

It remains to show that F1 = F2 on the boundary ∂D. Here we return to the exponen-
tially growing solutions; similarly as in Section 4 we see that outside the disk these are
determined by Λσ. On the other hand, from the uniqueness of the exponential solutions,

u(Fj)∗σj ◦ Fj = uσj , j = 1, 2.

Therefore from the subexponential growth, Lemma 8.2,

F1(z) = lim
ξ→∞

log u(F1)∗σ1 ◦ F1(z)

iξ
= lim

ξ→∞

log u(F2)∗σ2 ◦ F2(z)

iξ
= F2(z), |z| > 1.

�
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10. Degenerate conductivities and limits visibility and invisibility

When we allow degenerate conductivities, the results of the previous section begin to
break. But on the positive side, we can create invisibility cloakings, see the next example
from [18]. In the ”quasiconformal world”, a similar idea was used by J. Ball to find
examples of mapping creating cavities.

These ideas have now been greatly generalized, see e.g. [17].

10.1. Counterexample 1: Cloaking of an arbitrary body using a very degenerate con-
ductivity.

Let B(ρ) be an open 2-dimensional disc of radius ρ and center zero. Consider the map

F : B(2) \ {0} → B(2) \B(1), F (x) = (
|x|
2

+ 1)
x

|x|
.(116)

Let us apply the push forward operation for conductivities, defined in (111). Using the
map F defined in (116), we can define a singular conductivity

σ̃ =

{
F∗σ(x) for x ∈ B(2) \B(1),
ajk for x ∈ B(1),

(117)

where A = [ajk] is any symmetric measurable matrix satisfying c1I ≤ A(x) ≤ c2I with
c1, c2 > 0. This conductivity is the so-called cloaking conductivity.

Proposition 10.1. Let σ̃ be the conductivity defined in (116) and γ ≡ 1. Then the
boundary measurements for σ̃ and γ coincide in the sense that Qσ̃ = Qγ.

Proof. For 0 ≤ r ≤ 2 and a conductivity η we define the quadratic formArη : W 1,1(B(2))→
R+ ∪ {0,∞},

Arη[u] =

∫
B(2)\B(r)

η(x)∇u · ∇u dx.

Considering F as a change of variables, we see that

Arσ̃[u] = Aργ[v], u = v ◦ F, ρ = 2(r − 1), r > 1.

Now for the conductivity γ = 1 the minimization problem (109) is solved by the unique
minimizer u satisfying

∆u = 0 in B(2), u|∂B(2) = f.

The solution u is C∞-smooth in B(2) and we see that v = u ◦ F is a W 1,1-function on
B(2) \ B(0, 1) which trace on ∂B(0, 1) is equal to the constant function h(x) = u(0) on
∂B(1). Defining function ṽ that is v in B(2) \ B(0, 1) and u(0) in B(1) we obtain a
W 1,1(B(2)) function for which

Qσ̃[f ] ≤ A1
σ̃[v] = lim

r→1
Arσ̃[v] = lim

ρ→0
Aργ[u] = Qγ[f ].(118)

To construct an inequality opposite to (118), let ηρ be a conductivity which coincides
with σ̃ in B(2) \ B(ρ) and is 0 in B(ρ). For this conductivity the minimization problem
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(109) has a minimizer that in B(2) \ B(ρ) coincide with the solution of the boundary
value problem

∆u = 0 in B(2) \B(ρ), u|∂B(2) = f, ∂νu|∂B(ρ) = 0

and is arbitrary W 1,1-smooth extension of u to B(ρ). Then ηρ(x) ≤ σ̃(x) for all x ∈ B(2)
and thus

Qηρ [f ] ≤ Qσ̃[f ]

It is not difficult to see that

lim
ρ→0

Qηρ [f ] = Qγ[f ],

that is, the effect of an insulating disc of radius ρ in the boundary measurements vanishes
as ρ→ 0. These and (118) yield Qσ̃[f ] = Qγ[f ]. �

As eigenvalues of the cloaking conductivity σ̃ in B(2) \B(1) behave asymptotically as
(|x| − 1) and (|x| − 1)−1 as |x| → 1, the cloaking conductivity has so strong degeneracy
that

Trace(σ̃) 6∈ L1(B(2) \B(1))

even though det (σ̃) is identically 1 in B(2) \B(1).

10.2. Counterexample 2: Illusion of a non-existing obstacle showing that even the
topology of the domain can not be determined with relatively weakly degenerate con-
ductivities.

Consider again the map F : B(2)\{0} → B(2)\B(1). Instead of considering the above
conductivity σ̃ = F∗γ, γ = 1, and change our point of view by looking for a conductivity
σ0 satisfying F∗σ0 = γ. That is, σ0 satisfies satisfies

DF (x)σ0(x)DF (x)t = [detDF (x)] Id.

A simple computation shows that

Trace(σ0) ∈ Lp(Ω), p < 2.

Let us now consider other possible maps F that might produce a cavity with as little
degeneracy in distrotion as possible. Here Iwaniec and Martin [20] have basically identified
the extreme behaviour. Assume that A(t), t ≥ 0 is an increasing positive function that is
sub-linear in the sense that ∫ ∞

1

A(t)

t2
<∞.(119)

Then there exists aW 1,1-homeomorphism F1 : B(2)\{0} → B(2)\B(1) and a conductivity
σ such that

DF1(x)σ(x)DF1(x)t = [detDF1(x)] Id,(120)

det (σ) = 1,(121) ∫
Ω

exp(A(Trace(σ) + Trace(σ−1))) dx <∞.(122)
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Note here that in view of (21), we have

K(z, F ) ≤ Trace(σ) + Trace(σ−1) ≤ 4K(z, F )

Let us now consider a conductivity σ1 = (F−1
1 )∗γ1 on B(2) \ {0} that is considered as

an a.e. defined measurable function on B(2) and the conductivity γ1 that is identically
1 in B(2) \ B(1) and zero in B(1). Note that γ1 corresponds the case when B(1) as a
perfect insulator. Then we have

Theorem 10.2. Let A be a function satisfying (119). Then there is a conductivity σ1

satisfying (121-122) such that the boundary measurements corresponding to σ1 and γ1

coincide, that is,

(123) Qσ1 = Qγ1 , i.e. Λσ1 = Λσ2 .

Proof. Following [20, sect. 11.2.1], there is k(s) satisfies the relation

k(s)eA(k(s)) =
e

s2
, 0 < s < 1

that is strictly decreasing function and satisfies k(s) ≤ s−1 and k(1) = 1. Then

ρ(t) = exp

(∫ t

0

ds

sk(s)

)
is a function for which ρ(0) = 1. Then by defining fucntion the maps h(t) = 2ρ( |x|

2
)/ρ(1)

and

Fh : B(2) \ {0} → B(2) \B(1), Fh(x) = h(t)
x

|x|
(124)

and σ1 = (Fh)∗γ1, we obtain a conductivity that satisfies conditions (121-122).
Finally, the proof of (123) follows similarly as in Proposition 10.1. �

We note that above in (??) in the case where f and thus u are strictly positive functions,
we have Dv 6∈ L2(B(2) \ {0}). This shows that in the minimization problem (109) the
minima is not obtained in the class W 1,2(Ω) for all conductivities.

Theorem 10.2 can be interpreted by saying that there is a relatively weakly degener-
ated conductivity satisfying integrability condition (120) that creates in the boundary
observations an illusion of an obstacle that does not exists. Thus the conductivity can be
considered as “electromagnetic hologram”. As the obstacle can be considered as a “hole”
in the domain, we can say also that even the topology of the domain can not be detected.

11. Calderon’s inverse problem at the borderline.

The example of Iwaniec and Martin essentially presents the smallest degenerate distor-
tion for a mapping to create a cavity. This suggest that if the integral in (119) diverges,
then Calderon’s might be solvable. With little extra technical conditions on A this ap-
pears to be the case. We consider gauges A controlling the distortion function, with the
following properties:

(1) A : [1,∞)→ [0,∞) is a smooth increasing function with A(1) = 0.
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(2) ∫ ∞
1

A(t)

t2
dt =∞

(3) tA′(t) ≥ 5 for large values of t

Note in particular that linear A(t) satisfy these conditions.

Theorem 11.1. [6] Let σ1, σ2 ∈ ΣA where A satisfies (1)-(3). Suppose

detσj, (detσj)
−1 ∈ L∞(Ω), j = 1, 2.

and assume that
Qσ1 = Qσ2 .

Then

σ1 = F∗ σ2

with a W 1,1
loc -homeomorphism F : Ω→ Ω satisfying F |∂Ω = id.

Proof. The idea of the argument is similar to that one in Theorem 9.1. To construct the
complex geometric solutions for σ we now need to solve the non-linear Beltrami equation
in the degenerate setting, and here estimates from Theorem B.11 are valuable. Similarly
it allows a change of variables to obtain isotropic conductivities. Finally the proof is
reduced to Theorem 1.1. �

In [6] Theorem 1.1 is also generalized to certain unbounded isotropic conductivities.

By Theorem 10.2 the condition (1)-(3) cannot be weakened. We have thus identified
”the borderline between visibility and invisibility” !!!
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Appendix A. Argument Principle

The solution to the Calderón problem combines analysis with topological arguments
that are specific to two dimensions. For instance, we need a version of the argument
principle, which we here consider.

Theorem A.1. Let F ∈ W 1,p
loc (C) and γ ∈ Lploc(C) for some p > 2. Suppose that, for some

constant 0 ≤ k < 1, the differential inequality

(125)

∣∣∣∣∂F∂z̄
∣∣∣∣ ≤ k

∣∣∣∣∂F∂z
∣∣∣∣+ γ(z)

∣∣F (z)
∣∣

holds for almost every z ∈ C and assume that, for large z, F (z) = λz + ε(z)z, where the
constant λ 6= 0 and ε(z)→ 0 as |z| → ∞.

Then F (z) = 0 at exactly one point, z = z0 ∈ C.

Proof. The continuity of F (z) = λz + ε(z)z and an elementary topological argument
show that F is surjective, and consequently there exists at least one point z0 ∈ C such
that F (z0) = 0.

To show that F cannot have more zeros, let z1 ∈ C and choose a large disk B = D(0, R)
containing both z1 and z0. If R is so large that ε(z) < λ/2 for |z| = R, then F

∣∣
{|z|=R} is

homotopic to the identity relative to C \ {0}. Next, we express (125) in the form

(126)
∂F

∂z̄
= ν(z)

∂F

∂z
+ A(z)F,

where |ν(z)| ≤ k < 1 and |A(z)| ≤ γ(z) for almost every z ∈ C. Now AχB ∈ Lr(C) for all
2 ≤ r ≤ p′ = min{p, 1+1/k}, and we obtain from Theorem B.4 that (I−νS)−1(AχB) ∈ Lr
for all p′/(p′ − 1) < r < p′.

Next, we define η = C
(
(I− νS)−1(AχB)

)
. Then by Theorem B.3 we have η ∈ C0(C),

and we also have

(127)
∂η

∂z̄
− ν ∂η

∂z
= A(z), z ∈ B

Therefore simply by differentation we see that the function

(128) g = e−ηF

satisfies

(129)
∂g

∂z̄
− ν ∂g

∂z
= 0, z ∈ B

Since η has derivatives in Lr(C), we have g ∈ W 1,r
loc (C). As r ≥ 2, the mapping g is

quasiregular in B. The Stoilow factorization theorem gives g = h ◦ ψ, where ψ : B → B
is a quasiconformal homeomorphism and h is holomorphic, both continuous up to the
boundary.

Since η is continuous, (128) shows that g
∣∣
|z|=R is homotopic to the identity relative to

C \ {0}, as is the holomorphic function h. Therefore the argument principle shows that
h has precisely one zero in B = D(0, R). Already, h(ψ(z0)) = e−η(z0)F (z0) = 0, and there
can be no further zeros for F either. This finishes the proof. �
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Appendix B. Some Background in complex analysis and quasiconformal
mappings.

Here we collect, without proof, some basic facts related to quasiconformal mappings.
The proofs can be found e.g. in [3].

We start with harmonic analysis, where we often need refine estimates of the Cauchy
transform.

Definition B.1. The Cauchy transform is defined by the rule

(130) (Cφ)(z) :=
1

π

∫
C

φ(τ)

z − τ
dτ

Theorem B.2. Let 1 < p <∞. If φ ∈ Lp(C) and φ(τ) = 0 for |τ | ≥ R, then

• ‖Cφ‖Lp (D2R) ≤ 6R ‖φ‖p
• ‖Cφ(z)− 1

πz

∫
φ‖Lp (C\D2R) ≤ 2 R

(p−1)1/p
‖φ‖p

Thus, in particular, for 1 < p ≤ 2,

‖Cφ‖Lp(C) ≤
8 R

(p− 1)1/p
‖φ‖p provided

∫
φ = 0

For p > 2 this vanishing condition is not needed, and we have

‖Cφ‖Lp(C) ≤ (6 + 3(p− 2)−1/p) R ‖φ‖p, p > 2

Concerning compactness, we have

Theorem B.3. Let Ω be a bounded measurable subset of C. Then the following operators
are compact.

• For 2 < p ≤ ∞,

χΩ ◦ C : Lp(C)→ Cα(Ω), 0 ≤ α < 1− 2

p

• For 1 ≤ p ≤ 2,

χΩ ◦ C : Lp(C)→ Ls(C), 1 ≤ s <
2p

2− p
The fundamental operator in the theory of planar quasiconformal mappings id the

Beurling transform,

(131) (Sφ)(z) := − 1

π

∫
C

φ(τ)

(z − τ)2
dτ

The importance of the Beurling transform in complex analysis is furnished by the
identity

(132) S ◦ ∂

∂z̄
=

∂

∂z
,
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initially valid for functions contained in the space C∞0 (C). Moreover, S extends to
abounded operator on Lp(C), 1 < p <∞; on L2(C) it is an isometry. We denote by

Sp := ‖S : Lp(C)→ Lp(C)‖
the norm of this operator. By Riesz-Thorin interpolation, Sp → 1 as p→ 2.

In other words, S intertwines the Cauchy-Riemann operators ∂
∂z̄

and ∂
∂z

, a fact that
explains the importance of the operator in complex analysis. For instance we have [3,
p.363] the following result.

Theorem B.4. Let µ be measurable with ‖µ‖∞ ≤ k < 1. Then the operator

I− µS
is invertible on Lp(C) whenever ‖µ‖∞ ≤ k < 1 and 1 + k < p < 1 + 1/k.

The result has important consequences on the regularity of elliptic systems. In fact, it
is equivalent to the improved Sobolev regularity of quasiregular mappings.

Theorem B.5. Let µ, ν ∈ L∞(C) with |µ| + |ν| ≤ k < 1 almost everywhere. Then the
equation

∂f

∂z̄
− µ(z)

∂f

∂z
− ν(z)

∂f

∂z
= h(z)

has a solution f , locally integrable with gradient in Lp(C), whenever 1 + k < p < 1 + 1/k
and h ∈ Lp(C). Further, f is unique up to an additive constant.

We will also need a simple version of the Koebe distortion theorem.

Lemma B.6. [3, p. 42] If f ∈ W 1,1
loc (C) is a homeomorphism analytic outside the disk

D(0, r) with |f(z)− z| = o(1) at ∞, then

(133) |f(z)| < |z|+ 3r, for all z ∈ C

Next, we have the continuous dependence of the quasiconformal mappings on the com-
plex dilatation.

Lemma B.7. Suppose |µ|, |ν| ≤ kχDr , where 0 ≤ k < 1. Let f, g ∈ W 1,2
loc (C) be the

principal solutions to the equations

∂f

∂z̄
= µ(z)

∂f

∂z
,

∂g

∂z̄
= ν(z)

∂g

∂z
If for a number s we have 2 ≤ p < ps < P (k), then

‖fz̄ − gz̄‖Lp(C) ≤ C(p, s, k) r2/ps ‖µ− ν‖Lps/(s−1)(C)

To prove uniqueness, Liouville type result are often valuable. Here we have collected a
number of such results.

Theorem B.8. Suppose that F ∈ W 1,q
loc (C) satisfies the distortion inequality

(134) |Fz̄| ≤ k|Fz|+ σ(z)|F |, 0 ≤ k < 1,

where σ ∈ L2(C) and the Sobolev regularity exponent q lies in the critical interval 1 + k <
q < 1 + 1/k. Then F = eθg, where g is quasiregular and θ ∈ VMO. If σ ∈ L2±(C), then
θ is continuous, and if furthermore F is bounded, then F = C1e

θ.
In addition, if one of the following additional hypotheses holds,
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(1) σ has compact support and limz→∞ F (z) = 0, or
(2) F ∈ Lp(C) for some p > 0 and lim supz→∞ |F (z)| <∞,

then F ≡ 0.

Here we used the notation

L2±(C) = {f : f ∈ Ls(C) ∩ Lt(C) for some s < 2 < t}.

Theorem B.9. (Stoilow Factorization) Let f : Ω → Ω′ be a homeomorphic solution to
the Beltrami equation

(135)
∂f

∂z̄
= µ(z)

∂f

∂z
, f ∈ W 1,1

loc (Ω),

with |µ(z)| ≤ k < 1 almost everywhere in Ω.
Suppose g ∈ W 1,2

loc (Ω) is any other solution to (135) on Ω. Then there exists a holomor-
phic function Φ : Ω′ → C such that

(136) g(z) = Φ(f(z)), z ∈ Ω

Conversely, if Φ is holomorphic on Ω′, then the composition Φ ◦ f is a W 1,2
loc -solution to

(135) in the domain Ω.

Stoilow factorization generalizes little bit outside W 1,2
loc . We will assume that f ∈

W 1,Q
loc (Ω) where

Q(t) =
t2

log(e+ t)

Theorem B.10. Suppose we are given a homeomorphic solution f ∈ W 1,Q
loc (Ω) to the

Beltrami equation

(137)
∂f

∂z̄
= µ(z)

∂f

∂z̄
, z ∈ Ω,

where |µ(z)| < 1 almost everywhere. Then every other solution h ∈ W 1,Q
loc (Ω) to (137)

takes the form

h(z) = φ(f(z)), z ∈ Ω,

where φ : f(Ω)→ C is holomorphic.

Slightly further steps will be possible using general Orlicz space. Let us recall the
notation

W 1,P (Ω) = {f ∈ W 1,1
loc (Ω) :

∫
Ω

P (|Df |) <∞}

Consider gauges A controlling the distortion function, with the following properties:

(1) A : [1,∞)→ [0,∞) is a smooth increasing function with A(1) = 0.
(2) ∫ ∞

1

A(t)

t2
dt =∞

(3) tA′(t) ≥ 5 for large values of t
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In view of the above integral condition, the last easily verifiable condition involves an
insignificant loss of generality as the function tA′(t) behaves more or less like A(t), at
least in the typical examples we have in mind for applications. However, for technical
reasons it is necessary. For the Sobolev regularity we require that f is contained in the
Orlicz-Sobolev class W 1,P

loc (Ω), where

(138) P (t) =

{
t2, 0 ≤ t ≤ 1

t2

A−1(log t2)
, t ≥ 1

Theorem B.11. (Existence and Uniqueness) Let A = A(t) satisfy the above conditions
1 – 3. Suppose the Beltrami coefficient, with |µ(z)| < 1 almost everywhere, is compactly

supported and the associated distortion function K(z) = 1 + |µ(z)|
1− |µ(z)| satisfies

(139) eA(K(z)) ∈ L1
loc(C)

Then the Beltrami equation fz̄(z) = µ(z) fz(z) admits a unique principal solution f ∈
W 1,P
loc (C) with P (t) as in (138). Moreover, any solution h ∈ W 1,P

loc (Ω) to this Beltrami
equation in a domain Ω ⊂ C admits a factorization

h = φ ◦ f,
where φ is holomorphic in f(Ω).
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Chapter 1

Models of the visual cortex in
Lie groups

1.1 Introduction

The most classical and exhaustive theory which states and studies the phenomeno-
logical laws of visual reconstruction is Gestalt theory [51, 52]. It formalize visual
perceptual phenomena in terms of geometric concepts, as good continuation, ori-
entation, or vicinity. Consequently phenomenological models of vision have been
expressed in terms of geometrical instruments and minima of calculus of variation
([67], [34], [6]). On the other hand the recent progress of medical imaging and inte-
grative neuroscience allows to study neurological structures related to perception
of space and motion. The first results which use instruments of differential geom-
etry to model the cortex and justify the macroscopical visual phenomena in terms
of the microscopical behavior of the cortex, are due to Hoffmann [49], and Petitot,
Tondut [70]. More recently G.Citti, A.Sarti [28], modeled the visual cortex as a
Lie group with a sub-Riemannian metric. Other models in Lie groups are due to
Zucker [82], Duits, [33], [37]. We refer to these papers for a complete description
of these type of problems.

