
This is a preprint of: The Infinity Project
Journal Information: CRM Preprints,
Author(s): Sy David Friedman, Martin Koerwien, Moritz

Martin Müller.
Volume, pages: 1-734, DOI:[--]

The Infinity Project

A 2009–2011 Research Programme

Edited by

Sy-David Friedman

Martin Koerwien

Moritz Müller

Kurt Gödel Research Center for Mathematical Logic

Universität Wien

c⃝ CRM

Centre de Recerca Matemàtica
Campus de Bellaterra, Edifici C
08193 Bellaterra (Barcelona)

First edition: December 2012

ISSN: 2014-2323 (printed edition)
ISSN: 2014-2331 (electronic edition)

ISBN: 978-84-616-3307-4

Legal deposit:

Foreword

The Infinity Project was hosted at the Centre de Recerca Matemàtica (CRM) during
2009–2011 with a specific focus on interdisciplinarity within the field of mathematical
logic. Support for the project was provided by John Templeton Foundation Collab-
orative Research Project #13152, The Myriad Aspects of Infinity, and by the CRM.
At the July 2011 Infinity Conference, the project participants and other logicians sur-
veyed the achievements of the project and pointed the way toward future interdisciplinary
work. Support for the Infinity Conference was provided by the CRM, the Spanish govern-
ment (through its Ingenio Mathematica programme), the European Science Foundation
(through its Research Networking Programme New Frontiers of Infinity) and the Asso-
ciation for Symbolic Logic.

The research of the project was carried out in the form of one or two week collabora-
tions among the 21 project visitors (coming from the fields of computation theory, model
theory, proof theory, philosophy and history of set theory), the Barcelona logicians, the
two project postdocs Martin Koerwien (model theory) and Moritz Müller (computational
complexity theory), and the project leader Sy-David Friedman of the Kurt Gödel Research
Center, Vienna. In addition, 17 lectures were presented at the Infinity Project Seminar
at the time of these collaborations to elaborate on the work of the project.

Twenty years ago, the principal subfields of mathematical logic (computation theory,
model theory, proof theory and set theory) were closely related, sharing many ideas and
results. Then, due to rapid developments of these subfields, connections between them
were lost. As more recent work in mathematical logic suggested that a concerted effort
to bring interdisciplinarity back into the field could be of great value, the Infinity Project
was launched with this specific goal in mind.

The project was a big success. We organized our work around six interdisciplinary
themes:

CM Computations and Models
CP Computations and Proofs
CS Computations and Sets
MS Models and Sets
PS Proofs and Sets

HPS History and Philosophy of Set Theory

In each of these areas we found exciting new results, contained in the resulting 37
articles included in this volume, and initiated fruitful collaborations between researchers,
some of whom never worked together before. Here are some of the highlights of this work:

1. Set-Theoretic Proof Theory. We formulated proof-theoretic results concerning
provably recursive functions and formal consistency in analogy to results in set
theory. Specifically, in PS1 and CP11 we establish results about provably recur-
sive functions in arithmetic in analogy to the construction of models of set theory
using forcing, and in PS2, PS4 and CP9 we study consistency in proof theory by
means of an analogue of the set-theoretic concept of jump operator.

ii

2. Computational Complexity in Set Theory. We generalised computational com-
plexity theory from the finite to the infinite. Specifically, in CS2 we define
functions on sets which are computable in polynomial time.

3. Higher Descriptive Model Theory. We developed a generalised descriptive set
theory and related it to the model-theoretic classification of theories. Specifi-
cally, in MS3, MS5 and MS9 we study Borel reducibility for equivalence rela-
tions on the generalised Baire space and show that, for a first-order theory, the
complexity of isomorphism for its uncountable models correlates well with its
model-theoretic complexity.

4. Philosophical Implications of Absoluteness. We explored the significance of ab-
soluteness principles for the foundations of set theory from a philosophical per-
spective. Specifically, in HPS1 we argue that the Inner Model Hypothesis, a
particular absoluteness principle, undermines the claim that Gödel maximality
entails the existence of large cardinals.

5. Descriptive Set Theory and Computational Complexity. We adapted concepts
from the descriptive set theory of equivalence relations to the finite, with im-
plications for computational complexity theory. Specifically, in CS3 we develop
finitary analogues of Borel reducibility and relate them to known computational
complexity classes.

6. Descriptive Set Theory and Computable Model Theory. We developed analogues
of the descriptive set theory of equivalence relations for both countable and un-
countable computable models. Specifically, in CM2, CM3, CM4 and CS4 we
study isomorphism relations on classes of computable models defined by com-
putable infinitary sentences and show that, unlike in the set-theoretic context,
there is no nontrivial bound on their complexity.

7. The Set-Theoretical Foundation for Model Theory. We explored the effect of
different axioms of set theory on the fundamental concepts of model theory.
Specifically, in MS1, MS2, MS4, MS6, MS7 and MS8 we study the effects of
forcing axioms and the GCH on model existence and uniqueness for infinitary
model theory and the model theory of abstract elementary classes.

8. Forcing and Computational Complexity. We developed a version of forcing for
bounded arithmetic which can be used to attack questions in computational
complexity. Specifically, CS1 presents a wide spectrum of such forcing notions,
with numerous applications.

9. Computations and Proofs. We related the study of algorithms to properties of
proof systems. Specifically, CP1 studies the extraction of algorithms from proofs,
and CP4–CP8 are concerned with optimal algorithms and their relationship to
optimal proof systems.

The unusually lively Infinity Conference, which served as the culmination to the
project, was comprised of 29 widely-accessible lectures which left the participants with
an appreciation of the potential of interdisciplinary work in mathematical logic, as well
as a strong sense of enthusiasm for a continuation of the Infinity Project. Plans for such
a continuation are currently in the making.

iii

We wish to offer our deep thanks to Hyung Choi of the Templeton Foundation for his
enouragement and support, and most of all to CRM Director Joaquim Bruna together
with the CRM staff (especially Neus Portet and Consol Roca) for their gracious hospitality
and constant willingness to help with the many needs of this project.

Sy-David Friedman
Martin Koerwien

Moritz Müller
March 2012

iv

Participants

Invited Research Visitors

Tatiana Arrigoni Fondazione Bruno Kessler, Trento
John T. Baldwin University of Illinois at Chicago
Arnold Beckmann Swansea University
Samuel R. Buss University of California at San Diego
Yijia Chen Shanghai Jiao Tong University
Fred Drueck University of Illinois at Chicago
Jörg Flum Universität Freiburg
Ekaterina Fokina Kurt Gödel Research Center, Vienna
Loren Graham Harvard University
Rami Grossberg Carnegie Mellon University
Tapani Hyttinen University of Helsinki
Jean-Michel Kantor Université de Paris VII
Julia F. Knight University of Notre Dame
Lars Kristiansen University of Oslo
Vadim Kulikov University of Helsinki
Russell Miller Queens College, New York
Antonio Montalbán University of Chicago
Michael Rathjen University of Leeds
Andrés Villaveces Universidad Nacional de Colombia
Albert Visser Universiteit Utrecht
Andreas Weiermann Universiteit Gent

Infinity Project Postdocs

Martin Koerwien Centre de Recerca Matemàtica, Barcelona
Moritz Müller Centre de Recerca Matemàtica, Barcelona

Barcelona Logicians

Albert Atserias Universitat Politècnica de Catalunya
Joan Bagaria ICREA – Universitat de Barcelona
María Luisa Bonet Universitat Politècnica de Catalunya
Enrique Casanovas Universitat de Barcelona
Rafel Farré Universitat Politècnica de Catalunya
Ignasi Jané Universitat de Barcelona
Juan Carlos Martínez Universitat de Barcelona

Project Leader

Sy-David Friedman Kurt Gödel Research Center, Vienna

v

Infinity Project Seminar

Centre de Recerca Matemàtica
Room: C1/028
Campus de Bellaterra, Edifici C
08193 Bellaterra (Barcelona)

(1) September 23, 2009

Jean-Michel Kantor, Institut de Mathématiques de Jussieu, Paris

A survey of Naming in mathematics and philosophy: the case of the birth of
descriptive set theory, later developments and current perspectives

(2) September 30, 2009

Loren Graham, Harvard University

The power of names

(3) December 3, 2009

Jörg Flum, Universität Freiburg

Optimal proof systems and finite model theory

(4) December 10, 2009

Sam Buss, University of California at San Diego

Experiments with a SAT solver

(5) January 13, 2010

Michael Rathjen, University of Leeds

Relativised ordinal analysis

(6) January 20, 2010

Andreas Weiermann, Universiteit Gent

Phase transitions in proof theory

(7) June 1, 2010

Tapani Hyttinen, University of Helsinki

Borel sets on uncountable cardinals and classification theory

(8) June 9, 2010 (Double session)

John Baldwin, University of Illinois at Chicago

Exploring Cantor’s paradise: model theory and set theory

Tatiana Arrigoni, Fondazione Bruno Kessler, Trento

On the epistemological status of (infinite) sets

vi

(9) September 23, 2010

John Baldwin, University of Illinois at Chicago
Martin Koerwien, Centre de Recerca Matemàtica, Barcelona

The Infinity Project theme “Sets and Models”: a progress report

(10) February 15, 2011

Arnold Beckmann, Swansea University

Proof notations and definable search problems

(11) February 23, 2011

Sam Buss, University of California at San Diego

Time-space tradeoffs and lower bounds for satisfiability

(12) May 12, 2011

Albert Visser, Universiteit Utrecht

Consistency statements and the Wilkie hierarchy

(13) June 1, 2011

Julia Knight, University of Notre Dame

Computable structure theory in the setting of ω1

(14) June 7, 2011

Russell Miller, City University of New York

Fields and computable categoricity

(15) June 9, 2011

Antonio Montalbán, University of Chicago

A fixed point for the jump operator on structures

vii

Infinity Conference

Dates

July 18–22, 2011

Scientific Committee

John T. Baldwin University of Illinois at Chicago
María Luisa Bonet Universitat Politècnica de Catalunya
Sy-David Friedman Kurt Gödel Research Center, Vienna
Juan Carlos Martínez Universitat de Barcelona
Michael Rathjen University of Leeds

Program

CM Computations and Models
CP Computations and Proofs
CS Computations and Sets
MS Models and Sets
PS Proofs and Sets

HPS History and Philosophy of Set Theory

Monday, July 18

09:30–09:50 Sy-David Friedman Opening remarks
Universität Wien

09:50–10:40 Andreas Weiermann Degree theory for provably PS
Universiteit Gent recursive functions and

unprovability phase transitions
11:00–11:50 Andrés Villaveces Categoricity and amalgamation MS

Universidad Nacional at low cardinalities: weak
de Colombia diamonds versus forcing

12:00–12:50 Antonio Montalbán The boundary of determinacy CS
University of Chicago within second order arithmetic

15:00–15:50 Arnold Beckmann Safe recursive set functions CS
Swansea University

16:00–16:50 Colin McLarty Grothendieck’s reflection HPS
Case Western Reserve principle: number theory with
University a set that the operations of

set theory do not go beyond
17:10–18:00 Tapani Hyttinen Constructing groups and fields MS

Helsinki University from a geometry
18:10–18:40 Vadim Kulikov Borel equivalence relations

Helsinki University on 2κ, κ > ω

viii

Tuesday, July 19

09:30–10:20 Jörg Flum The myriad applications of a CS
Universität Freiburg halting problem

10:40–11:30 John Baldwin Calculating Hanf numbers MS
University of Illinois at
Chicago

11:50–12:40 Julia Knight Comparing classes of countable CM
University of Notre Dame structures

15:00–15:50 Lars Kristiansen Subrecursive degrees of honest CP
University of Oslo functions and provably

recursive functions
16:00–16:30 Alexander Gavryushkin Finite structures, Fraïssé limits, CM

Irkutsk State University Ehrenfeucht theories.
Computability aspects

16:40–17:10 Bing Kai Lin The parametrised complexity of
Shanghai Jiao Tong k-edge induced subgraphs
University

17:30–18:00 Denis Saveliev Ultrafilters without choice
Moscow State University

18:10–18:40 Gunnar Wilken Infinitary concepts and
Okinawa University Gödel’s T

Wednesday, July 20

09:30–10:20 Martin Koerwien Absoluteness considerations in Lω1ω MS
CRM

10:40–11:30 Michael Rathjen Ordinal analysis for powerset and the PS
University of Leeds existence property

11:50–12:40 Moritz Müller Partially definable forcing and bounded CS
CRM arithmetic

Guided Barcelona visit followed by conference dinner

ix

Thursday, July 21

09:30–10:20 Philip Welch Transfinite machines, analysis CS
Bristol University and determinacy

10:40–11:30 Ignasi Jané On Cantor’s account of the HPS
Universitat de Barcelona distinction between sets and

inconsistent multiplicities
11:50–12:40 Russell Miller Local computability and CM

City University of New York uncountable structures
15:00–15:50 Sam Buss Towards NP-P via proof CP

University of California complexity and search
at San Diego

16:00–16:30 Jesse Johnson Computable categoricity for
University of Notre Dame uncountable structures

16:40–17:10 Michael Lieberman Category-theoretic foundations
University of Pennsylvania of abstract model theory

17:30–18:00 Robert Lubarsky Weak weak Koenig’s lemma
Florida Atlantic University does not imply decidable fan

18:10–18:40 Stefan Vatev Conservative extensions of
Sofia University abstract structures

Friday, July 22

09:30–10:20 Joan Bagaria Structural complexity, reflection, HPS
ICREA – Universitat and topologies on ordinals
de Barcelona

10:40–11:30 Tatiana Arrigoni Sy Friedman’s inner model HPS
Fondazione Bruno Kessler hypothesis. Philosophical and

foundational reflections
11:50–12:40 Yijia Chen Consistency, incompleteness, CP

Shanghai Jiao Tong and optimality
University

x

Conference Participants

Adler, Hans Kurt Gödel Research Center, Vienna
Arrigoni, Tatiana Fondazione Bruno Kessler, Trento
Bagaria, Joan ICREA – Universitat de Barcelona
Baldwin, John T. University of Illinois at Chicago
Beckmann, Arnold Swansea University
Blasco, José María Universitat de Barcelona
Bonet, María Luisa Universitat Politècnica de Catalunya
Boney, Will Carnegie Mellon University
Buss, Samuel R. University of California at San Diego
Castells, Neus Universitat de Barcelona
Chen, Yijia Shanghai Jiao Tong University
Flum, Jörg Universität Freiburg
Friedman, Sy-David Kurt Gödel Research Center, Vienna
García Avila, Luz María Universitat de Barcelona
Gavryushkin, Alexander Irkutsk State University
Gavryushkina, Alexandra Irkutsk State University
Harizanov, Valentina George Washington University
Hyttinen, Tapani University of Helsinki
Jané, Ignasi Universitat de Barcelona
Johnson, Jesse University of Notre Dame
Knight, Julia F. University of Notre Dame
Koerwien, Martin CRM, Barcelona
Kristiansen, Lars University of Oslo
Kulikov, Vadim University of Helsinki
Lieberman, Michael University of Pennsylvania
Lin, Bing Kai Shanghai Jiao Tong University
Lubarsky, Robert Florida Atlantic University
Martínez, Juan Carlos Universitat de Barcelona
McLarty, Colin S. Case Western Reserve University
Miller, Russell Geddes City University of New York
Montalbán, Antonio University of Chicago
Mota, Miguel Ángel Kurt Gödel Research Center, Vienna
Müller, Moritz CRM, Barcelona
Müller, Sebastian Charles University, Prague
Nabutovsky, Alexander University of Toronto
Nemoto, Takako Universität Bern
Phillips, Youyu Keystone College
Rathjen, Michael University of Leeds
Rittberg, Colin Jakob Università degli studi di Palermo
Rivello, Edoardo Università degli studi di Torino
Sato, Kentaro Universität Bern
Saveliev, Denis Moscow State University
Schupp, Paul University of Illinois at Urbana
Tonti, Fabio Universität Wien

xi

Vatev, Stefan Sofia University
Villaveces, Andrés Universidad Nacional de Colombia
Weiermann, Andreas Universiteit Gent
Welch, Philip D. Bristol University
Wilken, Gunnar Okinawa Institute of Science and Technology

Table of Contents

Preface

Foreword . i
Participants . iv
Infinity Project Seminar . v
Infinity Conference . vii
Table of Contents . xiii

Computations and Models

CM1. Hubie Chen and Moritz Müller . 3
An algebraic preservation theorem for ℵ0-categorical quantified constraint
satisfaction

CM2. Ekaterina Fokina, Sy-David Friedman, Valentina Harizanov,
Julia F. Knight, Charles McCoy and Antonio Montalbán 27
Isomorphism relations on computable structures

CM3. Ekaterina Fokina, Sy-David Friedman, Julia F. Knight, Russell Miller and
Antonio Montalbán . 39
Classes of structures with universe a subset of ω1

CM4. Sy-David Friedman . 51
Equivalence relations in set theory, computation theory, model theory and
complexity theory

CM5. Alexander Gavryushkin . 67
Computable models of Ehrenfeucht theories

Computations and Proofs

CP1. Arnold Beckman and Samuel R. Buss . 81
Improved witnessing and local improvement principles for second-order
bounded arithmetic

CP2. María Luisa Bonet and Samuel R. Buss . 115
An improved separation of regular resolution from pool resolution and
clause learning

CP3. Samuel R. Buss . 133
Sharpened lower bounds for cut elimination

CP4. Yijia Chen and Jörg Flum . 145
From almost optimal algorithms to logics for complexity classes via
listings and a halting problem

CP5. Yijia Chen and Jörg Flum . 179
On p-optimal proof systems and logics for PTIME

xiv

CP6. Yijia Chen and Jörg Flum . 191
On slicewise monotone parametrized problems and optimal proof
systems for Taut

CP7. Yijia Chen, Jörg Flum and Moritz Müller . 205
Hard instances of algorithms and proof systems

CP8. Yijia Chen, Jörg Flum and Moritz Müller . 225
On optimal probabilistic algorithms for Sat

CP9. Yijia Chen, Jörg Flum and Moritz Müller . 231
Consistency, optimality, and incompleteness

CP10. Jörg Flum and Moritz Müller . 243
Some definitorial suggestions for parameterized proof complexity

CP11. Lars Kristiansen, Robert S. Lubarsky, Jan-Christoph Schlage-Puchta and
Andreas Weiermann . 255
On the structure of honest elementary degrees

Computations and Sets

CS1. Albert Atserias and Moritz Müller . 283
Partially definable forcing and bounded arithmetic

CS2. Arnold Beckmann, Samuel R. Buss and Sy-David Friedman 313
Safe recursive set functions

CS3. Samuel R. Buss, Yijia Chen, Jörg Flum, Sy-David Friedman and
Moritz Müller . 337
Strong isomorphism reductions in complexity theory

CS4. Ekaterina Fokina and Sy-David Friedman . 359
On Σ1

1 equivalence relations over the natural numbers

CS5. Philip D. Welch . 375
Transfinite machines, analysis and determinacy

History and Philosophy of Set Theory

HPS1. Tatiana Arrigoni and Sy-David Friedman . 383
Foundational implications of the inner model hypothesis

Models and Sets

MS1. John T. Baldwin . 395
Amalgamation, absoluteness and categoricity

MS2. John T. Baldwin, Tapani Hyttinen and Meeri Kesälä . 417
Beyond first order logic: from number of structures to structure of
numbers, parts I and II

MS3. Sy-David Friedman and Tapani Hyttinen . 451
On Borel equivalence relations in generalized Baire space

xv

MS4. Sy-David Friedman, Tapani Hyttinen and Martin Koerwien 457
Non-absoluteness of model existence in uncountable cardinals
for Lω1, ω

MS5. Sy-David Friedman, Tapani Hyttinen and Vadim Kulikov 471
Generalized descriptive set theory and classification theory

MS6. Sy-David Friedman, Tapani Hyttinen and Agatha C. Walczak-Typke 547
Potential isomorphism of elementary substructures of a strictly stable
homogeneous model

MS7. Sy-David Friedman and Martin Koerwien . 565
On absoluteness of categoricity in AEC’s

MS8. Martin Koerwien and Stevo Todorcevic . 573
Two examples concerning ℵ1-categoricity in abstract elementary classes

MS9. Vadim Kulikov . 579
Borel reductions on the generalized Cantor space

MS10. Denis Saveliev . 599
On ultrafilter extensions of models

Proofs and Sets

PS1. Sy-David Friedman, Michael Rathjen and Andreas Weiermann 619
Some results on PA-provably recursive functions

PS2. Sy-David Friedman, Michael Rathjen and Andreas Weiermann 623
Slow consistency

PS3. Michael Rathjen . 637
Relativized ordinal analysis: The case of Power Kripke–Platek set theory

PS4. Vladimir Yu. Shavrukov and Albert Visser . 659
Uniform density in Lindenbaum algebras

PS5. Gunnar Wilken and Andreas Weiermann . 671
Derivation lengths classification of Gödel’s T extending Howard’s
assignment

Part I

Computations and Models

The Infinity Project

An algebraic preservation theorem for
ℵ0-categorical quantified constraint satisfaction
Hubie Chen∗, Moritz Müller†

∗ Universitat Pompeu Fabra, Barcelona, Spain
hubie.chen@upf.edu

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
moritz.mueller@univie.ac.at

Abstract. We prove a preservation theorem for positive Horn definability in ℵ0-categorical structures.
In particular, we define and study a construction which we call the periodic power of a structure, and
define a periomorphism of a structure to be a homomorphism from the periodic power of the structure
to the structure itself. Our preservation theorem states that, over an ℵ0-categorical structure, a relation
is positive Horn definable if and only if it is preserved by all periomorphisms of the structure. We give
applications of this theorem, including a new proof of the known complexity classification of quantified
constraint satisfaction on equality templates.

Introduction

Model checking —deciding if a logical sentence holds on a structure— is a basic computa-
tional problem which is in general intractable; for example, model checking first-order sen-
tences on finite structures is well-known to be PSPACE-complete. In the context of model
checking, fragments of first-order logic based on restricting the connectives {∧,∨,¬} and
quantifiers {∃, ∀} have been considered in a variety of settings. For instance, the prob-
lem of model checking primitive positive sentences, sentences formed using {∧, ∃}, is an
NP-complete problem that is a formulation of the constraint satisfaction problem (CSP),
and admits a number of other natural characterizations, as shown in the classical work of
Chandra and Merlin [18]. The problem of model checking positive Horn sentences, sen-
tences formed using {∧, ∃,∀}, is known as the quantified constraint satisfaction problem
(QCSP), and is PSPACE-complete; indeed, certain cases of this problem are canonical
complete problems for PSPACE [42, Chapter 19]. Another natural fragment consists of
the existential positive sentences, which are formed from {∧,∨, ∃}.

Such syntactically restricted fragments of first-order logic can be naturally parameter-
ized by the structure [41]. As examples, consider the following problems for a structure A:

• CSP(A): decide the primitive positive theory of A.
• QCSP(A): decide the positive Horn theory of A.
• EXPOS(A): decide the existential positive theory of A.
• EFPOS(A): decide the equality-free positive theory of A.

Via this parameterization, one obtains four families of problems, and is prompted with
classification programs: for each of the families, classify the problems therein according
to their computational complexity. On finite structures, comprehensive classifications
are known for the families EXPOS(A) and EFPOS(A). Each problem EXPOS(A) is ei-
ther in L or NP-complete [9], and each problem EFPOS(A) is either in L, NP-complete,
coNP-complete, or PSPACE-complete [40]. Moreover, each of these two classifications

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

3

4 An algebraic preservation theorem

is effective in that for each there exists an algorithm that, given a finite structure,
tells what the complexity of the corresponding problem is. For the family of problems
CSP(A), Feder and Vardi [26] famously conjectured that there is a dichotomy in the fi-
nite: for each finite structure A, the problem CSP(A) is either polynomial-time tractable
or NP-complete. Investigation of the complexity-theoretic properties of the problem
families CSP(A) and QCSP(A) on finite structures is a research theme of active inter-
est [1, 2, 15, 20, 22, 31, 36].

At the heart of the work on these classification programs are algebraic preserva-
tion theorems which state that, relative to a finite structure, the relations definable in
a given fragment are precisely those preserved by a suitable set of operations. As an
example, one such theorem states that a relation is primitive positive definable on a
finite structure A if and only if all polymorphisms of A are polymorphisms of the rela-
tion [14, 29]. (A polymorphism of a structure A is a homomorphism from a finite power
Ak to A itself.) On finite structures there are analogous preservation theorems connecting
positive Horn definability to surjective polymorphisms [15], existential positive definabil-
ity to endomorphisms [35], and equality-free positive definability to so-called surjective
hyper-endomorphisms [39]. For the purposes of complexity classification, these preser-
vation theorems are relevant in that they allow one to pass from the study of structures
to the study of algebraic objects. For instance, it follows from the preservation theorem
for primitive positive definability that two finite structures A,B having the same poly-
morphisms are primitive positively interdefinable, from which it readily follows that the
problems CSP(A) and CSP(B) are interreducible and share the same complexity (under
many-one logspace reduction); thus, insofar as one is interested in CSP complexity, one
can focus on investigating the polymorphisms of structures.

Given the import and reach of these algebraic preservation theorems for finite struc-
tures, a natural consideration is to generalize them to infinite structures. Although it is
known that these preservation theorems do not hold on all infinite structures (see the
discussion in [10] as well as [4, Theorem 4.7]), Bodirsky and Nešetřil [13, Theorem 5.1]
established that the preservation theorem characterizing primitive positive definability
via polymorphisms does hold on ℵ0-categorical structures, which have countably infinite
universes. An ℵ0-categorical structure is “finite-like”, in that, for each fixed arity, there
are a finite number of first-order definable relations; indeed, this is one of the character-
izations of ℵ0-categoricity given by the classical theorem of Ryll-Nardzewski. The class
of ℵ0-categorical structures includes many structures of computational interest, includ-
ing those whose relations are first-order definable over one of the following structures:
equality on a countable universe, the ordered rationals (Q;<), and the countable random
graph; see [5] for a survey.

In this paper, we present an algebraic preservation theorem for positive Horn defin-
ability on ℵ0-categorical structures. This theorem characterizes positive Horn definability
by making use of a construction which we call the periodic power. In particular, we define
a periomorphism of a structure A as a homomorphism from the periodic power of A to A
itself, and show that a relation is positive Horn definable over an ℵ0-categorical structure
A if and only if all surjective periomorphisms of A are periomorphisms of the relation.

The periodic power of a structure A is the substructure of AN whose universe is the set
of all periodic tuples in AN. A tuple (a0, a1, . . .) is periodic if there exists an integer k ≥ 1
such that the tuple repeats mod k, by which is meant an = an mod k for all n ∈ N. As
we discuss in the paper, the periodic power arises as the direct limit of an appropriately

The Infinity Project 5

defined system of embeddings. Despite the extremely natural character of the periodic
power, we are not aware of previous work where this construction has been explicitly
considered. We believe it possible that the periodic power may find applications in other
areas of mathematics. Indeed, one basic fact that we demonstrate is that the positive
Horn theory of a structure holds in the structure’s periodic power; this readily implies
that the class of groups is closed under the taking of periodic powers, and likewise one
has closure under periodic powers for other classes of classical algebraic structures such as
rings, lattices, and Boolean algebras. Our introduction and study of the periodic power
also forms a contribution of this paper.

A direct corollary of our preservation theorem is that for two ℵ0-categorical structures
A,B with the same universe A = B, if A and B have the same surjective periomorphisms,
then the structures A and B are positive Horn interdefinable, and the computational
problems QCSP(A) and QCSP(B) are interreducible (under many-one logspace reduc-
tion). This permits the use of surjective periomorphisms in the study of the complexity
of the QCSP on ℵ0-categorical structures. As an application of our preservation theorem
and the associated theory that we develop, we give a new proof of the known complexity
classification of equality templates, which are structures whose relations are first-order
definable over the equality relation on a countable set.

Related work

An algebraic preservation theorem for positive Horn definability via surjective polymor-
phisms was shown for the special case of equality templates [6]. The presented proof
crucially depends on results on the clones of equality templates given there and in [8].

In model theory, there are classical preservation theorems that show that a sentence is
equivalent to one in a given fragment if and only if its model class satisfies some suitable
closure properties. Such theorems have been shown for positive Horn logic. A well-known
instance is Birkhoff’s HSP theorem characterizing universally quantified equations. And
in 1955, Bing [3] showed that a positive sentence is preserved by direct products if and only
if it is equivalent to a positive Horn sentence. Later, assuming the continuum hypothesis
(CH), Keisler1 proved that a sentence is equivalent to a positive Horn sentence if and only
if it is preserved (in the parlance of [28, 45]) by the following binary relation: relate A to
B when B is a homomorphic image of AN [33, Corollary 3.8] (see also [19, Section 6.2]).
Absoluteness considerations can be used to eliminate the assumption of CH when one has
ZFC provability of the stated closure property. More recently, Madelaine and Martin [38,
Theorem 1] showed, without relying on CH, that Keisler’s result holds when one considers
preservation under the relation defined as above, but where B is required to be finite.

In some cases, an algebraic preservation theorem can be derived from a correspond-
ing classical preservation theorem. Such a derivation has been given for Bodirsky and
Nešetřil’s theorem in [5], and Bodirsky and Junker [11] derived algebraic preservation
theorems for existential positive definability and positive definability in ℵ0-categorical
structures from well-known classical preservation theorems of Lyndon. Roughly speak-
ing, these methods need the preservation relation to be PC∆ (cf. [28]) and thus cannot
be applied to Keisler’s classical preservation theorem mentioned above. To the best of
our knowledge, prior to this work no algebraic preservation theorem for positive Horn for-
mulas on ℵ0-categorical structures has been known (neither in the presence nor absence
of CH).

1 In fact, Keisler could do assuming only the existence of some cardinal κ ≥ ℵ0 such that 2κ = κ+.

6 An algebraic preservation theorem

1 Basics from model theory

1.1 First-order logic

Throughout the paper, L will denote a countable first-order language. If not explicitly
stated otherwise, by a structure (formula) we always mean an L-structure (first-order
L-formula). Throughout, we use the letters A, B, etc. to denote structures and φ,ψ, χ,
etc. to denote formulas. For a structure A and a (finite) tuple a from A, by (A, a)
we denote, as usual, the expansion of A interpreting new constants by the components
of a. We do not distinguish between constants outside L and variables. For a formula
φ = φ(x) and a structure A, writing (A, a) |= φ(x) or A |= φ(a) (with x clear from
context) means that A satisfies φ(x) under the assignment a to x. By φ(A) we denote
the relation {a | A |= φ(a)} on A; this relation is said to be defined by φ in A. A relation
is first-order (positive Horn, primitive positively) definable in A if it is defined by some
first-order (positive Horn, primitive positive) formula φ in A (see Section 2 for definitions
of positive Horn and primitive positive).

Let L′ be another first-order language, B an L′-structure and A an L-structure such
that A = B. Then B is first-order (positive Horn, primitive positively) definable in A
if for every atomic L′-formula the relation φ(B) is (positive Horn, primitive positively)
definable in A.

1.2 Direct products

For a family of (L-)structures (Ai)i∈I , we denote its direct product by
∏
i∈I Ai. Recall

that this structure

– has universe
∏
i∈I Ai, which is the set of functions mapping each i ∈ I into the

universe Ai of Ai;

– interprets a k-ary relation symbol R ∈ L by those k-tuples (⃗a0, . . . , a⃗k−1) from∏
i∈I Ai such that Ai |= Ra⃗0(i) · · · a⃗k−1(i) for all i ∈ I; and

– interprets a k-ary function symbol f ∈ L by the function mapping a k-tuple
(⃗a0, . . . , a⃗k−1) from

∏
i∈I Ai to the element a⃗ ∈

∏
i∈I Ai such that, for all i ∈ I,

Ai |= f (⃗a0(i), . . . , a⃗k−1(i)) = a⃗(i).

We write AI for
∏
i∈I Ai with Ai = A for all i, and we write Ak to denote AI when

I = {0, . . . , k − 1} for k ∈ N, k > 0. We consider Ak to have universe Ak, the set of
k-tuples over A. We do not distinguish between 1-tuples and elements, so A1 = A. The
direct product of two structures A and B is denoted by A ×B and considered to have
universe A×B.

1.3 Direct limits

We recall the definitions associated with direct limits. Let (I,≺) be a directed strict
partial order (i.e., every two elements in I have a common upper bound). An (I,≺)-sys-
tem of embeddings is a family of embeddings e(i,j) : Ai → Aj for i ≺ j such that

e(i,k) = e(j,k) ◦ e(i,j)
for all i ≺ j ≺ k. A cone of the system is a family of limit embeddings e∗i : Ai → A∗

such that e∗j ◦ e(i,j) = e∗i . It is known that, for a system, there exists a cone satisfying
the following universal property: for every other cone, say given by Ã and (ẽi)i∈I , there

The Infinity Project 7

exists a unique embedding e : A∗ → Ã such that e ◦ e∗i = ẽi. A structure A∗ with these
properties is unique up to isomorphism and called the direct limit of the system; if (I,≺)
and the e(i,j)s are clear from context, it is denoted limiAi.

1.4 ℵ0-categoricity

A structure A is ℵ0-categorical if it is countable and every countable structure B that
satisfies the same first-order sentences as A is isomorphic to A. We assume basic famil-
iarity with ℵ0-categoricity as covered by any standard course in model theory (e.g. [19]).
Here, we briefly recall some facts that we are going to use.

The Ryll-Nardzewski theorem states that a countable structure A is ℵ0-categorical
if and only if for every k ∈ N there are at most finitely many k-ary relations that are
first-order definable in A. It is straightforward to verify that this implies that for an
ℵ0-categorical structure A, when a is an arbitrary finite-length tuple from A, the structure
(A, a) is also ℵ0-categorical. Further, it implies that for an ℵ0-categorical structure A,
the structure Ak is ℵ0-categorical for any k ∈ N; in fact, every structure that is first-order
interpretable in an ℵ0-categorical structure is also ℵ0-categorical.

Another easy consequence of this theorem is that ℵ0-categorical structures are
ℵ0-saturated, by which is meant that for every finite tuple a from A and every set of
formulas Φ = Φ(x) in the language of (A, a) (that is, having constants for a) one has:
if Φ(x) is finitely satisfiable in (A, a), then it is satisfiable in in (A, a). Here, a set of
formulas Φ = Φ(x) with one free variable x is satisfiable in A if there is a ∈ A such that
(A, a) |= Φ(x) (that is, a satisfies every φ(x) ∈ Φ(x) in A); Φ is finitely satisfiable in A if
every finite subset of Φ is satisfiable in A.

Finally, we mention the fact that for an ℵ0-categorical structure A, a relation over
A is first-order definable if and only if it is preserved by all automorphisms of A (see
Section 2.3 for the definition of preservation).

2 Basics from constraint complexity

2.1 Positive Horn formulas

As noted in the introduction, a positive Horn formula is a first-order formula built from
atoms, conjunction, and the two quantifiers. Existential such formulas are primitive
positive. For simplicity, we assume that first-order logic contains a propositional constant
⊥ for falsehood; formally, ⊥ is a 0-ary relation symbol always interpreted by ∅. Note
that ⊥ is a positive atomic sentence. If any positive Horn sentence true in A is also true
in B, we write A ⇛pH B.

A formula φ(x) is preserved by direct products if it holds in (A, a)× (B, b) whenever it
holds in both (A, a) and (B, b). Positive Horn formulas are preserved by direct products;
in fact, the following is straightforward to verify.

Lemma 2.1 Let (Ai)i∈I be a family of structures. A positive Horn sentence holds in∏
i∈I Ai if and only if it holds in every Ai, i ∈ I.

2.2 Quantified constraints

The quantified constraint satisfaction problem (QCSP) on a structure A, denoted by
QCSP(A), is the problem of deciding the positive Horn theory of A. The following propo-
sition relates positive Horn definability to the complexity of the QCSP.

8 An algebraic preservation theorem

Proposition 2.2 Let A be an L-structure and B be an L0-structure for some finite first-
order language L0. If B is positive Horn definable in A, then the problem QCSP(B)
many-one logspace reduces to QCSP(A).

Proof. For every function symbol f ∈ L0, each constant c ∈ L0 and each relation symbol
R ∈ L0, choose some fixed positive Horn L-formulas ψf (x, y), ψc(x), ψR(x) that respec-
tively define, in A, the relations given by the formulas f(x) = y, x = c, Rx interpreted
over B. Let φ be an instance of QCSP(B), that is, a positive Horn sentence in the lan-
guage L0. In a first step, compute in logspace an equivalent sentence φ∗ in which every
atomic subformula contains at most one symbol from L0, that is, has the form x = y,
f(x) = y, x = c or Rx. This can be done by successively replacing atomic subformulas
of φ; for example, replacing Rxcf(f(x)) by

∃y0y1y2(Rxy0y2 ∧ y0 = c ∧ f(y1) = y2 ∧ f(x) = y1).

In a second step, replace in φ∗ every atomic subformula that mentions s ∈ L0 by the
formula ψs (with the right choice of variables). This can also be done in logspace: note
that we may hardwire the finite list of the formulas ψs in the code of the algorithm.
Finally, recall that the composition of two logspace algorithms can be implemented in
logspace. 2

Remark 2.3 In the literature, the CSP and QCSP are typically defined in relational
first-order logic. We take a more general stance and allow the language to contain func-
tion symbols if not explicitly stated otherwise. In particular, our preservation theorem
(Theorem 5.1) holds true in the presence of function symbols.

2.3 Preservation

Let A be a structure, I a nonempty set and h a partial function from AI to A. Then h
is said to preserve an r-ary relation R ⊆ Ar if it is a partial homomorphism from (A,R)I

to (A,R). This means the following: whenever a⃗0, . . . , a⃗r−1 are in the domain of h and
(⃗a0(i), . . . , a⃗r−1(i)) ∈ R for all i ∈ I, then (h(⃗a0), . . . , h(⃗ar−1)) ∈ R. Further, we say that
h preserves a formula φ if it preserves the relation φ(A). If h is defined on all of AI (and
I is finite), it is called a (finitary) operation on A.

2.4 Clones and polymorphisms

A clone on A is a set of finitary operations on A that is closed under composition and
contains all projections. A set F of operations on A interpolates an operation g on A if
for all finite sets B ⊆ A there exists an operation f ∈ F such that f ↾ B = g ↾ B. A set
of operations is locally closed if it contains every operation that it interpolates.

A polymorphism of A is a homomorphism from Ak to A for some k ∈ N, k > 0;
k is the arity of the polymorphism. Equivalently, a polymorphism of A is a finitary
operation on A that preserves each A-relation, A-constant, and graph of an A-function;
or, a polymorphism of A is a finitary operation on A that preserves all atomic formulas.
It is straightforward to verify that the set of polymorphisms of A forms a locally closed
clone on A.

The Infinity Project 9

An operation h : Ak → A is a polymorphism of a relation R ⊆ Aℓ if h is a polymor-
phism of the structure (A,R). In a picture, this means the following. If every column
of

a00 a01 · · · a0k−1
a10 a11 · · · a1k−1

...
...

. . .
...

aℓ−1
0 aℓ−1

1 · · · aℓ−1
k−1

is a tuple contained in R, then so is the ℓ-tuple obtained by applying h to each row.
We have the following polymorphism-based characterization of primitive positive de-

finability.

Theorem 2.4 ([13]) Let A be ℵ0-categorical. A relation R over A is primitive positively
definable in A if and only if it is preserved by all polymorphisms of A.

3 Periodic powers

In this section, we present the notion of periodic power of a structure, and identify some
basic properties thereof. We also discuss how the periodic power arises as the direct limit
of a system of embeddings. Throughout this section, we use A,B to denote structures.

Definition 3.1 A function a⃗ : N → A is periodic if there exists k ∈ N, k > 0 such that
for all i ∈ N, it holds that a⃗(i) = a⃗(i mod k); in this case the function a⃗ is said to be
k-periodic, and we write ⟨⃗a(0) · · · a⃗(k − 1)⟩ to denote a⃗. The set of periodic functions
Aper carries a substructure in AN: the set Aper is closed under all AN-interpretations of
function symbols. We define the periodic power of A, denoted Aper, to be the substructure
of AN induced on Aper.

Lemma 3.2 Assume that φ(x) is a positive Horn formula. Then (Aper, a⃗) |= φ(x) if and
only if (A, a⃗(i)) |= φ(x) for all i ∈ N.

Here, a⃗(i) denotes the tuple obtained by evaluating the functions in a⃗ at i; more
precisely, if a⃗ = a⃗0 · · · a⃗ℓ−1 and i ∈ N, then a⃗(i) = a⃗0(i) · · · a⃗ℓ−1(i) ∈ Aℓ.
Proof of Lemma 3.2. Call a formula φ good if it satisfies the claimed equivalence. Clearly,
conjunctions of atoms are good. Assume φ(x, y) is good. It is easy to see that also
∀yφ(x, y) is good. We show that ∃yφ(x, y) is good, via the following equivalences:

(Aper, a⃗) |= ∃yφ(x, y)

⇐⇒ ∃⃗b ∈ Aper : (Aper, a⃗, b⃗) |= φ(x, y)

⇐⇒ ∃⃗b ∈ Aper ∀i ∈ N : (A, a⃗(i), b⃗(i)) |= φ(x, y)(3.1)

⇐⇒ ∀i ∈ N ∃b ∈ A : (A, a⃗(i), b) |= φ(x, y)(3.2)

⇐⇒ ∀i ∈ N : (A, a⃗(i)) |= ∃yφ(x, y).
The second equivalence follows from φ(x, y) being good. The rest being trivial,

we show that (3.2) implies (3.1). By (3.2) there is a function b⃗ : N → A such that
(A, a⃗(i), b⃗(i)) |= φ(x, y) for all i ∈ N. For any component a⃗ of a⃗ choose na⃗ ∈ N such that
a⃗ is na⃗-periodic. Let n ∈ N be a common multiple of the na⃗s. Then any component of a⃗
is n-periodic and, in particular,

a⃗(i) = a⃗(i modn)

10 An algebraic preservation theorem

for all i ∈ N. Define b⃗∗ : N→ A by

b⃗∗(i) := b⃗(i modn).

Then b⃗∗ ∈ Aper and (A, a⃗(i), b⃗∗(i)) |= φ(x, y) for all i ∈ N; this is (3.1). 2

Consider the following embeddings:
• The function e1 : A→ Aper defined by e1(a) := ⟨a⟩, that is, the function mapping

each a ∈ A to the constant sequence (a)i∈N, is a canonical embedding of A
into Aper.
• More generally, for each k ∈ N, the function ek : A

k → Aper defined by
ek((a0, . . . , ak−1)) := ⟨a0 · · · ak−1⟩ is a canonical embedding from Ak into Aper.

In the following proposition we identify a ∈ A with e1(a) ∈ Aper for notational simplicity.
We use A ≼pH B to indicate that A ⊆ B (i.e., A is a substructure of B) and that for
every positive Horn formula φ(x) and all tuples a from A, it holds that

(A, a) |= φ(x)⇐⇒ (B, a) |= φ(x).

Lemmas 2.1 and 3.2 imply:

Proposition 3.3 A ≼pH Aper ≼pH AN.

The next two propositions explain how the periodic power relates to finite powers.

Proposition 3.4 Let k ∈ N, k > 0. Then Aper ∼= (Ak)per via an isomorphism that maps
⟨a0 · · · ak−1⟩ to ⟨(a0, . . . , ak−1)⟩ for all a0, . . . , ak−1 ∈ A.

To make clear the notation used in the statement of this proposition, let us look at an
example: the notation ⟨ab⟩ denotes the 2-periodic sequence ababab · · · ∈ Aper, whereas the
notation ⟨(a, b)⟩ denotes the constant, 1-periodic sequence (a, b) (a, b) (a, b) · · · ∈ (A2)per.

Proof of Proposition 3.4. Choose for any a⃗ ∈ Aper some na⃗ ∈ N such that a⃗ is na⃗-periodic.
Define the map f : Aper → (Ak)per to map a⃗ ∈ Aper to

i 7→ (⃗a(ik), . . . , a⃗((i+ 1)k − 1)).

The map f is clearly injective. For j < k, let πkj denote the projection of k-tuples to their
(j + 1)th component. An element b⃗ ∈ (Ak)per has

i 7→ πki mod k (⃗b(⌊i/k⌋))

as preimage under f , so f is surjective. It is straightforward to verify that f is an
isomorphism. 2

Proposition 3.5 Let k ∈ N, k > 1. Then Aper ∼= (Aper)k.

The proof relies on the following observation.

Lemma 3.6 Aper ×Bper ∼= (A×B)per.

Proof. Map a pair of functions (⃗a, b⃗) ∈ Aper ×Bper to ((⃗a(i), b⃗(i)))i∈N; note this function
is nm-periodic whenever a⃗ and b⃗ are n- and m-periodic respectively. The map is clearly
injective. It is surjective as ((ai, bi))i∈N ∈ (A × B)per has preimage ((ai)i∈N, (bi)i∈N) ∈

The Infinity Project 11

Aper × Bper. To see that it is an isomorphism, let α be an atom. For simplicity assume
α = α(x, y), and let (⃗a, b⃗), (⃗a′, b⃗′) ∈ Aper ×Bper. Then

(Aper ×Bper, (⃗a, b⃗), (⃗a′, b⃗′)) |= α(x, y)

⇐⇒ (Aper, a⃗, a⃗′) |= α(x, y) and (Bper, b⃗, b⃗′) |= α(x, y)

⇐⇒ ∀i ∈ N : (A, a⃗(i), a⃗′(i)) |= α(x, y) and (B, b⃗(i), b⃗′(i)) |= α(x, y)

⇐⇒ ∀i ∈ N : (A×B, (⃗a(i), b⃗(i)), (⃗a′(i), b⃗′(i))) |= α(x, y)

⇐⇒ ((A×B)per, (⃗a(i), b⃗(i))i∈N, ((⃗a
′(i), b⃗′(i)))i∈N) |= α(x, y),

where the first and third equivalences hold by definition of direct products, and the second
and fourth equivalences hold by Lemma 3.2. 2

Proof of Proposition 3.5. By induction on k: we have the isomorphisms

(Aper)k+1 = (Aper)k × Aper ∼= Aper × Aper ∼= (A2)per ∼= Aper

by induction, the previous lemma and Proposition 3.4. 2

Observe that for n,m > 0 there is a natural embedding e(n,m) : A
n → Am whenever

n < m and n divides m, namely the embedding that maps the n-tuple a ∈ An to the
m-tuple

e(n,m)(a) = aa · · · a︸ ︷︷ ︸
m/n times

∈ Am.

Clearly, these embeddings are compatible in the sense that e(ℓ,m)◦e(n,ℓ) = e(n,m) whenever
n < ℓ < m, n divides ℓ and ℓ divides m. In other words, the e(n,m)s determine an
(I,≺)-system of embeddings where I = N>0 and An := An and ≺ denotes divisibility.

Proposition 3.7 Aper ∼= limnA
n.

Proof. Let (e∗n)n>0 denote the limit homomorphisms into the direct limit limnA
n of the

directed system of embeddings given by the e(n,m)s (for n < m and n divides m). Observe
that the embeddings en from An into Aper satisify the requirement for limit embeddings,
so the ens are also a cone of the directed system. By the universal property of limnA

n

there is an embedding e : limnA
n → Aper such that e ◦ e∗n = en for all n > 0. But

every element of Aper is in the image of some en, so e has to be surjective and thus is an
isomorphism. 2

Remark 3.8 If J ⊆ I is dense in (I,≺) (i.e., every i ∈ I has an upper bound in J),
then the direct limit of an I-system of embeddings is isomorphic to the direct limit of the
subsystem restricted to J . For every k > 0 the set of multiples of k is dense in N>0 with
respect to divisibility. Thus

Aper ∼= lim
n

An ∼= lim
ℓ

Aℓ·k ∼= lim
ℓ
(Ak)ℓ ∼= (Ak)per.

Here, the third occurrence of lim is to be understood with respect to the embeddings
imported from the system of the Aℓ·ks via the natural isomorphisms Aℓ·k ∼= (Ak)ℓ.

Propositions 3.3 and 3.7 imply:

Corollary 3.9 Every positive Horn sentence true in A and every ∀∃-sentence true in all
finite powers of A, is true in Aper.

Recall that a ∀∃-sentence is a sentence of the form ∀x∃y ψ with ψ quantifier free.

12 An algebraic preservation theorem

4 Periomorphisms

In this section, we introduce and study the notion of periomorphism. Throughout this
section, let A be a structure.

Definition 4.1 A periomorphism of A is a homomorphism from Aper to A.

In other words, a periomorphism of A is a partial function from AN to A with domain
Aper that preserves all atomic formulas. The following lemma follows straightforwardly
from the definitions.

Lemma 4.2 A periomorphism h of A preserves a relation R ⊆ Aℓ if and only if for any
choice of finitely many tuples a0 = (a00, . . . , a

ℓ−1
0), . . . , ak−1 = (a0k−1, . . . , a

ℓ−1
k−1) from R,

we have (
h(⟨a00a01 · · · a0k−1⟩), . . . , h(⟨aℓ−1

0 aℓ−1
1 · · · aℓ−1

k−1⟩)
)
∈ R.

Proof. The forward direction is trivial. Conversely, assume the right hand side of the
claimed equivalence and let a⃗0, . . . , a⃗ℓ−1 ∈ Aper be such that (⃗a0(i), . . . a⃗ℓ−1(i)) ∈ R for
all i ∈ N. We claim h(⃗a0) · · ·h(⃗aℓ−1) ∈ R. Choose a sufficiently large k ∈ N such that all
a⃗j are k-periodic, that is, a⃗j = ⟨⃗aj(0) · · · a⃗j(k−1)⟩ for all j < ℓ. Applying the assumption
yields the claim. 2

To see the lemma’s statement with a picture, let h be a periomorphism of A, and
consider the following:

⟨a00 a01 · · · a0k−1⟩
⟨a10 a11 · · · a1k−1⟩

...
...

. . .
...

⟨aℓ−1
0 aℓ−1

1 · · · aℓ−1
k−1⟩.

The right hand side of the lemma states that if the column ℓ-tuples ai = (a0i , . . . , a
ℓ−1
i)

are contained in R for all i < k, then so is the ℓ-tuple b obtained by applying h to each
row.

