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CHAPTER 1

Weighted Polynomial Inequalities with doubling
or A∞ weights

Polynomial inequalities have been playing crucial roles in approximation the-
ory and other related fields. The main purposes in this chapter is to establish
various important weighted polynomial inequalities on the sphere, such as Bern-
stein, Marcinkiewicz-Zygmund, Nikolskii, Remez, under the doubling condition or
the slightly A∞ condition on the weights. Definitions and examples of doubling
weights and A∞ weights are given in the first section, together with some use-
ful properties of these weights. Section 2 is devoted to establishing useful highly
localized estimates for a reproducing kernel and spherical polynomials. The funda-
mental tool for the investigation of weighted polynomial inequalities is a maximal
function for spherical polynomials, which we introduce and study in the third sec-
tion. It turns out that this maximal function can be controlled pointwisely by
the Hardy-Littlewood maximal function, based on which several useful corollaries
are deduced. Weighted Marcinkiewicz-Zygmund (MZ) inequalities are established
in the fourth section, whereas weighted positive cubature formulas are studied in
connection with MZ inequalities in the fifth section. The sixth section deals with
weighted Bernstein and Nikolskii inequalities. Finally, in the seventh section, we
establish weighted Remez type inequalities with A∞ weights.

1. Preliminaries

Let Sd−1 = {x ∈ Rd : ‖x‖2 := x2
1 + · · · + x2

d = 1} denote the unit sphere
of Rd equipped with the usual rotation invariant Lebesgue measure dσ(x). Let
d(x, y) = arccosx · y denote the geodesic distance of x, y ∈ Sd−1, and let c(x, r) :=
{y ∈ Sd−1 : d(x, y) ≤ r} denote the spherical cap centered at x ∈ Sd−1 having
radius r > 0. Given a set E ⊂ Sd−1, we denote by χE and meas(E) ≡ |E| the
characteristic function of E and the Lebesgue measure σ(E) of E, respectively. We
shall use the notation A ∼ B to mean that there exists an inessential constant
c > 0, called the constant of equivalence, such that c−1A ≤ B ≤ cA.

A spherical harmonic of degree k on Sd−1 is the restriction to the sphere Sd−1

of a homogeneous harmonic polynomial of degree k, while a spherical polynomial of
degree at most N on Sd−1 is the restriction to Sd−1 of a polynomial in d variables
of degree at most N . We denote by Hdk the space of all real spherical harmonics of
degree k on Sd−1, and by Πd

n the space of all real spherical polynomials of degree
at most n on Sd−1.

The spaces Hdk, k = 0, 1, · · · of spherical harmonics are mutually orthogonal
with respect to the inner product

〈f, g〉 :=

∫
Sd−1

f(x)g(x) dσ(x). (1.1)

In fact, each space Hdn is the orthogonal complement of Πd
n−1 in the Hilbert space

Πd
n with respect to the inner product (1.1). Thus, the space Πd

n has an orthogonal
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78 1. WEIGHTED POLYNOMIAL INEQUALITIES

decomposition Πd
n =

⊕n
k=0Hdk. The dimension of Hdk is given by

adk :=dimHdk =
(2k + d− 2)Γ(k + d− 1)

(k + d− 2)Γ(k + 1)Γ(d− 1)
∼ kd−2, as k →∞,

which also implies

dim Πd
n =

n∑
k=0

adk =

(
n+ d− 1

n

)
∼ nd−1.

Since the space of spherical polynomials is dense in L2 ≡ L2(Sd−1), we also have
the orthogonal decomposition for L2(Sd−1): L2(Sd−1) =

⊕∞
k=0Hdk. By the addition

formula for spherical harmonics, the orthogonal projection projk f of f ∈ L2 onto
Hdk can be expressed as

projk f(x) = ck

∫
Sd−1

f(y)P
( d−3

2 , d−3
2 )

k (x · y) dσ(y), x ∈ Sd−1, (1.2)

where

ck =
Γ(d−1

2 )

Γ(d− 1)|Sd−1|
(2k + d− 2)Γ(k + d− 2)

Γ(k + d−1
2 )

,

and P
(α,β)
k (t) denotes the usual Jacobi polynomial of degree k and indices α, β.

The Laplace -Beltrami operator ∆0 on Sd−1 is defined by

∆0f(x) := ∆RdF (x), x ∈ Sd−1, f ∈ C2(Sd−1),

with ∆Rd =
∑d
j=1

∂2

∂x2
j

and F (y) := f(y|y|−1). The operator ∆0 is an elliptic,

unbounded, selfadjoint operator on L2(Sd−1). More importantly, each Hdk is the
space of eigenfunctions of ∆0 corresponding to the eigenvalue λk = −k(k + d− 2);
that is,

Hdk =
{
f ∈ C2(Sd−1) : ∆0f = λkf

}
, k = 0, 1, · · · . (1.3)

The Laplace-Beltrami operator ∆0 can be decomposed as

∆0 =
∑

1≤i<j≤d

D2
i,j , (1.4)

where

Di,j := xj
∂

∂xi
− xi

∂

∂xj
, 1 ≤ i 6= j ≤ d. (1.5)

A remarkable fact is that each differential operator Di,j commutes with the Laplace-
Beltrami operator ∆0. The differential operators Di,j will play an important role
in our analysis. Thus, we collect some of the properties of these operators in the
following lemma.

Lemma 1.1. (i) Each Di,j preserves spherical harmonics, i.e., Di,jHdk ⊂ Hdk.
(ii) Each Di,j commutes with the Laplacian-Beltrami operator ∆0.
(iii) 〈Di,jf, g〉 = −〈f,Di,jg〉 holds for all f, g ∈ C1(Sd−1).
(iv) For r ∈ N,

Dr
1,2f(x) =

(
− ∂

∂φ

)r
f(s cosφ, s sinφ, x3, . . . , xd), (1.6)

where (x1, x2) = (s cosφ, s sinφ). Other Dr
i,j can be expressed likewise.

(v) Every tangential derivative on the sphere can be expressed in terms of the
differential operators Di,j:

∂

∂xj

[
f

(
x

‖x‖

)]
‖x‖=1

= −
∑

{i: i=1,··· ,d, i 6=j}

xiDi,jf.
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(vi) For any f, g ∈ C1(Sd−1), we have

〈∇0f,∇0g〉 =
∑

1≤i<j≤d

〈Di,jf,Di,jg〉,

where ∇0f denotes the tangential gradient given by

∇0f = ∇
[
f

(
x

‖x‖

)]
‖x‖=1

.

A nonnegative integrable function on Sd−1 is called a weight function.
Given a weight function w (i.e., a nonnegative integrable function) on Sd−1,

we denote by Lp,w ≡ Lp,w(Sd−1) the Lebesgue space on Sd−1 endowed with the
quasi-norm

‖f‖p,w =

(∫
Sd−1

|f(x)|pw(x) dσ(x)

) 1
p

, 0 < p <∞.

We write w(E) =
∫
E
w(x) dσ(x) for E ⊂ Sd−1 and a weight function w. Given a

spherical cap B := c(x, r) and c > 0, we denote by cB the spherical cap c(x, cr)
with the same center as B but with c times the radius.

A weight function w on Sd−1 is said to satisfy the doubling condition if there
exists a constant L > 0 such that

w(2B) ≤ Lw(B) for all spherical caps B ⊂ Sd−1. (1.7)

The least constant L for which (1.7) is satisfies is called the doubling constant of w,
and is denoted by Lw. We will use the letter sw to denote a number which satisfies
0 ≤ sw ≤ logLw/ log 2 and

sup
B

w(2mB)

w(B)
≤ CLw2msw , m = 1, 2, · · · , (1.8)

for some constant CLw depending only on Lw, with the supremum being taken over
all spherical caps B ⊂ Sd−1. Evidently, such a number sw satisfies

lim
m→∞

1

m
log2

(
sup
B

w(2mB)

w(B)

)
≤ sw ≤

logLw
log 2

. (1.9)

Note that according to (1.7), (1.8) is satisfies with sw = logLw/ log 2 and CLw = 1.
For n = 1, 2, · · · , we set

wn(x) = nd−1

∫
c(x, 1n )

w(y) dσ(y), and w0(x) = w1(x). (1.10)

The following lemma sketches several useful properties of doubling weights.

Lemma 1.2. Let w be a doubling weight on Sd−1.
(i) If 0 < r < t and x ∈ Sd−1, then

w(c(x, t)) ≤ CLw
( t
r

)sw
w(c(x, r)). (1.11)

(ii) For x, y ∈ Sd−1 and n = 0, 1, · · · ,

wn(x) ≤ CLw(1 + nd(x, y))swwn(y). (1.12)

Proof. (i) Assuming that 2m−1 ≤ t/r ≤ 2m, we have

w(c(x, t)) ≤ w(c(x, 2mr)) ≤ LwCLw2(m−1)sww(c(x, r)) ≤ LwCLw
( t
r

)sw
w(c(x, r)),

which proves (i).
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(ii) For x, y ∈ Sd−1, we have

wn(x) = n−(d−1)

∫
c(x,n−1)

w(z) dσ(z) ≤ n−(d−1)

∫
c(y,n−1+d(x,y))

w(z) dz

≤ CLwn−(d−1)
(n−1 + d(x, y)

n−1

)sw
w(c(y, n−1)) ≤ CLw(1 + nd(x, y))swwn(y),

where the third step uses (1.11). This completes the proof of (ii). �

A weight function w on Sd−1 is called an A∞ weight if there exists a constant
β ≥ 1 such that

w(B)

w(E)
≤ β

(
measB

measE

)β
(1.13)

for every spherical cap B ⊂ Sd−1 and every measurable subset E of B. The least
constant β in (1.13) is called the A∞ constant of w, and is denoted by A∞(w).

Directly by their definitions, an A∞ weight must be a doubling weight. Below
we give two important examples of A∞-weights on Sd−1.

Example 1.3. Let κ = (κ1, · · · , κd) ∈ Rd+ and |κ| = κ1 + . . .+ κd. The weight
function

wκ(x) =

d∏
j=1

|xj |κj , x = (x1, · · · , xd) ∈ Sd−1. (1.14)

satisfies the A∞ condition. Furthermore, the least constant swκ for which (1.8) is
satisfied is given by

swκ := d− 1 + |κ| − min
1≤j≤d

κj . (1.15)

Moreover, if x ∈ Sd−1 and θ ∈ (0, π), then

wκ(c(x, θ)) ∼ θd−1
d∏
j=1

(|xj |+ θ)κj . (1.16)

Proof. Let E be a measurable subset of a spherical cap B = c(x, θ) ⊂ Sd−1,
and let γ := measE/measB. We claim that

c1γ
βθd−1

d∏
j=1

(|xj |+ θ)κj ≤ wκ(E) ≤ c2γθd−1
d∏
j=1

(|xj |+ θ)κj , (1.17)

with β = 1 + |κ| −min1≤j≤d κj .
For the moment, we take (1.17) for granted and proceed with our proof. Clearly,

(1.16) follows directly by (1.17) applied to E = B. For the proof of (1.15), using
(1.8) and (??), it suffices to verify the following two inequalities:

wκ(2mB)

wκ(B)
≤ C2ms

′
κ , ∀B = c(x, θ), x ∈ Sd−1, (1.18)

lim
m→∞

1

m
log2

(
sup
B

wκ(2mB)

wκ(B)

)
≥ s′κ, (1.19)

where s′κ = d − 1 + |κ| −min1≤j≤d κj . To show (1.18), without loss of generality,
we may assume that |x1| = max1≤j≤d |xj |. Then using (1.16), we obtain, for
0 < θ ≤ 2−m,

wκ(2mB)

wκ(B)
∼

2m(d−1)
∏d
j=2(|xj |+ 2mθ)κj∏d

j=2(|xj |+ θ)κj
≤ 2m(d−1)2m(|κ|−κ1) ≤ 2ms

′
κ ,
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while for 2−m < θ ≤ π,

wκ(2mB)

wκ(B)
∼ 1

θd−1
∏d
j=2(|xj |+ θ)κj

≤
(1

θ

)d−1+|κ|−κ1

≤ 2ms
′
κ .

This proves (1.18). To show (1.19), without loss of generality, we may assume that
κ1 = min1≤j≤d κj . Then taking x = e1 := (1, 0, · · · , 0) ∈ Sd−1, and using (1.16),
we deduce

lim
m→∞

1

m
log2

(
sup
B

wκ(2mB)

wκ(B)

)
≥ lim
m→∞

1

m
log2

(
sup

θ∈(0,2−m)

wκ(c(e1, 2
mθ))

wκ(c(e1, θ))

)

= lim
m→∞

1

m
log2

(
sup

θ∈(0,2−m]

∏d
j=2 2mκjθκj∏d
j=2 θ

κj

)
= s′κ.

This proves (1.19). Finally, we show that wκ satisfies the A∞ condition. Indeed,
using (1.17) and (1.17), we obtain

c1γ
β = c1

(
measE

measB

)β
≤ wκ(E)

wκ(B)
≤ c2

measE

measB
= c2γ. (1.20)

The A∞ property of the weights wκ follows by the definition.
It remains to prove the claim (1.17). Without loss of generality, we may assume

that θ ∈ (0, 99−1d−
1
2 ), since (1.17) holds trivially if θ ≥ 99−1d−

1
2 . Let ε ∈ (0, 1

2 )
be a sufficiently small absolute constant to be determined later, and let Kj := {y ∈
c(x, θ) : |yj | ≤ εγθ} for j = 1, 2, · · · , d. We then assert that

measKj ≤ CdεmeasE, 1 ≤ j ≤ d. (1.21)

To see this, it is enough to consider the case j = 1. Write x = (x1, · · · , xd) =
(cos t0, ξ sin t0) for some t0 ∈ [0, π] and ξ ∈ Sd−2. If |x1| = | cos t0| > 2θ then
|y1| ≥ |x1| − d(x, y) ≥ θ for all y ∈ c(x, θ), which implies that K1 = ∅. So, without

loss of generality, we may assume that |x1| ≤ 2θ. Since θ ∈ (0, 99−1d−
1
2 ),

|t− t0|+ ‖η − ξ‖ ∼ |t− t0|+ (sin t sin t0)1/2‖η − ξ‖ ∼ d(x, y) ≤ θ
whenever y = (cos t, η sin t) ∈ c(x, θ) with t ∈ [0, π] and η ∈ Sd−2. Hence,

measK1 =

∫ π

0

sind−2 t

(∫
Sd−2

χK1
(cos t, η sin t) dσ(η)

)
dt

≤
∫ π/2+arcsin(εγθ)

π/2−arcsin(εγθ)

(∫
{η∈Sd−2: d(η,ξ)≤cθ}

dσ(η)

)
dt ≤ Cdε measE,

which proves the assertion (1.21).

Next, we choose ε = 1
2dCd

so that by (1.21),
∑d
j=1 measKj ≤ dCdεmeasE ≤

1
2 measE. In addition, setting I1 := {j : 1 ≤ j ≤ d, |xj | ≥ 4θ} and I2 := {j : 1 ≤
j ≤ d, |xj | < 4θ}, and observing that |xj | ∼ |yj | whenever j ∈ I1 and y ∈ c(x, θ),
we deduce

wα(E) =

∫
E

d∏
j=1

|yj |αj dσ(y) ∼
( ∏
j∈I1

|xj |αj
)∫

E

∏
j∈I2

|yj |αj dσ(y) (1.22)

≥
( ∏
j∈I1

|xj |αj
)∫

E\∪dj=1Kj

∏
j∈I2

(εγθ)αj dσ(y) ≥ cγβθd−1
d∏
j=1

(|xj |+ θ)αj .

Moreover, using (1.22) directly, we have the following upper estimates:

wα(E) ≤ C
( ∏
j∈I1

|xj |αj
)∫

E

∏
j∈I2

θαj dσ(y) ∼ γθd−1
d∏
j=1

(|xj |+ θ)αj .

This completes the proof of the claim (1.17). �
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Example 1.4. Let κ = (κ1, . . . , κm) ∈ Rm+ , v = (v1, . . . , vm) with vj ∈ Sd−1,
1 ≤ j ≤ m. Then the weight function

wκ,v(x) =

m∏
j=1

|〈x, vj〉|κj ,

is an A∞ weight on Sd−1. Furthermore, if x = (x1, · · · , xd) ∈ Sd−1 and θ ∈ (0, π),
then

wκ,v(c(x, θ)) ∼ θd−1
m∏
j=1

(|〈x, vj〉|+ θ)κj . (1.23)

Proof. Following the proof in the above example, we can show that if E is a
measurable subset of a spherical cap B ⊂ Sd−1, then

c1

(
measE

measB

)1+|κ|

≤ wα(E)

wα(B)
≤ c2

measE

measB

for some positive constants c1, c2 depending only on d, m and κ, from which it will
follow that wκ,v is an A∞ weight. The proof of this last equation relies on (1.23).
To illustrate the idea, we give a detailed proof of (1.23) below.

Without loss of generality, we may assume that vi 6= vj if i 6= j. Set

A = {i : 1 ≤ i ≤ m, |〈x, vi〉| < 4θ},
B = {i : 1 ≤ i ≤ m, |〈x, vi〉| ≥ 4θ}.

Note that, for y ∈ c(x, 2θ),

wκ,v(y) ∼
(∏
i∈A
|〈y, vi〉|κi

)(∏
j∈B
|〈x, vj〉|κj

)
(1.24)

≤
(∏
i∈A

(6θ)κi
)(∏

j∈B
|〈x, vj〉|κj

)
. (1.25)

The upper estimate of (1.23) then follows.
To show the lower estimate, let

Ej =
{
y ∈ c

(
x,
θ

4

)
:
∣∣∣d(y, vj)−

π

2

∣∣∣ ≤ εd,mθ}, 1 ≤ j ≤ m,

with ε
d,m

be a sufficiently small positive constant depending only on d and m. A
straightforward calculation shows that

m∑
j=1

meas(Ej) ≤ Cdεd,mmθd−1 ≤ 1

2
meas

(
c
(
x,
θ

4

))
provided that εd,m is small enough. Thus, there must exist a point y0 ∈ c(x, 4−1θ)
such that

|〈y0, vj〉| ≥ sin(εd,mθ), for all 1 ≤ j ≤ m.
It follows that c(y0,

εd,mθ
2 ) ⊂ c(x, θ) and that for any y ∈ c(y0,

εd,mθ
2 ) and i ∈ A,

5θ > |〈y, vi〉| ≥ sin
(εd,mθ

2

)
≥ εd,mθ

π
.

Using (1.24), we obtain

wκ,v(y) ∼
(∏
i∈A

θκi
)∏
j∈B
|〈x, vj〉|κj , ∀y ∈ c

(
y0,

εd,mθ

2

)
. (1.26)

Integrating over c(y0,
εd,mθ

2 ) ⊂ c(x, θ) then gives the desired lower estimate of
(1.23). This completes the proof. �
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2. Highly localized reproducing kernels

Let η be a C∞-function on [0,∞) such that η(x) = 1 for x ∈ [0, 1] and η(x) = 0
for x ≥ 2. For λ = d−2

2 and N = 1, 2, · · · , we define

LN (t) =
1

ωd

2N∑
k=0

η(
k

N
)
k + λ

λ
Cλk (t). (1.27)

It follows by (??) that

f(x) =

∫
Sd−1

f(y)LN (〈x, y〉) dσ(y), x ∈ Sd−1, ∀f ∈ Πd
N . (1.28)

This means that LN (〈x, y〉) is a reproducing kernel for the space Πd
N . We shall

keep the notations LN and η throughout this chapter.
The kernels LN will play crucial roles in our later discussions. Our main goal in

this section is to show that these kernels and their derivatives are highly localized
at t = 1. More precisely, we shall prove the following theorem.

Theorem 2.1. Given positive integer `, we have, for N ≥ 1 and θ ∈ [0, π],

|L(i)
N (cos θ)| ≤ C`,i‖η(3`−1)‖∞Nd−1+2i(1 +Nθ)−`, i = 0, 1, · · · ,

where L
(0)
N (t) = LN (t), and L

(i)
N (t) =

(
d
dt

)i
LN (t) for i ≥ 1.

Indeed, we shall prove below a more general result for kernels of the form

G
(α,β)
N,ϕ (t) :=

∞∑
k=0

ϕ(
k

N
)
(2k + α+ β + 1)Γ(k + α+ β + 1)

Γ(k + β + 1)
P

(α,β)
k (t) (1.29)

for some smooth cutoff functions ϕ : [0,∞) → C, and α ≥ β ≥ − 1
2 . It turns out

that such kernels and their derivatives are also highly localized at t = 1 under
certain conditions on ϕ. Since, by (A.6) in Appendix A,

LN (t) =
2π

d
2

Γ(d2 )

Γ(d−1
2 )

Γ(d− 1)
G

( d−3
2 , d−3

2 )

N,η (t),

Theorem 2.1 follows directly from the following more general estimates on the

kernels G
(α,β)
N,ϕ (t):

Proposition 2.2. Let ` be a positive integer, and let ϕ ∈ C3`−1[0,∞) be such
that suppϕ ⊂ [0, 2] and η(j)(0) = 0 for j = 1, 2, · · · , 3` − 2. Then for the kernel

function GN ≡ G(α,β)
N,ϕ defined by (1.29) with α ≥ β ≥ −1/2,

|G(i)
N (cos θ)| ≤ C`,i,α‖η(3`−1)‖∞N2α+2i+2(1 +Nθ)−`, i = 0, 1, · · · , (1.30)

where θ ∈ [0, π], N ∈ N, G
(0)
N (t) = G

(α,β)
N,ϕ (t) and G

(i)
N (t) =

(
d
dt

)i
{G(α,β)

N,ϕ (t)} for

i ≥ 1.

Proof. By (A.3) in Appendix A, it follows that

G
(i)
N (t) = 2−i

2N∑
k=0

ϕ(
k + i

N
)
(2k + α+ β + 2i+ 1)Γ(k + α+ β + 2i+ 1)

Γ(k + i+ β + 1)
P

(α+i,β+i)
k (t).

Thus, using summation by parts ` times, as well as (A.4) in Appendix A with
(α+ i+ j, β + i) in place of (α, β) for j = 0, 1, · · · , `, we conclude that

G
(i)
N (t) = 2−`

2N∑
k=0

aN,`(k)
Γ(k + α+ β + 2i+ `+ 1)

Γ(k + β + i+ 1)
P

(α+i+`,β+i)
k (t), (1.31)
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where {aN,j}∞j=0 is a sequence of functions on [0,∞) defined by

aN,0(s) = (2s+ α+ β + 2i+ 1)ϕ
(s+ i

N

)
,

aN,j+1(s) =
aN,j(s)

2s+ α+ β + 2i+ j + 1
− aN,j(s+ 1)

2s+ α+ β + 2i+ j + 3
, j ≥ 0.

Next, we claim that if m+ j ≤ ` and j ≥ 1, then

|a(m)
N,j (s)| ≤ c`,i(s+ 1)−m−2j+1

(s+ 1

N

)2`−1

‖ϕ(2`+m+j−1)‖L∞[0, s+j+iN ], (1.32)

which, in particular, implies

|aN,`(k)| ≤ c`,i‖ϕ(3`−1)‖∞N−2`+1. (1.33)

For the moment, we take (1.32) for granted, and proceed with the proof of (1.30).
Indeed, using (1.33) and (1.31),

|G(i)
N (cos θ)| ≤ c`,i‖ϕ(3`−1)‖∞N−2`+1

2N∑
k=0

(k + 1)α+i+`|P (α+i+`,β+i)
k (cos θ)|.

By (A.5) in Appendix A, this implies that for θ ∈ [0, π/2],

|G(i)
N (cos θ)| ≤ c`,i‖ϕ(3`−1)‖∞N−2`+1

[ ∑
0≤k≤max{θ−1,2N}

(k + 1)2α+2i+2`

+
∑

max{θ−1,2N}<k≤2N

(k + 1)α+i+`− 1
2 θ−α−i−`−

1
2

]
≤ c`,i‖ϕ(3`−1)‖∞N2α+2i+2(1 +Nθ)−(α+i+`+ 1

2 ),

and that for θ ∈ [π2 , π],

|G(i)
N (cos θ)| ≤ c`,i‖ϕ(3`−1)‖∞N−2`+1

2N∑
k=0

(k + 1)α+i+`(k + 1)β+i

≤ c`,i‖ϕ(3`−1)‖∞N2α+2i+2N−`,

where the last step uses the assumption α ≥ β. Putting the above together, and
recalling that α ≥ − 1

2 , we deduce the desired estimate (1.30).
It remains to prove the claim (1.32). We first observe that by Taylor’s theorem,

‖ϕ(m)‖L∞[0,t] ≤
tk

k!
‖ϕ(m+k)‖L∞[0,t], t ≥ 0 (1.34)

whenever m ≥ 1 and m + k ≤ 3` − 1. Next, we show (1.32) for the case of j = 1.
Since aN,1 is supported in [0, 2N ], without loss of generality, we may assume that
0 ≤ s ≤ 2N . By definition, we have

aN,1(s) = ϕ
(s+ i

N

)
− ϕ

(s+ i+ 1

N

)
= −

∫ i+1
N

i
N

ϕ′
( s
N

+ t
)
dt.

This combined with (1.34) implies that

|a(m)
N,1(s)| ≤ N−m

∣∣∣∫ i+1
N

i
N

ϕ(m+1)(
s

N
+ t) dt

∣∣∣
≤ N−m−1 1

(2`− 1)!

(s+ i+ 1

N

)2`−1

‖ϕ(m+2`)‖L∞[0, s+i+1
N ]

≤ c`,i(s+ 1)−m−1
(s+ 1

N

)2`−1

‖ϕ(m+2`)‖L∞[0, s+i+1
N ],
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where the last step uses the assumption 0 ≤ s ≤ 2N . This proves (1.32) for the
case of j = 1. Finally, assuming that (1.32) has been proven for some j ≥ 1, and
observing that

a
(m)
N,j+1(s) = −

∫ 1

0

( d
dt

)m+1( aN,j(s+ t)

2s+ 2t+ α+ β + 2i+ j + 1

)
dt,

we obtain that for m+ j + 1 ≤ `,

|a(m)
N,j+1(s)| ≤

∫ 1

0

max
k1+k2=m+1
k1,k2∈Z+

|a(k1)
N,j (s+ t)|(s+ 1)−k2−1 dt

≤ c`,i(s+ 1)−m−2j−1
(s+ 1

N

)2`−1

‖ϕ(2`+m+j)‖L∞[0, s+j+i+1
N ].

This proves (1.32) for the case of j + 1, and hence completes the induction. �

3. A maximal function for spherical polynomials

Let us first introduce some notations for the rest of this section. Let w be
a doubling weight on Sd−1, and let sw denote a positive number satisfying (1.8)

and 0 ≤ sw ≤ logLw
log 2 . The weighted Hardy-Littlewood maximal function Mw is

defined by

Mwg(x) = sup
0<r≤π

1

w(c(x, r))

∫
c(x,r)

|g(y)|w(y) dσ(y).

Since w satisfies the doubling condition, it follows that

‖Mwg‖p,w ≤ Cp‖g‖p,w, 1 < p ≤ ∞, (1.35)

where ‖ · ‖p,w denotes the weighted quasi-norm defined by

‖f‖p,w =


(∫

Sd−1 |f(x)|pw(x) dσ(x)
) 1
p

, 0 < p <∞,
esssup
x∈Sd−1

|f(x)|, p =∞.

Definition 3.1. Given β > 0, f ∈ C(Sd−1) and n ∈ Z+, we define

f∗β,n(x) = max
y∈Sd−1

|f(y)|(1 + nd(x, y))−β , x ∈ Sd−1. (1.36)

The maximal function f∗β,n will be the main tool for us to study the weighted
spherical polynomial inequalities in the next few sections. Our main goal in this
section is to show that for any spherical polynomial f ∈ Πd

n, the maximal function
f∗β,n can be controlled pointwisely by (Mw(|f |γ))1/γ with γ = sw/β.

Theorem 3.2. For f ∈ Πd
n, β > 0 and γ = sw/β,

f∗β,n(x) ≤ Cβ,Lw
(
Mw(|f |γ)(x)

)1/γ

, x ∈ Sd−1. (1.37)

Proof. Let Ln be the kernel as defined in (1.27), and set

An,δ(y, u) := sup
z∈c(y, δn )

|Ln(〈y, u〉)− Ln(〈z, u〉)| (1.38)

for δ > 0 and y, u ∈ Sd−1.
Using Theorem 2.1 with i = 0, 1, it is easily seen that for any ` > 0, and

θ = d(y, u),

An,δ(y, u) ≤ Cd,`

{
nd−1, if θ ∈ [0, 4δ

n ],

δnd−1(1 + nθ)−`, if θ ∈ [ 4δ
n , π].

(1.39)
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Thus, using (1.28) and (1.39), we obtain that for x, y ∈ Sd−1,

max
z∈c(y, δn )

|f(y)− f(z)|
(1 + nd(x, y))β

≤ f∗β,n(x)

∫
Sd−1

(
1 + nd(x, u)

1 + nd(x, y)

)β
An,δ(y, u) dσ(u)

≤ f∗β,n(x)

∫
Sd−1

(1 + nd(y, u))βAn,δ(y, u) dσ(u) ≤ Cβδf∗β,n(x).

It follows that for x, y ∈ Sd−1 and δ ∈ (0, 1
4 ),

|f(y)|γ(1 + nd(x, y))−sw ≤ 2γ(1 + nd(x, y))−sw min
z∈c(y, δn )

|f(z)|γ +

(
2Cβδf

∗
β,n(x)

)γ
≤ 2γ(1 + nd(x, y))−sw

(∫
c(y, δn )

w(z) dσ(z)

)−1 ∫
c(y, δn )

|f(z)|γw(z) dσ(z)

+

(
2Cβδf

∗
β,n(x)

)γ
=: I +

(
2Cβδf

∗
β,n(x)

)γ
. (1.40)

If d(x, y) ≤ δ
n , then c(y, δn ) ⊂ c(x, 2δ

n ) ⊂ c(y, 3δ
n ), and

I ≤ 2γL2
w

(∫
c(x, 2δn )

w(z) dσ(z)

)−1 ∫
c(x, 2δn )

|f(z)|γw(z) dσ(z)

≤ 2γL2
wMw(|f |γ)(x).