Here we will simply give an exhaustive presentation of the model of Citti
Sarti, together with the instruments of sub-Riemannian differential geometry nec-
essary for its description, and the results which support the model. The main goal
is to underline who the sub-Riemannian geometry is a natural instrument for the
description of the visual cortex.

In Section 2 and 3 we will describe the problem of perceptual completion,
and give a short description of the functional architecture of the visual cortex.

In Section 4 we describe the functional geometry of the visual cortex as a
sub-Riemannian structure, and give the principal definition and properties of a
sub-Riemannian space.
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2 Chapter 1. Models of the visual cortex in Lie groups

Figure 1.1: Images proposed by Kanitza

In Section 5 we give an introduction of differential calculus in Lie groups
define an uniformly sub-Riemannian operator, and its time-dependent counterpart.
Then we show that these operator can model the propagation of the visual signal
in the cortex.

In Section 6 we study the regular surfaces of the structure and prove that
the neural mechanism of non maxima suppression generates regular surfaces in
the cortical space.

Finally in Section 7 we prove that the two mechanisms of propagation of the
visual signal, and non maxima suppression, generates a diffusion driven motion by
curvature. The perceptual completion is then obtained through a minimal surface.
Hence we will study its regularity and foliation properties.

1.2 perceptual completion phenomena

Gaetano Kanizsa in [51, 52] provided a taxonomy of perceptual completion phe-
nomena and outlined that they are interesting test to understand how the visual
system interpolates existing information and builds the perceived units.

He discriminated between modal completion and amodal completion. In the
first one the interpolated parts of the image are perceived with the full modality of
the vision and are phenomenally undistinguishable from real stimuli (this happens
for example in the formation of illusory contours and surfaces). In amodal presence
the configuration is perceived without any sensorial counterpart. Amodal comple-
tion is evoked every time one reconstructs the shape of a partially occluded object.
Thus it is at the base of the most primitive perceptual configuration that is the
segmentation of figure and ground. Mathematical models of perceptual completion
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1.2. perceptual completion phenomena 3

take into account main phenomenological properties as described by psychology
of Gestalt.

Figure 1.2: The experiment of Field, Heyes and Hess

1.2.1 Associations fields

The history of studies on contour integration is a long one, stretching back to
the Gestalt psychologists who formulated rules for perceptually significant im-
age structure, including contour continuity: the Gestalt law of good continuation.
Field, Hayes and Hess [47] developed a new approach to psychophysically investi-
gating how the visual system codes contour continuity by using contours of varying
curvature made up of spatial frequency narrowband elements. The contour stimu-
lus is shown in Fig. 1.2. Within a field of evenly spaced, randomly oriented, Gabor
elements, a subset of the elements is aligned in orientation and position along a no-
tional contour (Fig. 1.2 A). This stimulus is paired with an similar stimulus (Fig.
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4 Chapter 1. Models of the visual cortex in Lie groups

1.2 B), where all of the elements are unaligned (called the background elements).
The observer was asked to recognize structures and alignments in the stimulus, and
to discriminate the two stimula. From a simple informational point of view Fig.
1.2A and B are equivalent, so a difference in their detectability reflects the ability
of human observers to detect the contour and constraints imposed by the visual
system. In particular it is interesting to note that contours composed of elements
whose local orientation was orthogonal to the contour are far less detectable.

Figure 1.3: Association fields

Another finding of this study was the human ability to detect increasingly
curved contours. A good performance for contour detection was possible even in
presence of curvature of the contour, suggesting that the output of cells with
similar, but not necessarily equal orientation preference are being integrated. Fig.
1.2 C shows another stimulus manipulation that reinforces the notion that the task
of contour integration reflects the action of a network rather than that of single
neurons interaction. Here the polarity of every other Gabor element is flipped.
The contour (and background) is now composed of Gabor elements alternating in
their contrast polarity. The visibility of the contour in Fig. 1.2 A and C is similar.
Psychophysical measurement shows that although there is a small decrement in
performance in the alternating polarity condition, curved contours are still readily
detectable when composed of elements of alternating polarity.

This model of cellular interaction and contour completion has been summa-
rized by Field Hayes and Hess in terms of an association field which is depicted
in Fig. 1.3. The stimulus in the central position can be jointed with other stimula
tangent to the lines in figure, but can not be joined with stimula with different
direction.
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1.2. perceptual completion phenomena 5

Figure 1.4: an example of T-junction

1.2.2 Higher order operators and elastica

Since subjective boundaries could be linear or curvilinear, their reconstruction is
classically performed minimizing the elastica functional

∫

γ

(1 + k2)ds, (1.1)

where the integral is computed on the missed boundary, and k is its curvature (see
[67]). The minimum of the elastica functional is taken on all the curves with fixed
endpoints and with fixed directions at the endpoints. It appears that continuation
of objects boundaries plays a central role in the disocclusion process. This con-
tinuation is performed between T-junctions, which are points where image edges
intersect orthogonally as illustrated in Figure 1.4.

In [67] Nitzberg, Mumford and Shiota deduced from the amodal completion
principles a method for detecting and recovering occluded objects in a still image
within the framework of a segmentation and depth computing algorithm.

Approximation in the sense of Γ convergence by elliptic functionals have been
proposed by De Giorgi in [32] (the conjecture is still open). Bellettini and Paolini
[11] proposed and proved a new approximation, of Modica Mortola type. They
also proved that functional (1.1) does not allow non regular completion, which on
the contrary can occur (see Figure 1.5) and propose to modify the functional, with
a new functional ∫

γ

(1 + φ(k2))ds. (1.2)

When φ has linear growth at the origin and behave as a square root at infinity,
completion with kinks is allowed.
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6 Chapter 1. Models of the visual cortex in Lie groups
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Figure 1.5: non regular completion

The extension of the elastica functional to the level set of the image I, has
been applied in problems of inpainting (that can be considered a particular case
of modal completion) by [58], [1] :

∫

Ω

|∇I|
(
1 +

∣∣∣div
( ∇I

|∇I|

)∣∣∣
2)

dx, x ∈ Ω ⊂ R
2 (1.3)

where the integral is extended to the domain of the image. In this way each level
line of the image is completed either linearly or curvilinearly as elastica curve.

In order to make occluded and occluding objects present at the same time in
the image, in [67] (and then in [10], [34]) a third dimension is introduced, and the
objects present in the image are represented as a stack of sets, ordered by depth.
In [77] the third added dimension is represented by the time, and the algorithm
first detects occluding objects, then occluded ones. In [6] the associated evolution
equation was split in two equations, each one of the first order, and depending on
two different variables: the image I, and the direction of its gradient ν = ∇I/|∇I|.

1.3 The functional structure of the visual cortex

From the neurophysiological point of view the acquisition of the visual system is
performed in the retina that, after a preprocessing, projects the information to
the lateral geniculate nucleus and to the primary visual cortex in which signal is
deeply processed. In particular the primary visual cortex V1 process the orienta-
tion of contours by means of the so called simple cells and other features of the
visual signal by means of complex cells (stereoscopic vision, estimation of motion
direction, detection of angles.). Every cell is characterized by its receptive field,

53



1.3. The functional structure of the visual cortex 7

Figure 1.6: The visual path

that’s the domain of the retinal plane to which the cell is connected with neural
synapses of the retinal-geniculate-cortical path. When the domain is stimulated
by a visual signal the cell respond generating spikes.

Figure 1.7: receptive profiles

Classically a receptive profile is subdivided in ”on” and ”off” areas. The area
is considered ”on” if the cell spikes responding to a positive signal and ”off” if
it spikes responding to a negative signal. The receptive profile is mathematically
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8 Chapter 1. Models of the visual cortex in Lie groups

described by a function Ψ0, defined on the retinal plane. This function models the
neural output of the cell in response to a punctual stimulus in the 2 dimensional
point x. Simple cells have directional receptive profiles as it is shown in Figure 1.7
and they are sensitive to the boundaries of images.

To understand the processing of the image operated by these cells, it is neces-
sary to consider the functional structures of the primary visual cortex: the retino-
topic organization, the hypercolumnar structure with intracortical circuitry and
the connectivity structure between hypercolumns.

1.3.1 The retinotopic structure

The retinotopic structure is a mapping between the retina and the primary visual
cortices that preserves the retinal topology and it is mathematically described by
a logarithmic conformal mapping. From the image processing point of view, the
retinotopic mapping introduces a simple deformation of the stimulus image that
will be neglected in the present study.

Figure 1.8: Representation of Bosking. Wihin an hypercolumn the cells sensible to
different orientations is represented in different colours.

1.3.2 The hypercolumnar structure

The hypercolumnar structure organizes the cortical cells in columns corresponding
to parameters like orientation, ocular dominance, color etc. For the simple cells
(sensitive to orientation) columnar structure means that to every retinal position
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1.3. The functional structure of the visual cortex 9

is associated a set of cells (hypercolumn) sensitive to all the possible orientations.
The visual cortex is indeed two-dimensional and then the third dimension collapses
onto the plane giving rise to the fascinating pinwheels configuration observed by
William Bosking et al. With optical imaging techniques. In Figures 1.8 the orien-
tation preference of cells is coded by colors and every hypercolumn is represented
by a pinwheel.

Figure 1.9: A marker is injected in the cortex, in a specific point, and it diffuses
mainly in regions with the same orientation as the point of injection (marked with
the same color in figure).

1.3.3 The neural circuitry

The intracortical circuitry is able to select the orientation of maximum output of
the hypercolumn in response to a visual stimulus and to suppress all the others.
The mechanism able to produce this selection is called non-maximal suppression
or orientation selection, and its deep functioning is still controversial, even if many
models have been proposed (see [59, 73, 65]).

The connectivity structure, also called horizontal or cortico-cortical connec-
tivity is the structure of the visual cortex which ensures connectivity between
hypercolumns. The horizontal connections connect cells with the same orienta-
tion belonging to different hypercolumns. Historically correlation techniques have
been used to estimate the relation between connectivity and preferred orientation
of cells [81]. Only recently techniques of optical imaging associated to tracers al-
lowed a large-scale observation of neural signal propagation via cortico-cortical
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10 Chapter 1. Models of the visual cortex in Lie groups

connectivity. These tests have shown that the propagation is highly anisotropic
and almost collinear to the preferred orientation of the cell (see figure 1.9 and the
study of Bosking [16]). It is already confirmed that this connectivity allows the
integration process, that is at the base of the formation of regular and illusory
contours and of subjective surfaces [71]. Obviously the functional architecture of
the visual cortex is much richer of the schemata we have delineated, just think to
the high percentage of feedback connectivity from superior cortical areas, but for
now we will try to propose a model of low level vision, aiming to mathematically
model correctly the functional structures we have described and able to show that
theses are at the base of perceptual completion of contours.

1.4 The visual cortex as a Lie group

1.4.1 A first model in the Heisenberg group

Petitot and Tondut in [71] proposed a new approach to the problem, which is
particularly interesting because the perceptual completion problem is considered
as a problem of naturalizing phenomenological models on the basis of biological
and neurophysiological evidence. Let us recall here their model

Retinotopic and (hyper)columnar structure
The main structures of the cortex: retinotopic and (hyper)columnar can be

modeled as follows.

• The retinotopy means that there exist mappings from the retina to the corti-
cal layers which preserve retinal topography. If we identify the retinal struc-
ture with a plane R the retina and by M the cortical layer, the retinotopy
is then described by a map q : R → M which is an isomorphism. Hence we
will identify the two planes, and call M both of them.

• The columnar and hypercolumnar structure organizes the cells of V 1 in
columns corresponding orientation. Due to their RP they detect preferred
orientations, that is points (x, u) where x denote a 2 dimensional (retinal)
position and u denotes the direction of a boundary of an image mapped on
the retina at the point x.

The hypercolumnar organization means essentially that to each position x
of the retina there exists a full fibre of possible orientations u at x.

Contour detection an lifting
Formally at a retinal point x = (x1, x2), we consider edges of images as

regular curves of the form
x2 = f(x1).

The orientation at the point x is then u = f ′(x1). The tangent line to the consid-
ered edge at the point x has the expression

Xu = ∂1 + u(x1)∂2. (1.4)
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1.4. The visual cortex as a Lie group 11

Figure 1.10: curves lifted in the cortical contact structure

In presence of the visual stimulus all the hypercolumn over the point x is activated,
and the simple cell sensible to the direction u has the maximal response. The
retinal point x is lifted to the cortical point (x, u), the whole curve is then lifted
to the curve

(x1, f(x1), u(x1))

in a 3-dimensional space R3 endowed with the constraint f ′ = u. Formally this is
a constraint on the tangent space TR3 at every point. We can define a 1− form

ω = dx2 − udx1,

and note that all the lifted curves lie in the kernel of ω. This formal constraint
can be expressed saying that we consider a subset of the tangent plane, kernel of
the 1−form ω,

HT = {αX1 + βX2},

where

X1 = ∂1 + u∂2, X2 = ∂u. (1.5)

The lifted curves have to be integral curves of the vector fields X1, X2.

1.4.2 A subriemannian model in the rototraslation group

The previous model can describe only images with equi-oriented boundaries. This
can be easily overcame in the E(2)- group of motion of the plane. In [28] we
recognize the previously described structure as a subriemannian structure. Besides
we will focus on level lines representation, instead of edge detection. Indeed if I(x)
is a gray level image, the family of level lines is a complete representation of I, from
which I can be reconstructed. This model is compatible with the functionality of
the simple cells and their orientation sensitivity.
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12 Chapter 1. Models of the visual cortex in Lie groups

Lifting in EO(2) - a purely perceptual description We now consider a real
stimulus, represented as an image I. We can assume that cells over each point
x can code the direction of the level lines of I, without a preferred direction.
Hence the eingrafted variable in the hypercolumn will be an angle, and we will
assume that the cell which give the maximal response is sensible to the direction
θ(x) = −arctan(I1/I2) , θ ∈ [0, π]. This means that the vector field

Xθ = cos(θ(x))∂1 + sin(θ(x))∂2 (1.6)

is tangent to the level lines of I at the point x. As before this process associates
to each retinal point x the three dimensional cortical point (x, θ) ∈ R2×S1. Since
the process is repeated at each point, each level line is lifted to a new curve in the
three dimensional space. The tangent vector to the lifted curve can be represented

Figure 1.11: a lifted surface, foliated in lifted curves

as a linear combination of the vectors

X1 = cos(θ)∂1 + sin(θ)∂2 X2 = ∂θ. (1.7)

The set of vectors
a1X1 + a2X2

defines a plane and every lifted curve is tangent to a vector of the plane.
The lifting process - a neurophisiological description Neural evidence sup-

ports this model of the cortex. When a visual stimulus of intensity I(x) activates
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1.4. The visual cortex as a Lie group 13

Figure 1.12: Odd part of Gabor filters with different orientations (left) and
Schemata of odd simple cells arranged in a hypercolumn of orientations.

the retinal layer of photoreceptors M ⊂ R2, the cells centered at every point x of
M process in parallel the retinal stimulus with their receptive profile which is a
function defined on M .

Each RP depends upon a preferred direction θ and it has been observed
experimentally that the set of simple cells RPs is obtained via translations and
rotations from a unique profile, of Gabor type (see for example Jones and Palmer
[50], Daugman [31], Marcelja [57]). This means that there exists a mother profile
Ψ0 from which all the observed profiles can be deduced by rigid transformation.

A good formula for Ψ0 seems to be (see Figure 1.13 and compare with Figure
1.7)

Ψ0(x) = ∂2e
−|x|2.

Therefore by rotation all the observed profiles can be modeled as

Ψx,θ(x̃, θ)(x) =
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14 Chapter 1. Models of the visual cortex in Lie groups
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Figure 1.13: the shape of the Gabor filter and a schematic representation of it -
compare with the in vivo registration - Figure 1.7

= Ψ0

(
x̃1 − x1) cos θ + (x̃2 − x2) sin θ,−(x̃1 − x2) sin θ + (x̃2 − x2) cos θ

)
.
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Figure 1.14: Odd part of Gabor filters with different orientations θ = 0, θ = π/4,
θ = π/2,θ = 3/2π

In the rotation of an angle θ, the derivative ∂2 becomes

X3 = − sin(θ)∂1 + cos(θ)∂2. (1.8)

Hence

Ψθ(x) = X3e
−|x|2 .

With this notation the filtering can be described as the convolution with the
image I and generates a function

O(x, θ) = −X3exp(−|x|2) ∗ I = −X3(θ)Is (1.9)

where we have denoted Is the convolution of I with a smoothing kernel:

Is = I ∗ exp(−|x|2).
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1.4. The visual cortex as a Lie group 15

This function O is the output of the cells, and measure their activity. Note that
O(x, θ) depends on the orientation θ. Due to the expression of the Gabor filter,
the function O exponentially decays from its maxima. Hence for θ fixed it selects
a neighborhood of the points where the component of the gradient in the direction
(−sin(θ), cos(θ)), is sufficiently big (see Figure 1.15).
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Figure 1.15: The original image showing a white disk (upper) and a sequence of
convolutions with different orientations Gabor filters.

The convolution mechanism (1.9) is insufficient to explain the strong orien-
tation tuning exhibited by most simple cells. For these reasons, the classic feed-
forward mechanism must be integrated with additional mechanisms, in order to
provide the sharp tuning experimentally observed. The basic mechanism is con-
troversial and in the past years several models have been presented to explain
the emergence of orientation selectivity in the primary visual cortex: (”push-pull”
models [59, 73], ”emergent” models [65], ”recurrent” models [80] only to cite a
few). Nevertheless it is evident that the intracortical circuitry is able to filter out
all the spurious directions and to strictly keep the direction of maximum response
of the simple cells.

We will then define

O(x, θ̄) = max
θ

O(x, θ).

This maximality condition can be mathematically expressed requiring that
the derivative of O with respect to the variables θ vanishes at the point (x, θ̄):

∂θO(x, θ̄) = 0.
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16 Chapter 1. Models of the visual cortex in Lie groups

Figure 1.16: the resulting surface after non maximal suppression, called lifted
surface (right).

At the maximum point θ̄ the derivative with respect of θ vanishes, and we
have

0 =
∂

∂θ
O(x, θ̄) =

∂

∂θ
X3(θ̄)I = −X1(θ̄)I = − < X1(θ̄),∇I > .

As a direct consequence we can deduce that the lifted curves are tangent to
the plane generated by the vector X1 and X2.

1.4.3 Hörmander vector fields and Sub-Riemannian structures.

In the standard Euclidean setting, the tangent space to Rn has dimension n at ev-
ery point. In the geometric setting arising from the model of the cortex the dimen-
sion of the space is 3, but we have selected at every point a 2 dimension subspace
of the tangent space, and verified that all admissible curves are tangent to this
subspace at every point. We will see that these are examples of sub-Riemannian
structures.

In general we will denote ξ the points in Rn, and we will choose m first order
smooth differential operators

Xj =

n∑

k=1

ajk∂k j = 1 · · ·m,

in Rn with m < n and ajk of class C∞. We will call Horizontal tangent space
at the point ξ ∈ Rn the vector space HH|ξ spanned by these vector fields at the
point ξ. The distribution of planes defined in this way is called horizontal tangent
bundle and it is a subbundle of the tangent one. A differential operator X is called
horizontal, if it belongs to the horizontal bundle HH .
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1.4. The visual cortex as a Lie group 17
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Figure 1.17: The contact planes at every point, and the orthogonal vector X3I

Definition 1.4.1. We will call horizontal norm, and horizontal scalar product and
denote them respectively 〈·, ·〉H and | · |H the scalar product and the norm, defined
on the Horizontal bundle which makes the basis X1, . . . , Xm an orthonormal basis.