For later use we introduce the following mode of speech.

Definition 4.3 In the situation above, if h is a surjective periomorphism of the structure
under study, then we call b a surjective periomorphic image of the tuples ai, i < k.

Proposition 4.4 With respect to a structure A, every positive Horn formula is preserved
by all surjective periomorphisms of A.

Proof. Let φ(x) be a positive Horn formula and h be a surjective periomorphism of A.
For notational simplicity assume x = xx′ and let a0a′0, . . . , ak−1a

′
k−1 be any finitely many

pairs in φ(A). We have to show that φ(xx′) is true in (A, h(⟨a0 · · · ak−1⟩), h(⟨a′0 · · · a′k−1⟩));
see the previous lemma. But φ(xx′) is true in (Aper, ⟨a0 · · · ak−1⟩, ⟨a′0 · · · a′k−1⟩) by Lem-
ma 3.2, and, being positive, is preserved by surjective homomorphisms. 2

The periomorphisms and the polymorphisms of a structure contain the same in-
formation. If one knows the periomorphisms of a structure, then one also knows its
polymorphisms, and vice-versa. Why is this? For k ∈ N, k > 0, define

π<k : A
per → Ak : π<k (⃗a) := (⃗a(0), . . . , a⃗(k − 1)).

The Infinity Project 13

This operation is clearly a homomorphism from Aper to Ak. Now, if someone hands us
an operation h : Ak → A, we can decide if it is a polymorphism of A by checking if

hper := h ◦ π<k
is a periomorphism of A. For, if h is a polymorphism of A, then by composing homo-
morphisms we have that hper is a periomorphism of A; and, if hper is a periomorphism
of A, by composing homomorphisms, we have that hper ◦ ek, which is equal to h, is a
homomorphism from Ak to A.

Going the other way, suppose that someone places in our hands an operation
h : Aper → A. It can be seen from Lemma 4.2 that h is a periomorphism of A if and
only if each of the operations

(4.1) h<k := h ◦ ek
is a polymorphism of A.

It is thus no surprise that preservation by periomorphisms coincides with preservation
by polymorphisms. Preservation by surjective periomorphisms, however, is an a priori
stronger property than preservation by surjective polymorphisms.

Proposition 4.5 Let φ be a formula. Then
(1) φ is preserved by all periomorphisms of A if and only if φ is preserved by all

polymorphisms of A;
(2) if φ is preserved by all surjective periomorphisms of A, then φ is preserved by

all surjective polymorphisms of A.

Proof. To see the forward directions, observe that if h is a (surjective) polymorphism
of A that does not preserve φ, then hper is a (surjective) periomorphism of A that
does not preserve φ. For the converse direction in (1) assume h is a periomorphism
that does not preserve φ = φ(x0, . . . , xℓ−1). Then by Lemma 4.2 there are k ∈ N and
(a00, . . . , a

ℓ−1
0), . . . , (a0k−1, . . . , a

ℓ−1
k−1) ∈ φ(A) such that

(h(⟨a00a01 · · · a0k−1⟩), . . . , h(⟨aℓ−1
0 aℓ−1

1 · · · aℓ−1
k−1⟩)) /∈ φ(A),

that is, (
h(ek(a

0
0, a

0
1, . . . a

0
k−1)), . . . , h(ek(a

ℓ−1
0 , aℓ−1

1 , . . . aℓ−1
k−1))

)
/∈ φ(A).

Hence, h<k is a k-ary polymorphism of A that does not preserve φ. 2

Remark 4.6 Inspection of the above proof shows that the converse of (2) is true in case
A satisfies the following condition: for every surjective periomorphism h of A there exists
k ∈ N such that h<k is surjective. For example, finite structures satisfy this condition.

We saw that a periomorphism h gives rise to a sequence of polymorphisms (h<k)k>0.
In fact, this gives a one-to-one correspondence with those polymorphism sequences that
satisfy the following property.

Definition 4.7 A sequence (gk)k>0 is a cone of polymorphisms of A if every gk is a k-ary
polymorphism of A and gℓ = gk ◦ e(ℓ,k) whenever ℓ < k and ℓ divides k.

Proposition 4.8 A sequence (gk)k>0 is a cone of polymorphisms of A if and only if there
is a periomorphism h of A such that h<k = gk for all k > 0.

14 An algebraic preservation theorem

Proof. For the backward direction, let h be a periomorphism of A. Clearly, (h<k)k>0 is
a sequence of polymorphisms of A —and it is a cone:

h<ℓ = h ◦ eℓ = h ◦ (ek ◦ e(ℓ,k)) = h<k ◦ e(ℓ,k).

Here, the second equality follows from the eℓs being limit embeddings (see the previous
section).

Conversely, assume that (gk)k>0 is a cone of polymorphisms of A. Assume that
(na⃗)a⃗ = (na⃗)a⃗∈Aper is a nice family, that is, every a⃗ ∈ Aper is na⃗-periodic. With respect
to this family, define

h(⃗a) := gna⃗ ◦ π<na⃗ (⃗a).
We claim that h is independent from the choice of the nice family. More precisely,

let (n′a⃗)a⃗ be another nice family and define h′ with respect to this family as h is defined
with respect to (na⃗)a⃗. We claim that h = h′.

By symmetry, it suffices to show h = h′′ where h′′ is analogously defined with respect
to (na⃗ · n′a⃗)a⃗ (observe that with (na⃗)a⃗ and (n′a⃗)a⃗ also (na⃗ ·n′a⃗)a⃗ is a nice family). But this
is true:

h(⃗a) = gna⃗ ◦ π<na⃗ (⃗a)
= (gna⃗·n′

a⃗
◦ e(na⃗,na⃗·n′

a⃗
)) ◦ π<na⃗ (⃗a)

= gna⃗·n′
a⃗
◦ π<na⃗·n′

a⃗
(⃗a)

= h′′(⃗a).

Here, the first and the last equality follow from the definition of h and h′′ respectively,
the second follows from the cone property, and the third follows from

e(k,ℓ) ◦ π<k = π<ℓ

whenever k < ℓ and k divides ℓ.
It is routine to check that h is a periomorphism of A. Hence, we are left to verify that

h<k = gk for every k > 0. So, given k > 0 and a ∈ Ak, we have to show h<k(a) = gk(a).
By definition h<k(a) = gn

b⃗
◦ π<n

b⃗
(⃗b) for b⃗ := ek(a) ∈ Aper.

Now b⃗ is k-periodic, so there exists a nice family (ña⃗)a⃗ with ñ
b⃗
= k. For the corre-

sponding h̃ we know h = h̃. Hence

h<k(a) = h̃<k(a) = gk ◦ π<k ◦ ek(a) = gk(a),

as claimed. 2

Intuitively speaking, just as the periodic power is a cone of finite powers, any peri-
omorphism “is” a cone of (finitary) polymorphisms. Note that the last proposition just
details a special case of “lifting cones of homomorphisms to direct limits”.

5 Preservation theorem

Theorem 5.1 (Main) Let A be an ℵ0-categorical structure. A relation R over A is
positive Horn definable in A if and only if it is preserved by all surjective periomorphisms
of A.

The following is a straightforward generalization of Proposition 4.4.

The Infinity Project 15

Proposition 5.2 If A and B are structures such that there is a surjective homomorphism
from Aper onto B, then A ⇛pH B.

The main lemma in the proof of Theorem 5.1 states that a converse of this proposition
holds true in the ℵ0-categorical case:

Lemma 5.3 If A and B are ℵ0-categorical structures such that A ⇛pH B, then there is
a surjective homomorphism from Aper onto B.

Proof. Let I be the set of finite partial functions f from Aper to B such that

(5.1) (Aper, a⃗) ⇛pH (B, b),

where a⃗ is a (finite) tuple from Aper listing all elements of the domain of f and b is a
tuple from B such f maps a⃗ to b.

Observe that Aper is countable. Hence, by a standard back and forth argument, it
suffices to verify the following two claims.

Claim 1 For all f ∈ I and a⃗ ∈ Aper there is b ∈ B such that f ∪ {(⃗a, b)} ∈ I.
Claim 2 For all f ∈ I and b ∈ B there is a⃗ ∈ Aper such that f ∪ {(⃗a, b)} ∈ I.
Proof of Claim 1. Given f ∈ I, choose tuples a⃗ and b as above. Let a⃗ ∈ Aper be arbitrary.
It sufficies to find b ∈ B such that

(5.2) (Aper, a⃗, a⃗) ⇛pH (B, b, b).

Note in particular that x = y is positive Horn, so (5.2) implies that f ∪ {(⃗a, b)} is a
function. To find such b, consider the set ∆(x) of all positive Horn formulas ψ(x) (in
the language of (Aper, a⃗)) satisfied by a⃗ in (Aper, a⃗). It suffices to show that this set is
satisfiable in (B, b). Since B is ℵ0-categorical, it is ℵ0-saturated (recall Section 1.4),
and hence it suffices to show that ∆(x) is finitely satisfable in (B, b). But for a finite
∆0(x) ⊆ ∆(x) the positive Horn sentence ∃x

∧
∆0(x) is true in (Aper, a⃗), so it is also true

in (B, b) by (5.1). Hence (B, b) contains some b satisfying ∆0(x). ⊣
Proof of Claim 2. Let f ∈ I and again choose a⃗ and b as above; say, these tuples have
length k. Again it suffices, given any b ∈ B, to find some a⃗ ∈ Aper such that (5.2) holds.
As A is ℵ0-categorical by Ryll-Nardzewski, there are up to equivalence in A only finitely
many formulas in the variables yx where y is a tuple of k variables. Let

ψ0(y, x), . . . , ψm−1(y, x)

list all positive Horn formulas that are in A equivalent to some positive Horn formula
ψ(y, x) such that

(5.3) B ̸|= ψ(b, b).

Subclaim For every j < m we have (Aper, a⃗) ̸|= ∀xψj(y, x).

Proof of the subclaim. Otherwise there is j < m such that for all i ∈ N we have (A, a⃗(i)) |=
∀xψj(y, x) (by Lemma 3.2). Choose a positive Horn formula ψ(y, x) that is equivalent to
ψj(y, x) in A and such that (5.3) holds. Then (A, a⃗(i)) |= ∀xψ(y, x) holds for all i ∈ N
and hence (Aper, a⃗) |= ∀xψ(y, x) (by Lemma 3.2). As f ∈ I, B |= ∀xψ(b, x) follows and
this contradicts (5.3). ⊣

By the subclaim and Lemma 3.2 there are i0 ∈ N and a0 ∈ A such that

(A, a⃗(i0)) ̸|= ψ0(y, a0).

16 An algebraic preservation theorem

Similarly, there are i1 ∈ N and a1 ∈ A such that

(5.4) (A, a⃗(i1)) ̸|= ψ1(a1).

Moreover, we can choose i1 such that i1 > i0 by periodicity: if i1 ≤ i0 replace it by
i1 + i0 ·n where n ∈ N is large enough such that all components of a⃗ are n-periodic; then
a⃗(i1) = a⃗(i1 + i0 · n) and (5.4) remains true.

Continuing in this manner we get sequences i0 < i1 < · · · < im−1 and a0, a1, . . . , am−1

such that for all j < m

(5.5) (A, a⃗(ij)) ̸|= ψj(y, aj).

Choose a periodic a⃗ : N→ A such that, for all j < m,

(5.6) a⃗(ij) = aj .

We verify (5.2) for this a⃗: let ψ(y, x) be a positive Horn formula such that B ̸|= ψ(b, b).
Then there exists j < m such that ψ(y, x) is in A equivalent to ψj(y, x). By (5.5) and
(5.6) we get (A, a⃗(ij)) ̸|= ψj(y, a⃗(ij)) and hence (A, a⃗(ij)) ̸|= ψ(y, a⃗(ij)). By Lemma 3.2
we conclude (Aper, a⃗) ̸|= ψ(y, a⃗). 2

Proof of Theorem 5.1. The forward direction follows from Proposition 4.4 (the ℵ0-categ-
oricity of A is not needed).

Conversely, assume that a relation R ⊆ Aℓ is preserved by all surjective perio-
morphisms of A. By Proposition 4.5(2) it is preserved by all surjective polymorphisms,
and in particular by all automorphisms of A. Since A is ℵ0-categorical, R is first-order
definable in A (recall Section 1.4). Let φR(x) = φR(x0, . . . , xℓ−1) be a formula such that
R = φR(A).

By Ryll-Nardzewski there is a finite list of positive Horn formulas

ψ0(x), . . . , ψm−1(x)

in the free variables x = x0 · · ·xℓ−1 such that every such formula is in A equivalent to
one from the list. Some of these formulas are implied by φR(x) (in A) and others not,
and we may suppose that precisely the first k are not:

∀i < k ∃ai ∈ Aℓ : ai ∈ φR(A) \ ψi(A);(5.7)
∀k ≤ j < m : φR(A) ⊆ ψj(A).

We can assume that k ̸= 0 as otherwise (φR ↔ ⊥) holds in A and then we are done.
We claim that the positive Horn formula

∧
k≤j<m ψj(x) is equivalent to φR(x) in A.

Therefore, it suffices to show

A |= ∀x
(∧

k≤j<m ψj(x)→ φR(x)
)
.

So we assume that b satisfies
∧
k≤j<m ψj(x) in A and have to show that b ∈ φR(A).

Choose for i < k a tuple ai ∈ Aℓ according to (5.7).

Claim
∏
i<k(A, ai) ⇛pH (A, b).

Proof of the claim. Let ψ(x) be a positive Horn formula that is not satisfied by b in A.
Choose i < m such that ψi(x) is equivalent to ψ(x) in A. Then b does not satisfy ψi(x)
in A, so i < k. But then (A, ai) ̸|= ψi(x) by (5.7) and thus (A, ai) ̸|= ψ(x). As ψ(x) is
positive Horn,

∏
i<k(A, ai) ̸|= ψ(x) by Lemma 2.1. ⊣

The Infinity Project 17

Write ai = a0i · · · a
ℓ−1
i for i < k. Then

∏
i<k(A, ai) equals(

Ak, (a00, . . . , a
0
k−1)(a

1
0, . . . , a

1
k−1) · · · (aℓ−1

0 , . . . , aℓ−1
k−1)

)
.

With A also (A, b) is ℵ0-categorical, and the structure
(
Ak, (a00, . . . , a

0
k−1) · · ·

)
is ℵ0-cat-

egorical, because Ak is (see Section 1.4). By the Claim we can thus apply Lemma 5.3
and conclude that there is a surjective homomorphism

h :
(
Ak, (a00, . . . , a

0
k−1) · · · (aℓ−1

0 , . . . , aℓ−1
k−1)

)per � (A, b).

By Proposition 3.4 there is an isomorphism g from the left hand side structure onto(
Aper, ⟨a00 · · · a0k−1⟩ · · · ⟨aℓ−1

0 · · · aℓ−1
k−1⟩

)
.

Then h ◦ g−1 is a surjective homomorphism from Aper onto A, i.e., a surjective periomor-
phism of A, such that

h ◦ g−1(⟨a00 · · · a0k−1⟩) · · ·h ◦ g−1(⟨aℓ−1
0 · · · aℓ−1

k−1⟩) = b.

By (5.7) we have ai ∈ φR(A) for all i < k. By Lemma 4.2 and the assumption that R and
hence φR(x) is preserved by surjective periomorphisms of A, we conclude that b ∈ φ(A),
as was to be shown. 2

Theorem 5.4 For a finite language L0, let B be an L0-structure and A an L-structure
on the same universe. If every surjective periomorphism of A is a periomorphism of B,
then the problem QCSP(B) many-one logspace reduces to QCSP(A).

Proof. If φ(x) is an atomic L0-formula, then φ(B) is preserved by all polymorphisms
of B, hence also by all periomorphisms of B (by Proposition 4.5(1)), and hence by all
surjective periomorphisms of A (by assumption). By the Main Theorem 5.1 the relation
φ(B) is positive Horn definable in A. Hence B is positive Horn definable in A. Now
apply Proposition 2.2. 2

6 Characterization of the pH-hull

A central tool in constraint complexity is the description of the smallest primitive positive
definable relation containing a given relation R as the smallest relation that contains all
polymorphic images of R; this description follows readily from Theorem 2.4. Here we
provide a similar tool for quantified constraint complexity. The proof of this uses most
of the results we established so far.

Recall Definition 4.3.

Theorem 6.1 Let A be ℵ0-categorical and let R be a relation over A. Then

{a | ∃k ∈ N ∃a0, . . . , ak−1 ∈ R :

a is a surjective periomorphic image of ai, i < k}
is the smallest positive Horn definable relation containing R.

Proof. For notational simplicity, we assume that R is binary. It is easy to see that the
described relation R̃ contains R. We have to show

(i) R̃ ⊆ ψ(A) for any positive Horn formula ψ such that R ⊆ ψ(A);
(ii) R̃ is positive Horn definable in A.

18 An algebraic preservation theorem

To show (i), let aa′ ∈ R̃. Choose aia′i, i < k in R such that some surjective periomorphism
of A maps ⟨a0 · · · ak−1⟩⟨a′0 · · · a′k−1⟩ to aa′. Then aia′i ∈ ψ(A) as R ⊆ ψ(A), so aa′ ∈ ψ(A)
by Proposition 4.4 as ψ is positive Horn.

We now prove (ii). By Theorem 5.1 it suffices to show that R̃ is preserved by all
surjective periomorphisms of A. We use Lemma 4.2, so let aia′i, i < k be k tuples in R̃
and h be a surjective periomorphism that maps ⟨a0 · · · ak−1⟩⟨a′0 · · · a′k−1⟩ to aa′. We have
to show that aa′ ∈ R̃.

For i < k, choose ℓi pairs bijb′ij , j < ℓi in R such that there is a surjective pe-
riomorphism hi that maps ⟨bi0 · · · bi(ℓi−1)⟩⟨b′i0 · · · b′i(ℓi−1)⟩ to aia

′
i. Letting the hjs act

componentwise we get a surjective homomorphism

(6.1) h′ :
∏
i<k(A

per, ⟨bi0 · · · bi(ℓi−1)⟩⟨b′i0 · · · b′i(ℓi−1)⟩) �
∏
i<k(A, aia

′
i).

By Proposition 3.4, the left-hand side structure is isomorphic to∏
i<k(A

ℓi , (bi0 · · · bi(ℓi−1))(b
′
i0 · · · b′i(ℓi−1)))

per

and thus, by Lemma 3.6, to the periodic power of(
A
∑
i<k ℓi , (b00 · · · b(k−1)(ℓk−1−1)), (b

′
00 · · · b′(k−1)(ℓk−1−1))

)
.

Denote this structure by B. By (6.1) and Proposition 5.2 we get

(6.2) B ⇛pH
∏
i<k(A, aia

′
i).

By Proposition 3.4, (
∏
i<k(A, aia

′
i))

per is isomorphic to (Aper, ⟨a0 · · · ak−1⟩, ⟨a′0 · · · a′k−1⟩)
which maps surjectively onto (A, aa′) by h. Hence, by Proposition 5.2 again,

(6.3)
∏
i<k(A, aia

′
i) ⇛pH (A, aa′).

By (6.2) and (6.3) we conclude B ⇛pH (A, aa′). But these two structures are ℵ0-
categorical (by Ryll-Nardzewski), so Lemma 5.3 applies and there is a surjective ho-
momorphism

h′′ : Bper � (A, aa′).

By Proposition 3.4, Bper is isomorphic to(
Aper, ⟨b00 · · · b(k−1)(ℓk−1−1)⟩⟨b′00 · · · b′(k−1)(ℓk−1−1)⟩

)
,

so aa′ is a surjective periomorphic image of the
∑

i<k ℓi many pairs

b00b
′
00, . . . , b(k−1)(ℓk−1−1)b

′
(k−1)(ℓk−1−1) ∈ R.

Thus aa′ ∈ R̃, as was to be shown. 2

7 Equality templates

Fix a countably infinite set A and define an equality template to be a relational structure
A that is first-order definable in (A), the structure interpreting the empty language; that
is, every relation of A is definable by a pure equality formula. A complexity classification
of the QCSPs of equality templates was given in previous work [6] (see Theorem 7.9
below): it was shown that each such QCSP is either in L, NP-complete or coNP-hard. In
this section, we re-examine this classification theorem. Based on our Main Theorem 5.1
we give a new proof of this classification which is, in our view, more modular, conceptually
cleaner, and shorter than the original proof.

The Infinity Project 19

7.1 Clone analysis

Our proof follows the algebraic approach to constraint complexity and thereby relies on an
analysis of the polymorphism clones of equality templates. Such clones are locally closed
and contain all permutations (note that every permutation of A is an automorphism
of A). Bodirsky et al. [8], building on the work of Bodirsky and Kara [12], performed a
study of these clones. Here we state only what we shall need from their analysis.

We define an operation to be elementary if it is contained in the smallest locally
closed clone containing all permutations; a set of operations is elementary if each of its
operations is elementary. Let us say that an operation f generates another operation g if g
is contained in the smallest locally closed clone that contains f and all permutations of A.
As an example, an operation is elementary if and only if it is generated by the identity
on A. Finally, recall that an essentially unary operation is one that can be written as
the composition of a unary operation and a projection; and an essential operation is one
that is not essentially unary.

Lemma 7.1 (Clone analysis)
(1) A non-elementary operation generates either a binary injective operation or a

unary constant operation.
(2) An operation with infinite image that does not preserve ̸= generates all unary

operations.
(3) Let k ≥ 3. An essential operation with image size k generates all operations with

image size at most k.

Proof. The lemma can be derived from results in [8, 12] as follows. To prove (1), let
f be a non-elementary operation. If f is essentially unary, then f generates a unary
non-elementary operation h. The operation h is not injective, since all unary injective
operations can be interpolated by permutations. By the proof of [12, Lemma 10], h
generates a unary constant operation.

Now suppose that f is essential. By [12, Lemma 12], f generates an essential binary
operation. By [12, Theorem 13], f generates either a unary constant operation or a
binary injective operation.

Statement (2) follows from [8, Lemma 38] and statement (3) is [8, Lemma 36]. 2

7.2 Classification

We now start the proof of the classification theorem for equality templates.

Theorem 7.2 Let A be an equality template such that ̸= is not positive Horn definable
in A. Then every unary operation on A is a polymorphism of A.

Proof. If ̸= is not positive Horn definable in A, then, by our Main Theorem 5.1, the
relation ̸= is not preserved by some surjective periomorphism h of A. Recall that accord-
ing to (4.1) with h there is a naturally associated sequence of polymorphisms (h<k)k≥1.
Because h does not preserve ̸=, there exists k0 such that h<k0 does not either. Suppose
there exists some k1 such that h<k1 has infinite image. Then h<k0·k1 does not preserve
̸= and has infinite image. Then our claim follows from Lemma 7.1(2). We thus assume
that all h<k have finite image. By local closure it suffices to show:

Claim For every k ∈ N, every partial unary operation g : A → A that is defined on k
points can be extended to a (unary) polymorphism of A.

20 An algebraic preservation theorem

We prove the claim by induction on k. For k = 0 there is nothing to show. Suppose
that the claim is true for k and let g be a unary operation defined on k+1 points. If g has
image size k + 1, then there exists a permutation g′ extending g, and the claim follows;
recall that all permutations are automorphisms of A. So suppose that g has image of size
at most k.

It suffices to show that the polymorphism clone of A contains a unary operation that
has finite image of size ≥ k, for this implies that the clone contains a unary operation
that maps k + 1 points to k points; by composing this unary operation with itself and
suitable permutations, one obtains the claim.

Since h has infinite image, there exists ℓ > 0 such that h<ℓ has image size ≥ k. Let
a0, . . . , ak−1 ∈ Aℓ be k many ℓ-tuples on which h<ℓ is injective. Assume for the sake of
notation that 0, . . . , k− 1 ∈ A. Consider the maps u0, . . . , uℓ−1 defined on {0, . . . , k− 1}
such that uj maps each i < k to the jth component of ai. Note that u0(i) · · ·uℓ−1(i) = ai.
By induction every uj can be extended to a polymorphism u′j of A. Define u : A → A

to map a ∈ A to h<ℓ(u′0(a), . . . , u′ℓ−1(a)). Then u(i) = h<ℓ(ai) for every i < k, so u is
injective on the set {0, . . . , k− 1}. Thus the image of u has size ≥ k and is finite because
it is contained in the image of h<ℓ. 2

The following simple lemma will be useful. It appears as Lemma 11 in [12]; we supply
a proof for self-containment.

Lemma 7.3 Let A be an equality template. Either A has a constant polymorphism, or
the relation ̸= is primitive positively definable in A.

Proof. Suppose that A does not have a constant polymorphism. Then there is a relation
RA that is non-empty and does not contain the constant tuple. Let k be the arity of RA.
Let us say that an equivalence relation σ on {0, . . . , k − 1} is realized if there exists a
tuple (a0 . . . , ak−1) ∈ RA such that ai = aj if and only if (i, j) ∈ σ. (Note that if there
exists one tuple in RA satisfying the given condition, then all tuples satisfying the given
condition are in RA.) Let τ be a coarsest realized equivalence relation. Consider the
relation defined in A by the primitive positive formula

φ(x0, . . . , xk−1) := Rx0 · · ·xk−1 ∧
∧

(i,j)∈τ xi = xj ;

in this relation, τ is realized, and it is the only equivalence relation that is realized. Since
RA does not contain the constant tuple, τ contains more than one equivalence class. Fix
i, j ∈ {0, . . . , k− 1} to be values such that (i, j) /∈ τ . The formula ψ(xi, xj) derived from
φ by existentially quantifying all variables other than xi and xj defines the relation ̸=. 2

Let us say that a relation over A is negative if it is definable as the conjunction of
(i) equalities and (ii) disjunctions of disequalities; by a disequality, we mean a formula of
the form ¬x = y. Let us say that a relation is positive if it is definable using equalities
and the binary connectives {∧,∨}. We call an equality template negative or positive if
each of its relations is negative or positive respectively.

Example 7.4 The ternary relation P ⊆ A3 defined by the formula

φP (x, y, z) := (x = y ∨ y = z)

in (A) is positive; it can be verified from the definition that it is not negative.

The Infinity Project 21

Example 7.5 The ternary relation I ⊆ A3 defined by the formula

φI(x, y, z) := (x = y → y = z)

in (A) is neither positive not negative; this can be verified from the definitions.

Positivity can be characterized algebraically as follows. This has been shown in [6,
Proposition 7.3].

Proposition 7.6 Let A be an equality template, and fix f to be any non-injective surjec-
tive unary operation on A. The following are equivalent:

• A is positive.
• Every unary operation is a polymorphism of A.
• The operation f is a polymorphism of A.

We have the following fact.

Corollary 7.7
(1) If A is a positive equality template, then every positive Horn definable relation

in A is positive.
(2) If A is a negative equality template, then every positive Horn definable relation

in A is negative.

Proof. From Proposition 7.6 it follows that, for any fixed non-injective surjective unary
operation f , a relation is positive if and only if it is preserved by f ; this characterization
of positivity implies (1).

Likewise, (2) follows from the fact that negativity can be characterized by preservation
by a surjective operation (see [8, Proposition 68]). 2

The following is known ([6, Lemma 8.8]):

Lemma 7.8 If R is a relation over A that is not negative and is preserved by a binary
injective operation, then I is primitive positively definable in (A,R, ̸=).

We are ready to state and prove the classification.

Theorem 7.9 ([6]) Let A be an equality template.
(1) If A is negative, then QCSP(A) is in L.
(2) If A is not negative but positive, then the relation P is positive Horn definable

in A and QCSP(A) is NP-complete.
(3) If A is neither negative nor positive, then the relation I is positive Horn definable

in A and QCSP(A) is coNP-hard.

Proof. We take as given the complexity results: it is shown in [6] that a negative template
A has QCSP(A) in L, that QCSP((A,P)) is NP-hard, and QCSP((A, I)) is coNP-hard; and
it follows from [34] that a positive template A has QCSP(A) in NP. By Proposition 2.2
and Corollary 7.7, it thus suffices to show that for an equality template A one of the
following three conditions holds:

(i) A is negative.
(ii) A is positive and P is positive Horn definable in A.
(iii) I is positive Horn definable in A.

22 An algebraic preservation theorem

Let A be an equality template and let [A]pH denote its expansion by all relations that
are positive Horn definable in A. Further, let C denote the clone of polymorphisms of
[A]pH. By Lemma 7.1(1), the following three cases are exhaustive.

Case 1: C is elementary. Then C preserves I, so this relation is primitive positively
definable in [A]pH by Theorem 2.4 and hence positive Horn definable in A.

Case 2: C contains a constant operation. Then ̸= is not contained in [A]pH, since ̸= is
not preserved by a constant operation. Applying Theorem 7.2 to [A]pH, we obtain that
C contains all unary operations. Proposition 7.6 implies that [A]pH (and hence A) is
positive. We claim that either [A]pH (and hence A) is negative or P is positive Horn
definable in A.

Case 2.1: Suppose that there exists a surjective periomorphism h of A and a k > 0
such that the polymorphism h<k is essential. We claim that in this case C contains all
operations. It is known (and easy to verify) that each relation preserved by this clone can
be defined by a conjunction of equalities, so then [A]pH will be negative. By local closure,
it suffices to show that C contains all finite image operations. Hence, by Lemma 7.1(3), it
also suffices to show that C contains a sequence of polymorphisms that is desirable in the
sense that each polymorphism is essential and has finite image, and that the sequence has
unbounded image size. Now, (h<ℓ·k)ℓ>0 is such a desirable sequence in case each h<ℓ·k
has finite image. And otherwise there is ℓ0 > 0 such that h<ℓ0·k has infinite image, and
then one obtains a desirable sequence (ui ◦ h<ℓ0·k)i>0 for suitable unary operations ui
(recall that all unary operations are in C).

Case 2.2: Suppose otherwise that for every surjective periomorphism h and all k > 0
the polymorphism h<k is essentially unary. We claim that then the relation P is positive
Horn definable in A. By our Main Theorem 5.1 it suffices to show that P is preserved
by all surjective periomorphisms of A. But if a surjective periomorphism h of A does
not preserve P , then there exists k > 0 such that h<k does not preserve P . Since h<k is
essentially unary, this is impossible.

Case 3: C contains a binary injective operation and does not contain a constant operation.
In this case, [A]pH contains ̸= by Lemma 7.3. It follows immediately from Lemma 7.8
that either [A]pH (and hence A) is negative or I is primitive positively definable in [A]pH
and hence positive Horn definable in A. 2

8 Discussion

Bing’s theorem [3] involves a clever, technical argument that allows us to strengthen our
main preservation theorem for structures that are isomorphic to their finite powers. Such
structures have gained some attention in constraint complexity [7, 10]. We have the
following theorem.

Theorem 8.1 Let A be a countable ℵ0-categorical structure such that A ∼= A2. Then a
formula φ(x) is equivalent to a positive Horn formula in A if and only if it is preserved
by all surjective polymorphisms of A.

Proof. Let A accord the assumption of the theorem. We only prove the backward direc-
tion. Assume φ(x) is preserved by all surjective polymorphisms of A. In particular, φ(x)

The Infinity Project 23

is preserved by all surjective homorphisms from A to A. It is not hard to see that Lyn-
don’s Theorem implies that there exists a positive formula φ+(x) such that φ(A) = φ+(A)
(see [11, Proposition 2(c)] for details). We can assume that φ+ has the form of some
quantifier prefix followed by a quantifier free formula

ψ =
∧
i∈I
∨
j∈J αij ,

where the αijs are atoms. For each f ∈ JI write

ψf :=
∧
i∈I αif(i).

Bing’s argument. Let Qy be an arbitrary quantifier prefix. Assume for every f ∈ JI the
tuple af in A is an assignment to the free variables inQyψ such that

∏
f∈JI (A, af) |= Qyψ.

Then there exists f ∈ JI such that (A, af) |= Qyψf .

Proof of Bing’s argument. This can be proved by a straightforward induction on the
length of Qy. See [3, Lemma 3] for details. ⊣

Write φ+(x) = Qyψ(y, x).

Claim There exists f ∈ JI such that A |= ∀x(φ+(x)→ Qyψf (y, x)).

Proof of the claim. Otherwise we find for every f ∈ JI an af ∈ φ+(A) such that

(A, af) ̸|= Qyψf (y, x).

Then
∏
f∈JI (A, af) ̸|= φ+(x) by Bing’s argument. As A ∼= A2, there is an isomorphism

h : AJ
I ∼= A.

Write x = x0 · · ·xℓ−1 and af = a0f · · · a
ℓ−1
f . Then

h :
∏
f∈JI (A, af) =

(
AJ

I
, (a0f)f∈JI , . . . , (a

ℓ−1
f)f∈JI

)
∼= (A, h((a0f)f∈JI), . . . , h((a

ℓ−1
f)f∈JI)).

Since h is an isomorphism, φ+(x) is false in the right hand side structure. Hence h is (up
to a renaming of indices) a surjective polymorphism of A that does not preserve φ(x),
a contradiction. ⊣

Since (Qyψf → φ+) is logically valid, the Claim implies that φ+ is equivalent in A

to the positive Horn formula Qyψf . 2

Examples 8.2 An example of a structure satisfying the assumption of the theorem is
the countable atomless Boolean algebra (cf. [5, Section 5.2]). This template is of central
importance for spatial reasoning in artificial intelligence. Another example is an infinite
dimensional vector space over some finite field (cf. [5, Section 5.3], [15, Example 2.10]).
More generally, it is easy to see that every countable ℵ0-categorical structure A whose
theory is Horn axiomatizable satisfies A ∼= A2.

We conclude with some remarks and questions.
Very recently, Bodirsky, Hils and Martin [10] explored the possibilities to extend

the algebraic machinery for constraint satisfaction to structures that are not necessarily
ℵ0-categorical; they established a variant of the preservation theorem for primitive posi-
tive definability via ω-polymorphisms for structures that are in a certain sense sufficiently
saturated. (An ω-polymorphism of a structure A is a homomorphism from AN to A.)

24 An algebraic preservation theorem

The first author showed [21, Lemma 7.5] that, in finite structures, positive Horn
definability coincides with Π2 positive Horn definability (see [23, 38] for a related re-
sult). Using the method of the proof, one can infer that Boolean QCSPs with quantifier
alternation rank restricted to some even t ≥ 2 are either ΠP

t -complete or in P (cf. [21,
Theorem 7.2]). An open issue is to study ℵ0-categorical QCSPs with bounded alternation
rank.

One can ask the following concrete question. Let A be an ℵ0-categorical structure and
φ a Πt formula that is preserved by the surjective periomorphisms of A. Is φ equivalent
to a positive Horn formula that is also Πt?

A related question is posed by Y. Chen and Flum in [24]. They ask for an alternation
rank preserving version of Lyndon’s preservation theorem: is any Πt sentence that is
preserved by surjective homomorphisms equivalent to a positive Πt sentence? This is
known to be true for t ≤ 2 [43]. By a well-known trick of Lyndon [37] (see also Feferman’s
survey [27]) a positive answer would follow from a proof of the following: any implication
between Πt formulas has a Πt Lyndon-interpolant. The usual argument constructs an
interpolant by recursion on a cut-free proof of the given implication. But again for t > 2
there seems to be no control on the alternation rank of an interpolant constructed in this
way.

Acknowledgements

Manuel Bodirsky and Barnaby Martin made valuable comments on an early version of this
paper. The authors also thank Manuel for useful literature pointers. The first author
is supported by the Spanish program “Ramón y Cajal” and MICINN grant TIN2010-
20967-C04-02. The second author thanks the John Templeton Foundation for its support
through Grant #13152, The Myriad Aspects of Infinity, and the FWF (Austrian Research
Fund) for its support through Grant P 23989 - N13.

References
[1] E. Allender, M. Bauland, N. Immerman, H. Schnoor and H. Vollmer. The complexity of satisfiability

problems: refining Schaefer’s Theorem. Journal of Computer and System Sciences 75(4):245–254,
2009.

[2] L. Barto and M. Kozik. Constraint sastisfaction problems of bounded width. Proceedings of the 50th
Annual IEEE Symposium on Foundations of Computer Science, pp. 595–603, 2009.

[3] K. Bing. On arithmetical classes not closed under direct union. Proceedings of the American Math-
ematical Society 6:836–846, 1955.

[4] Constraint Satisfaction with Infinite Domains. PhD Thesis, Humboldt Universität Berlin, 2004.
[5] M. Bodirsky. Constraint satisfaction problems with infinite templates. In N. Creignou et al. (eds.),

Complexity of Constraints – An Overview of Current Research Themes, LNCS 5250, pp. 196–228,
2008.

[6] M. Bodirsky and H. Chen. Quantified equality constraints. SIAM Journal on Computing 39(8):3682–
3699, 2010.

[7] M. Bodirsky, H. Chen, J. Kara and T. von Oertzen. Maximal infinite-valued constraint languages.
Theoretical Computer Science 410: 1684–1693, 2009.

[8] M. Bodirsky, H. Chen and M. Pinsker. The reducts of equality up to primitive positive interdefin-
ability. The Journal of Symbolic Logic 75(4):1249–1292, 2010.

[9] M. Bodirsky, M. Hermann and F. Richoux. Complexity of existential positive first-order logic. Pro-
ceedings of Computability in Europe, pp. 31–36, 2009.

[10] M. Bodirsky, M. Hils and B. Martin. On the scope of the universal-algebraic approach to constraint
satisfaction. Proceedings of the 25th IEEE Symposium on Logic in Computer Science, 2010.

The Infinity Project 25

[11] M. Bodirsky and M. Junker. Aleph0-categorical structures: interpretations and endomorphisms.
Algebra Universalis 64(3-4):403–417, 2010.

[12] M. Bodirsky and J. Kára. The complexity of equality constraint languages. Theory of Computing
Systems 3(2):136–158, 2008.

[13] M. Bodirsky and J. Nešetřil. Constraint satisfaction with sountable homogeneous templates. Journal
of Logic and Computation 16(3):359–373, 2006.

[14] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov and B. A. Romov. Galois theory for post algebras,
part I and part II. Cybernetics 5:243–252, 531–539, 1969.

[15] F. Börner, A. Bulatov, H. Chen, P. Jeavons and A. Krokhin. The complexity of constraint satisfaction
games and QCSP. Information and Computation 207: 923–944, 2009.

[16] A. Bulatov. A dichotomy theorem for constraints on a three-element set. Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science, pp. 649–658, 2002.

[17] A. Bulatov, P. Jeavons and A. Krokhin. Classifying the complexity of constraints using finite alge-
bras. SIAM Journal on Computing 34(3):720–742, 2005.

[18] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data-
bases. Proceedings of the 9th Annual ACM Symposium on Theory of Computing, pp. 77–90, 1977.

[19] C. C. Chang and H. J. Keisler. Model Theory. Studies in Logic and the Foundations of Mathematics
73. North-Holland Publishing Co., Amsterdam, third edition, 1990.

[20] H. Chen. The complexity of quantified constraint satisfaction: collapsibility, sink algebras, and the
three-element case. SIAM Jornal on Computing 37(5):1674–1701, 2008.

[21] H. Chen. A rendez-vous of logic, complexity and algebra. ACM Computing Surveys 42(1), 2009.
[22] H. Chen. Quantified constraint satisfaction and the polynomially generated powers property. Algebra

Universalis 65:213–241, 2011.
[23] H. Chen, F. Madelaine and B. Martin. Quantified constraints and containment problems. Proceedings

of the 23rd IEEE Symposium on Logic in Computer Science, pp. 317–328, 2008.
[24] Y. Chen and J. Flum. The parameterized complexity of maximality and minimality problems. Pro-

ceedings of the 2nd International Workshop on Parameterized and Exact Computation, pp. 25–37,
2006.

[25] N. Creignou, S. Khanna and M. Sudan. Complexity Classification of Boolean Constraint Satisfaction
Problems. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics, 2001.

[26] T. Feder and M. Vardi. The computational structure of monotone monadic SNP and constraint
satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28:57–104,
1999.

[27] S. Feferman. Harmonious logic: Craig’s interpolation theorem and its descendants. Synthese 164:341–
357, 2008.

[28] J. Flum. First order logic and its extensions. In G. H. Müller et al. (eds.), Logic Conference Kiel
1974, Lecture Notes in Mathematics 499, 1975.

[29] D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics 27:95–100,
1968.

[30] P. Hell and J. Nešetřil. On the complexity of H-colouring. Journal of Combinatorial Theory Series
B 48:92–110, 1990.

[31] P. Idziak, P. Markovic, R. McKenzie, M. Valeriote and R. Willard. Tractability and learnability
arising from algebras with few subpowers. SIAM Journal on Computing 39(7):3023–3037, 2010.

[32] P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer Science
200:185–204, 1998.

[33] H. J. Keisler. Reduced products and Horn classes. Transactions of the American Mathematical
Society 117:307–328, 1965.

[34] D. Kozen. Positive first-order logic is NP-complete. IBM Journal of Research and Development
25(4):327–332, 1981.

[35] M. Krasner. Endothéorie de Galois abstraite. Séminaire P. Dubreil (Algèbre et Théorie des Nombres)
1(6), 1968.

[36] B. Larose and P. Tesson. Universal algebra and hardness results for constraint satisfaction problems.
Theoretical Computer Science 410(18):1629–1647, 2009.

[37] R. C. Lyndon. Properties preserved under homomorphism. Pacific Journal of Mathematics 9(1):143–
154, 1959.

26 An algebraic preservation theorem

[38] F. Madelaine and B. Martin. The preservation properties of positive Horn logic. Manuscript, available
at www.dur.ac.uk/barnaby.martin/publications.html, 2009.

[39] F. Madelaine and B. Martin. The complexity of positive first-order logic without equality. Proceedings
of the 24th IEEE Symposium on Logic in Computer Science, pp. 429–438, 2009.

[40] F. Madelaine and B. Martin. A tetrachotomy for positive first-order logic without equality. Proceed-
ings of the 26th IEEE Symposium on Logic in Computer Science, pp. 311–320, 2011.

[41] B. Martin. First-order model checking problems parameterized by the model. Proceedings of Com-
putability in Europe 2008: Logic and Theory of Algorithms, pp. 417–427, 2008.

[42] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.
[43] C. Ritter. Fagin-Definierbarkeit. Diplomarbeit, Universität Freiburg, 2005.
[44] T. J. Schaefer. The complexity of satisfiability problems. Proceedings of the ACM Symposium on

Theory of Computing, pp. 216–226, 1978.
[45] H. Vogler. A unifying approach to theorems on preservation and interpolation for binary relations

between structures. Archive of Mathematical Logic 21(1): 101–112, 1981.

The Infinity Project

Isomorphism relations on computable structures

Ekaterina Fokina†, Sy-David Friedman‡, Valentina Harizanov§,
Julia F. Knight¶, Charles McCoy¶, Antonio Montalbán∥

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
efokina@logic.univie.ac.at

‡ Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

§ Department of Mathematics, George Washington University, USA
harizanv@gwu.edu

¶ Department of Mathematics, University of Notre Dame, USA
knight.1@nd.edu, Charles.F.McCoy.9@nd.edu

∥ Department of Mathematics, University of Chicago, USA
antonio@math.uchicago.edu

Abstract. We study the complexity of the isomorphism relation on classes of computable structures.
We use the notion of FF -reducibility introduced in [9] to show completeness of the isomorphism relation
on many familiar classes in the context of all Σ1

1 equivalence relations on hyperarithmetical subsets of ω.

Introduction

We develop the theory for computable structures analogous to the theory of isomorphism
relations introduced by H. Friedman and Stanley in [13]. Our languages are computable,
and our structures have universes contained in ω. In measuring complexity, we identify
structures with their atomic diagrams. In particular, a structure is computable if its
atomic diagram is computable.

In descriptive set theory, the study of Borel equivalence relations under Borel re-
ducibility has developed into a rich area. The notion of Borel reducibility allows one
to compare the complexity of equivalence relations on Polish spaces; for details see, for
example, [15, 19, 21]. In particular, natural equivalence relations such as isomorphism
and bi-embeddability on classes of countable structures have been widely studied, e.g.,
[13, 14, 18, 25]. An effective version of this study was introduced in [4] and [24]. The
complexity of the isomorphism relation on various classes of countable structures was
measured using the idea of effective transformations. In the recent work [11] the general
theory of effectively Borel (i.e., ∆1

1) equivalence relations on effectively presented Polish

Appeared in the Journal of Symbolic Logic vol. 77(1) (2012), pp. 122–132.
†,‡,§,¶,∥We express our gratitude to the John Templeton Foundation for its support through Project

#13152, Myriad Aspects of Infinity.
†,‡Supported by the FWF through projects M 1188 - N13 and P 19898 - N18.
‡,§,¶Partially supported by the NSF binational grant DMS-1101123.
§Partially supported by the NSF grant DMS-0904101.
∥Partially supported by the NSF grant DMS-0901169.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

27

28 Isomorphism relations on computable structures

spaces was developed via the notion of effective Borel reducibility. The resulting structure
turned out to be much more complex than in the classical case.

In computable model theory, equivalence relations have also been a subject of study,
e.g., [3, 7, 23], etc. In these papers, equivalence relations of rather low complexity were
studied (computable, in the Ershov hierarchy, Σ0

1, Π0
1). In [9] Σ1

1 equivalence relations
on computable structures were investigated. The notion of hyperarithmetical and com-
putable reducibility of Σ1

1 equivalence relations on ω was used to estimate the complexity
of natural equivalence relations on hyperarithmetical classes of computable structures
within the class of Σ1

1 equivalence relations on hyperarithmetical subsets of ω as a whole.
In this paper we continue the study of the theory of Σ1

1 equivalence relations on
computable structures. Our work here shows that this theory behaves very differently
than the theory initiated in Friedman–Stanley [13] for isomorphism relations and further
developed for arbitrary Borel equivalence relations on Polish spaces [15, 19, 21]. In
particular we show that isomorphism of computable graphs is complete with respect
to the chosen effective reducibility in the context of all Σ1

1 equivalence relations on ω.
This is false in the context of countable structures and Borel reducibility [22]: there
are examples of Borel equivalence relations that are not Borel-reducible to isomorphism
of graphs. We also show that the isomorphism relation on computable torsion abelian
groups is complete among Σ1

1 equivalence relations on ω, while in the classical case it is
known to be incomplete among isomorphism relations on classes of countable structures
[13]. The same holds for isomorphism of computable torsion-free abelian groups, which
in the case of countable structures is not known to be complete for isomorphism relations.

1 Background

1.1 Trees

Here we give some definitions useful for describing computable trees. Our trees are
isomorphic to subtrees of ω<ω. For the language, we take a single unary function symbol,
interpreted as the predecessor function. We write ∅ for the top node (our trees grow
down), and we think of ∅ as its own predecessor. Thus, our trees are defined on ω with
their structure given by the predecessor function, but we often consider them as subtrees
of ω<ω and treat their elements as finite sequences.

Definition 1.1 Let S, T ⊆ ω<ω be trees. Define the tree S ∗ T in the following way. We
think of the elements of S ∗ T as ordered pairs (σ, τ), where σ ∈ S, τ ∈ T . At level 0 of
S ∗T , we have (∅, ∅). For an element (σ, τ) at level k of S ∗T , σ and τ are at level k of S
and T , respectively. The successors of (σ, τ) are the pairs (σ′, τ ′), where σ′ is a successor
of σ in S and τ ′ is a successor of τ in T .

Definition 1.2 Let T be a subtree of ω<ω. We define the tree rank of x ∈ T , denoted
by tr(x), by induction:

(1) tr(x) = 0 if x has no successor;
(2) For α > 0, tr(x) = α if α is the least ordinal greater than tr(y) for all successors

y of x;
(3) tr(x) =∞ if x does not have ordinal tree rank.

The tree rank of the tree T is defined to be the rank of the top node ∅.
Note that all computable trees have rank∞ or rank some computable ordinal. More-

over, for any node x ∈ T , tr(x) =∞ iff x extends to an infinite path through T [27].

The Infinity Project 29

Remark The tree rank of the tree S ∗ T is the minimum of the tree ranks of S and T .
In particular, S ∗ T has an infinite path iff both S and T have infinite paths. More
generally, for σ ∈ S and τ ∈ T , where σ and τ lie at the same level in their respective
trees, tr((σ, τ)) = min(tr(σ), tr(τ)).

Definition 1.3 (Rank-saturated tree) A computable subtree T of ω<ω is rank-saturated
provided that, for all x in T ,

(1) if tr(x) is an ordinal α, then for all β < α, x has infinitely many successors z
such that tr(z) = β;

(2) if tr(x) =∞, then for all computable β, x has infinitely many successors z such
that tr(z) = β and x has infinitely many successors z with tr(z) =∞.

Lemma 1.4 There is a computable rank-saturated tree T∞ such that rk(T∞) =∞.

Proof. In [17] Harrison proved the existence of a computable linear ordering H of type
ωCK
1 (1 + η). We let T∞ be the set of finite sequences ((a0, k0), . . . , (an, kn)), where
a0 > · · · > an in H and k0, . . . , kn ∈ ω. It is easy to see that if ai corresponds to an
ordinal α in H, then tr((a0, k0), . . . , (ai, ki)) = α, and if ai lies in the non-well-ordered
part of H, then tr((a0, k0), . . . , (ai, ki)) =∞. �

Proposition 1.5 If T is a computable tree, then T ∗ T∞ is a computable rank-saturated
tree of the same tree rank as T .

Proof. The top node in T ∗T∞ clearly has the proper rank, by Remark 1.1. For x ∈ T ∗T∞

of rank α and β < α, we show that x has infinitely many successors of rank β. Say
x = (σ, τ); by Remark 1.1, tr(τ) ≥ α and because T∞ is rank-saturated, τ has infinitely
many successors τ ′ of rank β. Also, tr(σ) ≥ α, so σ has a successor σ′ of rank at least β.
Then for all such pairs (σ′, τ ′), tr(σ′, τ ′) = β. �

Remark Computable rank-saturated trees are a special case of computable rank-homoge-
neous trees, defined in [5].

Proposition 1.6
(1) For every computable α, if Tα and Tα1 are computable rank-saturated trees of

tree rank α, then Tα ∼= Tα1 .
(2) If T∞

1 is a computable rank-saturated tree of tree rank ∞, then T∞ ∼= T∞
1 .