On the other hand, if δ
n ≤ θ := d(x, y) ≤ π, then c(y, δn ) ⊂ c(x, 2θ) ⊂ c(y, 3θ) and

using (1.8), ∫
c(y, δn )

w(z) dσ(z) ≥ C ′Lw

(
3θn

δ

)−sw ∫
c(y,3θ)

w(z) dσ(z)

≥ C ′Lw

(
3θn

δ

)−sw ∫
c(x,2θ)

w(z) dσ(z),

which in turn implies that

I ≤ CLw2γ
(

3θn

δ

)sw
(1 + nθ)−sw

(∫
c(x,2θ)

w(z) dσ(z)

)−1 ∫
c(x,2θ)

|f(z)|γw(z) dσ(z)

≤ CLw2γ
(

3

δ

)sw
Mw(|f |γ)(x).

Therefore, in either case, we have shown that

I ≤ 2γCLwδ
−swMw(|f |γ)(x). (1.41)

Substituting (1.41) into (1.40), letting δ = (4Cβ)−1, and taking the supremum over
all y ∈ Sd−1, we deduce(

f∗β,n(x)

)γ
≤ CLw2γ(4Cβ)swMw(|f |γ)(x) + 2−γ(f∗β,n(x))γ .

The desired inequality (1.37) then follows with Cβ,Lw = 4β+1C
1/γ
Lw

Cββ (2γ − 1)−1/γ .
This completes the proof. �

As a simple consequence of (1.35) and Theorem 3.2, we have the following
useful corollary.

Corollary 3.3. If 0 < p ≤ ∞, f ∈ Πd
n and β > sw

p , then

‖f‖p,w ≤ ‖f∗β,n‖p,w ≤ C‖f‖p,w,
where C > 0 depends only on d, Lw and β when β is big or close to sw

p .
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Definition 3.4. For f ∈ C(Sd−1) and r > 0, we define

osc(f)(x, r) = sup
y,z∈c(x,r)

|f(z)− f(y)|, x ∈ Sd−1. (1.42)

We conclude this section with the following useful lemma.

Lemma 3.5. If f ∈ Πd
n and δ ∈ (0, 1], then for any β > 0,

osc(f)(x, n−1δ) ≤ Cβδf∗β,n(x), x ∈ Sd−1,

where the constant Cβ depends only on d and β when β is big.

Proof. Using (1.28) and (1.38), we have

sup
y,z∈c(x, δn )

|f(y)− f(z)| ≤ 2

∫
Sd−1

|f(u)|An,δ(x, u) dσ(u).

However, by (1.39),

osc(f)(x, n−1δ) ≤ 2f∗β,n(x)

∫
Sd−1

(1 + nd(u, x))βAn,δ(x, u) dσ(u)

≤ Cβδf∗β,n(ω). �

4. Marcinkiewicz-Zygmund (MZ) inequalities

We start with the following definition.

Definition 4.1. A subset Λ of Sd−1 is called ε-separated for some ε > 0 if
d(ω, ω′) ≥ ε for any two distinct points ω, ω′ ∈ Λ. A ε-separated subset Λ of Sd−1

is called maximal if Sd−1 =
⋃
ω∈Λ

c(ω, ε).

The following lemma collects some useful properties of separated subsets.

Lemma 4.2. (i) If Λ ⊂ Sd−1 is ε-separated, then #Λ ≤ cdε
−d+1, where #Λ

denotes the cardinality of the set Λ. If, in addition, Λ is maximal, then c1ε
−d+1 ≤

#Λ ≤ c2ε−d+1 for some positive constants c1 and c2 depending only on d.

(ii) If Λ ⊂ Sd−1 is ε-separated, and β ≥ 1 then
∑
ω∈Λ

χc(ω,βε)(x) ≤ Cdβ
d−1 for

every x ∈ Sd−1. If, in addition, Λ is maximal, then

1 ≤
∑
ω∈Λ

χc(ω,βε)(x) ≤ C1β
d−1 for all x ∈ Sd−1, (1.43)

where C1 depends only on d.

Proof. If Λ ⊂ Sd−1 is ε-separated, then the spherical caps c(ω, ε2 ), ω ∈ Λ are
pairwise disjoint, hence∑

ω∈Λ

meas c(ω,
ε

2
) = meas

⋃
ω∈Λ

c
(
ω,
ε

2

)
≤ meas(Sd−1),

which implies that #Λ ≤ cdε−d+1. If, in addition, Λ is maximal, then meas(Sd−1) ≤∑
ω∈Λ meas c(ω, ε), which implies the lower estimate c1ε

−d+1 ≤ #Λ. This proves
(i). Assertion (ii) can be proven using a similar volume comparison argument. In
fact, let Ax := {ω ∈ Λ : x ∈ c(ω, βε)} for each x ∈ Sd−1. Then

⋃
ω∈Ax c(ω, 1

2ε) ⊂
c(x, (β + 1

2 )ε), and hence∑
ω∈Ax

meas c(ω,
1

2
ε) ≤ meas c

(
x,
(
β +

1

2

)
ε
)
.

It follows that ∑
ω∈Λ

χc(ω,βε)(x) = #Ax ≤ C1β
d−1,
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which proves (ii). �

Theorem 4.3. Let Λ be a δ
n -separated subset of Sd−1 with δ ∈ (0, 1). Then

for all f ∈ Πd
n and 0 < p <∞,(∑

ω∈Λ

|osc(f)(ω, n−1δ)|pw
(
c
(
ω,
δ

n

))) 1
p

≤ Kpδ‖f‖p,w, (1.44)

where Kp ≡ Kp,Lw depends only on Lw and p when p is close to 0.

Proof. By Lemma 3.5, we have, for f ∈ Πd
n and ω ∈ Λ,

osc(f)(ω, n−1δ) ≤ Cδf∗2sw
p ,n

(ω),

where C > 0 depends only on Lw and p when p is small. Since

f∗2sw/p,n(y) ∼ f∗2sw/p,n(ω), for y ∈ c(ω,
δ

n
),

it follows that∑
ω∈Λ

|osc(f)(ω, n−1δ)|p
∫
c(ω, δn )

w(y) dσ(y) ≤ (Cδ)p
∑
ω∈Λ

∫
c(ω, δn )

(f∗2sw/p,n(y))pw(y) dσ(y)

≤ (Cδ)p
∫
Sd−1

(f∗2sw/p,n(y))pw(y) dσ(y)

≤ (Kpδ)
p

∫
Sd−1

|f(y)|pw(y) dσ(y),

where the last two steps use Lemma 4.2 (ii), and Corollary 3.3, respectively. This
completes the proof. �

Theorem 4.4. For f ∈ Πd
n and 0 < p <∞,

C−1‖f‖p,wn ≤ ‖f‖p,w ≤ C‖f‖p,wn ,
where C > 0 depends only on d, Lw and p when p is small.

Proof. Since each wn is again a doubling weight with Lwn ∼ Lw, according
to Corollary 3.3, it suffices to prove that

‖f∗2s/p,n‖p,w ∼ ‖f
∗
2s/p,n‖p,wn , (1.45)

where s = max{sw, swn}. To this end, let Λ ⊂ Sd−1 be a maximal 1
n -separated

subset, and observe that for each x ∈ c(ω, 1
n ),

f∗2s/p,n(x) ∼ f∗2s/p,n(ω) and wn(x) ∼ wn(ω).

It follows by Lemma 4.2 that

‖f∗2s/p,n‖
p
p,w ∼

∑
ω∈Λ

∫
c(ω, 1n )

(f∗2s/p,n(x))pw(x) dσ(x) ∼ n−(d−1)
∑
ω∈Λ

(
f∗2s/p,n(ω)

)p
wn(ω)

∼
∑
ω∈Λ

∫
c(ω, 1n )

(
f∗2s/p,n(x)

)p
wn(x) dσ(x) ∼ ‖f∗2s/p,n‖p,wn ,

which proves (1.45). �

The MZ inequality for spherical polynomials can now be stated as follows.

Theorem 4.5. (MZ inequality). (i) Let Λ be a δ
n -separated subset of Sd−1 with

δ ∈ (0, 1]. Then for all 0 < p <∞ and f ∈ Πd
m with m ≥ n,∑

ω∈Λ

(
max

x∈c(ω,n−1δ)
|f(x)|p

)
w(c(ω, n−1δ)) ≤ CLw,p

(m
n

)sw
‖f‖pp,w, (1.46)

where CLw,p depends only on Lw and p when p is close to 0.
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(ii) Let 0 < r ≤ 1, and let Λ be a maximal δ
n -separated subset of Sd−1 with

δ ∈ (0, (4Kr)
−1). If f ∈ Πd

n, then ‖f‖∞ ∼ maxω∈Λ |f(ω)|, and for all r ≤ p <∞,

‖f‖p,w ∼
(∑
ω∈Λ

w
(
c
(
ω,
δ

n

))
min

x∈c
(
ω, δn

) |f(x)|p
)1/p

(1.47)

∼
(∑
ω∈Λ

w
(
c
(
ω,
δ

n

))
max

x∈c
(
ω, δn

) |f(x)|p
)1/p

, (1.48)

where the constants of equivalence depend only on Lw and r when r is close to 0.

The proof of (3.26) in the above theorem relies on the following general lemma.

Lemma 4.6. If µ is a finite nonnegative measure on Sd−1 satisfying

µ
(
c
(
x,

1

n

))
≤ Kw

(
c
(
x,

1

n

))
, x ∈ Sd−1 (1.49)

for some positive integer n, then for all 0 < p < ∞ and f ∈ Πd
m with m ≥ n, we

have ∫
Sd−1

|f(x)|p dµ(x) ≤ CK
(
m

n

)sw
‖f‖pp,w,

where C depends only on Lw and p when p is close to 0.

Proof. Let Λ be a maximal 1
m -separated subset of Sd−1, and set β = sw

p + 1.

Then for f ∈ Πd
m, we have∫

Sd−1

|f(x)|p dµ(x) ≤ C
∑
ω∈Λ

(f∗β,m(ω))p
∫
c(ω, 1

m )

dµ(x)

≤ CK
∑
ω∈Λ

(f∗β,m(ω))pw(c(ω, n−1))

≤ cK
(m
n

)sw ∑
ω∈Λ

(f∗β,m(ω))pw
(
c(ω,m−1)

)
≤ CK

(m
n

)sw ∫
Sd−1

(f∗β,m(y))pw(y) dσ(y)

≤ cK
(
m

n

)sw
‖f‖pp,w,

where we used (1.43) in the first and the fourth steps, (1.49) in the second step,
(1.11) in the third step, and Corollary 3.3 in the last step. This completes the
proof. �

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. We start with the proof of (3.26). For convenience, we
set n1 to be the integer such that n

2δ < n1 ≤ n
δ . Let ξω ∈ c(ω, n−1δ) be such that

f(ξω) = maxx∈c(ω,n−1δ) |f(x)|p for each ω ∈ Λ. Let µ be a nonnegative measure

supported in the set {ξω : ω ∈ Λ} and such that µ(ξω) = w(c(ω, n−1δ)) for each
ω ∈ Λ. Then for any x ∈ Sd−1,

µ(c(x, n1
−1)) ≤

∑
ω∈Λ

ξω∈c(x,n−1
1 )

w
(
c
(
ω, n−1

1

))
≤ L2

w

∑
ω∈Λ∩c(x, 2

n1
)

w
(
c
(
ω,

1

4n1

))

≤ L2
w

∫
c(x,3n−1

1 )

w(y) dσ(y)

≤ L4
ww(c(x, n−1

1 )).
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It follows by Lemma 4.6 that for f ∈ Πd
m with m ≥ n,∑

ω∈Λ

(
max

x∈c(ω,n−1δ)
|f(x)|p

)
w(c(ω, n−1δ)) =

∫
Sd−1

|f(x)|p dµ(x)

≤ CLw
(

1 +
m

n1

)sw
‖f‖pp,w

≤ LwCLw
(m
n

)sw
‖f‖pp,w,

which proves (3.26).
Next, we show that if r ≤ p < ∞, δ ∈ (0, δr) and Λ is maximal δ

n -separated,

then for f ∈ Πd
n,

‖f‖p,w ≤ C2

(∑
ω∈Λ

(
min

x∈c(ω,n−1δ)
|f(x)|p

)
w(c(ω, n−1δ))B igr)1/p, (1.50)

where C2 depends only on r and Lw. Once (1.50) is proved, using (3.26), we deduce
(1.47) and (1.47). Since the constant c in (1.50) is independent of p, we deduce the
equivalence for the case of p =∞ from (1.50) as well.

For the proof of (1.50), we observe that

‖f‖pp,w ≤
∑
ω∈Λ

∫
c(ω,n−1δ)

|f(x)|pw(x) dσ(x)

≤ 2p
∑
ω∈Λ

|osc(f)(ω, n−1δ)|pw(c(ω, n−1δ))

+ 2p
∑
ω∈Λ

(
min

y∈c(ω,n−1δ)
|f(y)|p

)
w(c(ω, n−1δ)).

Using Theorem 4.3, we then obtain that for r < p <∞,

‖f‖pp,w ≤ (2Krδ)
p‖f‖pp,w + 2p

∑
ω∈Λ

min
y∈c(ω,n−1δ)

|f(y)|pw(c(ω, n−1δ)).

Since δ ∈ (0, (4Kr)
−1), the desired inequality (1.50) then follows. This completes

the proof of Theorem 4.1. �

5. Positive Cubature formulas

Our main goal in this section is to show the existence of weighted positive
cubature formulas on the sphere, using Theorem 4.3 and Theorem 4.1. Let C1

and C2 denote the constants in (1.43) and (1.50) with p = 1 respectively, and let
K1 ≡ KLw denote the constant in (1.44) with p = 1. Set δ0 := 1

2C1C2K1
. clearly,

δ0 depends only on Lw. With these notations, we can state our second result as
follows.

Theorem 5.1. Given a maximal δ
n -separated subset Λ ⊂ Sd−1 with δ ∈ (0, δ0),

there are positive numbers λω, ω ∈ Λ such that λω ∼ w
(
c(ω, δn )

)
for all ω ∈ Λ∫

Sd−1

f(x)w(x) dσ(x) =
∑
ω∈Λ

λωf(ω), f ∈ Πd
n. (1.51)

The proof of Theorem 5.1 relies on a series of lemmas.

Lemma 5.2. (Gordan) Let V be a finite dimensional real Hilbert space with
inner product 〈·, ·〉. Then for any elements a0, a1, · · · , am of V , exactly one of the
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following systems has a solution:
m∑
i=0

λia
i = 0,

m∑
i=0

λi = 1, 0 ≤ λ0, λ1, · · · , λm ∈ R, (1.52)

〈ai, x〉 > 0 for i = 0, 1, · · · ,m, x ∈ V. (1.53)

Geometrically, Gordan’s lemma says that the origin does not lie in the convex
hull of the set {a0, a1, · · · , am} if and only if there is an open halfspace {y ∈ V :
〈y, x〉 > 0} which contains {a0, a1, · · · , am}.

Proof. Clearly, if (1.52) is solvable, then (1.53) has no solution. Conversely,
we assume that (1.53) has no solution, and without loss of generality V = RN .
Consider the function

f(x) := log

( m∑
i=0

exp(〈ai, x〉)
)
, x ∈ RN .

f is bounded below since f(x) ≥ log
(

max0≤i≤m exp(〈ai, x〉)
)
≥ 0. Next, let ϕ ∈

C∞(RN ) be such that ϕ(x) = 0 for ‖x‖ ≤ 1
2 , and ϕ(x) = 1 for ‖x‖ ≥ 1, and define

Fk(x) := f(x) + k−1ϕ(kx)‖x‖

for k = 1, 2, · · · . Since f is bounded below by zero, we have lim‖x‖→∞ Fk(x) =∞,

which in turn implies that Fk attains a global minimum at some xk ∈ RN , and
therefore,

0 = ∇Fk(xk) = ∇f(xk) + ‖xk‖∇ϕ(kxk) + k−1ϕ(kxk)xk/‖xk‖.

Since ∇ϕ is supported in {x : 1/2 ≤ ‖x‖ ≤ 1}, it follows that

|∇f(xk)| =
∣∣∣∣ m∑
j=0

λkj a
j

∣∣∣∣ ≤ ck−1 (1.54)

where λkj = exp(〈aj , xk〉)/
∑m
i=0 exp(〈ai, xk〉) > 0, and

∑m
j=0 λ

k
j = 1. Since the

sequence {(λk0 , λk1 , · · · , λkm) : k = 1, 2, · · · } is bounded in Rm+1, according to the
Weierstrass theorem, it has a convergent subsequence, and by (1.54), the limit of
this convergent subsequence solves the system (1.52). �

Lemma 5.3. (Farkas). Let V be a finite-dimensional real Hilbert space with
inner product 〈·, ·〉. Then for any points a1, a2, · · · , am and ζ in V , exactly one of
the following systems has a solution:

m∑
j=1

µja
j = ζ, 0 ≤ µ1, µ2, · · · , µm ∈ R, (1.55)

〈aj , x〉 ≥ 0 for j = 1, 2, · · · ,m, 〈ζ, x〉 < 0, x ∈ V. (1.56)

Geometrically, Farkas’ lemma says that any point ζ not lying in the finitely
generated cone C = {

∑m
j=1 µja

j : 0 ≤ µ1, µ2, · · · , µm ∈ R} can be separated from
C by a hyperplane.

Proof. It is immediate that if (1.55) has a solution then (1.56) has no solution.
Conversely, we assume that (1.56) has no solution, and deduce that (1.55) has a
solution by using induction on m. Clearly, when m = 0, the assertion is trivial
and there’s nothing to prove. Suppose then that the result holds in any finite-
dimensional real Hilbert space for any set of m − 1 elements and any element ζ.
Define a0 = −ζ. The unsolvability of (1.56) then implies the unsolvability of
(1.53). Hence, applying the Gordan lemma shows that there are nonnegative scalars
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λ0, · · · , λm in R, not all zero, satisfying λ0ζ =
∑m
j=1 λja

j . If λ0 > 0, the proof is
complete, so suppose λ0 = 0 and without loss of generality, λm > 0. Then

am = −λ−1
m

m−1∑
j=1

λja
j . (1.57)

Define Y = {y ∈ V : 〈y, am〉 = 0}, and let PY : V → Y denote the orthogonal
projection onto Y . By assumption, the system

〈aj , y〉 ≥ 0 for j = 1, 2, · · · ,m− 1, 〈ζ, y〉 < 0, y ∈ Y

or equivalently,

〈PY aj , y〉 ≥ 0 for j = 1, 2, · · · ,m− 1, 〈PY ζ, y〉 < 0, y ∈ Y

has no solution. By the induction hypothesis applied to the subspace Y , there
are nonnegative real numbers µ1, · · · , µm−1 satisfying

∑m−1
j=1 µjPY a

j = PY ζ. This

means that ζ−
∑m−1
j=1 µja

j is orthogonal to the space Y , the orthogonal complement

of span {am} in V . Thus, there is a number µm ∈ R such that

µma
m = ζ −

m−1∑
j=1

µka
j . (1.58)

If µm ≥ 0, we immediately obtain a solution of (1.55), whereas if µm < 0, we can
substitute (1.57) into (1.58) to obtain

(−µm)λ−1
m

m−1∑
j=1

λja
j = ζ −

m−1∑
j=1

µja
j .

which again gives a solution of (1.55). �

Lemma 5.4. If Λ is a maximal δ
n -separated subset of Sd−1 with δ ∈ (0, 1], and

f ∈ Πd
n satisfies that min

ω∈Λ
f(ω) ≥ 0, then∫

Sd−1

f(x)w(x) dσ(x) ≥ (C−1
1 − C2K1δ)

∑
ω∈Λ

f(ω)w(c(ω, n−1δ)).

Proof. Setting N(x) :=
∑
ω∈Λ χc(ω,n−1δ)(x), and using Lemma 4.2 (ii), we

obtain ∫
Sd−1

f(x)w(x) dσ(x) =
∑
ω∈Λ

∫
c(ω,n−1δ)

f(x)
w(x)

N(x)
dσ(x)

≥ C−1
1

∑
ω∈Λ

f(ω)

∫
c(ω,n−1δ)

w(x) dσ(x)

−
∑
ω∈Λ

∫
c(ω,n−1δ)

|f(x)− f(ω)|w(x) dσ(x)

≥ C−1
1

∑
ω∈Λ

f(ω)w(c(ω, n−1δ))−K1δ‖f‖1,w

≥ (C−1
1 − C2K1δ)

∑
ω∈Λ

f(ω)w(c(ω, n−1δ)),

where the last two steps use Theorem 4.3, and (1.50) with p = 1 respectively. �

Lemma 5.5. If µ is a nonnegative measure on Sd−1 such that the equation∫
Sd−1

f(x)w(x) dσ(x) =

∫
Sd−1

f(x) dµ(x) (1.59)
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holds for all f ∈ Πd
n and some positive integer n, then for all x ∈ Sd−1,

µ
(
c
(
x,

2

n

))
≤ Cw

(
c
(
x,

2

n

))
, (1.60)

with the constant C depending only on Lw.

Proof. For m = [d−1
2 + sw

2 ] + 1, and n1 =
[
n

2m

]
, we define

Tn(cos θ) = γn

(
sin(n1 + 1

2 )θ

sin θ
2

)2m

, (1.61)

where γn is chosen so that
∫ π

0
Tn(cos θ) sind−2 θ dθ = 1. A straightforward compu-

tation shows that γn ∼ nd−1−2m, which in turn implies that

0 ≤ Tn(cos θ) ≤ CLwnd−1(1 + nθ)−2m, θ ∈ [0, 2π], (1.62)

and

Tn(cos θ) ≥ cnd−1, θ ∈
[
0,

2

n

]
. (1.63)

Since Tn(cos θ) is a polynomial in cos θ of degree at most n, it follows that Tn(〈x, ·〉)
is a spherical polynomial of degree at most n for each fixed x ∈ Sd−1. Thus, using
(1.59), we have, for each x ∈ Sd−1,∫

Sd−1

Tn(〈x, y〉) dµ(y) =

∫
Sd−1

Tn(〈x, y〉)w(y) dσ(y).

However, using (1.63) and the positivity of Tn, we have∫
Sd−1

Tn(〈x, y〉) dµ(y) ≥ cnd−1µ
(
c
(
x,

2

n

))
,

whereas using Corollary 4.4, (1.62), and (1.12), we deduce∫
Sd−1

Tn(〈x, y〉)w(y) dσ(y) ≤ C
∫
Sd−1

Tn(〈x, y〉)wn(y) dσ(y)

≤ Cnd−1wn(x)

∫
Sd−1

(1 + nd(x, y))sw−2m dσ(y)

≤ Cwn(x).

Putting these together, and using the doubling property of the weight w, we deduce
the desired estimate (1.62). �

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality, we may assume that 1
4δ0 ≤

δ ≤ δ0, since otherwise we may replace n by the largest integer ≤ nδ0
2δ . We shall use

Lemma 5.2 with V being the real Hilbert space Πd
n endowed with the inner product

〈f, g〉 :=

∫
Sd−1

f(x)g(x) dσ(x), f, g ∈ Πd
n.

Define Gn(x, y) := 1
ωd

∑n
k=0

k+λ
λ Cλk (x · y) for x, y ∈ Sd−1, where λ = d−2

2 , and x · y
denotes the dot product of x, y ∈ Rd. Gn is a reproducing kernel for the Hilbert
space V in the sense that

〈f,Gn(x, ·)〉 = f(x), x ∈ Sd−1, f ∈ V. (1.64)
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Next, we let ω1, · · · , ωN be the list of elements in the set Λ, and define the functions
ζ and aj in the space V as follows:

ζ(x) : =

∫
Sd−1

Gn(x, y)w(y) dσ(y)− (2C1)−1
N∑
j=1

Gn(x, ωj)w(c(ωj , n
−1δ)),

aj(x) : = Gn(x, ωj), j = 1, 2, · · · , N.

On one hand, using (1.64), we have, for all f ∈ V ,

〈f, aj〉 = f(ωj), j = 1, 2, · · · , N, (1.65)

〈f, ζ〉 =

∫
Sd−1

f(y)w(y) dσ(y)− (2C1)−1
N∑
j=1

f(ωj)w(c(ωj , n
−1δ)). (1.66)

On the other hand, however, using Lemma 5.4, we conclude that if 0 < δ ≤
1

C1(C2K1+1) , and f ∈ V satisfies min1≤j≤N f(ωj) ≥ 0, then

〈f, ζ〉 ≥ ((2C1)−1 − C2K1δ)

N∑
j=1

f(ωj)w(c(ωj , n
−1δ)) ≥ 0.

Thus, the system (1.56) is not solvable, and by Lemma 5.2 applied to the Hilbert
space V = Πd

n and the functions a1, · · · , aN and ζ, there are µ1, · · · , µm ≥ 0 such

that ζ =
∑N
j=1 µja

j . Using (1.65) and (1.66), this further implies that for f ∈ Πd
n,∫

Sd−1

f(y)w(y) dσ(y)− (2C1)−1
N∑
j=1

f(ωj)w(c(ωj , n
−1δ)) =

N∑
j=1

µjf(ωj);

or equivalently, ∫
Sd−1

f(y)w(y) dσ(y) =

N∑
j=1

λjf(ωj) (1.67)

with

λj := µj + (2C1)−1w(c(ωj , n
−1δ)), 1 ≤ j ≤ N. (1.68)

To complete the proof, we just note that the lower estimate λj ≥ CLww(c(ωj , n
−1δ))

is an immediate consequence of (1.68), whereas the desired upper estimate λj ≤
CLww(c(ωj , n

−1δ)) follows by (1.67) and Lemma 5.5 applied to a finite measure µ
supported on the finite set Λ and satisfying µ{ωj} = w(c(ωj , n

−1δ)) for 1 ≤ j ≤ N .

Our last result in this section connects positive cubature formulas with MZ
inequalities.

Theorem 5.6. If µ is a nonnegative finite measure on Sd−1 for which the
formula, ∫

Sd−1

f(x)w(x) dσ(x) =

∫
Sd−1

f(x) dµ(x), (1.69)

holds for all f ∈ Πd
3n and some positive integer n, then for all 0 < p < ∞ and

f ∈ Πd
n,

‖f‖p,w ∼
(∫

Sd−1

|f(x)|p dµ(x)
) 1
p

, (1.70)

with the constants of equivalence depend only on the doubling constant of w, and
the constant p when p is close to 0.

For the proof of Theorem 5.6, we need the following useful lemma.



5. POSITIVE CUBATURE FORMULAS 95

Lemma 5.7. If f : Sd−1 → [0,∞) is a nonnegative function satisfying

f(x) ≤ Cf (1 + nd(x, y))αf(y), x, y ∈ Sd−1 (1.71)

for some fixed positive integer n, and some nonnegative number α, then for each
0 < p <∞, there exists a nonnegative spherical polynomial g ∈ Πd

n such that

C−1f(x)
1
p ≤ g(x) ≤ Cf(x)

1
p , for all x ∈ Sd−1, (1.72)

where the constant C depends only on Cf , α and p when p is close to zero. If, in
addition, f(x) := F (〈x, e〉) is a zonal function on Sd−1 for some fixed e ∈ Sd−1,
then we may choose the function g in (1.72) to be a zonal polynomial of the form
G(〈x, e〉) as well.

Proof. As in the proof of Lemma 5.5, we define a function Tn(cos θ) as in

(1.61) with m = [α/p] + d + 1, and n1 =
[
n

2m

]
. Then Tn(cos θ) a polynomial in

cos θ of degree at most n satisfying (1.62) and (1.63) with the constants depending
only on α and p when p is close to zero. Next, we define

g(x) =

∫
Sd−1

f(y)
1
pTn(x · y) dσ(y), x ∈ Sd−1, (1.73)

and show the function g has the desired properties. Clearly, g is a nonnegative
spherical polynomial of degree at most n, and if f is a zonal function, so is g. On
the other hand, using (1.62) and (1.73), we obtain

g(x) ≤ C1/p
f f(x)1/p

∫
Sd−1

(1 + nd(x, y))α/pTn(x · y) dσ(y) ≤ Cf(x)1/p,

and using (1.63), we deduce

g(x) ≥
∫
d(x,y)≤ 1

2n

f(y)
1
pTn(x · y) dσ(y) ≥ Cf(x)1/p

∫ 1
2n

0

nd−1θd−2 dθ ≥ Cf(x)1/p.

This shows that g satisfies (1.72), and completes the proof. �

Now we are in a position to prove Theorem 5.6.