The Horizontal tangent bundle is naturally endowed with a structure of al-
gebra, through the bracket.

Definition 1.4.2. If X , Y are first order regular differential operators their com-
mutator (or bracket) is defined as

[X, Y ] = XY − Y X,

and it is a first order differential operator. We call Lie algebra generated by
X1, · · · , Xm and denote it as

L(X1, · · · , Xm)

the linear span of the operators X1, · · · , Xm and their commutators of any order.

We will say that the vectors

X1 · · ·Xm have degree 1

[Xi, Xj ] have degree 2,

and define in an analogous way higher order commutators.

Example 1. In general the degree is not unique. Indeed, if we consider the vector
fields introduced in (1.7), the vector X1 has degree 1, but it also have degree 3,
since in that specific example X1 = −[X2, [X2, X1]].
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18 Chapter 1. Models of the visual cortex in Lie groups

Hence we will call minimum degree of Xj ∈ L(X1, · · · , Xm), and denote it

deg(Xj) = min{i : Xj has degree i}.

Since m < n, in general

L(X1, · · · , Xm)

will not coincide with the Euclidean tangent plane. If these two spaces coincide,
we will say that the Hörmander condition is satisfied:

Definition 1.4.3. Let Ω ⊂ Rn be an open set, and let (Xj), with j = 1, · · · , m be
a family of smooth vector fields defined on Ω. If the condition

rank(L(X1, · · · , Xm))(ξ) = n,

for every ξ ∈ Rn is satisfied we say that the vector fields (Xj)j=1..m satisfy the
Hörmander rank condition.

If this condition is satisfied, at every point ξ we can find a number s such
that (Xj)i=1..m and their commutators of degree smaller or equal to s span the
space at ξ. If s is the smallest of such natural numbers, we will say that the space
has step s at the point ξ. At every point we can select a basis {Xj : j = 1 · · ·n}
of the space made out of commutators of the vector fields {Xj : j = 1 · · ·m}. In
general the choice of the basis will not be unique, but we will choice a basis such
that for every point

Q =

n∑

j=1

deg(Xj) (1.10)

is minima. The value of Q is called local homogeneous dimension of the space. In
general it is not constant, but by simplicity in the sequel we will assume that

s and Q (1.11)

are constant in the considered open set. This assumption is always satisfied in a
Lie group.

Example 2. The simplest example of family of vector fields is the Euclidean one:
Xi = ∂i i = 1 · · ·m in Rn. If m = n, then the Hörmander condition is satisfied
while it is violated if m < n.

Example 3. Let us consider the family of vector fields introduced in (1.5). In that
example the point of R3, are denoted ξ = (x1, x2, u) and

X1 = ∂1 + u∂2 X2 = ∂u.

Since
[X1, X2] = −∂2,

then the Hörmander condition is satisfied.
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Example 4. In (1.7) we denote ξ = (x1, x2, θ) a point in R2 × S1 and denote

X1 = cos(θ)∂1 + sin(θ)∂2, X2 = ∂θ

the generators of the Lie algebra. The commutator is

X3 = [X2, X1] = − sin(θ)∂1 + cos(θ)∂2,

which is linearly independent of X1 and X2.

1.4.4 connectivity property

If X is a smooth first order differential operator, X =
∑n

k=1 ak∂k and I is the
identity map I(ξ) = ξ, then it is possible to represent the vector field with the
same components as the differential operator X in the form

XI(ξ) = (a1, · · ·an).

Sometimes the vector and the differential operator are identified, but we will keep
them distinct here for reader convenience.

We will call integral curve of the vector field XI starting at ξ0 a curve γ such
that

γ′ = XI(γ), γ(0) = ξ0

the curve will also be denoted

γ(t) = exp(tX)(ξ0).

If X is horizontal we will call Horizontal curves its integral curves.

The Carnot Carathéodory distance in the space, is defined in terms of hori-
zontal integral curves, in analogy with the well known Riemannian distance. Since
in the subriemannian setting we will allow only integral curves of horizontal vector
fields, we need to ensure that it is possible to connect any couple of points ξ and
ξ0 through an horizontal integral curve.

Theorem 1.4.4. Chow theorem If the Hörmander condition, is satisfied, then any
couple of points in Rn can be joint with a piecewise C1 horizontal curve.

Let us postpone the proof after a few examples of vector fields satisfying the
connectivity condition. We will consider the same examples as before

Example 5. In the Euclidean case considered in example 2, section 1.4.3, if m = n,
then the Hörmander condition is satisfied, and it is clear that any couple of points
can be joint with an Euclidean integral curve. If m < n, when the Hörmander
condition is violated, it is clear that also the connectivity condition fails. Indeed if
we start from the origin, with an integral curve of the vectors Xi = ∂i i = 1 · · ·m,
we can reach only points with the last n − m identically 0.
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Figure 1.18: piecewise constant integral curves of the structure

Example 6. In the example 3 section 1.4.3, the Hörmander condition is satisfied.
On the other side, it is easy to see that we can connect any point (x, u) with the
origin through a piecewise regular horizontal curve. Indeed we can call ũ = x2/x1,
consider the segment [(0, 0), (0, ũ)], which is an integral curve of X2. Then the
segment [(0, ũ), (x, ũ)] is an integral curve of X1. Finally the segment [(x, ũ), (x, u)]
is an integral curve of X2.

Example 7. We already verified that the vector fields described in example 4
section 1.4.3, satisfy the Hörmander condition. On the other hand also in this case
it is possible to verify directly that any couple of points can be connected by a
piecewise regular path (see Figure 1.18).

We follow the approach of [15] of the proof of Chow theorem. It is based on
the following lemma:

Lemma 1.4.5. Let X be of class C2, then the following estimation holds:

C(t)(ξ) = e−tY e−tXetY etX(ξ) = ξ + t2(Y X − XY )I(ξ) + o(t2) = (1.12)

exp(t2[X, Y ](ξ) + o(t2))(ξ).

If the coefficients of the vector field X be of class Ch, we can define inductively

C(t, X1, · · ·Xh)(ξ) = e−tX1C(t,−X2, . . .Xm)etX1C(t, X2, . . . Xh)(ξ) (1.13)

In this case we have:

C(t, X1, · · ·Xh) = exp(th[[[[X1, X2] · · ·Xh] + o(th))(ξ).

Proof Let us prove the first assertion. The Taylor expansions ensures that

etX(ξ) = ξ + tXI(ξ) +
t2

2
X2I(ξ) + o(t2).
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Also note that, by definition of Lie derivative

Y I(ξ+tXI(ξ)+
t2

2
X2I(ξ)+o(t2)) = Y I(etX(ξ)+o(t2)) = Y I(ξ)+tY XI(ξ)+o(t).

Hence

etY etX(ξ) = etY (ξ + tXI(ξ) +
t2

2
X2I(ξ) + o(t2)) =

= ξ + tXI(ξ) +
t2

2
X2I(ξ) + tY I(ξ + tXI(ξ) + o(t)) +

t2

2
Y 2I(ξ) + o(t2) =

= ξ + tXI(ξ) +
t2

2
X2I(ξ) + tY I(ξ) + t2XY I(ξ) +

t2

2
Y 2I(ξ) + o(t2) =

= ξ + t(XI(ξ) + Y I(ξ)) +
t2

2
(X2I(ξ) + 2XY I(ξ) + Y 2I(ξ)) + o(t2).

Applying e−tX we obtain

e−tXetY etX(ξ) = ξ + tY I(ξ) +
t2

2
(2[X, Y ]I(ξ) + Y 2I(ξ)) + o(t2).

Finally
e−tY e−tXetY etX(ξ) = ξ + t2[X, Y ]I(ξ) + o(t2).

The second assertion can be proved by induction, using the same ideas.

Proof of connectivity property We make the choice of basis described in
(1.10), and assume that

Xi = [Xj1 [· · · [Xji ]].

for suitable indices ji.
Let us call

Ci(t) = C(t1/deg(Xi), Xj1 · · ·Xji). (1.14)

By the previous lemma
d

dt
Ci(t)|t=0 = Xi.

Now for every e ∈ Rn ξ ∈ Ω we define

Cp(e)(ξ) =
n∏

i=1

Ci(ei)(ξ). (1.15)

The Jacobian determinant of Cp with respect to e is the determinant of Xi. So
that it is different from 0. Hence the map Cp(e) is a local homeomorphism, and
the connectivity property is locally proved. A connectness argument conclude the
proof.
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22 Chapter 1. Models of the visual cortex in Lie groups

1.4.5 Control distance

If the connectivity property is satisfied, it is possible to give the definition of
distance of the space. We have chosen the Euclidean metric on the contact planes,
so that we can call length of any horizontal curve γ

λ(γ) =

∫ 1

0

|γ′(t)|dt.

Consequently we can define a distance as:

d(ξ, ξ0) = inf{λ(γ) : γ is an horizontal curve connecting ξ and ξ0}. (1.16)

Parameterizing the curve by arc length we deduce

d(ξ, ξ0) = inf{T : γ′ =

m∑

j=1

ejXj , γ(0) = ξ0, γ(T ) = ξ,

√√√√
m∑

j=1

|ej |2 = 1} =

= inf{T : γ′ =

m∑

j=1

ejXj, γ(0) = ξ0, γ(T ) = ξ,

√√√√
m∑

j=1

|ej |2 ≤ 1}.

As a consequence of Hörmander condition we can represent any vector in the
form

X =
n∑

j=1

ejXj .

The norm
√∑m

j=1 |ej |2 is the horizontal norm defined in Definition 1.4.1. We can

extend it as a homogeneous norm on the whole space setting:

||e|| = (
n∑

j=1

|ej |
Q/deg(Xj))1/Q, (1.17)

where Q has been defined in (1.10).
Since the exponential mapping is a local diffeomorphism, we will define

Definition 1.4.6. If ξ0 ∈ Ω is fixed, we define canonical coordinates of ξ around a
fixed point ξ0, the coefficients e such that

ξ = exp(

n∑

j=1

ejXj)(ξ0).

These representation will be used to give an other characterization of the
distance
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1.4. The visual cortex as a Lie group 23

Proposition 1.4.7. [64] The distance defined in (1.16) is locally equivalent to

d1(ξ, ξ0) = ||e||,

where e are the canonical coordinates of ξ around ξ0 and ||.|| is the homogeneous
norm, defined in (1.17).

1.4.6 Riemannian approximation of the metric

In Definition 1.4.1 we introduced an horizonal norm only on the horizontal tangent
plane. We can extend it to a Riemannian norm all the tangent space as follows:
for every ǫ > 0 we define

Xǫ
j = Xj j = 1 · · ·m (1.18)

Xǫ
j = ǫXj j > m.

The family Xǫ
j j = 1 · · ·n formally tends to the family Xj j = 1 · · ·m as ǫ → 0. We

call Riemannian approximation of the metric g the Riemannian metric gε which
makes the vector fields orthonormal. Clearly gε restricted to the horizontal plane
coincide with the Horizontal metric. The geodesic distance associated to gε is
denoted dε, while the ball in this metrics of center ξ0 and radius r will be denoted

Bε(ξ0, r) = {ξ : dε(ξ, ξ0) < ε}. (1.19)

The distance dε tends to the distance d defined in (1.16) as ε goes to 0. We refer
to [18] and the references therein for a complete treatment of this topic.

1.4.7 geodesics and elastica

The curve which minimize the distance is called geodesics. We refer to the book of
Montgomery [60] for reference to this topic. We do study this problem here but we
only recognize the relation between geodesics of EO(2), and elastica. A 2D curve

γ̃ = x(t)

can be represented in arc length coordinates

x′(t) = (cos(θ(t)), sin(θ(t)))

at every point, where θ denotes the direction of the curve at the point x(t). In
section 1.4.2 we lifted it to a 3D curve γ(t) = (x(t), θ(t)). By the properties of the
arch length parametrization

θ′ = k,

where k is the Euclidean curvature of γ̃.
The length of the lifted curve is:

∫ √
x′2 + θ′2 =

∫ √
x′2
√

1 + k2.
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24 Chapter 1. Models of the visual cortex in Lie groups

We see that the length of γ is the elastica functional, evaluated on γ̃. In this sense
this model can be considered as a neurological motivation of the existing higher
order models of modified elastica (see section 1.2.2).

1.5 Activity propagation and differential operators in
Lie groups

1.5.1 Integral curves, Association fields, and the experiment of
Bosking

Let us go back to the problem of the description of the cortex. Up to now we
have built up a geometric space inspired by the functional geometry of the pri-
mary visual cortex. Let us focus on the model in the group EO(2). In the cortex
neural activity develops and propagates itself in this-subriemannian space. For
seek of simplicity, in this study we consider an extremely simple model of activity
propagation, i.e. a simple linear diffusion along the integral curves of the structure.

This integrative process allows to connect local tangent vectors to form in-
tegral curves and is at the base of both regular contours and illusory contours
formation [71].

This countour formation has been described by the association field (Field
[47]). The anatomical network of horizontal long-range connections has been pro-
posed as the implementation of association fields, and the experiments of Bosking
(see section 1.3.3) prove that the diffusion of a marker in the cortex are in perfect
agreement with the association fields.
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Figure 1.19: the association fields and the integral curves of the subriemannian
structure

We propose to interpret these lines as a family of integral curves of the
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1.5. Activity propagation and differential operators in Lie groups 25

generators of the EO(2), the vector fields X1 and X2, starting at a fixed point
ξ = (x, θ):

γ′(t) = X1I(γ) + kX2I(γ), γ(0) = (x, θ), (1.20)

obtained by varying the parameter k in R (fig. (1.19)).

Long-range connections can consequently be modeled as admissible curves
with piecewise constant coefficients k.

1.5.2 Differential calculus in subriemannian setting

In order to describe the diffusion of the visual signal we need to introduce the
main instruments of differential calculus in a subriemannian setting.

Definition 1.5.1. Let X be a fixed vector field we call Lie derivative of f in the
direction of the vector X on the tangent space to Rn at a point ξ the derivative
with respect to t in t = 0 of the function f ◦ exp(tX)(ξ).

Clearly if f is C1, then the Lie derivative coincides with directional derivative,
but the Lie derivative can exist even though the directional derivatives does not
exist.

Definition 1.5.2. Let Ω ⊂ Rn be an open set, let (Xj), j = 1 · · ·m be a family of
smooth vector fields defined on Ω, and let f : Ω → R. If there exist Xjf for every
j = 1 · · ·m we call horizontal gradient of a function f

∇Hf = (X1 · · ·Xm).

A function f is of class C1
H if ∇Hf is continuous, with respect of the distance

defined in (1.16). A function f is of class C2
H is ∇Hf is of class C1

H , and by
induction all Ck

H classes are defined.

Note that a C1
H function is not differentiable with respect to Xj if j > m. It

follows that a function of class C1
H is not of class C1

E , in the standard Euclidean
sense. If the vector fields (Xj), j = 1 · · ·m have step s, a function f of class Cs

H is
C1

E .

Remark 1.5.3. If the vector fields (Xj), j = 1 · · ·m satisfy the Hörmander condi-
tion, f is C∞

H if and only if is a function is of class C∞
E in a standard sense

Remark 1.5.4. The Heisenberg group, and the group EO(2), with the choice of
vector fields made in examples 3 and 4 section 1.4.3, are of step 2. Hence, if a

function f is of class Ck
H in one of these structures it is of class C

k/2
E in the

standard sense.

From the definition of Lie derivative, and the properties of integral curve,
the following result follows:
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26 Chapter 1. Models of the visual cortex in Lie groups

Proposition 1.5.5. Let Ω ⊂ Rn, let X and Y be horizontal vector fields defined
on Ω and let f : Ω → R. Assume that at every point in Ω there exist Xf(ξ) and
Y f(ξ), and these derivatives are continuous. If γ(t) = exp(tX)(exp(tY )(ξ)) , then
there exists

(f ◦ γ)′(0) = Xf(ξ) + Y f(ξ).

Proof
1

t

(
f(γ(t)) − f(γ(0))

)
=

=
1

t

(
f(exp(tX)(exp(tY )(ξ)) − f((exp(tY )(ξ)))

)
+

+
1

t

(
f(exp(tY )(ξ)) − f((ξ)))

)
=

by the mean value theorem

Xf(exp(t1X)(exp(tY )(ξ))) + Y f(exp(t2Y )(ξ)))

→ Xf(ξ) + Y f(ξ)

as t → 0. �

From the previous proposition we immediately deduce the corollary:

Remark 1.5.6. If C is the function defined in Lemma 1.4.5,

C(t) = exp(−tY )exp(−tX)exp(tY )exp(tX)(ξ),

and f ∈ C1
H(Ω), then there exists

d

dt
(f ◦ C)(0) = 0.

Proposition 1.5.7. Let Ω ⊂ Rn, and assume that on Ω is defined a family of vector
fields (Xj) j = 1 · · ·m, satisfying the Hörmander condition (see Definition 1.4.3).
If f is of class C1

H(Ω), then

• f is continuous in Ω

• if Cp is the function defined in (1.15), the function f satisfies

f(Cp(e)(ξ)) − f(ξ) =
m∑

j=1

ejXj + o(||e||),

where ||.|| is the homogeneous norm defined in (1.17).

The second assertion is a direct consequence of the previous remark and
proposition, together with the definition of Cp. The fact that f is continuous follows
from the fact that Cp is a local diffeomorphism (see the proof of connectivity).
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1.5. Activity propagation and differential operators in Lie groups 27

Proposition 1.5.8. Let Ω ⊂ Rn, let f : Ω → R be a continuous function such
that there exist the Lie derivatives Xf and Y f and they are continuous functions.
Then there also exists (X + Y )f = Xf + Y f in Ω.

Proof Arguing as in Lemma 1.4.5, we immediately see that

|exp(tX)exp(tY )(ξ) − exp(t(X + Y ))(ξ)| = O(t2),

locally uniformly in ξ. It follows that

1

t

(
f(exp(t(X + Y ))(ξ)) − f(ξ)

)
=

=
1

t

(
f(exp(tX)(exp(tY )(ξ)) − f((ξ)))

)
+ O(t)

→ Xf(ξ) + Y f(ξ),

as t → 0 by Proposition 1.5.5.

Definition 1.5.9. Let Ω be an open set in Rn, and assume that on Ω is defined
a family of vector fields Xj j = 1 · · ·m, satisfying the Hörmander condition. A
function f : Ω → R is differentiable at a point ξ ∈ Ω in the intrinsic sense if

f(

n∑

j=1

exp(ejXj)(ξ)) − f(ξ) =

m∑

j=1

ejXjf(ξ) + o(||e||)

as ||e|| → 0. Note that only vector fields of degree 1 appear in the definition.

As a direct consequence of the previous propositions we have:

Proposition 1.5.10. Let Ω ⊂ R
n, and assume that on Ω is defined a family of vector

fields Xj j = 1 · · ·m, satisfying the Hörmander condition. If f is of class C1
H(Ω),

then it is differentiable.

The previous result implies in particular that,

Remark 1.5.11. Let Ω ⊂ R
n be an open set and let f ∈ C1

H(Ω).

If γ(t) = exp
(∑n

j=1 tdeg(Xj)ejXj

)
(ξ0), then

∃ lim
t→0

f(γ(t)) − f(γ(0))

t
=

m∑

j=1

ejXjf(ξ0)

locally uniformly on Ω and with respect to e.
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1.5.3 Subriemannian differential operators

Definition 1.5.12. If φ = (φ1 · · ·φm) is a C1
H section of the horizontal tangent

plane, we call divergence of φ

divH(φ) =

m∑

j=1

X∗
j φj ,

where X∗
j is the formal adjoint of the vector field Xj.

From now on we will assume that for every j the vector fields

Xj is self adjoint , (1.21)

and denote X∗
j the adjoint operator of Xj .