Proof. By induction on α. �

We will fix the notation Tα for the computable rank-saturated tree of rank α, and we
recall that T∞ is a computable rank-saturated tree with infinite paths.

1.2 Σ1
1 sets and relations

We assume that the reader is familiar with basic concepts of recursion theory. However,
here we list some definitions and facts that will be useful for the future proofs. Detailed
information can be found, for example, in [1, 27].

Definition 1.7
(1) A relation S(x) is Σ1

1 if there is an arithmetical relation R(x, u), on tuples of
numbers, such that x ∈ S iff (∃f ∈ ωω) (∀s)R(x, f ↾ s) —we identify f ↾ s with
its code.

30 Isomorphism relations on computable structures

(2) A relation S(x) is Π1
1 if there is an arithmetical relation R(x, u), on tuples of

numbers, such that x ∈ S iff (∀f ∈ ωω) (∃s)R(x, f ↾ s).
(3) A relation S(x) is ∆1

1 if it is both Σ1
1 and Π1

1.

By the Kleene–Suslin Theorem, a relation is ∆1
1 iff it is hyperarithmetical.

If S(x) is a k-place relation, we may consider the set S′ of codes for k-tuples belonging
to S. It is clear that S is Σ1

1 iff S′ is Σ1
1. The next result gives familiar conditions

equivalent to being Σ1
1 [1, 27]. We identify finite sequences with their codes.

Proposition 1.8 (Kleene) The following are equivalent:
(1) S is Σ1

1.
(2) There is a computable relation R(n, u), on pairs of numbers, such that n ∈ S iff

(∃f) (∀s)R(n, f ↾ s).
(3) There is a computable sequence of computable trees (Tn)n∈ω such that n ∈ S iff

Tn has an infinite path.

Theorem 1.9 (Bounding) Let CWF denote the set of codes for computable well-founded
trees on ω and, for each computable ordinal α, let CWFα denote the set of codes for
computable trees of tree rank less than α. Then if F is a hyperarithmetical function from
a hyperarithmetical subset of ω into CWF, there exists a computable α such that the range
of F is contained in CWFα.

We now give a notion of effective reducibility of Σ1
1 equivalence relations on hyper-

arithmetical subsets of ω. The idea is the following. A relation E is effectively reducible
to a relation E′ if there is an effective procedure which allows us to answer any question
about E-equivalence using information about E′-equivalence. We want to use partial
computable functions as witnesses for reducibilities.

Definition 1.10 Let E,E′ be Σ1
1 equivalence relations on hyperarithmetical subsets

X,Y ⊆ ω, respectively. The relation E is FF -reducible to E′ iff there exists a partial
computable function f with X ⊆ dom(f), Y ⊆ f(X) such that, for all x, y ∈ X,

xEy ⇐⇒ f(x)E′f(y).

We denote this fact by E ≤FF E′.

The notion of FF -reducibility was first used in [9] where it was called “tc-reducibility”.
In the next section we will explain the relationship between FF -reducibility and the
notion of tc-reducibility introduced in [4] to compare the classes of countable structures.

1.3 Computable characterization and classification

Here we review two equivalent approaches, from [16], to the problems of computable
characterization and classification. The goal is to be able to measure the complexity of a
set of computable structures or an equivalence relation on a set of computable structures.

The first approach is based on the notion of computable infinitary formulas. Roughly
speaking, computable infinitary formulas are Lω1ω formulas in which the infinite dis-
junctions and conjunctions are over c.e. sets. For a formal definition see [1]. Com-
putable infinitary formulas form a hierarchy: a computable Σ0 or Π0 formula is a finitary
quantifier-free formula. For α > 0, a computable Σα formula is a c.e. disjunction of for-
mulas of the form ∃uψ, where ψ is computable Πβ for some β < α, and a computable Πα
formula is a c.e. conjunction of formulas of the form ∀uψ, where ψ is computable Σβ for
some β < α.

The Infinity Project 31

Following [16], we say that a class K of structures closed under isomorphism has a
computable characterization if the set Kc of its computable members consists exactly of
all computable models of a computable infinitary sentence. This definition expresses the
idea that the set of all computable members of K can be nicely defined among all other
structures for the same language.

The second approach uses the notion of an index set. For a computable structureM,
an index is a number a such that φa = χD(M), where (φa)a∈ω is a computable enumera-
tion of all unary partial computable functions. The index set for M is the set I(M) of
all indices for computable (isomorphic) copies of M. For a class K of structures, closed
under isomorphism, the index set is the set I(K) of all indices for computable members
of K. As in [16], we say that a class K has a computable characterization if its index set
is hyperarithmetical.

Proposition 1.11 (Goncharov–Knight [16]) Let K be a class of countable structures
closed under isomorphism, and let Kc be the set of computable members of K. Then the
following are equivalent:

(1) The index set I(K) of K is hyperarithmetical.
(2) There is a computable infinitary sentence ψ such that Kc = Modcψ, where Modcψ

is the set of all computable models of ψ.

For a relation E on a class K of structures, denote by I(E,K) the set of pairs of
indices

{(m,n) | m,n ∈ I(K) andMmEMn}.
We measure the complexity of various relations on computable structures via the com-
plexity of the corresponding sets of pairs of indices. In what follows we will often identify
E with I(E,K) considered as a relation on indices. Thus, it will make sense to compare
relations on classes of computable structures with relations on subsets of ω. The most
studied cases are that of isomorphism and bi-embeddability relations, e.g., [2, 6, 9, 16].

We are interested in studying the relations on classes that are nicely defined. For this
reason we will require the index set of each class K to be hyperarithmetical. Equivalently,
Kc = Modcψ for some computable infinitary ψ. Let K and K ′ be two classes of countable
structures, such that K = Modψ and K ′ = Modψ′ for some computable infinitary ψ,ψ′.
Suppose the isomorphism relation on K is tc-reducible to the isomorphism relation on
K ′ in the sense of [4]. Then I(∼=,K) ≤FF I(∼=,K ′) and the reduction is exactly the
restriction to computable structures of the reduction of K to K ′.

2 Isomorphism is complete among Σ1
1 equivalence relations

If I(K) is hyperarithmetical and E is the isomorphism or bi-embeddability relation, then
the corresponding equivalence relation I(E,K) on indices is a Σ1

1 set. In this section we
prove completeness of the isomorphism relation on various familiar classes of structures
in the context of all Σ1

1 equivalence relations on hyperarithmetical subsets of ω under
FF -reducibility. These results show the difference of our theory from the classical theory
of Borel equivalence relations since, by [22], some Borel equivalence relations cannot be
reduced to isomorphism relations.

Definition 2.1 A relation E on a hyperarithmetical subset of ω is an FF -complete Σ1
1

equivalence relation if E is Σ1
1 and every Σ1

1 equivalence relation E′ on a hyperarithmetical
subset of ω is FF -reducible to E.

32 Isomorphism relations on computable structures

Note that an equivalence relation E on a hyperarithmetical class Kc of computable
structures is complete if and only if for every Σ1

1 relation E′ there exists a computable
sequence of computable structures (Mn)n∈ω from Kc such that, for all m,n ∈ ω,

mE′n ⇐⇒ MmEMn.

2.1 Trees and graphs

Theorem 2.2 The isomorphism relation on computable trees is an FF -complete Σ1
1

equivalence relation.

Proof. Let E be a Σ1
1 equivalence relation on ω. To prove that E is FF -reducible to

the isomorphism relation on computable trees, we will build a computable sequence of
computable trees (Tn)n∈ω such that, for every m,n ∈ ω,

mEn ⇐⇒ Tm ∼= Tn.

By Proposition 1.8, since E is Σ1
1, there exists a uniformly computable sequence of

trees (Tm,n)m,n∈ω such that ¬mEn if and only if Tm,n is well founded. Then we say that
¬mEn is witnessed by stage α if and only if Tm,n has tree-rank less than α.

The strategy to build (Tn)n∈ω is the following. First, uniformly in m,n, we will build
a computable tree T ∗

m,n with the following properties:
(1) T ∗

m,n
∼= T ∗

n,m;
(2) mEn⇒ T ∗

m,n
∼= T∞, where T∞ is the rank-saturated tree with an infinite path;

(3) ¬mEn ⇒ T ∗
m,n
∼= Tα, where Tα is the rank-saturated tree of tree rank α, for

a computable ordinal α such that for all m′ ∈ [m]E and n′ ∈ [n]E the relation
¬m′En′ is witnessed by stage α. This α will be the least ordinal such that
for all m′ ∈ [m]E , n′ ∈ [n]E and all finite sequences a0 = m′, a1, . . . , as = n′,
α ≥ min{tr(Tai, ai+1) : i ≤ s − 1} + 1, where (Tm,n)m,n∈ω is the sequence fixed
for E in the previous paragraph.

We start from the computable sequence of computable trees (Tm,n)m,n∈ω mentioned
above: Tm,n is well founded if and only if ¬mEn. For every m,n ∈ ω, we construct
(effectively and uniformly) a new tree T ′

m,n in the following way. Let σ0, σ1, . . . be an
enumeration of all finite sequences of natural numbers. Suppose σs = (a0, . . . , als). Then
under the s-th node on level 1 (i.e., under the element of the form (s), s ∈ ω) of T ′

m,n we
put the tree Ps = Tm,a0 ∗Ta0, a1 ∗ · · · ∗Tals , n, identifying the top node of Ps with s. Then

tr(T ′
m,n) = sup{tr(Ps) + 1 | s ∈ ω}.

If mEn, then Tm,n has an infinite path, i.e., tr(Tm,n) = ∞. Thus, tr(T ′
m,n) = ∞.

If ¬mEn, then for every σ = (a0, . . . , al), tr(Tm,a0 ∗ Ta0, a1 ∗ · · · ∗ Tal, n) is a computable
ordinal. Indeed, fix m,n ∈ ω such that ¬mEn. For every finite sequence σs consider the
corresponding tree Ps = Tm,a0 ∗ Ta0, a1 ∗ · · · ∗ Tals , n. Consider the function F from the
set of finite sequences into CWF such that F (s) is the code of Ps. The function F is
hyperarithmetical, its domain is computable. By Bounding, there is a computable bound
on the range of F . Therefore, T ′

m,n has rank α for some computable α. Note that for
all m′ ∈ [m]E and n′ ∈ [n]E , we get the same bound α. Indeed, let m′Em,n′En and
let β be the computable bound on the ranks of trees constructed using finite sequences
starting with m′ and ending with n′. Let Ps = Tm,a0 ∗ Ta0, a1 ∗ · · · ∗ Tals , n be as above.
Then tr(Tm′,m ∗ Ps ∗ Tn,n′) = tr(Ps), thus α ≤ β. Similarly, one can show that β ≤ α.

The Infinity Project 33

Let T ∗
m,n = T ′

m,n ∗ T∞. As shown in Proposition 1.5, the tree T ∗
m,n is a computable

rank-saturated tree, tr(T ∗
m,n) = tr(T ′

m,n), and the construction is uniform.
Now we build the desired sequence (Tn)n∈ω. Take the tree T consisting exactly of the

sequences (m,m, . . . ,m) of length i ≤ m, for m ∈ ω. Now fix n and, for every m, attach
T ∗
m,n to the m-th leaf of T . The resulting tree is Tn. The sequence (Tn)n∈ω witnesses the

reducibility: mEn iff Tm ∼= Tn. Indeed, suppose mEn. Then
(1) for every k ∈ [m]E = [n]E , tr(T ′

k,m) = tr(T ′
k,n) =∞, thus T ∗

k,m
∼= T ∗

k,n
∼= T∞;

(2) for every k /∈ [m]E , tr(T ′
k,m) = tr(T ′

k,n) = α, thus T ∗
k,m
∼= T ∗

k,n
∼= Tα.

Therefore, Tm ∼= Tn.
Suppose now that ¬mEn. Then T ∗

m,m
∼= T∞, while T ∗

m,n
∼= Tα for some comput-

able α. Thus Tm ≇ Tn. �

Corollary 2.3 The isomorphism relation on computable graphs is an FF -complete Σ1
1

equivalence relation.

2.2 Torsion-free abelian groups

Torsion-free abelian groups are subgroups of Q-vector spaces. Hjorth [18] gave a trans-
formation from trees to torsion-free abelian groups, which enabled him to show that the
isomorphism relation on these groups is not Borel. Downey and Montalbán [8] built on
Hjorth’s ideas to show that the isomorphism problem on these groups is complete among
Σ1
1 sets. In this paper we use the transformation from [18] and [8] to show that the

isomorphism relation on computable torsion-free abelian groups is, in fact, complete as a
Σ1
1 equivalence relation. First we describe the transformation.

We consider the elements of ω<ω as a basis for a Q-vector space V ∗. Let T be a
subtree of ω<ω, and let V be the subspace of V ∗ with basis T . Let Tn be the set of
elements at level n of T . If u is at level n > 0, let u− be the predecessor of u. Let (pn)n∈ω
be a computable list of distinct primes. We let G(T) be the subgroup of V generated by
the vector space elements of the following forms:

(1) v/(p2n)k, where v ∈ Tn, and k ∈ ω;
(2) (v + v′)/(p2n+1)

k, where v ∈ Tn, v′ is a successor of v, and k ∈ ω.

Theorem 2.4 The isomorphism relation on computable torsion-free abelian groups is
FF -complete among Σ1

1 equivalence relations.

Proof. It follows from [12] that if we restrict the class of trees to only rank-saturated
trees, then the transformation from the class of trees into torsion-free abelian groups
described above is 1-1 on isomorphism types. Thus, given a Σ1

1 equivalence relation E
for every n ∈ ω, we first construct the sequence of rank-saturated trees (T ∗

m,n)m∈ω as in
Theorem 2.2. We want to pass effectively from the sequence to a group Gn such that
Gn ∼= Gn′ iff for all m, T ∗

m,n
∼= T ∗

m,n′ .
For m ∈ ω, let (pm,k)k∈ω be uniformly computable lists of primes such that, for

distinct m, the lists are disjoint. For each m, we apply the transformation described
above, taking Tm,n to a torsion-free abelian group Gm,n, using the list of primes (pm,k)k∈ω.
The resulting sequence (Gm,n)n∈ω will satisfy the property

T ∗
m,n
∼= T ∗

m′,n′ ⇐⇒ Gm,n ∼= Gm′,n′ .

Let Gn = ⊕mGm,n.

34 Isomorphism relations on computable structures

Using the fact that the sequences of primes are disjoint, we can see that Gn ∼= Gn′

iff for all m, Gm,n ∼= Gm,n′ . The reason is that Gm,n is the subgroup of Gn generated
by the set of elements divisible by all the powers of some prime in the list (pm,k)k∈ω (for
more details, see [8] or [12]). �

2.3 Abelian p-groups

Let p be a prime number. A p-group is a group such that each element has some power
of p for its order. Countable abelian p-groups are classified up to isomorphism in terms
of Ulm invariants (see [20] for details).

In this section we use the transformation from trees into abelian p-groups to get
completeness of the isomorphism relation for this class. Note that in the classical theory
of Borel equivalence relations the analogous result is false (see [13] and a proof for Turing
computable embeddings in [12]).

Theorem 2.5 The isomorphism relation on abelian p-groups is an FF -complete Σ1
1 equiv-

alence relation.

Proof. By Theorem 2.2, for any Σ1
1 equivalence relation E on ω, we have a uniformly

computable sequence of trees (Tn)n∈ω such that mEn iff Tm ∼= Tn. Each tree Tn is the
result of combining a family of trees T ∗

m,n. Each T ∗
m,n is rank-saturated, so it is really

determined by its tree rank. We may modify our trees, if necessary, so that the tree rank,
if it exists, is a limit ordinal.

Let T = (Tm)m∈ω be a sequence of rank-saturated trees. We need a transformation
taking such sequences T to abelian p-groups G(T), such that G(T) ∼= G(T ′) iff the
sequences of ranks for the trees in T and T ′ match. We replace Tm by a tree Tm∗
such that each single successor in Tm becomes a chain of pm successors in Tm∗ . Then
tr(Tm∗) = pmtr(T

m). We form a single tree with infinitely many nodes at level 1, with a
copy of T 0

∗ below the first, a copy of T 1
∗ below the second, etc. Denote the resulting tree

by T . Let G be the abelian p-group generated by the elements of T in a standard way
[20]: the top node is the identity, and if x′ is a successor of x, then px′ = x.

Rogers [28] described how to calculate (non-effectively, of course) the Ulm sequence
for G from the tree ranks of elements in the corresponding tree T . We describe her
scheme briefly. For each node of successor rank, apart from the top node, we choose a
successor witnessing the rank. Now, for each α, uG(α) is the number of nodes of rank
α that are not chosen as witnesses. In computing uG(α), we count all x at level 1 such
that tr(x) = α. Suppose x is an element at level n > 1, where tr(x) = α. Let y be the
predecessor of x. If tr(y) > α+ 1, then x cannot witness the rank of y, so we count x. If
tr(y) = α+ 1, then x may be the chosen successor of y witnessing the rank. We count x
just in case it is not chosen.

Using Rogers’ scheme, we can see that our group G has the following features. For
all computable α, the Ulm invariant uα(G) is either ∞ or 0. For limit α, uα(G) = 0. If
α = ωβ + pm, then uα(G) =∞ iff tr(Tm) ≥ ωβ. �

Corollary 2.6 The isomorphism relation on torsion abelian groups is an FF -complete
Σ1
1 equivalence relation.

Suppose K and K ′ are classes of countable structures, with universe a subset of ω,
closed under isomorphism. We write K ≤tc K ′ if there is a Turing computable operator
Φ = φe taking the atomic diagram of each A ∈ K to the atomic diagram of some B ∈ K ′,

The Infinity Project 35

such that Φ is 1-1 on isomorphism types. This notion was introduced in [4]. If I(K)
and I(K ′) are hyperarithmetical, and K ≤tc K ′, then I(∼=,K) ≤FF I(∼=,K ′). If Φ is the
computable operator reducing the isomorphism relation on structures in K to that on
structures in K ′, then for computable A ∈ K we can effectively compute an index for
Φ(A) from an index for A.

H. Friedman and Stanley [13] introduced the study of Borel reductions ≤B of isomor-
phism relations on classes of structures with universe ω. They showed that the class of
undirected graphs, the class of fields of any fixed characteristic, the class of 2-step nilpo-
tent groups, and the class of linear orderings all lie “on top” in this setting. In [4], it was
observed that the Borel transformations are all effective. Moreover, the transformations
work perfectly well for structures with universe an arbitrary subset of ω. Therefore, these
classes are also “on top” under the relation ≤tc in [4]. We have shown that, for the class
K of trees, the relation I(E,K) (the set of pairs of indices for computable members of K
that are isomorphic) lies “on top” under the relation ≤FF on Σ1

1 equivalence relations
on ω. From this, we immediately get the following.

Theorem 2.7 For each of the following classes K, I(E,K) is an FF -complete Σ1
1 equiv-

alence relation:
• undirected graphs;
• fields of characteristic 0 or p;
• 2-step nilpotent groups;
• linear orderings.

3 Open problems

In [9] equivalence relations were compared not only via FF -reducibility but also via
hyperarithmetical reducibility (h-reducibility):

Definition 3.1 Let E,E′ be Σ1
1 equivalence relations on hyperarithmetical subsets

X,Y ⊆ ω, respectively. The relation E is h-reducible to E′ iff there exists a hyper-
arithmetical function f such that, for all x, y ∈ X,

xEy ⇐⇒ f(x)E′f(y).

By [14] the following theorem is true for the bi-embeddability relation on computable
structures. Here we mean the standard model-theoretic notion of embeddings on struc-
tures.

Theorem 3.2 For every Σ1
1 equivalence relation E on ω there exists a hyperarithmetical

class K of structures which is closed under isomorphism and such that E is h-equivalent
to the bi-embeddability relation on computable structures from K.

Remark 3.4 of [14] provides the result for Σ1
1 preorders on the reals, but the result

for preorders on ω follows almost immediately.
In [10] it was proved that the general structure of Σ1

1 equivalence relations on hy-
perarithmetical subsets of ω (under FF - or h-reducibility) is rich. The above theorem
states that the structure of bi-embeddability relations on hyperarithmetical classes of
computable structures is as complex as the whole structure of Σ1

1 equivalence relations
under h-reducibility. It would be interesting to get the following refinement of Theo-
rem 3.2:

36 Isomorphism relations on computable structures

Question 3.3 If E is a Σ1
1 equivalence relation on ω, does there exist a hyperarithmetical

class K of structures, closed under isomorphism and such that E is FF -equivalent to the
bi-embeddability relation on computable structures from K?

Let K be a class of structures closed under isomorphism such that the index set I(K)
is hyperarithmetical. Consider the following statements:
(1) I(∼=,K) is properly Σ1

1;
(2) I(∼=,K) is m-complete Σ1

1;
(3) I(∼=,K) is Σ1

1 complete under FF -reducibility;
(4) I(∼=,K ↾ highSR) is not hyperarithmetical within K ↾ highSR, where highSR is the

class of structures of high (i.e., noncomputable) Scott rank;
(5) K has infinitely many non-isomorphic computable structures of high Scott rank.

The following implications are true: (1)⇐ (2)⇐ (3)⇒ (4)⇒ (5).

Question 3.4 Which of these arrows are reversible?

One of the approaches to give a negative answer to the question “(1)⇒ (3)?” would
be to positively answer the following:

Question 3.5 Is there a hyperarithmetical class of structures with a unique (up to
isomorphism) computable structure of high Scott rank?

If the answer to this question is positive, we see immediately that (1) does not im-
ply (5). Since (3) implies (5), we also conclude that (1) does not imply (3).

Remark It is known that up to bi-embeddability this is true in the following sense.
In the class of computable linear orderings, the equivalence class of linear orderings bi-
embeddable with the rationals is Σ1

1-complete, but every computable scattered linear
ordering (i.e., not bi-embeddable with the rationals) has a hyperarithmetical equivalence
class. For more information on the bi-embeddability relation in the class of countable
linear orderings see [26].

This question may be also considered as a weaker version of the question from [16]
where the authors asked about the existence of a computable structure with high Scott
rank and a hyperarithmetical index set.

Question 3.6 Are there isomorphism relations on hyperarithmetical classes of com-
putable structures which are not hyperarithmetical and not FF -complete?

References
[1] C. J. Ash, J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, 2000.
[2] W. Calvert, Algebraic structure and computable structure, PhD Dissertation, University of Notre

Dame, 2005.
[3] W. Calvert, D. Cenzer, V. Harizanov, A. Morozov, Effective categoricity of equivalence structures,

Ann. Pure Appl. Logic 141 (2006), 61–78.
[4] W. Calvert, D. Cummins, J. F. Knight, S. Miller, Comparing classes of finite structures, Algebra

and Logic 43 (2004), 374–392.
[5] W. Calvert, J. Knight, J. Millar, Computable trees of Scott rank ωCK

1 and computable approximations,
J. Symb. Logic 71 (2006), 283–298.

[6] J. Carson, E. Fokina, V. S. Harizanov, J. F. Knight, S. Quinn, C. Safranski, J. Wallbaum, Computable
embedding problem, submitted.

[7] D. Cenzer, V. Harizanov, J. Remmel, Σ0
1 and Π0

1 equivalence structures, Proceedings of “Computabil-
ity in Europe 2009”, Heidelberg, Germany, Lecture Notes in Computer Science 5635, 99–108, 2009.

The Infinity Project 37

[8] R. Downey, A. Montalbán, The isomorphism problem for torsion-free Abelian groups is analytic
complete, J. Algebra 320 (2008), 2291–2300.

[9] E. Fokina, S. Friedman, Equivalence relations on classes of computable structures, Proceedings of
“Computability in Europe 2009”, Heidelberg, Germany, Lecture Notes in Computer Science 5635,
198–207, 2009.

[10] E. Fokina, S. Friedman, Σ1
1 equivalence relations on ω, submitted.

[11] E. Fokina, S. Friedman, A. Törnquist, The effective theory of Borel equivalence relations, Ann. Pure
Appl. Logic 161 (2010), 837–850.

[12] E. Fokina, J. Knight, A. Melnikov, S. Quinn, C. Safranski, Ulm type, and coding rank-homogeneous
trees in other structures, to appear in J. Symb. Logic.

[13] H. Friedman, L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symb.
Logic 54 (1989), 894–914.

[14] S. D. Friedman, L. Motto Ros, Analytic equivalence relations and bi-embeddability, to appear in J.
Symb. Logic.

[15] S. Gao, Invariant Descriptive Set Theory, Pure and Applied Mathematics, CRC Press/Chapman &
Hall, 2009.

[16] S. S. Goncharov, J. F. Knight, Computable structure and non-structure theorems, Algebra and Logic
41 (2002), 351–373 (English translation).

[17] J. Harrison, Recursive pseudo well-orderings, Trans. Amer. Math. Soc. 131 (1968), 526–543.
[18] G. Hjorth, The isomorphism relation on countable torsion-free Abelian groups, Fund. Math. 175

(2002), 241–257.
[19] V. Kanovei, Borel Equivalence Relations. Structure and Classification, University Lecture Series 44,

American Mathematical Society, 2008.
[20] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.
[21] A. Kechris, New directions in descriptive set theory, Bull. Symb. Logic 5 (1999), 2, 161–174.
[22] A. Kechris, A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer.

Math. Soc. 10 (1997), 1, 215–242.
[23] B. Khoussainov, F. Stephan, Y. Yang, Computable categoricity and the Ershov hierarchy, Ann. Pure

Appl. Logic 156 (2008), 86–95.
[24] J. F. Knight, S. Miller (Quinn), M. Vanden Boom, Turing computable embeddings, J. Symb. Logic

73 (2007), 901–918.
[25] A. Louveau, C. Rosendal, Complete analytic equivalence relations, Trans. Amer. Math. Soc. 357

(2005), 12, 4839–4866.
[26] A. Montalbán, On the equimorphism types of linear orderings, Bull. Symb. Logic 13 (2007), 71–99.
[27] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.
[28] L. Rogers, Ulm’s theorem for partially ordered structures related to simply presented Abelian p-groups,

Trans. Amer. Math. Soc. 227 (1977), 333–343.

The Infinity Project

Classes of structures with universe a subset of ω1

Ekaterina Fokina†, Sy-David Friedman†, Julia F. Knight‡,
Russell Miller§, Antonio Montalbán¶

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
efokina@logic.univie.ac.at, sdf@logic.univie.ac.at

‡ Department of Mathematics, University of Notre Dame, USA
Julia.F.Knight.1@nd.edu

§ Department of Mathematics, Queens College, City University of New York, USA
Russell.Miller@qc.cuny.edu

¶ Department of Mathematics, University of Chicago, USA
antonio@math.uchicago.edu

Abstract. In this paper, we add to the collection of recent results on computable structure theory in
the setting of ω1. In the standard setting, there are results comparing the classification problems for
different classes of countable structures [10]. In [8], it is shown that Σ1

1 equivalence relations on ω are
reducible under an effective relation ≤FF , to isomorphism of certain classes of computable structures,
where the structures are identified with their indices. In the present paper, we lift this result to ω1. In the
standard setting, there are many results on computable categoricity and relative computable categoricity.
In particular, there are results saying which structures of various familiar kinds are relatively computably
categorical and which are not even computably categorical. In the setting of ω1, the real number field
and the complex number field are both relatively computably categorical. The present paper gives some
results on categoricity for some further uncountable fields.

1 Introduction

We begin by summarizing some definitions and results from [3, 12] on computability
in ω1. We assume that all subsets of ω are constructible. In certain places, we assume
that all subsets of ω1 are constructible. The basic definitions come from α-recursion
theory, where α = ω1.

Definition 1.1
• A set or relation on ω1 is computably enumerable, or c.e., if it is defined in (Lω1 ,∈)

by a Σ1 formula φ(c, x) with finitely many parameters —a Σ1 formula is finitary,
with only existential and bounded quantifiers, occurring only positively.
• A set or relation is computable if it and its complement are both computably

enumerable.
• A (partial) function is computable if its graph is c.e.

Results of Gödel provide a 1-1 function g from ω1 onto Lω1 such that the relation
g(α) ∈ g(β) is computable. There is also a computable function ℓ taking α to the code
for Lα. The function g gives ordinal codes for sets, so that computing on ω1 is really the

The authors wish to thank the John Templeton Foundation for its generous support of this research
through the CRM Infinity Project (Grant ID 13152).

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

39

40 Classes of structures with universe a subset of ω1

same as computing on Lω1 . We may allow relations and functions of arity α, where α is
any countable ordinal.

As in the standard setting, we have indices for c.e. sets. There is a c.e. set C of codes
for pairs (φ, c), representing Σ1 definitions —φ(u, x) is a Σ1 formula and c is a tuple of
parameters appropriate for u. We have a computable function h mapping ω1 onto C.
Then the ordinal α is a c.e. index for the set X if h(α) is the code for a pair (φ, c), where
φ(c, x) is a Σ1 definition of X in (Lω1 ,∈). We write Wα for the c.e. set with index α.

Suppose Wα is determined by the pair (φ, c); i.e., φ(c, x) is a Σ1 definition. We say
that x is in Wα at stage β, and we write x ∈ Wα,β , if Lβ contains x, the parameters c,
and witnesses making the formula φ(c, x) true. The relation x ∈ Wα,β is computable.
Let U ⊆ (ω1)

2 consist of the pairs (α, β) such that β ∈Wα. Then U is m-complete c.e. It
is not computable, since the “halting set” K = {α : α ∈Wα} is c.e. and not computable.

We define relative computability as follows.

Definition 1.2
• A relation is c.e. relative to X if it is Σ1-definable in (Lω1 ,∈, X).
• A relation is computable relative to X if it and its complement are both c.e.

relative to X.
• A (partial or total) function is computable relative to X if the graph is c.e.

relative to X.

A c.e. index for R relative to X is an ordinal α such that g(h(α)) = (φ, c), where
φ is a Σ1 formula (in the language with ∈ and a predicate symbol for X), and φ(c, x)
defines R in (Lω1 ,∈, X). We write WX

α for the c.e. set with index α relative to X. As
in the standard setting, we have a universal c.e. set of partial computations using oracle
information. Let U consist of the codes for triples (σ, α, β) such that σ ∈ 2ρ (for some
countable ordinal ρ), and for X with characteristic function extending σ, β ∈WX

α . Then
U is c.e.

Definition 1.3 The jump of X is X ′ = {α : α ∈WX
α }.

We can iterate the jump function through countable levels. For this, we let X(0) = X,
X(α+1) = (X(α))′, and for limit α, X(α) is the set of codes for pairs (β, x) such that β < α

and x ∈ X(β).

1.1 Computable structures

We consider structures with universe a subset of ω1. As in the standard setting, we
identify a structure with its atomic diagram. The ordered field of reals has a computable
copy with universe ω1. In fact, if we think of the reals as a subset of Lω1 , where each
real is identified with a rational cut, then the field of real numbers itself is a computable
structure. The field of complex numbers is also computable. We may add to R a total
analytic function such as exp, or sin, and the resulting expansion is still computable. To
see this, we note that the analytic function is determined by the countable sequence of
coefficients of a power series.

In the standard setting, Metakides and Nerode [13] showed that there is a computable
infinite-dimensional Q-vector space with no infinite c.e. linearly independent set, while
any computable Zp-vector space has a computable basis. In the setting of ω1, there is a
computable R-vector space with no uncountable c.e. independent set. By contrast, any
Q-vector space has a computable basis.

The Infinity Project 41

One of the earliest results in computable structure theory says that there is a com-
putable field F of characteristic 0 with no “splitting algorithm”; that is, the set of irre-
ducible polynomials over F is not computable. The idea, due to Van der Waerden [17],
and made more precise by Fröhlich and Shepherdson [11], is to put into F a primitive
(pn)-th root of unity iff n ∈ K. Thus, for any F ′ ∼= F , K is computable relative to
the set of polynomials that are irreducible over F ′. Note that the set K is coded in the
isomorphism type of F . Hirschfeldt gave an analogous result in the setting of ω1, showing
that there is a computable field F of characteristic 0 with a uniform procedure which, for
any G ∼= F , computes K from G and the set of polynomials that are irreducible over G.
Hirschfeldt’s construction uses ideas of H. Friedman and Stanley [10].

In the standard setting, Morley [16] and Millar [14] showed that for any countable
complete decidable elementary first order theory T , there is a decidable saturated model
iff there is a computable enumeration of the complete types consistent with T . In the
setting of ω1, we have the following.

Proposition 1.4 For any countable complete elementary first order theory T (with infi-
nite models), T has a decidable saturated model with universe ω1.

In the standard setting, Nurtazin showed that there is a “computable numbering” of
the computable linear orderings; i.e., there is a uniformly computable sequence of linear
orderings representing all computable order types at least once. The same is true in the
setting of ω1. In the standard setting, the first non-computable ordinal, ωCK1 , is the
next admissible ordinal after ω. In the setting of ω1, the first non-computable ordinal
comes much before the next admissible after ω1, as the set of codes for computable
wellorderings is definable over Lω1 . In the standard setting, the Harrison ordering is a
computable ordering of type ωCK1 (1 + η). This ordering has initial segments isomorphic
to all computable well orderings. In the setting of ω1, we have the following.

Theorem 1.5 (Greenberg–Knight–Shore) There is a computable ordering H with initial
segments isomorphic to all computable ordinals.

We take a uniformly computable list of linear orderings, representing all computable
isomorphism types, and carry out a finite-injury priority construction to produce H with
an initial segment that is a sum of intervals representing the well ordered Aα, in order,
followed by various other intervals that are not well ordered.

Definition 1.6 Let A be a computable structure, and let R be a relation on A.
• R is relatively intrinsically c.e. on A if for all B ∼= A the image of R is c.e.

relative to B.
• R is intrinsically c.e. on A if for all computable B ∼= A the image of R is c.e.

In [1], [4], it is shown in the standard setting that for a relation R on a computable
structure A, for any computable α ≥ 1, R is relatively intrinsically Σ0

α iff it is definable
in A by a “computable Σα” formula with a finite tuple of parameters. In particular, R
is relatively intrinsically c.e. if it is defined by a c.e. disjunction of finitary existential
formulas, with a finite tuple of parameters. In [12] the result is lifted to the setting
of ω1. Here the computable Σ1 formula has a countable tuple of parameters, and each
disjunct has a countable block of existential variables followed by a quantifier-free formula
of Lω1ω. In [3], there is a definition of the arithmetical hierarchy for the setting of ω1,
extending through the countable ordinals (coinciding with the levels of Σn definability
over the Lω1+α, α countable), and there is a corresponding definition of “computable Σα

42 Classes of structures with universe a subset of ω1

formula”. It is shown that a relation on a computable structure is relatively intrinsically
Σα iff it has a computable Σα definition, with a countable tuple of parameters.

Definition 1.7 Let A be a computable structure.

• A is relatively computably categorical if, for all copies B, there is an isomorphism
from A onto B which is computable relative to B.
• A is computably categorical if, for all computable copies B, there is a computable

isomorphism from A onto B.

In the standard setting, there is a syntactical characterization of relative computable
categoricity [1, 4]. A structure is relatively computably categorical iff there is a formally
c.e. Scott family, where this is a c.e. set Φ of existential formulas, with a fixed finite tuple
of parameters c, such that each tuple in A satisfies some formula in Φ, and any two tuples
satisfying the same formula in Φ are automorphic. In the setting of ω1, the field of real
numbers and the field of complex numbers are both relatively computably categorical.
Jesse Johnson, in work for his Ph.D. thesis, has some results on computable categoricity.
Two simple examples that are not computably categorical are the ordering of type η · ω1

and the equivalence structure with ℵ1 classes, all of size ℵ0. Johnson has shown that
the “Zilber field” of size ℵ1 is not computably categorical. Associated with each Zilber
field is a “cover”, and Johnson has shown that the cover associated with the Zilber field
is computably categorical. In [12], there is a characterization of the structures that are
relatively computably categorical, involving a “continuous”, formally c.e. Scott family.

In the standard setting, there is work comparing classification problems for various
classes of countable structures. Friedman and Stanley [10] considered structures with
universe ω, and Borel classes, closed under isomorphism. If K,K ′ are two such classes,
then K ≤B K ′ if there is a Borel function Φ: K → K ′ such that, for A,B ∈ K, A ∼= B
iff Φ(A) ∼= Φ(B). Among the classes that lie on top under ≤B are linear orderings and
fields (of any desired characteristic). In [2], we consider effective variants of the notions
from [10]. In [7] there are some results comparing Σ1

1 equivalence relations on ω under a
relation ≤FF . Andrea Sorbi pointed out that the relation ≤FF has been denoted simply
by ≤ by people working on the theory of “numberings”. The notion goes back to early
work of Ershov [6] in this setting.

Definition 1.8 For Σ1
1 equivalence relations E,E′ on ω, E ≤FF E′ if there is a com-

putable function f such that aEb iff f(a)E′f(b).

If we identify computable members of a class K with their indices, and the index
set I(K) is hyperarithmetical, then the isomorphism relation becomes a Σ1

1 equivalence
relation on numbers. We add a class for the numbers that are not indices for computable
elements of K. The following result, for the standard setting, is proved in [8].

Theorem 1.9 (Fokina–Friedman–Harizanov–Knight–McCoy–Montalbán) For every Σ1
1

equivalence relation E on ω, there exists a uniformly computable sequence of structures
(An)n∈ω such that mEn iff Am ∼= An.

In Section 2, we lift this result to the setting of ω1. In Section 3, we give some results
on computable categoricity of fields in the setting of ω1.

The Infinity Project 43

2 Equivalence relations

We can show, in the setting of ω1, that all Σ1
1 sets S ⊆ ω1 are m-reducible to the

isomorphism relation on computable subtrees of ω<ω1
1 . In fact, there is a particular tree

T such that for any Σ1
1 set S there is a uniformly computable sequence of trees (Tα)α<ω1

such that α ∈ S iff Tα ∼= T . We begin with the following analogue of Kleene normal form.

Lemma 2.1 For any Σ1
1 set S ⊆ ω1, there is a uniformly computable sequence (Tα)α<ω1

of subtrees of ω<ω1
1 such that α ∈ S iff Tα has an ω1-branch.

Next, we define the special tree T . There is just one node ∅ at level 0. This node
has ℵ1 successors. For each node above level 0, there are ℵ1 copies. Half of the copies
are terminal, while the other half have ℵ1 successors. We think of T as a set of functions
σ from countable ordinals to ω1 × {0, 1, 2} such that if σ has last term (β, 0), then σ is
terminal, and if σ has limit length α, with terms (β, 1) for arbitrarily large β < α, then
σ is also terminal. The elements of T are the sequences σ mapping countable ordinals α
to ω1 × {0, 1, 2} such that if there is a term (β, 0), then σ has length β + 1, and if there
are infinitely many terms (βi, 1) and β = sup{βi}, then σ has length β.

Definition 2.2 Let T1, T2 be subtrees of ω<ω1
1 . Then T ∗

1 T2 is the subtree of (ω1×ω1)
<ω1

consisting of the functions τ such that for some σ1 ∈ T1 and σ2 ∈ T2, both of length α,
τ has length α and for all β < α, τ(β) = (σ1(β), σ2(β)).

It is easy to see that T ∗
1 T2 has an ω1-branch iff T1 and T2 each have an ω1-branch.

Lemma 2.3 For any tree R ⊆ ω<ω1
1 , if R has an ω1-branch, then R∗T ∼= T , and if R

has no ω1-branch, then R∗T also has no ω1-branch.

Combining the two lemmas, we get the following.

Theorem 2.4 For any Σ1
1 set S ⊆ ω1, there is a uniformly computable sequence of trees

(Tα)α<ω1 such that α ∈ S iff Tα ∼= T .

2.1 Passing from graphs to fields, linear orderings

Here we consider arbitrary structures with universe a subset of ω1, not just computable
structures. We write K ≤tc K ′ if there is a computable operator Φ taking structures in
K to structures in K ′ such that, for A,B ∈ K, A ∼= B iff Φ(A) ∼= Φ(B).

Proposition 2.5 If K is the class of undirected graphs, and K ′ is the class of fields of
characteristic 0 (or any other desired characteristic), then K ≤tc K ′.

Proof. We use the Friedman–Stanley embedding of undirected graphs in fields of the fixed
characteristic (see [10]). �

Proposition 2.6 If K is the class of undirected graphs and K ′ is the class of linear
orderings, then K ≤tc K ′.

Idea. We use the analogue of the Friedman–Stanley embedding [10], replacing Q by the
saturated model of the theory of dense linear orderings without endpoints of cardinality
ℵ1, and replacing the finite sequences by sequences of arbitrary countable ordinal length.
Instead of finite discrete sets to code atomic types, we use sets having the order type of
countable ordinals. �

44 Classes of structures with universe a subset of ω1

We get a linear ordering L (on ω1) that resembles the Harrison ordering in the fol-
lowing way.

Proposition 2.7 There is a linear ordering L such that, for any Σ1
1 set S, there is a

uniformly computable sequence (Lα)α<ω1 such that α ∈ S iff Lα ∼= L.

2.2 Main result

Theorem 2.8 Assume V = L. For any Σ1
1 equivalence relation E on ω1, there is a uni-

formly computable sequence of structures M∗(α)α<ω1 (with universe ω1) such that αEβ
iff M∗(α) ∼=M∗(β).

The structures M∗(α) will not be members of any familiar class. Each structure will
code a sequence of sets (Xβ)β<ω1 , up to an equivalence relation ∼ defined as follows.

Definition 2.9 For X,Y ⊆ ω1, X ∼ Y iff X∆Y is not stationary.

Lemma 2.10 For any Σ1
1 set X ⊆ ω1, there is a uniformly computable sequence (Sα)α<ω1

of subsets of ω1 such that α ∈ X iff Sα contains a club.

Proof. Let (Tα)α<ω1 be a uniformly computable sequence of trees resulting from applying
Theorem 2.4 to X; thus α ∈ X iff Tα has an ω1 branch. Let Sα be the set of countable
ordinals β such that, for some countable γ > β,

(1) Lγ |= ZF−;

(2) ωLγ1 = β;

(3) TLγα has a branch of length β in Lγ , where TLγα is the tree that in Lγ satisfies the
definition of Tα. (Note that this tree is independent of the choice of γ satisfying
1 and 2.)

First, suppose that Tα has an ω1-branch b. We must show that Sα contains a club.
Choose γ > ω1 such that b ∈ Lγ and Lγ |= ZF−. We form a continuous elementary
chain of models M0 ≺M1 ≺ . . . ≺ Lγ with α, b ∈M0. Let c = {βi : βi = ωMi

1 }. We take
the transitive collapse πi(Mi) = M i. Then M i = Lγi for some γi, and βi = ω

Lγi
1 . Then

πi(b) is a βi-branch through T
Lγi
α . We may suppose that the βi are strictly increasing,

βi ∩ ω1 ⊆ Mi+1, and for limit i, βi is the sup of the βj for j < i. Then c is the required
club.

We must show that if Tα has no ω1 branch, then Sα does not contain a club. Let c
be a club and choose a limit ordinal γ > ω2 such that c ∈ Lγ . In Lγ , Tα (or TLγα) has
no ω1-branch. Let M be the Skolem hull of c, α, ω1 in Lγ . Again, we take the transitive
collapse π(M) = M = Lγ . We have β = M ∩ ω1 = ωM1 ∈ c. We can see that β /∈ Sα,
since in Lγ+ω we have that β is countable. And in Lγ , the tree TLγα has no β branch,
using the isomorphism π. It follows that no γ can witness that β belongs to Sα. �

Let E be a Σ1
1 equivalence relation on ω1. We identify pairs of ordinals with single

ordinals and let S be as above, so that αEβ iff Sα,β contains a club. For any X ⊆ ω1, let
L(X) be the ℵ1-like linear order formed by stacking ω1 many copies of the rational order
and at limit stage α putting in a supremum iff α ∈ X.

Lemma 2.11 For X,Y ⊆ ω1, L(X) ∼= L(Y) iff X ∼ Y .

The Infinity Project 45

Now, we use the trick from [8]. For any finite chain c = (α, γ1, γ2, . . . , γn, β), let
S∗(α, β) consist of the sets of the form

S(c) = Sα,γ1 ∩ Sγ1,γ2 ∩ . . . ∩ Sγn,β.
If α′Eα, then Sα′,α contains a club. Therefore, for each finite chain c from α to β,
Sα′,α∩S(c) ∼ S(c). It follows that if we define S∗(α, β) to be the set of the S(c) where c is
a chain starting with α and ending with β, and αEα′, then S∗(α, β) agrees with S∗(α′, β),
in the sense that they have the same elements modulo the ideal of nonstationary sets.

Let M(α, β) be the structure that is the “free union” of ω1 copies of the linear orders
L(X) for X ∈ S∗(α, β). One way to make this precise is to let M(α, β) consist of two
disjoint sets A,B of size ω1, with a relation R(a, b0, b1) for a in A and b0, b1 in B so that,
for each fixed a, R(a,−,−) defines a linear order of B isomorphic to one of the L(X), for
X ∈ S∗(α, β), and each such order occurs for exactly ω1-many such a in A. Alternatively,
we may let M(α, β) have equivalence relation with an ordering on each equivalence class,
so that, for each set X ∈ S∗(α, β), the ordering L(X) is copied in uncountably many
equivalence classes, and for each equivalence class, the ordering on the equivalence class
is isomorphic to L(X) for some X ∈ S∗(α, β).

Lemma 2.12
(1) If αEα′, then M(α, β) ∼=M(α′, β) for all β.
(2) If NOT αEα′, then M(α, α) ̸∼=M(α′, α).

Proof. For (2), we note that if NOT αEα′, then there is no set X ∈ S∗(α, α′) that
contains a club, but there is such a set in S∗(α, α). From this, it follows that M(α, α) is
not isomorphic to M(α, α′). �

Finally, let M∗(α) be the sequence (not the free union) of the structures M(α, β), for
β < ω1.

Lemma 2.13 For all α, α′, αEα′ iff M∗(α) ∼=M∗(α′).

Proof. If αEα′, then M(α, β) ∼=M(α′, β) for all β. Therefore, M∗(α) ∼=M∗(α′). If NOT
αEα′, then M(α, α) ̸∼=M(α′, α). Therefore, M∗(α) ̸∼=M∗(α′). �

3 Results on fields

Here we consider arbitrary ω1-computable fields of characteristic 0. The domain of the
field is either ω1 or possibly just ω, and the field operations are all ω1-computable. We
believe that our results carry over equally well to fields of positive characteristic.

Lemma 3.1 Every ω1-computable field has a computable transcendence basis over its
prime subfield Q. (Q itself, being countable, is also ω1-computable.)

Proof. For each α ∈ F we define α ∈ B iff

(∀⟨β1, . . . , βn⟩ ∈ α<ω)(∀p ∈ Q[X1, . . . , Xn, Y])

[p(β1, . . . , βn, α) = 0→ p(β1, . . . , βn, Y) = 0].

This statement quantifies only over countable sets which we can enumerate uniformly
and know when we have finished enumerating each one. It says that α lies in B iff α
satisfies no nonzero polynomial over the subfield Q(β : β < α) generated by all elements
< α. Clearly this B is a transcendence basis for F . �

46 Classes of structures with universe a subset of ω1

Using a finite-time algorithm given by Kronecker, we will quickly infer the ω1-com-
putable categoricity of the field of complex numbers. First, here is the lemma.

Lemma 3.2 In the context of finite-time computation, let F be a computable field which
is a purely transcendental extension of Q of infinite transcendence degree. If F has a
computable transcendence basis B, then F has a splitting algorithm. (That is, reducibility
of polynomials in F [X] is decidable.)

Proof. The work of Kronecker showed that Q itself has a splitting algorithm, and that,
whenever a computable field E has a splitting algorithm and x is transcendental over E
within some larger computable field, then the subfield E(x) also has a splitting algorithm,
uniformly in the splitting algorithm for E. (For a modern explanation of the details,
see [5].) Write the computable basis B = {b0 < b1 < · · · }. Now, given any polynomial
p(X) ∈ F [X], search for a finite set B0 = {bαi : i < n} such that all coefficients of p are
algebraic over Q(B0). By Kronecker, Q(B0) has a splitting algorithm (uniformly in B0),
which we can use to determine whether p factors over Q(B0). However, since every monic
factor of p is of the form (X−r1)(X−r2) · · · (X−rn) for some roots r1, . . . , rn of p and all
such roots are algebraic over Q(B0), we see that every monic factor of p has all coefficients
algebraic over Q(B0) as well. Therefore, p factors over F iff it factors over Q(B0). �
Corollary 3.3 The field C is relatively ω1-computably categorical.

Proof. Given any two ω1-computable fields E ∼= F ∼= C, fix the computable transcendence
bases B for E and C for F described in Lemma 3.1. Let f be the unique bijection from
B onto C preserving order (viewing the field elements as ordinals in ω1). This f is
ω1-computable and extends effectively to an isomorphism from E onto F : go through
each element x ∈ E in their order as ordinals, determine whether x ∈ B (in which case
f(x) is already defined), and if not, find the minimal polynomial p(X) of x over the
subfield Ex generated by all elements < x. (Using Lemma 3.2, we can find the minimal
polynomial of x over Q(B ∩ Ex), and then we simply adjoin each y < x to this subfield,
one at a time, and check at each step whether the former minimal polynomial of x factors
over the new subfield. Thus, after countably many steps, we have the desired p(X).)
Then map x to the least root in F of the image of p(X) in F [X] under the map f on the
coefficients of p(X). By normality of F over Q(C), at every step this map still extends
to an isomorphism from E into F , so we always find such a root in F . Moreover, since f
maps B onto the transcendence basis C for F , f must map E onto all of F : every y ∈ F
has a minimal polynomial p(X) ∈ Q(C)[X] of some degree d, and the roots x1, . . . , xd
of its preimage in E[X] must map one-to-one to the d-many roots of p(X) in F , forcing
y ∈ rg(f).

The foregoing proof relativizes to the degree of any field E ∼= C, yielding relative
ω1-computable categoricity. �
Theorem 3.4 Let F be any ω1-computable field with a subfield K isomorphic to C,
and assume that F is countably generated over K. Then F is relatively ω1-computably
categorical.