Proof of Theorem 5.6. We first note that the inequality∫
Sd−1

|f(x)|p dµ(x) ≤ Cp
∫
Sd−1

|f(x)|pw(x) dσ(x), f ∈ Πd
2n (1.74)

follows directly from Lemma 5.5 and Lemma 4.6. Thus, it remains to prove the
inverse inequality∫

Sd−1

|f(x)|pw(x) dσ(x) ≤ Cp
∫
Sd−1

|f(x)|p dµ(x). (1.75)

Using (1.28) and Hölder’s inequality, we obtain that for x ∈ Sd−1 and any
f ∈ Πd

n,

|f(x)| ≤ C
(∫

Sd−1

|f(y)|2|Ln(〈x, y〉)| dσ(y)

) 1
2

,

which, using (1.12), implies

|f(x)|pwn(x)

≤C
(∫

Sd−1

|f(y)|2|Ln(〈x, y〉)|(1 + nd(x, y))
2
p sw(wn(y))

2
p dσ(y)

) p
2

. (1.76)
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However, using Lemma 5.7 and (1.12), there exist a nonnegative spherical polyno-
mial Q1 ∈ Πd

[n/2] and a nonnegative zonal spherical polynomial Q2(〈x, y〉) ∈ Πd
[n/2]

such that

Q1(y) ∼
(
wn(y)

) 2
p−1

, Q2(〈x, y〉) ∼ nd−1(1 + nd(y, x))−`, (1.77)

where ` > (d−1) max{ 2
p , 1} is a fixed integer. Thus, using (1.76) and Theorem 2.1,

we deduce

|f(x)|pwn(x) ≤ C
(∫

Sd−1

|f(y)|2Q2(x · y)Q1(y)wn(y) dσ(y)

) p
2

≤ C
(∫

Sd−1

|f(y)|2Q2(x · y)Q1(y)w(y) dσ(y)

) p
2

= C

(∫
Sd−1

|f(y)|2Q2(x · y)Q1(y) dµ(y)

) p
2

, (1.78)

where the last two steps uses Corollary 4.4 and (1.69) respectively.
Now we deduce (1.75) for the case of 0 < p ≤ 2 from (1.78). Taking a maximal

1
n -separated subset Λ of Sd−1, and using (1.78), we obtain

|f(x)|pwn(x)

≤ C
∑
ω∈Λ

∣∣∣∫
c(ω, 1n )

|f(y)|2Q2(〈x, y〉)Q1(y) dµ(y)
∣∣∣ p2

≤ C
∑
ω∈Λ

(
f∗2/p,n(ω)

)(2−p) p2
(Q2(x · ω))

p
2 (wn(ω))1− p2

(∫
c(ω, 1n )

|f(y)|p dµ(y)

) p
2

.

Integrating with respect to x ∈ Sd−1, and then using Hölder’s inequality, we obtain

‖f‖pp,w ≤ C‖f‖pp,wn

≤ Cn(d−1)( p2−1)
∑
ω∈Λ

(
f∗2/p,n(ω)

)(2−p) p2
(wn(ω))1− p2

(∫
c(ω, 1n )

|f(y)|p dµ(y)

) p
2

≤ C
(∫

Sd−1

|f(y)|p dµ(y)

) p
2
(∑
ω∈Λ

∫
c(ω, 1n )

|f∗2/p,n(y)|pwn(y) dσ(y)

)1− p2

≤ C
(∫

Sd−1

|f(y)|p dµ(y)

) p
2

‖f∗2/p,n‖
p(1− p2 )
p,wn ≤ C

(∫
Sd−1

|f(y)|p dµ(y)

) p
2

‖f‖p(1−
p
2 )

p,w ,

where the last step uses Corollaries 3.3 and 4.4. The desired inequality (1.75) in
the case of 0 < p ≤ 2 then follows.

Finally, we show (1.75) for 2 < p <∞. In this case, using (1.78) and Hölder’s
inequality, we obtain

|f(x)|pwn(x)

≤ C
(∫

Sd−1

|f(y)|pQ2(〈x, y〉) dµ(y)

)(∫
Sd−1

Q2(〈x, y〉)|Q1(y)|
p
p−2 dµ(y)

) p
2−1

.

(1.79)

On the other hand, however, using Lemma 5.7 and (1.77), there exists a nonnegative
spherical polynomial Q3 ∈ Πd

n such that

Q3(y) ∼ Q1(y)
p
p−2 ∼ wn(y)−1, for all y ∈ Sd−1.
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Thus, using (1.74) and (1.77), we deduce(∫
Sd−1

Q2(〈x, y〉)|Q1(y)|
p
p−2 dµ(y)

) p
2−1

≤ C
(∫

Sd−1

Q2(〈x, y〉)Q3(y)wn(y) dσ(y)

) p
2−1

≤ C
(∫

Sd−1

Q2(〈x, y〉) dσ(y)

) p
2−1

≤ C. (1.80)

Now combining (1.79) with (1.80), integrating with respect to x over Sd−1, and
using (1.77), we conclude that

‖f‖pp,w ≤ C‖f‖pp,wn ≤ C
∫
Sd−1

|f(y)|p dµ(y),

which proves (1.75) for 2 < p <∞.

6. Nikolskii and Bernstein inequalities

Throughout this section, w denotes a doubling weight on Sd−1 normalized by
w(Sd−1) = 1. We start with the following weighted Nikolskii inequality:

Theorem 6.1. (Nikolskii’s inequality) If 0 < p < q ≤ ∞, and f ∈ Πd
n, then

‖f‖q,w ≤ Cn( 1
p−

1
q )sw‖f‖p,w,

where C depends only on d, p, q, and Lw.

Proof. Let us first consider the case 0 < p < q = ∞. Let Λ be a maximal
1

12Kpn
-separated subset of Sd−1 with Kp being the same constant as in Theorem

4.1. Using Theorem 4.1, we obtain that for f ∈ Πd
n,

‖f‖∞ ≤ C max
ω∈Λ
|f(ω)| ≤ C

(
min
ω∈Λ

λω

)− 1
p
(∑
ω∈Λ

λω|f(ω)|p
) 1
p

≤ C‖f‖p,w max
ω∈Λ

(
w(B(ω, n−1))

)− 1
p

. (1.81)

Let m be a positive integer such that 2m−1 ≤ nπ ≤ 2m. Then using (1.12), we
have, for any ω ∈ Λ,

1 = w(Sd−1) = w(B(ω, π)) ≤ CLw2msww(B(ω, n−1))

≤ CLw(2πn)sww(B(ω, n−1)),

which implies that (w(B(ω, n−1)))−
1
p ≤ cnsw/p. Inserting this last estimate into

(1.81) then gives the desired Nikolskii’s inequality for the case of 0 < p < q =∞:

‖f‖∞ ≤ Cnsw/p‖f‖p,w. (1.82)

Finally, for 0 < p < q <∞, using (1.82), one has

‖f‖qq,w ≤ ‖f‖q−p∞ ‖f‖pp,w ≤ Cnsw(q−p)/p‖f‖qp,w,

which in turn implies the desired inequality ‖f‖q,w ≤ Cn( 1
p−

1
q )sw‖f‖p,w. �

The next goal in this section is to show a weighted Bernstein inequality. Given
f ∈ C`(Sd−1), we define its `th tangential derivative in the direction of ξ ∈ Tx :=
{y ∈ Sd−1 : 〈x, y〉 = 0} at a point x ∈ Sd−1 by( ∂

∂ξ

)`
f(x) =

( ∂
∂θ

)`(
f(x cos θ + ξ sin θ)

)∣∣∣
θ=0

.
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Then the weighted Bernstein inequality can be sated as follows.

Theorem 6.2. (Bernstein’s inequality.) If ` ∈ N, 0 < p < ∞, and f ∈ Πd
n,

then (∫
Sd−1

sup
ξ∈Tx

∣∣∣( ∂

∂ξ

)`
f(x)

∣∣∣pw(x) dσ(x)

) 1
p

≤ Cn`‖f‖p,w

where C > 0 depends only on d, `, the doubling constant of w and p when p is
small.

Recall that Ln(x, y) denotes the kernel defined in (1.27) with η ∈ C∞[0,∞
satisfying η(x) = 1 for |x| ≤ 1 and η(x) = 0 for |x| ≥ 2. To show Theorem 6.2, we
need the following estimate on the tangential derivative of Ln.

Lemma 6.3. If x ∈ Sd−1, y ∈ Tx and

ϕ(θ) ≡ ϕx,y,ξ(θ) = Kn(x · y cos θ + ξ · y sin θ),

then for any v,m ∈ N,

|ϕ(v)(0)| ≤ Cnd−1+v min{1, (nd(x, y))−m}, (1.83)

with C depending only on v and m.

Proof. Using induction on v, we can write ϕ(v)(θ) in the form

ϕ(v)(θ) =

v∑
i=1

∑
(j0,j1,j2,j3)∈Λ

Cj0,j1,j2,j3L
(i)
n

(
t(θ)

)(
t(θ)

)j0(
t′(θ)

)j1(
t′′(θ)

)j2(
t′′′(θ)

)j3
,

(1.84)
where Λ := {(j0, j1, j2, j3) ∈ Z4

+ : j0 + j1 + j2 + j3 = i, j1 + j3 ≥ 2i − v},
t(θ) = x · y cos θ+ y · ξ sin θ, and Cj0,j1,j2,j3 are some absolute constants. Note that

|y · ξ| ≤
√

1− (x · y)2 for any y ∈ Sd−1 and ξ ∈ Tx. Thus, using Theorem 2.1 with
` = m+ v, we deduce that for 1 ≤ i ≤ v and each (j0, j1, j2, j3) ∈ Λ,∣∣∣L(i)
n

(
t(0)

)(
t(0)

)j0(
t′(0)

)j1(
t′′(0)

)j2(
t′′′(0)

)j3 ∣∣∣ ≤ Cnd−1+v min{1, (nd(x, y))−m}.

The desired inequality (1.83) then follows by (1.84). This completes the proof. �

Proof of Theorem 6.2. By the definition and (1.28), we have, for f ∈ Πd
n and

x, ξ ∈ Sd−1 with x · ξ = 0,(
∂

∂ξ

)`
f(x) =

∫
Sd−1

f(y)ϕ
(`)
x,y,ξ(0) dσ(y)

with ϕx,y,ξ as defined in Lemma 5.3. It then follows by Lemma 6.3 with m >
2
psw + d− 1 that∣∣∣( ∂

∂ξ

)`
f(x)

∣∣∣ ≤ Cnd−1+`

∫
Sd−1

|f(y)|(1 + nd(x, y))−m dσ(y)

≤ Cnd−1+`f∗2sw/p,n(x)

∫
Sd−1

(1 + nd(x, y))−m+ 2
p sw dσ(y)

≤ Cn`f∗2sw/p,n(x).

This combined with Corollary 3.3 gives the desired Bernstein’s inequality and there-
fore completes the proof.

Note that

Di,j := xi
∂

∂xj
− xj

∂

∂xi
=

∂

∂ξi,j
f(x)
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for f ∈ C1(Sd−1) and 1 ≤ i 6= j ≤ d, where ξi,j = x+ (xj −xi)ei+ (xi−xj)ej ∈ Tx,
and

e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, . . . , 0) · · · , ed = (0, · · · , 0, 1).

Thus, as an immediate consequence of Theorem 6.2, we deduce the following.

Corollary 6.4. If f ∈ Πd
n, ` ∈ N, and 0 < p <∞, then

max
1≤i<j≤d

‖D`
i,jf‖p,w ≤ Cn`‖f‖p,w,

where C depends on Lw, but is independent of f , n and p when p is bounded away
from zero.

Recalling that ∆0 =
∑

1≤i<j≤dD
2
i,j for the Laplace-Beltrami operator ∆0 on

Sd−1, we then deduce from (6.4) the following weighted inequality:

Corollary 6.5. If ` ∈ N, 0 < p <∞, and f ∈ Πd
n, then

‖4`0f‖p,w ≤ Cn2`‖f‖p,w,

where 4i+1
0 f = 40(4i0f) for i ≥ 1, C > 0 depends only on `, Lw and p when p is

close to zero.

7. Remez-type inequalities with A∞ weights

For convenience, throughout this section, we normalize the Lebesgue measure
dσ(x) on Sd−1 by

∫
Sd−1 dσ(x) = 1. Our main goal in this section is to show the

following Remez-type inequality:

Theorem 7.1. Let w be an A∞ weight on Sd−1, and let 0 < p <∞. If f ∈ Πd
n,

E ⊂ Sd−1, and meas(E) = td−1 ≤ 1
2 , then∫

Sd−1

|f(x)|pw(x) dσ(x) ≤ Cnt+1

∫
Sd−1\E

|f(x)|pw(x) dσ(x),

where C > 0 depends only on d, p and the A∞ constant of w.

Proof. Firstly, we show that for any f ∈ Πd
n,

‖f‖C(Sd−1) ≤ Cnt sup
x∈Sd−1\E

|f(x)|, (1.85)

where E ⊂ Sd−1 and meas(E) = td−1 ≤ 4
5 . Let x0 ∈ Sd−1 be such that |f(x0)| =

‖f‖C(Sd−1). We denote by C(x0, y) the great circle on Sd−1 passing through x0 and

y ∈ Sd−1\{x0}, and by dγx0,y the one-dimensional Lebesgue measure on C(x0, y)
normalized by γx0,y(C(x0, y)) = 2π. We claim that if E ⊂ Sd−1, and meas(E) =
td−1 ≤ 4

5 , then there must exist a point y0 ∈ Sd−1\{x0} such that

γx0,y0

(
E
⋂
C(x0, y0)

)
≤ min

{
Cdt, 2π − εd

}
, (1.86)

where Cd > 0 and εd ∈ (0, π) denote two constants depending only on d. Indeed,
once (1.86) is proved, then

‖f‖C(Sd−1) = |f(x0)| = max
y∈C(x0,y0)

|f(y)|

≤ Cnt max
y∈C(x0,y0)\E

|f(y)| ≤ Cnt sup
x∈Sd−1\E

|f(x)|,

where the third step uses (1.86), the Remez-type inequality for trigonometric poly-
nomials on the circle ([40]), and the fact that the restriction of f ∈ Πd

n to the great
circle C(x0, y0) is a trigonometric polynomial of degree at most n. Thus, (1.85) will
follow from (1.86).
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For the proof of (1.86), we set Ec = Sd−1\E and

S(x0) = {y ∈ Sd−1 : 〈y, x0〉 = 0}.

We denote by dσx0(y) the Lebesgue measure on S(x0) normalized by

∫
S(x0)

dσx0(y)

= 1. We then assert that (1.86) is a consequence of the following two inequalities:∫
S(x0)

(
γx0,y

(
E ∩ C(x0, y)

))d−1

dσx0
(y) ≤ C ′dtd−1, (1.87)

and ∫
S(x0)

γx0,y

(
Ec ∩ C(x0, y)

)
dσx0(y) ≥ ε′d > 0. (1.88)

Indeed, using (1.87),

σx0

{
y ∈ S(x0) : γx0,y

(
E ∩ C(x0, y)

)
> Cdt

}
≤ C ′d
Cd−1
d

,

whereas using (1.88),

σx0

{
y ∈ S(x0) : γx0,y(Ec ∩ C(x0, y)) ≤ εd

}
= σx0

{
y ∈ S(x0) : γx0,y

(
E ∩ C(x0, y)

)
≥ 1− εd

}
≤ 1− ε′d

1− εd
.

Thus, letting εd = 1
2ε
′
d, and choosing Cd sufficiently large so that

C ′d
Cd−1
d

+
1− ε′d
1− εd

< 1,

we conclude that there must exist a y0 ∈ S(x0) such that

γx0,y0

(
E ∩ C(x0, y0)

)
≤ Cdt,

and

γx0,y0

(
Ec ∩ C(x0, y0)

)
= 1− γx0,y0

(
E ∩ C(x0, y0)

)
≥ εd > 0.

The desired inequality (1.86) then follows.
Thus, we have reduced the proof of (1.86) to showing (1.87) and (1.88).
To show (1.87), we note that

γx0,y(E ∩ C(x0, y)) =

∫ π

−π
χ
E

(x0 cos θ + y sin θ) dθ.

Hence, setting

E(x0, y) =
{
θ ∈ [−π, π] : | sin θ| ≥ sin

[
8−1γx0,y

(
C(x0, y) ∩ E

)]}
,

we deduce

td−1 = meas(E) = C ′′d

∫
S(x0)

∫ π

−π
χ
E

(x0 cos θ + y sin θ)| sind−2 θ| dθ dσx0(y)

≥ C ′′d
∫
S(x0)

∫
E(x0,y)

χ
E

(x0 cos θ + y sin θ)| sind−2 θ| dθ dσx0(y)

≥ 1

2
C ′′d

∫
S(x0)

(
sin
(γx0,y

(
E ∩ C(x0, y)

)
8

))d−2

γx0,y

(
E ∩ C(x0, y)

)
dσx0(y),
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which implies (1.87). To show (1.88), we recall that σ(Sd−1) = 1, and obtain

1

5
≤ meas(Ec) = C ′′d

∫
S(x0)

∫ π

−π
χ
Ec

(x0 cos θ + y sin θ)| sind−2 θ| dθ dσx0
(y)

≤ C ′′d
∫
S(x0)

γx0,y

(
Ec
⋂
C(x0, y)

)
dσx0

(y).

This proves (1.88).
Next, we show that for 0 < p <∞ and f ∈ Πd

n,∫
Sd−1

|f(x)|p dσ(x) ≤ Cnt+1

∫
Sd−1\E

|f(x)|p dσ(x), (1.89)

where E ⊂ Sd−1 and meas(E) = td−1 ≤ 3
4 . Set α =

(
16
15

) 1
d−1

, and

F =
{
x ∈ Sd−1 : |f(x)| ≥ ‖f‖∞C−αnt

}
,

with C > 0 being the same as in (1.85). Then by the already proven inequality
(1.85) it follows that meas(F ) ≥ (αt)d−1 and hence meas(F ∩ Ec) ≥ 1

15 meas(E).
Therefore, we have∫

E

|f(x)|p dσ(x) ≤ |E|‖f‖p∞ ≤ 15Cαntp
∫
Ec∩F

|f(x)|p dσ(x)

≤ 15Cαpnt
∫
Sd−1\E

|f(x)|p dσ(x)

and (1.89) then follows.
Finally, we show that for any A∞ weight w, 0 < p <∞ and all f ∈ Πd

n,∫
Sd−1

|f(x)|pw(x) dσ(x) ≤ Cnt+1

∫
Sd−1\E

|f(x)|pw(x) dσ(x), (1.90)

where meas(E) = td−1 ≤ 1
2 . Let {ωi}M(n,δ)

i=1 be a maximal δ
n -separated subset of

Sd−1 with δ > 0 to be specified later, and let

B∗1 = B
(
ω1,

δ

n

)
−
M(n,δ)⋃
j=2

B
(
ωj ,

δ

4n

)
and

B∗i = B
(
ωi,

δ

n

)
−

[( i−1⋃
k=1

B∗k

)⋃(M(n,δ)⋃
j=i+1

B
(
ωj ,

δ

4n

))]
, 2 ≤ i ≤M(n, δ).

Then the following properties can be easily verified:

B∗i
⋂
B∗j = ∅ if i 6= j;

B
(
ωi,

δ

4n

)
⊂ B∗i ⊂ B

(
ωi,

δ

n

)
, for 1 ≤ i ≤M(n, δ);

M(n,δ)⋃
i=1

B∗i = Sd−1.

Now setting

Λ∗ =
{
i : 1 ≤ i ≤M(n, δ),

∣∣∣B∗i ⋂E
∣∣∣ > 2

3
|B∗i |

}
,

we have ∑
i∈Λ∗

|B∗i | ≤
3

2
|E| = 3

2
td−1,



102 1. WEIGHTED POLYNOMIAL INEQUALITIES

and hence, using Theorem 4.4, Lemma 5.7 and the already proven inequality (1.89),
we obtain∫

Sd−1

|f(x)|pw(x) dσ(x) ≤ Cnt+1

∫
Sd−1 \

⋃
i∈Λ∗

B∗i
|f(x)|pwn(x) dσ(x)

≤ Cnt+1
∑
i/∈Λ∗

∫
B(ωi,

δ
n )

|f(x)|pwn(x) dσ(x)

≤ Cnt+1
∑
i/∈Λ∗

|f(ξi)|p
∫
B(ωi,

δ
n )

wn(x) dσ(x)

+ Cnt+1
∑
i/∈Λ∗

|osc(f)(ωi)|p
∫
B(ωi,

δ
n )

wn(x) dσ(x),

where

|f(ξi)| = min
x∈B(ωi,

δ
n )
|f(x)|

and

osc(f)(ωi) = max
x,y∈B(ωi,

δ
n )
|f(x)− f(y)|.

Since wn is a doubling weight with the doubling constant depending only on that
of w, it follows by Theorems 4.3 and 4.4 that∑

i/∈Λ∗

|osc(f)(ωi)|p
∫
B(ωi,

δ
n )

wn(x) dσ(x) ≤ Cδp
∫
Sd−1

|f(x)|pwn(x) dσ(x)

≤ Cδp
∫
Sd−1

|f(x)|pw(x) dσ(x).

On the other hand, however, by the A∞-property of w it follows that for i /∈ Λ∗,

|f(ξi)|p
∫
B(ωi,

δ
n )

wn(x) dσ(x) ≤ Cδd−1|f(ξi)|p
∫
B(ωi,

1
n )

w(x) dσ(x)

≤ Cδd−1−s|f(ξi)|p
∫
B(ωi,

δ
n )

w(x) dσ(x)

≤ Cδd−1−s|f(ξi)|p
∫
B(ωi,

δ
n )\E

w(x) dσ(x)

≤ Cδd−1−s
∫
B(ωi,

δ
n )\E

|f(x)|pw(x) dσ(x),

where in the first inequality we have used the fact that wn(x) ∼ wn(ωi) for x ∈
B(ωi,

δ
n ), in the second inequality we have used the doubling property of w, and in

the third inequality we have used the definition of Λ∗ and the A∞ property of w.

Therefore, noticing that

M(n,δ)∑
i=1

χB(ωi,
δ
n )(x) ≤ Cd, we deduce

∫
Sd−1

|f(x)|pw(x) dσ(x) ≤ Cnt+1δd−1−s
∫
Sd−1\E

|f(x)|pw(x) dσ(x)

+ δpCnt+1

∫
Sd−1

|f(x)|pw(x) dσ(x).

Now letting δ = ( 1
2 )

1
pC−(nt+1) 1

p , we obtain the desired inequality (1.90) and there-
fore complete the proof. �
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8. Notes and further results

1. Theorem 2.1, the fast decaying of the kernel, was established in [10, 55,
64, 70]. The proof of Proposition 2.2 follows along [50] and [10]. Under
additional assumptions on the cut-off function, the rate of decay can be
improved to sub-exponential estimate [49],∣∣∣L(j)
n (cos θ)

∣∣∣ ≤ c1n2α+2j+2 exp

{
− c2nθ

[ln(e+ nθ)]1+ε

}
, 0 ≤ θ ≤ π, (1.91)

where c2 = c′ε with c′ > 0 an absolute constant and c1 = c′′8j with c′′ > 0
depending only on α, β, and ε.

2. In one-dimensional case, various important, weighted polynomial inequali-
ties, such as Bernstein, Marcinkiewicz-Zygmund, Nikolskii, Schur, Remez,
etc, have been proved under the doubling condition or the slightly stronger
A∞ condition on the weights in the pioneering work of Mastroianni and
Totik [59]. Most of these weighted inequalities of [59] hold for 0 < p < 1
as well, as observed by Erdélyi [41]. Weighted Markov-Berntein-type in-
equalities for trigonometric polynomials with respect to doubling weights
on a finite interval were established in [42].

3. A good reference for polynomial inequalities is [8]. For polynomial ap-
proximation with doubling weights, we refer to [58], [60] and [13]. For
orthogonal polynomials with doubling weights, we refer to [61].

4. For positive cubature formulas and MZ inequalities on unweighted sphere
Sd−1, we refer to [56, 64, 10]. For local MZ inequalities and cubature
formulas on the sphere, we refer to [57, 21].

5. Most of the weighted results in the third, the fourth, the sixth and the
seventh sections were proved in [12]. In the unweighted case, the maximal
function in the second section was introduced and studied in [14].

6 The proof of the Remez inequality (Theorem 7.1 ) follows the ideas of
[59], and [40]. It was shown by Mastroianni and Totik [59] that weighted
Remez type inequality, in general, does not hold for general doubling
weights.

7. Weighted polynomial inequalities on the unit ball Bd := {x ∈ Rd : ‖x‖ ≤
1} can be deduced from the corresponding inequalities on the sphere (see
[12]). To be precise, let ρ denote the following metric defined on Bd:

ρ(x, y) =

√
‖x− y‖2 + (

√
1− ‖x‖2 −

√
1− ‖y‖2)2, for x, y ∈ Bd.

Set

Bρ(x, r) = {y ∈ Bd : ρ(x, y) ≤ r}, r > 0, x ∈ Bd.

A weight function w on Bd is said to be a doubling weight if∫
Bρ(x,2r)

w(y) dy ≤ L
∫
Bρ(x,r)

w(y) dy, x ∈ Bd, r > 0.

An A∞-weight on Bd can be defined likewise. All the classical weights of
the form

wα(x) = |x1|α1 · · · |xd|αd(1− |x|2)αd+1− 1
2 , x ∈ Bd (1.92)

with α = (α1, · · · , αd, αd+1), αi ≥ 0, 1 ≤ i ≤ d+ 1, have the A∞-property
on Bd. Connections between doubling weights (resp. A∞ weights) on
the unit ball and doubling weights (resp. A∞ weights) on the sphere can
be found in [22]. We denote by Πn(Bd) the space of all real algebraic
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polynomials on Bd of degree ≤ n. The following weighted inequalities
were proved in [12]:

Theorem 8.1. (MZ inequality) Given a doubling weight w on Bd, there exists
a positive constant γ ≡ γd,Lw with the following property: If Λ is a maximal δ

n -

separated subset of Bd (with respect to the metric ρ) with 0 < δ < γ, then there
exists a sequence of positive numbers {λω : ω ∈ Λ} such that λω ∼

∫
Bρ(ω, δn )

w(y) dy,

and for any f ∈ Π2n(Bd),∫
Bd
f(x)w(x)dx =

∑
ω∈Λ

λωf(ω),

and moreover, for f ∈ Πd
n and 0 < p <∞,∫

Bd
|f(x)|pw(x) dx ∼

∑
ω∈Λ

|f(ω)|p
(∫

Bρ(ω, δn )

w(y) dy

)
,

where the constants of equivalence depend only on d, the doubling constant of w
and p.

Theorem 8.2. (Bernstein inequality) If w is a doubling weight on Bd and
0 < p < ∞, then for all f ∈ Πn(Bd),(∫

Bd

(
ϕ(|x|)

)|α|p
|Dαf(x)|pw(x) dx

) 1
p

≤ Cn|α|
(∫

Bd
|f(x)|pw(x) dx

) 1
p

,

where ϕ(t) =
√

1− t2, α = (α1, α2, · · · , αd) ∈ Zd+, Dα =

(
∂
∂x1

)α1

· · ·
(

∂
∂xd

)αd
,

and |α| =
d∑
j=1

αj.

Theorem 8.3. (Remez inequality) If w is an A∞ weight on Bd, 0 < p < ∞,

E ⊂ Bd, and |E| =
(
A
n

)d
≤ 1

2 |B
d| for some A > 0, then for any f ∈ Πn(Bd),∫

Bd
|f(x)|pw(x) dx ≤ C

√
nA+1

∫
Bd\E

|f(x)|pw(x) dx.



CHAPTER 2

Marcinkiewicz multiplier theorem for h-spherical
harmonic expansions on Sd−1

1. Introduction

Given a nonzero vector α ∈ Rd, we denote by σα the reflection with respect
to the hyperplane perpendicular to α; that is, σαx = x − 2(〈x, α〉/‖α‖2)α for all
x ∈ Rd. A reduced root system in Rd is a finite subset R of Rd \ {0} with the
properties σαR = R and R ∩ {tα : t ∈ R} = {±α} for all α ∈ R.

Let R be a reduced root system in Rd normalized so that 〈α, α〉 = 2 for all
α ∈ R. Let G denote the finite subgroup of the orthogonal group O(d) generated
by the reflections σα, α ∈ R. Let κ : R → R+ be a nonnegative multiplicity
function on R with the property κ(gα) = κ(α) for all α ∈ R and g ∈ G. Associated
with the reflection group G and the function κ is the weight function hκ defined by

hκ(x) :=
∏
α∈R+

|〈x, α〉|κ(α), x ∈ Rd, (2.1)

where R+ is an arbitrary but fixed positive subsystem of R. The function hκ is
a homogeneous function of degree γκ :=

∑
α∈R+

κ(α), and is invariant under the

reflection group G. From now on, we shall set λκ = d−2
2 + γκ.

The Dunkl operators associated with G and κ are defined by

Dκ,if(x) = ∂if(x) +
∑
α∈R+

κ(α)
f(x)− f(σ(α)x)

〈x, α〉
〈α, ei〉, 1 ≤ i ≤ d, (2.2)

where e1 = (1, 0, · · · , 0), · · · , ed = (0, · · · , 0, 1) are the standard unit vectors of Rd.
Those operators mutually commute, and map Pdn to Pdn−1, where Pdn is the space

of homogeneous polynomials of degree n in d variables. We denote by Πd := Π(Rd)
the C-algebra of polynomial functions on Rd. An important result in Dunkl theory
states that there exists a linear operator Vκ : Πd → Πd determined uniquely by

Vκ(Pdn) ⊂ Pdn, Vκ(1) = 1, and Dκ,iVκ = Vκ∂i, 1 ≤ i ≤ d. (2.3)

Such an operator is called the Dunkl intertwining operator. We have the following
important result of Rösler [72] on the Dunkl intertwining operator:

Lemma 1.1. [72, Th. 1.2 and Cor. 5.3] For every x ∈ Rd, there exists a unique
probability measure µκx on the Borel σ-algebra of Rd such that

VκP (x) =

∫
Rd
P (ξ) dµκx(ξ), P ∈ Πd. (2.4)

Furthermore, the representing measures µκx are compactly supported in the convex
hull C(x) := co{gx : g ∈ G} of the orbit of x under G, and satisfy

µκrx(E) = µκx(r−1E), and µκgx(E) = µκx(g−1E) (2.5)

for all r > 0, g ∈ G and each Borel subset E of Rd.

105
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In particular, the above lemma asserts that the intertwining operator Vκ is
positive. By means of (2.4), Vκ can be extended to the space C(Rd) of continuous
functions on Rd. We denote this extension by Vκ again.