Accordingly we will define Sublaplacian operator as

∆H = divH(∇H).

An uniformly subelliptic operator minic the structure of uniformly elliptic oper-
ators. An m × m matrix (Aij) is an uniformly elliptic matrix, is there exist two
real numbers λ, Λ such that

λ|ξ|2 ≤

m∑

j=1

Aijξiξj ≤ Λ|ξ|2.

Accordingly the operator

LA =
m∑

ij=1

AijXiXj (1.22)

is called uniformly subelliptic.
We will define subcaloric equation, the natural analogous of the heat equa-

tion, expressed in terms of the subelliptic operator:

∂t = LA.

Example 8. Note that the solution of a sum of squares of 2 vector fields in R3 is
not in general regular. Indeed any function of the variable ξ3 is a solution of

∂2
1 + ∂2

2 = 0 in R
3.

Theorem 1.5.13. Hörmander theorem If X1 · · ·Xm satisfy the Hörmander rank
condition, then the associated supelliptic operator and the heat operator are hy-
poelliptic operators.

These operators admit a fundamental solution Γ, of class C∞. Existence
and local estimates of the fundamental solution it terms of the control distance
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have been first proved by Folland Stein [39] Rothshild Stein [76], Nagel, Stein,
Weinger[64].

Precisely they proved that fundamental solution can be locally estimated as

|Γ(ξ, ξ0)| ≤ C
d2(ξ, ξ0)

|B(x, d(ξ, ξ0))|
,

for every ξ, ξ0 in a neighborhood of a fixed point, and for a suitable constant C.
Gaussian estimates, local and global of the fundamental solution have been inves-
tigated by many authors. We refer to the book [14] for an exaustive presentation
of the topic.

In the application to the cortex it is necessary to study elliptic regularization
of this type of operators. This means that the vector fields Xj will be replaced by
the vectors Xε

j , introduced in (1.18). The matrix Aij will be extended to a n × n
matrix Aε

ij uniformly elliptic. Then the riemannian approximating operator of the
operator (1.22) is

Lε =

n∑

ij=1

Aε
ijX

ε
i Xε

j . (1.23)

This operator is clearly uniformly elliptic in Ω, but the ellipticity constant tends
to +∞ with ǫ, since the limit operator is not elliptic. On the contrary for the
fundamental solution of this operator it is possible to prove subelliptic estimates
uniform in ε (see [26]).

Theorem 1.5.14. For every compact set K ⊂ Ω and for every choice of vector fields
in the basis Xǫ

j1
· · ·Xǫ

jk
there exist two positive constants C, Ck independent of ε

such that for every ξ, ξ0 ∈ K with ξ 6= ξ0,

|Xǫ
j1 · · ·X

ǫ
jk

Γε(ξ, ξ0)| ≤ Ck
d2−k

ε (ξ, ξ0)

|Bε(ξ, dε(ξ, ξ0))|
, (1.24)

where Bε(ξ, r) is the ball in the approximating riemannian metic defined in (1.19).
�

This theorem provides uniform estimates of fundamental solution of an op-
erator, in terms of its control distance. Letting ε goes to 0, it allows to deduce
from regularity results known in the elliptic case, analogous results for the sub-
elliptic situation. In general this approach allows to work with smooth solutions
of an elliptic problem Lεuε = f in order to obtain uniform estimates for the limit
equation.

A first consequence of this result is the regularity in the intrinsic Sobolev
spaces Let Ω0 ⊂ Ω, and W k,p

ε (Ω0) be the set of functions f ∈ Lp(Ω0) such that

Xε
i1 · · ·X

ε
ik

f ∈ Lp(Ω0), i1, . . . , ik ∈ {1, . . . , n},
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with natural norm

||f ||W k,p
ε (Ω0)

=
∑

i1,...,ik∈{1,...,n}

||Xε
i1 . . .Xε

ik
f ||Lp(Ω0).

Let us make some example of applications. Assume that Q is the homoge-
neous dimension of the limit operator. Then the following Sobolev type inequality
holds:

Corollary 1.5.15. If u ∈ W 1p
ε and is compactly supported in an open set Ω, then

there exist a constant C independent of ε such that

||u||Lr(Ω) ≤ C||u||W k,p
ε (Ω)

where r = Qp/(Q − kp).

Corollary 1.5.16. Assume that u ∈ Lq
loc(Ω) is a solution of

Lεu = f in Ω,

with f ∈ W p,q
ε,X(Ω) and let K1 ⊂⊂ K2 ⊂⊂ Ω. Then there exists a constant C

independent of ε such that

||u||W p+2,q
ε,X (K1)

≤ C||f ||W p,q
ε,X (K2),

for every p ≥ 1.

1.6 Regular surfaces in subriemannian setting

1.6.1 Maximum selectivity and lifting images to regular surfaces

The mechanism of non maxima suppression does not lift each level lines indepen-
dently, but is applied to the whole image. If O is the output of the simple cells,
the maximum of O over the fiber is taken:

|O(x, θ̄)| = maxθ|O(x, θ)|. (1.25)

In this process each point x in the 2D domain of the image is lifted to the
point (x, θ̄(x)), and the whole image domain is lifted to the graph of the function
θ̄:

Σ = {(x, θ) : θ = θ̄(x)}. (1.26)

This lifted set corresponds to the maximum of activity of the output of the simple
cells. Setting f(x, θ) = ∂θO(x, θ), and considering only strict maxima are consid-
ered the surface becomes:
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Figure 1.20: lifting of level lines of an image

Σ = {(x, θ) : f(x, θ) = 0, ∂θf(x, θ) > 0}. (1.27)

where the vector ∂θ is an horizontal vector.
We recall that on the domain of θ̄ only one vector field was defined (see (1.6)):

Xθ̄ = cos(θ̄(x))∂1 + sin(θ̄(x))∂2 (1.28)

tangent to the level lines of I.
We will see that Σ is a regular surface in the subriemannian structure, and

that in any subriemannian structure the implicit function θ̄ is regular with respect
to non linear vector fields, depending on θ̄.

1.6.2 Definition of regular surface

In this setting the notion of regular surface in not completely clear. The first
definition, given by Federer in [36] was that a regular surface is the image of a
open set of Rn−1 through a lipschitz continuous function. However the Heisenberg
group turn out to be completely non rectifiable in this sense ([3]). A more natural
definition of regular surface has been given by Franchi Serapioni and Serracassano
and investigated in a long series of papers: [40, 41, 42, 43, 44].

Definition 1.6.1. A regular surface is a subset Σ of Rn which can be locally rep-
resented as the zero level set of a function f ∈ C1

H such that ∇Hf(ξ) 6= 0. If the
vector ∇Hf(ξ) vanishes at a point ξ, this point is called characteristic. If it does
not vanish, we define intrinsic normal of Σ

νH =
∇Hf(ξ)

|∇Hf(ξ)|
.

78



32 Chapter 1. Models of the visual cortex in Lie groups

In other words the vector νH takes the place of normal vector in this setting. It
can be recovered through a Blow up procedure similar to the De Giorgi method for
the Euclidean proof of rectifiability. We refer to [40] for the proof in the Heisenberg
setting and to [24] for the proof in general setting.

Example 9. The generators of the Heisenberg algebra introduced in (1.5) are

X1 = ∂1 + u∂2 X2 = ∂u.

in R3, whose points are denoted ξ = (x, u). The plane

u = 0

has as intrinsic normal
νH = ∂u.

The intrinsic normal of the plane y = 0 is

(u, 0) = uX1.

Hence the point (x1, 0, 0) are characteristic for this plane.

Example 10. We provide an example of characteristic surface in the group EO(2),
defined in example 4, in section 1.4.3. The points of the space will be denoted
(x, θ) as before. Let us denote γ̃ a curve in the plane x and let us consider the
surface

Σ = {(x, θ) : x ∈ γ̃, θ ∈ [0, 2π]}.

In section 1.4.7 we pointed out that the lifting of the curve γ̃ is a new curve
γ, whose tangent vector is X1 + kX2, where k is the Euclidean curvature of γ̃.
Hence at every point of the lifted curve γ the surface Σ has two horizontal tangent
vectors: X1 + kX2 and X2. Consequently all these point are characteristic.

1.6.3 Implicit function theorem

Regular surface in this setting are not regular in the Euclidean sense. An example
of intrinsic regular surface, which has a fractal structure has been provided by
[53]. However a first proof of the Dini theorem for hypersurfaces have been given
by [40] in the Heisenberg group. A much simpler proof in a general subriemannian
structure has been proved in [25]. Indeed, due to the structure of the vector fields,
the implicit function u found in [40] is not a graph in standard sense. The problem
is related to the fact that the definition of graph is not completely intrinsic, but
it assigns a different role to the first variable, lying in the image of u with respect
to the other n − 1 variables, belonging to the domain of u.

Hence we choose a suitable change of variables. In the new variables it is
possible to represent the generators of the Lie algebra in the following way:

X1 = ∂1, Xj =

n∑

k=2

ajk(ξ)∂k, j = 2, . . . , m. (1.29)
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1.6. Regular surfaces in subriemannian setting 33

Figure 1.21: a regular surfaces, foliated in horizontal curves.

Let us note that the explicit expression of the vector fields appearing in the model
of the cortex is of this type.

In order to simplify the notations we will represents the points of the space
in the form

ξ = (ξ1, x)

where ξ1 ∈ R, x ∈ Rn−1.

In these new variables from the classical implicit function theorem we imme-
diately deduce the following

Lemma 1.6.2. Let Ω ⊂ Rn be an open set. Let 0 ∈ Ω and f ∈ C1
X(Ω) be such that

∂1f(0) > 0, f(0) = 0.

If
Σ = {ξ ∈ Ω : f(ξ) = 0},

then there exist neighborhoods of 0 I ⊂ Rn−1, J ⊂ R and a continuous function
u : I → J such that

Σ ∩ (J × I) = {(u(x), x) : x ∈ I}.

Proof The existence of the function u is standard. We recall here only the
proof of the continuity of u in order to point out that in this part of the proof
we only need the continuity of the derivative ∂1f, which here is continuous by
assumption, since it is horizontal.

0 = f(u(x), x) − f(u(x0), x0) =
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34 Chapter 1. Models of the visual cortex in Lie groups

= f(u(x), x) − f(u(x0), x) + f(u(x0), x) − f(u(x0), x0) =

(by the mean value theorem)

∂1f(s, x)(u(x) − u(x0)) + f(u(x0), x) − f(u(x0), x0).

Then

|u(x) − u(x0)| = |
f(u(x0), x) − f(u(x0), x0)

∂1f(s, x)
| = o(1)

since the denominator is bounded away from 0 by assumption, and f is continuous.
�

In order to study the regularity of the function u we will need to project on
its domain the vector fields Xj . To this end we define a projection on Rn:

π(ξ) = x,

and a projection on its tangent plane:

πu(

n∑

k=1

ak(ξ)∂k) =

n∑

k=2

ak(u(x), x)∂k.

Accordingly we will define

Xju = πu(Xj).

In particular
X1u = 0,

and, since Xj =
∑n

k=2 ajk∂k their projection will be

Xju =

n∑

k=2

ajk(u(x), x)∂k . (1.30)

Definition 1.6.3. Let I ⊂ P be an open set. We say that a continuous function
u : I → R is of class C1

u(I) if for every x ∈ I

∃Xju(x), for j = 2, . . . , m

and they are continuous. We will call intrinsic gradient

∇uu = (X2uu, · · · , Xmuu).

Theorem 1.6.4. If the assumptions of lemma 1.6.2 are satisfied, the implicit func-
tion u is of class C1

u, and

∇uu(x0) = −
(X2f(ξ0), · · · , Xmf(ξ0))

∂1f(ξ0)
.
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Figure 1.22: integral curves of the vector fields and their n − 1D projection

Proof Let us consider the vector Xju, a point x0 and let us call γu(t) =
exp(tXju)(x0). We also call γ(t) = exp(tXj)(u(x0), x0) and γπ(t) = π(exp(tXj)(u(x0), x0)).
Then by definition of Σ,

0 = f(u(γu(t), γu(t)) − f(u(γu(0)), γu(0)) =

f(u(γu(t)), γu(t)) − f(u(γu(0)), γu(t))+

+f(u(γπ(0)), γu(t)) − f(u(γπ(0)), γπ(t)) + f(u(γπ(0)), γπ(t)) − f(γ(0)) =

by the classical mean value theorem there exist y and c such that

= ∂1f(c, γu(t))
(
u(γu(t)) − u(γπ(0))

)
+

+∂1f(u(γπ(0)), y)
(
γu(t)) − γπ(t)

)
− (f ◦ γ)(t) − (f ◦ γ)(0).

(note that the curve γ has the first component constant, so that γ(t) = (u(γπ(0)), γπ(t)).
Dividing by t and letting t go to 0 we obtain:

0 = ∂1f(ξ0)Xjuu(x0) + Xjf(ξ0).

Then

Xjuu(x0) = −
Xjf(ξ0)

∂1f(ξ0)
.

�
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36 Chapter 1. Models of the visual cortex in Lie groups

1.6.4 Non regular and non linear vector fields

A consequence of the Dini Theorem is the fact that, if we start with a regular
surface of class C1

H , its implicit function u is differentiable with respect to nonlinear
the vector fields (Xju). This open a large spectrum of problems, since these new
vector fields are non regular, and in general satisfy conditions different from the
initial vector fields.

Let us make some examples:

Example 11. Let us now consider an Heisenberg group of higher dimension. This
is R5, with the choice of vector fields

X1 = ∂1 X2 = ∂2 + ξ1∂5 X3 = ∂3 X4 = ∂4 + ξ3∂5 ∈ R5.

Since
[X3, X4] = ∂5, (1.31)

then these vector fields satisfy the Hörmander rank condition. The associated non
linear vector fields will be obtained setting

x = (ξ2, · · · ξ5), ξ1 = u(x).

We then obtain the following vectors, in the tangent space to R4:

X2u = ∂2 + u∂5 X3 = ∂3 X4 = ∂4 + ξ3∂5 ∈ R4

It is clear that, if u is smooth, these are Hörmander vector fields, by condition
(1.31). However in general the solution u will be only C1

u, and the difficulty in han-
dling these vectors are the lack or regularity. We will say that a weak Hörmander
condition is verified.

In this situation there is reasonable hope to prove Poicaré inequalities, es-
timates of fundamental solution, and mimic in this non regular situation results
known in the smooth setting. A first a Poincaré inequality for non regular vector
fields have been established in [54]. After that such an inequality of this type has
been proved in [61] for vector fields of class C2 and step 2. A similar inequal-
ity requires Cs+1 regularity for vector fields of step s. [17], [62]. Very recently a
Poincaré inequality for Heisenberg non linear vector fields of class C1 has been
proved by Manfredini in [55]. From this a Sobolev inequality with optimal expo-
nent follows. Estimates for the fundamental solution for non linear vector fields
have been proved in [56].

Example 12. In the case of the Heisenberg group of dimension 1, (see example 3
in section 1.4.3, we have a Lie algebra with 2 generators in a 3D space. The vector
fields X1, X2 projected on the plane x, reduce to only one vector field:

X1u = ∂1 + u(x)∂2. (1.32)

In this case we have an unique non linear vector field in R2. It is clear that this
vector field does not satisfy the Hörmander condition, not even when u is smooth
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1.7. Completion and minimal surfaces 37

The same thing happens in the group EO(2), where the unique vector field defined
on R2 is

X1u = cos(u(x))∂1 + sin(u(x))∂2.

In this low dimensional case, a few results are known only in the Heseinberg
group. More recently Ambrosio, Serra Cassano, Vittone gave a characterisation
of implicit functions in [4], while Bigolin, Serra Cassano, started the study of the
set of C1

u functions in [13]. In this case there is no hope to prove an estimate
of the fundamental solution, of linear operators defined in terms of non linear
vector fields. For these operators the riemannian approximation can be extremely
useful. Indeed using the estimate of the approximating fundamental solution, Citti
Capogna Manfredini proved a Sobolev estimate for the linearized operator:

∑

ij

AijX
ε
juXε

juz = 0, (1.33)

where Aij is positive defined,

Xε
1u = X1u, Xε

2u = εX2u, ∇ε
u = (Xε

1u, Xε
2u). (1.34)

The result in [20] reads as follows:

Theorem 1.6.5. Let us assume that z is a classical solution of the approximated
problem (1.33): where u is a smooth function. Assume that there exists a constant
C independent of ε such that

||Aij ||Cα(K) + ||u||C1,α(K) + ||∂2z||Lp(K) + ||∂2Xuz||Lq(K) + ||(∇ε
u)2z||L2(K) ≤ C.

Then for any compact set K1 ⊂⊂ K, there exists a constant C1 only dependent
on K, C, such that

||z||W 2,r
ε (K1)

≤ C1,

where r = min(5q/(5− (1 + αq)), 5p/(5 − αp)).

The proof is based on the estimates of the fundamental solution uniform in
ε stated in Theorem 1.5.14. The exponent r is reminiscent of a Sobolev exponent,
modeled on a homogeneous dimension Q = 5. However it is not optimal, since the
coefficients are not regular.

1.7 Completion and minimal surfaces

1.7.1 A Completion process

The joint work of subriemannian diffusion (Section 1.5) and non maximal suppres-
sion (Section 1.6) allows to propagate existing information and then to complete
boundaries and surfaces. Starting from the lifted surface the two mechanisms are
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38 Chapter 1. Models of the visual cortex in Lie groups

simultaneously applied until the completion is reached. To take into account the
simultaneous work of diffusion and non maximal suppression we consider itera-
tively diffusion in a finite time interval followed by non maximal suppression, and
we compute the limit when the time interval tends to 0.

The algorithm is an extension of the diffusion driven motion by curvature
introduced by J. Bence, B. Merriman, S. Osher in [12]. It is described by induction
as follows: given a function un, whose maxima in a given direction are attained on
a surface Σn, we diffuse in an interval of length h

vt = ∆Hv, vt=0 = vΣnt ∈ [nh, (n + 1)h] (1.35)

At time (n + 1)h the solution defines a new function vn+1, and we built a new
surface, through the non maxima suppression.

Σn+1((n + 1)h) = {∂νΣn
vn+1 = 0, ∂2

νΣn
vn+1 < 0}

If we fix a time T , we can choose intervals of length h = T/(n + 1), and
we get the two sequences: vn+1(·, T ), Σn+1(T ). We expect the convergence of the
two sequences Σn(T ) and un(T ) respectively to mean curvature flow Σ(T ) of the
surface Σ0 and the Beltrami flow on Σ. For T → +∞ the function Σ(T ) should
converge to a minimal surface in the rototraslation space, in the sense that its
curvature identically vanishes.

The formal proof of the convergence of diffusion driven motion by curvature
in the Euclidean setting is due to Evans [35] and G.Barles, C. Georgelin, [8]. The
proof of the analogous assertion in this context is still work in progress. Indeed
we have a preliminary result regarding the motion by curvature [19]. We are now
attacking the problem of convergence of the motion by curvature to the minimal
surface equation.

By now we have studied properties of minimal surfaces and verified that they
have the properties required by the completion model.

1.7.2 Minimal surfaces in the Heisenberg group

Several equivalent notions of horizontal mean curvature H0 for a regular C2
H sur-

face M ⊂ H1 (outside characteristic points) have been given in the literature. To
quote a few: H0 can be defined in terms of the first variation of the area functional
[29, 48, 22, 75, 79, 63] as horizontal divergence of the horizontal unit normal. As
such the expression of the curvature of a surface level set of a function f becomes:

H0f =

m∑

j=1

Xj

(
Xjf

|∇Hf |

)
. (1.36)

A different, but equivalent notion of curvature, in term of a notion of a metric
normal has been given by [5]. In [18] it has been recognized that the curvature

85



1.7. Completion and minimal surfaces 39

can be obtained as limit of the mean curvatures Hε in the Riemannian metrics gε,
defined in section 1.4.6. The definition of Hε can be given in terms of the vector
fields Xε

j defined in (1.18) as follows:

Hε =

m∑

j=1

Xε
j

(
Xε

j f

|∇εf |

)
. (1.37)

Here ∇ε denotes the approximated gradient

∇ε = (Xε
1 · · ·X

ε
n).