Proof. Say F = K(C), where C is countable and C ∩K = ∅. In general K will not be
computable. Notice that then each c ∈ F −K must be transcendental over K, and so F
cannot contain the algebraic closure of K(c), because this field is not countably generated
over K. So we may fix a countable set S ⊆ K with the property that, for every c ∈ C,
S contains some tuple x0, . . . , xn such that F does not contain the algebraic closure of

The Infinity Project 47

the set {x0, . . . , xn, c}. Therefore, an arbitrary element x ∈ F lies in K iff K contains
the algebraic closure of S ∪ {x}. Since S ∪ {x} is countable, we will recognize at some
countable stage that F contains this algebraic closure (if indeed x ∈ F). Therefore, K is
computably enumerable within F .

We next define a subfield F0 of K as follows. Write C = {c1, c2, . . .}. For each i > 0,
if ci is transcendental over the field K(c1, . . . , ci−1), then add nothing to F0; otherwise,
add to F0 a finite set of elements y1, . . . , yn from K such that the minimal polynomial of
ci over K(c1, . . . , ci−1) has coefficients in Q(y1, . . . , yn, c1, . . . , ci−1). Since C is countable,
this only adds countably many elements in all, and we let F0 ⊆ K be the algebraic closure
of the subfield of K generated by these elements along with the elements of S. Thus F0

is also countable.
We claim that every automorphism of K which fixes F0 pointwise extends to an auto-

morphism of F which is the identity on C. To see this, let h0 be such an automorphism
of K. Define h to extend h0 by setting h(ci) = ci for all i. We claim that this h extends to
an automorphism of all of F . For each s > 0, if cs is transcendental over K(c1, . . . , cs−1),
then it is clear that setting hs(cs) = cs extends to an automorphism hs of K(c1, . . . , cs).
If cs is algebraic over K(c1, . . . , cs−1), then by our choice of F0, the minimal polynomial
p(X) of cs over all of K(c1, . . . , cs−1) lies in F0(c1, . . . , cs−1)[X]. So when we apply hs−1

to the coefficients of p, we just get p itself, and therefore, in defining hs(cs) = cs, we
are mapping cs to a root of the image (under hs−1) of its own minimal polynomial, and
so hs is again seen to be an automorphism. Thus, the union h of all these hs is an
automorphism of K(C), which is to say, of F .

Now let E be any field isomorphic to F , with domain ω1, and suppose ρ is a non-
computable isomorphism from F onto E. We give the details for the case where E
is computable; they relativize directly to an arbitrary E. Let E0 be the countable image
ρ(F0), and let T = ρ(S). We start be defining f0 = ρ ↾ (F0(C)), which is computable
because F0 and C are countable. Next, we enumerate K as defined above, and similarly
enumerate its image ρ(K) within E, using the set T . At stage σ + 1, we wait for a new
element x to appear in K (using our enumeration) on which fσ is not defined. When this
happens, we find the first element y to appear in our enumeration of ρ(K) which is not
already in rg(fσ), and define fσ+1(x) = y. At this stage we also find all elements of F
which are algebraic over the portion of K which has appeared so far (including x) but
not in the domain of fσ, and define fσ+1 of each of these to be a root of the correspond-
ing polynomial in E. (We can do this effectively, simply enumerating F until all of the
countably many polynomials over this portion of K have their full complement of roots.)
Thus we extend the domain of fσ+1 to include a larger algebraically closed subfield Kσ+1

of K than previously. In addition, we extend fσ+1 to have the appropriate values on all
elements generated by C over Kσ+1; again, it is not difficult to find all of these elements
in countably many steps. This completes stage σ + 1.

It is clear that this defines a map f = ∪fσ on all of F , whose restriction to K is
an isomorphism from K onto ρ(K) (because we always chose the next new element of
ρ(K) in our enumeration to be the image of the next new element of K). The map f
is also defined and equal to ρ on C (as well as on F0), and is defined on all elements
generated by C over K as well. That is, f is defined on all of F . Since ρ and f are equal
on F0, our argument above shows that the automorphism (ρ−1 ◦ f)↾ K of K extends to
an automorphism τ of all of F , which is the identity on C. But then f = ρ ◦ τ , so f is
an isomorphism from F onto E, as desired. �

48 Classes of structures with universe a subset of ω1

At the other extreme from algebraically closed fields, namely fields purely transcen-
dental over Q, the opposite result holds.

Proposition 3.5 The purely transcendental field extension F = Q(Xα : α ∈ ω1) is not
ω1-computably categorical.

Proof. We may assume that F is a presentation with transcendence basis {Xα : α < ω1}
computable. (Lemma 3.1 only guarantees the existence of some computable transcen-
dence basis, not necessarily of one generating the entire field.) We build a computable
field E ∼= F with no computable isomorphism from E onto F . Then Xα will be our
witness that the computable function φα is not such an isomorphism.

At the start, we build E0 to be F itself, although we only use half the elements of ω1

to do so. (Let E0 be the isomorphic image of F under the map λ+n 7→ λ+2n for all limit
ordinals λ.) We write yα ∈ E0 for the image of xα under this map. Then, for each α, we
wait for φα(yα) to converge, say to some zα ∈ F . When this happens, we find β1, . . . , βn
such that zα ∈ Q(xβ1 , . . . , xβn), and ask whether the polynomial p(X) = X2− zα factors
over the subfield Q(xβ1 , . . . , xβn). (Kronecker gives a splitting algorithm for this field,
since we know xβi to be algebraically independent over Q.) If so, then zα has a square
root in F , and so we do not change anything in E, but define y′α = yα. If not, then
we adjoin to E a new element y′α whose square in E is yα, and use half of the currently
unused elements to close E under the field operations. This completes the construction.

Now E = Q(y′α : α < ω1) is isomorphic to F via the map y′α 7→ xα. However, if
φα(yα)↓, then yα has a square root in E iff φα(yα) has no square root in F . Thus no φα
can be an isomorphism from E onto F . �

Finally, we believe that we can exploit the fact that 2ω ≥ ω1 to produce an ω1-com-
putably categorical field of transcendence degree ω1 which is very far from algebraically
closed. The proof, which still needs to be checked, mixes the technique of the Friedman–
Stanley embedding from [10] with the Miller–Schoutens idea of “tagging” transcendentals,
described in [15].

Conjecture 3.6 There exists an ω1-computable, relatively ω1-computably categorical
field of uncountable transcendence degree which does not even contain a copy of the
algebraic closure Q, let alone the closure of any of its transcendentals.

Proof. The idea of the proof is as follows. We start with the field generated over Q by an
uncountable transcendence basis B = {xn : n ∈ ω}∪{xα : α < ω1}. The countably many
elements zn in this basis are used to identify the other elements xα, using an ω1-comput-
able bijective function h : ω1 → 2ω. (This function does not actually need to be onto the
power set 2ω; an injective computable function would suffice. So we do not require CH
here.)

To complete the construction of F , we adjoin certain elements algebraic over the ba-
sis B. First, for every α < ω1, we adjoin an element yα satisfying x5α+y5α = 1, the Fermat
equation of degree 5. It must be checked (by commutative algebraists) that this does not
cause any solutions of X5 + Y 5 = 1 to appear in F except the six solutions generated by
each pair (xα, yα), and the two pre-existing solutions (0, 1) and (1, 0). (Details appear
in [15].) Assuming this is so, we define tα, for each α, to be the sum

tα = xα + yα +
1

yα
− xα
yα

+
1

xα
− yα
xα

The Infinity Project 49

of the six elements used for these six pairs. (Since the Fermat polynomial is symmetric,
the solutions actually consist of three distinct pairs, involving these six elements, along
with the three pairs symmetric to these.) Thus the set {tα : α < ω1} is intrinsically
computably enumerable, and since it forms a transcendence basis for F , it is in fact
intrinsically computable. (Every computably enumerable transcendence basis for any
computable field is computable.) Now we adjoin the following set of elements to F ,
similar to the process invented by Friedman and Stanley:

{
√
z2n + tα : n ∈ h(α)} ∪ {

√
z2n+1 + tα : n /∈ h(α)}.

As shown in [10], this adjoinment does not cause any other square roots of this form
to appear in F . We must check that it also does not cause any more solutions of the
Fermat polynomial to appear there (which seems reasonable, since all these extensions
have degree 2). Assuming these facts, the set T of elements tα remains intrinsically
computable in this field F .

Therefore, in any ω1-computable field E isomorphic to F via some (noncomputable)
function ρ, we may compute the image ρ(T) of the set of all elements tα. We may also
take the countable function n 7→ ρ(zn) as given. Then, for each α < ω1, we then search for
an element t ∈ ρ(T) such that, for every n ∈ h(α), F contains a square root of t+ρ(z2n),
and for every n /∈ h(α), F contains a square root of t + ρ(z2n+1). Within countably
many steps, we find such a t ∈ ρ(T), and we define it to be f(tα). We also choose
f(xα) and f(yα) in E to be any of the six solutions to the Fermat equation whose sum
is f(tα); [15] shows that the six choices are equivalent. Finally, we define f(zn) = ρ(zn)
for each n, using countably much information. We have thus defined f on a generating
set for F , and it is clear that this map extends to an isomorphism from F onto E. Thus
F is ω1-computably categorical, and the relativization goes through in exactly the same
manner.

We again remind the reader that the commutative algebra in this argument must be
checked before we can claim to have proven Conjecture 3.6. Even if it fails for the Fermat
polynomial of degree 5, however, we do believe that there exist polynomials which would
allow the proof to go through as described here. �

References
[1] C. J. Ash, J. F. Knight, M. Mannasse, T. Slaman, “Generic copies of countable structures”, Ann.

Pure Appl. Logic, vol. 42 (1989), pp. 195–205.
[2] W. Calvert, D. Cummins, J. F. Knight, S. Miller, “Comparing classes of finite structures”, Algebra

and Logic, vol. 43 (2004), pp. 374–392.
[3] J. Carson, J. Johnson, J. F. Knight, K. Lange, C. McCoy CSC, J. Wallbaum, “The arithmetical

hierarchy in the setting of ω1”, preprint.
[4] J. Chisholm, “Effective model theory versus recursive model theory”, J. Symb. Logic, vol. 55 (1990),

pp. 1168–1191.
[5] H. M. Edwards, Galois Theory, New York: Springer-Verlag, 1984.
[6] Yu. L. Ershov, Theory of Numberings, Moscow: Nauka, 1977 (in Russian).
[7] E. Fokina, S. Friedman, “On Σ1

1 equivalence relations over the natural numbers”, Math. Log. Quart.,
vol. 58 (2012), pp. 113–124.

[8] E. Fokina, S. Friedman, V. Harizanov, J. F. Knight, C. McCoy CSC, A. Montalbán, “Isomorphism
relations on computable structures”, J. Symb. Logic, vol. 77 (2012), pp. 122–132.

[9] E. Fokina, S. Friedman, A. Törnquist, “The effective theory of Borel equivalence relations”, Ann.
Pure Appl. Logic, vol. 161 (2010), pp. 837–850.

[10] H. Friedman, L. Stanley, “A Borel reducibility theory for classes of countable structures”, J. Symb.
Logic, vol. 54 (1989), pp. 894–914.

50 Classes of structures with universe a subset of ω1

[11] A. Frölich, J. C. Shepherdson, “Effective procedures in field theory”, Phil. Trans. Royal Soc. London,
Series A 248 (1956) 950, pp. 407–432.

[12] N. Greenberg, J. F. Knight, “Computable structure theory in the setting of ω1”, paper for Proceedings
of first EMU workshop.

[13] G. Metakides, A. Nerode, “Effective content of field theory”, Ann. Math. Logic, vol. 17 (1979), pp.
289–320.

[14] T. Millar, “Foundations of recursive model theory”, Ann. Math. Logic, vol. 13 (1978), pp. 45–72.
[15] R. Miller, H. Schoutens, “Computably categorical fields via Fermat’s Last Theorem”, submitted for

publication.
[16] M. Morley, “Decidable models”, Israel J. Math., vol. 25 (1976), pp. 233–240.
[17] B. L. van der Waerden, “Eine Bemerkung über die Unzerlegbarkeit von Polynomen”, Math. Ann.,

vol. 102 (1930), pp. 738–739.

The Infinity Project

Equivalence relations in set theory, computation
theory, model theory and complexity theory

Sy-David Friedman†

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

Introduction

One of Harvey’s most influential articles is his joint work with Lee Stanley [8] in which he
introduces a notion of Borel reducibility between isomorphism relations on the countable
models of a theory in infinitary logic. Through the work of many researchers, this theory
later blossomed into a rich field devoted to the more general study of Borel reducibility
between Borel and analytic equivalence relations (and quasi-orders). For a look at some
of this work see [11, 12, 17, 19, 23, 26, 27, 30].

The aim of the present article is to illustrate how a similar idea has recently been
used to good effect in four new contexts: effective descriptive set theory, computation
theory, model theory and complexity theory. This work has deepened research in these
fields, produced a number of unexpected results and raised a host of interesting new open
problems.

1 Effective descriptive set theory

We begin with a brief description of the classical, non-effective setting, before turning to
the more recent work [6] in the effective context. The principal objects of study in the
classical theory are analytic (Σ1

1 with parameters) equivalence relations on Polish spaces
(think of the reals). Such equivalence relations are compared using Borel reducibility in
the following way: E0 is Borel reducible to E1 iff there is a Borel function f : X0 → X1

such that xE0y iff f(x)E1f(y).
E0 and E1 are Borel bireducible if each Borel reduces to the other. Then B denotes

the resulting set of degrees, ordered under Borel reducibility. When discussing Borel
reducibility we sometimes identify an equivalence relation with its degree. Work of Silver
[37] and of Harrington–Kechris–Louveau [16] identifies an interesting initial segment of B:

Theorem 1.1 B has the initial segment

1 < 2 < · · · < ω < id < E0,

where n denotes Borel equivalence relations with exactly n classes; ω denotes Borel equiv-
alence relations with exactly ℵ0 classes; id is (ωω,=) (equality on reals); and E0 is

This work has been published: Equivalence relations in set theory, computation theory, model theory
and complexity theory, in Foundational Adventures: Essays in Honor of Harvey M. Friedman, College
Publications, London, 2011.

†The author wishes to thank the John Templeton Foundation for its support through the project
Myriad Aspects of Infinity, Project ID# 13152, and the Austrian Science Fund (FWF) for its support
through research project P 20835-N13.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

51

52 Equivalence relations

the equivalence relation xE0y iff x(n) = y(n) for all but finitely many n. In fact, any
Borel equivalence relation is Borel equivalent to one of the above or lies strictly above E0

under Borel reducibility.

The question for the effective theory is: What happens if we replace “Borel” by
“effectively Borel”? In what follows we simply write “Hyp” for “effectively Borel” (that is,
lightface ∆1

1). We define:

Definition 1.2 If E and F are Hyp equivalence relations on the reals, then E is Hyp
reducible to F , written E ≤H F , iff for some Hyp function f , xEy iff f(x)Ff(y).

The relation ≤H is reflexive and transitive. We write E ≡H F for E ≤H F and
F ≤H E.

So the new object of study is H, the degrees of Hyp equivalence relations on the reals
under Hyp reducibility.

There are some surprises! Again we have degrees

1 < 2 < · · · < ω < id < E0,

defined as follows: n is represented by xEny iff x(0) = y(0) < n−1 or x(0), y(0) ≥ n−1;
ω is represented by xEωy iff x(0) = y(0); id, E0 are as before: xidy iff x = y, xE0y iff
x(n) = y(n) for all but finitely many n.

Proposition 1.3 There are Hyp equivalence relations strictly between 1 and 2.

Here is why: Let E be a Hyp equivalence relation. Recall that the H-degree n is
represented by the equivalence relation En where:

xEny iff x(0) = y(0) < n− 1 or x(0), y(0) ≥ n− 1.

Fact 1. En is Hyp reducible to E iff at least n distinct E-equivalence classes contain Hyp
reals.

Proof. Suppose that En Hyp reduces to E via the Hyp function f . Each of the n equiv-
alence classes of En contains a Hyp real; let x0, . . . , xn−1 be Hyp, pairwise En-inequivalent
reals. Then the reals f(xi), i < n are Hyp, pairwise E-inequivalent reals. Conversely, if
y0, . . . , yn−1 are Hyp, pairwise E-inequivalent reals, then send the En-equivalence class
of xi to the real yi; this is a Hyp reduction of En to E. 2

Fact 2. E is Hyp reducible to E2 iff E has at most 2 equivalence classes.

Proof. If E is Hyp reducible to E2, then E has at most 2 equivalence classes because
E2 has only 2 equivalence classes. Conversely, suppose that the equivalence classes of E
are A0 and A1. We may assume that A0 has a Hyp element x. Then A0 is Hyp as it
consists of those reals E-equivalent to x and A1 is Hyp as it consists of those reals not
E-equivalent to x. Now we can reduce E to E2 by choosing E2-inequivalent Hyp reals
y0, y1 and sending the elements of A0 to y0 and the elements of A1 to y1. 2

So to get a Hyp equivalence relation between 1 and 2 we need only find one with
two equivalence classes but with all Hyp reals in just one class. The existence of such
an equivalence relation follows from a classical fact from Hyp theory (see [35, page 52,
Theorem 1.1]):

Fact 3. There are nonempty Hyp sets of reals which contain no Hyp element.

The Infinity Project 53

Proof. Let A be the set of non-Hyp reals. Then A is Σ1
1 and therefore the projection of a

Π0
1 subset P of Reals × Reals. P is nonempty. A Hyp real h = (h0, h1) in P would give

a Hyp real h0 in A, contradiction. 2

Now we ask a harder question: Are there incomparable degrees between 1 and 2? To
answer this we prove:

Theorem 1.4 ([6]) There exist Hyp sets of reals A,B such that for no Hyp function F
do we have F [A] ⊆ B or F [B] ⊆ A.

Given this theorem, define EA to be the equivalence relation with equivalence classes
A and ∼ A (the complement of A); define EB similarly. Note that the sets A,B contain
no Hyp reals, else there would be a constant Hyp function F mapping one of them into the
other. So a Hyp reduction of EA to EB would have to send the elements of ∼ A (which
contains Hyp reals) to elements of ∼ B, and therefore the elements of A to elements of B,
contradicting the Theorem. Similarly there is no Hyp reduction of EB to EA.

Proof sketch of Theorem 1.4. First we quote a result of Harrington [15] (see also [33,
Theorem XIII.3.5]). For reals a, b and a recursive ordinal α, we say that a is α-below b
iff a is recursive in the α-jump of b.

Fact. For any recursive ordinal α there are Π0
1 singletons a, b such that a is not α-below

b and b is not α-below a.

Using Barwise Compactness, find a nonstandard ω-model M of ZF− with standard
ordinal ωCK1 in which there are Π0

1 singletons a, b such that, for all recursive α, a is not
α-below b and b is not α-below a (i.e., a and b are Hyp incomparable). Let a, b be the
unique solutions in M to the Π0

1 formulas φ0, φ1, respectively. The desired sets A,B are
{x | φ0(x)} and {x | φ1(x)}. If F were a Hyp function mapping A into B, then it would
send the element a of A to an element F (a) of B ∩M ; but then F (a) must equal b and
therefore b is Hyp in a, contradicting the choice of a, b. 2

Now fix A, B as in the Theorem. Using them we can get incomparable Hyp equiv-
alence relations between n and n + 1 for any finite n, by considering EA, EB where the
equivalence classes of EA are A together with a split of ∼ A (the complement of A) into
n classes, each of which contains a Hyp real (similarly for EB).

We now consider Hyp equivalence relations with infinitely many equivalence classes.
Recall the Silver and Harrington–Kechris–Louveau dichotomies:

Theorem 1.5
(a) (Silver) A Borel equivalence relation is either Borel reducible to ω or Borel re-

duces id.
(b) (Harrington–Kechris–Louveau) A Borel equivalence relation is either Borel re-

ducible to id or Borel reduces E0.

How effective are these results? Harrington’s proof of (a) and the original proof of (b)
show the following:

Theorem 1.6
(a) A Hyp equivalence relation is either Hyp reducible to ω or Borel reduces id.
(b) A Hyp equivalence relation is either Hyp reducible to id or Borel reduces E0.

The sets A,B of Theorem 1.4 can be used to show that the Silver and Harrington–
Kechris–Louveau dichotomies are not fully effective:

54 Equivalence relations

Theorem 1.7 ([6])
(a) There are incomparable Hyp equivalence relations between ω and id.
(b) There are incomparable Hyp equivalence relations between id and E0.

Proof sketch. For (a), consider the relations

EA(x, y) iff (x ∈ A and x = y) or (x, y /∈ A and x(0) = y(0));
EB: The same, with A replaced by B.

Now Eω Hyp reduces to EA by n 7→ (n, 0, 0, ...). Also EA Hyp reduces to id via the map
G(x) = x for x ∈ A, G(x) = (x(0), 0, 0, ...) for x /∈ A (same for B).

There is no Hyp reduction of EA to EB: If F were such a reduction, then let C be
F−1[∼ B]. As ∼ B is Hyp, C is also Hyp and therefore A ∩ C is also Hyp. But A ∩ C
must be countable as F is a reduction. So if A ∩ C were nonempty it would have a Hyp
element, contradicting the fact that A has no Hyp element. Therefore F maps A into B,
which is impossible by the choice of A,B. By symmetry, there is no Hyp reduction of
EB to EA.

For (b), we define EA on R × R by: (x, y)EA(x
′, y′) iff x = x′ and either x /∈ A or

(x ∈ A and yE0y
′). EB is the same, with A replaced by B.

We need two facts (see [18, Lemma 2.49] and [24, Theorem 2.2.5(a)], respectively):

1. If h : R→ R is Baire measurable and constant on E0 classes, then h is constant
on a comeager set.

2. If B ⊆ R2 is Hyp, then so is {x | {y | (x, y) ∈ B} is comeager}.

Now suppose that F were a Hyp reduction of EA to EB. Let π(x, y) = x for all x
and define h : R→ R by h(x) = z iff {y | π(F (x, y)) = z} is comeager.

Using 1 and 2, h is a total Hyp function. We claim that h[A] ⊆ B, contradicting the
choice of A,B: Assume x ∈ A. Then for comeager-many y, π(F (x, y)) = h(x). So if
h(x) /∈ B then F maps more than one EA class into a single EB class, contradiction. By
symmetry there is no Hyp reduction of EB to EA. 2

The overall picture of the degrees of Hyp sets of reals under Hyp reducibility is the
following: Call a degree canonical if it is one of 1 < 2 < · · · < ω < id < E0. For any two
canonical degrees a < b there is a rich collection of degrees which are above a, below b
and incomparable with all canonical degrees in between.

However at least one nice thing happens: If a degree is above n for each finite n, then
it is also above ω.

Because this field is so new (like the others introduced in this paper), there remain
many open questions. Here are several:

1. If a Hyp equivalence relation is Borel reducible to E0, then must it also be Hyp
reducible to E0? (This is true for finite n, ω, id.)

2. Are there any nodes other than 1? That is, is there a Hyp equivalence rela-
tion with more than one equivalence class which is comparable with all Hyp
equivalence relations under Hyp reducibility?

3. Is there a minimal degree? Are there incomparables above each degree?

There is also a jump operation, which is in need of further study.

The Infinity Project 55

2 Computation theory

We now turn to equivalence relations not on the reals but on the natural numbers, where
computation theory plays a central role. As seen in the last section, Hyp-reducibility for
Hyp equivalence relations on the real numbers has a rich structure; however the analogous
theory in the context of the natural numbers is trivial:

Proposition 2.1 ([4, Section 2.2, Fact 2.10.2]) Any Hyp equivalence relation on the
natural numbers is Hyp reducible to the equality relation on ω.

Therefore the central objects of interest in our study of equivalence relations on the
natural numbers are not the Hyp equivalence relations but instead the Σ1

1 equivalence
relations. Indeed, in the classical theory of Borel reducibility one considers not only the
Borel equivalence relations but more generally analytic (Σ1

1 with parameters) equivalence
relations which are not Borel; indeed these appeared already in [8].

Let T be any theory in first-order logic (or any sentence of the infinitary logic Lω1ω).
Then the isomorphism relation on the countable models of T is an analytic equivalence
relation which need not be Borel.

There are analytic equivalence relations which are not Borel reducible to such an
isomorphism relation; an example is E1, the equivalence relation on Rω defined by:

x⃗E1y⃗ iff x⃗(n) = y⃗(n) for almost all n.

Note that E1 is even Hyp. A motivating question for our study is the following:

Question. Is every Σ1
1 equivalence relation on the natural numbers reducible to isomor-

phism on a Hyp class of computable structures?

Of course we can identify a computable structure with a natural number which serves
as an index for it. The reducibility we use is: E0 ≤H E1 iff there is a Hyp function
f : N → N such that mE0n iff f(m)E1f(n). (We say that E0 is Hyp reducible to E1.)

Theorem 2.2 ([5]) Every Σ1
1 equivalence relation on N is Hyp reducible to isomorphism

on computable trees.

This answers the above question positively.

Proof sketch: Let E be a Σ1
1 equivalence relation on N and choose a computable

f : N 2 −→ {computable trees}

such that ∼ mEn iff f(m,n) is well-founded.
Now associate to pairs m,n computable trees T (m,n) so that:
• T (m,n) is isomorphic to T (n,m);
• mEn implies that T (m,n) is isomorphic to the “canonical” non-well-founded

computable tree;
• ∼ mEn implies that T (m,n) is isomorphic to the “canonical” computable tree of

rank α, where α is least so that f(m′, n′) has rank at most α for all m′ ∈ [m]E ,
n′ ∈ [n]E .

Now to each n associate the tree Tn gotten by gluing together the T (n, i), i ∈ ω. If
mEn, then Tm is isomorphic to Tn as they are obtained by gluing together isomorphic
trees. And if ∼ mEn then Tm, Tn are not isomorphic as they are obtained by gluing
together trees which on some component are non-isomorphic. 2

56 Equivalence relations

It can be shown that the isomorphism relation on computable trees (and therefore
any Σ1

1 equivalence relation on N) Hyp-reduces to the isomorphism relation on each of
the following Hyp classes:

1. Computable graphs.
2. Computable torsion-free Abelian groups.
3. Computable Abelian p-groups for a fixed prime p.
4. Computable Boolean algebras.
5. Computable linear orders.
6. Computable fields.

These results came as a surprise, because, in the classical setting, the analogue of 2
is an open problem and the analogue of 3 is false!

Fokina and I show in [4] that the global structure of Σ1
1 equivalence relations on N

under Hyp reducibility is very rich: it embeds the partial order of Σ1
1 sets under Hyp

many-one reducibility. But it is not known if there is a single isomorphism relation
on computable structures which is neither Hyp nor complete under Hyp-reducibility!
However we do have:

Theorem 2.3 ([4]) Every Σ1
1 equivalence relation is Hyp bireducible to a bi-embeddability

relation on computable structures.

The proof is based on the analagous result in the non-effective setting:

Theorem 2.4 ([11]) Every analytic equivalence relation on the reals is Borel bireducible
to a bi-embeddability relation on countable structures.

I should also mention that there has been considerable prior work on computably
enumerable equivalence relations, of which provable equivalence is a natural example.
For those interesting results we refer to [13] and the references therein.

3 Model theory

It is natural to expect that insights into the model-theoretic properties of a first-order
theory could be derived from the descriptive set-theoretic behaviour of the isomorphism
relation on its countable models under Borel reducibility. This idea was pursued by
Laskowski [29], Marker [31] and in depth by Koerwien [28]. But the conclusion was
rather negative: theories can be complicated model-theoretically and simple descriptive
set-theoretically (an example is dense linear orderings), or vice-versa (an example is
described in [28]).

A solution to this difficulty emerged through the study of isomorphism on a theory’s
uncountable models. The work of [10] (see Chapter V, Theorem 64) shows, for exam-
ple, that a theory is classifiable and shallow in Shelah’s model-theoretic sense exactly if
the isomorphism relation on its models of size κ (for an appropriate choice of regular
uncountable cardinal κ) is “Borel” in a generalised sense.

Naturally, a prerequisite for this study is the development of a suitable descriptive set
theory of the uncountable, which has turned out to be a fascinating area of independent
interest. Armed with such a theory, it becomes possible to bring in the methods of
model-theoretic stability theory to uncover deep connections between the model theory
and descriptive set theory of first-order theories.

I begin with the uncountable descriptive set theory. It is favourable to choose κ to
be uncountable and such that κ<κ = κ. The Generalised Baire Space κκ is the space of

The Infinity Project 57

all functions f : κ → κ topologised with basic open sets of the form Ns = {f | s ⊆ f}, s
an element of κ<κ. In this context the Borel sets are obtained by closing the open sets
under the operations of complementation and unions of size at most κ. The Σ1

1 sets are
the projections of Borel sets, the Π1

1 sets are the complements of the Σ1
1 sets and the ∆1

1

sets are those which are both Σ1
1 and Π1

1. Borel sets are ∆1
1 but the converse is false.

As usual, a set is nowhere dense if its closure contains no nonempty open set; a set is
meager if it is the union of κ-many nowhere dense sets. The Baire Category Theorem
holds in the sense that the intersection of κ-many open dense sets is dense. A set has the
Baire Property (BP) if its symmetric difference with some open set is meager. Borel sets
have the BP. A perfect set is the range of a continuous injection from 2κ (the Generalised
Cantor Space) into κκ. A set has the Perfect Set Property (PSP) iff it either has size at
most κ or contains a perfect subset.

Theorem 3.1 ([10])
(a) It is consistent that all ∆1

1 sets have the BP.
(b) For any stationary subset S of κ, the filter CUB(S), the closed unbounded filter

restricted to S, is a Σ1
1 set without the BP.

(c) In L, CUB(S) for stationary S is not ∆1
1, but there are nevertheless ∆1

1 sets
without the BP and without the PSP.

(d) It is consistent relative to an inaccessible cardinal that all Σ1
1 sets have the PSP

(and the use of an inaccessible is necessary).

Remark. Part (a) was proved independently by Lücke–Schlicht; in the case S = κ, part (b)
is due to Halko–Shelah and part (d) was proved independently by Schlicht.

I turn now to Borel reducibility. Suppose that X0, X1 are Borel subsets of κκ. Then
f : X0 → X1 is a Borel function iff f−1[Y] is Borel whenever Y is Borel. This implies
that the graph of f is Borel, as (x, y) belongs to the graph of f iff for all s ∈ κ<κ, either
y does not belong to Ns or x belongs to f−1[Ns].

If E0, E1 are equivalence relations on Borel sets X0, X1 respectively, then we say that
E0 is Borel reducible to E1, written E0 ≤B E1, iff for some Borel f : X0 → X1,

x0E0y0 iff f(x0)E1f(x1).

Now recall the following picture from the classical case:

1 <B 2 <B · · · <B ω <B id <B E0

forms an initial segment of the Borel equivalence relations under ≤B where n denotes an
equivalence relation with n classes for n ≤ ω, id denotes equality on ωω and E0 denotes
equality modulo finite on ωω.

At κ we easily get the initial segment

1 <B 2 <B · · · <B ω <B ω1 <B · · · <B κ

where for each nonzero cardinal λ ≤ κ we identify λ with the ≡B class of Borel equivalence
relations with exactly λ-many classes. What happens above these equivalence relations?
We might hope for:

Silver Dichotomy. The equivalence relation id (equality on κκ) is the strong successor
of κ under ≤B, i.e., if a Borel equivalence relation E has more than κ classes then id is
Borel reducible to E.

58 Equivalence relations

Theorem 3.2
(a) The Silver Dichotomy implies the PSP for Borel sets. Therefore it fails in L and

its consistency requires at least an inaccessible cardinal.
(b) The Silver Dichotomy is false with Borel replaced by ∆1

1.

Is the Silver Dichotomy consistent? This question remains open.
We can also consider what happens above id. In the case κ = ω we have:

Classical Glimm–Effros Dichotomy. E0 = (equality mod finite) is the strong successor of
id, i.e., if a Borel equivalence relation E is not Borel reducible to id (i.e., E is not smooth)
then E0 Borel-reduces to E.

At κ, what shall we take E0 to be? For infinite regular λ ≤ κ, define E<λ0 = equality
for subsets of κ modulo sets of size < λ.

Proposition 3.3 For λ < κ, E<λ0 is Borel bireducible with id.

So we can forget about E<λ0 for λ < κ and set E0 = E<κ0 , equality modulo bounded
sets.

As in the classical case, we have:

Proposition 3.4 E0 = E<κ0 is not Borel reducible to id.

There are other versions of E0: For regular λ < κ define Eκλ = equality modulo
the ideal of λ-nonstationary sets. These equivalence relations are key for connecting
model-theoretic stability with uncountable descriptive set theory.

How do the relations Eκλ compare to each other under Borel reducibility for different λ?
For simplicity, consider the special case κ = ω2.

Theorem 3.5 ([10])
(a) It is consistent that Eω2

ω and Eω2
ω1

are incomparable under Borel reducibility.
(b) Relative to a weak compact it is consistent that Eω2

ω is Borel reducible to Eω2
ω1

.

It is not known if it is consistent for Eω2
ω1

to be Borel reducible to Eω2
ω .

What is the relationship between E0 and Eκλ?

Theorem 3.6
(a) The relations Eκλ do not Borel reduce to E0, as E0 is Borel and the Eκλ are not.
(b) If κ = µ+ for some cardinal µ, then E0 reduces to Eκλ , unless λ is the cofinality

of µ.
(c) In L, the condition in (b) that λ not be the cofinality of µ can be dropped.

The structure of the ∆1
1 equivalence relations under Borel reducibility is (consistently)

very rich:

Theorem 3.7 Consistently, there is an injective, order-preserving embedding from
(P(κ),⊆) into the partial order of ∆1

1 equivalence relations under Borel reducibility.

The above summarises the current state of knowledge regarding uncountable descrip-
tive set theory. As has been mentioned, there remain many open questions, some of which
we list at the end of this section.

Now we return to the connection between uncountable descriptive set theory and
model theory. Let T be a countable, complete and first-order theory. Then T is classi-
fiable iff there is a “structure theory” for its models; example: algebraically closed fields
(transcendence degree). T is unclassifiable otherwise; example: dense linear orderings.

The Infinity Project 59

Shelah’s Characterisation (Main Gap). T is classifiable iff T is superstable without the
OTOP and without the DOP.

A classifiable T is deep iff it has the maximum number of models in all uncountable
powers; example: acyclic undirected graphs —every node has infinitely many neighbours.
T is shallow otherwise. (Remark: Actually, Shelah defined “deep” differently, in terms of
rank. The fact that his definition is equivalent to the previous is one of the most profound
results of his classification theory.)

Now for simplicity assume κ = λ+ where λ is uncountable and regular and the GCH
holds at λ. Isomκ

T is the isomorphism relation on the models of T of size κ.

Theorem 3.8 ([10])
(a) T is classifiable and shallow iff Isomκ

T is Borel.
(b) T is classifiable iff for all regular µ < κ, ESκµ is not Borel reducible to Isomκ

T .
(c) In L, T is classifiable iff Isomκ

T is ∆1
1.

The proof uses Ehrenfeucht–Fraïssé games. The Game EFκt (A,B) is defined as follows,
where A, B are structures of size κ and t is a tree. Player I chooses size < κ subsets
of A ∪ B and nodes along an initial segment of a branch through t; player II builds a
partial isomorphism between A and B which includes the sets that player I has chosen.
Player II wins iff he survives until a cofinal branch is reached.

The tree t captures Isomκ
T iff for all size κ models A, B of T , A ≃ B iff player II has

a winning strategy in EFκt (A,B).
Now there are four cases:

Case 1: T is classifiable and shallow.

Then Shelah’s work [36] shows that some well-founded tree captures Isomκ
T . We use

this to show that Isomκ
T is Borel.

Case 2: T is classifiable and deep.

Then Shelah’s work shows that no fixed well-founded tree captures Isomκ
T . We use

this to show that Isomκ
T is not Borel.

Shelah’s work also shows that L∞κ equivalent models of T of size κ are isomorphic.
This means that the tree t = ω (with a single infinite branch) captures Isomκ

T . As the
games EFκω(A,B) are determined, this shows that Isomκ

T is ∆1
1.

We must also show: ESκµ (equality modulo the µ-nonstationary ideal) is not Borel
reducible to Isomκ

T for any regular µ < κ. This is because (in this case) Isomκ
T is abso-

lutely ∆1
1, whereas µ-stationarity is not.

Now we look at the unclassifiable cases. Recall that classifiable means superstable
without DOP and without OTOP.

Case 3: T is unstable, superstable with DOP or superstable with OTOP.

Work of Hyttinen–Shelah [20] and Hyttinen–Tuuri [21] shows that in this case no
tree of size κ without branches of length κ captures Isomκ

T . This can be used to show
Isomκ

T is not ∆1
1.

But ESκλ ≤B Isomκ
T is harder. Following Shelah, there is a Borel map S 7→ A(S)

from subsets of κ to Ehrenfeucht–Mostowski models of T built on linear orders so that
A(S0) ≃ A(S1) iff S0 = S1 modulo the λ-nonstationary ideal.

Case 4: T is stable but not superstable.

60 Equivalence relations

This is the hardest case and requires some new model theory. In our joint paper [10],
Hyttinen replaces Ehrenfeucht–Mostowski models built on linear orders with primary
models built on trees of height ω + 1 to show ESκω ≤B Isomκ

T . (We do not know if
ESκλ ≤B Isomκ

T or if Isomκ
T could be ∆1

1 in this case.)
Now we have all we need to prove the theorem mentioned earlier:

(a) T is classifiable and shallow iff Isomκ
T is Borel.

We mentioned that if T is classifiable and shallow then Isomκ
T is Borel and if it is

classifiable and deep it is not. If T is not classifiable, then some ESκµ Borel reduces to
Isomκ

T , so the latter cannot be Borel.

(b) T is classifiable iff for all regular µ < κ, ESκµ is not Borel reducible to Isomκ
T .

We mentioned that if T is not classifiable then ESκµ is Borel reducible to Isomκ
T where

µ is either λ or ω. We also mentioned that if T is classifiable and deep then no ESκµ
is Borel reducible to Isomκ

T , by an absoluteness argument. When T is classifiable and
shallow there is no such reduction as Isomκ

T is Borel.

(c) In L, T is classifiable iff Isomκ
T is ∆1

1.

We mentioned that if T is classifiable then Isomκ
T is ∆1

1 in ZFC. If T is not classifiable,
then ESκµ Borel reduces to Isomκ

T for some µ, and in L, ESκµ is not ∆1
1.

This summarises the work in [10]. Some surprisingly basic and very interesting open
questions remain in this new area. Below are some of them. Assume κ<κ = κ, as before.

1. Under what conditions on an uncountable κ does Vaught’s Conjecture hold in
the following form: If an isomorphism relation on the models of size κ has more
than κ classes, then id is Borel reducible to it?

2. Is the Silver Dichotomy for uncountable κ consistent?

3. Is it consistent for there to be Borel equivalence relations which are incomparable
under Borel reducibility for an uncountable κ?

4. Is it consistent that Sω2
ω1

Borel reduces to Sω2
ω ?

5. We proved that the isomorphism relation of a theory T is Borel if and only if T
is classifiable and shallow. Is there a connection between the depth of a shallow
theory and the Borel degree of its isomorphism relation? Is one monotone in the
other?

6. Can it be proved in ZFC that if T is stable unsuperstable then isomorphism for
the size κ models of T (κ uncountable) is not ∆1

1?

7. If κ = λ+ with λ regular and uncountable, then does equality modulo the λ-non-
stationary ideal Borel reduce to isomorphism for the size κ models of T for all
stable unsuperstable T?

8. Let DLO be the theory of dense linear orderings without end points and RG the
theory of random graphs. Does the isomorphism relation of RG Borel reduce to
that of DLO for an uncountable κ?

The Infinity Project 61

4 Complexity theory

We consider NP equivalence relations on finite strings. One motivation for this topic is
the following: Borel reducibility allows us to compare isomorphism relations on Borel
classes of countable structures. Is there an analogous reducibility for “nice” classes of
finite structures?

The resulting theory of “strong isomorphism reductions” is introduced in [9] and stud-
ied systematically in [2]. We consider polynomial-time definable classes C of structures
for a finite vocabulary τ , where the structures in C have universe {1, . . . , n} for some
finite n > 0 and where C is invariant, i.e., closed under isomorphism. To avoid triviali-
ties we also assume that C contains arbitrarily large structures. Some examples of such
classes are:

1. The classes SET, BOOLE, FIELD, GROUP, ABELIAN and CYCLIC of sets
(structures of empty vocabulary), Boolean algebras, fields, groups, abelian
groups, and cyclic groups, respectively.

2. The class GRAPH of (undirected and simple) graphs.

3. The class ORD of linear orderings.

4. The classes LOP of linear orderings with a distinguished point and LOU of linear
orderings with a unary relation.

Let C and D be classes. We say that C is strongly isomorphism reducible to D and
write C ≤iso D if there is a function f : C → D computable in polynomial time such that,
for all A,B ∈ C, A ≃ B iff f(A) ≃ f(B). We then say that f is a strong isomorphism
reduction from C to D and write f : C ≤iso D. If C ≤iso D and D ≤iso C, denoted by
C ≡iso D, then C and D have the same strong isomorphism degree.

Examples
(a) The map sending a field to its multiplicative group shows that FIELD ≤iso

CYCLIC.
(b) CYCLIC ≤iso ABELIAN ≤iso GROUP; more generally, if C ⊆ D, then C ≤iso D

via the identity.
(c) SET ≡iso FIELD ≡iso ABELIAN ≡iso CYCLIC ≡iso ORD ≡iso LOP. (For the

proof, see [2].)

Proposition 4.1 C ≤iso GRAPH for all classes C.

The structure of ≤iso between LOU and GRAPH is linked with central open problems
of descriptive complexity. Before turning to that, I will first consider the structure below
LOU. That structure, even below LOP, is quite rich.

Theorem 4.2 The partial ordering of the countable atomless Boolean algebra is em-
beddable into the partial ordering induced by ≤iso on the degrees of strong isomorphism
reducibility below LOP. More precisely, let B be the countable atomless Boolean algebra.
Then there is a one-to-one function b 7→ Cb defined on B such that, for all b, b′ ∈ B,

(i) Cb is a subclass of LOP;
(ii) b ≤ b′ iff Cb ≤iso Cb′ .

62 Equivalence relations

This result is obtained by comparing the number of isomorphism types of structures
with universe of bounded cardinality in different classes. For a class C, we let C(n) be
the subclass consisting of all structures in C with universe of cardinality ≤ n and we let
#C(n) be the number of isomorphism types of structures in C(n).

Examples
(a) #BOOLE(n) = [log n], #CYCLIC(n) = n, #SET(n) = #ORD(n) = n+ 1.

(b) #LOP(n) =
∑n

i=1 i = (n+ 1) · n/2 and #LOU(n) =
∑n

i=0 2
i = 2n+1 − 1.

(c) #GROUP(n) is superpolynomial but subexponential (more precisely, it is
bounded by nO(log2 n)); see [1].

A class C is potentially reducible to a class D, written C ≤pot D, iff there is some
polynomial p such that #C(n) ≤ #D(p(n)) for all n ∈ N. Of course, by C ≡pot D we
mean C ≤pot D and D ≤pot C.

Lemma 4.3 If C ≤iso D, then C ≤pot D.

Proof. Let f : C ≤iso D. As f is computable in polynomial time, there is a polynomial
p such that for all A ∈ C we have |f(A)| ≤ p(|A|), where f(A) denotes the universe of
f(A). As f strongly preserves isomorphisms, it therefore induces a one-to-one map from{
A ∈ C : |A| ≤ n

}
/≃ to

{
B ∈ D : |B| ≤ p(n)

}
/≃. 2

We state some consequences of this simple observation:

Proposition 4.4
1. CYCLIC ̸≤iso BOOLE and LOU ̸≤iso LOP.
2. C ≤pot LOU for all classes C and LOU ≡pot GRAPH.
3. The strong isomorphism degree of GROUP is strictly between that of LOP and

GRAPH.
4. The potential reducibility degree of GROUP is strictly between that of LOP and

LOU.

The following concepts are used in the proof of Theorem 4.2. We call a function
f : N→ N value-polynomial iff it is increasing and f(n) can be computed in time f(n)O(1).
Let VP be the class of all value-polynomial functions. For f ∈ VP, the set

Cf =
{
A ∈ LOP : |A| ∈ im(f)

}
is in polynomial time and is closed under isomorphism. As there are exactly f(k) pairwise
non-isomorphic structures of cardinality f(k) in LOP, we get

#Cf (n) =
∑

k∈N with f(k)≤n

f(k).

The following proposition contains the essential idea underlying the proof of Theorem 4.2.
Loosely speaking, it says that if the gaps between consecutive values of f ∈ VP “kill”
every polynomial, then there are classes C and D with C ̸≤pot D.

Proposition 4.5 Let f ∈ VP and assume that for every polynomial p ∈ N[X] there is
an n ∈ N such that ∑

k∈N with f(2k)≤n

f(2k) >
∑

k∈N with f(2k+1)≤p(n)

f(2k + 1).

The Infinity Project 63

Then Cg0 is not potentially reducible to Cg1 , where g0, g1 : N→ N are defined by g0(n) :=
f(2n) and g1(n) := f(2n+ 1).

Proof. For contradiction assume that there is some polynomial p such that #Cg0(n) ≤
#Cg1(p(n)) for all n ∈ N. Choose n to satisfy the hypothesis. Then

#Cg0(n) =
∑

f(2k)≤n

f(2k) >
∑

f(2k+1)≤p(n)

f(2k + 1) = #Cg1(p(n)),

a contradiction. 2

The other needed ingredient for the proof of Theorem 4.2 is:

Lemma 4.6 The images of the functions in VP together with the finite subsets of N are
the elements of a countable Boolean algebra V (under the usual set-theoretic operations).
The factor algebra V/≡pot , where, for b, b′ ∈ V ,

b ≡ b′ ⇐⇒ (b \ b′) ∪ (b′ \ b) is finite,

is a countable atomless Boolean algebra.

This lemma shows that the set of images of functions in VP has a rich structure. To
complete the proof of Theorem 4.2, the functions in VP are composed with a “stretch-
ing” function h, which guarantees that the gaps between consecutive values “kill” every
polynomial. Then we can apply the idea of the proof of Proposition 4.5 to show that the
set of the ≤pot-degrees has a rich structure too. For the details, see [2].

So far, in all concrete examples of classes C and D for which we know the status of
C ≤iso D and of C ≤pot D, we have C ≤iso D iff C ≤pot D. So the question arises whether
the relations of strong isomorphism reducibility and potential reducibility coincide. We
believe that they are distinct but have only the following partial result:

Theorem 4.7 If UEEXP∩coUEEXP ̸= EEXP, then the relations of strong isomorphism
reducibility and that of potential reducibility are distinct.

Recall that EEXP = DTIME
(
22
nO(1))

and NEEXP := NTIME
(
22
nO(1))

.
The complexity class UEEXP consists of those Q ∈ NEEXP for which there is a

non-deterministic Turing machine of type NEEXP that for every x ∈ Q has exactly one
accepting run. Finally, coUEEXP := {∼ Q | Q ∈ UEEXP}.

Here is the idea of the proof: Assume Q ∈ UEEXP∩coUEEXP. We construct classes
C and D which contain structures in the same cardinalities and which contain exactly two
non-isomorphic structures in these cardinalities. Therefore they are potentially reducible
to each other. While it is trivial to exhibit two non-isomorphic structures in C of the
same cardinality, from any two non-isomorphic structures in D we obtain information
on membership in Q for all strings of a certain length. If C ≤iso D held, then we
would get non-isomorphic structures in D (in time allowed by EEXP) by applying the
strong isomorphism reduction to two non-isomorphic structures in C and therefore obtain
Q ∈ EEXP.

In the other direction we have:

Theorem 4.8 If strong isomorphism reducibility and potential reducibility are distinct,
then P ̸= #P .

64 Equivalence relations

Recall that P = #P means that for every polynomial time non-deterministic Turing
machine M the function fM such that fM(x) is the number of accepting runs of M on
x ∈ Σ∗ is computable in polynomial time. The class #P consists of all the functions fM.

Until now we have focused exclusively on isomorphism relations on invariant poly-
nomial time classes of finite structures. But this theory can be put into the broader
context of NP equivalence relations in general. If E and E′ are NP equivalence rela-
tions, then we say that E is strongly equivalence reducible to E′, and write E ≤eq E

′,
iff there is a function f computable in polynomial time such that for all strings x, y:
xEy iff f(x)E′f(y). We then say that f is a strong equivalence reduction from E to E′

and write f : E ≤eq E
′. The following natural question then arises: Is there a maximal

NP equivalence relation under the reducibility ≤eq? The final section of [2] relates this
question to enumerations of clocked Turing machines, to p-optimal proof systems as well
as to other central questions in complexity theory.

Another natural question is whether, in analogy to the computability theory context,
every NP equivalence relation is reducible to an isomorphism relation on a polynomial
time invariant class of finite structures, or equivalenty, whether graph isomorphism is ≤eq

complete among NP equivalence relations. For this we have the following partial result:

Proposition 4.9 ([2]) Assume that the polynomial time hierarchy does not collapse.
Then not every NP equivalence relation reduces to graph isomorphism.

Indeed there are many worthy open questions in this area waiting to be explored.
In conclusion, after decades of work focusing on the “unary” case, definability theory

has been dramatically deepened by the study of binary relations, most importantly equiv-
alence relations. An important step in this process was taken in Harvey’s fundamental
paper with Lee Stanley [8]. The extent to which the different areas of logic have been
enriched through the study of analogues of Harvey’s idea is only now being understood,
and I look forward to seeing much exciting work in this direction during the coming years.

References
[1] H. U. Besche, B. Eick and E. A. O’Brien, The groups of order at most 2000, Electronic Research

Announcements of the American Mathematical Society, 7 (2001), 1–4.
[2] S. Buss, Y. Chen, J. Flum, S. Friedman and M. Müller, Strong isomorphism reductions in complexity

theory, Journal of Symbolic Logic, December 2011.
[3] E. Fokina and S. Friedman, Equivalence relations on classes of computable structures, Proceedings

of Computability in Europe 2009, Heidelberg, Germany, Lecture Notes in Computer Science 5635,
198–207, 2009.