Let Sd−1 = {x ∈ Rd : ‖x‖ = 1} denote the unit sphere of Rd equipped with
the usual Lebesgue measure dσ(x). For the weight function hκ given in (4.1), we
consider the weighted Lebesgue space Lp(h2

κ;Sd−1) of functions on Sd−1 endowed
with the finite norm

‖f‖Lp(h2
κ;Sd−1) ≡ ‖f‖κ,p :=

(∫
Sd−1

|f(y)|ph2
κ(y)dσ(y)

)1/p

, 1 ≤ p <∞,

and for p =∞ we assume that L∞ is replaced by C(Sd−1), the space of continuous
functions on Sd−1 with the usual uniform norm ‖f‖∞.

A homogeneous polynomial is called an h-harmonic if it is orthogonal to all
polynomials of lower degree with respect to the inner product of L2(h2

κ;Sd−1). We
denote by Hdn(h2

κ) denote the space of all real h-harmonics of degree n. Thus,
Hd0(h2

κ) is the space of constant functions on Sd−1, and for n ∈ N, Hdn(h2
κ) is the

orthogonal complement of Πd
n−1 in the space Πd

n with respect to the inner product

〈f, g〉L2(h2
κ;Sd−1) :=

∫
Sd−1

f(x)g(x)h2
κ(x) dσ(x).

Let projκn : L2(h2
κ;Sd−1)→ Hdn(h2

κ) denote the orthogonal projection operator. The
projection projκn has an integral representation

projκn f(x) :=

∫
Sd−1

f(y)Pκn (x, y)h2
κ(y) dσ(y), x ∈ Sd−1. (2.6)

where Pκn (x, y) is the reproducing kernel of Hdn(h2
κ); that is, if {Yn,j}mnj=1 is an

orthonormal basis in Hdn(h2
κ), then

Pκn (x, y) =

mn∑
j=1

Yn,j(x)Yn,j(y), x, y ∈ Sd−1.

A remarkable fact in the theory of h-spherical harmonics is that Pκn (x, y) has a
compact representation in terms of the Dunkl interwining operator Vκ:

Pκn (x, y) =
n+ λk
λκ

Vκ
[
Cλkn (〈x, ·〉)

]
(y), x, y ∈ Sd−1 (2.7)

with λκ := γκ + d−2
2 . Here Cλn denotes the standard Gegenbauer polynomial of

degree n and index λ. By means of (4.6) and (4.7), the projection projκn f can be
extended to all f ∈ L1(h2

κ;Sd−1).
Our main goal in this chapter is to show the following Marcinkiewicz type

multiplier theorem for h-spherical harmonic expansions:

Theorem 1.2. Let {µj}∞j=0 be a sequence of real numbers that satisfies

(i) sup
j
|µj | ≤ c <∞,

(ii) sup
j≥1

2j(r−1)
2j+1∑
l=2j

|∆rµl| ≤ c <∞, with r being the smallest integer ≥ λκ+1,

where 4µl = µl − µl+1 and 4j+1µl = 4jµl − 4jµl+1. Then {µj} defines an
Lp(h2

κ;Sd−1) multiplier for all 1 < p <∞; that is,∥∥∥∥∥
∞∑
j=0

µj projκj f

∥∥∥∥∥
κ,p

≤ Apc‖f‖κ,p, 1 < p <∞,

where Ap is independent of {µj} and f .
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We organize this chapter as follows. In section 2, we collect two general results
on semigroups of operators on spaces of homogeneous type: the Hopf-Dunford-
Schwartz ergodic theorem, and the Stein theorem on Littlewood-Paley functions.
These general theorems will play fundamental roles in Section 4, where weighted
Littlewood-Paley theory on the sphere are developed. In Section 3, we estab-
lish several useful results on h-spherical harmonic analysis. Various properties of
Cesàro means, Poisson integrals and the maximal functions of Yuan Xu are given
in Section 3. After that, in Section 4, we introduce three useful Littlewood-Paley
functions on the sphere, and their equivalence in weighted Lp-norm is established.
Section 5 is devoted to the proof of Theorem 2.2. The Littlewood-Paley theory on
the sphere developed in Section 4, and the results on h-spherical harmonic analysis
proved in Section 3 will play crucial roles in this section.

2. Analysis on homogeneous spaces

Both the Euclidean space Rd and the sphere Sd−1 are homogeneous spaces. We
start with the definition of homogeneous spaces in general.

Definition 2.1. A homogeneous space is a measure space (X,µ, ρ) with a
positive measure µ and a metric ρ such that all open balls B(x, r) := {y ∈ X :
ρ(x, y) < r} are measurable, and µ is a regular measure satisfying the doubling
property

µ(B(x, 2r)) ≤ Cµ(B(x, r)), ∀x ∈ X, ∀r > 0, (2.8)

where C is independent of x and r. The least constant C in (2.8) is called the
doubling constant, and is referred to as the geometric constant of the space.

Most of the measures in analysis satisfy the doubling condition. In the rest
of this section, we assume that (X,µ, ρ) is a fixed homogeneous space and state
several results without proof. Our main reference for this section is [76], where the
full proof can be found.

In this section, we shall state with two general results on semi-groups of oper-
ators without proofs. The definition of such operators is given in [78, p. 2]:

Definition 2.2. Let (X,µ) be a measure space with a positive measure µ. A
family of operators {Tt}t≥0 is said to form a symmetric diffusion semi-group if

T t1T t2 = T t1+t2 , T 0 = id,

and it satisfies the following assumptions:

(i) T t are contractions on Lp(X,µ), i.e., ‖T tf‖p ≤ ‖f‖p, 1 ≤ p ≤ ∞;
(ii) T t are symmetric, i.e., each T t is self-adjoint on L2(M,dµ);

(iii) T t are positive preserving, i.e., T tf ≥ 0 if f ≥ 0;
(iv) T tf0 = f0 if f0(x) = 1.

Theorem 2.3. Suppose that ‖T tf‖p ≤ ‖f‖p for all f ∈ Lp(X,µ) and for each
1 ≤ p ≤ ∞. Then the function

Mf(x) = sup
s≥0

(
1

s

∫ s

0

T tf(x)dt

)
satisfies the inequalities

(a) ‖Mf‖p ≤ cp‖f‖p for each p with 1 < p ≤ ∞;
(b) µ({x ∈ X : Mf(x) > α}) ≤ (c/α)‖f‖1 for each α > 0 and f ∈ L1(X,µ),

where c is independent of f and α.

This statement in [78, p. 48] and it is a special case of the Hopf-Dunford-
Schwartz ergodic theorem.
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Given f ∈ Lp(X,µ), its Littlewood-Paley function in terms of {T t} is defined
by

g̃(f) :=

(∫ ∞
0

t
∣∣∣ ∂
∂t
T tf

∣∣∣2 dt) 1
2

. (2.9)

The following theorem is due to Stein [78, Theorem 10, p. 111]:

Theorem 2.4. For f ∈ Lp(dµ), 1 < p <∞,

c−1
p ‖f‖Lp(dµ) ≤ ‖g̃(f)‖Lp(dµ) ≤ cp‖f‖Lp(dµ),

where the first inequality holds under the additional assumption
∫
X
f dµ = 0 and

the constant Cp is independent of f .

3. h-spherical harmonic analysis

We start with the following important formula of Yuan Xu [95]:

Proposition 3.1. For a continuous function g : Bd 7→ R,∫
Sd−1

Vκg(x)h2
κ(x)dσ(x) = bκ

∫
Bd
g(x)(1− ‖x‖2)|κ|−1dx, (2.10)

where bκ is a constant such that the above equation holds when g = 1.

Proof. We give a different proof here. Firstly, we show that (2.10) holds when-
ever g : Bd → R is of the form g(x) = p(〈x, y〉) for some polynomial p : [−1, 1]→ R
and y ∈ Sd−1. Indeed, if p is an algebraic polynomial of degree n on [−1, 1], then
it can be expanded in terms of Gegenbauer polynomials:

p(t) =

n∑
j=0

aj,p
λκ + j

λκ
Cλκj (t), t ∈ [−1, 1],

hence

Vκ[p(〈·, y〉)](x) =

n∑
j=0

aj,p
λκ + j

λκ
Vκ[Cλκj (〈·, y〉)](x), x, y ∈ Sd−1.

Recall that Vκ[Cλκj (〈·, y〉)] ∈ Hdj (h2
κ) for each j and each fixed y ∈ Sd−1, and

that the spaces Hdj (h2
κ), j ≥ 1 are orthogonal to Hd0(h2

κ) (consisting of constant

functions) in L2(h2
κ;Sd−1). Thus,∫

Sd−1

Vκ[p(〈·, y〉)](x)h2
κ(x)dσ(x) = a0,p

∫
Sd−1

Vκ[Cλκ0 (〈·, y〉)](x)h2
κ(x)dσ(x) = c′κa0

= c′κ

∫ 1

−1

p(t)(1− t2)λκ−
1
2 dt, ∀y ∈ Sd−1.

On the other hand, however, for y ∈ Sd−1,∫
Bd
p(〈x, y〉)(1− ‖x‖2)|κ|−1dx =

∫
Bd
p(x1)(1− ‖x‖2)|κ|−1 dx

= cd

∫ 1

−1

p(t)(1− t2)|κ|−1+ d−1
2 dt

= cd

∫ 1

−1

p(t)(1− t2)λκ−
1
2 dt.

Thus, we obtain the desired result in this case.
Secondly, we claim that if g is a polynomial of degree m on Bd, then it can be

written in the form

g(x) =

rm∑
j=1

pj(〈x, ξj〉) (2.11)
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for some suitably chosen polynomials pj : [−1, 1]→ R and points ξj ∈ Sd−1, where

rm :=
(
m+d−1
d−1

)
. By linearity, this will imply that (2.10) holds for all polynomials g

on Bd, which, by the bounded convergence theorem, will further imply that (2.10)
holds for all continuous functions g ∈ C(Bd).

To show (2.11), we let Pdm denote the space of all real homogeneous polyno-
mials of degree m on Rd. endowed with the following inner product: for f(x) =∑
|α|=m aαx

α and g(x) =
∑
|α|=m bαx

α ∈ Pdm,

〈f, g〉Pdm := f(∂)g =
∑
|α|=m

aαbαα!,

where α! = α1!α2! · · ·αd!. Then rm = dim Pdm, and there exist ξm,1, · · · , ξm,rm ∈
Sd−1 such that for f ∈ Pdm,

f(ξm,j) = 0 for all 1 ≤ j ≤ rm if and only if f = 0. (2.12)

For convenience, we set fm,j(x) := (x · ξm,j)m for 1 ≤ j ≤ rm, where x · y denotes
the Euclidean dot product of x, y ∈ Rd. Then

fm,j(x) =
∑
|α|=m

m!

α!
xαξαm,j ∈ Pdm,

and hence, for each f(x) =
∑
|α|=m aαx

α ∈ Pdm,

〈fm,j , f〉Pdm = m!
∑
|α|=m

aαξ
α
m,j = m!f(ξm,j).

This together with (2.12) implies that for f ∈ Pdm,

〈fm,j , f〉Pdm = 0 for all 1 ≤ j ≤ rm if and only if f = 0.

Thus,

Pdm = span
{

(x · ξm,j)m : 1 ≤ j ≤ rm
}
.

To complete the proof of (2.11), it suffices to show that

Pdn = span{(x · ξm,j)n : 1 ≤ j ≤ rm}, for all 0 ≤ n ≤ m. (2.13)

Indeed, setting fm,n,j(x) = (x · ξm,j)n, we have, for any f ∈ Pdn,

〈f, fm,n,j〉Pdn = n!f(ξm,j) for all 1 ≤ j ≤ rm.

Note that if n ≤ m then fg ∈ Pdm for any g ∈ Pdm−n. Thus, using (2.12), we
conclude that if n ≤ m, and 〈f, fm,n,j〉Pdn = 0 for all 1 ≤ j ≤ rm, then fg = 0 for

all g ∈ Pdm−n, and hence f = 0. This proves the desired equation (2.13). �

Using Proposition 3.1 and positivity of Vκ, we have, for any g ∈ C(Bd),

‖Vκg‖L1(h2
κ;Sd−1) ≤ bκ

∫
Bd
|g(x)|(1− ‖x‖2)|κ|−1dx ≡ bκ‖g‖L1((1−‖x‖2)|κ|−1;Bd).

This last equation allows us to extend Vκ to a positive, bounded operator from
L1((1 − ‖x‖2)|κ|−1;Bd) to L1(h2

κ;Sd−1) so that (2.10) holds for all g ∈ L1((1 −
‖x‖2)|κ|−1;Bd). In particular, we have the following useful corollary:

Corollary 3.2. If p : [−1, 1]→ R satisfies
∫ 1

−1
|g(t)|(1− t2)λκ−

1
2 dt <∞, then∫

Sd−1

Vκ

[
p(〈·, y)

]
(x)h2

κ(x)dσ(x) = b′κ

∫ 1

−1

g(t)(1− t2)λκ−
1
2 dt.
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For simplicity, we set wλκ(t) = (1 − t2)λk−
1
2 for t ∈ [−1, 1], and denote by

L1(wλκ ; [−1, 1]) denote the weighted Lebesgue space of functions f : [−1, 1] → R
with

∫ 1

−1
|f(t)|wλκ(t) dt < ∞. Corollary 3.2 allows us to introduce the following

definition of convolutions:

Definition 3.3. [107] For f ∈ L1(h2
κ;Sd−1) and g ∈ L1(wλκ ; [−1, 1]), define

f ?κ g(x) := aκ

∫
Sd−1

f(y)Vκ[g(〈x, ·〉)](y)h2
κ(y)dσ(y), (2.14)

where aκ is chosen so that aκ
∫
Sd−1 h

2
κ(y)dσ(y) = 1.

This convolution satisfies the usual Young’s inequality, which is a simple con-
sequence of Corollary 3.2 and the Riesz-Thorin interpolation theorem.

Proposition 3.4. [107] If p, q, r ≥ 1 and p−1 = r−1 + q−1 − 1, then for
f ∈ Lq(h2

κ;Sd−1) and g ∈ Lr(wλκ ; [−1, 1]),

‖f ?κ g‖k,p ≤ ‖f‖k,q‖g‖wλκ ,r.

Definition 3.5. [38] For f ∈ L1(h2
κ,Sd−1), the Poisson integral of f is defined

by

Pκr f(ξ) :=
1

ωκd

∫
Sd−1

f(y)Pκr (ξ, y)h2
κ(y)dσ(y), ξ ∈ Sd−1, (2.15)

where the kernel Pκr (x, ·) is given by, for 0 < r < 1,

Pκr (x, y) := Vκ

[
1− r2

(1− 2r〈·, y〉+ r2)λκ+1

]
(x). (2.16)

Lemma 3.6. [38] For 0 < r < 1, the Poisson kernel satisfies the following
properties:

(1) For x, y ∈ Sd−1, Pκr (x, y) =
∑∞
n=0 r

n n+λκ
λκ

Vκ

[
Cλκn (〈x, ·〉)

]
(y);

(2) Pκr f =
∑∞
n=0 r

n projκn f ;
(3) Pκr (x, y) ≥ 0 and 1

ωκd

∫
Sd−1 P

κ
r (x, y)h2

κ(y)dσ(y) = 1.

We define

b(x, θ) := {y : 〈x, y〉 ≥ cos θ}, x ∈ Sd−1, 0 ≤ θ ≤ π.
Let χE denote the characteristic function of the set E. The following maximal
function was introduced by Yuan Xu [105]:

Definition 3.7. [105] For f ∈ L1(h2
κ;Sd−1), define the maximal function

Mκf(x) = sup
0<θ≤π

∫
Sd−1 |f(y)|Vκ[χb(x,θ)](y)h2

κ(y)dσ(y)∫
Sd−1 Vκ[χb(x,θ)](y)h2

κ(y)dσ(y)
(2.17)

= sup
0<θ≤π

(|f | ∗κ χ[cos θ,1])(x)

cλκ
∫ θ

0
(sinφ)2λκdφ

.

This maximal function can be used to study the h-harmonic expansions, since
we can often prove |(f ?κ g)(x)| ≤ cMκf(x). Using Corollary 3.2 leads to∫

Sd−1

Vκ[χ[cos θ,1](〈x, ·〉)](y)h2
κ(y)dσ(y) =

∫ θ

0

(sinφ)2λκ dφ ∼ θ2λκ+1. (2.18)

To state the weak type inequality, we define, for any measurable subset E of
Sd−1, the measure with respect to h2

κ as

measκE :=

∫
E

h2
κ(y)dσ(y).

The following estimates of Mκf was proved in [24]:



3. h-SPHERICAL HARMONIC ANALYSIS 111

Theorem 3.8. If f ∈ L1(h2
κ,Sd−1), then Mκf satisfies

measκ{x :Mκf(x) ≥ α} ≤ c‖f‖κ,1
α

, ∀α > 0. (2.19)

Furthermore, if f ∈ Lp(h2
κ,Sd−1) for 1 < p ≤ ∞, then ‖Mkf‖κ,p ≤ c‖f‖κ,p.

In order to prove Theorem 3.8, we use Theorem 2.3. Recall that Pκr denotes the
Poisson integral. By Lemma 3.6, it is easy to verify that T t := Pκr f with r = e−t

satisfies all requirements in the definition. We will need another semi-group, which
is the discrete analog of the heat operator,

Hκ
t f := f ∗κ qκt , qκt (s) :=

∞∑
n=0

e−n(n+2λκ)tn+ λκ
λκ

Cλκn (s). (2.20)

Lemma 3.9. The family of operators {Ht
κ} is a symmetric diffusion semi-group.

Proof. The kernel qκt is known to be nonnegative [48], from which it follows
immediately that Ht

κ are positive and that ‖qκt ‖λ,1 = 1 by the orthogonality of the
Gegenbauer polynomials. Hence, by Young’s inequality, ‖Hκ

t f‖κ,p ≤ ‖f‖k,p. Other
requirements in Definition 2.2 can be directly verified. �

Lemma 3.10. The Poisson and the heat semi-groups are connected by

Pκe−tf(x) =

∫ ∞
0

φt(s)H
κ
s f(x)ds, (2.21)

where

φt(s) :=
t

2
√
π
s−3/2e

−( t
2
√
s
−λκ
√
s)2
.

Furthermore, assume that f(x) ≥ 0 for all x, then for all t > 0, then

Pκ∗ f(x) := sup
0<r<1

Pκr f(x) ≤ c sup
s>0

1

s

∫ s

0

Hκ
uf(x)du. (2.22)

Consequently, Pκ∗ f is bounded on Lp(h2
κ;Sd) for 1 < p ≤ ∞ and of weak type (1, 1).

Proof. The fact that {Hκ
t } is a semi-group of operators allows us to apply

the Hopf-Dunford-Schwartz ergodic theorem ( [78, p.48]), which shows that the

maximal operator sups>0

(
1
s

∫ s
0
Hκ
uf(x)du

)
is bounded on Lp(h2

κ,Sd−1) for 1 <

p ≤ ∞ and of week type (1, 1). Therefore, it is sufficient to prove (2.21) and (2.22).
First we prove (2.21). Applying the well known identity ([78, p.46])

e−v =
1√
π

∫ ∞
0

e−u√
u
e−v

2/4udu, v > 0,

with v = (n+ λκ)t and making a change of variable s = t2/4u, we obtain that

e−nt = eλκt
1√
π

∫ ∞
0

e−u√
u
e−

n(n+2λκ)t2

4u e−
λ2κt

2

4u du

=
t

2
√
π

∫ ∞
0

e−n(n+2λκ)ss−3/2e
−( t

2
√
s
−λκ
√
s)2
ds

=

∫ ∞
0

e−n(n+2λκ)sφt(s) ds.

Multiplying by projκn f and summing up over n proves the integral relation (2.21).
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For the proof of (2.22), we use (2.21) and integration by parts to obtain

Pκe−tf(x) = −
∫ ∞

0

(∫ s

0

Hκ
uf(x)du

)
φ′t(s)ds

≤ sup
s>0

(
1

s

∫ s

0

Hκ
uf(x)du

)∫ ∞
0

s|φ′t(s)|ds,

where the derivative of φ′t(s) is taken with respect to s. Furthermore, since Pκr f =
f ∗k pκr and |pκr (t)| ≤ c for 0 < r ≤ e−1, it follows that

sup
0<r≤e−1

Pκr f(x) ≤ c‖f‖1,κ = c lim
s→∞

1

s

∫ s

0

Hκ
u (|f |)(x) du.

Therefore, to finish the proof of (2.22), it suffices to show that sup0<t≤1

∫∞
0
s|φ′t(s)|ds

is bounded by a constant. A quick computation shows that φ′t(s) > 0 if s < αt and
φ′t(s) < 0 if s > αt, where

αt :=
t2

3 +
√

9 + 4λ2
κt

2
∼ t2, 0 ≤ t ≤ 1.

Since the integral of φt(s) over [0,∞) is 1 and φt(s) ≥ 0, integration by parts gives∫ ∞
0

s|φ′t(s)|ds = 2αtφt(αt)−
∫ αt

0

φt(s)ds+

∫ ∞
αt

φt(s)ds

≤ 2αtφt(αt) + 1 =
t

√
παt

e−
(t−2λκαt)

2

4αt + 1 ≤ c

as desired. �

We are now in a position to prove Theorem 3.8.

Proof of Theorem 3.8. From the definition of pκr in (2.16), if 1− r ∼ θ, then

pκr (cos θ) =
1− r2(

(1− r)2 + 4r sin2 θ
2

)λκ+1

≥ c 1− r2

((1− r)2 + rθ2)
λκ+1

≥ c (1− r)−(2λκ+1).

For j ≥ 0 define rj := 1− 2−jθ and set Bj :=
{
y ∈ Bd : 2−j−1θ ≤ d(x, y) ≤ 2−jθ

}
.

The lower bound of pκr proved above shows that

χBj (y) ≤ c (2−jθ)2λk+1pκrj (〈x, y〉),

which implies immediately that

χb(x,θ)(y) ≤
∞∑
j=0

χBj (y) ≤ c θ2λk+1
∞∑
j=0

2−j(2λκ+1)pκrj (〈x, y〉).

Since Vκ is a positive linear operator, applying Vκ to the above inequality gives∫
Sd−1

|f(y)|Vκ
[
χb(x,θ)

]
(y)h2

κ(y)dσ(y)

≤ c θ2λκ+1
∞∑
j=0

2−j(2λκ+1)

∫
Sd−1

|f(y)|Vκ
[
prj (〈x, y〉)

]
(y)h2

κ(y)dσ(y)

= c θ2λκ+1
∞∑
j=0

2−j(2λκ+1)Pκrj (|f |;x)

≤ c θ2λκ+1 sup
0<r<1

Pκr (|f |;x).
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Dividing by θ2λκ+1 and using the fact that

1

ωκd

∫
Sd−1

Vκ[χb(x,θ)](y)h2
κ(y)dσ(y) = cλκ

∫ θ

0

(sinφ)2λκdφ ∼ θ2λκ+1.

we have proved that Mκf(x) ≤ cPκ∗ |f |(x). The desired result now follows from
Lemma 3.10. �

Definition 3.11. For δ > −1, the Cesàro (C, δ) means of the h-spherical
harmonic expansions are defined by

Sδn(h2
κ; f, x) := (Aδn)−1

n∑
k=0

Aδn−k projκk f(x), Aδj =
Γ(j + δ + 1)

Γ(j + 1)Γ(δ + 1)
.

These means can be written as

Sδn(h2
κ; f) = (f ?κ K

δ
n(h2

κ))(x), (2.23)

where

Kδ
n

(
h2
κ; t
)

:=
1

Aδn

n∑
k=0

Aδn−k
k + λκ
λκ

Cλκk (t) = kδn (wλκ ; 1, t) , (2.24)

in which kδn(wλκ ; ·, ·) is the kernel of the (C, δ) means of the Fourier orthogonal
series in the Gegenbauer polynomials.

The following theorem is a consequence of Corollary 3.2:

Theorem 3.12. [96] The Cesàro means of the h-spherical harmonics series
satisfy

1. If δ ≥ 2λk + 1 then Sδn(h2
κ) is a nonnegative operator;

2. If δ > λκ then Sδn(h2
κ; f) converges to f in Lp(h2

κ;Sd−1) for 1 ≤ p ≤ ∞.

The following result was proved in [104]:

Corollary 3.13. If δ > λκ and f ∈ L1(h2
κ,Sd−1) then for every x ∈ Sd−1,

sup
n≥0
|Sδn(h2

κ; f(x)| ≤ c [Mκf(x) +Mκf(−x)] . (2.25)

If, in addition, δ ≥ 2λk + 1, then the term Mf(−x) in (2.25) can be dropped.

We conclude this section with the following result:

Theorem 3.14. For δ > λκ, 1 < p < ∞ and any sequence {nj} of positive
integers, ∥∥∥∥∥

( ∞∑
j=0

∣∣Sδnj (h2
κ; fj)

∣∣2)1/2∥∥∥∥∥
κ,p

≤ c

∥∥∥∥∥
( ∞∑
j=0

∣∣fnj ∣∣2
)1/2∥∥∥∥∥

κ,p

. (2.26)

Proof. The proof of (2.26) follows the approach of [78, p.104-5] that uses a
generalization of the Riesz convexity theorem for sequences of functions. Let Lp(`q)
denote the space of all sequences {fk} of functions for which the norm

‖(fk)‖Lp(`q) :=

(∫
Sd−1

( ∞∑
j=0

|fj(x)|q
)p/q

h2
κ(x)dσ(x)

)1/p

are finite. If T is bounded as operator on Lp0(`q0) and on Lp1(`q1), then the Riesz
convexity theorem states that T is also bounded on Lpt(`qt), where

1

pt
=

1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1
, 0 ≤ t ≤ 1.
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We apply this theorem on the operator T that maps the sequence {fj} to the
sequence {Sδnj (h

2
κ; fj)} with δ > λκ. By Corollary 3.13, T is bounded on Lp(`p). It

is also bounded on Lp(`∞) since∥∥∥ sup
j≥0

∣∣Sδnj (h2
κ; fj)

∣∣∥∥∥
κ,p
≤ c
∥∥∥Mκ

(
sup
j≥0
|fj |
)∥∥∥

κ,p
≤ c
∥∥∥ sup
j≥0
|fj |
∥∥∥
κ,p
.

Hence, the Riesz convexity theorem shows that T is bounded on Lp(`q) if 1 < p ≤
q ≤ ∞. In particular, T is bounded on Lp(`2) if 1 < p ≤ 2. The case 2 < p < ∞
follows by the standard duality argument, since the dual space of Lp(`2) is Lp

′
(`2),

where 1/p+ 1/p′ = 1, under the paring

〈(fj), (gj)〉 :=

∫
Sd−1

∑
j

fj(x)gj(x)h2
κ(x)dσ(x)

and T is self-adjoint under this paring as Sδn(h2
κ) is self-adjoint in L2(h2

κ;Sd−1). �

4. The Littlewood-Paley theory on the sphere

For simplicity, from now now, we write Sδnf for Sδn(h2
κ; f). For functions f on

the sphere Sd−1, we define

g(f) :=

(∫ 1

0

(1− r)| ∂
∂r
Pκr f |2 dr

) 1
2

, (2.27)

where Pκr f denotes the Poisson integral of f . The general result of Stein, Theo-
rem 2.4, then leads to the following useful corollary:

Corollary 4.1. If 1 < p <∞ and f ∈ Lp(h2
κ;Sd−1) with

∫
Sd−1 f(x)h2

κ(x) dσ(x)
= 0, then for g(f) given in (2.27), we have

C−1
p ‖f‖κ,p ≤ ‖g(f)‖κ,p ≤ Cp‖f‖κ,p, (2.28)

where the constant Cp is independent of f .

Proof. Applying Theorem 2.4 to the semigroup {Pκe−t : t ≥ 0}, we deduce
that ‖g̃(f)‖κ,p ∼ ‖f‖κ,p, where

g̃(f) :=

(∫ ∞
0

∣∣∣ ∂
∂t

(Pκe−tf)
∣∣∣2t dt) 1

2

=

(∫ 1

0

∣∣∣ ∂
∂r
Pκr f

∣∣∣2r| log r| dr
) 1

2

.

The desired equation (2.28) then follows by using the fact that

max
0<r< 1

2

∥∥∥ ∂
∂r
Pκr f

∥∥∥
κ,p
≤
∞∑
k=1

k2−k+1‖ projκk f‖κ,p ≤ c‖f‖κ,p
∞∑
k=1

2−kkλκ+2 ≤ c‖f‖κ,p.

�

We also need a refined version of the Littlewood-Paley function g(f) defined as
follows:

gδ(f) =

( ∞∑
n=1

|Sδ+1
n f − Sδnf |2n−1

) 1
2

, (2.29)

where δ ≥ 0 and f ∈ L(h2
κ;Sd−1). In this section, we shall prove the following

result concerning the equivalence of ‖gδ(f)‖κ,p and ‖f‖κ,p:

Theorem 4.2. If 1 < p <∞, and f ∈ Lp(h2
κ;Sd−1) with

∫
Sd−1 f(x)h2

κ(x) dσ(x)
= 0, then ‖f‖κ,p ≤ Cp‖gδ(f)‖κ,p holds for all δ ≥ 0. Conversely, if δ ≥ 0, 1 < p <
∞, and the inequality∥∥∥∥∥

( ∞∑
k=1

|SδNkfk|
2

) 1
2
∥∥∥∥∥
κ,p

≤ Cp

∥∥∥∥∥
( ∞∑
k=1

|fk|2
) 1

2 ∥∥∥
κ,p

(2.30)
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holds for all {Nk} ⊂ Z+ and {fk} ⊂ L(h2
κ;Sd−1), then ‖gδf‖κ,p ≤ Cp‖f‖κ,p holds

for all f ∈ Lp(h2
κ;Sd−1).