In the particular case of intrinsic graphs it can be expressed in terms of
the vector fields (Xju) defined in section 1.6. As we already noted the regularity
theory for intrinsic minimal surfaces is completely different if a weak Hörmander
type condition is satisfied or not. In Hn with n > 1 this condition is satisfied and
the problem has been afforded in [21].

Hence here we focus on the low dimensional case, which naturally arises from
the application to the visual cortex. By simplicity we restrict to the monodimen-
sional Heisenberg group. The extension to general Lie algebras with two genera-
tors, step 2 and dimension 3 is due to [7]. Through the implicit function theorem
we have defined in (1.32) an unique vector field X1u on R2.

The curvature operator for intrinsic graphs reduces to:

X1u

(
X1uu√

1 + |X1uu|2

)
= f, for x ∈ Ω ⊂ R

2. (1.38)

Properties of regular minimal surfaces have been studied in [46], [68], [22],
[23], [45], [30], [9] and [66]. The Riemannian approximating vector fields have been
defined in (1.34), while the Riemannian approximating operator reads:

Lεu =

2∑

i=1

Xε
iu

(
Xε

iuu√
1 + |∇ε

uu|2

)
= f, for x ∈ Ω ⊂ R

2, (1.39)

Using this approximation, we can give the definition of vanishing viscosity
solution

Definition 1.7.1. If C1
E denotes the standard Euclidean C1 norm, we will say that

an Euclidean Lipschitz continuous function u is a vanishing viscosity solution of
(1.38) in an open set Ω, if there exists a sequence ǫj → 0 as j → +∞, and a
sequence (uj) of smooth solutions of (1.39) in Ω such that for every compact set
K ⊂ Ω

• ||uj ||C1
E(K) ≤ C for every j;

• uj → u as j → +∞ pointwise a.e. in Ω.
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40 Chapter 1. Models of the visual cortex in Lie groups

Existence of viscosity solutions has been proved by J. H. Cheng, J. F. Hwang,
P. Yangin in [23], while the problem of regularity of minimal surfaces has been
afforded in [20]. We present here the regularity result

Theorem 1.7.2. The Lipschitz continuous vanishing viscosity solutions of (1.38)
are intrinsically smooth functions.

This theorem highlight a very general idea: any positive semi-definite opera-
tor of second order regularizes in the direction of its positive eigenvalues. However,
in general, this does not imply smoothness of solutions, since regularity can be ex-
pected only in the directions of the non vanishing eigenvalues. Indeed the following
foliation result holds for minimal graphs:

Corollary 1.7.3. Let {x3 = u(x), x ∈ Ω} be a Lipschitz continuous vanishing vis-
cosity minimal graph. The flow of the vector X1uu yields a foliation of the domain
Ω by polynomial curves γ of degree two. For every fixed x0 ∈ Ω denote by γ the
unique leaf passing through that fixed point. The function u is differentiable at x0

in the Lie sense along γ and the equation (1.38) reduces to d2

dt2 (u(γ(t)) = 0.

Remark 1.7.4. To better understand the notion of intrinsic regularity we consider
to the non-smooth minimal graph u(x) = x2

x1−sgn (x2)
. Although this function is

not C1 in the Euclidean sense, observe that X1uu = 0 for every x ∈ Ω. Hence,
this is an example of a minimal surface which is not smooth but which can be
differentiated indefinitely in the direction of the Legendrian foliation. An other
example of non regular minimal surface has been provided in [69].

1.7.3 Uniform regularity for the Riemannian approximating mini-
mal graph

In this section we fix a solution of the Riemannian approximating equation, and
establish a priori estimates, uniform in ε. To this end we assume that f is a fixed
smooth functions defined on an open set Ω of R2, and that u is a solution of the
(1.39) in Ω. We also assume that

M = ||u||L∞(Ω) + ||∇ε
uu||L∞(Ω) + ||∂2u||L∞(Ω) < ∞. (1.40)

The necessary estimates will be provided in suitable Sobolev spaces defined
in terms of the vector fields.

Definition 1.7.5. We will say that φ ∈ W 1,p
ε (Ω), p > 1 if

φ,∇ε
uφ ∈ Lp(Ω).

In this case we will set

||φ||W 1,p
ε (Ω) = ||φ||Lp(Ω) + ||∇ε

uφ||Lp(Ω).
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We will say that φ ∈ W k,p
ε (Ω) if φ ∈ Lp, ∇ε

uφ ∈ W k−1,p
ε (Ω).

If ε = 0 we give analogous definition of Sobolev spaces in the Subriemannian
setting. We will denote by W k,p

0 (Ω) the space of Lp(Ω) functions φ such that

Xε
1uφ, · · · , (Xε

1u)kφ ∈ Lp(Ω).

Using in full strength the nonlinearity of the operator Lε, we prove here some
Cacciopoli-type inequalities for the intrinsic gradient of u, and for the derivative
∂2u.

We first prove that if u is a smooth solution of equation (1.39) then its
derivatives ∂2u and Xε

kuu are solution of new second order equation, defined in
terms of vector fields:

Mεz =

2∑

ij=1

Xε
iu

( Aij(∇
ε
uu)√

1 + |∇ε
uu|2

Xε
juz
)

where Aij(p) = δij −
pipj

1 + |p|2
. (1.41)

We first observe that

∂2X
ε
iuu = −(Xε

iu)∗∂2u,

where (Xε
iu)∗ is the L2− adjoint of the differential operator Xε

iu and

(Xε
1u)

∗
= −Xε

1u − ∂2u, (Xε
2u)

∗
= −Xε

2u. (1.42)

Lemma 1.7.6. If u is a smooth solution of (1.39) then v = ∂2u is a solution of the
equation

∑

i,j

(Xε
iu)

∗
( Aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
ju)

∗
v
)

= 0, (1.43)

where Aij are defined in (1.41). This equation can be equivalently represented as

Mεz = f1(∇
ε
uu)v3 + f2,i(∇

ε
uu)vXε

iuv2 + Xi

(
f3,i(∇

ε
uu)v2

)
, (1.44)

for suitable smooth functions f1 and fj,i. Analogously the function z = Xε
kuu with

k ≤ 2 is a solution of the equation

Mεz = f1(∇
ε
uu)v2 + f2,i(∇

ε
uu)Xε

iuv2 + Xi

(
f3,i(∇

ε
uu)v

)
. (1.45)

Proof. Let us prove the first assertion. Differentiating the equation (1.39) with
respect to ∂2 we obtain

∂2

(
Xε

iu

( Xε
iuu√

1 + |∇ε
uu|2

))
= 0
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Using (1.42)

(Xε
iu)∗

(
∂2

( Xε
iuu√

1 + |∇ε
uu|2

))
= 0

Note that

∂2

( Xε
iuu√

1 + |∇ε
uu|2

)
=

∂2X
ε
iuu√

1 + |∇ε
uu|2

−
Xε

iuu Xε
juu ∂2X

ε
juu

(1 + |∇ε
uu|2)3/2

= −
(Xε

iu)
∗
∂2u√

1 + |∇ε
uu|2

+
Xε

iuu Xε
juu (Xε

ju)
∗
∂2u

(1 + |∇ε
uu|2)3/2

=
Aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
ju)

∗
v

The first assertion is proved.
Assertion (1.44) follows from (1.42) and (1.43). Indeed

0 =
∑

i,j

Xε
iu

( Aij(∇
ε
uu)√

1 + |∇ε
uu|2

Xε
juv
)

+
∑

i

Xε
iu

( Ai1(∇
ε
uu)√

1 + |∇ε
uu|2

v2
)
+

∑

j

A1j(∇
ε
uu)√

1 + |∇ε
uu|2

vXε
juv +

A11(∇
ε
uu)√

1 + |∇ε
uu|2

v3.

We omit the proof of (1.45), which is a similar direct verification. �

Since the operator Mε in (1.41) is in divergence form, it is quite standard to
prove the following intrinsic Cacciopoli type inequalities:

Proposition 1.7.7. (Intrinsic Cacciopoli type inequality ) Let u be a smooth solution
of (1.39), satisfying (1.40). Let us denote

z = Xε
uku + 2M, v = ∂2u + 2M,

where M is the constant in (1.40). Then for every p there exists a constant C,
only dependent on p and M in such that for every φ ∈ C∞

0

∫
|∇ε

uv|2zp−2φ2 ≤ C

∫
zp(φ2 + |∇ε

uφ|2) +

∫
|∇ε

uz|2zp−2φ2,

∫
|∇ε

uz|2zp−2φ2 ≤ C

∫
zp(φ2 + |∇ε

uφ|2).

Proof. Since Aij is uniformly elliptic, we have

∫
|∇ε

uv|2zp−2φ2 ≤ C

∫
Aij(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
iuvXε

juvzp−2φ2 =

(using the expression (1.42) of the formal adjoint )

= −C

∫
Aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
iu)∗v Xε

juv zp−2 φ2+C

∫
A1 j(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
juv v∂2u zp−2φ2 =
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(integrating by parts Xε
ju in the first integral )

= C

∫
(Xε

ju)∗
( Aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
iu)∗v

)
vzp−2φ2+

+(p − 2)C

∫
Aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
iu)∗v vXε

juz zp−3φ2+

+2C

∫
Aij(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
iu)∗v vzp−2φXε

juφ+

+C

∫
Ai 1(∇

ε
uu)√

1 + |∇ε
uu|2

(Xε
iu)∗v v∂2u zp−2φ2 + C

∫
A1 j(∇

ε
uu)√

1 + |∇ε
uu|2

Xε
juv v∂2uzp−2φ2.

The first integral vanishes by Lemma 1.7.6. In the other integrals we can use the
fact that

∣∣∣
Aij(∇

ε
uu)√

1 + |∇ε
uu|2

∣∣∣ ≤ 1, |v| ≤ M, and |(Xε
iu)∗v| ≤ (M2 + |∇ε

uv|)

where M is defined in (1.40). Then (eventually changing the constant C)

∫
|∇ε

uv|2zp−2φ2 ≤ C
( ∫

|∇ε
uv||∇ε

uz|zp−3φ2 +

∫
|∇ε

uv|zp−2(φ2 + |φ∇ε
uφ|)

)

(by Hölder inequality and the fact that z is uniformly bounded away from 0)

≤ δ

∫
|∇ε

uv|2zp−2φ2 + C(δ)

∫
|∇ε

uz|2zp−2φ2 + C(δ)

∫
zp(φ2 + |∇ε

uφ|2).

For δ sufficiently small this implies that

∫
|∇ε

uv|2zp−2φ2 ≤ C

∫
|∇ε

uz|2zp−2φ2 + C

∫
zp(φ2 + |∇ε

uφ|2). (1.46)

This prove the first inequality. We omit the proof of the second, which is completely
analogous, and can be founded in [20]. �

We want to prove the C1α regularity of z. The classical proof is based on the
Moser procedure. This method requires two ingredients: the Sobolev embedding
and the Cacciopoli inequality. Here we have proved an intrinsic Cacciopoli type
inequality, but we can not prove the intrinsic Sobolev embedding for vector fields
with non regular coefficients. This is why we will establish now an Euclidean
Cacciopoli inequality, and use the the standard, Euclidean procedure for a first
gain of regularity:
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44 Chapter 1. Models of the visual cortex in Lie groups

Proposition 1.7.8. Let u be a solution of equation (1.39) satisfying (1.40). For
every compact set K ⊂⊂ Ω then there exist a real number α and a constant C,
only dependent on the constant M in (1.40) such that

||u||W 2,2
ε (K) + ||∂2u||W 1,2

ε (K) + ||u||C1,α
u (K) ≤ C.

Proof The first part of the thesis

||u||W 2,2
ε (K) + ||∂2u||W 1,2

ε (K) ≤ C,

is a proved in Proposition 1.7.7. Let us now establish an Euclidean Cacciopoli type
inequality for z = Xε

kuu. We observe that the Euclidean gradient can be estimated
as follows:

|∇Ez|2 ≤ |Xε
1uz − u∂2z|

2 + |∂2z|
2 ≤ (1.47)

≤ |Xε
1uz|2 + C|∂2(X

ε
1uu)|2 =

= |Xε
1uz|2 + C|(Xε

1u)∗v|2 ≤ |∇ε
uz|2 + |∇ε

uv|2 + C.

From Proposition 1.7.7 it follows that for every p 6= 1 there exists a constant
C, only dependent on p such that for every φ ∈ C∞

0

∫
|∇Ez|2zp−2φ2 ≤ C

∫
zp(φ2 + |∇Eφ|2). (1.48)

Now the thesis follows via the classical Euclidean Moser technique.

With this better regularity of the coefficients, we can prove use the Sobolev
type Theorem 1.6.5 for vector fields with C1,α coefficients, to obtain a further gain
of regularity.

Proposition 1.7.9. Let u be a solution of equation (1.39) satisfying (1.40). For
every compact set K ⊂⊂ Ω then there exist a real number α and a constant C,
only dependent on the constant M in (1.40) such that

||u||
W

2,10/3
ε (K)

+ ||∂2u||W 1,2
ε (K) + ||u||C1,α

u (K) ≤ C. (1.49)

Proof We first note that equation (1.39) can be as well written in divergence
form:

Lε =
∑

ij

Aij(∇
ε
uu)Xε

iuXε
ju

where Aij are the coefficients defined in (1.41). Since the function u satisfies uni-
form C1α estimates, the coefficients Aij(∇

ε
uu) satisfy uniform Cα estimates. Then

we can apply Theorem 1.6.5 using the fact that for every p

||∂2u||Lp(K) + ||∇ε
u∂2u||L2(K) ≤ C.
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It follows that
||u||W 2,r

ε (K) ≤ C

where r = 10/(5 − 2(1 − α)). Since we do not have an estimate for α, we will set
α = 0, and obtain r = 10/3.

Due to the fact that our Sobolev inequality is not optimal, we will also need
an interpolation property, which is completely intrinsic, and can take the place of
a Sobolev inequality:

Proposition 1.7.10. For every p ≥ 3, for every function z ∈ C∞(Ω) there exists
a constant Cp, dependent on p, the constant M in (1.40) such that and for every
φ ∈ C∞

0 (Ω), and every δ > 0
∫

|Xε
iuz|p+1φ2p ≤ C

∫ (
zp+1φ2p+

z2|Xε
iuz|p−1φ2p−2|Xε

iuφ|2
)

+ C

∫
|(Xε

iu)2z|2|Xε
iuz|p−3z2φ2p,

where i can be either 1 or 2.

Proof We have
∫

|Xε
iuz|p+1φ2p =

∫
Xε

iuz|Xε
iuz|psign(Xε

iuz)φ2p =

(integrating by parts, using (1.42)) and the Kroneker function δij

= −δ1i

∫
∂2uz|Xε

iuz|psign(Xε
iuz)φ2p − p

∫
z(Xε

iu)2z|Xε
iuz|p−1φ2p (1.50)

−2p

∫
z|Xε

iuz|psign(Xε
iuz)φ2p−1Xε

iuφ ≤

(by Hölder inequality)

≤
C

δ

∫ (
zp+1φ2p + z2|Xε

iuz|p−1φ2p−2|Xε
iuφ|2

)
+

δ

∫
|Xε

iuz|p+1φ2p +
C

δ

∫
z2|(Xε

iu)2z|2|Xε
iuz|p−3φ2p,

choosing δ sufficiently small we obtain the desired inequality.

Next step is to iterate the previous argument, and obtain the higher inte-
grability of the Hessian of u. The proof goes as before: we establish two intrinsic
Cacciopoli type inequalities, for the derivatives of z = Xε

iu∇
ε
uu and v = ∂2∇

ε
uu.

From here we deduce that u belongs belong to a better class of Hölder continuous
functions. Then the intrinsic Sobolev inequality Theorem 1.6.5 gave the desired
estimate of the second derivatives in the natural Sobolev spaces.
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Lemma 1.7.11. Let p ≥ 3 be fixed, let f ∈ C∞(Ω), let u be a function satisfying
the bound (1.40) and let z be a smooth solution of equation Mεz = f . There exist
a constant C which depend on p and the constant M in (1.40) but are independent
of ε and z such for every φ ∈ C∞

0 (Ω), φ > 0,

∫
|∇ε

u(|∇ε
uz|(p−1)/2)|2φ2p ≤

C
(∫ (

|∇ε
uφ|2 + φ2

)p
+

∫
|∇ε

uz|p+1/2φ2p +

∫
|Xε

2u(∂2u)|pφ2p (1.51)

+

∫
|f |2p

(
|∇ε

uφ|2 + φ2
)
φ2p−2 +

∫
|(∇ε

u)2u||∇ε
uz|p−1φ2p+

∫
|(∇ε

u)2u|2|∇ε
uz|p−1φ2p +

∫
|(∇ε

u)2u||∇ε
uz|p−1φ2p−1|∇ε

uφ|
)
.

Lemma 1.7.12. Let u be a smooth solution of equation (1.39) satisfying (1.40) and
denote v = ∂2u. For every open set Ω1 ⊂⊂ Ω, for every p ≥ 1 there exists a positive
constant C which depends on Ω1, p, and on M in (1.40), but is independent of ε
such that

||∇ε
uu||

C
1/2

E

+ ||∇ε
uv||4L4(Ω1) ≤ C.

Proof. We can apply Lemma 1.7.11 with p = 3 to the function v = ∂2u and deduce
that

∫
|(∇ε

u)2v|2φ6 ≤ C1 + C2

(∫
|∇ε

uv|3+1/2φ6+ (1.52)

∫
(1 + |∇ε

uv| + |(∇ε
u)2u|)7/5φ23/5(|∇ε

uφ| + φ)7/5+

+

∫
|(∇ε

u)2u||∇ε
uv|2φ6 +

∫
|(∇ε

u)2u|2|∇ε
uv|2φ6 +

∫
|(∇ε

u)2u||∇ε
uv|2φ5|∇ε

uφ|
)
.

It follows that

∫
|(∇ε

u)2v|2φ6 ≤
C2

δ

∫
|(∇ε

u)2u|4φ6 + δ

∫
|∇ε

uv|4φ6 +
C1

δ
. (1.53)

Analogously, if we set z = Xε
1uu, or z = Xε

2uu, we have

∫
|(∇ε

u)2z|2φ6 ≤
C2

δ

∫
|(∇ε

u)2u|4φ6 +
C1

δ
+ C2

∫
|∇ε

uv|3φ6 (1.54)

Using Lemma 1.7.10, (1.53) and (1.49), we obtain immediately

∫
|∇ε

uv|4φ6 ≤ C1 + C2

∫
|(∇ε

u)2v|2φ6 ≤ C1 +
C2

δ

∫
|(∇ε

u)2u|4φ6 + δ

∫
|∇ε

uv|4φ6
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Hence ∫
|∇ε

uv|4φ6 ≤ C1 + C2

∫
|(∇ε

u)2u|4φ6 (1.55)

Consequently, from the latter and (1.54) we deduce that
∫

|(∇ε
u)2z|4φ6 ≤ C1 + C2

∫
|(∇ε

u)2u|4φ6 (1.56)

Next, from the intrinsic Cacciopoli inequalities (1.55) and (1.56) we deduce
an Euclidean Cacciopoli inequality: Note that

|∇EXε
1uz| ≤ |(Xε

1u)2z| + C2|∂2(X
ε
1uz)| ≤ |(Xε

1u)2z|+ C2|v∂2z|+ C2|X
ε
1u∂2z| ≤

(since ∂2z = ∂2X
ε
1uu = v2 + Xε

1uv)

|(∇ε
u)2z| + C2|(∇

ε
u)2v| + C2|∇

ε
uv| + C2.