[4] E. Fokina and S. Friedman, On Σ1
1 equivalence relations over the natural numbers, to appear in

Mathematical Logic Quarterly.
[5] E. Fokina, S. Friedman, V. Harizanov, J. Knight, C. McCoy and A. Montalbán, Isomorphism rela-

tions on computable structures, Journal of Symbolic Logic, March 2012.
[6] E. Fokina, S. Friedman and A. Törnquist, The effective theory of Borel equivalence relations, Annals

of Pure and Applied Logic, 161 (2010), 837–850.
[7] E. Fokina, J. Knight, C. Maher, A. Melnikov and S. Quinn, Classes of Ulm type, and relations

between the class of rank-homogeneous trees and other classes, submitted.
[8] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, Journal

of Symbolic Logic, 54 (1989), 894–914.
[9] S. Friedman, Descriptive set theory for finite structures, Lecture at the Kurt Gödel Research Center,

2009. Available at http://www.logic.univie.ac.at/ sdf/papers/wien-spb.pdf.
[10] S. Friedman, T. Hyttinen and V. Kulikov, Generalized descriptive set theory and classification

theory, submitted, see http://www.logic.univie.ac.at/ sdf/papers/joint.tapani.vadim.pdf.

The Infinity Project 65

[11] S. D. Friedman and L. Motto Ros, Analytic equivalence relations and bi-embeddability, Journal of
Symbolic Logic, 76 (2011), no. 1, 1581–1587.

[12] S. Gao, Invariant Descriptive Set Theory, Pure and Applied mathematics, CRC Press/Chapman &
Hall, 2009.

[13] S. Gao and P. M. Gerdes, Computably enumerable equivalence relations, Studia Logica, 67 (2001),
27–59.

[14] L. Harrington, McLaughlin’s Conjecture, Handwritten notes, 1976.
[15] L. Harrington, Arithmetically Incomparable Arithmetical Singletons, Handwritten notes, 1975.
[16] L. Harrington, A. Kechris and A. Louveau, Glimm–Efros dichotomy for Borel equivalence relations,

Journal of the American Mathematical Society, 3 (1990), no. 4, 903–928.
[17] G. Hjorth, The isomorphism relation on countable torsion-free Abelian groups, Fundamenta Math-

ematicae, 175 (2002), 241–257.
[18] G. Hjorth, Classification and orbit equivalence relations, Mathematical Surveys and Monographs

75, American Mathematical Society, 2000.
[19] G. Hjorth and A. Kechris, Recent developments in the theory of Borel reducibility, Fundamenta

Mathematicae, 170 (2001), no. 1–2, 21–52.
[20] T. Hyttinen and S. Shelah, Constructing strongly equivalent nonisomorphic models for unsuperstable

theories, Part C, Journal of Symbolic Logic, 64 (1999), no. 2, 634–642.
[21] T. Hyttinen and H. Tuuri, Constructing strongly equivalent nonisomorphic models, Annals of Pure

and Applied Logic, 52 (1991), no. 3, 203–248.
[22] S. Jackson, A. Kechris and A. Louveau, Countable Borel equivalence relations, Journal of Mathe-

matical Logic, 2 (2002), no. 1, 1–80.
[23] V. Kanovei, Borel Equivalence Relations. Structure and Classification, University Lecture Series 44,

American Mathematical Society, 2008.
[24] A. Kechris, Measure and category in effective descriptive set theory, Annals of Pure and Applied

Logic, 5 (1973), 337–384.
[25] A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Springer-Verlag, 1995.
[26] A. Kechris, New directions in descriptive set theory, Bulletin of Symbolic Logic, 5 (1999), no. 2,

161–174.
[27] A. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, Journal

of the American Mathematical Society, 10 (1997), no. 1, 215–242.
[28] M. Koerwien, A complicated ω-stable depth 2 theory, to appear in Journal of Symbolic Logic.
[29] C. Laskowski, An old friend revisited: Countable models of omega-stable theories, Proceedings of

the Vaught’s Conjecture Conference, Notre Dame Journal of Formal Logic, 48 (2007) 133–141.
[30] A. Louveau and C. Rosendal, Complete analytic equivalence relations, Transactions of the American

Mathematical Society, 357 (2005), no. 12, 4839–4866.
[31] D. Marker, The Borel complexity of isomorphism for theories with many types, preprint.
[32] A. Montalbán, On the equimorphism types of linear orderings, Bulletin of Symbolic Logic, 13 (2007),

71–99.
[33] P. G. Odifreddi, Classical Recursion Theory, vol. II, North-Holland, 1999.
[34] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.
[35] G. Sacks, Higher Recursion Theory, Springer-Verlag, 1989.
[36] S. Shelah, Classification Theory, revised edition, North Holland, 1990.
[37] J. H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations,

Annals of Mathematical Logic, 18 (1980), 1–18.

The Infinity Project

Computable models of Ehrenfeucht theories

Alexander Gavryushkin∗

∗ Irkutsk State University, Russia
gavryushkin@gmail.com

Abstract. In 1976, M.Morley posed the following question: If T is a hereditarily decidable theory with
only finitely many countable models, are all countable models of T necessarily decidable? Since then,
there were many attempts to solve the problem but the success is yet to come. We present several new
results on computable (and decidable) models of Ehrenfeucht theories together with a historical survey.
We prove that there are many examples of Ehrenfeucht theories having arbitrarily many homogenous
models. This enables us to solve the Morley Problem positively for a large subclass of the class of
hereditarily decidable Ehrenfeucht theories. Also, we study an analogue of the Problem for computable
models and present some results on the computable complexity of Ehrenfeucht theories. We use a classif-
ication of countable models involving almost prime (over a type) models and limit (over a type) models.

Introduction

This paper contains a survey of the current state of research concerning computable mod-
els of Ehrenfeucht theories together with several new results. We start with definitions,
preliminaries, and history of the subject.

We use standard notions of computable model theory. We use canonical notation
from [1, 2, 17].

All signatures in the paper are computable and structures are countable. We shall
use letters like A, B (sometimes with indices —Bm) for structures, and respective letters
like A, B (sometimes with indices —Bm) for their domains.

When we talk about computability properties of some set of formulas, we identify a
formula with its Gödel number. Due to historical reasons, we call computable theories
decidable. We say that a structure A is computable if its domain is a subset of ω (the
set of natural numbers), and its atomic diagram, denoted by D(A), is computable. It is
equivalent to say that the domain of A is computable and the relations and operations
are uniformly computable. We say that a structure A (whose domain is a subset of ω)
is decidable if its complete diagram, denoted by Dc(A), is computable. We say that a
structure B is a presentation of the structure A if B is isomorphic to A, written B ∼= A.
We shall usually use “is computable” instead of “has a computable presentation” and “is
decidable” instead of “has a decidable presentation”, but it will be clear from the context
what exactly we mean.

Denote by S(T) the set of all types (over ∅) consistent with a theory T . A complete
theory T in a countable language is small if the set S(T) is countable. Denote by ω(T)
the number of countable models up to isomorphism of a theory T . A complete theory T
is an Ehrenfeucht theory if 1 < ω(T) < ω. The class of Ehrenfeucht theories is one of the
most mysterious subclasses of the class of small theories. There are many longstanding

∗The author was partially supported by the Federal Target Program “Research and Training Special-
ists in Innovative Russia, 2009–2013”, Contract no.Π1227 and 16.740.11.0567. He expresses his gratitude
to the John Templeton Foundation for its support through Project #13152, Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

67

68 Computable models of Ehrenfeucht theories

open questions about it in both model theory and in computability theory. We are going
to mention the most important of them in the current paper.

The story began in Ithaca, New York. A.Nerode, inspired by a result of L. Harring-
ton [9] and N. Khissamiev [10], who proved that if a decidable theory is ℵ1-categorical
then all of its countable models are decidable, asked the following question. If T is a
decidable Ehrenfeucht theory, are all the countable models of T decidable? M.Morley
and A. Lachlan [15] answered this question by giving an example of a theory with six
countable models of which only the prime one was decidable. Later, M. Peretyat’kin
[16] gave for all n > 3 an example of a theory with exactly n models of which only the
prime one was decidable. By a theorem of R. Vaught (see [2]) no complete theory has
exactly two countable models. To achieve these results, the authors produced decidable
Ehrenfeucht theories with a non-computable non-principal type and then used an effective
version of the type omitting theorem. That was the reason for Morley [15] to modify
Nerode’s question in the following way.

Problem 1 (M. Morley, 1976) Suppose that a decidable theory T has exactly n < ω
countable models and every type consistent with T is computable.

(1) Is every countable model of T decidable?
(2) If not, what is the least n giving a counterexample?

Morley himself solved the problem positively for n = 3. For n > 4 the problem is still
unsolved. Investigations of decidable models of Ehrenfeucht theories are closely related to
the study of decidability of prime and saturated models, in particular, and homogeneous
models in general.

Harrington [9] found a criterion for a prime model to be decidable. Suppose T has
a prime model. A necessary and sufficient condition that it be decidable is that there
be a computable list of the principal types. One corollary of the computable version
of the omitting types theorem is the following. If a decidable theory does not have a
decidable prime model then it has an infinite number of nonisomorphic decidable models.
(Indeed, in this case every decidable model of the theory realizes a non-principal type,
which can be omitted in some other decidable model.) So, prime models of decidable
Ehrenfeucht theories are decidable. Morley proved a criterion for a saturated model to
be decidable. A necessary and sufficient condition is the existence of a computable list
of all the finite types. From this, he noticed that the answer to the second question of
his Problem 1 is not three. Another question Morley posed is whether the results for
prime and saturated models can be extended to homogeneous models. S. Goncharov [7]
and T. Millar [14] independently found counterexamples. Also, they found necessary
and sufficient conditions for a homogeneous model to be decidable. These conditions
require additional properties on computability of extensions of types. But it follows from
Vaught’s theorem that every Ehrenfeucht theory has a model that is not homogeneous.
However, all known models of Ehrenfeucht theories are homogeneous over tuples of its
elements, we call such models almost homogeneous. More precisely, a model A is almost
homogeneous if there is a tuple of elements a in A such that the expansion of A by these
elements ⟨A, c⟩ is a homogeneous model (here we interpret constants c as elements a).
This led Goncharov and Millar to pose the following question.

Problem 2 Suppose that an almost homogeneous model A has an Ehrenfeucht theory
and realizes only computable types. Is A decidable?

The Infinity Project 69

This question is still open. It might be equivalent to Problem 1. “Might be” because
of the following model-theoretic question, which was also asked by Goncharov and Millar.

Problem 3 Suppose that a model A has Ehrenfeucht theory. Is A almost homogeneous?

We are going to look at these problems from a modern point of view.

1 Model-theoretic preliminaries

In this section, we describe results about isomorphism types of countable models of Ehren-
feucht theories.

A type p of a theory T is said to be powerful (in the theory T) if every model A
of T realizing p also realizes every type from S(T). If a complete theory does not have
a powerful type, then it has infinitely many models. Indeed, take a type p0; since it is
not powerful, there exist a type p1 and a model A0 that realizes p0 and omits p1; since p0,
p1 are not powerful, again there exist a type p2 and a model A1 that realizes p0, p1 and
omits p2; since p0, p1, p2 are not powerful... Continuing as such would produce infinitely
many non-isomorphic countable models. Thus, every Ehrenfeucht theory has a powerful
type.

A model A is said to be prime over a type p if there is a tuple of elements a in A such
that a is a realization of p in A, i.e., A |= p(a), and the model ⟨A, a⟩ is prime. A model
M is almost prime if it is prime over a realization of some type. As we shall see later,
almost prime models form a sort of basis in the class of Ehrenfeucht models (that is, the
class of models whose theories are Ehrenfeucht).

If p is a type and two models A and B are prime over p, then A ∼= B. So we denote
by Ap some model which is prime over p. Denote1 by RK(T) the set of all pairwise
nonisomorphic models Ap over all p ∈ S(T). This set is preordered by the relation
↩→ defined as follows: Ap ↩→ Aq if and only if Aq |= p. Equivalently, there exists an
elementary submodel B of the model Aq, written B ≼ Aq, such that Ap ∼= B. Also, we
say that a type p is dominated by a type q if Ap ↩→ Aq, written p ↩→ q.

Let T be an Ehrenfeucht theory. Note that RK(T) has a least element. Indeed, if p
is a principal type then for all q ∈ S(T) we have Aq |= p. Of course, in this case Ap is
a prime model of the theory T , and hence the least element of RK(T) is unique. Also,
RK(T) has a greatest element. To see that, take a powerful type p. Then Ap |= q for all
q ∈ S(T). As we shall see later, a greatest element is not necessary unique. So we have
a finite set of ↩→-equivalent greatest elements.

Of course, not every model of an Ehrenfeucht theory is almost prime. For example,
if A is saturated then it is not almost prime.

Lemma 1.1 (Sudoplatov [18]) Suppose a theory T is Ehrenfeucht and A is a model
of T . Then there exist a type p ∈ S(T) and an elementary chain of isomorphic models
A0 ≼ . . . ≼ An ≼ . . . , each of which is prime over p, such that A =

∪
n
An.

Proof. Since every model of T is presentable as a union of an elementary chain of almost
prime models, and there are only finitely many models in RK(T), there is an infinite
sub-chain of models isomorphic to some Ap. �

1RK stands for the Rudin–Keisler order. As we shall see, it is the preorder on types given by
domination.

70 Computable models of Ehrenfeucht theories

Due to this lemma, if a model is as in the last sentence of Lemma 1.1 and is not
almost prime, call it a limit model over the type p. If a model is limit over some type p,
call it a limit model. As we shall see later, there can be nonisomorphic models of an
Ehrenfeucht theory that are limit over the same type.

Lemma 1.2 (Sudoplatov [18]) Suppose Ap and Aq are nonisomorphic ↩→-equivalent (that
is, Ap ↩→ Aq ↩→ Ap) almost prime models. Then there exists a model which is limit over
p and limit over q.

Proof. Form the chain A0 ≼ A1 ≼ . . . ≼ Ai ≼ . . . where Ai ∼= Ap if i is even and Ai ∼= Aq
if i is odd.

Consider the model A =
∪
n
An. This model is limit. Indeed, if it were almost prime,

then it would be isomorphic to both Ap and Aq, which is impossible. �

Define a function2 ln : RK(T) → ω as follows: ln(Ap) is the number of pairwise
nonisomorphic models M1, . . . ,Mt which are limit over types q1, . . . , qk such that each qi
is ↩→-equivalent to p. Because a union of an elementary chain of prime models of a fixed
theory is also a prime model of this theory, ln(Ap) = 0 when p is principal.

Thus, if we have a finite preordered set ⟨X,6⟩ and a function f : X → ω and we want
to construct an Ehrenfeucht theory T such that there is an isomorphism

φ : ⟨X,6⟩ −→ ⟨RK(T), ↩→⟩

that preserves f , i.e., f(x) = ln(φ(x)), then X and f must possess the following proper-
ties:

(1) There exists a unique least element a0.
(2) There exists a greatest element z0 ̸= a0. If z1 and z2 are both greatest, then

z1 6 z2 6 z1.
(3) f(a0) = 0.
(4) f(z0) > 0.
(5) If x 6 y 6 x and x ̸= y, then f(x) > 0.

If T is an Ehrenfeucht theory, then RK(T) is the E-order of the theory T , ln(T) is the
E-function of the theory T , and the pair (RK(T), ln) is the E-parameters of the theory T .
We showed that E-parameters of every Ehrenfeucht theory possess the properties above.

Now we are going to describe one easy construction that is very useful for producing
Ehrenfeucht theories with complicated E-parameters.

Let A = ⟨A; ΣA⟩ and B = ⟨B; ΣB⟩ be countable models of signatures ΣA and ΣB

respectively such that ΣA ∩ ΣB = ∅, both signatures have no function symbols, and
A ∩ B = ∅. Put M = ⟨A ∪ B,ΣA,ΣA, P,Q⟩, where P (x) ↔ x ∈ A, Q(x) ↔ x ∈ B, the
values for the constants in ΣA and in ΣB remain as before, and the predicates in ΣA (ΣB)
are thought of as false at any tuples not in A (B). The model M is called a direct sum
of the models A and B and is denoted by A⊕B. The definition is naturally extended to
the case of arbitrary structures; we need only replace function symbols by their graphs
and add appropriate predicates. If T1 and T2 are theories of respective signatures Σ1 and
Σ2, and Ni |= Ti, i = 1, 2, then the theory Th(N1 ⊕ N2) is called a direct sum of the

2 ln stands for the number of limit models.

The Infinity Project 71

theories T1 and T2 and is denoted by T1 ⊕ T2. It is not hard to see that the definition of
the direct sum of theories is sound (see, for example, [3]3).

To understand the usefulness of the construction for producing new Ehrenfeucht the-
ories, one can take the classic example of Ehrenfeucht theory T having three models and
find E-parameters of the theory T ⊕T ⊕T that indeed has 27 models. And we use direct
sums in Section 3 to produce a non-arithmetical Ehrenfeucht theory having a computable
model.

We conclude this section with an easy but useful result saying that usually an Ehren-
feucht theory has many homogeneous models.

Theorem 1.3 Suppose T is an Ehrenfeucht theory and p is a type consistent with T . If
Ap1 , . . . ,Apk are all the elements of RK(T) that are ↩→-equivalent to Ap, and N1, . . . ,Nm

are all the models, each of which is limit over some of the types p1, . . . , pk, then there exists
a unique homogeneous model among the models Ap1 , . . . ,Apk ,N1, . . . ,Nm.

Proof. Consider the set of types S = {q | Ap |= q}. It is not hard to check that the set S
possesses the following properties:

(1) S is closed under rearrangements of variables in types;
(2) S is closed under the taking of a subtype;
(3) Any two types p1, p2 ∈ S are subtypes of some type q ∈ S;
(4) For any type p(x) ∈ S and any formula φ(x, y), if ∃yφ(x, y) ∈ p then there exists

a type q(x, y) ∈ S such that p ∪ {φ} ⊆ q;
(5) For any two types p1(x1, . . . , xk, y), p2(x1, . . . , xk, z) ∈ S, if

p1 ↾ {x1, . . . , xk} = p2 ↾ {x1, . . . , xk}

then there exists a (k+2)-type q ∈ S such that p1 ⊆ q, p2 = q ↾ {x1, . . . , xk, z}.
Therefore, there exists a countable homogeneous model of T realizing precisely the types
in S (see, for example, [8]). Because Ap1 , . . . ,Apk ,N1, . . . ,Nm are all the models of T
that realize precisely the set S, there must be a homogeneous model among them. It is
unique because no two of the models are isomorphic. �

Note that if the models Ap1 , . . . ,Apk ,N1, . . . ,Nm are as in the Theorem and m > 1
then the homogeneous model is among N1, . . . ,Nm, that is, it is a limit model. Indeed,
if we have an elementary chain of isomorphic homogeneous models, then its union is
also homogeneous and is in fact isomorphic to the models of the chain. But, as we
know, if there are no limit models over some type p, then there must be only one (up
to isomorphism) almost prime model in the equivalence class of almost prime models
containing Ap. Thus, we have a corollary:

Corollary 1.4 (An almost prime model Ap is homogeneous) ⇐⇒ (there are no limit
models over p) =⇒ (the element of RK(T) containing Ap contains nothing else).

As we shall see, Theorem 1.3 has several useful corollaries.

3 Please note that there is a translation mistake on the first page of this paper —it should be “not
countably” instead of “uncountably”.

72 Computable models of Ehrenfeucht theories

2 Decidable models

This section addresses the following general problem: Describe decidable models of Ehren-
feucht theories. More precisely, suppose we are given an Ehrenfeucht theory T ; which
models of T have decidable presentations?

We note first of all that decidable models are downward closed in RK(T).

Proposition 2.1 If Ap ↩→ Aq and Aq is decidable then Ap is decidable. Particularly, if
Ap ↩→ Aq ↩→ Ap, and Aq is decidable then Ap is decidable.

Proposition 2.2 If A is a decidable model that is limit over p then Ap is decidable.

Proof. Take a such that ⟨Mp, a⟩ is a prime model. The set of types realized in ⟨Mp, a⟩ is
decidable. Hence, Mp is decidable. �

Morley and Lachlan [15] were the first to show that decidable models are not upward
closed in RK(T). The following theorem, which is proved in [5], shows, in particular,
that any finite linear ordering can be realized as RK(T) for some hereditarily decidable
(that is, all consistent types are computable) Ehrenfeucht theory T .

Theorem 2.3 Let n > 1 and 0 6 k 6 n be natural numbers and Ln = {x0 6 . . . 6 xn}
be a linear ordering having n+ 1 elements. Then there exists an Ehrenfeucht theory Tnk
such that

(1) RK(Tnk) = {A0 ↩→ . . . ↩→ An} ∼= Ln;
(2) The models A0, . . . ,Ak are decidable, and the models Ak+1, . . . ,An do not even

have computable presentations.

We believe that the following statement, saying that the downward closedness in
RK(T) along with closedness under taking least upper bounds are the only restrictions
for decidable almost prime models of a theory T , is true. Denote by RKd(T) the suborder
of RK(T) composed of decidable almost prime models of the theory T . It is not hard
to see that if some models Ap and Aq are decidable and a model Ar is the least upper
bound of Ap and Aq in RK(T), then Ar is decidable.

Conjecture 2.4 If X is an E-order of some Ehrenfeucht theory and Y is a downward-
closed sub-order of X which is closed under taking least upper bounds in Y , then there
exists an Ehrenfeucht theory T such that

(1) RK(T) ∼= X;
(2) RKd(T) ∼= Y .

And what about limit models? Limit models are a big problem. Almost every state-
ment about decidability of limit models is either trivial or equivalent to the Morley
Problem. Indeed, if we have a decidable saturated model (which is limit indeed) then all
the types are decidable, then all the almost prime models are decidable, then anything
you ask about decidability of the rest of the models depends on the Morley Problem.
Thus, one can easily produce a number of open questions. We mention only two of them.

Question 2.5 Suppose that p is a decidable type of an Ehrenfeucht theory T and there
is a model A that is limit over p. Is there a decidable model which is limit over p?

Question 2.6 Suppose that p is a decidable type of an Ehrenfeucht theory T and there
is a decidable model A that is limit over p. Are all limit over p models decidable?

The Infinity Project 73

Question 2.5 was asked by Goncharov after the author’s talk at the Logic Colloquium
2010. We answer this question positively. The answer follows from Theorem 1.3.

Answer. By Goncharov’s theorem [7], every homogeneous model of an Ehrenfeucht theory
that realizes only computable types is decidable. By Theorem 1.3, there is a homogeneous
model which is limit over p. By Proposition 2.1, all the types this model realizes are
decidable. �

Thus, Question 2.6 is actually equivalent to the Morley Problem.
Another corollary of Theorem 1.3 solves the Morley Problem positively for a large

class of Ehrenfeucht theories. More precisely,

Corollary 2.7 Suppose that T is an Ehrenfeucht theory and every type consistent with
T is computable. Also, suppose that if p is a type consistent with T , then there is at most
one limit model over p. Then every countable model of T is decidable.

Proof. By Theorem 1.3, every countable model of T is almost prime or homogeneous. �

3 Computable models

In this section we shall consider computable presentations instead of decidable.
We start from the following question. If a model A has a computable presentation,

what is the complexity of its theory Th(A)? The upper bound is provided by the standard
model of true arithmetic ⟨ω;6,+,×, s, 0⟩. But what about Ehrenfeucht theories? How
complex could an Ehrenfeucht theory with a computable model be? How complex could
an Ehrenfeucht theory be if all of its models are computable? As it is proved in [3], it
can be of arbitrary arithmetical complexity (that is, Turing equivalent to 0(n)). Recently
B. Khoussainov and A. Montalbán [12] constructed an ω-categorical theory that has a
computable model and is 1-equivalent to Th(ω;6,+,×, s, 0). This example can be easily
reconstructed into an Ehrenfeucht theory. The only tool we need is direct sums. It is not
hard to see that ω(T1⊕T2) = ω(T1)×ω(T2) and that the Turing degree of T1⊕T2 equals
the join of Turing degrees of T1 and T2 (see [3] for details). Thus we have

Theorem 3.1 For each n > 3 there exists a complete theory T having exactly n countable
models such that T has a computable model and is Turing equivalent to true first order
arithmetic.

The rest of the section is focused on the question of which models of an Ehrenfeucht
theory can be presented computably.

Khoussainov, Nies, and Shore [13] were the first to show that computability of a limit
over a type p model does not imply computability of the model which is prime over p.
More precisely, they constructed an Ehrenfeucht theory having three countable models,
the only computable model of which is the saturated. Gavryushkin [4, 6] shows that
computable models are not downward closed under ↩→ in RK(T) and are not necessarily
intervals in RK(T).

Moreover, Gavryushkin [6] constructs an example of an Ehrenfeucht theory T having
six countable models such that

(1) RK(T) = {A0 ↩→ A1 ↩→ A2};
(2) ln(A0) = ln(A1) = 0, ln(A2) = 3, that is, there are three nonisomorphic limit

models over the powerful type;

74 Computable models of Ehrenfeucht theories

(3) The models of T that have computable presentations are A0 and two of the limit
models.

Thus, we have two limit models that are limit over the same type, one of which is
computable and the other is not. Note that these models are limit over the powerful
type. And as we mentioned before, such a result for decidable models would imply a
negative solution to the Morley Problem.

Decidability of one of ↩→-equivalent almost prime models implies decidability of them
all. We finish the paper with a result saying that for computable models this is not true.
More precisely, we shall show that for all n > 3 there is an Ehrenfeucht theory having
exactly n countable models but only one of them is limit. (Note that every Ehrenfeucht
theory has a limit model —the saturated one.) Moreover, such a theory can have an
arbitrary number 6 n of computable models.

Theorem 3.2 Let n > 1 and m be natural numbers such that 1 6 m 6 n + 1. There
exists an Ehrenfeucht theory T such that

(1) T has exactly n+ 2 models;
(2) T has n nonisomorphic ↩→-equivalent almost prime models A1, . . . ,An;
(3) The models Am, . . . ,An have computable presentations, yet A1, . . . ,Am−1 do not.

Proof. The argument is based on two ideas. The first one is existence of a ∆0
2-set which

is not the range of a limitwise monotonic function. Sets of this kind are independently
constructed by Khissamiev [11] and Khoussainov–Nies–Shore [13]. And the second one
is coding such sets into Ehrenfeucht theories.

Let n andm be natural numbers as in the theorem. Consider first the case 1 6 m 6 n.
For each tuple of cardinals k1, . . . , kn ∈ (ω + 1), define a structure Q(k1, . . . , kn) as

follows.
Let Q be the set of rationals, and let Qi = {q ∈ Q | i 6 q < i+ 1} for i ∈ {1, . . . , n}.

The domain of the structure Q(k1, . . . , kn) is Q1 ∪ . . . ∪Qn ∪ C, where

C =

n∪
i=1

{cq,1, . . . , cq,ki | q ∈ Qi}

is a set of new elements. The signature of the structure is

⟨6; f1, . . . , fn, g1, . . . , gn−1⟩,

where 6 is a binary relation and f1, . . . , fn, g1, . . . , gn−1 are unary function symbols. The
relation 6 and the functions f1, . . . , fn are defined as follows. For all x and y we have
x 6 y if and only if there is an i ∈ {1, . . . , n} such that x, y ∈ Qi and x is less than or
equal to y as rational numbers. Let i ∈ {1, . . . , n} and x ∈ Qi ∪ C, define fi(x) in the
following way.4 If x ∈ Qi, then fi(x) = x. If x = cq,t for some q ∈ Qi and some t, then
fi(x) = q.

Let i ∈ {1, . . . , n− 1}. Define gi : Qi → Qi+1 in the following manner:
(1) gi is an order-preserving injection, that is, (∀x < y ∈ Qi)fi(x) < fi(y);
(2) gi(i) = i+ 1;
(3) Both Range(gi) and Range(gi) are dense in Qi+1, that is,

(∀x < y ∈ Qi+1)((∃u, z)x < gi(u) < y & x < z < y & (∀v)gi(v) ̸= z);

4 Here and further partial functions are allowed. If you prefer, think of functions as predicates —their
graphs.

The Infinity Project 75

For i ∈ {0, . . . , n}, denote by Qi(ω) the structure obtained from Q(ω, . . . , ω) by
removing the elements 1, c1,1, . . . , c1,ω; 2, c2,1, . . . , c2,ω; . . .; i, ci,1, . . . , ci,ω from the domain
of Q(ω, . . . , ω). (If i = 0, we do nothing and get Q0(ω) = Q(ω, . . . , ω).)

If A and B are isomorphic copies of the structures Q(k1, . . . , kn) and Q(s1, . . . , sn),
respectively, and A ∩B = ∅, then one can naturally define the isomorphism type of the
structure Q(k1, . . . , kn) + Q(s1, . . . , sn) as follows. The domain of the new structure is
the set A ∪ B. The relation 6 in the new structure is the least partial ordering which
contains the partial ordering of A, the partial ordering of B, and the relation

n∪
i=1

{(x, y) | x ∈ A & fAi (x) = x & y ∈ B & fBi (y) = y}.

For 1 6 i 6 n the unary function fi in the new model is the union of the unary functions
fAi and fBi . For 1 6 j 6 n − 1 the unary function gj in the new model is the union of
the unary functions gAj and gBj .

If kj1, k
j
2, . . . , k

j
n, j < ω are tuples of natural numbers then, as above, we can define

the structure

Q(k01, . . . , k
0
n) +Q(k11, . . . , k

1
n) + · · ·+Q(kj1, . . . , k

j
n) + · · · .

Let S be a ∆0
2-set which is not the range of a limitwise monotonic function [11, 13].

There exists a computable function β such that, for all x, the function α(x) = lim
y→∞

β(x, y)

is defined and Range(α) = S. For i ∈ {1, . . . , n} \ {m} put (∀x ∈ ω)γi(x) = x. Also, put
γm(x) = α(x) for all x. Consider the model

A0 = Q(γ1(0), γ2(0), . . . , γn(0)) +Q(γ1(1), γ2(1), . . . , γn(1)) + · · ·

and consider the theory T of the structure A0.
Prove that T has exactly n+ 2 models.
A0 is a prime model of T . The second model of T is the saturated model An+1 =

A0 + Qn(ω). And we have n ↩→-equivalent almost prime models Ai+1 = A0 + Qi(ω),
0 6 i 6 n− 1.

To see that these structures are indeed models of the theory T , prove that A0 is an
elementary submodel of each of these models. Clearly it is submodel. To see that it is
an elementary submodel, pick some tuple of elements a from A0, some formula of the
form ∃xφ(a, x), and some model B ∈ {A1, . . . ,An+1}. It can be checked that, if the
formula ∃xφ(a, x) is true in B, then there is an element b from A0 such that φ(a, b) is
true in A0, so the submodel is elementary.

We have to prove that any countable model of T is isomorphic to one of the n + 2
models described above. Let A be a model of T . Define by induction n sequences of
elements ai0, ai1, . . . , 1 6 i 6 n. Fix i ∈ {1, . . . , n}. Let ai0 be the minimal element
with respect to the partial ordering in A such that fi(ai0) = ai0. Note that the set
{b | b ̸= ai0 & fi(b) = ai0} has exactly γi(0) elements. Put ki0 = 0. Suppose that the
elements ai0, . . . , ait−1 and the numbers ki0, . . . , kit−1 have been defined. Let kit be the least
number such that γi(kit) ̸= γi(k

i
j) for j = 0, . . . , t−1. The element ait is the one such that

the following properties hold:
(1) The set {b | b ̸= ait & fi(b) = ait} has exactly γi(kit) elements;
(2) For each x < ait the cardinality of the set {b | b ̸= x & fi(b) = x} is in
{γi(ki0), . . . , γi(kit−1)}.

76 Computable models of Ehrenfeucht theories

Consider the sequences ai0, ai1, . . . , for i ∈ {1, . . . , n}. Clearly ai0 < ai1 < So we have
n+ 2 cases:

Case 0. lim
t→∞

a1t does not exist and for any x ∈ A such that f1(x) = x there exists a t

such that a1t > x.

Case 1. lim
t→∞

a1t exists.

Case i (1 6 i 6 n− 1). lim
t→∞

ait does not exist, lim
t→∞

ai+1
t does exist.

Case n + 1. lim
t→∞

ait does not exist for all i, and there is an x ∈ A such that f1(x) = x

and x > a1t for all t.

Note that there are no other options. Indeed,

Lemma 3.3
(1) ∃i ∈ {1, . . . , n} (there is an x ∈ A such that fi(x) = x and x > ait for all t) ⇐⇒
∀i ∈ {1, . . . , n} (there is an x ∈ A such that fi(x) = x and x > ait for all t).

(2) If lim
t→∞

ait exists, then lim
t→∞

ai+1
t exists as well.

(3) If lim
t→∞

ait does not exist, then lim
t→∞

ai−1
t does not exist either.

Proof. For (1), if there is an x ∈ A such that fi(x) = x and x > ait for all t, then
fi+1(gi(x)) = gi(x) and gi(x) > ai+1

t for all t. Furthermore, if i > 1 then there is a y ∈ A
such that fi(y) = y, y > ait for all t, and y = gi−1(z) for some z. This z satisfies the
required conditions.

For (2), lim
t→∞

ai+1
t = gi

(
lim
t→∞

ait

)
. �

If Case k is realized, then A ∼= Ak.
Now we can see directly from definitions that the model A0 is prime, the model An+1

is limit over powerful non-principal types pi saying that “there is an x ∈ A such that
fi(x) = x and x > ait for all t”, i ∈ {1, . . . , n}, and the models A1, . . . ,An are almost
prime over these types respectively.

Let B be a model of T . For 1 6 i 6 n, consider the restriction Bi of the structure
B to the set {x | (∃y)fi(x) = y}. The signature of the structure Bi is ⟨6, fi⟩. It is not
hard to see that the model B has a computable presentation if and only if for every i the
model Bi has one. Also, it is easy that if i ̸= m then Bi has a computable presentation;
it is actually decidable. Thus, the model B has a computable presentation if and only if
the model Bm does.

For the model Bm, we have three cases:
(1) lim

t→∞
amt does not exist and for any x ∈ Bm such that fm(x) = x there exists a t

such that amt > x;

(2) lim
t→∞

amt exists;

(3) lim
t→∞

amt does not exist, and there is an x ∈ Bm such that fm(x) = x and x > amt
for all t.

Note that these three cases are equivalent to the following three cases respectively
(we recall that the Range(α) is a ∆0

2-set that is not the range of a limitwise monotonic
function):

The Infinity Project 77

(1) Bm
∼= Q(α(0)) +Q(α(1)) + · · · ;

(2) Bm
∼= Q(α(0)) +Q(α(1)) + · · ·+Q(ω);

(3) Bm
∼= Q(α(0)) +Q(α(1)) + · · ·+Q1(ω).

It can be checked (see, for example [6, 13]) that the model Bm has a computable
presentation if and only if Case 3 is realized.

Thus, an arbitrary model of the theory T has a computable presentation if and only
if lim
t→∞

amt does not exist, and there is an x such that fm(x) = x and x > amt for all t.
But only the models Am,Am+1, . . . ,An+1 satisfy this property.

To finish the proof, we have to consider the case m = n + 1, that is, the case when
all the models have no computable presentations. This case is easy —we can take the
function γ1 such that Range(γ1) is a ∆0

3-complete set, for instance. �

References
[1] C.Ash, J. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, 2000.
[2] C.C.Chang, H. J. Keisler, Model Theory, 3rd edition, North-Holland, 1990.
[3] A.Gavryushkin, Complexity of Ehrenfeucht models, Algebra and Logic, 45 (2006), 5, 289–295.
[4] A.Gavryushkin, Spectra of computable models for Ehrenfeucht theories, Algebra and Logic, 46

(2007), 3, 149–157.
[5] A.Gavryushkin, On constructive models of theories with linear Rudin–Keisler ordering, Journal of

Logic and Computation, doi: 10.1093/logcom/exq043 (2010).
[6] A.Gavryushkin, Computable limit models, Programs, Proofs, Processes —CiE (2010), 188–193.
[7] S. S.Goncharov, Strong constructivizability of homogeneous models, Algebra and Logic, 17 (1973),

4, 247–263.
[8] S. S.Goncharov, A totally transcendental decidable theory without constructivizable homogeneous

models, Algebra and Logic, 19 (1980), 2, 85–93.
[9] L.Harrington, Recursively presented prime models, Journal of Symbolic Logic, 39 (1974), 2, 305–309.

[10] N.G.Khissamiev, On strongly constructive models of decidable theories, Izvestiya Akademii Nauk
Kazakhskoi SSR. Seriya Fiziko-Matematicheskaya, 1 (1974), 83–94.

[11] N.G.Khissamiev, Criterion for constructivizability of a direct sum of cyclic p-groups, Izvestiya
Akademii Nauk Kazakhskoi SSR. Seriya Fiziko-Matematicheskaya, 86 (1981), 1, 51–55.

[12] B.Khoussainov, A. Montalbán, A computable ℵ1-categorical structure whose theory computes true
arithmetic, Journal of Symbolic Logic, 75 (2010), 2, 728–740.

[13] B.Khoussainov, A. Nies, R. Shore, Computable models of theories with few models, Notre Dame
Journal of Formal Logic, 38 (1997), 2, 165–178.

[14] T.Millar, Homogeneous models and decidability, Pacific Journal of Mathematics, 91 (1980), 2,
407–418.

[15] M.Morley, Decidable models, Israel Journal of Mathematics, 25 (1976), 233–240.
[16] M.G.Peretyat’kin, On complete theories with a finite number of denumerable models, Algebra and

Logic, 12 (1973), 5, 310–326.
[17] R. I. Soare, Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Com-

putably Generated Sets, Springer Verlag, Berlin, New York, 1987.
[18] S.V. Sudoplatov, Complete theories with finitely many countable models, Algebra and Logic, 43

(2004), 1, 62–69.

Part II

Computations and Proofs

The Infinity Project

Improved witnessing and local improvement
principles for second-order bounded arithmetic

Arnold Beckmann∗, Samuel R. Buss†

∗ Department of Computer Science, Swansea University, UK
a.beckmann@swansea.ac.uk

† Department of Mathematics, University of California, San Diego, USA
sbuss@math.ucsd.edu

Abstract. This paper concerns the second order systems U1
2 and V 1

2 of bounded arithmetic. We for-
mulate improved witnessing theorems for these two theories by using S1

2 as a base theory for proving
the correctness of the polynomial space or exponential time witnessing functions. We develop the theory
of nondeterministic polynomial space computation in U1

2 . Kołodziejczyk, Nguyen, and Thapen have
introduced local improvement properties to characterize the provably total NP functions of these second
order theories. We show that the strengths of their local improvement principles over U1

2 and V 1
2 depend

primarily on the topology of the underlying graph, not on the number of rounds in the local improvement
games. The theory U1

2 proves the local improvement principle for linear graphs even without restricting to
logarithmically many rounds. The local improvement principle for grid graphs with only logarithmically
rounds is complete for the provably total NP search problems of V 1

2 . Related results are obtained for
local improvement principles with one improvement round, and for local improvement over rectangular
grids.

Introduction

A “multifunction” is a function which can have multiple values, namely a total relation.
NP search problems are multifunctions f which have polynomial growth rate and whose
graph is polynomial-time recognizable. The provably total NP search problems of a
theory T of bounded arithmetic are the multifunctions which have polynomial time graph
Gf (x, y) such that T proves (∀x)(∃y)Gf (x, y). If Gf is instead a Σbi -formula, then f is
a Σbi -definable multifunction of T . The provably total NP search problems of T and the
Σb1-definable multifunctions of T are essentially the same, as the latter can be defined as
projections of the former.

There have been a series of recent results giving new characterizations of the provably
total NP search problems for theories of bounded arithmetic, and more generally the
Σbi -definable multifunctions of these theories. The most recent work in this direction
includes [1, 2, 8, 11, 13]. The first four of these papers give characterizations of the
Σbi -definable functions of T k2 for all 0 ≤ i ≤ k. Skelley and Thapen [13] introduce
k-round game principles, GIk, which characterize the provably total NP search problems
of T k2 . Beckmann and Buss [1, 2] used an extension of polynomial local search (PLS)

∗,†Both authors thank the John Templeton Foundation for supporting their participation in the
CRM Infinity Project at the Centre de Recerca Matemàtica, Barcelona, Catalonia, Spain, during which
this project was instigated. This research was partially done while the first author was a visiting fellow
at the Isaac Newton Institute for the Mathematical Sciences in the programme “Semantics & Syntax”.

†Supported in part by NSF grants DMS-0700533 and DMS-1101228, and by a grant from the Simons
Foundation (#208717 to Sam Buss).

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

81

82 Improved witnessing and local improvement principles

along with Skolemization techniques to characterize the Σbi -definable multifunctions of
T k2 for 1 ≤ i ≤ k. Pudlák and Thapen [11] gave another quite different characterization
of the Σbi -definable multifunctions of T k2 based on alternating min-max principles. The
fifth paper, Kołodziejczyk, Nguyen, and Thapen [8], extended the idea of the game
principles to a “local improvement” principle and applied this to characterize the Σb1-defin-
able multifunctions of the second order theories U1

2 and V 1
2 . As we explain below in more

detail, the present paper extends the results of [8] in several ways. The first part of
the paper describes U1

2 and V 1
2 and extends the bootstrapping of U1

2 to show that U1
2

can define nondeterministic polynomial space (NPSPACE) computations and can prove
Savitch’s theorem about the equivalence of deterministic and nondeterministic polynomial
space. We then present improved witnessing theorems for U1

2 and V 1
2 . The final part of

the paper improves the results of [8] that characterize the Σb1-definable multifunctions in
terms of the local improvement principles. Our two new results for local improvement
principles of [8] are that U1

2 can prove the principle LLI, and that the LIlog principle is
(provably) many-one complete for the total NP search problems of V 1

2 . These improve
results from [8], who had proved weaker versions of these results with LLIlog and LI in
place of LLI and LIlog, respectively.

The original witnessing theorems [4] for bounded arithmetic followed the following
general template. These witnessing theorems were formulated to apply to a theory T ,
a formula class Φ, and a complexity class C. In most cases, the complexity class C
has complete problems, and the functions in the complexity class C can be enumerated
by specifying an algorithm for the function that uses specified computational resources.
A function that is specified in such a way is said to be “explicitly C”. The witnessing
theorem then states that if ϕ ∈ Φ and T ⊢ (∀x⃗)(∃y)ϕ(x⃗, y), then there is an explicitly-C
function f such that (a) T proves the totality of f and (b) T proves (∀x⃗)ϕ(x⃗, f(x⃗)).
For this, T does not need to have a function symbol for f , rather there is a formula Gf
defining the graph of f , and condition (a) actually means that T proves (∀x⃗)(∃y)Gf (x⃗, y).
Likewise, condition (b) means that T proves (∀x⃗)(∀y)[Gf (x⃗, y) ⊃ ϕ(x⃗, y)]. Buss [4, 5]
established these kinds of results for the theories Sk2 , T k2 , U1

2 , and V 1
2 , and for function

classes such as polynomial time, levels of the polynomial hierarchy, polynomial space, and
exponential time. Buss and Krajíček [6] proved a witnessing theorem for T 1

2 and PLS.
And various authors have established a wide range of additional witnessing theorems;
many of these are reported in a modern form in Cook–Nguyen [7].

In many cases, the witnessing theorem also includes a “uniqueness condition” that
f is a function rather than a multifunction; namely, that T proves (∀x⃗)(∃!y)Gf (x⃗, y).
However, there are some notable exceptions, namely those related to witnessing with
PLS and game principles: these include (among others) [1, 2, 6, 8]. However, in these
cases, the explicitly-C functions are conjectured to be inherently multifunctions rather
than functions, so the (conjectured!) failure of the uniqueness condition is unavoidable.

In nearly every case, the witnessing theorem is accompanied with a converse result
stating that every explicitly-C function is provably definable in T with its graph Gf a
formula from Φ.

Some recent witnessing theorems have followed an improved paradigm, which provides
an extension of the template described above. These “new-style” witnessing theorems were
used implicitly in [13] and more explicitly in [1, 2, 8]. For the improved paradigm, the
condition (b) of a witnessing theorem is replaced with

(b’): S1
2 proves (∀x⃗)(∀y)[Gf (x⃗, y) ⊃ ϕ(x⃗, y)].

The Infinity Project 83

That is, the correctness of the witnessing function f is now proved in the (weaker)
theory S1

2 rather than in T .1 Of course, in these situations, it is generally conjectured
that S1

2 does not necessarily prove the totality of f ; thus (b’) includes the existence of
y = f(x⃗) as a hypothesis. We shall prove two such new-style witnessing theorems for U1

2

and V 1
2 in Section 3.

Section 1 reviews quickly the definitions of the theories U1
2 and V 1

2 . We presume,
however, that the reader has basic familiarity with the bounded arithmetic theories S1

2

and T i2 and the syntactic classes Σbi and Πbi . This section also introduces an alternate
sequent calculus formulation of U1

2 that will be useful for establishing normal forms for
free-cut free proofs in U1

2 .
Section 2 shows that U1

2 can formalize nondeterministic polynomial space compu-
tations. This is based on a formalization of Savitch’s theorem that NSPACE(n) is
contained in SPACE(n2) and that hence PSPACE equals NPSPACE. The formalization
of Savitch’s theorem in U1

2 is completely straightforward, but some care must be taken
to show that it is possible for U1

2 to pick out a particular nondeterministic computation
path, including, for instance, the lexicographically first one. This construction is used in
a crucial way for the proof of Theorem 4.8.

Section 3 establishes the two new-style witnessing theorems of U1
2 and V 1

2 . Of course,
the two theories already have witnessing theorems linking them to polynomial space and
exponential time computation, respectively. The new witnessing theorems use S1

2 as a
base theory as in (b’) above, or more precisely, a conservative extension of S1

2 to include
second order variables. To formulate the witnessing theorem, we define a notion of what
it means for a second order object (or, “predicate”) to “canonically verify” the truth of a
bounded (Σ1,b

0) formula. We then prove two witnessing lemmas, over the base theory S1
2 ,

about the witnessing of sequents of Σ1,b
1 formulas that are provable in U1

2 or V 1
2 , using

polynomial space or exponential time (respectively) computable predicates.
Kołodziejczyk, Nguyen, and Thapen [8] already proved new-style witnessing theorems

for U1
2 and V 1

2 using closure under certain types of iteration. The results of Section 3 use a
more straightforward definition for polynomial space and exponential time computation,
along with the notion of canonical verification. In addition, Theorems 3.7 and 3.8 for V 1

2

use S1
2 as a base theory, rather than the ostensibly stronger theory T 1

2 which was used
by [8]. This improvement of using S1

2 as the base theory will be crucial later for the proof
of Theorem 4.9.

Section 4 discusses the local improvement principles of [8]. Loosely speaking, a local
improvement principle uses a directed acyclic graph G: the vertices in the graph G are
assigned labels with scores. Initially all labels have score value equal to zero, but a
mechanism is provided to make local updates to labels that increments scores by one.
This local update proceeds by sweeping across the graph, and is well-defined since the
graph is acyclic. In essence, the local improvement principle states that the scores can
be incremented for a certain number, c, of rounds. (The actual formulation of the local
improvement principles will be as a set of contradictory assertions, which yields an NP
search problem.)

There are two kinds of local improvement principles: the principle LI has underlying
graph G on N vertices with constantly bounded in- and out-degrees, and LLI uses a

1 So far, new-style witnessing theorems have been proved only for theories T that contain S1
2 . It

should be straightforward to extend these results to use even weaker theories than S1
2 . No new-style

witnessing theorems have been proved yet for theories T ⊆ S1
2 .

84 Improved witnessing and local improvement principles

linearly ordered set of N points as its underlying graph. (The value N will be first order,
but not sharply bounded.) The principles LI and LLI both use c = NO(1) many rounds
of score increases. Limiting the number of rounds to instead be c = O(logN) gives the
LIlog and LLIlog principles. When using exactly c = 2 rounds, the principles are called
LI2 and LLI2.

Prior work [8] proved, for T the theory U1
2 (respectively, V 1

2), that the LLIlog principle
(respectively, the LI principle) is provable in T , and is many one complete for the provably
total NP search problems of T , provably in S1

2 . Section 4 concludes with new improved
results; namely, that U1

2 proves the LLI principle, and that the LIlog principle is many-one
complete for the provably total functions of V 1

2 , provably in S1
2 . In fact, it follows that

LLI and LLIlog are equivalent over S1
2 , and that LI and LIlog are equivalent over S1

2 . In
particular, the strength of these local improvement principles depends on the underlying
topology of the directed graph G, not on whether the number c of rounds is logarithmic
or polynomial.

The rectangular local improvement principles, RLI, are the versions of LI where the
graph G is a grid graph. We prove that the RLI and RLIlog principles are equivalent
to each other and to LI and LIlog, over S1

2 . For local improvement principles with two
rounds, we prove that, over S1

2 , the LI2 principle is equivalent to the last four mentioned
principles, and that RLI2 is equivalent to LLI and LLIlog. However, the strength of RLIk
for constant k ≥ 3 remains an open question.

Sections 4.2 through 4.4 present the proofs of our results on the local improvement
properties.

We thank Neil Thapen for useful discussions on the topics of this paper.