The second part of the above theorem 4.2 follows directly from a more general
result, Theorem 4.3 below.

Theorem 4.3. Assume that δ ≥ 0, 1 < p < ∞, and that the inequality (2.30)
holds for all {Nk} ⊂ Z+ and {fk} ⊂ L(h2

κ;Sd−1). Let {vk}∞k=1 be a sequence of

positive numbers satisfying sup
N
N−1

N∑
k=1

vk = M < ∞. Then for f ∈ Lp(h2
κ;Sd−1),

and the function g∗δ (f) :=
( ∞∑
n=1

|Sδ+1
n f−Sδnf |2n−1vn

) 1
2

, the inequality ‖g∗δ (f)‖κ,p ≤

MCp‖f‖κ,p holds, with the constant Cp being independent of f and vk.

The rest of this section is devoted to the proofs of Theorems 4.2 and 4.3.

4.1. Properties of the Cesàro coefficients. Let us first recall some basic
properties of the Cesàro coefficients Aδj , j = 0, 1, · · · , which are defined for all δ ∈ R
by (1 − s)−1−δ =

∑∞
j=0A

δ
js
j . The following facts can be easily verified from the

definition:

(i) Aδj −Aδj−1 = Aδ−1
j ,

n∑
j=0

Aδj = Aδ+1
n ,

n∑
j=0

Aαn−jA
β
j = Aα+β+1

n (2.31)

(ii) |Aδj | ∼ (j + 1)δ, whenever j + δ + 1 > 0. (2.32)

(iii) If {ak}∞k=0 and {bk}∞k=0 are two sequences of complex numbers, and n is a
positive integer, then

4n(akbk) =

n∑
j=0

(
n

j

)
(4jak)(4n−jbk+j). (2.33)

Lemma 4.4. If {aj}∞j=0 is a bounded sequence of complex numbers satisfying∑∞
j=1 |4`+1aj |j` <∞ for some nonnegative integer `, then lim

n→∞
an =: L exists, and

the series

∞∑
j=0

(aj−L) converges and satisfies

∞∑
j=0

(aj−L) =

∞∑
j=0

(4`+1aj)A
`
j(s

`
j−L),

where s`n = (A`n)−1
∑n
j=0A

`
n−jaj.

Proof. We first claim that for each positive integer i,
∞∑
j=0

|4iaj |Ai−1
j ≤

∞∑
j=0

|4i+1aj |Aij . (2.34)

Without loss of generality, we may assume that the infinite sum on the right hand
side of this last equation is finite. Then for each k,m ∈ N,

|4iak −4iak+m| = |
k+m−1∑
j=k

4i+1aj | ≤
k+m−1∑
j=k

|4i+1aj |Aij → 0, as k →∞.

This means that {4iak} is a Cauchy sequence in C, and therefore, is convergent.
Since ∣∣∣∣∣

2k−1∑
j=k

4iaj

∣∣∣∣∣ =
∣∣∣4i−1ak −4i−1a2k

∣∣∣ ≤ Ci sup
j
|aj | <∞,

we must have limn→∞4ian = 0, which further implies |4ian| = |
∑∞
j=n4i+1aj |.

The claim (2.34) then follows.
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Now applying (2.34) ` times yields
∑∞
j=0 |4aj | ≤

∑∞
k=0 |4`+1ak|A`k < ∞.

This, in particular, implies that limn→∞ an = L exists, and limn→∞4ian = 0
for all positive integers i. Thus, to complete the proof, we just need to apply
summation by parts `+ 1 times to the partial sums sn :=

∑n
j=0(aj − L) and then

letting n→∞. �

4.2. Three crucial Lemmas. In this subsection, we shall establish three
crucial lemmas for the proofs of Theorems 4.2 and 4.3.

Lemma 4.5. If δ ≥ 0, 1− 1
N ≤ r < 1 and f ∈ L1(h2

κ;Sd−1) then

SδNf = r−NPκr (SδNf) +

N−1∑
j=0

aδj,NP
κ
r (Sδj f)

for some real numbers aδj,N satisfying

max
0≤j≤N−1

|aδj,N | ≤ C(1− r), (2.35)

where C > 0 is independent of f and N .

Proof. Recalling that (1− s)−δ−1 =
∑∞
j=0A

δ
js
j for 0 ≤ s < 1, we obtain

(1− s)−δ−1Pκs f =

∞∑
n=0

(AδnS
δ
nf)sn. (2.36)

On the other hand, since Pκs f = Pκs/rP
κ
r f for 0 < s < r < 1, we have

(1− s)−δ−1Pκs f = (1− s)−δ−1(1− s

r
)1+δ

(
1− s

r

)−1−δ
Pκs/r(P

κ
r f)

=

( ∞∑
j=0

Aδjs
j

)( ∞∑
j=0

A−δ−2
j (s/r)j

)( ∞∑
j=0

AδjP
κ
r (Sδj f)(s/r)j

)

=

∞∑
n=0

sn

[
n∑
j=0

AδjP
κ
r (Sδj f)r−j

∑
k+`=n−j

AδkA
−δ−2
` r−`

]
, (2.37)

where the second step uses (2.36) with s/r in place of s. Thus, comparing the
coefficients of sn in (2.36) and (2.37) yields that

SδNf =

N∑
j=0

aδj,NP
κ
r (Sδj f),

where

aδj,N = (AδN )−1Aδjr
−j
( ∑
k+`=N−j

AδkA
−δ−2
` r−`

)
.

Clearly, aδN,N = r−N . Thus, it remains to verify (2.35) for 1 − N−1 ≤ r ≤ 1.

Observing that r−` ≤ r−N ≤ c for all 0 ≤ ` ≤ N , we obtain that for 0 ≤ j ≤ N −1,

|aδj,N | ≤ c max
1≤M≤N

∣∣∣∣∣
M∑
`=0

AδM−`A
−δ−2
` rM−`

∣∣∣∣∣ = c max
1≤M≤N

∣∣∣∣∣
M∑
`=0

AδM−`A
−δ−2
` (1− rM−`)

∣∣∣∣∣,
where the last step uses the identity

∑M
`=0A

δ
M−`A

−δ−2
` = A−1

M = 0. Thus, for the
proof of (2.35), it suffices to show that for 1 ≤M ≤ N∣∣∣∣∣

M∑
`=0

AδM−`A
−δ−2
`

(
1− rM−`

)∣∣∣∣∣ ≤ C(1− r). (2.38)
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To this end, let η ∈ C∞(R) be such that η(x) = 1 for |x| ≤ 1
4 , and η(x) = 0 for

|x| ≥ 1
2 . We then split the sum on the left hand side of (2.38) into two parts:

Σ1 + Σ2, where

Σ1 =

M∑
j=0

η

(
j

M

)
AδM−jA

−δ−2
j (1− rM−j),

Σ2 =

M∑
j=0

(
1− η

(
j

M

))
AδM−jA

−δ−2
j (1− rM−j).

Using (2.32), and direct computations show that

|Σ2| ≤ c(1− r)
∑

M/4≤j≤M

(M − j + 1)δ+1j−δ−2 ≤ c(1− r).

To estimate Σ1, let k be a positive integer ≥ δ, and for convenience, we set
Aδj = 0 for j < 0. Then using (2.31), (2.32), and summation by parts k times, we
obtain

|Σ1| ≤
∑

0≤j≤M/2

∣∣∣∣4k(AδM−jη( j

M

)
(1− rM−j)

)∣∣∣∣A−δ−2+k
j

≤ c
∑

0≤j≤M/2

(
Mδ−k(1− rM−j) + max

i1+i2=k
1≤i2≤k

Mδ−i1(1− r)i2
)

(j + 1)−δ−2+k

≤ c(1− r)Mδ−k+1
M∑
j=1

j−δ−2+k ≤ c(1− r),

where the third step uses the facts that 1 − rM−j ≤ (M − j)(1 − r) and 1 − r ≤
N−1 ≤ M−1. Putting the above together, we deduce (2.35), and hence complete
the proof. �

Lemma 4.6. If δ ≥ 0, 0 < r < 1 and f ∈ L(h2
κ;Sd−1) then

Pκr (SδNf) =

N∑
j=0

bδj,NS
δ
j f,

for some real numbers bδj,N independent of f and satisfying

N∑
j=0

|bδj,N | ≤ Cδ. (2.39)

Proof. Using (2.36), we have, for 0 < s, r < 1,

(1− s)−δ−1Pκs P
κ
r f =

∞∑
n=0

Aδn(Pκr S
δ
nf)sn.

On the other hand, however,

(1− s)−1−δPκs P
κ
r f = (1− s)−δ−1Pκsrf = (1− s)−δ−1(1− sr)1+δ(1− sr)−δ−1Pκsrf

=
( ∞∑
j=0

Aδjs
j

)( ∞∑
j=0

A−δ−2
j sjrj

)( ∞∑
j=0

Aδj(S
δ
j f)(sr)j

)

=

∞∑
n=0

sn
[ n∑
j=0

Aδj(S
δ
j f)rj

∑
k+`=n−j

AδkA
−δ−2
` r`

]
.
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Thus, comparing the coefficients of sN yields Pκr (SδNf) =
∑N
j=0 b

δ
j,NS

δ
j f, where

bδj,N := (AδN )−1Aδjr
j

[N−j∑
`=0

AδN−j−`A
−δ−2
` r`

]
.

It remains to show that the bδj,N satisfy (2.39).

Clearly, bδN,N = rN . For 0 ≤ j ≤ N − 1, we claim that∣∣∣∣N−j∑
`=0

AδN−j−`A
−δ−2
` r`

∣∣∣∣ ≤ C(1− r) + C(N − j)δ(1− r)1+δ. (2.40)

To see this, we set M = N − j, and let η ∈ C∞(R) be such that η(x) = 1 for

|x| ≤ 1
4 , and η(x) = 0 for |x| ≥ 1

2 . Since
∑M
`=0A

δ
M−`A

−δ−2
` = A−1

M = 0, it follows
that ∣∣∣∣ M∑

`=0

AδM−`A
−δ−2
` r`

∣∣∣∣ =

∣∣∣∣ M∑
`=0

AδM−`A
−δ−2
` (1− r`)

∣∣∣∣ ≤ J1 + J2,

where

J1 =
∣∣∣ M∑
`=0

AδM−`A
−δ−2
` η(

`

M
)(1− r`)

∣∣∣,
J2 =

∣∣∣ M∑
`=0

AδM−`A
−δ−2
` (1− η(

`

M
))(1− r`)

∣∣∣.
Clearly,

J2 ≤ C
∑

M/4≤`≤M

(M − `+ 1)δ(`+ 1)−δ−2`(1− r) ≤ c(1− r).

To estimate J1, we set Aδj = 0 for j < 0, and let k be the smallest integer such
that −δ − 2 + k > −1. Then summation by parts k times yields

J1 ≤
M∑
`=0

∣∣∣∣4k(AδM−`η( `

M

)
(1− r`)

)∣∣∣∣A−δ−2+k
`

≤ c
M/2∑
`=0

[
Mδ−k(1− r`) + max

i+j=k
1≤j≤k

M δ−ir`(1− r)j
]
A−δ−2+k
`

≤ c(1− r) + cM δ(1− r)k
∞∑
`=0

A−δ−2+k
` r` ≤ c(1− r) + cM δ(1− r)1+δ.

Putting these together, we prove the claim (2.40).
Now using (2.40), we deduce that for 0 ≤ j ≤ N − 1,

|bδj,N | ≤ (AδN )−1Aδjr
j

∣∣∣∣N−j∑
`=0

AδN−j−`A
−δ−2
` r`

∣∣∣∣ ≤ Crj(1− r) + cAδjr
j(1− r)1+δ.

It then follows that
N∑
j=0

|bδj,N | ≤ 1 + c(1− r)
∞∑
j=0

rj + c(1− r)1+δ
∞∑
j=0

Aδjr
j ≤ c,

which proves (2.39), and hence completes the proof of the lemma. �

We shall use the notation |I| to denote the length of a given interval I ⊂ R,
and Z+ to denote the set of all nonnegative positive integers.
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Lemma 4.7. Assume that 1 < p <∞, δ ≥ 0 and the inequality∥∥∥∥( ∞∑
k=1

|SδNkfk|
2

) 1
2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥( ∞∑

k=1

|fk|2
) 1

2
∥∥∥∥
κ,p

(2.41)

holds for any {Nk} ⊂ Z+ and {fk} ⊂ L(h2
κ;Sd−1). If rj ∈ (0, 1) and Ij is a

subinterval of [rj , 1) for j = 1, 2, · · · , then the inequality,∥∥∥∥( ∞∑
k=1

|SδNkP
κ
rk
fk|2

) 1
2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥( ∞∑

k=1

1

|Ik|

∫
Ik

|Pκr fk|2 dr
) 1

2
∥∥∥∥
κ,p

, (2.42)

holds for all {Nk}∞k=1 ⊂ Z+, and {fk}∞k=1 ⊂ L(h2
κ;Sd−1), with the constant Cp

being independent of {rk}, {Ik}, {Nk} and {fk}.

Proof. We first claim that for each {Nk} ⊂ Z+ and {fk} ⊂ L(h2
κ;Sd−1),∥∥∥∥( ∞∑

k=1

|SδNkP
κ
rk
fk|2

) 1
2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥( ∞∑

k=1

|fk|2
) 1

2
∥∥∥∥
κ,p

. (2.43)

To see this, we use Lemma 4.6 and obtain

|SδNkP
κ
rk
fk|2 ≤ C

Nk∑
`=0

|bδ`,Nk ||S
δ
` fk|2, k = 1, 2, · · · .

Summing over k, and invoking (2.53), we deduce∥∥∥∥( ∞∑
k=1

|SδNkP
κ
rk
fk|2

) 1
2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥( ∞∑

k=1

Nk∑
`=0

|bδ`,Nk ||fk|
2

) 1
2
∥∥∥∥
κ,p

≤ C
∥∥∥∥( ∞∑

k=1

|fk|2
) 1

2
∥∥∥∥
κ,p

,

which proves the claim (2.43).
Next, we show that the desired inequality (2.42) follows from (2.43). To see this,

for each k ≥ 0 and n ≥ 1, we let {rk,i}2
n

i=0 ⊂ Ik be such that rk,i − rk,i−1 = 2−n|Ik|
for all 1 ≤ i ≤ 2n. Then for each n ∈ N, Rn := 2−n

∑2n

i=1 |Pκrk,ifk|
2 is a Rie-

mann sum of the integral 1
|Ik|
∫
Ik
|Pκr fk|2 dr, and moreover, the sequence {Rn}∞n=1

increases to the integral 1
|Ik|
∫
Ik
|Pκr fk|2 dr. Thus, by the dominated convergence

theorem, it follows that∥∥∥∥( ∞∑
k=1

1

|Ik|

∫
Ik

|Pκr fk|2 dr
) 1

2
∥∥∥∥
κ,p

= lim
n→∞

∥∥∥∥(2−n
∞∑
k=1

2n∑
i=1

|Pκrk,ifk|
2

) 1
2
∥∥∥∥
κ,p

.

On the other hand, however, since for each fixed n ∈ N, rk < rk,i for all 1 ≤ i ≤ n
and k ∈ N, using (2.43), we have∥∥∥∥( ∞∑

k=1

|SδNkP
κ
rk
fk|2

) 1
2
∥∥∥∥
κ,p

=

∥∥∥∥(2−n
2n∑
i=1

∞∑
k=1

|SδNkP
κ
rk/rk,i

(Pκrk,ifk)|2
) 1

2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥(2−n

2n∑
i=1

∞∑
k=1

|SδNk(Pκrk,ifk)|2
) 1

2
∥∥∥∥
κ,p

.

Thus, letting n → ∞, we prove the desired inequality (2.42), and completes the
proof of the lemma. �
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4.3. Proofs of Theorems 4.2 and 4.3. We start with the proof of Theo-
rem 4.2.

Proof of Theorem 4.2. The second part of Theorem 4.2 follows directly from
Theorem 4.3, whose proof will be given later. So, here, we shall only prove the
inequality ‖f‖κ,p ≤ Cp‖gδ(f)‖κ,p. By Corollary 4.1, it suffices to show that for
the Littlewood-Paley function g(f) given in (2.27), and for any δ ≥ 0, one has
g(f) ≤ Cgδ(f). To see this, we note that∣∣∣ ∂

∂r
Pκr f

∣∣∣ = (1− r)δ+1(1− r)−δ−1

∣∣∣∣ ∞∑
k=0

krk−1 projκk f

∣∣∣∣
= (1− r)δ+1

∣∣∣∣ ∞∑
n=1

( n∑
k=0

kAδn−k projκk f r
n−1

)∣∣∣∣.
Since

Sδ+1
n f − Sδnf = −(n+ δ + 1)−1(Aδn)−1

n∑
k=0

kAδn−k projκk f,

it follows that ∣∣∣∣ ∂∂rPκr f
∣∣∣∣ ≤ c(1− r)δ+1

∞∑
n=1

nAδn|Sδ+1
n f − Sδnf |rn−1,

which, using the Cauchy-Schwartz inequality, implies∣∣∣∣ ∂∂rPκr f
∣∣∣∣2 ≤ c(1− r)2δ+2

( ∞∑
n=1

nAδn|Sδ+1
n f − Sδnf |2rn−1

)( ∞∑
n=1

nAδnr
n−1

)

= c(1 + δ)(1− r)δ
∞∑
n=1

nAδn|Sδ+1
n f − Sδnf |2rn−1.

Thus,

|g(f)|2 =

∫ 1

0

∣∣∣ ∂
∂r
Pκr f

∣∣∣2(1− r) dr ≤ c
∞∑
n=1

nAδn|Sδ+1
n f − Sδnf |2

∫ 1

0

(1− r)1+δrn−1 dr

≤ c
∞∑
n=1

n−1
∣∣Sδ+1
n f − Sδnf

∣∣2 = |gδ(f)|2,

where the third step uses the fact that
∫ 1

0
(1− r)δ+1rn−1 dr = Γ(δ+2)Γ(n)

Γ(n+δ+2) ∼ n
−δ−2.

This proves the desired inequality g(f) ≤ cgδ(f).

It remains to prove Theorem 4.3.

Proof of Theorem 4.3. Without loss of generality, we may assume that n ≤∑n
k=1 vk ≤ 2n, since otherwise we may consider the sequences ṽj = 1 and ṽj =

M−1vj + 1. For convenience, we define, for n = 1, 2, · · · ,

Enf = −(n+ 1 + δ)−1
n∑
k=0

k projκk f.

It is easily seen that for 0 ≤ j ≤ n,

Sδj (Enf) =
j + δ + 1

n+ δ + 1

(
Sδ+1
j f − Sδj f

)
. (2.44)
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Using Lemma 4.5, we obtain that for any r ∈ [1− n−1, 1),

Sδ+1
n f − Sδnf = Sδn(Enf) = r−nPκr (Sδn(Enf)) +

n−1∑
j=1

aδj,nP
κ
r (Sδj (Enf))

= r−n
(
Sδ+1
n (Pκr f)− Sδn(Pκr f)

)
+

n−1∑
j=1

j + δ + 1

n+ δ + 1
aδj,n

[
Sδ+1
j (Pκr f)− Sδj (Pκr f)

]
, (2.45)

where |aδj,n| ≤ c(1− r) ≤ cn−1, and the last step uses (2.44). Now let µ1 = 1, and

µn = 1 +
∑n−1
i=1 vi for n > 1. Clearly, rn := 1 − 1

µn
∈ [1 − n−1, 1 − (2n − 1)−1].

Thus, applying (2.45) with r = rn, and setting fn = Pκrnf , we deduce

|Sδ+1
n f − Sδnf | ≤ c|Sδ+1

n fn − Sδnfn|+ cn−2
n−1∑
j=1

j|Sδ+1
j (fn)− Sδj (fn)|,

which, using the Cauchy-Schwartz inequality, implies

|Sδ+1
n f − Sδnf |2 ≤ c|Sδ+1

n fn − Sδnfn|2 + +cn−3
n−1∑
j=1

j2|Sδ+1
j fn − Sδj fn|2. (2.46)

Therefore, for the proof of Theorem 4.3, by (2.46) and Corollary 4.1, it suffices
to show the following two inequalities:∥∥∥∥( ∞∑

n=1

n−1|Sδ+1
n fn − Sδnfn|2vn

) 1
2
∥∥∥∥
κ,p

≤ Cp‖g(f)‖κ,p (2.47)

and ∥∥∥∥( ∞∑
n=1

vn
n4

n−1∑
j=1

j2|Sδ+1
j fn − Sδj fn|2

) 1
2
∥∥∥∥
κ,p

≤ Cp‖g(f)‖κ,p. (2.48)

To this end, let η ∈ C∞(R) be such that η(x) = 1 for |x| ≤ 1 and η(x) = 0 for

|x| ≥ 2. ForN = 1, 2, · · · , we define the operator VN by VN (f) =
∑∞
j=0 η( jN ) projκj f,

and the operator DN by DNf = −
∑2N
j=0 jη( jN ) projκj f. Note that summation by

parts d+ 1 times shows that

sup
N
|VNf | ≤ sup

N

2N∑
j=0

∣∣∣∣4d+1η

(
j

N

)∣∣∣∣Adj |σdj (f)| ≤ c sup
j
|σdj (f)| ≤ cM(f). (2.49)

Also, observe that for 1 ≤ j ≤ n ≤ N ,

Sδ+1
j fn − Sδj fn = (j + δ + 1)−1Pκrn(Sδj (DNf)). (2.50)

Thus, using Lemma 4.7 and (2.50) with j = n, we obtain∥∥∥∥∥
( N∑
n=1

n−1|Sδ+1
n fn − Sδnfn|2vn

) 1
2
∥∥∥∥
κ,p

≤ c
∥∥∥∥( N∑

n=1

vn
n3
|Pκrn(Sδn(DNf))|2

) 1
2
∥∥∥∥
κ,p

≤ c
∥∥∥∥( N∑

n=1

vn
n3

1

rn+1 − rn

∫ rn+1

rn

|Pκr (DNf)|2 dr
) 1

2
∥∥∥∥
κ,p

.

However, using (2.49),

|Pκr (DNf)| = r

∣∣∣∣VN( ∂

∂r
Pκr f

)∣∣∣∣ ≤ cM( ∂

∂r
Pκr f

)
.
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Thus, applying the Fefferman-Stein inequality to the Riemann sums of the integrals∫ rn+1

rn
, we obtain∥∥∥∥( N∑

n=1

vn
n3

1

rn+1 − rn

∫ rn+1

rn

|Pκr (DNf)|2 dr
) 1

2
∥∥∥∥
κ,p

≤ c
∥∥∥∥( N∑

n=1

vn
n3

1

rn+1 − rn

∫ rn+1

rn

∣∣∣∣M( ∂

∂r
Pκr f

)∣∣∣∣2 dr) 1
2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥( N∑

n=1

vn
n3

1

rn+1 − rn

∫ rn+1

rn

∣∣∣∣ ∂∂rPκr f
∣∣∣∣2 dr) 1

2
∥∥∥∥
κ,p

.

Since rn+1 − rn = vn
µnµn+1

∼ vn
n2 and 1− r ∼ 1

n for all r ∈ [rn, rn+1], it follows that∥∥∥∥( N∑
n=1

vn
n3

1

rn+1 − rn

∫ rn+1

rn

∣∣∣∣ ∂∂rPκr f
∣∣∣∣2 dr) 1

2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥( ∞∑

n=1

1

n

∫ rn+1

rn

∣∣∣∣ ∂∂rPκr f
∣∣∣∣2 dr) 1

2
∥∥∥∥
κ,p

≤ Cp‖g(f)‖κ,p.

Putting the above together, and letting N →∞, we deduce the inequality (2.47).
The proof of the second inequality (2.48) is similar. In fact, using Lemma 4.7

and (2.50), we have∥∥∥∥( N∑
n=1

vn
n4

n−1∑
j=1

j2|Sδ+1
` fn − Sδ` fn|2

) 1
2
∥∥∥∥
κ,p

≤ c
∥∥∥∥( N∑

n=1

vn
n4

n−1∑
j=1

|Pκrn(SδjDNf)|2
) 1

2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥( ∞∑

n=1

vn
n4

n−1∑
j=1

1

rn+1 − rn

∫ rn+1

rn

| ∂
∂r
Pκr f |2 dr

) 1
2
∥∥∥∥
κ,p

≤ Cp
∥∥∥∥( ∞∑

n=1

vn
n3

1

rn+1 − rn

∫ rn+1

rn

| ∂
∂r
Pκr f |2 dr

) 1
2
∥∥∥∥
κ,p

≤ Cp‖g(f)‖κ,p.

Letting N →∞, we deduce the desired inequality (2.48).

5. Proof of Theorem 2.2

Lemma 5.1. If {µj} is a sequence of complex numbers satisfying (Ak) for some
positive integer k, then {µj} satisfies (Ai) for all 1 ≤ i ≤ k, with a possible change
of the absolute constant M .

Proof. It suffices to show that (Ak) implies (Ak−1) for any k ≥ 2. Indeed,
if k ≥ 2 then (Ak) implies that

∑∞
`=1 |4kµ`| < ∞, and hence, from the proof of

Lemma 4.4, it follows that lim`→∞4k−1µ` = 0. Thus,

2j+1∑
`=2j+1

|4k−1µ`| ≤
2j+1∑

`=2j+1

∞∑
i=`

|4kµi| ≤ 2j
∞∑

i=2j+1

|4kµi| ≤ 2M2−j(k−2),

which proves (Ak−1). �
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Lemma 5.2. Let {aj}∞j=0 be a sequence of complex numbers, and let δ be a
nonnegative integer. If {µj}∞j=0 is a sequence of complex numbers satisfying (A0)

and (Aδ+1), then the Cesàro means σδN := (AδN )−1
∑N
j=0A

δ
N−jµjaj of the sequence

{µjaj} can be written in the form σδN = µNS
δ
N +

∑N−1
`=0 Cδ`,NS

δ
` , where Sδ` =

(Aδ`)
−1
∑`
j=0A

δ
`−jaj, and the constants Cδ`,N are independent of {aj} and satisfy

|Cδ`,N | ≤ c
δ+1∑
k=1

(`+ 1)k−1|4kµ`|, ` = 0, 1, · · · , N − 1. (2.51)

Proof. Using Lemma 4.4, we have, for 0 < r < 1,
∞∑
n=0

Aδnσ
δ
nr
n = (1− r)−δ−1

∞∑
n=0

µnanr
n = (1− r)−δ−1

∞∑
n=0

4δ+1(µnr
n)AδnS

δ
n,

whereas, by (2.33), one has

4δ+1(µnr
n) =

δ+1∑
k=0

(
δ + 1

k

)
(4kµn)(4δ+1−krn+k)

=

δ+1∑
k=0

(−1)kA−δ−2
k (4kµn)rn+k(1− r)δ+1−k.

It follows that
∞∑
n=0

Aδnσ
δ
nr
n =

δ+1∑
k=0

(−1)kA−δ−2
k (1− r)−k

( ∞∑
n=0

(4kµn)AδnS
δ
nr
n+k

)

=

∞∑
N=0

( δ+1∑
k=0

(−1)kA−δ−2
k

∑
i+j=N−k
i,j≥0

Ak−1
j (4kµi)AδiSδi

)
rN .

Comparing the coefficients of sN yields

σδN = (AδN )−1
δ+1∑
k=0

(−1)kA−δ−2
k

N−k∑
i=0

Ak−1
N−k−i(4

kµi)A
δ
iS

δ
i

= (AδN )−1
N∑
`=0

Aδ`S
δ
`

min{N−`,δ+1}∑
k=0

(−1)kA−δ−2
k Ak−1

N−k−`4
kµ`

= µNS
δ
N +

N−1∑
`=0

Cδ`,NS
δ
` ,

where

Cδ`,N = (AδN )−1Aδ`

min{N−`,δ+1}∑
k=1

(−1)kA−δ−2
k Ak−1

N−`−k4
kµ`

for 0 ≤ ` ≤ N − 1, and we have used the fact that A−1
N−` = 0 for ` < N .

Finally, for 0 ≤ ` ≤ N − 1, we have

|Cδ`,N | ≤ C`δN−δ
δ+1∑
k=1

(N − `)k−1|4kµ`| ≤ C
δ+1∑
k=1

(N − `)k−1

(
`

N

)k−1

|4kµ`|

≤ C
δ+1∑
k=1

`k−1|4kµ`|,

which proves the desired inequality (2.51). �
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Now we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Without loss of generality, we may assume µ0 = 0 and
M = 1. Let δ be the smallest integer > λκ. Then (2.30) follows by Theorem 3.14.
Now let F =

∑∞
j=1 µj projκj f . By Theorems 4.2 and 4.3, it suffices to show that

the inequality

gδ(F ) ≤ C
( ∞∑
n=1

|Sδ+1
n f − Sδnf |2vnn−1

) 1
2

(2.52)

holds for some sequence {vn} of positive numbers satisfying sup
N
N−1

N∑
j=1

vj <∞.

To show (2.52), we use Lemma 5.2 to obtain

Sδ+1
n F − SδnF =

−1

n+ δ + 1
(Aδn)−1

n∑
j=0

Aδn−jµjj projκj f

=
1

n+ δ + 1

(
µnσ

δ
n +

n−1∑
`=0

Cδ`,nσ
δ
`

)
,

where

σδ` = −(Aδ`)
−1
∑̀
j=0

Aδ`−jj projκj f = (`+ δ + 1)
(
Sδ+1
` f − Sδ` f

)
.

It then follows by (2.51) that

|Sδ+1
n F − SδnF | ≤ |µn||Sδ+1

n f − Sδnf |+ Cn−1
δ+1∑
j=1

n−1∑
`=1

`j |4jµ`||Sδ+1
` f − Sδ` f |.