From the latter and (1.55) and (1.56) we infer
∫

|∇E(∇ε
u)z|2φ6 ≤ C2

( ∫
|(∇ε

u)2v|2φ6+ (1.57)

∫
|(∇ε

u)2z|2φ6 + 1
)
≤ C2

∫
|∇ε

uz|4φ6 + C1

Now we can apply the standard Euclidean Sobolev inequality in R2 and obtain

(∫
(|∇ε

uz|φ3)6
)1/3

≤ C2

∫
|∇E(∇ε

uzφ3)|2 ≤ C2

∫
|∇ε

uz|4φ6 + C1 ≤

(using Hölder inequality )

≤ C2

(∫
(|∇ε

uz|φ3)6
)1/3( ∫

supp(φ)

|∇ε
uz|3

)2/3

+ C1.

By (1.49) and the fact that |∇ε
uz| ≤ |∇2

εu|, we already know that |∇ε
uz| ∈ L3

loc. In
fact (∫

supp(φ)

|∇ε
uz|3

)2/3

≤
( ∫

supp(φ)

|∇ε
uz|10/3

)3/5

|supp(φ)|1/15.

Recall that C2 does not depend on |∇ε
uφ|. If we choose the support of φ sufficiently

small, we can assume that the integral
∫

supp(φ) |∇
ε
uz|3 is arbitrarily small. It follows

that (∫
(|∇ε

uz|φ3)6
)1/3

≤ C1

and consequently, by (1.55)
∫

|∇ε
uv|4φ6 ≤ C1
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But this implies that |∇E(∇ε
uu)| ≤ |(∇ε

u)2u| + |∇ε
uv| + v2 ∈ L4

loc. This implies,
buy the standard Euclidean Sobolev Morrey inequality in R2 that

∇ε
uu ∈ C

1/2
E .

�

Lemma 1.7.13. Let u be a smooth solution of equation (1.39) satisfying (1.40) and
denote v = ∂2u. For every open set Ω1 ⊂⊂ Ω, for every p ≥ 1 there exists a positive
constant C which depends on Ω1, p, and on M in (1.40), but is independent of ε
such that

||u||W 2,p
ε (Ω1) ≤ C.

Proof. We have already noted that equation (1.39) can be as well written in di-
vergence form:

Lεu =
∑

ij

Aij(∇
ε
uu)Xε

iuXε
juu = 0.

Now the function u satisfy uniform C1,1/2 estimates, the coefficients Aij(∇
ε
uu)

satisfy uniform C1/2 estimates. Then we can apply Theorem 1.6.5 using the fact
that for every p

||∂2u||Lp(Ω1) + ||∇ε
u∂2u||L4(Ω1) ≤ C.

If follows that for every r > 1 there exists a constant C > 0 independent of ε such
that

||u||W 2,r
ε (Ω1) ≤ C.

�

Using a bootstrap argument, we can now deduce the same result for derivative
of any order:

Theorem 1.7.14. Let u be a smooth solution of equation (1.38), satisfying (1.40).
For every open set Ω1 ⊂⊂ Ω, for every p ≥ 3, and every integer k ≥ 2 there exists
a constant C which depends on p, k Ω1 and on M in (1.40), but is independent of
ε such that the following estimates holds

||u||W k,p
ε (Ω1) + ||∂2u||W k,p

ε (Ω1) ≤ C. (1.58)

Corollary 1.7.15. Let u be a smooth solution of equation (1.38), satisfying (1.40).
For every open set Ω1 ⊂⊂ Ω, for every p ≥ 3, α < 1 and every integer k ≥ 2
there exists a constant C which depends on p, k Ω1 and on M in (1.40), but is
independent of ε such that the following estimates holds

||(∇ε
u)k+1u||Lp(Ω1) + ||∂2(∇

ε
u)ku||Lp(Ω1) + ||(∇ε

u)ku||Cα
E(Ω1) ≤ C. (1.59)
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1.7.4 Regularity of the viscosity minimal surface

In this section we turn our attention to the proof of regularity for vanishing vis-
cosity solutions u of equation (1.38). The regularity rests on the a priori estimates
proved in the previous section in the limit ε → 0.

Theorem 1.7.16. Let u ∈ Lip(Ω) be a vanishing viscosity solution of (1.38), then
equation (1.38) can be represented as X2

1uu = 0 and is satisfied weakly in the
Sobolev sense, and hence, pointwise a.e. in Ω, i.e.

∫

Ω

X1uuX∗
1uφ = 0 for all φ ∈ C∞

0 (Ω).

Moreover forevery α < 1, for every p > 1, for every natural k

(∇uu)k ∈ Cα
E ∂2(∇uu)k ∈ W 1,p

0 (B(R)) (1.60)

Proof. Let (uj) denote the sequence approximating u, as defined in Definition
1.7.1. For each εj the function uj is a solution of (1.39). Hence, by corollary
(1.7.15) the sequence

(∇εj
uj

uj)j

is bounded in Cα
E for every α. Evetually extracting a subsequence we see that it

weakly converges to (X1uu, 0). Hence this is limit in Cα
E norm. On the other hand

∂2uj is weakly convergent to ∂2u. Hence letting j go to ∞ in the divergence form
equation we conclude that X2

1uu = 0 in the weak Sobolev sense. The other part of
the thesis always follows from Corollary 1.7.15. �

1.7.5 Foliation of minimal surfaces and completion result

If the weak derivative of a function f is sufficiently regular, they are Lie derivatives.

Proposition 1.7.17. If f ∈ Cα
loc(Ω) for some α ∈]0, 1[ and its weak derivatives

X1uf ∈ Cα
loc(Ω), ∂2f ∈ Lp

loc(Ω) with p > 1/α, then for all ξ ∈ Ω the Lie-derivatives
X1uf(ξ) exist and coincide with the weak ones.

We are now ready to prove the result concerning the foliation
Proof of Corollary 1.7.3 First note that, by Proposition 1.7.17 the derivatives of
u are Lie derivatives. The equation γ′ = X1uI(γ) has an unique solution, of the
form

γ(x) = (x, y(x)),

where y′(x) = u(x, y(x)). In view of the regularity of u and of the previous propo-
sition then y′′(x) = Xu(x, y(x)), and y′′′(x) = X2u(x, y(x)) = 0. This shows that
γ is a polynomial of order 2 and concludes the proof. �
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Figure 1.23: The original image (top left) is lifted in the rototranslation space with
missing information in the center, like in the phenomenon of macula cieca (top
right). The surface is completed by the algorithm (bottom).
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Let us now present some computational results, applied to well known images.
The minimal surface which perform the completion is foliated in geodesics.

This implies that each level lines of the image is completed independently through
an elastica, and this is compatible with the phenomenological evidence. We con-
sider here the completion of a figure that has been only partially lifted in the
roto-translation space. This example mimics the missing information due to the
presence of the macula cieca (blind spot) that is modally completed by the human
visual system, as outlined in [51]. The original image (see Figure 1.23), top left) is
lifted in the rotranslation space with missing information in the center (top right).
The lifted surface is completed by iteratively applying eqs until a steady state is
achieved. The final surface is minimal with respects to the sub-Riemannian metric.
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Title of the course: Second order operators in divergence form and QC mappings.

Abstract: The series of lectures will focus on the well-known theory of De Giorgi-
Nash-Moser for linear elliptic equations. We will prove the local boundedness, Hölder
continuity and the Harnack inequality of solutions of the following second order,
linear, elliptic equations with divergence structure

div(A(x)∇u(x)) = 0,

where A(x) = [aij(x)]i,j=1,2,...,n, defined in a domain Ω ⊂ Rn, n ≥ 2, is a symmetric
matrix with measurable coefficients satisfying for 0 < λ ≤ Λ < ∞

λ|ξ|2 6 〈A(x)ξ, ξ〉 6 Λ|ξ|2

for all ξ ∈ Rn and for almost every x ∈ Ω. We will also mention the connections
between this type of equations and quasiconformal mappings.

Outline of the course:

• Lecture 1: Second order elliptic euqations with divergence structure: intro-
duction.

• Lecture 2: Moser’s iteration.
• Lecture 3: De Giorgi’s method.
• Lecture 4: De Girogi’s method (continued).
• Lecture 5: Connections with quasiconformal mappings; open problems.

Some references:

(1) D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of sec-
ond order. 2nd ed., Springer-Verlag, New York (1983).

(2) O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and quasilinear elliptic
equations. Academic Press, New York (1968).

(3) Q. Han and F. H. Li, Elliptic partial differential equations. Courant Lecture
Notes in Mathematics, 1 (1997).

Xiao Zhong, Department of Mathematics and Statistics, University of Jyväskylä,,
P.O. Box 35 (MaD), Fin-40014, University of Jyväskylä, Finland.

E-mail address: zhong@maths.jyu.fi
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DE GIORGI–NASH–MOSER THEORY

XIAO ZHONG

1. Introduction

1.1. Equations. We consider the second order, linear, elliptic equations with di-
vergence structure

(1) div(A(x)∇u(x)) =
n∑

i,j=1

∂xi
(aij(x)∂xj

u(x)) = 0.

Here A(x) = [aij(x)]i,j=1,2,...,n is an n× n symmetric matrix with measurable entries
aij(x), defined in a domain Ω ⊂ Rn, n ≥ 2. We assume the following ellipticity and
boundedness conditions. That is, we assume that

(2) λ|ξ|2 6 〈A(x)ξ, ξ〉 =
n∑

i,j=1

aij(x)ξiξj 6 Λ|ξ|2

for all ξ = (ξ1, . . . , ξn) ∈ Rn and for almost every x ∈ Ω. Here 0 < λ ≤ Λ < ∞ are
constants.

Note that since A(x) is a symmetric matrix, it has n real eigenvalues λi(x), i =
1, . . . , n. The condition (2) is equivalent to

λ ≤ λi(x) ≤ Λ

for all i = 1, . . . , n, and almost every x ∈ Ω (Exercise).

Example 1.1. Let A(x) be the identity matrix. Then the condition (2) is true with
λ = Λ = 1, and the equation (1) is reduced to the Laplace equation

∆u =
n∑

i=1

∂xi
∂xi

u = 0.

Example 1.2. Let α be a constant, 0 < α < 1. Define A(x) in R2 as

A(x) =

(
x2
1+α2x2

2

|x|2 (1− α2)x1x2

|x|2

(1− α2)x1x2

|x|2
α2x2

1+x2
2

|x|2

)
, x = (x1, x2).

Then we have (Exercise)

α2|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ |ξ|2, ∀x ∈ R2, ξ ∈ R2.

Define the function u : B(0, 1) = {y ∈ R2 : |y| < 1} → R as

u(x) = |x|α−1x1, for x = (x1, x2) ∈ B(0, 1).
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Then it is a weak solution (see definition in Section 2) of equation (1) with the
coefficients A(x) defined above (Exercise).

1.2. Motivation: a variational problem. We start with the problems, raised by
Hilbert in the ICM in 1990.

• 20th problem: Has not every regular variational problem a solution, provided
certain assumptions regarding the given boundary conditions are satisfied,
and provided also if need be that the notions of a solution shall be suitably
extended?

• 19th problem: Are the solutions of regular problems in the calculus of vari-
ations always necessarily analytic?

These problems are stated in a general way. We will consider the following specific
variational problem to illustrate these problems and their solutions.

Let Ω ⊂ Rn be a bounded smooth domain and F : Rn → R be a smooth function.
We assume that it satisfies for constants 0 < λ ≤ Λ < ∞
(3) λ|ξ|2 ≤ 〈D2F (η)ξ, ξ〉 ≤ Λ|ξ|2, ∀ξ ∈ Rn, η ∈ Rn.

Now we consider the following functional

(4) I(v) =

∫
Ω

F (∇v) dx,

among the admissible class

K ′ = {v : v ∈ C1(Ω̄) and v = φ on ∂Ω},
where φ ∈ C1(Ω̄) is a given function. We say that u ∈ K is a minimizer of the
functional I among the class K, if

I(u) ≤ I(v), ∀ v ∈ K ′.

Now the problems are the existence of minimizers (20th problem) and the regularity
of minimizers (19th problem).

We can not prove the existence of the minimizers directly in the class K ′, due to
the lack of compactness of the space C1(Ω̄). We need to extend the space C1(Ω̄)
to a bigger space. The classical derivatives are extended to the weak ones, and the
classical solutions to the weak ones, as suggested by Hilbert. A natural function
space for this variational problem is the Sobolev space W 1,2(Ω). We will give a brief
introduction to the Sobolev spaces in Section 2. Now let

K = {v : v ∈ W 1,2(Ω) and v − φ ∈ W 1,2
0 (Ω)}.

We can easily prove the existence of minimizers of the functional I in K, by the
directly method in the calculus of variations.

THEOREM 1.1. Suppose that F ∈ C∞(Rn) satisfies (3) and φ ∈ W 1,2(Ω) is given.
Then there is a unique u0 ∈ K such that

I(u0) = inf
u∈K

I(u).

Proof. Read Section 2 first. It is easy to show from (3) that (Exercise)

(5) c1|η|2 − c2 ≤ F (η) ≤ c3|η|2 + c4,

where c1 > 0, c3 > 0, c2, c4 are constants depending only on λ, Λ, F (0),∇F (0). Now
let m = infu∈K I(u). It is easy to see that −∞ < m < ∞. Let {ui}∞i=1 ⊂ K be a
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minimizing sequence, that is, I(ui) → m as i →∞. It is easy to prove that {ui}∞i=1 is
a bounded sequence in W 1,2(Ω). Then by the weak compactness theorem, Theorem
2.5, there is a subsequence, still denoted by itself, such that it converges weakly in
W 1,2(Ω) to a function u0. Since ui ∈ K, we also have u0 ∈ K. Now we claim that

lim inf
i→∞

∫
Ω

F (∇ui) dx ≥
∫

Ω

F (∇u0) dx,

which shows that I(u0) = m and hence u0 is a minimizer of the functional I among
the class K. Indeed, we have

(6) F (η) ≥ F (η0) + 〈∇F (η0), η − η0〉+
λ

2
|η − η0|2, ∀ η, η0 ∈ Rn.

The proof of (6) is as follows. We have that

F (η)− F (η0)− 〈∇F (η0), η − η0〉 =

∫ 1

0

d

dt
F (tη + (1− t)η0) dt− 〈∇F (η0), η − η0〉

=

∫ 1

0

〈∇F (tη + (1− t)η0)−∇F (η0), η − η0〉 dt,

and that

∇F (tη + (1− t)η0)−∇F (η0) =

∫ 1

0

d

ds
∇F (stη − stη0 + η0) ds

=t

∫ 1

0

D2F (stη − stη0 + η0)(η − η0) ds.

Thus (6) follows from (3). Now by (6), we have∫
Ω

F (∇ui)− F (∇u0) dx ≥
∫

Ω

〈∇F (∇u0),∇ui −∇u0〉 dx.

The last integral goes to zero as i goes to infinity, since ui converges to u0 weakly in
W 1,2(Ω). Thus the claim is true. It remains to prove the uniqueness of minimizer.
Let u0, ū, be minimizers and let u = (u0 + ū)/2. Note that u ∈ K. Then by (6), we
have that

F (∇u0) ≥ F (∇u) + 〈∇F (∇u),∇u0 −∇u〉+
λ

2
|∇u−∇u0|2,

and that

F (∇ū) ≥ F (∇u) + 〈∇F (∇u),∇ū−∇u〉+
λ

2
|∇u−∇ū|2.

Adding this two inequalities together, we obtain that

F (∇u0) + F (∇ū) ≥ 2F (∇u) +
λ

4
|∇u0 −∇ū|2.

Integrate both sides over Ω. We arrive at

2m ≥ 2

∫
Ω

F (∇u) dx +
λ

4

∫
Ω

|∇u0 −∇ū|2 dx ≥ 2m +
λ

4

∫
Ω

|∇u0 −∇ū|2 dx,

from which, we deduce that u0 = ū. This proves the uniqueness. The theorem is
proved. �
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The above theorem gives a positive solution to the 20th problem. The good point
to study the weak minimizers (solutions) is that it is easy to prove the existence, but
the price we have to pay is the regularity. Now we turn to the 19th problem: the
regularity of minimizers. Our goal is to show that the minimizer u0 is smooth. In
order to do this, first, we study the Euler-Lagrange equation corresponding to the
functional I. It is easy to show that the minimizer u0 that we obtained in Theorem
1.1 is a weak solution of the Euler-Lagrange equation. Note that at this moment,
we only know that u0 is from the Sobolev space W 1,2(Ω).

THEOREM 1.2. Let u0 be the minimizer as in Theorem 1.1. Then u0 is a weak
solution of the Euler-Lagrange equation

(7) div(∇F (∇u0)) = 0, in Ω,

that is,

(8)

∫
Ω

〈∇F (∇u0),∇ϕ〉 dx = 0, ∀ϕ ∈ C∞
0 (Ω).

Proof. Fix ϕ ∈ C∞
0 (Ω). Define a function g : R → R as

g(t) = I(u0 + tϕ) =

∫
Ω

F (∇u0 + t∇ϕ) dx.

Then g ∈ C1(R) (Prove it), and we have

g′(t) =

∫
Ω

〈∇F (∇u0 + t∇ϕ),∇ϕ〉 dx.

Since u0 is a minimizer, the function g reaches its minimum at 0. Thus g′(0) = 0,
which gives (8). �

Next, we will show that u0 ∈ W 2,2
loc (Ω) and that its weak derivatives are weak

solutions of equation (1) with suitable coefficients A(x). In this way, we build up
the connection between this variational problem and equation (1).

THEOREM 1.3. Let u0 be the minimizer as in Theorem 1.1. Then u0 ∈ W 2,2
loc (Ω)

and vi = ∂xi
u0, i = 1, 2, . . . , n, is a weak solution of the equation

(9) div(A(x)∇vi) = 0, in Ω,

where A(x) = D2F (∇u0(x)).

The formal proof involves the difference quotients. Informally, we may just differ-
entiate equation (7) with respect to xi, i = 1, 2, . . . , n, to obtain equation (9). The
essential point is the Caccioppoli inequality, which will be studied extensively in this
course. Roughly speaking, the Caccioppoli inequality says that the L2-norm of the
derivatives of the solutions is controlled by that of the solutions. We refer to Section
2 for the notations in the proof.

Proof. Fix a cut-off function η ∈ C∞
0 (Ω). Let Ω′ be an open set such that spt(η) ⊂

Ω′ b Ω. Let ϕ = ∆−h
i ((∆h

i u0)η
2), where i = 1, 2, . . . , n and h is so small that

0 < |h| < dist(Ω′, ∂Ω)/8, and

∆h
i v(x) =

v(x + hei)− v(x)

h

129



DE GIORGI–NASH–MOSER THEORY 5

is the ith difference quotient of size h. Since u0 ∈ W 1,2(Ω), we have ϕ ∈ W 1,2
0 (Ω)

(Exercise). By Theorem 1.2, u0 is a weak solution of equation (7). Thus,

(10)

0 =

∫
Ω

〈∇F (∇u0),∇ϕ〉 dx

=

∫
Ω

〈∇F (∇u0), ∆
−h
i (∇((∆h

i u0)η
2))〉 dx

=−
∫

Ω

〈∆h
i∇F (∇u0),∇((∆h

i u0)η
2)〉 dx,

where in the second equality, we used the fact that ∇ and ∆h
i are commutative, and

in the last equality, the so-called integration by parts for difference quotients. Now
we write

∆h
i∇F (∇u0(x)) =

∇F (∇u0(x + hei))−∇F (∇u0(x))

h

=
1

h

∫ 1

0

d

dt
∇F (t∇u0(x + hei) + (1− t)∇u0(x)) dt

=

∫ 1

0

D2F (t∇u0(x + hei) + (1− t)∇u0(x)) dt∆h
i∇u0(x)

=B(x)∆h
i∇u0(x),

and

∇((∆h
i u0)η

2) = η2∆h
i∇u0 + 2η∇η∆h

i u0.

Thus (10) becomes∫
Ω

〈B(x)∆i
h∇u0, ∆

h
i∇u0〉η2 dx = −2

∫
Ω

〈B(x)∆h
i∇u0,∇η〉η∆h

i u0 dx.