1 Preliminaries for U1
2 and V 1

2

We assume the reader is familiar with the essentials of bounded arithmetic, for which
see [4, 9]; however, we give a quick review to establish notation. Most of the paper
is concerned with second order theories in the form defined in Chapter 9 of [4]. Since
these second order theories are less well-known, we describe them below in a bit more
detail. Our theories all use the non-logical language 0, S,+, ·, |·|,#,≤. Quantifiers of
the form (∃x ≤ t) and (∀x ≤ t) are called bounded quantifiers. If the term t is of the
form |s|, the quantifier is sharply bounded. The classes Σbi and Πbi are defined by counting
alternations of bounded quantifiers, ignoring sharply bounded quantifiers. The theories Si2
are axiomatized with a set, BASIC, of open axioms defining the non-logical symbols plus
the Σbi -PIND induction, namely polynomial induction, or equivalently, length induction.
The theories T i2 are axiomatized with the axioms of BASIC plus Σbi -IND, namely the
usual induction axioms. Restricting to the case of i = 1, the main witnessing theorems
for S1

2 and T 1
2 state that S1

2 can Σb1-define precisely the polynomial time functions [4],
and that T 1

2 can Σb1-define precisely the PLS (polynomial local search) multifunctions [6].
Second order theories of bounded arithmetic extend the first order theories by adding

second order variables, X,Y, Z, . . . , intended to range over sets, also called “predicates”.
The membership ∈ symbol is added to the language as well; the formula t ∈ X denotes
that t is in X. We often write X(t) instead of t ∈ X. It is convenient to now let the
classes Σbi and Πbi involve free second order variables (but no quantified second order
variables). Thus, a bounded quantifier is a bounded, first order quantifier; a bounded
formula is a formula with no unbounded first order quantifiers and no second order

The Infinity Project 85

quantifiers. We also let Si2 and T i2 now be defined with second order variables allowed to
appear in formulas, including as free variables in induction axioms. But again, second
order quantifiers are not allowed in induction formulas for Si2 and T i2. (Sometimes these
extensions of Si2 and T i2 to second order logic are denoted Si+2 and T i+2 , but since there
is no chance of confusion, we prefer to omit the superscript “+”. Likewise, we eschew the
notations Σb+1 and Πb+1 .)

We reserve lower-case letters a, b, c, . . . and z, y, x, . . . for first order variables, and
upper-case letters A,B,C, . . . and Z, Y,X, . . . for second order variables. Occasionally,
we use Greek letters α, β, γ for second order variables as well. We use ϕ, ψ, and χ for
formulas.

Second order bounded formulas are classified with the classes Σ1,b
i and Π1,b

i by count-
ing the alternations of second order quantifiers, ignoring any first order quantifiers. The
class Σ1,b

0 is the set of bounded formulas, namely the set of formulas with no second order
quantifiers but with arbitrary (first order) bounded quantifiers. The class Σ1,b

1 is the set
of formulas with all second order quantifiers essentially existential (that is, existential
after negations are pushed inward), and arbitrary bounded first order quantifiers.

The theories U1
2 and V 1

2 both contain all of T2, plus the Σ1,b
0 -comprehension axioms,

namely

(1.1) (∀x⃗)(∀X⃗)(∃Z)(∀y ≤ t)[y ∈ Z ↔ ϕ(y, x⃗, X⃗)]

for every bounded formula ϕ and term t. This axiom states that any set (on a bounded
domain) defined by a bounded formula ϕ with parameters is coded by some second order
object Z.2 The theory U1

2 has in addition the Σ1,b
1 -PIND axioms. The theory V 1

2 has
instead the Σ1,b

1 -IND axioms. It is known that V 1
2 ⊢ U1

2 .
Note that the Σ1,b

0 -comprehension axiom above is a Π1,b
2 -sentence; or, stripping off

leading universal quantifiers, it is a Σ1,b
1 -formula, in fact a strict Σ1.b

1 -formula, as will be
defined momentarily.

As a side remark, we note that the second order systems can be conservatively ex-
tended to include second order function variables which range over functions with a
specified polynomial growth rate. Then, Σ1,b

0 -comprehension implies the following Σ1,b
0

function comprehension axiom for a function symbol δ with growth rate bounded by the
term s:

(∀x⃗)(∀X⃗)(∃δ)(∀y ≤ t)[(∃z ≤ s)ϕ(y, z, x⃗, X⃗) ⊃ δ(y)≤s ∧ ϕ(y, δ(y), x⃗, X⃗)]

where ϕ is a Σ1,b
0 -formula [4, p. 164]. The Σ1,b

0 function comprehension axiom is effectively
subsumed by Σ1,b

0 -comprehension, since Σ1,b
0 -comprehension can define the bit graph of δ

so that δ(y) equals the least z ≤ s satisfying ϕ(y, z, x⃗, X⃗), if any such z exists.
However, for simplicity and without loss of generality, we formulate U1

2 and V 1
2 with

only second order predicate symbols and without second order function symbols.3

2 The original definition [4] of U1
2 used an unbounded version of the comprehension axiom; namely,

the bounded quantifier (∀y ≤ t) was replaced with the unbounded quantifier (∀y). In the present paper,
we are interested in only Σ1,b

i -consequences of U1
2 , and, by Parikh’s theorem, the unbounded version

of comprehension gives no additional Σ1,b
i -consequences. See alternately the discussion of the theories

U1
2 (BD) and U1

2 (BD) in [4]. At any rate, subsequent authors have preferred the bounded versions of
comprehension (e.g., [7, 9, 10]), perhaps because it is better behaved model-theoretically.

3 Theorem 5 of Chapter 9 of [4] proves the conservativity between the theories with and without
function symbols.

86 Improved witnessing and local improvement principles

A function f(x⃗) is said to be Σ1,b
1 -defined by a theory T provided that T proves

(∀x⃗)(∃y)ϕ(x⃗, y) where ϕ(x⃗, y) defines the graph of f and ϕ ∈ Σ1,b
1 . The original wit-

nessing theorems of [4, Ch. 10] for U1
2 and V 1

2 characterize their Σ1,b
1 -defined functions in

terms of computational complexity. Namely, U1
2 can Σ1,b

1 -define precisely the functions
which are computable by polynomial space Turing machines, and V 1

2 can Σ1,b
1 -define pre-

cisely the functions which are computable in exponential time (that is, time 2n
O(1)). A

formula ψ(x⃗, X⃗) is said to be ∆1,b
1 -definable by T provided that T proves ψ is equivalent

to both a Σ1,b
1 -formula and a Π1,b

1 -formula. A corollary to the witnessing theorems for U1
2

and V 1
2 states that the ∆1,b

1 -predicates of U1
2 (respectively, V 1

2) are precisely the polyno-
mial space predicates (respectively, the exponential time predicates). In addition, U1

2 can
prove the ∆1,b

1 -IND and ∆1,b
1 -MIN principles (see Theorem 16 of Chapter 9 of [4]). This

means that U1
2 can use polynomial space predicates and functions freely for induction

and minimization. In short, U1
2 can carry out a range of arguments about polynomial

space predicates and functions.
We now define the notion of “strict” Σ1,b

1 -formula in analogy with similar notions
for bounded formulas. A Σ1,b

1 -formula is strict provided that it contains at most one
second order existential quantifier, and this quantifier is the outermost connective. That
is, a formula is strict Σ1,b

1 provided either it is either a bounded formula, or it has the
form (∃X)ϕ where ϕ is bounded. By comparison, a non-strict Σ1,b

1 -formula may have
connectives and bounded quantifiers in front of the second order quantifiers. We shall
sometimes use the notation sΣ1,b

1 to denote the class of strict Σ1,b
1 -formulas.

It is useful to restrict proofs to contain only strict Σ1,b
1 -formulas as this will consid-

erably simplify the proofs of the new-style witnessing theorems of Section 3. Both U1
2

and V 1
2 can prove that any Σ1,b

1 -formula is equivalent to a strict Σ1,b
1 -formula by using

Σ1,b
1 -replacement principles, which are theorems of both U1

2 and V 1
2 (see Theorem 16 of

Chapter 9 of [4]). Thus it is reasonable to assume that any free-cut free U1
2 - or V 1

2 -proof
of a strict Σ1,b

1 formula could be restricted to contain only strict Σ1,b
1 -formulas.

For V 1
2 this works readily. It is easy to check that V 1

2 can prove the Σ1,b
1 -replacement

principles, and more generally prove the equivalence of any given Σ1,b
1 -formula to a strict

Σ1,b
1 formula, while using induction only on strict Σ1,b

1 formulas. Thus, the usual free-cut
elimination theorem (cf. [3]) gives the following.

Theorem 1.1 Suppose V 1
2 proves a sequent Γ −→ ∆ of strict Σ1,b

1 -formulas. Then there
is a V 1

2 -proof of Γ −→ ∆ in which every formula is strict Σ1,b
1 .

For U1
2 , the situation is less simple. The known proof in U1

2 that every Σ1,b
1 -formula

is equivalent to a strict Σ1,b
1 -formula uses induction on non-strict Σ1,b

1 -formulas.4 Thus,
free-cut elimination seemingly cannot be used with the usual formulation of U1

2 to obtain
proofs containing only strict Σ1,b

1 -formulas as cut formulas.
We can instead use a trick, and work with a slightly reformulated version of the theory

U1
2 called U1∗

2 .

4 The proof of Σ1,b
1 -replacement in U1

2 given for Theorem 16 of Chapter 9 of [4] uses a doubling trick
that seems to depend essentially on the use of non-strict Σ1,b

1 -formulas.

The Infinity Project 87

Definition 1.2 An sΣ1,b
1 -repl-∀ inference is an inference of the form

a ≤ t,Γ→∆, (∃X)ϕ(X, a)

Γ→∆, (∃Y)(∀x ≤ t)ϕ({z}Y (⟨x, z⟩), x)

where ϕ is a Σ1,b
0 -formula, a is an eigenvariable, and ⟨x, z⟩ is the usual pairing function

used for bounded arithmetic. The notation {z}Y (⟨x, z⟩) denotes an abstract in the sense
of Takeuti [14]. An abstract is akin to a lambda term but is not a syntactic part of the
language; instead it is removed by the process of substitution. Namely, ϕ({z}Y (⟨x, z⟩), x)
is the formula obtained from ϕ(X, a) by replacing every occurrence of the variable a
with x, and every occurrence of any subformula X(s) with Y (⟨x, s⟩).

Definition 1.3 The theory U1∗
2 is defined to be U1

2 , but with sΣ1,b
1 -PIND instead of

Σ1,b
1 -PIND, and with sΣ1,b

1 -repl-∀ as an additional rule of inference.

It is clear that the sΣ1,b
1 -repl-∀ inference is a derived rule of inference for U1

2 , although
proving this in U1

2 involves a cut on a non-strict Σ1,b
1 -formula. Therefore, U1

2 proves all
theorems of U1∗

2 .

Theorem 1.4 In U1∗
2 , every Σ1,b

1 -formula can be proved equivalent to a strict Σ1,b
1 -

formula.

The theorem is straightforward to prove. The proof is by induction on the complexity
of formulas and uses the sΣ1,b

1 -repl-∀ rule to handle the hard case of moving a bounded
quantifier past a second order quantifier.

As a corollary, U1∗
2 admits PIND induction on all Σ1,b

1 -formulas. This immediately
implies the equivalence of U1

2 and U1∗
2 .

Corollary 1.5 U1
2 and U1∗

2 have the same consequences.

The difference between U1
2 and U1∗

2 is only that they have different formalizations for
sequent calculus proofs. The sequent calculus is formalized in a standard way. It uses
conventional rules for weak inferences, for cut, and for first order connectives. In place
of induction axioms, it uses induction rules with side formulas. The theory U1∗

2 admits
the sΣ1,b

1 -repl-∀ rule of inference. The comprehension axiom (1.1) becomes the initial
sequents

−→ (∃Z)(∀y ≤ t)[y ∈ Z ↔ ϕ(y, x⃗, X⃗)].

This allows the second order ∃:right and ∀:right axioms to be formulated with only second
order variables (instead of the more general substitution of abstracts). Namely, the two
rules for second order existential quantifiers are:

Γ→∆, ϕ(A)
∃:right

Γ→∆, (∃X)ϕ(X)
and ϕ(A),Γ→∆

∃:left
(∃X)ϕ(X),Γ→∆

where, for the ∃:left rule, the second order variable A is a eigenvariable and does not
appear in the lower sequent of the inference. Dual rules are used for second order universal
quantifiers. (However, second order universal quantifiers are never needed in our free-cut
free proofs.)

Eliminating free-cuts from U1∗
2 -proofs gives the following theorem.

Theorem 1.6 Suppose U1
2 proves a sequent Γ −→ ∆ of strict Σ1,b

1 -formulas. Then there
is a U1∗

2 -proof of Γ −→ ∆ in which every formula is strict Σ1,b
1 .

88 Improved witnessing and local improvement principles

It will be convenient to work with U1∗
2 instead of U1

2 for our witnessing constructions
in Section 3. The downside of having sΣ1,b

1 -repl-∀ as an additional inference is more than
offset by the convenience of working with only strict Σ1,b

1 -formulas in the proof of the
witnessing lemmas.

2 Nondeterministic polynomial space in U1
2

We next formalize, in U1
2 , Savitch’s theorem [12] that nondeterministic polynomial space

is equal to polynomial space. An important consequence for us is that this means that U1
2

can use induction (IND) and minimization (MIN) on NPSPACE predicates. It turns out
that Savitch’s argument can be carried out inside U1

2 without complications; nonetheless,
it is useful to check the details of exactly how it is formalized.

Figure 1 shows the usual algorithm behind Savitch’s theorem. We assume that M is
a nondeterministic Turing machine, running on input w, with explicit polynomial space
bound p(n) where n = |w|. For convenience, we use the convention that the input w is
written on a read only input tape. A configuration of M(w) is a complete description of
M ’s tape contents, head positions, and current state at a given instant of time.

Let Cinit be the initial configuration of M(w). We may assume without loss of gen-
erality that if there is an accepting computation for M(w), then it ends with a known
configuration Cend after a known number of steps tend. Then, to determine if M(w) has
an accepting computation, one merely invokes

(2.1) Reachable(w, Cinit, 0, Cend, tend).

It is well-known that Savitch’s algorithm uses only polynomial space. In fact, it is straight-
forward to formalize Savitch’s algorithm in U1

2 as an explicitly polynomial space bounded
computation.

With efficient coding, a configuration of M(w) can be written out with d · p(n) many
bits; thus a configuration can be coded by a number C < 2d·p(n). For convenience, we shall
use BdM (n) to denote the term d · p(n) bounding the lengths of codes of configurations
of M . It is not particularly important how configurations C are coded, but it is important
that it be done in a straightforward matter so that information about the tape contents,
tape head positions, current state, etc., can be extracted by polynomial functions of C,
and so that our base theory S1

2 can prove elementary properties about configurations,
including whether one configuration succeeds another, or what the possible next moves
are from a given configuration.

Note that the algorithm in Figure 1 has a line for marking a configuration C as
being “identified” as the time t configuration. It can certainly happen that more than
one configuration C is identified for a particular time t. Indeed, suppose a recursive call
Reachable(w,C1, t1, C, t) returns true. Then certainly some configuration is identified
for each time t′ ∈ (t1, t). If, however, the next call Reachable(w,C, t, C2, t2) returns
false, then the Savitch algorithm proceeds to the next value of C, and retries the calls
with the new value for C. This of course, can cause new configurations to be identified
for the times t′ ∈ (t1, t), etc.

Accordingly, when a particular call (2.1) to Reachable returns TRUE, we are inter-
ested in the last configuration that is identified as the time t configuration. Let C[t]
denote this last such configuration. We claim that the sequence of configurations C[0],
C[1], C[2], . . . , C[tend] is in fact an accepting computation for the Turing machine M

The Infinity Project 89

Reachable(w, C1, t1, C2, t2)

// C1 and C2 are configurations, and t1 < t2.
if t2 = t1 + 1 then

if (C2 follows from C1 by one step of M) then

return TRUE

else

return FALSE

end if

else

set t := ⌊(t1 + t2)/2⌋
set C := 0

loop while C < 2BdM (|w|)

if (C codes a valid configuration of M(w)
and Reachable(w, C1, t1, C, t)
and Reachable(w, C, t, C2, t2))

Mark C as the identified configuration for time t.
return TRUE

end if

set C := C + 1
end loop

return FALSE

end if

Figure 1. Savitch’s algorithm is a recursively invoked procedure that
does a depth first, divide-and-conquer, search for an accepting computa-
tion. It determines whether, starting in configuration C1 at time t1, the
Turing machine M with input string w can reach configuration C2 at time
t2 > t1 by some nondeterministic computation.

on input w, where C[0] and C[tend] are Cinit and Cend. We shall call this sequence of
configurations the “Savitch computation” of M(w).

A computation of M(w) consists of tend + 1 many configurations, each coded by a
string of d·p(n) bits. Accordingly, the entire computation can be coded by (tend+1)·d·p(n)
many bits, where n = |w|. Since tend is exponentially bounded in n, an entire computation
of M(w) can be coded, in U1

2 , by a second order object X. Namely, by letting X(i) have
truth value equal to the i-th bit of the computation, for i < (tend + 1) · d · p(n).

The claim is that U1
2 can prove that if Reachable(w,C1, t1, C2, t2) returns TRUE,

then there is an X coding the entire Savitch computation of M(w). A sketch of the
proof is as follows. First note that, for fixed inputs w, C1, t1, C2 and t2, there must be
some second order object Z coding the entire computation of the call to Reachable.
Consequently, C[t] is computable in polynomial space (from w and t), namely by ex-
amining Z. (In fact, without loss of generality, C[t] is computable in polynomial
time from Z.) The execution of Reachable as coded by Z contains many invoca-
tions of Reachable(w,C1, t1, C2, t2). Using either IND on the depth of the recur-
sive calls, or PIND on the values t2 − t1, it can be proved that for any such invoca-
tion Reachable(w,C1, t1, C2, t2) which returns TRUE, the sequence C1, C[t1 + 1], . . . ,

90 Improved witnessing and local improvement principles

C[t2 − 1], C2 identified during the invocation is a valid computation for M(w) starting
in configuration C1 and ending at C2. The base case of the induction argument is trivial,
and the induction step is immediate.

In addition, we have the following theorem.

Theorem 2.1 Let M be an explicitly polynomial space nondeterministic Turing machine.
Then U1

2 proves the following statement: “If there is a Y coding an accepting computation
of M(w), then Reachable(w,Cinit, 0, Cend, tend) returns TRUE. Conversely, if Reach-
able(w,Cinit, 0, Cend, tend) returns TRUE, then there exists an X coding the entire Savitch
computation, and this is an accepting computation of M(w)”.

The first part of the theorem is proved by noting that the Reachable algorithm
cannot fail to accept when it reaches the computation coded by Y .

Theorem 2.1 implies further that U1
2 can prove natural properties about the existence

of nondeterministic polynomial space computations. An example of this is that U1
2 can

prove that it is possible to concatenate two partial computations. To formalize this, we
can extend the notion of a Savitch computation to talk about the Savitch computation
that starts at configuration C1 at time t1 and ends at configuration C2 at time t2. Then,
we claim that U1

2 can prove that if there are Savitch computations X and Y , one from
C1 at time t1 to C2 at time t2 and the other from C2 at time t2 to C3 at time t3, then
there is a Savitch computation from C1 at time t1 to C3 at time t3. Of course, the two
computations X and Y cannot be merely concatenated to give a Savitch computation,
since they may have different lengths, so their divide-and-conquer splitting points do not
line up. Instead, however, their concatenation does give a (non-Savitch) computation,
and then Theorem 2.1 implies the existence of the desired Savitch computation from C1

to C3.
Savitch computations provide a kind of canonical accepting computation; that is, if

there is some accepting computation, then the Savitch computation exists and is unique.
However, Savitch computations are a bit unnatural since they depend on the divide-
and-conquer algorithm. An arguably more natural notion of canonical computation is a
“lex-first” computation, which is defined as follows. We assume that each configuration
has exactly two possible successor computations that can be reached in a single step.
These two successors can be called the 0-successor and the 1-successor, say according
to the order they appear in the transition relation table. In other words, we think of a
nondeterministic algorithm of choosing exactly one random bit in each step, and moving
according to that bit. A string Z of tend many bits then fully specifies a computation.
A lex-first accepting computation is defined to be the computation that arises from the
lexicographically first Z that gives an accepting computation. Note that the string Z is
exponentially long, and thus is represented in U1

2 by the values of a second order object.
Of course the property that Z gives rise to a lex-first computation can be expressed

as a Π1,b
1 -property since it states that there does not exist a Z ′ lexicographically preced-

ing Z which specifies an accepting computation. However, U1
2 can also express this as a

∆1,b
1 -property. To see this, let CZ [i] be the configuration reached after making i steps ac-

cording to Z, and let C ′
Z [i] be the computation reached after making i−1 steps according

to Z but making the i-step with the choice opposite to Z. Then Z gives rise to a lex-first
computation if and only if, for each value i such that Z(i) = 1, there is no computation
from C ′

Z [i] to the accepting configuration. The last condition is an coNPSPACE property,
hence PSPACE; so the entire condition is ∆1,b

1 .

The Infinity Project 91

Theorem 2.2 Let M be an explicitly polynomial space nondeterministic Turing machine.
Then U1

2 proves: “If there is a Y coding an accepting computation of M(w), then there
exists a lex-first accepting computation of M(w)”.

The idea of the proof of Theorem 2.2 is the following: The Turing machine M , in-
cluding its nondeterministic choices, is simulated step-by-step by a deterministic PSPACE
algorithm M ′. At each step, M ′ invokes a PSPACE algorithm to check whether there
exists an accepting computation starting from the 0-successor of the current configura-
tion. If so, M ′ selects the 0-successor as the next configuration of M . Otherwise, the
1-successor is selected. It is obvious that M ′ selects the lex-first accepting computation
of M if one exists. It is furthermore straightforward to show U1

2 proves this.

3 Improved witnessing theorems for U1
2 and V 1

2

This section states and proves the improved, new-style witnessing theorems for U1
2 and V 1

2 .
First, we need to define what it means for a polynomial space or exponential time com-
putation to output either a first order or second order object. Second, in Section 3.1,
we define what it means for a (polynomial space) computation to “canonically evalu-
ate” the truth of a Σ1,b

0 - or Σ1,b
1 -formula. The intuition behind this is simple: in order

to canonically verify the truth of such a formula, the PSPACE algorithm does a brute
force evaluation by considering all possible values for the first order quantified variables.
However, the unexpected aspect is that all this must be formalizable in the weak base
theory S1

2 , since the new-style witnessing theorems use S1
2 as the base theory.

Sections 3.2 and 3.3 then state and prove the two new witnessing theorems and their
associated witnessing lemmas.

We first establish some further conventions on how Turing machine computations are
coded by second order objects and how they produce outputs. The previous section al-
ready discussed how configurations and complete computations are coded for polynomial
space computations. This notion needs to be extended to handle exponential time com-
putations. Suppose that M is a Turing machine, with input w of length n, and that M is
either explicitly polynomial space or explicitly exponential time. The running time of M
is bounded by a term tend with value tend < 2q(n) for some polynomial q. Configurations
of M(w) are to be coded in some straightforward way by a string of length ≤ BdM (w).
For M in PSPACE, BdM (w) equals p′(n) for some polynomial p′. For M exponential
time, BdM (w) equals 2p

′(n), again for p′ a polynomial. For a polynomial space compu-
tation, a configuration of M(w) could be coded by a first order object C < 2p

′(x). For
exponential time machines however, a configuration is too large and must be coded as a
second order object C, where C(i) gives the i-th bit of the configuration. In either case,
an entire computation of M can be coded by a string of BdM (w) · (tend + 1) bits using a
second order object X. The object X can code the computation by merely concatenating
the codes C[0], . . . , C[tend]. As before, the exact details of the encoding are not important,
however, S1

2 must be able to define polynomial time functions that extract information
about the states, tape head positions, and tape contents at any given time. Furthermore
S1
2 must be able to express other combinatorial properties about the computation; in

particular, the condition that X codes a correct computation must be expressible by a
Πb1-predicate in S1

2 .
If X codes a complete computation, out(X) denotes the first order object output by

the computation (if any). By encoding the computation of M in X appropriately, we can

92 Improved witnessing and local improvement principles

ensure that out(X) is computable in polynomial time relative to X. We sometimes allow
a polynomial space or exponential time Turing machine M to also output a second order
object, and use Out(X) to denote the second order object output (if any). The encodingX
must allow the second order object Out(X) to be polynomial time computable, in that the
value of Out(X)(i) is computable in polynomial time relative to X. For an exponential
time machine, which has exponentially large configurations, this can be done by using
a separate output tape for the second order output. For a polynomial space machine,
this can be done by requiring M to write each value Out(X)(i) at a special tape location
at a prespecified time that is easily computed from i. This permits configurations of M
to be coded by first order objects in spite of the fact that M outputs an exponentially
large second order object. It also permits Out(X)(i) to be computed in polynomial time
relative to X.

3.1 Canonical evaluation and canonical verification

We now define the notion of how a second order object α can “canonically evaluate” or
“canonically verify” a bounded formula. It is important for later developments that these
notions make sense over the base theory S1

2 .
Let ϕ(x⃗, X⃗) be a first order bounded formula with all free variables indicated. Without

loss of generality, the formula ϕ is in prenex form and, for notational convenience, we
also assume that the quantifiers are alternating existential and universal, and that they
all use the same bounding term t(x⃗). (These assumptions can be made without loss of
generality in any event since we are only concerned that formulas are bounded, but not
concerned about what Σbi or Πbi class they are in.) Thus, we can assume ϕ has the form

(∃y1 ≤ t)(∀y2 ≤ t)(∃y3 ≤ t) · · · (Qkyk ≤ t)ψ(y⃗, x⃗, X⃗),

with ψ quantifier-free. Here we are temporarily adopting the notation that, for i ≤ k, Qi
is “∃” if k is odd, and “∀” otherwise. We next define what it means for α to canonically
evaluate ϕ(x⃗, X⃗). An input to α will be interpreted as a tuple of the form ⟨a1, a2, . . . , aℓ⟩
where 0 < ℓ ≤ k + 1 and where 0 ≤ ai ≤ t for each i. Any standard sequence encoding
may be used for coding tuples.

The intuition is that if ℓ ≤ k then α(⟨a1, . . . , aℓ, t⟩) is true if and only if

(Qℓ+1yℓ+1 ≤ t) · · · (Qkyk ≤ t)ψ(a1, . . . , aℓ, yℓ+1, . . . , yk, x⃗, X⃗)

is true. Note the final value is t in the tuple. However, more generally, the intuition is
that if ℓ < k, then α(⟨a1, . . . , aℓ, aℓ+1⟩) is true if and only if

(Qℓ+1yℓ+1 ≤ aℓ+1) · · · (Qkyk ≤ t)ψ(a1, . . . , aℓ, yℓ+1, . . . , yk, x⃗, X⃗)

is true. We make these intuitions formal by setting the following conditions on α.
(a): For all a1, . . . , ak, b ≤ t, we have

α(⟨⃗a, b⟩) ↔ ψ(⃗a, x⃗, X⃗).

Note that the value b is just a placeholder and is not actually used.
(b): For all odd ℓ ≤ k and all a1, . . . , aℓ ≤ t,

α(⟨⃗a⟩) ↔ [(aℓ > 0 ∧ α(⟨a1, . . . , aℓ−1, aℓ − 1⟩)) ∨ α(⟨⃗a, t⟩)].
(c): For all even ℓ ≤ k and all a1, . . . , aℓ ≤ t,

α(⟨⃗a⟩) ↔ [(aℓ > 0 ⊃ α(⟨a1, . . . , aℓ−1, aℓ − 1⟩)) ∧ α(⟨⃗a, t⟩)].

The Infinity Project 93

Definition 3.1 The second order object α canonically evaluates ϕ(x⃗, X⃗) provided that
all the conditions (a)–(c) above hold. And, α canonically verifies ϕ(x⃗, X⃗) provided that
α canonically evaluates ϕ(x⃗, X⃗) and α(⟨t⟩) is true.

Note that “α canonically evaluates ϕ(x⃗, X⃗)” and “α canonically verifies ϕ(x⃗, X⃗)” are
expressible as Πb1 formulas.

We extend the definitions of canonical evaluation and verification to Σ1,b
1 -formulas as

follows.

Definition 3.2 Let ϕ be a strict Σ1,b
1 -formula of the form (∃Y)C(x⃗, X⃗, Y), and let β

be a second order object. Then α canonically verifies that β witnesses ϕ if and only α

canonically verifies C(x⃗, X⃗, β).

Theorem 3.3 For ϕ(x⃗, X⃗) a Σ1,b
0 -formula, S1

2 proves

“If α canonically verifies ϕ(x⃗, X⃗), then ϕ(x⃗, X⃗) is true”.

For ϕ(x⃗, X⃗) a strict Σ1,b
1 -formula (∃Z)ψ(x⃗, X⃗, Z), S1

2 proves

“If α canonically verifies that β witnesses ϕ(x⃗, X⃗), then ψ(x⃗, X⃗, β) is true”.

Proof. (Sketch) This is proved using induction (outside S1
2) on the number of quantifiers k.

For k = 0, it is immediate by condition (a). For k > 0, suppose α(⟨t⟩) holds. Arguing
in S1

2 , use binary search or ∆b
1-minimization to find the least a1 ≤ t such that α(⟨a1⟩)

holds. By (b), this implies α(⟨a1, t⟩) holds. By the (dual of the) induction hypothesis,
applied to the negations of α and the negation of (∀y2 ≤ t) · · · (Qkyk ≤ t)ψ(a1, y⃗, x⃗, X⃗),
we have ϕ(x⃗, X⃗) is true with y1 set equal to a1. �

We shall also need second order objects to canonically evaluate or canonically verify
formulas ϕ that are not in prenex form. (In particular, such formulas seem to be un-
avoidable in the comprehension axioms.) For this, suppose ϕ is a non-prenex formula;
for the next theorem, we use ϕ∗ to denote any prenex form of ϕ; that is, ϕ∗ is obtained
from ϕ by pulling out quantifiers using prenex operations. We claim that S1

2 is able to
prove that the canonical verifications give the same results no matter what prenex form
is used. The following theorem partially formalizes this claim.

Theorem 3.4 Let ϕ and ψ be in prenex form with canonical evaluations given by α
and β. Suppose γ is a canonical evaluation of (ϕ∧ψ)∗, or of (ϕ∨ψ)∗, or of (¬ϕ)∗. Then
γ canonically verifies the truth of the formula if and only α and β canonically verify ϕ
and ψ, or one of α or β canonically verifies ϕ or ψ, or α does not canonically verify ϕ
(respectively).

Furthermore, for any fixed choice of formulas, this statement is provable in S1
2 .

The proof of the theorem is straightforward, as the canonical verification γ is ex-
pressible in terms of α and β in a very explicit way, based on the order in which prenex
operations were applied. We omit the details.

3.2 The new-style witnessing theorems

Theorem 3.5 (Witnessing Theorem for U1
2)

(a) Suppose U1
2 proves (∃y)ϕ(y, a⃗, A⃗) for ϕ a Σ1,b

0 -formula. Then there is a PSPACE
oracle Turing machine M such that S1

2 proves “If Y encodes a complete compu-
tation of M A⃗(⃗a), then ϕ(out(Y), a⃗, A⃗) is true”.

94 Improved witnessing and local improvement principles

(b) Suppose U1
2 proves (∃Z)ϕ(Z, a⃗, A⃗) for ϕ a Σ1,b

0 -formula. Then there is a PSPACE
oracle Turing machine M such that S1

2 proves “If W encodes a complete com-
putation of M A⃗(⃗a), then Out(W) = ⟨Y, Y ′⟩ where Y canonically verifies that Y ′

witnesses ∃Zϕ(x,Z,X) is true”.

The notation M A⃗(⃗a) denotes that the machine M has as inputs the first order ob-
jects a⃗, and has oracle access to the second order objects A⃗. The notation W = ⟨Y, Y ′⟩ is
the ordinary pairing on second order objects, namely it means that W (i) is true precisely
for those i’s of the form ⟨0, y⟩ with y ∈ Y or of the form ⟨1, y′⟩ such that y′ ∈ Y ′.

The proof of Theorem 3.5 is based on the following witnessing lemma.

Theorem 3.6 (Witnessing Lemma for U1
2) Suppose U1∗

2 proves a sequent Γ −→ ∆ of
strict Σ1,b

1 -formulas with free variables a⃗, A⃗. Let Γ be ϕ1, . . . , ϕk and ∆ be ψ1, . . . , ψℓ with
each ϕi equal to (∃Yi)ϕ′i(⃗a, A⃗, Yi) and each ψi equal to (∃Zi)ψ′

i(⃗a, A⃗, Zi). (Some of the
quantifiers may be omitted.) Then there is a PSPACE oracle machine M such that S1

2

proves:
“If Ui canonically verifies that Yi is a witness for ϕi for i = 1, . . . , k, and
if W encodes a complete computation of M U⃗ ,Y⃗ ,A⃗(⃗a), then this computa-
tion of M outputs a first order j = out(W) ∈ {1, . . . , ℓ} and encodes a
second order output Out(W) = ⟨V,Zj⟩ such that V canonically verifies
that Zj is a witness for Ψj”.

Theorem 3.5 is an immediate consequence of Theorems 1.6, 3.3, and 3.6. The proof
of Theorem 3.6, given in Section 3.3 below, uses induction on the number of lines in a
U1∗
2 sequent calculus proof which contains only strict Σ1,b

1 -formulas.
The witnessing theorem and lemma for V 1

2 are completely analogous to those for U1
2 .

Theorem 3.7 (Witnessing Theorem for V 1
2)

(a) Suppose V 1
2 proves (∃y)ϕ(y, a⃗, A⃗) for ϕ a Σ1,b

0 -formula. Then there is an ex-
ponential time oracle Turing machine M such that S1

2 proves “If Y encodes a
complete computation of M A⃗(⃗a), then ϕ(out(Y), a⃗, A⃗) is true”.

(b) Suppose V 1
2 proves (∃Z)ϕ(Z, a⃗, A⃗) for ϕ a Σ1,b

0 -formula. Then there is an ex-
ponential time oracle Turing machine M such that S1

2 proves “If W encodes a
complete computation of M A⃗(⃗a), then Out(W) = ⟨Y, Y ′⟩ where Y canonically
verifies that Y ′ witnesses ∃Zϕ(x,Z,X) is true”.

Theorem 3.8 (Witnessing Lemma for V 1
2) Suppose V 1

2 proves a sequent Γ −→ ∆ of
strict Σ1,b

1 -formulas with free variables a⃗, A⃗. Let Γ be ϕ1, . . . , ϕk and ∆ be ψ1, . . . , ψℓ with
each ϕi equal to (∃Yi)ϕ′i(⃗a, A⃗, Yi) and each ψi equal to (∃Zi)ψ′

i(⃗a, A⃗, Zi). (Some of the
quantifiers may be omitted.) Then there is an exponential time oracle machine M such
that S1

2 proves:
“If Ui canonically verifies that Yi is a witness for ϕi for i = 1, . . . , k, and
if W encodes a complete computation of M U⃗ ,Y⃗ ,A⃗(⃗a), then this computa-
tion of M outputs a first order j = out(W) ∈ {1, . . . , ℓ} and encodes a
second order output Out(W) = ⟨V,Zj⟩ such that V canonically verifies
that Zj is a witness for Ψj”.

As before, Theorem 3.7 follows from Theorems 1.6, 3.3, and 3.8. Theorem 3.8 is also
proved in Section 3.3 below.

The Infinity Project 95

3.3 Proofs of the witnessing lemmas for U1
2 and V 1

2

We now prove Theorem 3.6. Assume P is a U1∗
2 -proof containing only strict Σ1,b

1 -formulas.
The proof of Theorem 3.6 uses induction on the number of steps in the proof P , and splits
into cases depending on the final inference of P . There are two base cases where P consists
a single sequent, with no inferences. The first is where P is a single initial sequent of
the form A −→ A where, without loss of generality, A is atomic. This case is completely
trivial of course. The second base case is when P consists of a single Σ1,b

0 -comprehension
axiom of the form

(3.1) −→ (∃Z)(∀y ≤ t(x⃗))[y ∈ Z ↔ ϕ(y, x⃗, X⃗)]

for ϕ bounded. We must describe a polynomial space Turing machine M that computes Z
and a second order object V that canonically verifies that Z witnesses the truth of
the comprehension axiom. We shall use informal arguments to describe M , but it will
be clear that S1

2 can formalize them in the sense that S1
2 can prove that if a second

order object encoding a complete computation of M is given, then the outputs out(M)
and Out(M) correctly provide a canonical verification of the sequent (3.1). There is only
a single formula, so ℓ = 1 and of course out(M) = 1. The deterministic polynomial
space algorithm for M is straightforward: for each value y < t(x⃗), M X⃗(x⃗) computes the
predicate Vy such that Vy canonically evaluates the truth of ϕ(y, x⃗, X⃗). If Vy indicates
ϕ(y, x⃗, X⃗) is true, then Z(y) is determined to be true; otherwise, Z(y) is determined
to be false. For each fixed value y, the Vy can be straightforwardly converted into a
canonical verification (of a prenex form) of y ∈ Z ↔ ϕ(y, x⃗, X⃗). Combining all these
gives a canonical verification of (3.1).

The cases where the final inference of P is a weakening inference or an exchange
inference are trivial. The cases where the final inference is a propositional inference are
also rather trivial, but we do the case of ∧:right to illustrate this. Suppose the final
inference of P is

ϕ1, . . . , ϕk→ψ1, . . . , ψℓ−1, ψ
′
ℓ ϕ1, . . . , ϕk→ψ1, . . . , ψℓ−1, ψ

′′
ℓ

ϕ1, . . . , ϕk→ψ1, . . . , ψℓ−1, ψ
′
ℓ ∧ ψ′′

ℓ

Note there are no second order quantifiers in ψ′
ℓ or ψ′′

ℓ since P is free-cut free and thus all
formulas in the proof are strict Σ1,b

1 . The induction hypothesis gives two Turing machines
M ′ and M ′′ which satisfy Theorem 3.6 for the two upper sequents. We describe how to
form a Turing machine M that fulfills the same condition for the lower sequent. The
machine M has first order inputs a⃗ and uses oracles U⃗ , Y⃗ , A⃗. The machine M starts
by forming a canonical evaluation of a prenex form of ψ′

ℓ ∧ ψ′′
ℓ : this uses only inputs y⃗

and A⃗, and involves looping through all possible values for the bounded quantifiers in this
formula, and uses polynomial space. If the canonical evaluation shows that ψ′

ℓ∧ψ′′
ℓ is true,

M halts outputting the first order value ℓ indicating the ℓth formula of the antecedent
is true, and also outputting a second order object Z that canonically verifies ψ′

ℓ ∧ ψ′′
ℓ .

Otherwise, M canonically evaluates both ψ′
ℓ and ψ′′

ℓ . By Theorem 3.4, at least one of
these two formulas will be found to be false. Suppose, without loss of generality, that ψ′

ℓ
is false. In this case, M simulates M ′ and outputs whatever it outputs. Note that M ′

cannot report that ψ′
ℓ is true, so it must instead output some j < ℓ, some Zj , and some V

which canonically verifies that Zj is a witness for ψj . It is clear that S1
2 can simulate this

argument sufficiently well so as to prove that, if a complete computation of M is given

96 Improved witnessing and local improvement principles

as a second order object W , then it gives a canonical verification either for ψ′
ℓ ∧ψ′′

ℓ or for
some ψj with j < ℓ.

Now suppose the final inference of P is a bounded first order ∃:right inference:

Γ→∆, ψ(s)

s ≤ t,Γ→∆, (∃x ≤ t)ψ(x)
Note that ψ again has no second order quantifiers. The proof idea is somewhat similar
to the case of ∧:right just done. The induction hypothesis gives a Turing machine M ′

satisfying the witnessing conditions for the upper sequent. The desired Turing machineM
acts as follows. It first builds a canonical evaluation for (∃x ≤ t)ψ(x). If this finds the
formula to be true, it outputs this fact along with the canonical verification. (As an
alternate construction, it would also be enough to do this only if ψ(s) is true. It must be
the case that s ≤ t since the input to M includes a canonical evaluation of this atomic
formula.) Otherwise, M continues to simulate M ′. The output of M ′ must produce
an index j for a formula in ∆ along with a Zj and a V which together witness and
canonically verify the truth of the jth formula of ∆. Again, S1

2 can prove that a complete
computation by M produces the desired output.

Suppose the final inference of P is a bounded first order ∃:left inference:

a0 ≤ t, ϕ0(a0),Γ→∆

(∃x ≤ t)ϕ0(x),Γ→∆

Here a0 is an eigenvariable and does not occur in the lower sequent. Of course, ϕ0 does
not have any second order quantifiers. Let M ′ be given by the induction hypothesis.
The desired machine M has among its inputs a canonical verification U0 of the formula
(∃x ≤ t)ϕ0(x). M starts by extracting the least value for x for which U0 has found that
ϕ(x) is true, and sets a0 equal to this value. (M can readily find a0 either a polynomial
space linear search through all values of x, or by a polynomial time binary search as in the
proof of Theorem 3.3.) Once a value for a0 is determined, M continues by simulating M ′

and using its outputs.
The case where the final inference of P is a bounded first order ∀:right inference

a0 ≤ t,Γ→∆, ψ(a0)

Γ→∆, (∀x ≤ t)ψ(x)
is similar to the previous two cases. Namely, the Turing machine M for the lower sequent
starts by forming a canonical evaluation of (∀x ≤ t)ψ(x). If this is found to be true,
this is output by M . Otherwise, M finds a value for a0 ≤ t that makes ψ(a0) false, and
M continues by simulating the machine M ′ for the upper sequent with this value for a0.

Suppose the final inference of P is a bounded first order ∀:left inference

ϕ0(s),Γ→∆

s ≤ t, (∀x ≤ t)ϕ0(x),Γ→∆

The Turing machine M for the lower sequent is given among its inputs a second order
object U0 (an oracle) that canonically evaluates (∀x ≤ t)ϕ0(x). It is easy to extract
from U0 another second order object U ′

0 that canonically evaluates ϕ0(s). This is because
s ≤ t must be true, and since we can define U ′

0(⟨a1, . . . , aj⟩) to equal U0(⟨s, a1, . . . , aj⟩).
Let M ′ be the polynomial space Turing machine given by the induction hypothesis. The
machine M acts by simulating M ′ using U ′

0 as the canonical verification for ϕ0(s).

The Infinity Project 97

Suppose the final inference of P is a second order ∃:right inference

Γ→∆, ψ(A)

Γ→∆, (∃Z)ψ(Z)
The second order variable A is not an eigenvariable, and so, without loss of generality,
appears in the lower sequent. Thus the desired machine M ′ for the lower sequent takes
the same inputs as the polynomial space machine M given by the induction hypothesis
for the upper sequent. The machine M will output a canonical verification either of a
formula in ∆ or of ψ(A). In the former case, M ′ gives the same output as M . In the
latter case, M ′ sets Z equal to A and outputs the canonical verification of ψ(Z).

Suppose the final inference of P is a second order ∃:left

ϕ(A),Γ→∆

(∃Y)ψ(Y),Γ→∆

where now A is an eigenvariable and does not appear in the lower sequent. Let M be
the polynomial space machine given by the induction hypothesis; we must define the
machine M ′ for the lower sequent. One of the inputs to M ′ is a second order Y along
with a canonical verification U of ϕ(Y). The machine M ′ runs by letting this Y be the
value of the input A to M , using U as the canonical verification of ϕ(A), and then just
running M .

Now suppose the final inference of P is an sΣ1,b
1 -repl-∀ inference,

a ≤ t,Γ→∆, (∃X)ψ(X, a)

Γ→∆, (∃Z)(∀x ≤ t)ψ({z}Z(⟨x, z⟩), x)
where a is an eigenvariable and may not occur in the lower sequent. The induction
hypothesis gives a polynomial space Turing machine M ′ for the upper sequent. We form
a new machine M which has the same inputs as M ′ except that a is not an input to M .
The machine M runs as follows: it loops through all values of a ≤ t, and simulates M ′

with each of these values for a. If, for any value a, M ′ indicates that a formula ψj in ∆
is true and gives a witness Zj and a canonical verification V for ψj , then M halts and
outputs the same values j, Zj and V . Otherwise, for each value of a, M ′ produces a
second order Xa and a canonical verification Va showing that Xa witnesses (∃X)ψ(X, a).
When this happens for all values of a, the second order Xa’s can be combined into a single
second order Z defined so that Z(a, z) holds iff Xa(z) holds; furthermore, the canonical
verifications Va can be straightforwardly combined to give a canonical verification that
Z is a witness for (∃Z)(∀x ≤ t)ψ({z}Z(⟨x, z⟩), x). It is clear that M is polynomial space
bounded, since M ′ is.

Suppose the final inference of P is a cut inference,

Γ→∆, χ χ,Γ→∆

Γ→∆

Let M1 and M2 be the Turing machines given by the induction hypothesis for the left and
right upper sequents, respectively. The machine M for the lower sequent is constructed
as follows. It begins by running machine M1, which takes the identical inputs as M . If
M1 finishes with a witness for one of the formulas in ∆, then M halts producing the
same first and second order outputs as M1. Otherwise, M1 outputs a pair of second order
objects V and Zℓ+1 such that V canonically verifies that Zℓ+1 is a witness for χ. In

98 Improved witnessing and local improvement principles

this case, M then invokes M2 with the intent of using V and Zℓ+1 as inputs to M2 that
provide a witness and a canonical verification for the occurrence of χ in the antecedent
of the upper right sequent. The only catch is that M is allowed to use only polynomial
space, and this is not sufficient space for M to save the exponentially long values of V
and Zℓ+1. Instead, as M simulates M2, it recomputes the values of V and Zℓ+1 as needed
by running machine M1 again. Since M1 is deterministic, this always yields consistent
values for V and Zℓ+1. This allows M to use only polynomial space as, at any given
point in time, M needs to remember only one configuration of M1 and one configuration
of M2.

Finally, suppose the last inference of P is an sΣ1,b
1 -LIND induction,

χ(a0),Γ→∆, χ(a0 + 1)

χ(0),Γ→∆, χ(|t|)
(It is slightly more convenient to use LIND instead of PIND, but the argument is es-
sentially the same either way.) Let M ′ be the Turing machine given by the induction
hypothesis for the upper sequent. The intuition is that we handle the induction hypoth-
esis by treating it as |t| − 1 many cuts, on the formulas χ(1), χ(2), . . . , χ(|t| − 1). This
means that M is iterating computations of M ′; however, the iterations are nested only to
a depth |t|, so M needs to remember at most |t| many configurations of M ′ at any given
point in time. Since |t| is polynomially bounded in terms of the lengths of the first order
free variables, this means M uses only polynomial space.

For a bit more detail, let ∆ have ℓ−1 formulas. M starts by computing M ′ with a0 set
equal to 0, which we denoteM ′[a0 := 0], and potentially continues for a0 = 1, 2, . . . , |t|−1.
If M ′[a0 := i] yields a first order output < ℓ, a witness of a formula in ∆ has been
obtained, and M can output this. Otherwise, M ′[a0 := i] outputs first order output ℓ
along with a witness for χ(|t|). If this happens with i = |t|, then the desired output
has been obtained. For i < |t| − 1, M must instead invoke M ′[a0 := i + 1] using the
output of M ′[a0 := i] as the second order witness and canonical verification for χ(i). As
in the case of cut, the output of M ′[a0 := i] is exponentially large, and cannot be written
out in polynomial space. Instead, whenever, M ′[a0 := i + 1] queries its second order
inputs for χ(i), M interrupts the computation of M ′[a0 := i + 1] and re-simulates the
entire computation of M ′[a0 := i]. These recomputations must be carried out recursively,
but only to a depth of |t|. At any given point in time, M needs to remember at most
configurations for one invocation of each of M ′[a0 := i], for i = 0, . . . , |t|.

The above completes the proof of Theorem 3.6. The proof of Theorem 3.8 is mostly
identical. The various cases, based on the final inference of V 1

2 -proof P , are essentially
identical to the cases described above for Theorem 3.6. The cases of cut and induction
merit more discussion however. In the setting of V 1

2 , the exponential time machine M
is allowed to use exponential space and this allows a simplification to be made in the
construction of M . For the case where the final inference of P is cut, the output of
the machine M1 can be written down completely in M ’s memory as this requires ‘only’
exponential time and space. It is thus unnecessary to redo the computation of M1 every
time M2 needs a value of M1’s second order output. Similar considerations apply to the
case where the final inference of the V 1

2 is an IND induction inference. M now needs to
do an exponentially long iteration; however, instead of recomputing values, M can just
store them all in memory.

The Infinity Project 99

4 Local improvement principles

4.1 Definitions and theorems

The local improvement principles were defined by Kołodziejczyk, Nguyen, and Thapen [8]
as an extension of the game principles of Skelley and Thapen [13]. The local improvement
principle is specified by a set of contradictory conditions, so the local improvement prin-
ciple states that it is always possible to find a counterexample to one of the conditions.
Our definition of the local improvement principles below includes a minor, inessential
change to the definition of [8] so as to make the score values a function of a single label
instead of a function of the labels in a neighborhood.

Definition 4.1 An instance of the local improvement principle consists of a specification
of a directed acyclic graph G with domain [a] := {0, 1, 2, . . . , a− 1} and polynomial time
computable edges, an upper bound b > 0 on labels, an upper bound c > 0 on scores,
an initial labeling function E, a wellformedness predicate wf, and a local improvement
function I. These satisfy the following conditions.

(a) The directed graph G is consistent with the usual <-ordering of its domain [a],
and has in- and out-degrees bounded by a fixed constant. The edges of G are
specified by a polynomial time neighborhood function f . For each vertex x ∈ [a],
f(x) outputs a set of vertices y ∈ [a]: the vertices y < x (respectively, y > x) are
the predecessors (respectively, the successors) of the vertex x. The neighborhood
of x is the set containing x together with its successors and predecessors. The
extended neighborhood of x is the union of the neighborhoods of the neighbors
of x.

(b) Vertices in G will be assigned a series of labels. A label is in the range [0, b)
and includes a score value s in the range [0, c). The score value associated
with the label on vertex x is polynomial time computable as a function of the
label on x.5 The polynomial time predicate wf determines whether a labeling
of a neighborhood of x is wellformed. The inputs to the predicate wf are the
vertices in the neighborhood and their labels. A labeling of vertices is extended-
wellformed around x if it is wellformed on the neighborhood of every vertex y
in the neighborhood of x.

(c) The two functions E and I provide methods of assigning labels to vertices.
To initialize the labels, the polynomial time function E(x) assigns labels to
vertices x with score 0 so that all neighborhoods have wellformed labelings. The
improvement function I provides a method to replace a label with a label with
a higher score value: I takes as input a vertex x and a wellformed labeling of
the neighborhood of x, and provides a new label for x. Specifically, suppose s is
even and that every predecessor of x has a label with score s+1 and that x and
every successor of x has a label with score s; then I provides a new label for x
with score s + 1. Dually, suppose s is odd and that every successor of x has a
label with score s + 1 and that x and every predecessor of x has a label with
score s; then I provides a new label for x with score s + 1. In other cases, the

5 This is slightly different from the convention of [8] which makes the score value a function of the
labels in the neighborhood of x. They let the score value equal “∗” if the labels do not constitute a
wellformed local labeling. The difference in how scores are defined makes no difference to the complexity
of the local improvement principle.