Using Lemma 5.1 and (Aδ+1), we have

δ+1∑
j=1

n−1∑
`=1

`j |4jµ`| ≤ cn. (2.53)

Thus, using the Cauchy-Schwartz inequality, we deduce

|gδ(F )|2 ≤ c|gδ(f)|2 + c

δ+1∑
j=1

∞∑
n=1

n−2

( n−1∑
`=1

`j |4jµ`||Sδ+1
` f − Sδ` f |2

)

≤ c|gδ(f)|2 + c

∞∑
`=1

|Sδ+1
` f − Sδ` f |2

δ+1∑
j=1

`j−1|4jµ`|

≤ c
∞∑
n=1

|Sδ+1
n f − Sδnf |2vnn−1,

where vn = 1 +

δ+1∑
j=1

|4jµn|nj . Finally, it follows directly from (2.53) that

n−1
n∑
`=1

v` = 1 +

δ+1∑
j=1

n−1
n∑
`=1

`j |4jµ`| ≤ c.

This completes the proof of Theorem 2.2.
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6. Notes and Further Results

The theory of h-harmonics is pioneered by C. Dunkl. The Dunkl operators were
introduced in [35] and the intertwining operators and the integral kernel appeared
in [36]. For more results on h-spherical harmonic analysis for general reflection
groups, we refer to [38].

The first study of h-harmonic expansions appeared in [95, 96]. The multiplier
theorem (Theorem 2.2) and its analogue on the unit ball and the simplex were
proved in [24]. The Littlewood-Paley theory in Section 4 and the proof of The-
orem 2.2 follow essentially the argument in Bonami and Clerc [5], The proof has
been substantially simplified by using the operators defined via a cut-off function.
A classical reference on general Littlewood-Paley theory is [78].





CHAPTER 3

Sharp Jackson and sharp inverse inequalities

1. Introduction

For trigonometric polynomials on [−π, π] ≡ T, M. Timan [83] proved that for
1 < p <∞,

n−r
{ n∑
k=1

ksr−1Ek(f)sp

}1/s

≤ C(r, p)ωr(f, n−1)p, s = max(p, 2), (3.1)

where r ∈ N,

Ek(f)p = min
{
‖f − Tn‖Lp(T) : Tn ∈ span

k<n
{sin kt, cos kt}

}
and

ωr(f, t)p = sup
|h|≤t

∥∥∥∥ r∑
j=0

(−1)r−j
(
r

j

)
f(·+ jh)

∥∥∥∥
Lp(T)

.

Inequality (3.1) is clearly stronger than the classical Jackson inequality, En(f)p ≤
Cωr(f, 1/n)p, for 1 < p <∞. We call the generalization of Jackson-type inequality
of the type given by (3.1) a sharp Jackson inequality.

An estimate of ωr(f, t)p in the direction opposite to (3.1) was also proved by
M. Timan [82]: For 1 < p <∞ and r ∈ N,

ωr(f, 1/n)p ≤ C1(r, p)n−r
{ n∑
k=1

krq−1Ek(f)qp

}1/q

, q = min (p, 2). (3.2)

This estimate is essentially equivalent to the following: For 1 < p <∞ and r ∈ N,

ωr(f, t)p ≤ C2(r, p)tr
{∫ 1/2

t

u−qr−1ωr+1(f, u)qpdu

}1/q

, q = min(p, 2). (3.3)

Inequalities (3.2) and (3.3) are sometimes called a sharp inverse and a sharp Mar-
chaud inequality respectively.

Similar to the sharp Marchaud inequality (3.3), one has in the other direction
the formula: For 1 < p <∞,

tr
{∫ 1/2

t

ωr+1(f, u)sp
usr+1

du

}1/s

≤ Cωr(f, t)p, s = max(p, 2), (3.4)

which is equivalent to (3.1).
Of particular interest is the case when p = 2, where, using (3.1) and (3.2), we

have

ωr(f, 1/n)2 ∼ n−r
{ n∑
k=1

k2r−1Ek(f)2
p

}1/2

.

The main goal in this chapter is to prove the multivariate analogues of the sharp
Jackson (3.1) and the sharp inverse (3.2). While our method is applicable to more
general settings, we shall focus only on ordinary spherical harmonic expansions for

127
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the sake of simplicity. The main tool in our argument is the multiplier theorem
proved in the last chapter.

We organize the chapter as follows. Section 2 contains some preliminary results
for spherical polynomial approximation for the rest of the chapter. In Section 3, we
prove a refined version of the Littlewood-Paley inequality, which will be our main
tool for the proof of the sharp Jackson inequality. The sharp Marchaud inequality
and the sharp Jackson inequality are proved in Section 4 and Section 5 respectively.
Finally, in Section 6, examples are given to show the optimality of the power q in
the sharp Mauchaud inequality.

2. Preliminaries

In this section, we collect some of the known results on polynomial approxima-
tion on the sphere. Most of these results can be found in [92] and [30].

We start with the following definition of translation operators, which will be
used to introduce a modulus of smoothness on the sphere:

Definition 2.1. The translation operator Sθ with step θ ∈ [0, π] is defined by

Sθ(f)(x) :=
1

|Sd−2| sind−2 θ

∫
{y∈Sd−1: 〈x,y〉=cos θ}

f(y) d`x,θ(y), x ∈ Sd−1,

where f ∈ L1(Sd−1) and d`x,θ(y) denotes the Lebesgue measure element on the set
{y ∈ Sd−1 : y · x = cos θ}.

A significant fact on the operator Sθ lies in the fact that∫
Sd−1

f(y)K(〈x, y〉) dσ(y) = |Sd−2|
∫ π

0

Sθ(f)(x)K(cos θ) sind−2 θ dθ, x ∈ Sd−1.

We collect some useful results on Sθ in the following lemma.

Lemma 2.2. (i) For each θ, Sθ is a multiplier operator on Sd−1 in the sense
that

projk(Sθ(f)) =
Cλk (cos θ)

Cλk (1)
projk(f), k = 0, 1, · · · , (3.5)

where λ = d−2
2 .

(ii) Each Sθ is a positive operator satisfying

‖Sθf‖p ≤ ‖f‖p, 1 ≤ p ≤ ∞. (3.6)

(iii) If the dimension d is even, then Sθ can be expressed as

Sθf(x) =

∫
SO(d)

f(Q−1MθQx) dQ, x ∈ Sd−1, θ ∈ R, (3.7)

where SO(d) denotes the group of d × d orthogonal matrices with determinant 1,
dQ is the Haar measure on SO(d) normalized by

∫
SO(d)

dQ = 1, and Mθ is a d× d
matrix given by

Mθ :=



cos θ sin θ
− sin θ cos θ

. . .

cos θ sin θ
− sin θ cos θ


.

Next, we define the moduli of smoothness on the sphere.
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Definition 2.3. If f ∈ Lp(Sd−1) and 1 ≤ p <∞, or f ∈ C(Sd−1) and p =∞,
then the rth order modulus of smoothness of f in Lp-metric is defined by

ωr(f, t)p = sup
0<θ≤t

‖4rθf‖p,

where

4rt := (I − St)
r
2 ≡

∞∑
k=0

r
2 ( r2 − 1) · · · ( r2 − k + 1)

k!
(St)

k. (3.8)

The modulus of smoothness defined above is equivalent to a K-functional de-
fined in terms of the fractional Laplacian-Beltrami operator. Recall that the Laplace
-Beltrami operator ∆0 on Sd−1 is defined by

∆0f(x) := ∆RdF (x), x ∈ Sd−1, f ∈ C2(Sd−1),

with ∆Rd =
∑d
j=1

∂2

∂x2
j

and F (y) := f(y|y|−1), and that the space Hdk of spherical

harmonics of degree k on Sd−1 is the space of eigenfunctions of ∆0 corresponding
to the eigenvalue λk = −k(k + d− 2):

Hdk =
{
f ∈ C2(Sd−1) : ∆0f = λkf

}
, k = 0, 1, · · · .

From now on, we set Xp = Lp(Sd−1) for 1 ≤ p < ∞ and Xp = C(Sd−1) for
p =∞.

Definition 2.4. Give γ ∈ R, we define the fractional Laplace -Beltrami oper-
ator (−∆0)γ in a distributional sense by

projk(−∆0)γf =

{
0, if k = 0,

(−k(k + d− 2))γ projk(f), if k = 1, 2, · · · .

For r > 0 and 1 ≤ p ≤ ∞, the Sobolev space W r
p on Sd−1 is defined to be

W r
p :=

{
f ∈ Xp(Sd−1) : (−∆0)r/2f ∈ Xp(Sd−1),

∫
Sd−1

f(x) dσ(x) = 0

}
.

Definition 2.5. For r > 0, 1 ≤ p ≤ ∞ and f ∈ Xp, we define

Kr(f, t)p := inf
{
‖f − g‖p + tr‖(−∆0)

r
2 g‖p : g ∈W r

p

}
. (3.9)

We sometimes write h(α) = (−∆0)
α
2 h for h ∈Wα

1 for the sake of simplicity.

Theorem 2.6. For r > 0, 1 ≤ p ≤ ∞ and f ∈ Xp,

ωr(f, t)p ∼ Kr(f, t
r)p, 1 ≤ p ≤ ∞, t > 0, (3.10)

where the constants of equivalence depend only on p, r and d.

Definition 2.7. Let f ∈ Lp(Sd−1) if 1 ≤ p < ∞ and f ∈ C(Sd−1) if p = ∞.
For n ≥ 0, the error of the best approximation to f by polynomials of degree at
most n is defined by

En(f)p := inf
g∈Πn(Sd−1)

‖f − g‖p, 1 ≤ p ≤ ∞. (3.11)

The best approximation element exists, since Πd
n(Sd−1) is a finite dimensional

space, by a general theorem in the Banach space ([29, p. 59]). Finding such a
polynomial, however, is not easy. For most applications, fortunately, it is sufficient
to find a polynomial that is near best approximation.
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Definition 2.8. Let η be a C∞-function on [0,∞) such that η(t) = 1 for
0 ≤ t ≤ 1 and η(t) = 0 for t ≥ 3

2 . Define

Ln(f) =

2n∑
k=0

η(
k

n
) projk(f), n > 0. (3.12)

Theorem 2.9. Let f ∈ Lp if 1 ≤ p <∞ and f ∈ C(Sd−1) if p =∞. Then

(1) Lnf ∈ Πd
2n−1 and Lnf = f for f ∈ Πd

n.
(2) For n ∈ N, ‖Lnf‖p ≤ c‖f‖p.
(3) For n ∈ N,

‖f − Lnf‖p ≤ (1 + c)En(f)p. (3.13)

We have the following very useful result:

Theorem 2.10. For 1 ≤ p ≤ ∞, r ∈ N, and n ∈ N,

Kr(f, n
−1)p ∼ ‖f − Lnf‖p + n−r‖(−∆0)

r
2Lnf‖p, (3.14)

where the constants of equivalence are independent of f and n.

Equivalence (3.14) is sometimes called the realization result for the K-functional.
In general, such a result follows from the Cesàro summability of the orthogonal ex-
pansions.

Using the above theorem and the Bernstein inequality for spherical polynomials,
we deduce the classical Jackson inequality and its Stechkin type inverse:

Theorem 2.11. If f ∈ Lp(Sd−1) and 1 ≤ p < ∞ or f ∈ C(Sd−1) and p = ∞,
then for r > 0,

En(f)p ≤ Cp,rKr(f, n
−1)p, n = 1, 2, · · · , (3.15)

and

Kr(f, n
−1)p ≤ cp,rn−r

∑
0≤k≤n

(k + 1)r−1Ek(f)p. (3.16)

For general orthogonal expansions, Theorem 2.11 above follows from the Cesàro
summability.

3. The Littlewood-Paley inequality

We start with the following definition.

Definition 3.1. Let η ∈ C∞[0,∞) be as in Definition 2.8, and let θ(x) =
η(2x)− η(4x). Define θ0(f) = proj0(f), and

θj(f) := L2j−1f − L2j−2f =

∞∑
n=0

θ

(
n

2j

)
projn(f), j = 1, 2, · · · .

Since limn→∞ Lnf = f in Xp for 1 ≤ p ≤ ∞, it follows that

f =

∞∑
j=0

θjf, in Xp. (3.17)

Theorem 3.2. For 1 < p <∞, γ ≥ 0 and f ∈W γ
p (Sd−1),∥∥∥∥{ ∞∑

j=1

22jγ
(
θjf
)2}1/2∥∥∥∥

p

∼ ‖(−∆0)γ/2f‖p, (3.18)

where the constants of equivalence depend only on p, d and γ.
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Proof. We first prove the inequality∥∥∥∥{ ∞∑
j=1

22jγ
(
θjf
)2}1/2∥∥∥∥

p

≤ C(p, γ)‖(−∆0)γ/2f‖p, γ ∈ R. (3.19)

Let {ξj}∞j=0 be a sequence of independent, ±1-valued random variables with
mean zero. Then(

E
∣∣∣∣ ∞∑
j=0

ajξj

∣∣∣∣p)1/p

∼
( ∞∑
j=0

|aj |2
) 1

2

, ∀aj ∈ R, 0 < p <∞. (3.20)

Consider the (random) linear operator

Tf =

∞∑
j=0

2jγξj

[
θj((−∆0)−γ/2f)

]
. (3.21)

Clearly, Tf can be rewritten in the form

Tf =

∞∑
k=1

µk projk f,

where µk = A(k), and

A(u) := (−u(u+ d− 2))−γ/2
∞∑
j=1

2jγθ
( u

2j

)
ξj .

A straightforward computation shows that∥∥∥∥( d

du

)r
A(u)

∥∥∥∥ ≤ Cru−r, u ≥ 1, r = 0, 1, · · · ,

which implies that

4rµk ≤ C ′rk−r, r = 0, 1, · · · ,

where the constants Cr and C ′r are independent of the random variables ξj . Thus,
by the Marcinkiewitcz multiplier theorem proved in last chapter, it follows that

‖Tf‖p ≤ Cp‖f‖p, (3.22)

where Cp is a constant depending only on p and d. Using (3.20), (3.21), and (3.22),
we deduce ( ∞∑

j=0

22jγ
∣∣θj((−∆0)−γ/2f)

∣∣2) 1
2

∼ (E‖Tf‖p)1/p ≤ Cp‖f‖p.

Replacing ‖f‖p with (−∆0)γ/2f yields the desired inequality (3.19).
The inverse inequality∥∥∥∥{ ∞∑

j=1

22jγ
(
θjf
)2}1/2∥∥∥∥

p

≥ C ′(p, γ)‖(−∆0)γ/2f‖p (3.23)

follows by a duality argumemt. Indeed, let g ∈ Lp′(Sd−1) be such that ‖g‖p′ = 1

and ‖(−∆0)γ/2f‖p =
∫
Sd−1

[
(−∆0)γ/2f

]
g dσ(x), where 1

p + 1
p′ = 1. Let g1 ∈

W γ
p′ be such that ‖g − g1‖p′ ≤ 1

2 . Then ‖g1‖p′ ≤ 3
2 and 1

2 ‖(−∆0)γ/2f‖p ≤
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Sd−1

[
(−∆0)γ/2f

]
g1 dσ(x). Observe that

∫
Sd−1 θj(F )θi(G) dσ(x) = 0 for |i− j| ≥ 2

and any F,G ∈ L1(Sd−1). It follows that

‖(−∆0)γ/2f‖p ≤ 2

∫
Sd−1

[
(−∆0)γ/2f

]
g1 dσ(x) = 2

∫
Sd−1

f
[
(−∆0)γ/2g1

]
dσ(x)

= 2

1∑
k=−1

∞∑
j=max(−k,0)

∫
Sd−1

(θjf)
[
θj+k

(
(−∆0)γ/2g1

)]
dσ(x)

≤ 6

∫
Sd−1

( ∞∑
j=0

|θjf |222jγ

)1/2( ∞∑
j=0

2−2jγ
∣∣θj((−∆0)γ/2g1

)∣∣2)1/2

dσ(x)

≤ 6

∥∥∥∥( ∞∑
j=0

|θjf |222jγ

)1/2∥∥∥∥
p

∥∥∥∥( ∞∑
j=0

2−2jγ
∣∣θj((−∆0)γ/2g1

)∣∣2)1/2∥∥∥∥
p′
,

which, using (3.19) applied to −γ and Lp′ , is dominated by

C

∥∥∥∥( ∞∑
j=0

|θj(f)|222jγ

)1/2∥∥∥∥
p

‖(−∆0)−γ/2(−∆0)γ/2g1‖p′

≤ C ′
∥∥∥∥( ∞∑

j=0

|θj(f)|222jγ

)1/2∥∥∥∥
p

. �

4. The sharp Marchaud inequality

This section is devoted to proving the following sharp Marchaud inequality:

Theorem 4.1. For α > 0 and 1 < p <∞ we have

Kα(f, t)p ≤ Ctα
(∫ 1

t

Kα+1(f, u)qp
uqα+1

du

) 1
q

, q = min{p, 2}.

From the Stechkin type inverse inequality 3.16, it is easily seen that Theorem
4.1 is essentially equivalent to the following sharp inverse inequality:

Corollary 4.2. For 1 < p <∞ and α > 0,

Kα(f, 1/n)p ≤ C1(α, p)n−α
{ n∑
k=1

kαq−1Ek(f)qp

}1/q

, q = min (p, 2). (3.24)

Recall that for the spherical harmonic expansions, we can define the Stein g-
function as follows:

g̃(f) =

(∫ 1

0

| ∂
∂r
Pr(f)|2r| log r| dr

) 1
2

, (3.25)

where Prf denotes the Poisson integral of f :

Prf =

∞∑
j=0

rj projj f, r ∈ (0, 1).

The general theorem of Stein (Theorem 2.4 in Chapter 2) then asserts that for
1 < p <∞ and f ∈ Lp(Sd−1) with

∫
Sd−1 f(x) dσ(x) = 0,

‖f‖p ≈ ‖g̃(f)‖p. (3.26)

We shall present a proof of Theorem 4.1 that works equally well for orthogonal
expansions such that the associated Cesàro means of order δ are positive for some
δ > 0, from which both (3.26) and the realization result (3.14) will follow.

Recall that we write F (α) = (−∆0)
α
2 F for h ∈Wα

1 for the sake of simplicity.
Now we are in a position to prove Theorem 4.1:
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Proof. By the realization result (3.14), it suffices to show that

2−mα‖(L2m(f))(α)‖p ≤ C2−mα
( m∑
j=0

2jαqKα+1(f, 2−j)qp

) 1
q

(3.27)

with q = min{p, 2}. For the rest of the proof, we set h = (L2m(f))(α) for simplicity.
We then claim that for δ ≥ 0,

g̃(h) ≤ C
( ∞∑
j=0

2−j(1+q)
2j+1−1∑
k=2j

|Sδk(h′)|q
) 1
q

, q = min{p, 2}, (3.28)

where g̃ is given by (3.25). For the moment, we take the claim for granted and
proceed with the proof.

Indeed, using (3.28) and (3.26), we obtain

‖h‖p ≤ C‖g̃(h)‖p ≤ C
( ∞∑
j=0

2−j(1+q)
2j+1−1∑
k=2j

‖Sδk(h′)‖qp
) 1
q

, (3.29)

where the last step uses the Minkovskii inequality for p > 2. We break the first
infinite sum in (3.29) into two parts:

∑m−4
j=0 and

∑∞
j=m−3. Observe that if 2j ≤

k ≤ 2j+1 − 1 and 0 ≤ j ≤ m− 4, then

Sδk(h′) = L2j+2(Sδk(h′)) = Sδk(L2j+2(h′)) = Sδk((L2j+2(f))(α+1)). (3.30)

It follows that for δ > λ := d−2
2 ,

(m−4∑
j=0

2−j(1+q)
2j+1−1∑
k=2j

‖Sδk(h′)‖qp
) 1
q

(3.31)

≤ C
(m−4∑

j=0

2−jq
∥∥∥(L2j+2(f))(α+1)

∥∥∥q
p

) 1
q

= C

(m−4∑
j=0

2jαq
∥∥∥2−j(α+1)(L2j+2(f))(α+1)

∥∥∥q
p

) 1
q

≤ C
(m−4∑

j=0

2jαqKα+1(f, 2−j)qp

) 1
q

, (3.32)

where the second step uses (3.30) and the Cesàro (C, δ)-summability of spherical
harmonic expansions for δ > d−2

2 , and the last step uses the realization result (3.14).
On the other hand, for the sum

∑
j≥m−3, using the Cesàro (C, δ)-summability for

δ > λ, we obtain( ∞∑
j=m−3

2−j(1+q)
2j+1−1∑
k=2j

‖Sδk(h′)‖qp
) 1
q

≤ C
( ∞∑
j=m−3

2−jq
) 1
q

‖h′‖p

≤ C2−m‖h′‖p = C2−m‖(L2m(f))(α+1)‖p ≤ C2mαKα+1(f, 2−m)p, (3.33)

where the last step uses the realization result (3.14) again. Therefore, combining
(3.29), (3.32) with (3.33), we deduce the desired estimate (3.27).

It remains to prove the claim (3.28). We note that

∂

∂r
Pr(h) =

∞∑
k=1

krk−1 projk(h) = (1− r)δ+1
∞∑
k=1

( k∑
j=1

jAδk−j projj(h)

)
rk−1,
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where we used the identity,
∑∞
k=0A

δ
kr
k = (1− r)−1−δ, in the last step. Thus,∣∣∣ ∂

∂r
Pr(h)

∣∣∣ ≤ (1− r)δ+1
∞∑
k=1

Aδk|Sδk(h′)|rk−1

≤ C(1− r)1+δ
∞∑
j=0

2jδr2j−1
2j+1−1∑
k=2j

|Sδk(h′)|,

which, using the Cauchy-Schwartz inequality, implies

∣∣∣ ∂
∂r
Pr(h)

∣∣∣2 ≤ C(1− r)2+2δ

( ∞∑
j=0

2jδr2j−1

( 2j+1−1∑
k=2j

|Sδk(h′)|
)2)( ∞∑

`=0

2`δr2`−1

)

= C

∞∑
j=0

[
2jδ
( 2j+1−1∑

k=2j

|Sδk(h′)|
)2 ∞∑

`=0

2`δr2`+2j−2(1− r)2+2δ

]
. (3.34)

On the other hand, however, since

r| log r| ≤ C(1− r), r ∈ (0, 1),

and

Γ(x+ a)

Γ(x)
= xa +O(xa−1), as x→∞, a ∈ R,

it follows that

∞∑
`=0

2`δ
∫ 1

0

r2`+2j−2(1− r)2+2δr| log r| dr ≤ C
∞∑
`=0

2`δ
∫ 1

0

r2`+2j−2(1− r)3+2δ dr

= C

∞∑
`=0

2`δ
Γ(2` + 2j − 1)Γ(4 + 2δ)

Γ(2` + 2j + 3 + 2δ)

≤ C
∞∑
`=0

2`δ(2` + 2j)−4−2δ

≤ C2−j(δ+4).

Thus, using (3.34) and (3.25), we conclude that

g̃(h) ≤ C
( ∞∑
j=0

2−4j

( 2j+1−1∑
k=2j

|Sδk(h′)|
)2) 1

2

. (3.35)

Now using (3.35) and Hölder’s inequality, we obtain for 1 < p ≤ 2,

|g̃(h)|p ≤ C
∞∑
j=0

2−2jp

( 2j+1−1∑
k=2j

|Sδk(h′)|
)p
≤ C

∞∑
j=0

2−j(p+1)
2j+1−1∑
k=2j

|Sδk(h′)|p,

whereas for 2 < p <∞,

|g̃(h)|2 ≤ C
∞∑
j=0

2−3j
2j+1−1∑
k=2j

|Sδk(h′)|2.

In either cases, we obtain the desired estimate (3.28), and hence complete the
proof. �
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5. The sharp Jackson inequality

This section is devoted to showing the following sharp Jackson inequality.

Theorem 5.1. For f ∈ Lp(Sd−1), 1 < p <∞ and r > 0, we have

tr
{ ∑

1≤k≤1/t

ksr−1Ek(f)sLp(Sd−1)

}1/s

≤ Cωr(f, t)Lp(Sd−1), s = max(p, 2).

Using Hardy’s inequality and Theorem 2.11, it’s easily seen that Theorem 5.1
is essentially equivalent to the following corollary:

Corollary 5.2. For f ∈ Lp(Sd−1), and 1 < p <∞,

tr
{∫ 1/2

t

ωr+1(f, u)sLp(Sd−1)

urs+1
du

}1/s

≤ Cωr(f, t)Lp(Sd−1), s = max(p, 2).

Our main tool for the proof of Theorem 5.1 is the Littlewood-Paley inequality
(3.18).

Proof of Theorem 5.1. By monotonicity of Ej(f)p in j, it suffices to show that

2−nr
( n∑
j=1

2jrsE2j (f)sp

)1/s

≤ CKr(f, 2
−n)p. (3.36)

Setting gn = L2n−1f , we have

E2n(f)p ≤ ‖f − gn‖p ≤ CKr

(
f, 2−nr

)
p
.

As Em(f − gn)p ≤ ‖f − gn‖p for all m ∈ N, we have

E2j (f)p ≤ E2j (f − gn) + E2j (gn)p ≤ ‖f − gn‖p + E2j (gn)p .

We can now write

2−nr
( n∑
j=1

2jrsE2j (f)sp

)1/s

≤ 2−nr
( n∑
j=1

2jrsE2j (f − gn)sp

)1/s

+ 2−nr
( n∑
j=1

2jrsE2j (gn)sp

)1/s

≤ 2r

(2rs − 1)1/s
‖f − gn‖p + 2−nr

( n∑
j=1

2jrsE2j (gn)sp

)1/s

.

Therefore, it remains to show that

I(n) ≡ 2−nr
( n∑
j=1

2jrsE2j (gn)sp

)1/s

≤ CKr

(
f, 2−n

)
p
,

and using (3.14), it is sufficient to show

I(n) ≤ C2−nr‖(−∆0)r/2gn‖p ,
which can be written as

n∑
j=1

2jrsE2j (gn)sp ≤ C‖(−∆0)r/2gn‖sp .

Recalling that θj(f) = L2j−1f − L2j−2f , we write for j < n

E2j+1(gn)p ≤ ‖gn − L2jgn‖p = ‖L2ngn − L2jgn‖p

=
∥∥∥ n+1∑
`=j+2

θ`gn

∥∥∥
p
.
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Applying the Littlewood-Paley inequality given by (3.18) to f = L2ngn−L2jgn,
and recalling that L2i(L2nf − L2jf) = 0 for i < j ≤ n and that θi(L2ngn − L2jgn)
= 0 for i > n+ 1, we have for 1 < p <∞∥∥∥∥L2ngn − L2jgn

∥∥∥∥
p

∼
∥∥∥∥( n+1∑

`=j+1

(θ`gn)2

)1/2∥∥∥∥
p

.

We now have to show
n+1∑
j=0

2jrs
∥∥∥∥( n+1∑

`=j+1

(θ`gn)2

)1/2∥∥∥∥s
p

≤ C‖(−∆0)r/2gn‖sp (3.37)

for some C independent of n.
We prove (3.37) separately for 1 < p ≤ 2, in which case s = 2, and for 2 < p <

∞ in which case s = p. For 1 < p ≤ 2 we use ‖f‖q + ‖g‖q ≤ ‖ |f | + |g| ‖q for the
quasinorm ‖ ‖q when q ≤ 1, and obtain

n+1∑
j=1

2jr2
∥∥∥∥ n+1∑
`=j+1

(θ`gn)2

∥∥∥∥
p/2

≤
∥∥∥∥ n+1∑
j=1

2jr2
n+1∑
`=j+1

(θ`gn)2
∥∥∥
p/2

=

∥∥∥∥ n+1∑
`=2

(θ`gn)2
`−1∑
j=1

2jr2
∥∥∥∥
p/2

≤ C1

∥∥∥∥ n+1∑
`=2

(θ`gn)22`r2
∥∥∥∥
p/2

= C1

∥∥∥∥( n+1∑
`=2

(θ`gn)22`r2
)1/2∥∥∥∥2

p

,

which, using (3.18), is controlled by

C‖(−∆0)r/2gn‖sp.

This proves (3.37) for the case of 1 < p ≤ 2.
To prove (3.37) in the case 2 < p < ∞ and s = p, we use the duality between

Lp/2 and Lq where q = p
p−2 =

(
p
2

)′
, which implies for {bj(x)}n+1

j=1 where bj(x) ≥ 0

that there exists a sequence Cj(x) ≥ 0 such that

n+1∑
j=1

2jrpCj(x)bj(x) =

( n+1∑
j=1

2jrpbj(x)p/2
)2/p

and
∑n+1
j=1 2jrpCj(x)q = 1. We choose bj(x) =

∑n+1
`=j+1(θ`gn)2, and hence

I(n) =

∫
Sd−1

n+1∑
j=0

2jrp
( n+1∑
`=j+1

(θ`gn)2

)p/2

=

∫
Sd−1

( n+1∑
j=0

2jrpCj(x)

n+1∑
`=j+1

(θ`gn)2

)p/2

=

∫
Sd−1

( n+1∑
`=1

(θ`gn)2
`−1∑
j=0

2jrpCj(x)

)p/2
.

Using Hölder’s inequality again, we have

`−1∑
j=1

2jrpCj(x) ≤
{ `−1∑
j=1

2jrp
}2/p{ `−1∑

j=1

2jrpCj(x)q
}1/q

≤ C2`r2.
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We now have

I(n) ≤ C
∫
Sd−1

( n+1∑
`=2

θ`(gn)22`r2
)p/2

= C

∥∥∥∥( n+1∑
`=2

θ`(gn)22`r2
)1/2∥∥∥∥p

p

.