Note that the matrix B(x) also satisfies (2). By Cauchy-Schwarz inequality and
Hölder’s inequality, we can easily deduce the following Caccioppoli type inequality∫

Ω

|∆h
i∇u0|2η2 dx ≤ 4Λ

λ

∫
Ω

|∆h
i u0|2|∇η|2 dx,

from which, together with Theorem 2.6, proves the theorem. �

One question here: can we repeat the above argument to prove that u0 ∈ W 3,2(Ω)?
The answer is no. One may informally differentiate equation (9) and see if we can
obtain the Caccioppoli type inequality to control the L2-norm of the third order
derivatives of u0.

Finally, the main goal of this course is to prove that the weak solutions of equation
(1) are Hölder continuous.

THEOREM 1.4. Let u ∈ W 1,2(Ω) be a weak solution of equation (1). Then u ∈
C0,α(Ω), where 0 < α = α(n, λ, Λ) ≤ 1.

In the planar case, the study goes back to the work of Morrey [11, 12], see [21], [10]
and [17] for the study of the best Hölder continuity exponent. In higher dimensions
(Rn, n > 3), Hölder continuity of solutions was settled in the late 1950’s by De Giorgi
[1] and Nash [15]. Hölder continuity also follows from the Harnack inequality, due
to Moser [13, 14].

130



6 XIAO ZHONG

Now, we go back to our variational problem. Combining Theorem 1.2 and Theo-
rem 1.4, we obtain that the minimizer u0 ∈ C1,α(Ω) for some α > 0. Then we can
show that actually u0 ∈ C∞(Ω), by the Schauder estimates.

The above is the line to deal with Hilbert’s 20th and 19th problems. As we can
see, the essential and difficult point is the De Giorgi-Nash-Moser theory: the Hölder
continuity of solutions of equation (1) in Theorem 1.4. In this course, we will first
learn Moser’s method and then De Giorgi’s method. The students are expected
to compare these two methods. While these two methods are further exploited and
applied to many other problems, the argument of Nash is rather difficult to penetrate
and consequently his work has not been extensively used in the literature. We refer
to [6] for the applications of Nash’s ideas.

One comment: To my knowledge, De Giorgi’s, Nash’s and Moser’s methods are
the only existing approaches to prove the Hölder continuity of weak solutions of
equation (1). I do not know any other way to prove Theorem 1.4.

2. Sobolev spaces

2.1. A brief introduction to Sobolev spaces. We refer to [7], [4] and [9] for the
proofs of Theorems in this subsection. Let Ω be an open set in Rn.

2.1.1. Hölder space.

Definition 2.1. We say a function u ∈ C0,α(Ω), if for every open Ω′ b Ω,

||u||C0,α(Ω̄′) = sup
x∈Ω′

|u(x)|+ sup
x,y∈Ω′,x 6=y

|u(x)− u(y)|
|x− y|

< ∞.

2.1.2. Weak derivatives. Let C∞
0 (Ω) denote the space of infinitely differentiable func-

tions with compact support in Ω.

Definition 2.2. Suppose that u, v ∈ L1
loc(Ω). We say that v is the ith weak partial

derivative of u, written
∂xi

u = v,

provided that ∫
Ω

u∂xi
φ dx = −

∫
Ω

vφ dx

for all test functions φ ∈ C∞
0 (Ω).

A weak partial derivative of a function u, if it exists, is uniquely defined up to a
set of measure zero. We denote by ∇u = (∂x1u, ∂x2u, . . . , ∂xnu) the weak gradient of
u.

2.1.3. Definition of Sobolev spaces.

Definition 2.3. The Sobolev space

W 1,p(Ω), 1 ≤ p ≤ ∞
consists of all locally integrable functions u : Ω → R such that u ∈ Lp(Ω) and the
weak derivatives ∂xi

u ∈ Lp(Ω) for all i = 1, 2, . . . , n. We define its norm to be

||u||W 1,p(Ω) =

{(∫
Ω
|u|p dx +

∑n
i=1

∫
Ω
|∂xi

u|p dx
)1/p

, (1 ≤ p < ∞);

supΩ |u|+
∑n

i=1 supΩ |∂xi
u|, (p = ∞).
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We denote by W 1,p
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(Ω) with respect to the norm
defined above. Thus u ∈ W 1,p

0 (Ω) if and only if there exist functions uk ∈ C∞
0 (Ω)

such that

uk → u in W 1,p(Ω),

that is,

lim
k→∞

||uk − u||W 1,p(Ω) = 0.

Exercise: W 1,p(Ω) and W 1,p
0 (Ω) are Banach spaces.

2.1.4. Inequalities.

THEOREM 2.1 (Gagliardo-Nirenberg-Sobolev inequality). Assume 1 ≤ p < n.
There is a constant c = c(n, p) > 0 such that(∫

Ω

|u|p∗ dx

) 1
p∗

≤ c

(∫
Ω

|∇u|p dx

) 1
p

,

for all u ∈ W 1,p
0 (Ω), where p∗ = np/(n− p).

We also have the following version of Sobolev inequality.

THEOREM 2.2. Assume that 1 ≤ p < n. Suppose that u ∈ W 1,p(B(y, r)) and
|{x ∈ B(y, r) : u(x) = 0}| ≥ δ|B(y, r)| for some δ > 0. Then(∫

B(y,r)

|u|p∗ dx

) 1
p∗

≤ c

(∫
B(y,r)

|∇u|p dx

) 1
p

,

where c = c(n, p, δ) > 0.

The following theorem is an easy consequence of Theorem 2.2.

THEOREM 2.3. Suppose that u ∈ W 1,1(B(y, r)) and that |{x ∈ B(y, r) : u(x) ≤
k}| ≥ δ|B(y, r)| for some δ > 0 and k ∈ R. Then

(l − k)|{x ∈ B(y, r) : u(x) > l}|1−
1
n ≤ c

∫
k<u<l

|∇u| dx,

for any l > k, where c = c(n, δ) > 0.

THEOREM 2.4 (Poincaré inequality). Assume 1 ≤ p < ∞. Then there is a
constant c = c(n, p) > 0 such that∫

B(y,r)

|u− uB(y,r)|p dx ≤ crp

∫
B(y,r)

|∇u|p dx

for every u ∈ W 1,p(Ω) and every ball B(y, r) ⊂ Ω, where uB(y,r) = −
∫

B(y,r)
u dx is the

average of u over the ball B(y, r).
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2.1.5. Weak compactness theorem.

THEOREM 2.5 (Weak compactness theorem). Assume 1 < p < ∞. Suppose that
{uk}∞k=1 is a bounded sequence in W 1,p(Ω). Then there are a function u ∈ W 1,p(Ω)
and a subsequence of {uk}, still denoted by itself, such that uk converges weakly in
W 1,p(Ω) to u, that is, we have that

lim
k→∞

∫
Ω

ukφ dx =

∫
Ω

uφ dx, ∀φ ∈ L
p

p−1 (Ω),

and that

lim
k→∞

∫
Ω

∂xi
ukφ dx =

∫
Ω

∂xi
uφ dx, ∀φ ∈ L

p
p−1 (Ω), i = 1, 2, . . . , n.

2.1.6. Difference quotients. Let v : Ω → R be a locally integrable function, and
Ω′ b Ω.

Definition 2.4. The ith difference quotient of size h is

∆h
i v(x) =

v(x + hei)− v(x)

h
, i = 1, 2, . . . , n

for x ∈ Ω′ and h ∈ R, 0 < |h| < dist(Ω′, ∂Ω). We write ∆hv = (∆h
1v, ∆h

2v, . . . , ∆h
nv).

THEOREM 2.6 (Difference quotients and weak derivatives). (i) Assume that 1 ≤
p < ∞ and v ∈ W 1,p(Ω). Then for every Ω′ b Ω,∫

Ω′
|∆hv|p dx ≤

∫
Ω

|∇v|p

for all 0 < |h| < dist(Ω′, ∂Ω)/2.
(ii) Assume that 1 < p < ∞ and u ∈ Lp(Ω′). Suppose that there is a constant c

such that ∫
Ω′
|∆hv|p dx ≤ c

for all 0 < |h| < dist(Ω′, ∂Ω)/2. Then

v ∈ W 1,p(Ω′)

and ∫
Ω′
|∇v|p dx ≤ c.

2.2. Definition of weak solutions.

Definition 2.5. We say that a function u ∈ W 1,2(Ω) is a weak solution of equation
(1), if

(11)

∫
Ω

〈A(x)∇u,∇ϕ〉 dx =

∫
Ω

n∑
i,j=1

aij(x)∂xj
u∂xi

ϕ dx = 0

for every ϕ ∈ C∞
0 (Ω). We say that a function u ∈ W 1,2(Ω) is a weak subsolution of

equation (1), if ∫
Ω

〈A(x)∇u,∇ϕ〉 dx ≤ 0

for every non-negative ϕ ∈ C∞
0 (Ω). Similarly, we define the weak supersolutions.
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Remark 2.1. i) If u is a classical solution of equation 1, then by integration by parts,
it is a weak solution.
ii) In the definition, we require that the weak solutions are from the Sobolev space
W 1,2(Ω). This is the natural Sobolev space for the definition of weak solutions
of equation (1). Actually, the formula (11) makes sense if we only require that
u ∈ W 1,p(Ω) for some p ≥ 1. We call this kind of solutions very weak solutions. See
[8] for the study of very weak solutions.
iii) Since in the definition we require that u ∈ W 1,2(Ω), it is easy to prove by an
approximation argument that (11) holds for all ϕ ∈ W 1,2

0 (Ω) (Exercise).

3. Moser’s iteration

In this lecture, we will prove Theorem 1.4. In the following, u ∈ W 1,2(Ω) is a
weak solution of equation

(12) div(A(x)∇u(x)) = 0,

where A(x) is a symmetric matrix satisfying for 0 < λ ≤ Λ < ∞

(13) λ|ξ|2 6 〈A(x)ξ, ξ〉 6 Λ|ξ|2, ∀ ξ = (ξ1, . . . , ξn) ∈ Rn, a.e. x ∈ Ω.

3.1. Harnack’s inequality. We will prove the following Harnack’s inequality.

THEOREM 3.1. Let u ∈ W 1,2(Ω), u ≥ 0 in Ω, be a weak solution of equation (12).
Then there is a constant c = c(n, λ, Λ) > 0 such that for every ball B(y, r) ⊂ Ω, we
have

sup
B(y,r/2)

u ≤ c inf
B(y,r/2)

u.

The proof of Harnack’s inequality is divided into two parts in subsection 3.2
and subsection 3.3. The Hölder continuity of solutions is an easy consequence
of Harnack’s inequality. We leave the proof as an exercise. We use the notation
oscB(y,t)u = supB(y,t) u− infB(y,t) u.

THEOREM 3.2. Let u ∈ W 1,2(Ω) be a weak solution of equation (12). Then there
is α = α(n, λ, Λ), 0 < α ≤ 1, such that u ∈ C0,α(Ω). Moreover, for every ball
B(y, R) ⊂ Ω and every 0 < r ≤ R < ∞, we have

oscB(y,r)u ≤ 2α
( r

R

)α
oscB(y,R)u.

3.2. Weak Harnack’s inequality: sup. We will prove the local boundedness of
the weak solutions.

THEOREM 3.3. Let u ∈ W 1,2(Ω) be a weak solution of equation (12). Then
u ∈ L∞

loc(Ω). Moreover, for every ball B(y, r) ⊂ Ω, we have

(14) sup
B(y,r/2)

|u| ≤ c

(
−
∫

B(y,r)

|u|2 dx

) 1
2

,

where c = c(n, λ, Λ) > 0.

The essential ingredients of the proof are the Caccioppoli type inequality and the
Sobolev inequality. An iteration argument is involved. The starting point is the
following Caccioppoli inequality.
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Lemma 3.1. Let u ∈ W 1,2(Ω) be a weak solution of equation (12). Then for any
α ≥ 0, any η ∈ C∞

0 (Ω), we have

(15)

∫
Ω

|u|α|∇u|2η2 dx ≤ c

∫
Ω

|u|α+2|∇η|2 dx,

where c = c(λ, Λ) > 0, provided that u ∈ Lα+2
loc (Ω).

Proof. Fix η ∈ C∞
0 (Ω). Let t ≥ 0 and define v = (u − t)+ = max(u − t, 0). Using

ϕ = vη2 ∈ W 1,2
0 (Ω) (prove it) as a test-function in equation (12), we obtain that

(16)

0 =

∫
Ω

〈A(x)∇u,∇ϕ〉 dx

=

∫
Ω

〈A(x)∇u,∇(u− t)+〉η2 dx + 2

∫
Ω

〈A(x)∇u,∇η〉(u− t)+η dx.

We use Cauchy-Schwarz inequality

|〈A(x)∇u,∇η〉| ≤ 〈A(x)∇u,∇u〉
1
2 〈A(x)∇η,∇η〉

1
2

and Hölder’s inequality to estimate the last integral. Then (16) gives us∫
u>t

〈A(x)∇u,∇u〉η2 dx ≤ 4

∫
u>t

〈A(x)∇η,∇η〉|(u− t)+|2 dx,

from which, together with (13), yields

(17)

∫
u>t

|∇u|2η2 dx ≤ 4Λ

λ

∫
u>t

|(u− t)+|2|∇η|2 dx ≤ 4Λ

λ

∫
u>t

|u+|2|∇η|2 dx.

Now the above inequality holds for all t ≥ 0. We multiply both sides by αtα−1 and
integrate with respect to t over (0,∞). A direct calculation gives∫

Ω

|u|α|∇u+|2η2 dx ≤ 4Λ

λ

∫
Ω

|u+|α+2|∇η|2 dx.

Similarly, the above inequality is also true for u−. Then we obtain (15) with c =
4Λ/λ. This proves the lemma. �

Now by the Sobolev inequality, we obtain the following reverse inequality.

Lemma 3.2. Let u ∈ W 1,2(Ω) be a weak solution of equation (12). Then u ∈
L

(α+2)χ
loc (Ω), if u ∈ Lα+2

loc (Ω) for any α ≥ 0, where χ = n/(n − 2) when n ≥ 3.
Moreover, we have for any η ∈ C∞

0 (Ω),

(18)

(∫
Ω

|u|(α+2)χη2χ dx

) 1
χ

≤ c(α + 2)2

∫
Ω

|u|α+2|∇η|2 dx,

where c = c(n, λ, Λ) > 0.

Proof. Let v = |u|α/2uη. Then

∇v =
(α
2

+ 1
)
|u|

α
2 η∇u + |u|

α
2 u∇η.

Thus (15) in Lemma 3.1 gives us

(19)

∫
Ω

|∇v|2 dx ≤ c(α + 2)2

∫
Ω

|u|α+2|∇η|2 dx,
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where c = c(λ, Λ) > 0. Now we use the Sobolev inequality in Theorem 2.1 (when
n ≥ 3)

(20)

(∫
Ω

|v|2χ dx

) 1
χ

≤ c(n)

∫
Ω

|∇v|2 dx.

Combining (19) and (20) yields (18). We finish the proof. �

The following corollary is an easy consequence of Lemma 3.2.

Corollary 3.1. Let u ∈ W 1,2(Ω) be a weak solution of equation (12). Then u ∈
Lq

loc(Ω) for every q ≥ 1. Moreover, for every α ≥ 0, for every ball B(y, r) ⊂ Ω and
for every 0 < r′ < r, we have the following reverse type inequality

(21)

(∫
B(y,r′)

|u|(α+2)χ dx

) 1
(α+2)χ

≤ c
1

α+2 (α + 2)
2

α+2

(r − r′)
2

α+2

(∫
B(y,r)

|u|α+2 dx

) 1
α+2

,

where c = c(n, λ, Λ) > 0.

Now we iterate (21) to prove Theorem 3.3.

Proof of Theorem 3.3. Fix a ball B(y, r) ⊂ Ω. Define α0 = 0, αi = 2χi − 2, i =
1, 2, . . .. Let r0 = r and

ri =
r

2
+

r

2i+1
, i = 1, 2, . . . .

Apply (21) with r = ri, r
′ = ri+1 and α = αi for i = 0, 1, . . .. We obtain that

(22) Mi+1 ≤ c
1
βi β

2
βi
i

( r

2i+2

)− 2
βi Mi,

where βi = 2χi and

Mi =

(∫
B(y,ri)

|u|βi dx

) 1
βi

.

An iteration of (22) gives us

Mi+1 ≤ ciM0,

from which we obtain (14) by letting i → ∞. We leave the details as an exercise.
We finish the proof of Theorem 3.3. �

Slightly modifying the above argument, we can prove the following version of
Theorem 3.3 for the weak subsolutions (see Definition 2.5) when n ≥ 3. Write down
the details of the proof as an exercise.

THEOREM 3.4. Let u ∈ W 1,2(Ω), u ≥ 0 in Ω, be a weak subsolution of equation
(12). Then u ∈ L∞

loc(Ω). Moreover, for every ball B(y, r) ⊂ Ω and every 0 < σ < 1,
we have

(23) sup
B(y,σr)

u ≤ c

(1− σ)n/2

(
−
∫

B(y,r)

u2 dx

) 1
2

,

where c = c(n, λ, Λ) > 0.

Finally, by another iteration argument, we will prove the following boundedness
estimate for the subsolutions.
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THEOREM 3.5. Let u ∈ W 1,2(Ω), u ≥ 0 in Ω, be a weak subsolution of equation
(12). Then u ∈ L∞

loc(Ω). Moreover, for every ball B(y, r) ⊂ Ω and every 0 < σ <
1, 0 < q ≤ 2, we have

(24) sup
B(y,σr)

u ≤ c

(1− σ)n/q

(
−
∫

B(y,r)

uq dx

) 1
q

,

where c = c(q, n, λ, Λ) > 0.

Proof. Fix B(y, r) ⊂ Ω and 0 < σ < 1. Let σ0 = σ and

σi = 1− 1− σ

2i
, i = 1, 2, . . . .

By Theorem 3.4, (23) with r = σi+1r and σ = σi/σi+1 gives us

sup
B(y,σir)

u ≤ c(
1− σi

σi+1

)n/2

(
−
∫

B(y,σi+1r)

u2 dx

) 1
2

≤ c(
1− σi

σi+1

)n/2

(
−
∫

B(y,σi+1r)

uq dx

) 1
2

(
sup

B(y,σi+1)

u

) 2−q
2

,

that is,

(25) Mi ≤
c(

1− σi

σi+1

)n/2

(
−
∫

B(y,r)

uq dx

) 1
2

M
2−q
2

i+1 ,

where Mi = supB(y,σir)
u. An iteration of (25) gives (14). We leave the details as an

exercise. We finish the proof. �

Exercise: figure out a version of Theorem 3.5 in the case n = 2, and write down
the proof.

3.3. Weak Harnack’s inequality: inf. In this subsection, we will prove

THEOREM 3.6. Let u ∈ W 1,2(Ω), u ≥ 0 in Ω, be a weak solution of equation
(12). Then there are q = q(n, λ, Λ) > 0 and c = c(n, λ, Λ) > 0 such that for every
ball B(y, 2r) ⊂ Ω, we have

(26) inf
B(y,r/2)

u ≥ c

(
−
∫

B(y,r)

uq dx

) 1
q

.

By replacing u by u + ε for ε > 0, we may assume that u ≥ ε in Ω. The
essential point of the proof of Theorem 3.6 is that log u is a function of bounded
mean oscillation (BMO). First, Theorem 3.5 yields the following estimate.

Lemma 3.3. Let u ∈ W 1,2(Ω) be a weak solution of equation (12). Suppose that
u ≥ ε in Ω for some ε > 0. Then for any q > 0 there is c = c(q, n, λ, Λ) > 0 such
that for every ball B(y, r) ⊂ Ω, we have

(27) inf
B(y,r/2)

u ≥ c

(
−
∫

B(y,r)

u−q dx

)− 1
q

.
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Proof. We claim that v = 1/u is a subsolution of equation (12). Indeed, first, it is
easy to show that 1/u ∈ W 1,2

loc (Ω). Second, for any η ∈ C∞
0 (Ω), η ≥ 0, let ϕ = η/u2.

We use ϕ as a test-function in equation (12) to obtain that

0 =

∫
Ω

〈A(x)∇u,∇ϕ〉 dx

=

∫
Ω

〈A(x)∇u,∇η〉 1

u2
dx− 2

∫
Ω

〈A(x)∇u,∇u〉 η

u3
dx.