100 Improved witnessing and local improvement principles

I function is undefined. Furthermore, whenever I is defined and the labeling is
extended-wellformed around x, then the labeling obtained by replacing the label
on x with the the new label given by I is still extended-wellformed around x.

The intuition behind the local improvement function is that it provides labels with
higher score values. Initially, all labels have score 0, but then sweeping forward through G
allows scores to increase from even to odd values, and sweeping backwards allows scores to
increase from odd to even values. The preservation of the extended-wellformed properties
implies that scores can increase without bound. This, however, contradicts the property
that score values are < c. Thus, the local improvement conditions listed above are
contradictory.

Definition 4.2 A solution to an instance of the local improvement property consists
of either: (a) An extended-wellformed labeling of a vertex x and its extended neighbor-
hood where the local improvement function is defined but fails to provide a new label
for x with the correct score value that preserves the extended-wellformed property, or
(b) a neighborhood of a vertex x where the initialization function E fails to provide an
extended-wellformed labeling with scores all equal to zero.

Note that any solution to the local improvement property is polynomial time check-
able.

Definition 4.3 An instance of the local improvement principle is given by a G specified
with a polynomial time domain and a polynomial time neighborhood function f , first
order values b and c, and polynomial time functions s, E, I and wf; and consists of the
Σb1 formula (with free variables a, b and c) that asserts that a solution exists. The notation
LI denotes the set of Σb1-formulas obtained from all instances of the local improvement
principle. We use LIlog to denote instances LI where c is a length, that is where c = |c′|
for some term c′.

The linear local improvement principles LLI and LLIlog are defined in the same way,
but with G restricted to be a linear graph. That is, G has vertices [a], and the edges of
G are the directed edges (i− 1, i), for 0 < i < a.

It is also useful to define “rectangular” local improvement principles. These are in-
stances of LI or LIlog where the underlying graph G has domain [a] × [a], each vertex
(i, j) has up to four incoming edges, namely from the vertices (i − 1, j), (i − 1, j − 1),
(i, j − 1), and (i+ 1, j − 1). Thus, the edges involving (i, j) are as pictured:

j − 1

j

j + 1

i− 1 i i+ 1

except that any edges that would involve vertices outside the domain of G are omitted.
We shall call instances of LI and LIlog based on these rectangular graphs RLI and RLIlog.
(These rectangular graphs were used by [8], although they did not use this terminology.)

The Infinity Project 101

Definition 4.4 An NP search problem Q is specified by a first order sentence

(∀x)(∃y ≤ t)ϕ(y, x)

with ϕ a ∆b
1-formula with respect to S1

2 . A solution to Q(x) is a value y ≤ t such
that ϕ(y, x) holds. We denote this condition by y = Q(x); note there may be multiple
solutions y for a single input x.

The NP search problem Q is total provided that every x has at least one solution. It
is provably total in a theory T provided T ⊢ (∀x)(∃y ≤ t)ϕ(y, x).

Any instance of the local improvement principle has a solution. This fact can be
expressed as a ∀Σb1-formula, and any solution can be verified in polynomial time. Thus
the local improvement principles are total NP search problems.

Definition 4.5 Suppose that (∀x)(∃y ≤ t)ϕ(y, x) and (∀x)(∃y ≤ s)ψ(y, x) specify NP
search problems, denoted Qϕ and Qψ. A many-one reduction from Qϕ to Qψ consists of
a pair of polynomial time functions g and h such that whenever y = Qψ(g(x)), we have
h(y, x) = Qϕ(x). We write Qϕ ≤m Qψ to denote that there is a many-one reduction from
Qϕ to Qψ.

A theory proves that Qϕ ≤m Qψ provided that it proves

(∀x)(∀y)[y = Qψ(g(x)) ⊃ h(y, x) = Qϕ(x)].

We can now state the results of [8] about the local improvement principles and the
provably total NP search problems of U1

2 and V 1
2 .

Theorem 4.6 ([8]) U1
2 proves the linear, logarithmic local improvement principle LLIlog.

Furthermore, LLIlog is many-one complete, provably in S1
2 , for the provably total NP

search problems of U1
2 ; namely, if Q is a provably total NP search problem of U1

2 , then
S1
2 can prove that Q is many-one reducible to an NP search problem in LLIlog.

Theorem 4.7 ([8]) V 1
2 proves the local improvement principle LI. Furthermore, LI is

many-one complete, provably in S1
2 , for the provably total NP search problems of V 1

2 ;
namely, if Q is a provably total NP search problem of V 1

2 , then S1
2 can prove that Q is

many-one reducible to an NP search problem in LI.
The same results hold for RLI in place of LI.

We shall improve these results below by proving the following two theorems. The first
theorem states that U1

2 can also prove the LLI formulas. This is a somewhat surprising
and unexpected result, since the straightforward algorithmic way to prove the local im-
provement principle LLI would be to iteratively define labels with increasing score values
by sweeping back and forth across the linear graph G. If this is done deterministically,
this could simulate c steps of a Turing machine computation, that is to say, it could sim-
ulate exponential time algorithms. This is (conjecturally) beyond the power of U1

2 which
can only define polynomial space predicates. However, as we shall see in Section 4.2,
the LLI principle can instead be proved using only (nondeterministic) polynomial space
computations.

Theorem 4.8 U1
2 proves the linear local improvement principle LLI. Furthermore, LLI

is many-one complete, provably in S1
2 , for the provably total NP search problems of U1

2 ;
namely, if Q is a provably total NP search problem of U1

2 , then S1
2 can prove that Q is

many-one reducible to an NP search problem in LLI.

102 Improved witnessing and local improvement principles

The second part of Theorem 4.8 follows already from Theorem 4.6 since LLI contains
LLIlog as a special case. The proof of first part of Theorem 4.8 is given in Section 4.2
below.

Our new result for V 1
2 states that LIlog is already strong enough to be many-one

complete for set of provably total NP search problems of V 1
2 , and that the many-one

completeness is provable over the base theory S1
2 .

Theorem 4.9 V 1
2 proves the local improvement principle LIlog. Furthermore, LIlog is

many-one complete, provably in S1
2 , for the provably total NP search problems of V 1

2 ;
namely, if Q is a provably total NP search problem of V 1

2 , then S1
2 can prove that Q is

many-one reducible to an NP search problem in LIlog.
The same results hold for RLIlog in place of LIlog.

Theorem 4.9 will be proved in Section 4.4, using the rectangular local improvement
principle RLIlog for the many-one completeness. Of course, the first part of Theorem 4.9
follows already from Theorem 4.7.

It is interesting to observe that scores can be restricted further to a constant, for the
price that the underlying graph structure will be more general than the linear structure
in case of U1

2 , or than the rectangular structure in case of V 1
2 . The best bound which

we can obtain on scores is 2: score “0” for initialization, and score “1” for one round of
improvement.

Theorem 4.10

(a) LI2 is many-one complete, provably in S1
2 , for the provable total NP search prob-

lems of V 1
2 ; in particular, if Q is a provably total NP search problem of V 1

2 , then
S1
2 can prove that Q is many-one reducible to an NP search problem in LI2.

(b) RLI2 is many-one complete, provably in S1
2 , for the provable total NP se-

arch problems of U1
2 ; namely, U1

2 proves RLI2, and if Q is a provably total
NP search problem of U1

2 , then S1
2 can prove that Q is many-one reducible to

an NP search problem in RLI2.

Proof. For part (a), using Theorem 4.7, it suffices to describe how to turn an RLI problem
into an equivalent LI2 problem. Let an RLI problem be given by a, b, c, s(·),wf, E(·), I(·),
that is, the underlying graph G has domain [a] × [a], and each vertex (i, j) has up to
four incoming edges, namely from the vertices (i − 1, j), (i − 1, j − 1), (i, j − 1), and
(i + 1, j − 1). We think of G aligned in a way that the origin (0, 0) is at the lower left
corner. A simulating LI2-problem can be constructed as follows: Let G−1 be G rotated
by 180 degrees, so that the lower left corner (0, 0) of G becomes the upper right corner
of G−1, and that edges are pointing in the opposite direction. We create c + 1 many
copies G0, G1, . . . , Gc, alternating between G and G−1, starting with G, and place them
in ascending order on the diagonal of a [a · (c+1)]× [a · (c+1)] grid as shown in Figure 2.

The idea of the simulation is that instead of computing initial well-founded labels of
score 0, and then sweeping back and forth to compute new well-founded labels of higher
scores using I, we will just sweep once over the grid and produce a well-founded labeling
which at Gk scores k: For G0 we use the initial labeling given by E. When filling in Gk+1,
we use the already computed labels at Gk to compute a labeling, using I and additional
edges between Gk and Gk+1. The structure of the additional edges is given in Figures 3
and 4.

The Infinity Project 103

G

G−1

G

0 a 2a 3a (c+ 1)a
0

a

2a

3a

(c+ 1)a

Figure 2. Structure of LI2 game simulating an RLI game.

G2k−1

j−1
j

j+1

i−1ii+1

G2k

j−1
j

j+1

i−1 i i+1

Figure 3. Structure of additional edges between G2k−1 and G2k in LI2
game which simulates an RLI game.

We call the additional edges between Gk and Gk+1 new edges, and predecessors
and successors based on them new predecessors, resp. new successors. Notions based on
existing edges are dubbed old.

Specifically, in Figure 3, suppose that every old predecessor of (i, j) in G2k, that is
(i− 1, j − 1), (i, j − 1), (i+1, j − 1), and (i− 1, j) in G2k, has a label with score 2k, and
that every new predecessor of (i, j) in G2k, that is (i, j), (i+1, j), (i− 1, j+1), (i, j+1),
and (i+1, j+1) in G2k−1, has a label with score 2k− 1. Then I provides a new label for
(i, j) in G2k with score 2k. That is, the neighborhood on which I bases its computation,
is formed from (i− 1, j− 1), (i, j− 1), (i+1, j− 1), (i− 1, j) in G2k, and (i, j), (i+1, j),
(i− 1, j + 1), (i, j + 1), (i+ 1, j + 1) in G2k−1.

104 Improved witnessing and local improvement principles

G2k

j+1

j

j−1
i+1ii−1

G2k+1

j+1

j

j−1
i+1 i i−1

Figure 4. Structure of additional edges between G2k and G2k+1 in LI2
game which simulates an RLI game.

Dually, in Figure 4, suppose that every old successor of (i, j) in G2k+1, that is (i+1,
j + 1), (i, j + 1), (i− 1, j + 1), and (i+ 1, j) in G2k+1, has a label with score 2k+ 1, and
that every new predecessor of (i, j) in G2k, that is (i, j), (i− 1, j), (i+1, j− 1), (i, j− 1),
and (i− 1, j − 1) in G2k, has a label with score 2k. Then I provides a new label for (i, j)
in G2k+1 with score 2k + 1. Here, the neighborhood on which I bases its computation,
consists of (i+ 1, j + 1), (i, j + 1), (i− 1, j + 1), (i+ 1, j) in G2k+1, and (i, j), (i− 1, j),
(i+ 1, j − 1), (i, j − 1), (i− 1, j − 1) in G2k.

The initial labeling with score 0 will be given by E(.) on G0, and arbitrarily anywhere
else, e.g. by choosing the labels to be 0. Without loss of generality, we can assume that
the label 0 is used only for the initial label values.

The wellformedness predicate wf for the new LI2 problem is defined with the aid of
the predicate wf for the instance of RLI. Consider a vertex (i, j) in G2k where k > 0;
we call this vertex x. The vertex x has the nine incoming edges as shown in Figure 3,
namely, one from (i, j) in G2k−1 plus eight additional edges. In addition, there are the
corresponding nine outgoing edges. If any of the predecessors of x have label 0, then the
neighborhood of x is defined to be wellformed provided that x, and all of its successors
also have label 0. Otherwise, the predecessors of x all have labels different from 0. Then,
if x itself has label 0, then the neighborhood of x is wellformed provided that the labels on
the vertex (i, j) in G2k−1 and the eight other predecessors of x are wellformed according
to the criteria of the RLI instance. On the other hand, if x does not have label 0, then the
neighborhood of x is wellformed provided that the labels on x and its eight predecessors
are wellformed according to the criteria of the RLI instance. The wellformedness predicate
is defined similarly for vertices in G2k−1.

It is not hard to verify that the above gives a faithful translation from the RLI problem
to an LI2 problem.

The Infinity Project 105

Line

0 0 1 2 3 4 5 6

1
0 1 2

3
4 5 6

2
0 1

234
5 6

3
0 1

234
5 6

4
0

12345
6

5
0
12345

6

6 0123456

Figure 5. Inverting a line with 7 label positions using 6 additional lines.

We now turn to part (b). By Theorem 4.13 proved below, RLI2 is provable in U1
2 . For

the completeness of RLI2 under many-one reductions, in light of Theorem 4.6, it suffices
to describe how to turn an LLI problem into an equivalent RLI2 problem. Let an LLI
problem be given by a, b, c, s(·),wf, E(·), I(·), that is, the underlying graph G has vertices
[a], and the edges of G are the directed edges (i − 1, i) for 0 < i < a. We think of G as
a horizontal line with 0 to the left, and edges pointing to the right. A simulating RLI2
problem can be constructed as follows: Let G−1 be the inverse of G, that is 0 is now to
the right and edges are pointing to the left.

The main idea is to again create c+1 many copies alternating betweenG andG−1, and
stack them vertically to form a [a]× [c+1] grid. Instead of computing initial well-founded
labels of score 0, and then sweeping back and forth on G to compute new well-founded
labels of higher scores using I, we want to just sweep once over the grid and produce a
well-founded labeling which at the k-th copy of G scores k. However, as we alternate
between G and G−1 and the underlying graph structure shall be the rectangular one of
RLI, we need, between any two alternations, a + 1 many additional lines which allow
us to invert the positions of previously computed labels. Thus, the resulting graph has
dimension [a]× [(a+ 1)(c+ 1)].

The idea for inverting label positions using additional lines is as follows —see Figure 5
for an example. We can think of the original line of label positions as a rope stretching
out horizontally in the plane. We transform the rope to first form a little “s” in the
middle. Then, keeping the position of the middle point of the rope fixed, we stretch the
two curves of the “s” horizontally to the sides, until eventually the rope is stretched out
again, this time in the opposite direction.

106 Improved witnessing and local improvement principles

During this process, a vertical line at an arbitrary horizontal position will intersect
the rope at most three times. Thus, the labels at additional lines in our game graph, when
imitating the just described transformation, will have to store at most 3 pieces of label
information: one for those labels who have found their new position; one for those who
are moving left to right, and one for those who are moving right to left. In addition, it is
convenient to store a score value which measures how far the inversion has progressed.

It is obvious that a rectangular structure on the new [a] × [(a + 1)(c + 1)] grid is
sufficient to imitate the above described process. It is then straightforward to define wf,
E(·) and I(·) which exactly describe this process —details are left to the reader. �

Corollary 4.11 Over the base theory S1
2 ,

(a) the principles LLI, LLIlog and RLI2 are equivalent;
(b) the principles LI, LIlog, LI2, RLI, and RLIlog are equivalent.

Proof. Part (a) is an immediate consequence of Theorems 4.6, 4.8, and 4.13, due to the
fact that the LLI conditions are NP search problems. Part (b) is likewise an immediate
consequence of Theorems 4.7, 4.9, and 4.10 and the fact that only RLIlog will be used for
the proof of Theorem 4.9. �

4.2 Proof of Theorem 4.8

The intuition behind the proof of LLI is based on the following exponential time algorithm:
First set all vertices x ∈ [a] in the linear directed graph to have the initial labels with
score zero given by E(x). Then, sweep back-and-forth through the vertices in linear order,
alternating scans in left-to-right order (from 0 to a− 1) with scans in right-to-left order
(from a−1 to 0). Each time a vertex x is processed, its prior label, with score s, is replaced
by a new label, with score s+ 1. For even values of s, this occurs while sweeping left-to-
right and for odd values of s, it occurs while sweeping from right-to-left. Up to c scans
are performed, by which time a contradiction to the local improvement conditions must
have been found; namely, either by reaching a point where the improvement function I
fails to produce an appropriate value or by obtaining a score value c.

This algorithm calculates a values of E(x) and invokes the improvement function
a · (c− 1) times. Since a and c are arbitrary first order objects (not lengths), this takes
exponential time. Worse, the algorithm stores the current label values for all x ∈ [a] and
this requires exponential space. Thus, the algorithm is in exponential time but not in poly-
nomial space, and the theory U1

2 cannot formalize the algorithm directly, unless PSPACE
equals exponential time. To circumvent this barrier, we will use a non-deterministic
polynomial space algorithm instead. The idea behind the NPSPACE algorithm is sim-
ple: rather than storing the labels on all vertices x ∈ [a], it merely nondeterministically
guesses them as needed. This of course does not give the “correct” labels; nonetheless, it
will be sufficient to prove the theorem.

We start by describing the NPSPACE algorithm M . The algorithm M sweeps alter-
nately from left-to-right and right-to-left setting labels on vertices x. When M is about
to process the vertex numbered x, during a left-to-right sweep, it knows labels for the
vertices x − 2, x − 1, x, x + 1, and x + 2 with score values s + 1, s + 1, s, s, and s
respectively. Since it is a left-to-right sweep, the value s is even. In addition, the five
known labels are wellformed around the three vertices x − 1, x, and x + 1; namely, ac-
cording to the predicate wf, the labels are wellformed in the neighborhood of x − 1, in
the neighborhood of x, and in the neighborhood of x+ 1. Since the graph is linear, each

The Infinity Project 107

neighborhood contains three vertices; for example, the neighborhood of x − 1 contains
the vertices x − 2, x − 1, x. M uses the local improvement function I to obtain a new
label for vertex x with score value s + 1. If I produces a label with score value unequal
to s + 1 or if the new label for x causes any of the three vertices x − 1, x, and x + 1 to
no longer have neighborhoods with wellformed labels, then M halts in a rejecting state.
Otherwise, M needs to step one vertex rightward, and for this M discards (forgets) the
label for x− 2 and needs to set a label value for x+ 3. If s = 0, the label for x+ 3 is set
to equal E(x + 3). For s > 0, M merely non-deterministically guesses a label for x + 3
with score value s. If this label for x + 3 does not have score value s, or it makes the
labels of the vertices x+ 1, x+ 2, x+ 3 in the neighborhood of x+ 2 not be wellformed,
then M halts in a rejecting state.6 Otherwise, M has finished processing vertex x and it
proceeds to x+ 1, now with labels for x− 1, x, x+ 1, x+ 2, and x+ 3.

The algorithm for sweeping right-to-left is entirely dual. In this case, s is odd. When
updating the label for vertex x, M knows labels for the vertices x−2, x−1, x, x+1, and
x+ 2 with score values s, s, s, s+ 1, and s+ 1. In the next step, to update the label for
vertex x − 1, M forgets the label for x + 2 and has nondeterministically chosen a label
for x− 3.

At the ends of the linear order, the obvious modifications are made. If x = a − 1 is
the rightmost vertex, then there is no vertex x+ 1 or x+ 2. Or if x = a− 2, there is no
vertex x+2. Likewise at x = 0, there is no vertex x− 2 or x− 1, and at x = 1, no vertex
x− 2. These missing vertices cause no problem: there are fewer neighborhoods in which
labels must be wellformed, and their labels are not needed by the improvement function.
When reaching x = a− 2 in a left-to-right scan, M acts purely deterministically as there
is no new vertex x+ 3 which needs a label. When reaching x = a− 1, M initially knows
labels for a − 3, a − 2, and a − 1 with score values s + 1, s + 1, and s. It updates the
label on vertex a − 1 to have score s + 1 (unless it rejects), and switches the scan order
to right-to-left while staying at the same vertex x = a− 1. In the next step, as the first
step in the right-to-left scan, it invokes I to update the label of a− 1 to have score value
s+ 2, or rejects if I fails to provide such a label. M then rejects if s+ 2 ≥ c. Otherwise
it nondeterministically chooses a label for a − 4: if this has the wrong score or fails the
wellformedness property, M rejects; otherwise, it proceeds one vertex leftward to update
the label on vertex x = a− 2.

The vertices x = 0 and x = 1 at the end of right-to-left scan are handled dually.
As defined, any execution of M leads to rejection. There are three possible reasons for

rejection: (a) The local improvement function I or the initialization function E may give a
label with an incorrect score value or which violates the wellformedness property. (b) The
nondeterministic guess of the next vertex’s label (on vertex x+3 or x−3 for rightward or
leftward scans, resp.) may give an incorrect score or violate the wellformedness property.
(c) A score value may increase to ≥ c. In either case (a) or (c) occurs, then M has found
a point where the LLI conditions are falsified; that is, it has found a solution to the LLI
problem. In case (b), no such solution is found. Our goal, thus, is to prove (arguing
in U1

2) that M has some computation that fails for reason (a) or (c).
The steps of a (nondeterministic) computation of M can be indexed with pairs ⟨x, s⟩,

where x is the vertex number and s the score value. The evenness/oddness of s determines
if the sweep is currently left-to-right or right-to-left. A pair ⟨x, s⟩ is M -reachable if there

6 As we shall see, this is the “bad” case that we are trying to avoid. It would not happen if M
remembered labels from the previous scan instead of just guessing them.

108 Improved witnessing and local improvement principles

is some computation of M that reaches the point where it is considering ⟨x, s⟩ and trying
to find a new label for x with score s + 1. The property of ⟨x, s⟩ being reachable is a
NPSPACE, and thus a PSPACE property. By induction (IND) on the PSPACE property
of reachability, there must be some maximum value s0 such that some ⟨x, s0⟩ is reachable.
If s0 = 0 or s0 = c − 1, then M rejects at this step for one of the reasons (a) or (c). So
we may assume 0 < s0 < c − 1. Without loss of generality, s0 is odd, so M is currently
scanning right-to-left. Again using IND induction, there must be some minimum x0 such
that ⟨x0, s0⟩ is reachable.

Any computation of M that reaches ⟨x0, s0⟩ ends up with labels for x0−2, x0−1, x0,
x0 +1, x0 +2 with scores s0, s0, s0, s0 +1, s0 +1. By choice of ⟨x0, s0⟩, M rejects while
executing this step. If this happens because the improvement function fails to produce a
new label for x0 with score s0 + 1 which satisfies the wellformedness properties, then it
is the desired failure of type (a). Otherwise, M successfully finds a new label for x with
score s + 1 and with the necessary wellformedness properties, but there is no possible
value for a label on x− 3 with score s such that the labeling around x− 2 is wellformed.
We need to prove that this latter case, (b), can be avoided.

Definition 4.12 We continue to assume s0 is odd. A (non-deterministic) computation
of M is s0-consistent at x provided that during the computation of M , there are label
values u and v for vertices x−2 and x−1 such that u and v both have score s0, and such
that the vertices x− 2 and x− 1 have the score s0 labels u and v at both step ⟨x, s0− 1⟩
and step ⟨x, s0⟩.

In other words, the same labels u and v are used for x−2 and x−1 in the right-to-left
scan that raises score values from s0 to s0 + 1 as in the previous left-to-right scan that
raised scores from s0 − 1 to s0.

Clearly, any computation of M that reaches the s0 scan is s0-consistent at x = a− 1,
since the labels on a−2 and a−3 do not change when switching over from a left-to-right
scan to a right-to-left scan.

For a given vertex x, the question of whether there exists a computation of M which is
s0-consistent at x can be answered by an NPSPACE, hence a PSPACE, algorithm. Thus,
by induction (IND), there is a minimum value x1 such that there is a computation U
of M which is s0-consistent at x1. If the computation U rejects because of reason (a)
at step ⟨x1, s0⟩, then we are done. Otherwise, we claim that M can continue with the
computation U for an additional step so as to be s0-consistent at x1 − 1. Namely, after
obtaining an appropriate new label for x1 with score s + 1, M existentially chooses the
label on x1 − 3 to be exactly the same label as in the previous scan. By choice of x1,
the vertices x1 − 2 and x1 − 1 already have the same label as in the previous scan,
thus the labels in the neighborhood of x1 − 2 are again well formed since they were well
formed in the previous scan. This contradicts the choice of x1, and completes the proof
of Theorem 4.8.

4.3 RLI2 is provable in U1
2

A similar argument to the one given above shows that RLI2 is provable in U1
2 .

Theorem 4.13 U1
2 ⊢ RLI2.

Proof. (Sketch) The idea for the NPSPACE algorithm solving RLI2 is to do a similar
thing as for LLI, where row numbers in RLI2 now play the role of scores in LLI. The

The Infinity Project 109

algorithm M sweeps always left-to-right: it starts setting labels in the first row from left
to right, then in the second row from left to right, etc. It always guesses all necessary
“previously computed” labels from the previous rows. Thus, when M is about to process
vertex ⟨x, y⟩, it knows labels for vertices ⟨x− 2, y⟩, ⟨x− 1, y⟩, ⟨x−2, y−1⟩, ⟨x−1, y−1⟩,
⟨x, y−1⟩, ⟨x+1, y−1⟩, ⟨x+2, y−1⟩, ⟨x−2, y−2⟩, ⟨x−1, y−2⟩, ⟨x, y−2⟩, ⟨x+1, y−2⟩,
and ⟨x + 2, y − 2⟩, all with score 1. These labels together with the labels of score 0
given by E for the other vertices in the extended neighborhood of ⟨x, y⟩ are extended
wellformed. M uses the local improvement function I to obtain a new label for vertex
⟨x, y⟩ with score 1. If I produces a label with score value unequal to 1 or if the new
label for x causes the labels of the extended neighborhood of ⟨x, y⟩ to not be extended
wellformed, then M halts in a rejecting state. Otherwise, M needs to step to the next
vertex, either one vertex to the right, or to the leftmost vertex of the next row. In the
former case, i.e. when x+ 1 < a, M discards (forgets) labels for ⟨x− 2, y⟩, ⟨x− 2, y − 1⟩
and ⟨x − 2, y − 2⟩, and guesses labels for ⟨x + 3, y − 1⟩ and ⟨x + 3, y − 2⟩. In the latter
case, M discards (forgets) all labels and guesses labels for ⟨0, y⟩, ⟨1, y⟩, ⟨2, y⟩, ⟨0, y − 1⟩,
⟨1, y − 1⟩, and ⟨2, y − 1⟩. If any of these labels do not have score 1, or they make the
labels in the neighborhood of ⟨x + 1, y⟩ in the former case, resp. the neighborhoods of
⟨0, y + 1⟩ in the latter case, not be extended wellformed, M halts in a rejecting state.

The notion of ⟨x, y⟩ being M -reachable is defined as before. A computation being
consistent at ⟨x, y⟩ is also defined similarly; namely, the labels that are used when setting
the label on vertex ⟨x, y⟩ must coincide with the labels that were guessed or computed
when setting labels in row y − 1. Then a similar argument as before shows that this
computation leads to a rejection according to (a) or (c), provably in U1

2 . �

We have not been able to characterize the strength of RLI3 or, more generally, the
strength of RLIk for constant k ≥ 3. In particular, we do not know if they provable in U1

2 ,
nor if they are many-one complete for the provably total NP search problems of V 1

2 . It
is also possible they are intermediate in strength.

4.4 Proof of Theorem 4.9

Our proof of Theorem 4.9 is based on the constructions of [8], but avoids using T 1
2 as a

base theory, and correspondingly avoids a detour through polynomial local search (PLS)
problems. We use instead the Witnessing Theorem 3.7 which has S1

2 as a base theory
and thus use a polynomial time computation in place of a PLS computation.

We need to prove that RLIlog is many-one complete for the provably total NP search
problems of V 1

2 . We will prove this in the following strong form, that applies to “type-2”
NP search problems that have a second order input X in addition to a first order input x.

Theorem 4.14 Suppose ϕ is ∆b
0 and (∀x)(∀X)(∃y)ϕ(y, x,X) is provable in V 1

2 . Then,
there is a many-one reduction from the NP search problem defined by (∃y)ϕ(y, x,X) to
an instance of RLIlog. Furthermore, the many-one reduction is provably correct in S1

2 .

Proof. Theorem 3.7 implies that there is an exponential time oracle Turing machine M
such that S1

2 proves:
(A): If Y encodes a complete computation of MX(x), then ϕ(out(Y), x,X) is true.

We make some simplifying assumptions about how MX(x) runs; namely, we assume that
M uses a single tape, and that this tape contains three “tracks”: the first track is read-
only and holds the input x padded with blanks, the second track is also read-only and

110 Improved witnessing and local improvement principles

holds the input X, and the third track is read-write, initially blank. (Equivalently, M has
three tapes, but the three tape heads move in lockstep.) Also without loss of generality,
Y encodes the computation in some simple, direct fashion; namely, Y can be taken to be
the bit-graph of the function H that maps a pair ⟨p, t⟩ to the tape contents at position p
at time t, the head position at time t, and the state of the machine at time t. With these
conventions, writing (A) out in more detail gives that S1

2 proves

(B): ϕ(out(Y), x,X) ∨ (“∃ a place in Y where Y fails to satisfy the local conditions
of being a correct computation of MX(x)”).

Or even more explicitly, S1
2 proves

(B’): (∃y)(y = out(Y) ∧ ϕ(y, x,X)), or
(∃p)(∃t)[the values given by Y for H(p, t+ 1), H(p− 1, t), H(p, t),

and H(p+ 1, t) do not code consistent information for the
computation], or

(∃p)[H(p, 0) does not equal valid initial tape contents and state for
position p at time 0].

Therefore, by the relativized witnessing theorem for S1
2 , there is a polynomial time

function f , which takes x as input and uses X and Y as oracles, and produces values for y,
p and t satisfying one of the disjuncts of (B’). Without loss of generality, the function f is
computed by a clocked Turing machine, so S1

2 proves its runtime is polynomially bounded.
Because of the assumption that Y codes the bit-graph of H, we can view f as asking
queries to the function H. That is, rather than querying truth values of Y (i), f makes
queries q = ⟨p, t⟩ to H and receives for an answer the value r = H(p, t) giving the tape
contents at position p at time t, the state at time t, and the tape head position at time t.
Without loss of generality, S1

2 proves that if f outputs values p, t satisfying (B’), then
f has actually queried the four values H(p, t + 1), H(p − 1, t), H(p, t), and H(p + 1, t),
and that if it outputs a value p, then it has queried H(p, 0).

We will use the computation of fX,Y (x) to set up an instance of RLIlog. We are
particularly interested in tracking the queries that f makes to H. For fixed x,X, let qi =
⟨pi, ti⟩ be the i-th query made during the computation of fX,Y (x) and ri = H(pi, ti) be the
answer received. Since f is polynomial time, without loss of generality, i = 1, 2, . . . , p(|x|)
for some polynomial p. Note that p(|x|) counts only queries to Y , and we do not count
the queries made to X.

We next define the instance of RLIlog. The intent is that, provably in S1
2 , any solution

to the RLIlog problem will give a computation of f satisfying (B’). S1
2 will be able to prove

that there are no witnesses p, t or p satisfying the second or third disjunct of (B’); hence,
the only possibility for a solution is a value y such that ϕ(y, x,X) holds. This will suffice
to prove Theorem 4.9.

Our proof uses an amalgamation of techniques from [8]. Set c := 2p(|x|) + 1 equal to
one more than twice the number of queries f makes to H. Let P be the space used by
MX(x), and T the time. The directed graph G will be the rectangular graph [P] × [T].
The edges of G are as described earlier, namely, the up to four edges incoming to (p, t)
come from the vertices (p− 1, t), (p− 1, t− 1), (p, t− 1), and (p+ 1, t− 1).

The vertices of G will be labeled with sequences. The initialization function E labels
with each vertex (p, t) with the empty sequence ⟨ ⟩. This has score value 0. The empty
sequence is the only label with score 0. The valid labels for a vertex (p, t) with odd score

The Infinity Project 111

2s+ 1 are sequences of the form

⟨βp,t, q1, r1, q2, r2, . . . , qs, ?⟩

and
⟨βp,t, q1, r1, q2, r2, . . . , qs, rs⟩.

Here the first entry βp,t is intended to equal the value of H(p, t). The qi values are
intended to be queries to H, so qi = ⟨pi, ti⟩; the ri values are intended to be answers to
the queries, except the special symbol ? indicates that ri is not known yet. Note that in
general pi and ti are unequal to p and t.

The valid labels for (p, t) with even score s have the form

⟨βp,t, q1, r1, q2, r2, . . . , qs⟩.

Note that the score associated with a label is always the length of the sequence coded by
the label. The score values are ≤ 2p(|x|) + 1 and the sizes of the intended entries in the
sequences are polynomially bounded, hence there is a term b = b(x) bounding the values
of labels.

The wellformedness property, wf, applies to labels in the neighborhood N of a ver-
tex (p0, t0). In order to be wellformed, the following four sets of conditions must be
satisfied.

First the labels in the neighborhood N must agree on qj and rj values. Namely, if
one of the labels has a value for qj (the 2j-th entry of the sequent), then there cannot be
a different value for qj in any other label in N . Similarly, if a non-? value for rj appears
in a label, then there cannot be a different non-? value for rj in any label in N . Another
way to state this is that wellformedness requires that, for ℓ > 1, if two labels both have
an ℓ-th entry, then their ℓ-th entries must be equal, or one of them must equal ?.

Second, the qj , rj values must be consistent with the βp,t values in the following
way: if a vertex in the neighborhood N has coordinates ⟨p′, t′⟩ and thus its label has
first entry βp′,t′ , and if some (possibly different) vertex x = ⟨p′′, t′′⟩ in N has an entry
qj = ⟨p′, t′⟩ then, if rj is present in x’s label, it must satisfy:

• If rj is the last entry of x’s label, and if there is no path in the directed graph G
from (p′, t′) to (p′′, t′′), then rj equals ?.
• Otherwise rj must equal βp′,t′ .

Third, the βp,t values should, at least locally, behave like valid values for H(p, t); that
is to say, the βp,t values must be consistent with some potential computation of MX(x).
Except for labels with score zero, all nine vertices in the neighborhood have βp,t values,
and these values must represent some locally consistent computation of M : in particular,
they should contain the correct values in the x- and X-tracks of the tape, and the values
for the tape head position, the current state, and the contents of the third tape track
must be consistent with the transition relation of the Turing machine M .

Fourth, the wellformedness property wf requires a somewhat subtle restriction on the
values ri that prevents them from recording a solution to the second or third disjunct
of (B’). Namely, there must not be any qs = ⟨p, 0⟩ where ri does not equal the correct
value H(p, 0) describing the initial tape configuration at position p at time 0. In addition,
there must not be four query values qi1 = ⟨p−1, t−1⟩, qi2 = ⟨p, t−1⟩, qi3 = ⟨p+1, t−1⟩,
and qi4 = ⟨p, t⟩ such that ri1 , ri2 , ri3 , and ri4 , when interpreted as values forH(p−1, t−1),
H(p, t−1), H(p+1, t−1), and H(p, t), give values that would witness the second conjunct
of (B’).

112 Improved witnessing and local improvement principles

This completes the definition of the wellformedness condition wf. Note that wf is a
polynomial time computable function of the (up to) nine labels in a neighborhood, the
values of p0 and t0 and the input x, using X as an oracle.

We next define the local improvement function I. There are four cases to consider.
First, when increasing scores from 0 to 1, the function I must compute the value βp,t. For
t greater than zero, this is determined from βp−1, t−1, βp, t−1, βp+1, t−1 by M ’s transition
relation. For t equal to zero, βp,t is just the initial configuration of M for tape cell p;
the appropriate values for the read-only tracks are computed by using the input x or the
oracle X. Second, consider the case where scores are raised from an even value 2s > 0 to
an odd value 2s+ 1. This represents the case where we are trying to load the answer rs
to the query qs = ⟨ps, ts⟩. If (p, t) is not reachable from (ps, ts) in the directed graph G,
then I just sets rs equal to ?, leaving the rest of the entries in the label unchanged. If
(p, t) = (ps, ts), I sets rs to equal βp,t. Otherwise, rs is merely copied from a non-? rs
value of (p− 1, t) or (p+ 1, t− 1); by wellformedness, these two values will agree if they
are both present and not equal to ?. Third, when increasing a score value from an odd
value 2s− 1 to an even value with p < P or t < T , the function I is merely propagating
a query value qs backwards through G: the value qs for the label on (p, t) is just copied
from the qs value of either (p+1, t) or (p−1, t+1). Fourth, and finally, we define the local
improvement function for updating the upper right vertex (P − 1, T − 1) from an odd
value 2s− 1 to 2s. For this vertex, the local improvement function I simulates fX,Y (x):
Whenever f makes a query to H(p, t), the query value ⟨p, t⟩ is compared to the values
qi for i = 1, . . . , s − 1. If ⟨p, t⟩ equals some qi in the label on (P − 1, T − 1), then the
corresponding ri value is used as the query answer. Otherwise I sets the new qs value
equal to ⟨p, t⟩ leaving the rest of the label entries for (P − 1, T − 1) unchanged. This qs
value will be propagated back and forth across G in the next scans in order to find the
answer to the query. On the other hand, if fX,Y (x) halts without making any new query
to H, then the local improvement function gives the invalid answer b: this constitutes a
solution to the instance of RLIlog.

It should be clear that the local improvement function I is polynomial time in all
cases. It uses the oracle X when increasing scores from 0 to 1, and also when increasing
the score for (P − 1, T − 1) to 2s while simulating the function fX,Y (x) querying X.

This completes the definition of the RLIlog instance. Suppose (still arguing in S1
2)

that we have a solution to this instance. There are three possible ways to have a solution:
(1) The initialization function could produce a value giving a non-wellformed neighbor-
hood; (2) the local improvement function could produce a value giving a non-wellformed
neighborhood; or (3) a score value could exceed c = 2p(|x|) + 1. Option (3) is impossible
since this can happen only at the vertex (P − 1, T − 1), and the function f is constrained
to ask fewer than p(|x|) queries to H. Option (1) is likewise impossible, just from the
definition of the function E. Likewise, from the definition of the function I, the only way
option (2) can occur is at vertex (P − 1, T − 1) for the function fX,Y (x) to successfully
halt.

This means that the only possible answer is a place where fX,Y (x) halted successfully
while the improvement function I was attempting to update the label on vertex (P − 1,
T − 1). Because of the fourth wellformedness condition, this can happen only if fX,Y (x)
outputs a value y which satisfies ϕ(y, x,X).

Q.E.D. Theorems 4.14 and 4.9. �

The Infinity Project 113

References
[1] Arnold Beckmann and Samuel R. Buss. Polynomial local search in the polynomial hierarchy and

witnessing in fragments of bounded arithmetic. Journal of Mathematical Logic, 9(1):103–138, 2009.
[2] Arnold Beckmann and Samuel R. Buss. Characterization of Definable Search Problems in Bounded

Arithmetic via Proof Notations, pages 65–134. Ontos Verlag, 2010.
[3] Arnold Beckmann and Samuel R. Buss. Corrected upper bounds for free-cut elimination. Theoretical

Computer Science, 412(39):5433–5445, 2011.
[4] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986. Revision of 1985 Princeton University Ph.D.

thesis.
[5] Samuel R. Buss. Axiomatizations and conservation results for fragments of bounded arithmetic. In

Logic and Computation, proceedings of a Workshop held Carnegie-Mellon University, 1987, vol. 106
of Contemporary Mathematics, pages 57–84. American Mathematical Society, 1990.

[6] Samuel R. Buss and Jan Krajíček. An application of Boolean complexity to separation problems in
bounded arithmetic. Proceedings of the London Mathematical Society, 69:1–21, 1994.

[7] Stephen A. Cook and P. Phuong Nguyen. Foundations of Proof Complexity: Bounded Arithmetic
and Propositional Translations. ASL and Cambridge University Press, 2010. 496 pages.

[8] Leszek Aleksander Kołodziejczyk, Phuong Nguyen, and Neil Thapen. The provably total NP search
problems of weak second-order bounded arithmetic. Annals of Pure and Applied Logic, 162(2), 2011.

[9] Jan Krajíček. Bounded Arithmetic, Propositional Calculus and Complexity Theory. Cambridge Uni-
versity Press, Heidelberg, 1995.

[10] Jan Krajíček. Forcing with Random Variables and Proof Complexity, vol. 232 of London Mathematical
Society Lecture Note Series, Cambridge University Press, Cambridge, 2011.

[11] Pavel Pudlák and Neil Thapen. Alternating minima and maxima, Nash equilibria and bounded
arithmetic. Typeset manuscript, November 2009.

[12] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Jour-
nal of Computer and System Sciences, 4(2):177–192, 1970.

[13] Alan Skelley and Neil Thapen. The provably total search problems of bounded arithmetic. Proceed-
ings of the London Mathematical Society, 103(1):106–138, 2011.

[14] Gaisi Takeuti. Proof Theory. North-Holland, Amsterdam, 2nd edition, 1987.

The Infinity Project

An improved separation of regular resolution from
pool resolution and clause learning

María Luisa Bonet∗, Samuel R. Buss†

∗ Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Barcelona, Spain
bonet@lsi.upc.edu

† Department of Mathematics, University of California, San Diego, USA
sbuss@math.ucsd.edu

Abstract. We prove that the graph tautology principles of Alekhnovich, Johannsen, Pitassi and
Urquhart have polynomial size pool resolution refutations that use only input lemmas as learned clauses
and without degenerate resolution inferences. We also prove that these graph tautology principles can
be refuted by polynomial size DPLL proofs with clause learning, even when restricted to greedy DPLL
search.

Introduction

The problem SAT of deciding the satisfiability of propositional CNF formulas is of great
theoretical and practical interest. Even though it is NP-complete, industrial instances
with hundreds of thousands variables are routinely solved by state of the art SAT solvers.
Most of these solvers are based on the DPLL procedure extended with clause learning,
restarts, variable selection heuristics, and other techniques.

The basic DPLL procedure without clause learning is equivalent to tree-like reso-
lution. The addition of clause learning makes DPLL considerably stronger. In fact,
clause learning together with unlimited restarts is capable of simulating general resolu-
tion proofs [12]. However, the exact power of DPLL with clause learning but without
restarts is unknown. This question is interesting not only for theoretical reasons, but also
because of the potential for better understanding the practical performance of various
refinements of DPLL with clause learning.

Beame, Kautz, and Sabharwal [4] gave the first theoretical analysis of DPLL with
clause learning. Among other things, they noted that clause learning with restarts simu-
lates general resolution. Their construction required the DPLL algorithm to ignore some
contradictions, but this situation was rectified by Pipatsrisawat and Darwiche [12] who
showed that SAT solvers which do not ignore contradictions can also simulate resolution.
These techniques were also applied to learning bounded width clauses by [2].

Beame et al. [4] also studied DPLL clause learning without restarts. Using a method
of “proof trace extensions”, they were able to show that DPLL with clause learning and
no restarts is strictly stronger than any “natural” proof system strictly weaker than res-
olution. Here, a natural proof system is one in which proofs do not increase in length

∗Supported in part by grant TIN2010-20967-C04-02.
†Supported in part by NSF grants DMS-0700533 and DMS-1101228, and by a grant from the Simons

Foundation (#208717 to Sam Buss). The second author thanks the John Templeton Foundation for
supporting his participation in the CRM Infinity Project at the Centre de Recerca Matemàtica, Barcelona,
Catalonia, Spain, during which these results were obtained.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

115

116 An improved separation of regular resolution

when variables are restricted to constants. The class of natural proof systems is known
to include common proof systems such as tree-like or regular proofs. The proof trace
method involves introducing extraneous variables and clauses, which have the effect of
giving the clause learning DPLL algorithm more freedom in choosing decision variables
for branching.

There have been two approaches to formalizing DPLL with clause learning as a static
proof system rather than as a proof search algorithm. The first is pool resolution with
a degenerate resolution inference, due originally to Van Gelder [16] and studied further
by Bacchus et al. [3]. Pool resolution requires proofs to have depth-first regular traversal
similarly to the search space of a DPLL algorithm. Degenerate resolution allows resolution
inferences in which one or both of the hypotheses may be lacking occurrences of the
resolution literal. Van Gelder argued that pool resolution with degenerate resolution
inferences simulates a wide range of DPLL algorithms with clause learning. He also gave
a proof, based on [1], that pool resolution with degenerate inferences is stronger than
regular resolution, using extraneous variables similar to proof trace extensions.

The second approach is due to Buss–Hoffmann–Johannsen [8] who introduced a “par-
tially degenerate” resolution rule called w-resolution, and a proof system regWRTI based
on w-resolution and clause learning of “input lemmas”. They proved that regWRTI ex-
actly captures non-greedy DPLL with clause learning. By “non-greedy” is meant that
contradictions may need to be ignored by the DPLL search.

Both [3] and [8] gave improved versions of the proof trace extension method so that
the extraneous variables need depend only on the set of clauses being refuted and not on
resolution refutation of the clauses. The drawback remains, however, that the proof trace
extension method gives contrived sets of clauses and contrived resolution refutations.

It remains open whether any of DPLL with clause learning, pool resolution (with or
without degenerate inferences), or the regWRTI proof system can polynomially simulate
general resolution. One approach to answering these questions is to try to separate pool
resolution (say) from general resolution. So far, however, separation results are known
only for the weaker system of regular resolution, based on work of Alekhnovitch et al. [1],
who gave an exponential separation between regular resolution and general resolution.
Alekhnovitch et al. [1] proved this separation for two families of tautologies, variants of the
graph tautologies GT′ and the Stone pebbling tautologies. Urquhart [15] subsequently
gave a related separation.1 In the present paper, we call the tautologies GT′ the guarded
graph tautologies, and henceforth denote them GGT instead of GT′; their definition is
given in Section 1.

Thus, an obvious question is whether pool resolution (say) has polynomial size proofs
of the GGT tautologies or the Stone tautologies. The main result of the present paper
resolves the first question by showing that pool resolution does indeed have polynomial
size proofs of the graph tautologies GGT. Our proofs apply to the original GGT princi-
ples, without the use of extraneous variables in the style of proof trace extensions; our
refutations use only the traditional resolution rule and do not require degenerate reso-
lution inferences or w-resolution inferences. In addition, we use only learning of input
clauses; thus, our refutations are also regWRTI proofs (and in fact regRTI proofs) in the
terminology of [8]. As a corollary of the characterization of regWRTI by [8], the GGT

1 Huang and Yu [10] also gave a separation of regular resolution and general resolution, but only for
a single set of clauses. Goerdt [9] gave a quasipolynomial separation of regular resolution and general
resolution.

The Infinity Project 117

principles have polynomial size refutations that can be found by the DPLL algorithm with
clause learning and without restarts (under the appropriate variable selection order).

It is still open if there are polynomial size pool resolution refutations for the Stone
principles. However, it is plausible that our methods could extend to give such refutations.
It seems more likely that our proof methods could extend to the pebbling tautologies used
by [15], as the hardness of those tautologies was due to the addition of randomly chosen
“guard” literals, similarly to the GGT tautologies.2 A much more ambitious project
would be to show that pool resolution or regWRTI can simulate general resolution, or
that DPLL with clause learning and without restarts can simulate general resolution. It
is far from clear that this is true, but, if so, our methods below may represent a first step
in that direction.

The outline of the paper is as follows. Section 1 begins with the definitions of resolu-
tion, degenerate resolution, and w-resolution, and then regular, tree, and pool resolution.
After that, we define the graph tautologies GTn and the guarded versions GGTn, and
state the main theorems about proofs of the GGTn principles. Section 2 gives the proof
of the theorems about pool resolution and regRTI proofs. Several ingredients are needed
for the proof. The first idea is to try to follow the regular refutations of the graph tau-
tology clauses GTn as given by Stålmarck [14] and Bonet and Galesi [6]: however, these
refutations cannot be used directly since the transitivity clauses of GTn are “guarded” in
the GGTn clauses and this yields refutations which violate the regularity/pool property.
So, the second idea is that the proof search process branches as needed to learn transi-
tivity clauses. This generates additional clauses that must be proved: to handle these,
we develop a notion of “partial bipartite order” and show that the refutations of [6, 14]
can still be used in the presence of a bipartite partial order. The tricky part is to be sure
that exactly the right set of clauses is derived by each subproof. Some straightforward
bookkeeping shows that the resulting proof is polynomial size.

Section 3 discusses how to modify the refutations constructed for Section 2 so that
they are “greedy”. A proof is called greedy provided that, during the proof search process,
if it is ever possible to give a simple (i.e., input) refutation of the current clause, then
that refutation is used immediately. The greedy condition corresponds well to actual im-
plemented DPLL proof search algorithms, since they backtrack whenever a contradiction
can be found by unit propagation.

We are grateful to J. Hoffmann and J. Johannsen for a correction to an earlier version
of the proof of Theorem 1.8. We also thank A. Beckmann and T. Pitassi for encourage-
ment and useful comments.

1 Preliminaries and main results

Propositional formulas are defined over a set of variables and the connectives ∧, ∨ and ¬.
We use the notation x to express the negation ¬x of x. A literal is either a variable x
or a negated variable x. A clause C is a set of literals, interpreted as the disjunction of
its members. The empty clause, 2, has truth value False. We shall only use formulas in
conjunctive normal form, CNF; namely, a formula will be a set (conjunction) of clauses.
We often use disjunction (∨) and union (∪) interchangeably.

2 Subsequent to the circulation of a preliminary version of the present paper, Buss and Johanssen
[in preparation] have succeeded giving polynomial size regRTI proofs of the pebbling tautologies of [15].

118 An improved separation of regular resolution

Definition 1.1 The various forms of resolution take two clauses A and B called the
premises, and a literal x called the resolution variable, and produces a new clause C,
called the resolvent.

A B
C

In all cases below, it is required that x /∈ A and x /∈ B. The different forms of resolution
are:

Resolution rule: The hypotheses have the forms A := A′∨x and B := B′∨ x. The
resolvent C is A′ ∨B′.