Recalling (3.18), we obtain (3.37). �

6. Optimality of the power in the Mauchaud inequality

Examples were given in [20] to show the the optimality of the power s =
max(p, 2) in the sharp Jackson inequality (3.36). The examples of [20] with slight
modifications can also be used to prove the optimality of the power q = min(p, 2)
in the sharp Marchaud inequality (3.24) for 1 < p < 2 + 2

d−2 . In this section, we
shall show the optimality of the power in the sharp Marchaud inequality for the
full range of 2 ≤ p <∞. More precisely, we shall construct a sequence of functions
fn such that for 2 ≤ p <∞,

Kr(fn, 2
−n)p ≥ c2−nr

{ n∑
k=1

22krE2k(fn)2
p

}1/2

, (3.38)

with c being a positive constant independent of n. The following proposition plays
crucial roles in our construction:

Proposition 6.1. Let w be an A∞ weight on Sd−1 normalized by w(Sd−1) = 1,
and let X be a linear subspace of Πd

N with dimX ≥ εdimΠd
N for some ε ∈ (0, 1).

Then there exists a function f ∈ X such that ‖f‖p,w ∼ 1 for all 0 < p ≤ ∞ with
the constants of equivalence depending only on ε, d, the A∞ constant of w, and p
when p is small.

To prove Proposition 6.1, we need the following result of G. G. Lorentz [54,
Lemma 3.1, p. 410]:

Lemma 6.2. Given an n-dimensional subspace X of Rm, there exists x =
(x1, · · · , xm) ∈ X such that max1≤i≤m |xi| = 1 and #{i : 1 ≤ i ≤ m, |xi| =
1} ≥ n.

Proof of Proposition 6.1. Let Λ := {ω1, · · · , ωM} be a maximal δ0
6N -separated

subset of Sd−1 with δ0 being the same constant as in Theorem 5.1 in Chapter 1.
Then M � Nd−1, and using Theorems 5.6 and 5.1 of Chapter 1, we have, for all
f ∈ Πd

N

‖f‖p,w ∼


(∑M

j=1 λj |f(ωj)|p
) 1
p

, if 0 < p <∞,

max1≤j≤M |f(ωj)|, if p =∞,
(3.39)

where λj = w(Bj), and Bj = c(ωj ,
c
N ). Consider the following linear subspace of

RM :

X̃ := {(f(ω1), · · · , f(ωM )) : f ∈ X}.

By (3.39), it follows that dim(X̃) = dimX ≥ εdimΠd
N ≥ c′εM for some absolute

constant c′ ∈ (0, 1). Thus, by Lemma 6.2, there exists a spherical polynomial
f ∈ X with the properties that max

1≤i≤M
|f(ωi)| = 1, and the set I := {i : 1 ≤ i ≤M,

|f(ωi)| = 1} has cardinality #I ≥ dimX̃ ≥ c′εNd−1.
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Now invoking (3.39), one has ‖f‖∞ ≤ C max
1≤i≤M

|f(ωi)| ≤ C, and ‖f‖22,w ∼∑M
i=1 λi|f(ωi)|2 ≥

∑
i∈I λi. Also, observe that ‖f‖2,w ≤ ‖f‖∞ ≤ C. Thus, to show

the equivalences ‖f‖2,w ∼ ‖f‖∞ ∼ 1, we only need to prove that
∑
i∈I λi ≥ cε > 0.

To this end, we set E = ∪j∈IBj . Since the set {ωj : 1 ≤ j ≤ M} is c/(3N)-
separated, it follows that

|E| ≥ c
∑
j∈I
|Bj | ≥ cN−d+1#I ≥ c′ > 0.

Thus, using the A∞-property of w, we deduce∑
j∈I

λj =
∑
j∈I

w(Bj) ≥
w(E)

w(Sd−1)
≥ β

(
|E|
|Sd−1|

)β
≥ c|E|β ≥ c′′ > 0,

as desired.
Finally, to complete the proof, we note that the equivalence ‖f‖p,w ∼ 1 for

all 0 < p ≤ ∞ follows directly from the equivalence ‖f‖2,w ∼ ‖f‖∞ ∼ 1, Hölder’s
inequality and the following log-convexity of Lp norms:

‖f‖r,w ≤ ‖f‖θp,w‖f‖1−θq,w , whenever 0 < p < r < q ≤ ∞, and
1

r
=
θ

p
+

1− θ
q

. �

Now we are in a position to construct a sequence of functions fn with the
property (3.38). For each j ∈ N, let

Xj :=
⊕

2j−1<k≤2j

Hdk.

Since dimHdk ∼ kd−2, it follows that

dimXj ∼ 2j(d−1) ∼ dimΠd
2j .

Thus, using Proposition 6.1, we conclude that there exists a spherical polynomial
Pj ∈

⊕
2j−1<k≤2j

Hdk such that ‖Pj‖∞ ∼ ‖Pj‖2 ∼ 1 for each j ∈ N. Let fn =∑n
j=1 2−jrPj . Using (3.14), we obtain

Kr(fn, 2
−n)p ≥ c2−nr‖(−∆0)

r
2 fn‖p ≥ c2−nr

∥∥∥∥ n∑
j=0

2−jr(−∆0)
r
2Pj

∥∥∥∥
2

= c2−nr
( n∑
j=0

2−2jr‖(−∆0)
r
2Pj‖22

) 1
2

∼ 2−nr
( n∑
j=0

‖Pj‖22
) 1

2

∼ 2−nr
√
n.

On the other hand, however,

E2j (fn)p ≤ ‖
n∑

k=j+1

2−krPk‖p ≤
n∑

k=j+1

2−kr‖Pk‖p ≤ c2−nr.

Thus,

2−nr
( n∑
k=1

22krE2k(fn)2
p

) 1
2

≤ c2−nr
( n∑
k=1

22kr2−2kr

) 1
2

≤ c2−nr
√
n

≤ cKr(fn, 2
−n)p,

which is as desired.
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7. Notes and further results

1. Inequalities (3.1) and (3.2) were proved by M. Timan [82] and by Zygmund
[112]. They were generalized in several articles (see [31], [80], [17], [18]
and [32]) and described in the texts [84, p.338 (12)], [29, p. 210] and [85,
(4.88), p. 191].

2. Most of these results can be found in [92] and [30]. Formula (3.7) was
proved in [15].

3. The equivalence (3.10) was proved in [74], [75], [92] and [9]. The proofs
of (3.14), (3.15) and (3.16) can be found in [30].

4. Theorems 3.2 and 5.1 were proved in [20] in a more general setting. The
proof of the sharp Marchaud inequality (Theorem 4.1) follows along the
same line as those of [17] and [18].

5. Alternative approaches for the sharp Jackson inequalities and the sharp
Marchaud inequalities without using the Littlewood-Paley inequalities can
be found in [33], and [31] respectively.

6. The proof of Proposition 6.1 is from [22], whereas its idea can be traced
back to [94].





CHAPTER 4

A transference theorem for the Dunkl transform
and its applications

For a family of weight functions invariant under a finite reflection group, we
show how weighted Lp multiplier theorems for Dunkl transform on the Euclidean
space Rd can be transferred from the corresponding results for h-harmonic expan-
sions on the unit sphere Sd of Rd+1. The result is then applied to establish a
Hörmander type multiplier theorem for the Dunkl transform and to show the con-
vergence of the Bochner -Riesz means of the Dunkl transform of order above the
critical index in weighted Lp spaces.

1. Introduction

Let R be a reduced root system in Rd normalized so that 〈α, α〉 = 2 for all
α ∈ R. Given a nonzero vector α ∈ Rd, we denote by σα the reflection with respect
to the hyperplane perpendicular to α; that is, σαx = x − 2(〈x, α〉/‖α‖2)α for all
x ∈ Rd. Let G denote the finite subgroup of the orthogonal group O(d) generated
by the reflections σα, α ∈ R. Let κ : R → R+ be a nonnegative multiplicity
function on R with the property κ(gα) = κ(α) for all α ∈ R and g ∈ G. Associated
with the reflection group G and the function κ is the weight function hκ defined by

hκ(x) :=
∏
α∈R+

|〈x, α〉|κ(α), x ∈ Rd, (4.1)

where R+ is an arbitrary but fixed positive subsystem of R. The function hκ is
a homogeneous function of degree γκ :=

∑
α∈R+

κ(α), and is invariant under the

reflection group G. From now on, we set λκ = d−1
2 + γκ. Given 1 ≤ p ≤ ∞, we

denote by Lp(Rd;h2
κ) the weighted Lebesgue space endowed with the norm

‖f‖κ,p :=

(∫
Rd
|f(y)|ph2

κ(y) dy

) 1
p

,

with the usual change when p =∞.
The Dunkl transform, a generalization of the classical Fourier transform, is

defined, for f ∈ L1(Rd;h2
κ), by

Fκf(x) = cκ

∫
Rd
f(y)Eκ(−ix, y)h2

κ(y) dy, x ∈ Rd, (4.2)

where cκ =

(∫
Rd h

2
κ(x)e−

‖x‖2
2 dx

)−1

, and Eκ(ix, y) = Vκ

[
ei〈x,·〉

]
(y) is the weighted

analogue of the character ei〈x,y〉. Here Vκ is the Dunkl intertwining operator as-
sociated with the reflection group G and the multiplicity function κ. The Dunkl
transform plays the same role as the Fourier transform in classical Fourier analysis,
and enjoys properties similar to those of the classical Fourier transform.

In this chapter, we first prove a transference theorem (Theorem 3.1) between
the Lp multiplier of h-harmonic expansions on the unit sphere and that of the Dunkl
transform. This theorem, combined with the corresponding results on h-harmonic
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expansions on the unit sphere established in [24, 26, 25], is then applied to establish
a Hörmander type multiplier theorem for the Dunkl transform (Theorem 4.1), and
to show the convergence of the Bochner -Riesz means in the weighted Lp spaces
(Theorem 4.4).

This chapter is organized as follows. In Section 2, we describe briefly some
known results on Dunkl transform and h-harmonic expansions, which will be needed
in later sections. The transference theorem, Theorem 3.1, is proved in Section 3.
As applications, we prove Theorems 4.1 and 4.4 in the final section, Section 4.

2. Preliminaries

In this section, we shall present some necessary material on the Dunkl transform
and the h-harmonic expansions, most of which can be found in [38, 51, 72, 73, 86].

2.1. The Dunkl transform. Let R, R+, G, κ and hκ be as defined in
Section 1. Let Vκ : C(Rd) → C(Rd) be the Dunkl intertwining operator asso-
ciated with G and hκ.

The Dunkl transform associated with G and κ is defined by (4.2) with

Eκ(−ix, y) := Vκ[e−i〈x,·〉](y), x, y ∈ Rd. (4.3)

If κ = 0 then Vκ = id and the Dunkl transform coincides with the usual Fourier
transform, whereas if d = 1 and G = Z2 then it is closely related to the Hankel
transform on the real line.

We list some of the known properties of the Dunkl transform in the following
lemma.

Lemma 2.1. [37, 51]
(i) If f ∈ L1(Rd;h2

κ) then Fκf ∈ C(Rd) and lim
‖ξ‖→∞

Fκf(ξ) = 0.

(ii) The Dunkl transform Fκ is an isomorphism of the Schwartz class S(Rd)
onto itself, and F2

κf(x) = f(−x).
(iii) The Dunkl transform Fκ on S(Rd) extends uniquely to an isometric iso-

morphism on L2(Rd;h2
κ), i.e., ‖f‖κ,2 = ‖Fκf‖κ,2.

(iv) If f and Fκf are both in L1(Rd;h2
κ) then the following inverse formula

holds:

f(x) = cκ

∫
Rd
Fκf(y)Eκ(ix, y)h2

κ(y) dy, x ∈ Rd.

(v) If f, g ∈ L2(Rd;h2
κ) then∫

Rd
Fκf(x)g(x)h2

κ(x) dx =

∫
Rd
f(x)Fκg(x)h2

κ(x) dx.

(vi) Given ε > 0, let fε(x) = ε−2−2γκf(ε−1x). Then Fκfε(ξ) = Fκf(εξ).
(vii) If f(x) = f0(‖x‖) is radial, then Fκf(ξ) = Hλκ− 1

2
f0(‖ξ‖) is again a radial

function, where Hα denotes the Hankel transform defined by

Hαg(s) =
1

Γ(α+ 1)

∫ ∞
0

g(r)
Jα(rs)

(rs)α
r2α+1 dr,

and Jα denotes the Bessel function of the first kind.

Statements (i)-(vi) of Lemma 2.1 above were proved by M. F. E. de Jeu [51],
and were, in fact, contained in Corollaries 4.7 and 4.22, Theorems 4.26 and 4.20,
Lemmas 4.13 and 4.3 (3) of [51] , respectively. Statement (vii) of Lemma 2.1 was
proved by Dunkl [37] and was stated more explicitly in [86, Proposition 2.4].
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Given y ∈ Rd, the generalized translation operator f → τyf is defined on
L2(Rd;h2

κ) by

Fκ(τyf)(ξ) = Eκ(−iξ, y)Fκf(ξ), ξ ∈ Rd.
It is known that τyf(x) = τxf(y) for a.e. x ∈ Rd and a.e. y ∈ Rd. In general,
the operator τy is not positive (see, for instance, [86, Proposition 3.10]), and it
is still an open problem whether τyf can be extended to a bounded operator on
L1(Rd;h2

κ). On the other hand, however, it was shown in [86, Theorem 3.7] that
the generalized translation operator τy can be extended to all radial functions in
Lp(Rd;h2

κ), 1 ≤ p ≤ 2, and τy : Lprad(Rd;h2
κ) → Lp(Rd;h2

κ) is a bounded operator,

where Lprad(Rd;h2
κ) denotes the space of all radial functions in Lp(Rd;h2

κ).

The generalized convolution of f, g ∈ L2(Rd;h2
κ) is defined by

f ∗κ g(x) =

∫
Rd
f(y)τxg̃(y)h2

κ(y) dy, (4.4)

where g̃(y) = g(−y). Since τy is a bounded operator from Lprad(Rd;h2
κ) to Lp(Rd;h2

κ)
for 1 ≤ p ≤ 2, it follows that the definition of f ∗κ g can be extended to all
g ∈ Lprad(Rd;h2

κ) and f ∈ Lp
′
(Rd;h2

κ) with 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1. The

generalized convolution satisfies the following basic property

Fκ(f ∗κ g)(ξ) = Fκf(ξ)Fκg(ξ). (4.5)

2.2. h-harmonic expansions. In this subsection, we shall give a brief review
of some of the useful results on h-spherical harmonics. Let Sd−1 = {x ∈ Rd : ‖x‖ =
1} denote the unit sphere of Rd equipped with the usual Lebesgue measure dσ(x).
For the weight function hκ given in (4.1), we consider the weighted Lebesgue space
Lp(h2

κ;Sd−1) of functions on Sd−1 endowed with the finite norm

‖f‖Lp(h2
κ;Sd−1) ≡ ‖f‖κ,p :=

(∫
Sd−1

|f(y)|ph2
κ(y)dσ(y)

)1/p

, 1 ≤ p <∞,

and for p =∞ we assume that L∞ is replaced by C(Sd−1), the space of continuous
functions on Sd−1 with the usual uniform norm ‖f‖∞. We shall use the notation
‖ · ‖κ,p to denote the weighted norm for functions defined either on Rd or on Sd−1

whenever it causes no confusion.
A homogeneous polynomial is called an h-harmonic if it is orthogonal to all

polynomials of lower degree with respect to the inner product of L2(h2
κ;Sd−1).

Let Hdn(h2
κ) denote the space of all h-harmonics of degree n, and let projκn :

L2(h2
κ;Sd−1) → Hdn(h2

κ) denote the orthogonal projection operator. The projec-
tion projκn has an integral representation

projκn f(x) :=

∫
Sd−1

f(y)Pκn (x, y)h2
κ(y) dσ(y), x ∈ Sd−1, (4.6)

where Pκn (x, y) is the reproducing kernel of Hdn(h2
κ) which can be written in terms

of the interwining operator Vκ as (see [96, Theorem 3.2, (3.1)])

Pκn (x, y) =
n+ λ′k
λ′κ

Vκ

[
C
λ′k
n (〈x, ·〉)

]
(y), x, y ∈ Sd−1 (4.7)

with λ′κ := λκ − 1
2 = γκ + d−2

2 . Here Cλn denotes the standard Gegenbauer polyno-
mial of degree n and index λ as defined in [81]. By means of (4.6) and (4.7), the
projection projκn f can be extended to all f ∈ L1(h2

κ;Sd−1).
Recall that the following Marcinkiewitcz type multiplier theorem was proved

in Chapter 2:

Theorem 2.2. Let {µj}∞j=0 be a sequence of real numbers that satisfies

(i) sup
j
|µj | ≤ c <∞,
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(ii) sup
j≥1

2j(r−1)
2j+1∑
l=2j

|∆rµl| ≤ c <∞, with r being the smallest integer ≥ d
2 +γκ,

where 4µl = µl − µl+1 and 4j+1µl = 4jµl − 4jµl+1. Then {µj} defines an
Lp(h2

κ;Sd−1) multiplier for all 1 < p <∞; that is,∥∥∥∥ ∞∑
j=0

µj projκj f

∥∥∥∥
κ,p

≤ Apc‖f‖κ,p, 1 < p <∞,

where Ap is independent of {µj} and f .

For δ > −1, the Cesàro (C, δ) means of the h-harmonic expansion are defined
by

Sδn(h2
κ; f, x) := (Aδn)−1

n∑
k=0

Aδn−k projκk f(x), Aδn−k =

(
n− k + δ

n− k

)
.

In the case when G = Zd2 and hκ(x) =
∏d
i=1 |〈x, ei〉|κ(ei), the following result

was proved in [26]:

Theorem 2.3. Let G = Zd2 and let 1 ≤ p ≤ ∞ satisfy | 1p −
1
2 | ≥

1
2σκ+2 with

σκ := d−2
2 + γκ − min

1≤i≤d
κ(ei).

Then

sup
n∈N
‖Sδn(h2

κ; f)‖κ,p ≤ c‖f‖κ,p for all f ∈ Lp(h2
κ;Sd−1)

if and only if

δ > δκ(p) := max

{
(2σκ + 1)

∣∣∣∣1p − 1

2

∣∣∣∣− 1

2
, 0

}
. (4.8)

3. A transference theorem

The main goal in this section is to establish a transference theorem between
the Lp multipliers of h-harmonic expansions on the unit sphere Sd := {x ∈ Rd+1 :
‖x‖ = 1} and those of the Dunkl transform in Rd. Let G, R, hκ be as defined in
Section 1. Given g ∈ G, we denote by g′ the orthogonal transformation on Rd+1

determined uniquely by

g′x′ = (gx, xd+1) for x′ = (x, xd+1) with x ∈ Rd and xd+1 ∈ R.

Then G′ := {g′ : g ∈ G} is a finite reflection group on Rd+1 with a reduced root
system R′ := {(α, 0) : α ∈ R}. Let κ′ denote the nonnegative multiplicity function
defined on R′ with the property κ′(α, 0) = κ(α). We denote by Vκ′ the intertwining
operator on C(Rd+1) associated with the reflection group G′ and the multiplicity
function κ′. Define the weight function

hκ′(x, xd+1) := hκ(x) =
∏
α∈R+

|〈x, α〉|κ(α), x ∈ Rd, xd+1 ∈ R.

Recall that projκ
′

n : L2(Sd;h2
κ′) → Hd+1

n (h2
κ′) denotes the orthogonal projection

onto the space of h-harmonics.
Our main result is the following.

Theorem 3.1. Let m : [0,∞)→ R be a continuous and bounded function, and
let Uε, ε > 0, be a family of operators on L2(Sd;h2

κ′) given by

projκ
′

n

(
Uεf

)
= m(εn) projκ

′

n f, n = 0, 1, · · · . (4.9)
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Assume that

sup
ε>0
‖Uεf‖Lp(Sd;h2

κ′ )
≤ A‖f‖Lp(Sd;h2

κ′ )
, ∀f ∈ C(Sd) (4.10)

for some 1 ≤ p ≤ ∞. Then the function m(‖ · ‖) defines an Lp(Rd;h2
κ) multiplier;

that is,

‖Tmf‖Lp(Rd;h2
κ) ≤ cd,κA‖f‖Lp(Rd;h2

κ), ∀f ∈ S(Rd),

where Tm is an operator initially defined on L2(Rd;h2
κ) by

Fκ(Tmf)(ξ) = m(‖ξ‖)Fκf(ξ), f ∈ L2(Rd;h2
κ), ξ ∈ Rd. (4.11)

3.1. Lemmas. The proof of Theorem 3.1 relies on several lemmas.

Lemma 3.2. If f ∈ Πd+1 then for any x ∈ Rd and xd+1 ∈ R,

Vκ′f(x, xd+1) = Vκ[f(·, xd+1)](x) =

∫
Rd
f(ξ, xd+1) dµκx(ξ), (4.12)

where dµκx is given in (2.4).

Proof. Clearly, the second equality in (4.12) follows directly from (2.4). To

show the first equality, we set Ṽκf(x, xd+1) = Vκ[f(·, xd+1)](x) for f ∈ C(Rd+1)
and x ∈ Rd. Since Vκ′ is a linear operator uniquely determined by (2.3), it suffices
to show that the following conditions are satisfied:

Ṽκ(Pd+1
n ) ⊂ Pd+1

n , Ṽκ(1) = 1 and Dκ′,iṼκ = Ṽκ∂i, 1 ≤ i ≤ d+ 1.

Indeed, these conditions can be easily verified using the properties of Vκ in (2.3),
and the following identities, which follow directly from (2.2):

Dκ′,ig(x, xd+1) = Dκ,i
[
g(·, xd+1)

]
(x), 1 ≤ i ≤ d,

Dκ′,d+1g(x, xd+1) = ∂d+1g(x, xd+1), for g ∈ Πd+1, x ∈ Rd and xd+1 ∈ R.

This completes the proof of Lemma 3.2. �

To formulate the next lemma, we define the mapping ψ : Rd → Sd by

ψ(x) :=

(
ξ sin ‖x‖, cos ‖x‖

)
for x = ‖x‖ξ ∈ Rd and ξ ∈ Sd−1.

Given N ≥ 1, we denote by NSd := {x ∈ Rd+1 : ‖x‖ = N} the sphere of radius
N in Rd+1, and define the mapping ψN : Rd → NSd by

ψN (x) := Nψ

(
x

N

)
=

(
Nξ sin

‖x‖
N

,N cos
‖x‖
N

)
(4.13)

with x = ‖x‖ξ ∈ Rd and ξ ∈ Sd−1.

Lemma 3.3. If f : NSd → R is supported in the set {x ∈ NSd : arccos(N−1xd+1)
≤ 1}, then∫

Sd
f(Nx)h2

κ′(x) dσ(x) = N−2λκ−1

∫
B(0,N)

f
(
ψN (x)

)
h2
κ(x)

(
sin(‖x‖/N)

‖x‖/N

)2λκ

dx,

where B(0, N) = {y ∈ Rd : ‖y‖ ≤ N}.

Proof. First, using the polar coordinate transformation

(ξ, θ) ∈ Sd−1 × [0, π]→ x := (ξ sin θ, cos θ) ∈ Sd,
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and the fact that dσ(x) = sind−1 θ dθdσ(ξ), we obtain∫
Sd
f(Nx)h2

κ′(x) dσ(x)

=

∫ π

0

[ ∫
Sd−1

f(Nξ sin θ,N cos θ)h2
κ′(ξ sin θ, cos θ) dσ(ξ)

]
(sin θ)d−1 dθ

=

∫ 1

0

∫
Sd−1

f(Nξ sin θ,N cos θ)h2
κ(θξ) dσ(ξ)

(
sin θ

θ

)d−1+2γκ

θd−1 dθ,

where the last step uses the identity hκ′(y, yd+1) = hκ(y), the fact that h2
κ is a

homogeneous function of degree 2γκ, and the assumption that f is supported in
the set {x ∈ NSd : arccos(N−1xd+1) ≤ 1}. Using the usual spherical coordinate
transformation in Rd, the last double integral equals∫

‖y‖≤1

f

(
Ny sin ‖y‖
‖y‖

, N cos ‖y‖
)
h2
κ(y)

(
sin ‖y‖
‖y‖

)2λκ

dy

= N−d−2γκ

∫
‖x‖≤N

f

(
N

x

‖x‖
sin
‖x‖
N

,N cos
‖x‖
N

)
h2
κ(x)

(
sin(‖x‖/N)

‖x‖/N

)2λκ

dx

= N−2λκ−1

∫
B(0,N)

f(ψNx)h2
κ(x)

(
sin(‖x‖/N)

‖x‖/N

)2λκ

dx,

where the first step uses the homogeneity of the weight hκ and the change of
variables y = x

N . This proves the desired formula. �

Remark 3.4. It is easily seen that the restriction ψN
∣∣
B(0,N)

of the mapping ψN

on B(0, N) is a bijection from B(0, N) to {x ∈ NSd : arccos(N−1xd+1) ≤ 1}. Thus,
given a function f : B(0, N) → R, there exists a unique function fN supported in
{x ∈ NSd : arccos(N−1xd+1) ≤ 1} such that

fN (ψNx) = f(x), ∀x ∈ B(0, N). (4.14)

On the other hand, using Lemma 3.3, we have∫
Sd
fN (Nx)h2

κ′(x) dσ(x) = N−2λκ−1

∫
B(0,N)

f(x)h2
κ(x)

(
sin(‖x‖/N)

‖x‖/N

)2λκ

dx.

(4.15)

The formula (4.15) will play an important role in our proof of Theorem 3.1.

We also need the following observation on a formula of Rösler [73] for τyf(x):

Lemma 3.5. If f(x) = f0(‖x‖) is a continuous radial function in L2(Rd;h2
κ),

then for a.e. y ∈ Rd and a.e. x ∈ Rd,

τyf(x) = Vκ

[
f0

(√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ·〉

)]
(
y

‖y‖
). (4.16)

Formula (4.16) was first proved in [73] under the assumption that f is a radial
Schwartz function. Thangavelu and Yuan Xu [86, Proposition 3.3] later observed
that it also holds for radial functions f ∈ L(Rd;h2

κ) with Fκf ∈ L(Rd;h2
κ). Clearly,

our assumption in Lemma 3.5 is slightly weaker than that of [86, Proposition 3.3].
Lemma 3.5 can be deduced from the result of Rösler [73], using a density

argument.

Proof. We first choose a sequence of even, C∞ functions gj on R satisfying

sup
|t|≤2j+1

|gj(t)− f0(t)| ≤ 2−j
(∫ 2j

0

s2λκ ds

)− 1
2

.
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Let ϕj be an even, C∞ function on R such that χ[2−j ,2j ](|t|) ≤ ϕj(t) ≤
χ[2−j−1,2j+1](|t|), and let fj(x) ≡ fj,0(‖x‖) := gj(‖x‖)ϕj(‖x‖) for x ∈ Rd. Then

it’s easily seen that {fj} is a sequence of radial Schwartz functions on Rd satisfying

lim
j→∞

sup
2−j≤|t|≤2j

|fj,0(t)− f0(t)| = 0 (4.17)

and

lim
j→∞

‖fj − f‖κ,2 = 0. (4.18)

Since each fj is a radial Schwartz function, by Lemma 1.1 and the already proven
case of Lemma 3.5 (see [73]), we obtain

τy(fj)(x) =

∫
‖ξ‖≤1

fj,0(
√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉)dµκy/‖y‖(ξ). (4.19)

Next, we fix y ∈ Rd, and set

An ≡ An(y) := {x ∈ Rd : 2−n ≤
∣∣∣‖x‖ − ‖y‖∣∣∣ ≤ ‖x‖+ ‖y‖ ≤ 2n}

for n ∈ N and n ≥ n0(y) := [log ‖y‖/ log 2] + 1. Since

(‖x‖ − ‖y‖)2 ≤ ‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉| ≤ (‖x‖+ ‖y‖)2

for all ‖ξ‖ ≤ 1, it follows by (4.17) that

lim
j→∞

fj,0(
√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉) = f0(

√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉)

uniformly for x ∈ An(y) and ‖ξ‖ ≤ 1. This together with (4.19) and Lemma 1.1
implies

lim
j→∞

τy(fj)(x) =

∫
‖ξ‖≤1

f0(
√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ξ〉)dµκy/‖y‖(ξ)

=Vκ

[
f0(
√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ·〉)

]( y

‖y‖

)
for every x ∈ An(y) \ {0} and n ≥ n0(y). On the other hand, however, by (4.18),
we have

lim
j→∞

‖τy(fj)− τyf‖κ,2 = 0

for all y ∈ Rd. Thus,

τy(f)(x) = Vκ

[
f0(
√
‖x‖2 + ‖y‖2 − 2‖y‖〈x, ·〉)

]( y

‖y‖

)
for a.e. x ∈ An(y) and all n ≥ n0(y). Finally, observing that the set

Rd \
( ∞⋃
n=n0(y)

An(y)

)
= {x ∈ Rd : ‖x‖ = ‖y‖}

has measure zero in Rd, we deduce the desired conclusion. �

Remark 3.6. By (2.5) and the supporting condition of the measure dµκx, we
observe that

VκF (rx) =

∫
Rd
F (rξ) dµκx(ξ), for all F ∈ C(Rd), x ∈ Rd, and r > 0. (4.20)

Thus, (4.16) can be rewritten more symmetrically as

τyf(x) = Vκ

[
f0

(√
‖x‖2 + ‖y‖2 − 2〈x, ·〉

)]
(y). (4.21)
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Lemma 3.7. Let Φ ∈ L1(R, |x|2λκ) be an even, bounded function on R, and let
TΦ be an operator L2(Rd;h2

κ)→ L2(Rd;h2
κ) defined by

Fκ(TΦf)(ξ) := Fκf(ξ)Φ(‖ξ‖), f ∈ L2(Rd;h2
κ).