The last integral is non-negative. Thus we have∫
Ω

〈A(x)∇v,∇η〉 dx = −
∫

Ω

〈A(x)∇u,∇η〉 1

u2
dx ≤ 0,

which shows that 1/u is a subsolution. Now the lemma follows from Theorem
3.5. �

Second, we show that log u is of BMO.

Lemma 3.4. Let u ∈ W 1,2(Ω) be a weak solution of equation (12). Suppose that
u ≥ ε in Ω for some ε > 0. Then for every ball B(y, 2r) ⊂ Ω, we have

(28)

∫
B(y,r)

|∇v|2 dx ≤ crn−2,

where v = log u and c = c(n, λ, Λ) > 0.

Proof. Fix η ∈ C∞
0 (ω) and let ϕ = η2/u. We use ϕ as a test-function in equation

(12) to obtain that

0 =

∫
Ω

〈A(x)∇u,∇ϕ〉 dx

=−
∫

Ω

〈A(x)∇u,∇u〉η
2

u2
dx + 2

∫
Ω

〈A(x)∇u,∇η〉η
u

dx,

from which we deduce that

(29)

∫
Ω

|∇v|2η2 ≤ 4Λ

λ

∫
Ω

|∇η|2 dx.

Then (28) follows by choosing η ∈ C∞
0 (B(y, 2r)) such that η = 1 on B(y, r) and

|∇η| ≤ 2/r in B(y, 2r). �

Definition 3.1. A function v ∈ L1
loc(Ω) is said to be of bounded mean oscillation,

denoted by v ∈ BMO(Ω), if

(30) [v]BMO = sup−
∫

B(y,r)

|v − vB(y,r)| dx < ∞,

where vB(y,r) = −
∫

B(y,r)
v dx is the average of v over the ball B(y, r) and the supremum

in (30) is taken for all balls B(y, r) such that B(y, 2r) ⊂ Ω.

A fundamental property of BMO functions is the exponential integrability.
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Lemma 3.5 (John-Nirenberg Lemma). Suppose that v ∈ BMO(Ω). Then there are
positive constants c1 and c2, depending only on n and [v]BMO, such that for every
B(y, 2r) ⊂ Ω, we have

(31) −
∫

B(y,r)

exp(c1|v − vB(y,r)|) dx ≤ c2.

Finally, we give the proof of Theorem 3.6.

Proof of Theorem 3.6. By Lemma 3.4 and the Poincaré inequality, we have for every
ball B(y, 2r) ⊂ Ω

−
∫

B(y,r)

|v − vB(y,r)|2 dx ≤ c(n)r2

∫
B(y,r)

|∇v|2 dx ≤ c(n, λ, Λ).

Thus u ∈ BMO(Ω). Then the John-Nirenberg lemma yields

−
∫

B(y,r)

exp(c1|v − vB(y,r)|) dx ≤ c2

for c1 = c1(n, λ, Λ) > 0 and c2 = c2(n, λ, Λ) > 0. Then we have

−
∫

B(y,r)

uc1 dx×
∫

B(y,r)

u−c1 dx

=−
∫

B(y,r)

exp(c1(v − vB(y,r))) dx×
∫

B(y,r)

exp(c1(vB(y,r) − v)) dx

≤
(
−
∫

B(y,r)

exp(c1|v − vB(y,r)|) dx

)2

≤ c2
2,

from which, together with Lemma 3.3, proves (26) with q = c1. This finishes the
proof of Theorem 3.6. �

4. De Giorgi’s method

4.1. De Giorgi’s class of functions. In his fundamental work on linear elliptic
equations, De Giorgi [1] established the local boundedness and the Hölder continuity
for functions satisfying certain integral inequalities, known as the De Giorgi class of
functions.

Let Ω be an open set in Rn and γ be a constant. The De Giorgi class DG+(Ω, γ)
consists of functions u ∈ W 1,2(Ω), which satisfy for every ball B(y, r) ⊂ Ω, for every
0 < r′ < r and for every k ∈ R, the following Caccioppoli type inequality

(32)

∫
B(y,r′)

|∇(u− k)+|2 dx ≤ γ

(r − r′)2

∫
B(y,r)

|(u− k)+|2 dx,

where (u − k)+ = max(u − k, 0). Similarly, we may define the class DG−(Ω, γ) by
replacing (u− k)+ by (u− k)− = min(u− k, 0). Thus u ∈ DG+(Ω, γ) if and only if
−u ∈ DG−(Ω, γ). We denote DG(Ω, γ) = DG+(Ω, γ) ∩DG−(Ω, γ).

All weak solutions of equation (12) are in the De Giorgi class. We already proved
the following lemma, see the proof of Lemma 3.1.

Lemma 4.1. Let u ∈ W 1,2(Ω) be a weak subsolution of equation (12). Then u ∈
DG+(Ω, γ) for some γ = γ(λ, Λ) > 0.
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4.2. Boundedness of functions in DG(Ω, γ).

THEOREM 4.1. Let γ > 0 be a constant and u ∈ DG+(Ω, γ). Then u ∈ L∞
loc(Ω).

Moreover, for every ball B(y, r) ⊂ Ω, we have

(33) sup
B(y,r/2)

u+ ≤ c

(
−
∫

B(y,r)

|u+|2 dx

) 1
2

,

where c = c(n, γ) > 0.

Proof. Fix B(y, r) ⊂ Ω. Let M > 0 be a number to be chosen later. We set

ki = M − M

2i
, i = 0, 1, 2, ...

and consider the sequence of radii

ri =
r

2
+

r

2i+1
, r̄i =

1

2
(ri + ri+1) =

r

2
+

3

4
· r

2i+1
, i = 0, 1, 2, ....

Let ηi ∈ C∞
0 (B(y, r̄i)) be a cut-off function such that ηi = 1 in B(y, ri+1) and

|∇ηi| ≤ 2i+8/r. We only prove the case n ≥ 3. By Hölder’s inequality, we have

(34)

∫
B(y,ri+1)

|(u− ki+1)
+|2 dx ≤

∫
B(y,r̄i)

|(u− ki+1)
+ηi|2 dx

≤
(∫

B(y,r̄i)

|(u− ki+1)
+ηi|

2n
n−2 dx

)n−2
n

|Ai|
2
n ,

where Ai = {x ∈ B(y, r̄i) : u(x) > ki+1}. We continue to estimate the first integral
on the right hand side of (34) by Sobolev inequality

I =

(∫
B(y,r̄i)

|(u− ki+1)
+ηi|

2n
n−2 dx

)n−2
n

≤c(n)

∫
B(y,r̄i)

|∇((u− ki+1)
+ηi)|2 dx

≤c

∫
B(y,r̄i)

|∇(u− ki)
+|2 dx + c

∫
B(y,r̄i)

|(u− ki+1)
+|2|∇ηi|2 dx.

Since u ∈ DG+(Ω, γ), we have∫
B(y,r̄i)

|∇(u− ki)
+|2 dx ≤ γ

(ri − r̄i)2

∫
B(y,ri)

|(u− ki)
+|2 dx.

Thus, we get

(35) I ≤ c22i

r2

∫
B(y,ri)

|(u− ki)
+|2 dx,

where c = c(n, γ) > 0. Now let

Yi =
1

M2rn

∫
B(y,ri)

|(u− ki)
+|2 dx

and observe that

(36) Yi ≥
(ki+1 − ki)

2

M2rn
|{x ∈ B(y, ri) : u(x) > ki+1}| ≥

1

22i+2rn
|Ai|.
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Thus combining (34), (35) and (36) yields

Yi+1 ≤ cbiY 1+δ
i , b = 22+ 4

n , δ = 1 +
2

n
.

It is easy to prove (Exercise) that there is ε0 = ε0(c, b, δ) > 0 such that if Y0 ≤ ε0,
then Yi → 0 as i →∞. This means that

sup
B(y,r/2)

u ≤ M

if we choose M such that

Y0 =
1

M2rn

∫
B(y,r)

|u+|2 dx = ε0.

This proves the theorem. �

4.3. Hölder continuity of functions in DG(Ω, γ). In this subsection, we will
prove the Hölder continuity for functions in the De Giorgi class.

THEOREM 4.2. Let γ > 0 be a constant. There is an exponent α = α(n, γ), 0 <
α ≤ 1, such that for every u ∈ DG(Ω, γ), we have u ∈ C0,α(Ω). Moreover, there is
δ = δ(n, γ), 0 < δ < 1, such that for every ball B(y, r) ⊂ Ω, we have

oscB(y,r/4)u ≤ δ oscB(y,r)u.

Theorem 4.2 follows from the following two lemmas.

Lemma 4.2. For any θ > 0, there is s = s(θ, γ, n) ≥ 1 such that the following
holds: for every u ∈ DG+(Ω, γ) and for every ball B(y, r) ⊂ Ω if

(37) |{x ∈ B(y, r/2) : u(x) ≤ k0}| ≥
1

2
|B(y, r/2)|

holds for some k0 ∈ R, then we have

(38) |{x ∈ B(y, r/2) : u(x) > Mr −
1

2s
(Mr − k0)}| ≤ θ|B(y, r/2)|,

where Mr = supB(y,r) u.

Proof. Fix B(y, r) ⊂ Ω and k0 ∈ R such that (37) holds. We may assume that
k0 < Mr. Otherwise, there is nothing to prove. Since u ∈ DG+(Ω, γ), then for any
k, ∫

B(y,r/2)

|∇(u− k)+|2 dx ≤4γ

r2

∫
B(y,r)

|(u− k)+|2 dx

≤c(n, γ)rn−2(Mr − k)2.

For any k0 ≤ k < l < Mr, we have by Hölder’s inequality(∫
Ak,l

|∇u| dx

)2

≤
∫

Ak,l

|∇u|2 dx|Ak,l|

≤
∫

B(y,r/2)

|∇(u− k)+|2 dx|Ak,l|,

where Ak,l = {x ∈ B(y, r/2) : k < u(x) ≤ l}. Thus,

(39)

(∫
Ak,l

|∇u| dx

)2

≤ c(Mr − k)2rn−2|Ak,l|.
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Now note that

|{x ∈ B(y, r/2) : u(x) ≤ k}| ≥ 1

2
|B(y, r/2)|

for all k ≥ k0, due to (37). We apply Theorem 2.3 to obtain that

(40) (l − k)|Al|1−
1
n ≤ c(n)

∫
Ak,l

|∇u| dx,

where
Al = {x ∈ B(y, r/2) : u(x) > l}.

It follows from (39) and (40) that

(41) (l − k)2|Al|2−
2
n ≤ c(Mr − k)2rn−2|Ak,l|

for all k0 ≤ k < l < Mr. Now set

ki = Mr −
1

2i
(Mr − k0), i = 0, 1, 2, . . . .

Then (41) with k = ki, l = ki+1 gives

|Aki+1
|2−

2
n ≤ crn−2|Aki,ki+1

|.
Let i0 ∈ N, to be chosen soon. Sum the above inequality from i = 0 to i0 − 1. Note
that |Aki+1

| ≥ |Aki0
| for all 0 ≤ i ≤ i0 − 1. Thus we arrive at

i0|Ai0|2−
2
n ≤ crn−2|Ak0| ≤ cr2n−2.

By choosing i0 big enough, we proved the lemma. �

Lemma 4.3. There is θ = θ(n, γ) > 0 such that the following holds: for every
u ∈ DG+(Ω, γ), for every ball B(y, r) ⊂ Ω and for any k0 ∈ R, if

(42) |{x ∈ B(y, r) : u(x) > k0}| ≤ θ|B(y, r)|,
then we have

(43) sup
B(y,r/2)

u ≤ 1

2
k0 +

1

2
sup

B(y,r)

u.

Proof. Fix B(y, r) ⊂ Ω and fix k0 such that (42) holds for some θ, which will be
chosen later. Denote Mr = supB(y,r) u. We may assume that k0 < Mr. Otherwise,
the conclusion in the lemma is trivial. Now we consider a sequence

ki =
k0

2
+

Mr

2
− 1

2i+1
(Mr − k0), i = 0, 1, 2, . . .

and a sequence of radii

ri =
r

2
+

r

2i+1
, i = 0, 1, 2, . . . .

Since u ∈ DG+(Ω, γ), (32) with k = ki, r = ri, r
′ = ri+1 gives

(44)

∫
Aki,ri+1

|∇u|2 dx ≤ γ

(ri − ri+1)2

∫
Aki,ri

|(u− ki)
+|2 dx

≤c22i

r2
(Mr − k0)

2|Aki,ri
|,

where we denote
Ak,ρ = {x ∈ B(y, ρ) : u(x) > k}.
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On the other hand, due to (42), we have

|Aki,ri+1
| ≤ |Ak0,r| ≤ θ|B(y, r)| ≤ 1

2
|B(y, ri+1)|,

if we assume that θ ≤ 1/2n+1. Then by Theorem 2.3 with k = ki, l = ki+1, we have

(45)

(ki+1 − ki)|Aki+1,ri+1
|1−

1
n ≤c(n)

∫
Aki,ri+1

|∇u| dx

≤c(n)

(∫
Aki,ri+1

|∇u|2 dx

) 1
2

|Aki,ri+1
|
1
2 .

Combining (44) and (45) yields

(ki+1 − ki)|Aki+1,ri+1
|1−

1
n ≤ c2i

r
(Mr − k0)|Aki,ri

|
1
2 |Aki,ri+1

|
1
2 ≤ c2i

r
|Aki,ri

|,

that is,

(46) Yi+1 ≤ cbiY
n

n−1

i , b = 2
2n

n−1 , c = c(n, γ) > 0,

where we denote

Yi =
|Aki,ri

|
|B(y, r)|

.

Now we can iterate (46) and prove (Exercise) that there is θ = θ(b, c) > 0 such that
Yi → 0 as i →∞, provided that Y0 ≤ θ. This proves the lemma. �

Now we are in the position to prove Theorem 4.2.

Proof of Theorem 4.2. Let u ∈ DG(Ω, γ) and fix a ball B(y, r) ⊂ Ω. Set

Ms = sup
B(y,s)

u, ms = inf
B(y,s)

u.

Then we let k0 = (Mr + mr)/2. We may assume that

|{x ∈ B(y, r/2) : u(x) ≤ k0}| ≥
1

2
|B(y, r/2)|.

Otherwise, we consider −u, instead of u. Let θ = θ(n, γ) > 0 be the number
determined as in Lemma 4.3. Now we apply Lemma 4.2 to obtain that

|{x ∈ B(y, r/2) : u(x) > Mr −
1

2s
(Mr − k0)}| ≤ θ|B(y, r/2)|

where s = s(n, γ) ≥ 1. Then we apply Lemma 4.3 to obtain that

Mr/4 ≤
1

2
[Mr −

1

2s
(Mr − k0)] +

1

2
Mr/2 ≤ Mr −

1

2s+1
(Mr − k0).

Therefore, we have

Mr/4 −mr/4 ≤ Mr −
1

2s+1
(Mr − k0)−mr = (1− 1

2s+2
)(Mr −mr),

which proves the theorem. �
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5. Further discussions

5.1. Degenerate elliptic equations. In equation (1), we assume the following for
the coefficients A(x)

(47) λ(x)|ξ|2 6 〈A(x)ξ, ξ〉 =
n∑

i,j=1

aij(x)ξiξj 6 Λ(x)|ξ|2

for all ξ = (ξ1, . . . , ξn) ∈ Rn and for almost every x ∈ Ω. Here 0 ≤ λ(x) ≤ Λ(x) ≤ ∞
are given functions.

In 1995, De Giorgi gave a talk in Lecce, Italy, and discussed the natural question:
are size assumptions on λ(x)−1 and Λ(x) sufficient to guarantee the continuity of
weak solutions? He raised the following conjectures on the continuity of weak solu-
tions of equation (1). The first one concerns the singular case in higher dimensions.

Conjecture 1. [De Giorgi [2]] Let n ≥ 3. Suppose that A(x) satisfies (47) with
λ(x) = 1 and with Λ(x) satisfying

(48)

∫
Ω

exp(Λ(x)) dx < ∞.

Then all weak solutions of equation (1) are continuous in Ω.

The second one concerns the degenerate case in higher dimensions.

Conjecture 2. [De Giorgi [2]] Let n ≥ 3. Suppose that A(x) satisfies (47) with
Λ(x) = 1 and with λ(x) satisfying

(49)

∫
Ω

exp(λ(x)−1) dx < ∞.

Then all weak solutions of equation (1) are continuous in Ω.

The third one concerns the case of singular and degenerate equations in higher
dimensions.

Conjecture 3. [De Giorgi [2]] Let n ≥ 3. Suppose that A(x) satisfies (47) with
Λ(x) = λ(x)−1 satisfying

(50)

∫
Ω

exp(Λ(x)2) dx < ∞.

Then all weak solutions of equation (1) are continuous in Ω.

The fourth one concerns the planar case, n = 2, which is different from the higher
dimensional cases.

Conjecture 4. [De Giorgi [2]] Let n = 2. Suppose that A(x) satisfies (47) with
Λ(x) = 1 and with λ(x) satisfying

(51)

∫
Ω

exp(
√

λ(x)−1) dx < ∞.

Then all weak solutions of equation (1) are continuous in Ω.

Conjecture 1, Conjecture 2, and Conjecture 3 are still open. As far as we know,
the best known result is due to Trudinger [20], which is far from the conjectures.
It seems one needs new ideas to deal with these challenging problems. Concerning
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Conjecture 4, Onninen and the author [16] recently proved that all weak solutions
of equation (1) are continuous under the assumption that∫

Ω

exp(α
√

λ(x)−1) dx < ∞

for some constant α > 1.
Another interesting part of [2] is that De Giorgi also conjectured that his conjec-

tures above are sharp; the integrability conditions (48), (49) and (51) are optimal to
guarantee the continuity of weak solutions. For example, in Conjecture 1, one can
not replace (48) by the following weaker one

(52)

∫
Ω

exp(αΛ(x)1−δ) dx < ∞

for some δ > 0 and any α > 0. De Giorgi conjectured that one can construct
a function Λ(x) satisfying the integrability condition (52) such that equation (1)
satisfying (47) with λ(x) = 1 and with this Λ(x) has discontinuous weak solutions.

In [2], De Giorgi even gave hints how to construct such counter examples to show
the sharpness of the above conjectures. He made the following precise conjectures.
Let Ω = {x = (x1, ..., xn) ∈ Rn : |x| < 1/e} and A, B be subsets of Ω

A = {x ∈ Ω : 2|xn| > |x|}, B = {x ∈ Ω : 2|xn| < |x|}.
The first conjecture would yield the sharpness of Conjecture 1.

Conjecture 5. [De Giorgi [2]] Let n ≥ 3. For any ε > 0, define a function τ1 in
Ω as follows

τ1(x) =

{
| log |x||1+ε if x ∈ A;

1 if x ∈ B.

Then equation (1) with A(x) = τ1(x)I has a weak solution, discontinuous at the
origin.

The second one would yield the sharpness of Conjecture 2.

Conjecture 6. [De Giorgi [2]] Let n ≥ 3. For any ε > 0, define a function τ2 in
Ω as follows

τ2(x) =

{
1 if x ∈ A;

| log |x||−(1+ε) if x ∈ B.

Then equation (1) with A(x) = τ2(x)I has a weak solution, discontinuous at the
origin.

The third one concerns the planar case, and would yield the sharpness of Conjec-
ture 4.

Conjecture 7. [De Giorgi [2]] Let n = 2. For any ε > 0, define a function τ3 in
Ω as follows

τ3(x) =

{
1 if x ∈ A;

| log |x||−(2+ε) if x ∈ B.

Then equation (1) with A(x) = τ3(x)I has a weak solution, discontinuous at the
origin.

In [22], it was proved that Conjecture 5, Conjecture 6 and Conjecture 7 are true.
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THEOREM 5.1. Conjecture 5 is true.

THEOREM 5.2. Conjecture 6 is true.

THEOREM 5.3. Conjecture 7 is true.
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