Then TΦ has an integral representation

TΦf(x) =

∫
Rd
f(y)K(x, y)h2

κ(y) dy, for f ∈ S(Rd) and a.e. x ∈ Rd,

where

K(x, y) (4.22)

=c

∫ ∞
0

Φ(s)Vκ

[
Jλκ− 1

2
(s
√
‖x‖2 + ‖y‖2 − 2〈x, ·〉)

(s
√
‖x‖2 + ‖y‖2 − 2〈x, ·〉)λκ− 1

2

]
(y)s2λκ ds.

Furthermore, K(x, y) = K(y, x) for a.e. x ∈ Rd and a.e. y ∈ Rd.

Proof. Let g(x) = Hλκ− 1
2
Φ(‖x‖), where x ∈ Rd and Hα denotes the Hankel

transform. Since Φ is an even function in L1(R, |x|2λκ) ∩ L∞(R), it follows by
the properties of the Hankel transform that g is a continuous radial function in
L2(Rd;h2

κ) and Fκg(ξ) = Φ(‖ξ‖). Thus, using (4.5), we have

TΦf(x) = f ∗κ g(x) =

∫
Rd
f(y)τyg(x)h2

κ(y) dy

for f ∈ L2(Rd;h2
κ). Since g is a continuous radial function in L2(Rd;h2

κ), by Lemma
3.5 and Remark 3.6 it follows that

K(x, y) : = τyg(x) = Vκ

[
Hλκ− 1

2
Φ(
√
‖x‖2 + ‖y‖2 + 2〈x, ·〉)

]
(y)

= c

∫ ∞
0

Φ(s)Vκ

[
Jλκ− 1

2
(s
√
‖x‖2 + ‖y‖2 − 2〈x, ·〉)

(s
√
‖x‖2 + ‖y‖2 − 2〈x, ·〉)λκ− 1

2

]
(y)s2λκ ds,

where the last step uses (2.4), the inequality∣∣∣Φ(s)
Jλκ− 1

2
(rs)

(rs)λκ−
1
2

∣∣∣ ≤ c|Φ(s)|

and Fubini’s theorem. This proves the desired equation (4.22). That K(x, y) =
K(y, x) follows from the fact that τxg(y) = τyg(x). �

Our final lemma is a well known result for the ultraspherical polynomials:

Lemma 3.8. [81, (8.1.1), p.192] For z ∈ C and µ ≥ 0,

lim
k→∞

k1−2µCµk

(
cos

z

k

)
=

Γ(µ+ 1
2 )

Γ(2µ)

(
z

2

)−µ+ 1
2

Jµ− 1
2
(z). (4.23)

This formula holds uniformly in every bounded region of the complex z-plane.

3.2. Proof of Theorem 3.1. We first prove the theorem under the additional
assumption |m(t)| ≤ c1e

−c2t for all t > 0 and some c1, c2 > 0. By Lemma 3.7, the
operator Tm has an integral representation

Tmf(x) =

∫
Rd
f(y)K(x, y)h2

κ(y) dy,

where K(x, y) is given by (4.22) with Φ = m. Thus, it is sufficient to prove that

I :=

∣∣∣∣ ∫
Rd

∫
Rd
f(y)g(x)K(x, y)h2

κ(x)h2
κ(y) dxdy

∣∣∣∣ ≤ cA (4.24)

whenever f ∈ Lp(Rd;h2
κ) and g ∈ Lp

′
(Rd;h2

κ) both have compact supports and
satisfy ‖f‖Lp(Rd;h2

κ) = ‖g‖Lp′ (Rd;h2
κ) = 1.
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To this end, we choose a positive number N to be sufficiently large so that the
supports of f and g are both contained in the ball B(0, N). By Remark 3.4, there
exist functions fN and gN both supported in {x ∈ NSd : arccos(N−1xd+1) ≤ 1}
and satisfying

fN
(
ψN (x)

)
= f(x), gN

(
ψN (x)

)
= g(x), x ∈ Rd, (4.25)

where ψN is defined by (4.13). It’s easily seen from (4.15) that

‖fN (N ·)‖Lp(Sd;h2
κ′ )
≤ cN−

2λκ+1
p , ‖gN (N ·)‖Lp′ (Sd;h2

κ′ )
≤ cN−

2λκ+1

p′ .

Thus, using (4.6), (4.7), (4.9) and the assumption (4.10) with ε = 1
N , we obtain

IN := N2λκ+1

×
∣∣∣∫

Sd

∫
Sd

[ ∞∑
n=0

m(N−1n)Pκ
′

n (x, y)
]
fN (Ny)gN (Nx)h2

κ′(x)h2
κ′(y) dσ(x) dσ(y)

∣∣∣
≤ cA, (4.26)

where Pκ
′

n (x, y) = n+λκ
λκ

Vκ′ [C
λκ
n (〈x, ·〉)](y). Setting

HN (x, y) = N−2λκ−1
∞∑
n=0

m(N−1n)Pκ
′

n

(
ψ(

x

N
), ψ(

y

N
)

)
,

and invoking (4.25) and Lemma 3.3, we obtain

IN =

∣∣∣∣ ∫
Rd

∫
Rd
HN (x, y)f(y)g(x)h2

κ(x)h2
κ(y)

(
sin(‖x‖/N)

‖x‖/N

)2λκ

(4.27)

×
(

sin(‖y‖/N)

‖y‖/N

)2λκ

dx dy

∣∣∣∣.
On the other hand, setting

bN (ρ, x, y) = N−2λκ−1
∞∑
n=0

m(
n

N
)Pκ

′

n

(
ψ(

x

N
), ψ(

y

N
)

)(∫ n+1
N

n
N

t2λκ dt

)−1

χ[ nN ,
n+1
N )(ρ),

we have

HN (x, y) =

∫ ∞
0

bN (ρ, x, y)ρ2λκ dρ.

Hence, by (4.27),

IN =

∣∣∣∣ ∫
Rd

∫
Rd

[ ∫ ∞
0

bN (ρ, x, y)ρ2λκ dρ

]
f(y)g(x)h2

κ(x)h2
κ(y) (4.28)

×
(

sin(‖x‖/N)

‖x‖/N

)2λκ( sin(‖y‖/N)

‖y‖/N

)2λκ

dx dy

∣∣∣∣.
The key ingredient in our proof is to show that limN→∞ IN = cI, where c is a

constant depending only on d and κ. In fact, once this is proven, then the desired
estimate (4.24) will follow immediately from (4.26).

To show limN→∞ IN = cI, we make the following two assertions:
Assertion 1. For any N > 0 and x, y ∈ Rd,

|bN (ρ, x, y)| ≤ ce−c2ρ,
where c is independent of x, y and N .

Assertion 2. For any fixed x, y ∈ Rd and ρ > 0,

lim
N→∞

bN (ρ, x, y) = cm(ρ)Vκ

[
Jλκ− 1

2

(
ρu(x, y, ·)

)
(
ρu(x, y, ·)

)λκ− 1
2

]
(y), (4.29)
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where u(x, y, ξ) =
√
‖x‖2 + ‖y‖2 − 2〈x, ξ〉, and c is a constant depending only on

d and κ.
For the moment, we take the above two assertions for granted, and proceed

with the proof of Theorem 3.1. By Assertion 1 and Hölder’s inequality, we can
apply the dominated convergence theorem to the integrals in (4.28), and obtain

lim
N→∞

IN =

∣∣∣∣ ∫
Rd

∫
Rd

[ ∫ ∞
0

lim
N→∞

bN (ρ, x, y)ρ2λκ dρ

]
f(y)g(x)h2

κ(x)h2
κ(y) dx dy

∣∣∣∣,
which, using Assertion 2, equals

= c

∣∣∣∣∣
∫
Rd

∫
Rd

[∫ ∞
0

m(ρ)Vκ

[
Jλκ− 1

2

(
ρu(x, y, ·)

)
(
ρu(x, y, ·)

)λκ− 1
2

]
(y)ρ2λκ dρ

]
f(y)g(x)h2

κ(x)h2
κ(y)dx dy

∣∣∣
= c
∣∣∣∫

Rd

∫
Rd
K(x, y)f(y)g(x)h2

κ(x)h2
κ(y) dx dy

∣∣∣ = cI,

where the second step uses (4.22). Thus, we have shown the desired relation
limN→∞ IN = cI, assuming Assertions 1 and 2.

Now we return to the proofs of Assertions 1 and 2. We start with the proof
of Assertion 1. Assume that n

N ≤ ρ < n+1
N for some n ∈ Z+. Then |m( nN )| ≤

c1e
−c2 nN ≤ ce−c2ρ, and

∫ n+1
N

n
N

t2λκ dt ≥ cN−1ρ2λκ . Hence,

|bN (ρ, x, y)| = N−2λκ−1

∣∣∣∣m( n

N

)
Pκ
′

n

(
ψ

(
x

N

)
, ψ

(
y

N

))∣∣∣∣( ∫ n+1
N

n
N

t2λκ dt

)−1

≤ cN−2λκρ−2λκe−c2ρ
n+ λκ
λκ

∣∣∣∣Vκ′[Cλκn (〈ψ( x

N

)
, ·
〉)](

ψ

(
y

N

))∣∣∣∣
≤ c(Nρ)−2λκe−c2ρn2λκ ≤ ce−c2ρ,

where we used (4.7) in the second step, and the positivity of Vκ and the estimate
|Cλκn (t)| ≤ cn2λκ−1 in the third step. This proves Assertion 1.

Next, we show Assertion 2. A straightforward calculation shows that for n
N ≤

ρ ≤ n+1
N and ρ > 0,(∫ n+1

N

n
N

t2λκ dt

)−1

=
N

ρ2λκ
(1 + oρ(1)), as N →∞.

This implies that for n
N ≤ ρ ≤

n+1
N and ρ > 0,

bN (ρ, x, y)=m(ρ)
n2λκ

(Nρ)2λκ
n−2λκPκ

′

n

(
ψ

(
x

N

)
, ψ

(
y

N

))
(1 + oρ(1))

=cm(ρ)n−2λκ+1Vκ′

[
Cλκn

(〈
ψ

(
x

N

)
, ·
〉)](

y

‖y‖
sin
‖y‖
N

, cos
‖y‖
N

)
+ oρ(1),

where we used the continuity of m in the first step, and the estimate

n−2λκ

∣∣∣Pκ′n (ψ( xN ), ψ( yN )

)∣∣∣ ≤ c, as well as the fact that lim
N→∞

n2λκ

(Nρ)2λκ
= 1 in

the last step (see [25]). Thus, using Lemma 3.2 and (4.20), we obtain

bN (ρ, x, y) = cm(ρ)n−2λκ+1

∫
Rd
Cλκn

(
1

‖x‖
sin
‖x‖
N

d∑
j=1

xjξj + cos
‖y‖
N

cos
‖x‖
N

)
× dµκ

y
‖y‖ sin

‖y‖
N

(ξ) + oρ(1)

= cm(ρ)n−2λκ+1

∫
‖ξ‖≤‖y‖

Cλκn

(
cos θN (x, y, ξ)

)
dµκy(ξ) + oρ(1), (4.30)
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where θN (x, y, ξ) ∈ [0, π] satisfies

cos θN (x, y, ξ) =

(
1

‖x‖‖y‖

d∑
j=1

xjξj

)
sin
‖x‖
N

sin
‖y‖
N

+ cos
‖x‖
N

cos
‖y‖
N

,

Since

cos θN (x, y, ξ) = 1− 1

2N2

(
‖x‖2 + ‖y‖2 − 2

d∑
j=1

xjξj

)
+O‖x‖,‖y‖(N

−4)

= 1− 1

2N2
u(x, y, ξ)2 +O‖x‖,‖y‖(N

−4),

it follows that

θN (x, y, ξ) = 2 arcsin

(
1

2N

√
u(x, y, ξ)2 +O‖x‖,‖y‖(N−2)

)
=

1

N

√
u(x, y, ξ)2 +O‖x‖,‖y‖(N−2) +O‖x‖,‖y‖(N

−2)

=
ρu(x, y, ξ) + o‖x‖,‖y‖,ρ(1)

n
,

where the last step uses the uniform continuity of the function t ∈ [0,M ]→
√
t for

any M > 0, and the relation limN→∞
n
Nρ = 1.

Thus, by (4.30) and (4.23), we have

lim
N→∞

bN (ρ, x, y)

= cm(ρ) lim
N→∞

∫
‖ξ‖≤‖y‖

n−2λκ+1Cλκn

(
cos

ρu(x, y, ξ) + ox,y,ρ(1)

n

)
dµκy(ξ)

= cm(ρ)

∫
‖ξ‖≤‖y‖

(ρu(x, y, ξ))−λκ+ 1
2 Jλκ− 1

2
(ρu(x, y, ξ)) dµκy(ξ)

= cm(ρ)Vκ

[
(ρu(x, y, ·))−λκ+ 1

2 Jλκ− 1
2
(ρu(x, y, ·))

]
(y),

where we used the fact that ‖Cλκn ‖∞ ≤ cn2λκ−1, the bounded convergence theorem
and (4.23) in the last step. This proves Assertion 2.

In summary, we have shown the theorem with the additional assumption |m(t)| ≤
c1e
−c2t.
Finally, we prove that the conclusion of Theorem 3.1 remains true without the

additional assumption |m(t)| ≤ c1e
−c2t. To this end, let mδ(t) = m(t)e−δt for

δ > 0, and define Tmδ : L2(Rd, h2
κ)→ L2(Rd;h2

κ) by

Fκ(Tmδf)(ξ) = mδ(ξ)Fκf(ξ), f ∈ L2(Rd;h2
κ).

It is known (see [38, p. 191]) that given any ε > 0, f 7→
∑∞
n=0 e

−nε projκ̃n f is a
positive operator on Lp(Sd;h2

κ̃) that satisfies

sup
ε>0

∥∥∥ ∞∑
n=0

e−nε projκ̃n f
∥∥∥
Lp(Sd;h2

κ̃
)
≤ ‖f‖Lp(Sd;h2

κ̃
).

Indeed, this follows from [?, Theorem 4.2] and the fact that Vκ is positive, which
was proved in [72]. Thus, applying Theorem 3.1 for the already proven case, we
have

sup
δ>0

∥∥∥Tmδf∥∥∥
Lp(Rd;h2

κ)
≤ cA‖f‖Lp(Rd;h2

κ). (4.31)

On the other hand, from the definition we can decompose the operator Tmδ as

Tmδf = Pδ(Tf), (4.32)
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where Fκ(Tf)(ξ) = m(‖ξ‖)Fκf(ξ) and

Fκ(Pδf)(ξ) = e−δ‖ξ‖Fκf(ξ).

The function Pδf is called the Poisson integral of f , and it can be expressed as a
generalized convolution (see [26])

Pδf(x) := (f ∗κ Pδ)(x)

with

Pδ(x) := 2γκ+ d
2

Γ(γκ + d+1
2 )

√
π

δ

(δ2 + ‖x‖2)γκ+ d+1
2

.

It was shown in [26, Theorem 6.2] that

lim
δ→0+

Pδf(x) = f(x), a.e. x ∈ Rd

for any f ∈ Lq(Rd;h2
κ) with 1 ≤ q <∞. Since m is bounded, Tf ∈ L2(Rd;h2

κ) for
f ∈ L2(Rd;h2

κ). Thus, for any f ∈ S, using (4.32),

lim
δ→0+

Tmδf(x) = lim
δ→0+

Pδ(Tf)(x) = Tf(x), a.e. x ∈ Rd, (4.33)

which combined with (4.31) and the Fatou theorem implies the desired estimate

‖Tf‖Lp(Rd;h2
κ) ≤ cA‖f‖Lp(Rd;h2

κ).

This completes the proof of the theorem.

4. Applications

4.1. Hörmander’s multiplier theorem and the Littlewood-Paley in-
equality. As a first application of Theorem 3.1, we shall prove the following
Hörmander type multiplier theorem:

Theorem 4.1. Let m : (0,∞)→ R be a bounded function satisfying ‖m‖∞ ≤ A
and Hörmander’s condition

1

R

∫ 2R

R

|m(r)(t)| dt ≤ AR−r, for all R > 0, (4.34)

where r is the smallest integer ≥ λκ + 1. Let Tm be an operator on L2(Rd;h2
κ)

defined by

Fκ(Tmf)(ξ) = m(‖ξ‖)Fκf(ξ), ξ ∈ Rd.

Then

‖Tmf‖κ,p ≤ CpA‖f‖κ,p

for all 1 < p <∞ and f ∈ S(Rd).

Proof. Let µ` = m(`ε) for ε > 0 and ` = 0, 1, · · · . Then

|4rµ`| = εr
∣∣∣∫

[0,1]r
m(r)

(
εt1 + · · ·+ εtr + ε`

)
dt1 · · · dtr

∣∣∣
≤
∫

[0,ε]r
|m(r)

(
t1 + · · ·+ tr + ε`

)
|dt1 · · · dtr ≤ εr−1

∫ ε(r+`)

ε`

|m(r)(t)| dt.
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This implies that for 2j ≥ r

2j(r−1)
2j+1∑
l=2j

|∆rµl| ≤ 2j(r−1)εr−1
2j+1∑
l=2j

∫ ε(r+`)

ε`

|m(r)(t)| dt

≤ (r − 1)2j(r−1)εr−1

∫ ε(2j+1+r)

2jε

|m(r)(t)| dt

≤ 2j(r−1)(r − 1)εr−1

∫ 2j+2ε

2jε

|m(r)(t)| dt ≤ crA,

where the last step uses (4.34). On the other hand, however, for 2j ≤ r, we have

2j(r−1)
2j+1∑
l=2j

|∆rµl| ≤ cr max
j
|µj | ≤ crA.

Thus, using Theorem 2.2, we deduce

sup
ε>0

∥∥∥ ∞∑
n=0

m(εn) projκ
′

n f
∥∥∥
Lp(Sd;h2

κ′ )
≤ c‖f‖Lp(Sd;h2

κ′ )
.

The desired conclusion then follows by Theorem 3.1. �

Remark 4.2. Hörmander’s condition is normally stated in the following form(
1

R

∫ 2R

R

|m(r)(t)|2 dt
) 1

2

≤ AR−r, for all R > 0. (4.35)

See, for instance, [46, Theorem 5.2.7]. Clearly, the condition (4.34) in Theorem 4.1
is weaker than (4.35). On the other hand, however, Theorem 4.1 is applicable only
to radial multiplier m(‖ · ‖).

Corollary 4.3. Let Φ be an even C∞–function that is supported in the set
{x ∈ R : 9

10 ≤ |x| ≤
21
10} and satisfies either∑

j∈Z
Φ(2−jξ) = 1, ξ ∈ R \ {0},

or ∑
j∈Z
|Φ(2−jξ)|2 = 1, ξ ∈ R \ {0}.

Let 4j be an operator defined by

Fκ(4jf)(ξ) = Φ(2−j‖ξ‖)Fκf(ξ), ξ ∈ Rd.

Then we have

‖f‖κ,p ∼κ,p
∥∥∥∥(∑

j∈Z
|4jf |2

) 1
2
∥∥∥∥
κ,p

holds for all f ∈ Lp(Rd;h2
κ) and 1 < p <∞.

Proof. Corollary 4.3 follows directly from Theorem 4.1. Since the proof is
quite standard (see, for instance, [78] ), we omit the details. �
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4.2. The Bochner-Riesz means. Given δ > −1, the Bochner-Riesz means
of order δ for the Dunkl transform are defined by

BδR(h2
κ; f)(x) = c

∫
‖y‖≤R

(
1− ‖y‖

2

R2

)δ
Fκf(y)Eκ(ix, y)h2

κ(y) dy, R > 0. (4.36)

Convergence of the Bochner -Riesz means in the setting of Dunkl transform was
studied recently by Thangavelu and Yuan Xu [86, Theorem 5.5], who proved that
if δ > λκ := d−1

2 + γκ and 1 ≤ p ≤ ∞ then

sup
R>0
‖BδR(h2

κ; f)‖κ,p ≤ c‖f‖κ,p. (4.37)

Our next result concerns the critical indices for the validity of (4.37) in the
case of G = Zd2:

Theorem 4.4. Suppose that G = Zd2, f ∈ Lp(Rd;h2
κ), 1 ≤ p ≤ ∞, and | 1p−

1
2 | ≥

1
2λκ+2 . Then (4.37) holds if and only if

δ > δκ(p) := max

{
(2λκ + 1)

∣∣∣1
p
− 1

2

∣∣∣− 1

2
, 0

}
. (4.38)

It should be pointed out that the result of [86, Theorem 5.5] is applicable to
the case of a general finite reflection group G, while Theorem 4.4 above applies to
the case of Zd2 only.

Proof. We start with the proof of the sufficiency. Assume that κ := (κ1, · · · , κd)
and hκ(x) :=

∏d
j=1 |xj |κj . Let κ′ = (κ, 0) and hκ′(x, xd+1) = hκ(x) for x ∈ Rd and

xd+1 ∈ R. Set m(t) = (1 − t2)δ+. By the equivalence of the Riesz and the Cesàro
summability methods of order δ ≥ 0 (see [45]), we deduce from Theorem 2.3

sup
ε>0

∥∥∥∥ ∞∑
n=0

m(εn) projκ
′

n f

∥∥∥∥
Lp(Sd;h2

κ′ )

≤ c‖f‖Lp(Sd;h2
κ′ )

whenever | 1p −
1
2 | ≥

1
2σκ′+2 and δ > δκ′(p), where σκ′ = λκ and δκ′(p) = δκ(p).

Thus, invoking Theorem 3.1, we conclude that for δ > δκ(p),

‖Bδ1(h2
κ; f)‖κ,p ≤ c‖f‖κ,p.

The estimate (4.37) then follows by dilation. This proves the sufficiency.
The necessity part of the theorem follows from the corresponding result for the

Hankel transform. To see this, let f(x) = f0(‖x‖) be a radial function in Lp(Rd, h2
κ).

Using (4.36) and Lemma 2.1 (vii), we have

BδR(h2
κ; f)(x) =

∫ R

0

(
1− r2

R2

)δ
Hλκ− 1

2
f0(r)r2λκ

[ ∫
Sd−1

Eκ(ix, ry′)h2
κ(y′) dσ(y′)

]
dr.

However, by [86, Proposition 2.3] applied to n = 0 and g = 1, we have∫
Sd−1

Eκ(ix, ry′)h2
κ(y′) dσ(y′) = c

(
r‖x‖

2

)−λκ+ 1
2

Jλκ− 1
2
(r‖x‖).

It follows that

BδR(h2
κ; f)(x) = c

∫ R

0

(
1− r2

R2

)δ
Hλκ− 1

2
f0(r)

(
r‖x‖

2

)−λκ+ 1
2

Jλκ− 1
2
(r‖x‖)r2λκ dr

= cB̃δRf0(‖x‖),



5. NOTES AND FURTHER RESULTS 155

where B̃δR denotes the Bockner-Riesz mean of order δ for the Hankel transform

Hλκ− 1
2
. However, it is known (see [93]) that B̃δR, 0 < δ < λκ, is bounded on

Lp((0,∞), t2λκ) if and only if

2λκ + 1

λκ + δ + 1
< p <

2λκ + 1

λκ − δ
. (4.39)

Thus, to complete the proof of the necessity part of the theorem, by (4.39), we just
need to observe that if f(x) = f0(‖x‖) is a radial function in Lp(Rd;h2

κ), then

‖f‖κ,p = c‖f0‖Lp(R;|x|2λκ ). �

5. Notes and further results

1. The Dunkl transform plays the same role as the Fourier transform in clas-
sical Fourier analysis. Many important properties of the Dunkl transform
were proved in [51]). Properties on the generalized translation operator
and the generalized convolution can be found in [86].

2. Several important results in classical Fourier analysis have been extended
to the setting of Dunkl transform by Thangavelu and Yuan Xu [87, 86].
The problem, however, turns out to be rather difficult in general. One
of the difficulties comes from the fact that the generalized translation
operator τy, which plays the role of the usual translation f → f(· − y), is
not positive in general (see, for instance, [86, Proposition 3.10]). In fact,
even the Lp boundedness of τy is not established in general (see [87, 86]).

3. A very useful explicit formula for the intertwining operator Vκ was ob-
tained by Dunkl [36] in the case of G = Z2, and was later extended to the
more general case of G = Zd2, (d ∈ N) by Xuan Xu [96]. The positivity
of Vκ as well as many important properties of Vκ were proved by Rösler
[72].

4. In the unweighted case, for the classical Fourier transform, Theorem 4.4
is well known, and in fact, it follows from the following Tomas-Stein re-
striction theorem (see, for instance, [46, Section 10.4]):

‖f̂‖L2(Sd−1) ≤ Cp‖f‖Lp(Rd), 1 ≤ p ≤ 2d+ 2

d+ 3
, (4.40)

where f̂ denotes the usual Fourier transform of f . In the weighted case,
while estimates similar to (4.40) can be proved for the Dunkl transform
Fκf (see [53, Theorem 4.1]), they do not seem to be enough for the
proof of Theorem 4.4. A similar fact was indicated in [26] for the case
of the Cesàro means for h-harmonic expansions on the unit sphere, where
global estimates for the projection operators have to be replaced with more
delicate local estimates, which are significantly more difficult to prove than
the corresponding global estimates.

5. In the case of ordinary spherical harmonics (i.e., κ = 0), Theorem 3.1 is
due to Bonami and Clerc [5, Theorem 1.1].

6. The main results of this chapter were proved in [23]. The idea of the proof
of Theorem 3.1 can be traced back to [5].





APPENDIX A

Jacobi and related orthogonal polynomials

A.1. Jacobi polynomials

For parameters α, β > −1, the Jacobi weight function is defined by

wα,β(x) = cα,β(1− x)α(1 + x)β , −1 < x < 1.

where the normalization constant is given by

c−1
α,β :=

∫ 1

−1

wα,β(x)dx = 2α+β+1 Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
.

For n ≥ 0, the Jacobi polynomials are defined by

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn

(
(1− x)α+n(1 + x)β+n

)
(A.1)

=
(α+ 1)n

n!
2F1

(
−n, n+ α+ β + 1

α+ 1
;

1− x
2

)
.

They are orthogonal polynomials with respect to wα,β : For n,m ≥ 0,∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)wα,β(x)dx =
(α+ 1)n(β + 1)n(α+ β + n+ 1)

n!(α+ β + 2)n(α+ β + 2n+ 1)
δn,m. (A.2)

Some properties of Jacobi polynomials are listed below

1. The leading coefficient is kn =
(n+ α+ β + 1)n

2nn!
;

2. P
(α,β)
n (−x) = (−1)nP

(β,α)
n (x) and P

(α,β)
n (1) = (α+ 1)n/n!;

3. P
(α,β)
n (x) satisfies the differential equation

(1− x2)y′′ − (α− β + (α+ β + 2)x)y′ + n(n+ α+ β + 1)y = 0.

4.
d

dx
P (α,β)
n (x) =

n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x).

5. three-term relation

P
(α,β)
n+1 (x) =

(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
xP (α,β)

n (x)

+
(2n+ α+ β + 1)(α2 − β2)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
P (α,β)
n (x)

− (α+ n)(β + n)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
P

(α,β)
n−1 (x).

They also have the following additional properties:

d

dx
P (α,β)
n (x) =

n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x), (A.3)
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P (α+1,β)
n (x) =

Γ(n+ β + 1)

Γ(n+ α+ β + 2)

×
n∑
j=0

(2j + α+ β + 1)Γ(j + α+ β + 1)

Γ(j + β + 1)
P

(α,β)
j (x), (A.4)

and for α, β > − 1
2 ,∣∣∣P (α,β)

n (cos θ)
∣∣∣ ≤ cα,βn− 1

2 (n−1 + θ)−α−
1
2 (n−1 + π − θ)−β− 1

2 . (A.5)

A.2. Gegenbauer polynomials

For λ > −1/2, the Gengenbauer weight function is defined by,

wλ(x) := cλ(1− x2)λ−1/2, cλ = cλ−1/2,λ−1/2, −1 < x < 1,

a special case of the Jacobi weight. The Gegenbauer polynomials are defined by

Cλn(x) =

(
2λ

)
n(

λ+ 1
2

)
n

P (λ−1/2,λ−1/2)
n (x). (A.6)

Their orthogonal relation is given by∫ 1

−1

Cλn(x)Cλm(x)wλ(x)dx =
λ(2λ)n

(n+ λ)n!
δn,m. (A.7)

They satisfy the following properties:

1. The leading coefficient is
(λ)n2n

n!
.

2. Cλn(1) =
(2λ)n
n!

.

3. The three-term relation:

Cλn+1(x) =
2(n+ λ)

n+ 1
xCλn(x)− n+ 2λ− 1

n+ 1
Cλn−1(x).

They also satisfy the following additional properties

d

dx
Cλn(x) = 2λCλ+1

n−1(x), (A.8)

(n+ λ)Cλn(x) = λ

(
Cλn+1(x)− Cλn−1(x)

)
. (A.9)

For n ≥ 0 and λ > 0,

Cλn(x) =
(λ)n2n

n!
xn2F1

(
−n2 ,

1−n
2

1− n− λ;
1

x2

)
. (A.10)

For |x| ≤ 1 and |r| < 1

1− r2

(1− 2xr + r2)λ+1
=

∞∑
n=0

n+ λ

λ
Cλn(x)rn. (A.11)

The special case λ = 0 is the Chebyshev polynomial of the first kind, denoted
by Tn(x), and satisfies

lim
λ→0

1

λ
Cλn(x) = Tn(x) = cosnθ, x = cos θ.

The case λ = 1 is the Chebyshev polynomial of the second kind, denoted by Un(x)

Un(x) = C1
n(x) =

sin(n+ 1)θ

sin θ
, x = cos θ.
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The case λ = 1
2 is the Legendre polynomial, often denoted by

Pn(x) = C1/2
n (x)

which are orthogonal for dx on −1 ≤ x ≤ 1.
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[67] S. Pawelke, Über Approximationsordnung bei Kugelfunktionen und algebraischen Poly-
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