Degenerate resolution rule: [3, 16] If x ∈ A and x ∈ B, we apply the resolution
rule to obtain C. If A contains x, and B does not contain x, then the resolvent
C is B. If A does not contain x, and B contains x, then the resolvent C is A.
If neither A nor B contains the literal x or x, then C is the lesser of A or B
according to some tiebreaking ordering of clauses.

w-resolution rule: [8] From A and B as above, we infer C := (A \ {x})∨ (B \ {x}).
It is not required that x ∈ A or x ∈ B.

Definition 1.2 A resolution derivation, or proof, of a clause C from a CNF formula F
is a sequence of clauses C1, . . . , Cs such that C = Cs and such that each clause from
the sequence is either a clause from F or is the resolvent of two previous clauses. If the
derived clause, Cs, is the empty clause, this is called a resolution refutation of F . The
more general systems of degenerate and w-resolution refutations are defined similarly.

We can represent a derivation as a directed acyclic graph (d.a.g.) on the vertices
C1, . . . , Cs, where each clause from F has out-degree 0, and all the other vertices from
C1, . . . , Cs have edges pointing to the two clauses from which they were derived. The
empty clause has in-degree 0. We use the terms “proof” and “derivation” interchangeably.

Resolution is sound and complete in the refutational sense: a CNF formula F has
a refutation if and only if F is unsatisfiable, that is, if and only if ¬F is a tautology.
Furthermore, if there is a derivation of a clause C from F , then C is a consequence of F ;
that is, for every truth assignment σ, if σ satisfies F then it satisfies C. Conversely, if C
is a consequence of F then there is a derivation of some C ′ ⊆ C from F .

A resolution refutation is regular provided that, along any path in the directed acyclic
graph, each variable is resolved at most once. A resolution derivation of a clause C is
regular provided that, in addition, no variable appearing in C is used as a resolution
variable in the derivation. A refutation is tree-like if the underlying graph is a tree; that
is, each occurrence of a clause occurring in the refutation is used at most once as a premise
of an inference.

We next define pool resolution, using the conventions of [8] who called this “tree-like
regular resolution with lemmas”. The idea is that clauses obtained previously in the
proof, can be used freely later on. These clauses act as learned lemmas. To be able to
talk about clauses previously obtained, we need to define an ordering of clauses.

Definition 1.3 Given a tree T , the postorder ordering <T of the nodes is defined as
follows: if u is a node of T , v is a node in the subtree rooted at the left child of u, and
w is a node in the subtree rooted at the right child of u, then v <T w <T u.

Definition 1.4 A pool resolution proof from a set of initial clauses F is a resolution proof
tree that fulfills the following conditions: (a) each leaf is labeled with either a clause of F

The Infinity Project 119

or a clause that appears earlier in the tree in the <T ordering; (b) each internal node is
labeled with a clause and a variable, and the clause is obtained by resolution from the
clauses labeling the node’s children, by resolving on the given variable; (c) the proof tree
is regular; (d) the roof is labeled with the conclusion clause. If the labeling of the root is
the empty clause 2, the pool resolution proof is a pool refutation.

The notions of degenerate pool resolution proof and pool w-resolution proof are defined
similarly, but allowing degenerate resolution or w-resolution inferences, respectively. Note
that the two papers [3, 16] defined pool resolution to be the degenerate pool resolution
system, so our notion of pool resolution is more restrictive than theirs. (Our definition
equivalent to the one in [7], however.)

Next we define various graph tautologies, sometimes also called “ordering principles”.
They will all use a size parameter n > 1, and variables xi,j with i, j ∈ [n] and i ̸= j,
where [n] = {0, 1, 2, . . . , n−1}. A variable xi,j will intuitively represent the condition
that i ≺ j with ≺ intended to be a total, linear order. We will thus always adopt the
simplifying convention that xi,j and xj,i are the identical literal. This identification makes
no essential difference to the complexity of proofs of the tautologies, but it reduces the
number of literals and clauses, and simplifies the definitions.

The following principle is based on the tautologies defined by Krishnamurthy [11].
These tautologies, or similar ones, have also been studied by [1, 5, 6, 13, 14].

Definition 1.5 Let n > 1. Then GTn is the following set of clauses involving the
variables xi,j , for i, j ∈ [n] with i ̸= j.

(α∅) The clauses
∨
j ̸=i xj,i, for each value i < n.

(γ∅) The transitivity clauses Ti,j,k := xi,j ∨ xj,k ∨ xk,i for all distinct i, j, k in [n].

Note that the clauses Ti,j,k, Tj,k,i and Tk,i,j are identical. For this reason Van Gelder
[16] uses the name “no triangles” (NT) for a similar principle.

The next definition is from [1], who used the notation GT′
n. They used particular

functions r and s for their lower bound proof, but since our upper bound proof does not
depend on the details of r and s we leave them unspecified. We require that r(i, j, k) ̸=
s(i, j, k) and that the set {r(i, j, k), s(i, j, k)} ̸⊂ {i, j, k}.
Definition 1.6 Let n ≥ 1, and let r(i, j, k) and s(i, j, k) be functions mapping [n]3 → [n]
as above. The guarded graph tautology GGTn consists of the following clauses:

(α∅) The clauses
∨
j ̸=i xj,i, for each value i < n.

(γ′∅) The guarded transitivity clauses Ti,j,k ∨xr,s and Ti,j,k ∨xr,s, for all distinct i, j, k
in [n], where r = r(i, j, k) and s = s(i, j, k).

Our main result is:

Theorem 1.7 The guarded graph tautology principles GGTn have polynomial size pool
resolution refutations.

The proof of Theorem 1.7 will construct pool refutations in the form of regular tree-
like refutations with lemmas. A key part of this is learning transitive closure clauses
that are derived using resolution on the guarded transitivity clauses of GGTn. A slightly
modified construction, that uses a result from [8], gives instead tree-like regular resolution
refutations with input lemmas. This will establish the following:

Theorem 1.8 The guarded graph tautology principles GGTn have polynomial size, tree-
like regular resolution refutations with input lemmas.

120 An improved separation of regular resolution

A consequence of Theorem 1.8 is that the GGTn clauses can be shown unsatisfiable
by non-greedy polynomial size DPLL searches using clause learning. This follows via
Theorem 5.6 of [8], since the refutations of GGTn are regRTI, and hence regWRTI,
proofs in the sense of [8].

However, as discussed in Section 3, we can improve the constructions of Theorems
1.7 and 1.8 to show that the GGTn principles can be refuted also by greedy polynomial
size DPLL searches with clause learning.

2 Proof of main theorem

The following theorem is an important ingredient of our upper bound proof.

Theorem 2.1 (Stålmarck [14]; Bonet–Galesi [6]) The sets GTn have regular resolution
refutations Pn of polynomial size O(n3).

We do not include a direct proof of Theorem 2.1 here, which can be found in [6] or [14].
The present paper uses the proofs Pn as a “black box”; the only property needed is that
the Pn’s are regular and polynomial size. Lemma 2.7 below is a direct generalization to
Theorem 2.1; in fact, when specialized to the case of π = ∅, it is identical to Theorem 2.1.

The refutations Pn can be modified to give refutations of GGTn by first deriving each
transitive clause Ti,j,k from the two guarded transitivity clauses of (γ′∅). This however
destroys the regularity property, and in fact no polynomial size regular refutations exist
for GGTn [1].

As usual, a partial order on [n] is an antisymmetric, transitive relation binary relation
on [n]. We shall be mostly interested in “partial specifications” of partial orders: partial
specifications are not required to be transitive.

Definition 2.2 A partial specification, τ , of a partial order is a set of ordered pairs
τ ⊆ [n] × [n] which are consistent with some (partial) order. The minimal partial order
containing τ is the transitive closure of τ . We write i ≺τ j to denote ⟨i, j⟩ ∈ τ , and write
i ≺∗

τ j to denote that ⟨i, j⟩ is in the transitive closure of τ .
The τ -minimal elements are the i’s such that j ≺τ i does not hold for any j.

We will be primarily interested in particular kinds of partial orders, called “bipartite”
partial orders, that can be associated with partial orders. A bipartite partial order is a
partial order that does not have any chain of inequalities x ≺ y ≺ z.
Definition 2.3 A bipartite partial order is a binary relation π on [n] such that the domain
and range of π do not intersect. The set of π-minimal elements is denoted Mπ.

Figure 1 shows an example. The bipartiteness of π arises from the fact that Mπ and
[n] \Mπ partition [n] into two sets. Note that if i ≺π j, then i ∈ Mπ and j /∈ Mπ. In
addition, Mπ contains the isolated points of π.

Definition 2.4 Let τ be a specification of a partial order. The bipartite partial order π
that is associated with τ is defined by letting i ≺π j hold for precisely those i and j such
that i is τ -minimal and i ≺∗

τ j.

It is easy to check that the π associated with τ is in fact a bipartite partial order.
The intuition is that π retains only the information about whether i ≺∗

τ j for minimal
elements i, and forgets the ordering that τ imposes on non-minimal elements. Figure 1
shows an example of how to obtain a bipartite partial order from a partial specification.

We define the graph tautology GTπ,n relative to π as follows.

The Infinity Project 121

1 2 3 4 5

6 7 8 9

10 11

⇒
1 2 3 4 5

6 7 8 910 11
[n]−Mπ:

Mπ:

Figure 1. Example of a partial specification of a partial order (left) and
the associated bipartite partial order (right).

Mπ:

[n] \Mπ:

i j

k

k′

ℓ1 ℓ2 ℓ3

Figure 2. A bipartite partial order π is pictured, with the ordered pairs
of π shown as directed edges. (For instance, j ≺π k holds.) The set Mπ

is the set of minimal vertices. The nodes i, j, k shown are an example of
nodes used for a transitivity axiom xi,j ∨xj,k∨xk,i of type (γ). The nodes
i, j, k′ are an example of the nodes for a transitivity axiom of type (β).

Definition 2.5 Let π be a bipartite partial order on [n]. Then GTπ,n is the set of clauses
containing:

(α) The clauses
∨
j ̸=i xj,i, for each value i ∈Mπ.

(β) The transitivity clauses Ti,j,k := xi,j ∨ xj,k ∨ xk,i for all distinct i, j, k in Mπ.
(Vertices i, j, k′ in Figure 2 show an example.)

(γ) The transitivity clauses Ti,j,k for all distinct i, j, k such that i, j ∈Mπ and i ̸≺π k
and j ≺π k. (As shown in Figure 2.)

The set GTπ,n is satisfiable if π is nonempty. As an example, there is the assignment
that sets xj,i true for some fixed j /∈ Mπ and every i ∈ Mπ, and sets all other variables
false. However, if π is applied as a restriction, then GTπ,n becomes unsatisfiable. That
is to say, there is no assignment which satisfies GTπ,n and is consistent with π. This fact
is proved by the regular derivation Pπ described in the next lemma.

Definition 2.6 For π a bipartite partial order, the clause (
∨
π) is defined by(∨

π
)
:= {xi,j : i ≺π j}.

Lemma 2.7 Let π be a bipartite partial order on [n]. Then there is a regular derivation Pπ
of (
∨
π) from the set GTπ,n.

The only variables resolved on in Pπ are the following: the variables xi,j such that
i, j ∈Mπ, and the variables xi,k such that k /∈Mπ, i ∈Mπ, and i ̸≺π k.

Note that if π is empty, Mπ = [n] and there are no clauses of type (γ). In this case,
GTπ,n is identical to GTn, and Pπ is the same as the refutation of GTn of Theorem 2.1.

Proof. By renumbering the vertices, we can assume without any loss of generality that
Mπ = {0, . . . ,m−1}. For each k ≥ m, there is at least one value of j such that j ≺π k:
let Jk be an arbitrary such value j. Note that Jk < m.

122 An improved separation of regular resolution

Fix i ∈ Mπ; that is, i < m. Recall that the clause of type (α) in GTπ,n for i is∨
j ̸=i xj,i. We resolve this clause successively, for each k ≥ m such that i ̸≺π k, against

the clauses Ti,Jk,k of type (γ)
xi,Jk ∨ xJk,k ∨ xk,i

using resolution variables xk,i. (Note that Jk ̸= i since i ̸≺π k.) This yields a clause T ′
i,m:∨

k≥m
i̸≺πk

xi,Jk ∨
∨
k≥m
i ̸≺πk

xJk,k ∨
∨
k≥m
i≺πk

xk,i ∨
∨
k<m
k ̸=i

xk,i.

The first two disjuncts shown above for T ′
i,m come from the side literals of the

clauses Ti,Jk,k; the last two disjuncts come from the literals in
∨
j ̸=i xj,i which were not

resolved on. Since a literal xi,Jk is the same literal as xJk,i and since Jk < m, the literals
in the first disjunct are also contained in the fourth disjunct. Thus, eliminating duplicate
literals, T ′

i,m is equal to the clause∨
k≥m
i̸≺πk

xJk,k ∨
∨
k≥m
i≺πk

xk,i ∨
∨
k<m
k ̸=i

xk,i.

Repeating this process, we obtain derivations of the clauses T ′
i,m for all i < m. The

final disjuncts of these clauses,
∨
i ̸=k<m xk,i, are the same as the (α∅) clauses in GTm.

Thus, the clauses T ′
i,m give all (α∅) clauses of GTm, but with literals xJk,k and xk,i

added in as side literals. Moreover, the clauses of type (β) in GTπ,n are exactly the
transitivity clauses of GTm. All these clauses can be combined exactly as in the refutation
of GTm described in Theorem 2.1, but carrying along extra side literals xJk,k and xk,i,
or equivalently carrying along literals xJk,k for Jk ≺π k, and xi,k for i ≺π k. Since the
refutation of GTm uses all of its transitivity clauses and since each xJk,k literal is also
one of the xi,k’s, this yields a resolution derivation Pπ of the clause

{xi,k : i ≺π k}.

This is the clause (
∨
π) as desired.

Finally, we observe that Pπ is regular. To show this, note that the first parts of Pπ
deriving the clauses T ′

i,m are regular by construction, and they use resolution only on
variables xk,i with k ≥ m, i < m, and i ̸≺π k. The remaining part of Pπ is also regular
by Theorem 2.1, and uses resolution only on variables xi,j with i, j ≤ m. �

Proof of Theorem 1.7. We will show how to construct a series of “LR partial refuta-
tions”, denoted R0, R1, R2, . . . ; this process eventually terminates with a pool resolution
of GGTn. The terminology “LR partial” indicates that the refutation is being constructed
in left-to-right order, with the left part of the refutation properly formed, but with many
of the remaining leaves being labeled with bipartite partial orders instead of with valid
learned clauses or initial clauses from GTn. We first describe the construction of the pool
refutation, and leave the size analysis to the end.

An LR partial refutationR is a tree with nodes labeled with clauses that form a correct
pool resolution proof, except possibly at the leaves (its initial clauses). Furthermore, it
must satisfy the following conditions.

(a) R is a tree. The root is labeled with the empty clause. Each non-leaf node
in R has a left child and right child; the clause labeling the node is derived by
resolution from the clauses on its two children.

The Infinity Project 123

(b) For each clause C occurring in R, the set of ordered pairs τ(C) is defined as

τ(C) := {⟨i, j⟩ : xi,j is introduced by resolution
on the branch from the root node to C}.

In many cases, τ(C) will be a partial specification of a partial order, but this is
not always true. For instance, if C is a transitivity axiom, τ(C) has a 3-cycle
and is not consistent as a specification of a partial order.

Note that it follows from condition (a) that C ⊆ τ(C) since literals in C
must be eliminated by resolution inferences somewhere along the path from C
to the root of R.

(c) Leaves of R are flagged as “finished” or “unfinished”.
(d) Each finished leaf L is labeled with either a clause from GGTn or a clause that

occurs to the left of L in the postorder traversal of R.
(e) For an unfinished leaf labeled with clause C, the set τ(C) is a partial specification

of a partial order. Furthermore, letting π be the bipartite partial order associated
with τ(C), the clause C is equal to (

∨
π).

Property (e) is particularly crucial. As shown below, each unfinished leaf, labeled
with a clause C = (

∨
π), will be replaced by a derivation S. The derivation S often

will be based on Pπ, and thus might be expected to end with exactly the clause C,
but some of the resolution inferences needed for Pπ might be disallowed by the pool
property. This can mean that S will instead be a derivation of a clause C ′ such that
C ⊆ C ′ ⊆ τ(C). The fact that C ′ ⊆ τ(C) is certainly required, see the comment at the
end of condition (b) above. The fact that C ′ ⊇ C will mean that enough literals are
present for the derivation to use only (non-degenerate) resolution inferences —by virtue
of the fact that our constructions will pick C so that it contains the literals that must
be present for use as resolution literals. The extra literals in C ′ \ C will be handled by
propagating them down the proof to where they are resolved on.

The construction begins by letting R0 be the “empty” refutation, containing just the
empty clause. Of course, this clause is an unfinished leaf, and τ(∅) = ∅. Thus R0 is a
valid LR partial refutation.

For the induction step, Ri has been constructed already. Let C be the leftmost
unfinished clause in Ri. Then Ri+1 will be formed formed by replacing C by a refutation S
of some clause C ′ such that C ⊆ C ′ ⊆ τ(C). Replacing C with C ′ can introduce extra
literals: Since these literals are all in τ(C), they can be handled by propagating them down
the refutation from C, adding each such literal ℓ to every clause below C until reaching a
clause where ℓ already appears. (There will be a clause below C which contains ℓ, since
ℓ ∈ τ(C) and is resolved on below C.)

We need to describe the (LR partial) refutation S that will replace the clause C
in Ri+1. Let π be the bipartite partial order associated with τ(C), and consider the
derivation Pπ from Lemma 2.7. Since C is (

∨
π) by condition (e), the final line of Pπ

is the clause C. The intuition is that we would like to let S be Pπ. The first difficulty
with this is that Pπ is dag-like, and the LR-refutation is intended to be tree-like, This
difficulty, however, can be circumvented by just expanding Pπ, which is regular, into a
tree-like regular derivation with lemmas by the simple expedient of using an arbitrary
depth-first traversal of Pπ. The second, and more serious, difficulty is that Pπ is a
derivation from GTn, not GGTn. Namely, the derivation Pπ uses the transitivity clauses
of GTn instead of the guarded transitivity clauses of GGTn. The transitivity clauses

124 An improved separation of regular resolution

Ti,j,k := xi,j ∨ xj,k ∨ xk,i in Pπ are handled one at a time as described below. We will use
four separate constructions: in the first case, no change to Pπ is required; the second and
third cases require a small change; and in the fourth case, the subproof Pπ is abandoned
in favor of “learning” the transitivity clause.

Before doing the four constructions, it is worth noting that Lemma 2.7 implies that
no literal in τ(C) is used as a resolution literal in Pπ. To prove this, suppose xi,j is a
resolution variable in Pπ. Then, from Lemma 2.7 we have that at least one of i and j is
π-minimal and that i ̸≺π j and j ̸≺π i. Thus i ̸≺τ(C) j and j ̸≺τ(C) i, so τ(C) contains
neither xi,j nor xi,j .

(i) If an initial transivitivity clause of Pπ already appears earlier in Ri (that is, to
the left of C), then it is already learned, and can be used freely in Pπ.

In the remaining cases (ii)–(iv), the transitivity clause Ti,j,k is not yet learned. Let the
guard variable for Ti,j,k be xr,s, so r = r(i, j, k) and s = s(i, j, k).

(ii) Suppose case (i) does not apply and that the guard variable xr,s or its negation
xr,s is a member of τ(C). The guard variable thus is used as a resolution variable
somewhere along the branch from the root to clause C. Then, as just argued
above, Lemma 2.7 implies that xr,s is not resolved on in Pπ. Therefore, we
can add the literal xr,s or xr,s (respectively) to the clause Ti,j,k and to every
clause on any path below Ti,j,k until reaching a clause that already contains that
literal. This replaces Ti,j,k with one of the initial clauses Ti,j,k∨xr,s or Ti,j,k∨xr,s
of GGTn. By construction, it preserves the validity of the resolution inferences
of Ri as well as the regularity property. Note this adds the literal xr,s or xr,s
to the final clause C ′ of the modified Pπ. This maintains the property that
C ⊆ C ′ ⊆ τ(C).

(iii) Suppose case (i) does not apply and that xr,s is not used as a resolution variable
anywhere below Ti,j,k in Pπ and is not a member of τ(C). In this case, Pπ is
modified so as to derive the clause Ti,j,k from the two GGTn clauses Ti,j,k ∨
xr,s and Ti,j,k ∨ xr,s by resolving on xr,s. This maintains the regularity of the
derivation. It also means that henceforth Ti,j,k will be learned.

If all of the transitivity clauses in Pπ can be handled by cases (i)–(iii), then we use Pπ to
define Ri+1. Namely, let P ′

π be the derivation Pπ as modified by the applications of cases
(ii) and (iii). The derivation P ′

π is regular and dag-like, so we can recast it as a tree-like
derivation S with lemmas, by using an arbitrary depth-first traversal of P ′

π. The size of S
is linear in the size of Pπ, since only input lemmas need to be repeated. The final line
of S is the clause C ′, namely C plus the literals introduced by case (ii). The derivation
Ri+1 is formed from Ri by replacing the clause C with the derivation S of C ′, and then
propagating each new literal x ∈ C ′ \ C down towards the root of Ri, adding x to each
clause below S until reaching a clause that already contains x. The derivation S contains
no unfinished leaf, so Ri+1 contains one fewer unfinished leaves than Ri.

On the other hand, if even one transitivity axiom Ti,j,k in Pπ is not covered by the
above three cases, then case (iv) must be used instead. This introduces a completely
different construction to form S:

(iv) Let Ti,j,k be any transitivity axiom in Pπ not covered by cases (i)–(iii). In this
case, the guard variable xr,s is used as a resolution variable in Pπ somewhere
below Ti,j,k; in general, this means we cannot use resolution on xr,s to derive Ti,j,k
while maintaining the desired pool property. Hence, Pπ is no longer used, and

The Infinity Project 125

we instead will form S with a short left-branching path that “learns” Ti,j,k. This
will generate two or three new unfinished leaf nodes. Since unfinished leaf nodes
in a LR partial derivation must be labeled with clauses from bipartite partial
orders, it is also necessary to attach short derivations to these unfinished leaf
nodes to make the unfinished leaf clauses of S correspond correctly to bipartite
partial orders. These unfinished leaf nodes are then kept in Ri+1 to be handled
at later stages.

There are separate constructions depending on whether Ti,j,k is a clause of
type (β) or (γ); details are given below.

First suppose Ti,j,k is of type (γ). (Refer to Figure 2.) Let xr,s be the guard variable
for the transitivity axiom Ti,j,k. The derivation S will have the form

xi,j , xj,k, xk,i, xr,s xi,j , xj,k, xk,i, xr,s
xi,j , xj,k, xk,i

S1 . . .
... . . .

xi,j , xi,k, π−[jk;jR(i)]

xi,j , xj,k, π−[jk;jR(i)]

S2 . . .
... . . .

xj,i, xj,k, π−[jk;iR(j)]

xj,k, π−[jk]

Here we are using commas instead of disjunctions to denote clauses. The notation π−[jk]

denotes the disjunction of the negations of the literals in π omitting the literal xj,k. We
write “iR(j)” to indicate literals xi,ℓ such that j ≺π ℓ. (The “R(j)” means “range of j”.)
Thus π−[jk;iR(j)] denotes the clause containing the negations of the literals in π, omitting
xj,k and any literals xi,ℓ such that j ≺π ℓ. The clause π−[jk;jR(i)] is defined similarly, and
the notation extends to more complicated situations in the obvious way.

The upper leftmost inference of S is a resolution inference on the variable xr,s. Since
Ti,j,k is not covered by either case (i) or (ii), the variable xr,s does not appear in or below
clause C in Ri. Thus, this use of xr,s as a resolution variable does not violate regularity.
Furthermore, since Ti,j,k is of type (γ), we have i̸≺τ(C)j, j ̸≺τ(C)i, i ̸≺τ(C)k, and k ̸≺τ(C)i.
Thus the literals xi,j and xi,k do not appear in or below C, so they also can be resolved
on without violating regularity.

Let C1 and C2 be the final clauses of S1 and S2, and let C−
1 be the clause below C1

and above C. The set of literals τ(C2) is obtained by adding xj,i to τ(C), and similarly
τ(C−

1) is τ(C) plus xi,j . Since Ti,j,k is type (γ), we have i, j ∈ Mπ. Therefore, since
τ(C) is a partial specification of a partial order, τ(C2) and τ(C−

1) are also both partial
specifications of partial orders. Let π2 and π1 be the bipartite orders associated with these
two partial specifications (respectively). We will form the subproof S1 so that it contains
the clause (

∨
π1) as its only unfinished clause. This will require adding inferences in S1

which add and remove the appropriate literals. The first step of this type already occurs
in going up from C−

1 to C1 since this has removed xj,k and added xi,k, reflecting the fact
that j is not π1-minimal and thus xi,k ∈ π1 but xj,k /∈ π1. Similarly, we will form S2 so
that its only unfinished clause is (

∨
π2).

We first describe the subproof S2 of S. The situation is pictured in Figure 3, which
shows an extract from Figure 2: the edges shown in part (a) of the figure correspond to
the literals present in the final line C2 of S2. In particular, recall that the literals xi,ℓ
such that j ≺π ℓ are omitted from the last line of S2. (Correspondingly, the edge from i
to ℓ1 is omitted from Figure 3.) The last line C2 of S2 does not correspond to a bipartite
partial order because it does not partition [n] into minimal and non-minimal elements;

126 An improved separation of regular resolution

i j

kℓ1 ℓ2 ℓ3

(a) xj,k, xi,ℓ2 , xj,i, π∗
i j

kℓ1 ℓ2 ℓ3

(b) xj,k, xi,ℓ2 , xj,i, π∗

Figure 3. The partial orders for the fragment of S2 shown in (2.1).

thus, the last line of S2 does not qualify to be an unfinished node of Ri+1. (An example
of this in Figure 3(a) is that j ≺τ(C2) i ≺τ(C2) ℓ2, corresponding to xj,i and xi,ℓ2 being in
the last line of S2.) The bipartite partial order π2 associated with τ(C2) is equal to the
bipartite partial order that agrees with π except that each i ≺π ℓ condition is replaced
with the condition j ≺π2 ℓ. (This is represented in Figure 3(b) by the fact that the edge
from i to ℓ2 has been replaced by the edge from j to ℓ2. Note that the vertex i is no
longer a minimal element of π2; that is, i /∈ Mπ2 .) We wish to form S2 to be a (regular)
derivation of the clause xj,i, π−[jk;iR(j)] from the clause (

∨
π2).

The subproof of S2 for replacing xi,ℓ2 in π with xj,ℓ2 in π2 is as follows, letting π∗ be
π−[jk;iR(j);iℓ2].

(2.1)
S′
2 . . .

... . . .

xj,i, xi,ℓ2 , xℓ2,j

. . .
... . . . rest of S2

xj,k, xj,ℓ2 , xj,i, π
∗

xj,k, xi,ℓ2 , xj,i, π
∗

The part labeled “rest of S2” will handle similarly the other literals ℓ such that i ≺π ℓ
and j ̸≺π ℓ. The final line of S′

2 is the transitivity axiom Tj,i,ℓ2 . This is a GTn axiom, not
a GGTn axiom; however, it can be handled by the methods of cases (i)–(iii). Namely, if
Tj,i,ℓ2 has already been learned by appearing somewhere to the left in Ri, then S′

2 is just
this single clause. Otherwise, let the guard variable for Tj,i,ℓ2 be xr′,s′ . If xr′,s′ is used as a
resolution variable below Tj,i,ℓ2 , then replace Tj,i,ℓ2 with Tj,i,ℓ2 ∨xr′,s′ or Tj,iℓ2 ∨xr′,s′ , and
propagate the xr′,s′ or xr′,s′ to clauses down the branch leading to Tj,i,ℓ2 until reaching a
clause that already contains that literal. Finally, if xr′,s′ has not been used as a resolution
variable in Ri below C, then let S′

2 consist of a resolution inference deriving (and learning)
Tj,i,ℓ2 from the clauses Tj,i,ℓ2 , xr′,s′ and Tj,i,ℓ2 , xr′,s′ .

To complete the construction of S2, the inference (2.1) is repeated for each value of ℓ
such that i ≺π ℓ and j ̸≺π ℓ. The result is that S2 has one unfinished leaf clause, and it
is labelled with the clause (

∨
π2).

We next describe the subproof S1 of S. The situation is shown in Figure 4. As in the
formation of S2, the final clause C1 in S1 may need to be modified in order to correspond
to the bipartite partial order π1 which is associated with τ(C1). First, note that the
literal xj,k is already replaced by xi,k in the final clause of S1. The other change that
is needed is that, for every ℓ such that j ≺π ℓ and i ̸≺π ℓ, we must make sure that π1
is defined so that j ̸≺π1 ℓ and i ≺π1 ℓ. Vertex ℓ3 in Figure 4 is an example of a such
a value ℓ. The ordering in the final clause of S1 is shown in part (a), and the desired
ordered pairs of π1 are shown in part (b). Note that j is no longer a minimal element
in π1.

The Infinity Project 127

i j

kℓ1 ℓ2 ℓ3

(a) xi,k, xj,ℓ3 , xi,j , π∗
i j

kℓ1 ℓ2 ℓ3

(b) xi,k, xi,ℓ3 , xi,j , π∗

Figure 4. The partial orders for the fragment of S1 shown in (2.2).

The replacement of xj,ℓ3 with xi,ℓ3 is effected by the following inference, letting π∗
now be π−[jk;jR(i);jℓ3].

(2.2)
S′
1 . . .

... . . .

xi,j , xj,ℓ3 , xℓ3,i

. . .
... . . . rest of S1

xi,k, xi,ℓ3 , xi,j , π
∗

xi,k, xj,ℓ3 , xi,j , π
∗

The “rest of S1” will handle similarly the other literals ℓ such that j ≺π ℓ and i ̸≺π ℓ. Note
that the final clause of S′

1 is the transitivity axiom Ti,j,ℓ3 . The subproof S′
1 is formed in

exactly the same way that S′
2 was formed above. Namely, depending on the status of the

guard variable xr′,s′ for Ti,j,ℓ3 , one of the following is done: (i) the clause Ti,j,ℓ3 is already
learned and can be used as is, or (ii) one of xr′,s′ or xr′,s′ is added to the clause and
propagated down the proof, or (iii) the clause Ti,j,ℓ3 is inferred using resolution on xr′,s′
and becomes learned.

To complete the construction of S1, the inference (2.2) is repeated for each value of ℓ
such that j ≺π ℓ and i ̸≺π ℓ. The result is that S1 has one unfinished leaf clause, and it
corresponds to the bipartite partial order π1.

That completes the construction of the subproof S for the subcase of (iv) where Ti,j,k
is of type (γ). Now suppose Ti,j,k is of type (β). (For instance, the values i, j, k′ of
Figure 2.) In this case the derivation S will have the form

Ti,j,k, xr,s Ti,j,k, xr,s

Ti,j,k

S3 . . .
... . .

.

xi,j , xi,k, π−[jR(i),kR(i∪j)]

xi,j , xj,k, π−[jR(i),kR(i∪j)]

S4 . . .
... . .

.

xi,j , xk,j , π−[jR(i∩k)]

xi,j , π−[jR(i∩k)]

S5 . . .
... . .

.

xj,i, π−[iR(j)]

π

where xr,s is the guard variable for Ti,j,k. We write [π−[jR(i∩k)]] to mean the negations
of literals in π omitting any literal xj,ℓ such that both i ≺π ℓ and k ≺π ℓ. Similarly,
π−[jR(i),kR(i∪j)] indicates the negations of literals in π, omitting the literals xj,ℓ such that
i ≺π ℓ and the literals xk,ℓ such that either i ≺π ℓ or j ≺π ℓ.

Note that the resolution on xr,s used to derive Ti,j,k does not violate regularity, since
otherwise Ti,j,k would have been covered by case (ii). Likewise, the resolutions on xi,j
and xj,k do not violate regularity since Ti,j,k is of type (β).

The subproof S5 is formed exactly like the subproof S2 above, with the exception
that now the literal xj,k is not present. Thus we omit the description of S5.

We next describe the construction of the subproof S4. Let C4 be the final clause of S4;
it is easy to check that τ(C4) is a partial specification of a partial order. As before, we
must derive C4 from the clause (

∨
π4) where π4 is the bipartite partial order associated

with the partial order τ(C4). A typical situation is shown in Figure 5. As pictured there,
it is necessary to add to π4 the literals xi,ℓ such that j ≺π ℓ and i ̸≺π ℓ, while removing

128 An improved separation of regular resolution

i j k

ℓ1 ℓ2 ℓ3

(a) xi,j , xk,j , xj,ℓ2 , π∗
i j k

ℓ1 ℓ2 ℓ3

(b) xi,j , xi,ℓ2 , xk,j , xk,ℓ2 , π∗

Figure 5. The partial orders as changed by S4.

xj,ℓ; examples of this are ℓ equal to ℓ2 and ℓ3 in Figure 5. At the same time, we must
add the literals xk,ℓ such that j ≺π ℓ and k ̸≺π ℓ, while removing xj,ℓ; examples of this
are ℓ equal to ℓ1 and ℓ2 in the same figure.

For a vertex ℓ3 such that j ≺π ℓ3 and k ≺π ℓ3 but i ̸≺π ℓ3, this is done similarly to
the inferences (2.1) and (2.2) but without the side literal xj,k:

(2.3)
S′
4 . . .

... . . .

xi,j , xj,ℓ3 , xℓ3,i

. . .
... . . . rest of S4

xi,ℓ3 , xk,j , xi,j , π
∗

xj,ℓ3 , xk,j , xi,j , π
∗

Here π∗ is π−[jR(i∩k);jℓ3]. The transitivity axiom Ti,j,ℓ3 shown as the last line of S′
4 is

handled exactly as before. This construction is repeated for all such ℓ3’s.
The vertices ℓ1 such that j ≺π ℓ1 and i ≺π ℓ1 but k ̸≺π ℓ1 are handled in exactly

the same way. (The side literals of π∗ change each time to reflect the literals that have
already been replaced.)

Finally, consider a vertex ℓ2 such that i ̸≺π ℓ2 and j ≺π ℓ2 and k ̸≺π ℓ2. This is
handled by the derivation

S′′
4 . . .

... . . .

xi,j , xj,ℓ2 , xℓ2,i

S′′′
4 . . .

... . . .

xk,j , xj,ℓ2 , xℓ2,k

. . .
... . . . rest of S4

xi,j , xi,ℓ2 , xk,j , xk,ℓ2 , π
∗

xi,j , xi,ℓ2 , xk,j , xj,ℓ2 , π
∗

xi,j , xk,j , xj,ℓ2 , π
∗

As before, the set π∗ of side literals is changed to reflect the literals that have already been
added and removed as S4 is being created. The subproofs S′′

4 and S′′′
4 of the transitivity

axioms Ti,j,ℓ2 and Tk,j,ℓ2 are handled exactly as before, depending on the status of their
guard variables.

Finally, we describe how to form the subproof S3. For this, we must form the bipartite
partial order π3 which associated with the partial order τ(C3), where C3 is the final clause
of S3. To obtain π3, we need to add the literals xi,ℓ such that i ̸≺π ℓ and such that either
j ≺π ℓ or k ≺π ℓ, while removing any literals xj,ℓ and xk,ℓ. This is done by exactly
the same construction used above in (2.3). The literals in π−[jR(i);kR(i∪j)] are exactly
the literals needed to carry this out. The construction is quite similar to the above
constructions, and we omit any further description.

That completes the description of how to construct the LR partial refutations Ri.
The process stops once some Ri has no unfinished clauses. We claim that the process
stops after polynomially many stages.

To prove this, recall that Ri+1 is formed by handling the leftmost unfinished clause
using one of cases (i)–(iv). In the first three cases, the unfinished clause is replaced by a
derivation based on Pπ for some bipartite order π. Since Pπ has size O(n3), this means

The Infinity Project 129

that the number of clauses in Ri+1 is at most the number of clauses in Ri plus O(n3).
Also, by construction, Ri+1 has one fewer unfinished clauses than Ri. In case (iv) however,
Ri+1 is formed by adding up to O(n) many clauses to Ri plus adding either two or three
new unfinished leaf clauses. In addition, case (iv) always causes at least one transitivity
axiom Ti,j,k to be learned. Therefore, case (iv) can occur at most 2

(
n
3

)
= O(n3) times.

Consequently at most 3 · 2
(
n
3

)
= O(n3) many unfinished clauses are added throughout

the entire process. It follows that the process stops with Ri having no unfinished clauses
for some i ≤ 6

(
n
3

)
= O(n3). Therefore there is a pool refutation of GGTn with O(n6)

lines.
By inspection, each clause in the refutation contains O(n2) literals. This is because

the largest clauses are those corresponding to (small modifications of) bipartite partial
orders, and because bipartite partial orders can contain at most O(n2) many ordered
pairs. Furthermore, the refutations Pn for the graph tautology GTn contain only clauses
of size O(n2).

Q.E.D. Theorem 1.7. �

Theorem 1.8 is proved with nearly the same construction. In fact, the only change
needed for the proof is the construction of S from P ′

π. Recall that in the proof of The-
orem 1.7, the pool derivation S was formed by using an arbitrary depth-first traversal
of P . This is not sufficient for Theorem 1.8, since now the derivation S must use only in-
put lemmas. Instead, we use Theorem 3.3 of [8], which states that an arbitrary (regular)
dag-like resolution derivation can be transformed into a (regular) tree-like derivation with
input lemmas. Forming S in this way from P ′

π suffices for the proof of Theorem 1.8: the
lemmas of S are either transitive closure axioms derived earlier in Ri or are derived by
an input subproofs earlier in the post-ordering of S. Since the transitive closure axioms
that appeared earlier in Ri were derived by resolving two GGTn axioms, the lemmas used
in S are all input lemmas.

The transformation of Theorem 3.3 of [8] may multiply the size of the derivation by
the depth of the original derivation. Since it is possible to form the proofs Pπ with depth
O(n), the overall size of the pool resolution refutations with input lemmas is O(n7). This
completes the proof of Theorem 1.8.

3 Greedy DPLL with clause learning

We now discuss how the constructions of the refutations for Theorem 1.8 can be modified
so as to ensure that the refutations are greedy.

Definition 3.1 Let R be a tree-like regular resolution refutation with input lemmas. For
C a clause in R, let τ(C) be defined as in Section 2. And, let Γ(C) be the set of clauses
of Γ plus every clause D <R C in R that has been derived by an input subproof and is
available as a learned clause to aid in the derivation of C.

The refutation R is greedy provided that, for each clause C of R, if there is an input
derivation from Γ(C) of some clause C ′ ⊆ τ(C) then C is derived in R by an input
derivation.

Note that the condition there is an input derivation of some C ′ ⊆ τ(C) is equivalent
to the condition that if all literals of τ(C) are set false then unit propagation yields a
contradiction.

130 An improved separation of regular resolution

The definition of greedy is actually a bit more restrictive than necessary, since DPLL
algorithms may actually learn multiple clauses at once, and this can mean that C is
not derived from a single input but rather from a combination of several input proofs as
described in the proof of Theorem 5.1 in [8].

Theorem 3.2 The guarded graph tautology principles GGTn have greedy, polynomial
size, tree-like, regular resolution refutations with input lemmas.

Proof. We indicate how to modify the proof of Theorem 1.8. We again build LR partial
refutations R0, R1, R2, . . . satisfying the same properties a.-e. as before. When forming
Ri+1 from Ri, let C be the unfinished leaf clause in Ri that is to be given an (LR-partial)
derivation in Ri+1. Let π be as before, and let Pπ again be the dag-like regular derivation
of C.

We now give a construction that, when successful, incorporates all of transformations
(i)–(iv) and also incorporates the construction of Theorem 3.3 of [8]. We unwind the
proof Pπ into a tree-like regular refutation P ∗

π that is possibly exponentially big. We
traverse P ∗

π in a depth-first, left-to-right order (this is the preorder of P ∗
π). Each time we

reach a clause C ′ in P ∗
π , we do one of the following modifications to P ∗

π .
(i’) Suppose that some C ′′ ⊆ τ(C ′) can be derived by an input refutation from Γ(C ′).

Fix any such C ′′ ⊆ τ(C ′), and replace the derivation in P ∗
π of the clause C ′ with

an input derivation of C ′′ from Γ(C). Any extra literals in C ′′ \ C ′ are in τ(C)
and are propagated down until reaching a clause where they already appear.

(ii’) If case (i’) does not apply, and C ′ is not a leaf node, then P ∗
π is unchanged at

this point and the depth-first traversal proceeds to the next clause.
(iii’) Otherwise, C ′ is an initial clause of the form Ti,j,k and the guard variable xr,s

for the clauses Ti,j,k ∨ xr,s and Ti,j,k ∨ xr,s is resolved on in P ∗
π below C ′. In

this case, the modification of P ∗
π is said to have failed and the traversal process

stops.
If case (iii’) never occurs, then the modifications of P ∗

π eventually terminate. As in the
proof of Theorem 3.3 of [8], the modified version of P ∗

π has polynomial size. Indeed, any
clause C ′ in P ∗

π will occur at most dC times in the modified version of P ∗
π where dC′ is the

depth of the derivation of C ′ in the original Pπ. This is because, C ′ will have been learned
by an input derivation once it has appeared dC times in the modified derivation P ∗

π , as
can be proved by induction on dC .

The situation where case (iii’) does occur is handled using the techniques of case (iv)
of Theorem 1.8. For this case, instead of using the derivation P ∗

π of C, we will use one of
the derivations S shown on pages 125 and 127.

The second version of S, as shown on page 127, is used in case Ti,j,k is type (β).
Consider using this derivation fragment S in place of P ∗

π to derive C. Let C ′′ be the
clause below Ti,j,k in P ∗

π . Let D be the clause xi,j , xj,k, π−[jR(i), kR(i∪j)] shown in the
derivation S on page 127. The set τ(C ′′) must contain two of the three literals in Ti,j,k,
and without loss of generality they are the literals xi,j and xj,k. Therefore, since there
is no input derivation of any C ′′′ ⊆ C ′′ from Γ(C ′′), there is also no input derivation of
any D′ ⊆ D from Γ(D). Thus, we can attach the resolution fragment S, as shown on
page 127, as the subderivation of C, and the resulting derivation is greedy. This leaves
three new unfinished clauses, in the subderivations S3, S4, and S5, to be handled at later
stages. The clause Ti,j,k is now derived by an input proof, and becomes available for later
use as an initial clause.

The Infinity Project 131

The first version of S, on page 125, is to be used in case Ti,j,k is type (γ) in P ∗
π . Let

D be the clause xi,j , xj,k, π−[jk;jR(i)] in S. If there is no input derivation of D′ ⊆ D from
Γ(D), then the construction from the previous paragraph for case (β) works again, and
Ti,j,k is derived with a input derivation as before, with two new clauses in S1 and S2 left
as unfinished clauses to be handled at later stages. On the other hand, suppose there is
an input derivation of D′ ⊆ D from Γ(D). This prevents the proof from reaching, and
learning, the clause Ti,j,k, as the traversal of S stops at D. However, this also prunes the
subproof S1, so this generates only one new clause C2, namely in S2, to be handled at
a later stage. In addition, the bipartite partial order associated with C2 has one fewer
minimal elements (since i is no longer minimal). Therefore, this case can occur at most
n times in a row, and cannot cause a superpolynomial increase in proof size.

This completes the proof of Theorem 3.2. �

The construction for the proof of Theorem 3.2 requires only that the clauses Ti,j,k
are learned whenever possible, and does not depend on whether any other clauses are
learned. This means that the following algorithm for DPLL search with clause learning
will always succeed in finding a refutation of the GGTn clauses: At each point, there is
a partial assignment τ . The search algorithm must do one of the following:

(1) If unit propagation yields a contradiction, then learn a clause Ti,j,k if possible,
and backtrack.

(2) Otherwise, if there are any literals in the transitive closure of the bipartite
partial order associated with τ which are not assigned a value, branch on one of
these literals to set its value. (One of the assignments, true or false, yields an
immediate conflict, and may allow learning a clause Ti,j,k.)

(3) Otherwise, if the regular proof P ∗
π can be traversed to give a refutation from

the learned clauses, then do this traversal, eventually backtracking from the
assignment τ .

(4) Otherwise, find a Ti,j,k that is blocking P ∗
π from being traversed, and branch

on its variables in the order given in the last proof. This either learns Ti,j,k, or
replaces τ with a truth assignment whose associated bipartite partial order has
one fewer minimal elements.

References
[1] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential sep-

aration between regular and general resolution. Theory of Computation, 3(4):81–102, 2007.
[2] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms with many

restarts and and bounded-width resolution. Journal of Artificial Intelligence Research, 40:353–373,
2011.

[3] Fahim Bacchus, Philipp Hertel, Toniann Pitassi, and Allen Van Gelder. Clause learning can effec-
tively p-simulate general propositional resolution. In Proc. 23rd AAAI Conf. on Artificial Intelligence
(AAAI 2008), pages 283–290. AAAI Press, 2008.

[4] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. Artificial Intelligence Research, 22:319–351, 2004.

[5] Arnold Beckmann and Samuel R. Buss. Separation results for the size of constant-depth propositional
proofs. Annals of Pure and Applied Logic, 136:30–55, 2005.

[6] María Luisa Bonet and Nicola Galesi. A study of proof search algorithms for resolution and poly-
nomial calculus. In 40th Annual IEEE Symp. on Foundations of Computer Science, pages 422–431.
IEEE Computer Society, 1999.

132 An improved separation of regular resolution

[7] Samuel R. Buss. Pool resolution is NP-hard to recognise. Archive for Mathematical Logic, 48(8):793–
798, 2009.

[8] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas: Resolution
refinements that characterize DLL-algorithms with clause learning. Logical Methods of Computer
Science, 4, 4:13(4:13):1–18, 2008.

[9] Andreas Goerdt. Regular resolution versus unrestricted resolution. SIAM Journal on Computing,
22(4):661–683, 1993.

[10] Wenqi Huang and Xiangdong Yu. A DNF without regular shortest consensus path. SIAM Journal
on Computing, 16(5):836–840, 1987.

[11] Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Informatica, 22(3):253–275,
1985.

[12] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning satisfiability solvers.
Journal of Automated Reasoning, 44(3):277–301, 2010.

[13] Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for small restrictions
and lower bounds for k-DNF resolution. SIAM Journal on Computing, 33(5):1171–1200, 2004.

[14] Gunnar Stålmarck. Short resolution proofs for a sequence of tricky formulas. Acta Informatica,
33(3):277–280, 1996.

[15] Aladair Urquhart. A near-optimal separation of regular and general resolution. SIAM Journal on
Computing, 40(1):107–121, 2011.

[16] Allen Van Gelder. Pool resolution and its relation to regular resolution and DPLL with clause
learning. In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), Lecture Notes
in Computer Science Intelligence 3835, pages 580–594. Springer-Verlag, 2005.

The Infinity Project

Sharpened lower bounds for cut elimination

Samuel R. Buss∗

∗ Department of Mathematics, University of California, San Diego, USA
sbuss@math.ucsd.edu

Abstract. We present sharpened lower bounds on the size of cut free proofs for first-order logic. Prior
lower bounds for eliminating cuts from a proof established superexponential lower bounds as a stack of
exponentials, with the height of the stack proportional to the maximum depth d of the formulas in the
original proof. Our results remove the constant of proportionality, giving an exponential stack of height
equal to d − O(1). The proof method is based on more efficiently expressing the Gentzen–Solovay cut
formulas as low depth formulas.

Introduction

The Gentzen cut elimination procedure is a cornerstone of mathematical logic, and is one
of the primary tools for establishing the consistency of proof systems, for extracting the
constructive content of proofs, and for classifying the strengths of formal systems in terms
of their consistency strengths or their computational complexity. It is well-known that
cut free proofs may need to be superexponentially larger than proofs that contain cut,
as shown originally by Statman [21, 22] and Orevkov [15]. The present paper sharpens
these lower bounds to (almost) match the known upper bounds.

All proofs considered in this paper will be Gentzen-style sequent calculus (LK) proofs
in first-order logic. The depth of a formula is defined to be the height of a formula when
viewed as a tree. The depth of a proof is the maximum depth of a cut formula in the proof.
The applications in the present paper will be for proofs that have low depth endsequents,
and for these proofs, the depth will equal the maximum depth of any formula in the proof.
As defined below, the height of a proof is the maximum number of non-weak inferences
along any branch in the proof.

The base two superexponential function is defined by 2n0 = n and 2nk+1 = 22
n
k . The

best known upper bounds on the size of proofs generated by cut elimination state that if
a proof P has depth d, then P can be transformed into a cut free proof with size 2

h(P)
d+1 ,

where h(P) is the height of P ; for this see Orevkov [16, 17], Zhang [25, 26], Buss [6], and
the textbook by Troelstra and Schwichtenberg [23]. Beckmann–Buss [4] give a slightly
more general result that applies in the presence of non-logical axioms. Other authors
have derived similar, but not quite as sharp upper bounds, including [5, 13]. Baaz and
Leitsch [2, 3] have shown that better upper lower bounds hold in some special cases.

The known lower bounds for the size of cut free proofs are also superexponential.
The sharpest lower bounds for the Gentzen sequent calculus state that there is a fixed
constant ϵ, 0 ≤ ϵ < 1, and proofs P of arbitrarily large depth d, such that any cut
free proof Q with the same endsequent of P has size greater than 2

h(P)
ϵd . The first such

∗Supported in part by NSF grants DMS-0700533 and DMS-1101228, and by a grant from the Simons
Foundation (#208717). The author thanks the John Templeton Foundation for supporting his partici-
pation in the CRM Infinity Project at the Centre de Recerca Matemàtica, Barcelona, Catalonia, Spain,
where the main part of this paper was written.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

133

134 Sharpened lower bounds for cut elimination

result was proved by Orevkov [15], who established this with ϵ ≈ 1
4 , in predicate logic

without function symbols. Gerhardy [11] obtained ϵ ≈ 1
2 for first-order logic with function

symbols.
The main result of this paper is to improve the lower bound on the size of cut free

proofs to obtain ϵ ≈ 1. More precisely, we replace the bound 2
h(P)
ϵd with the bound 20d−c,

for c ∈ N a small constant. This is nearly optimal, as h(P) = O(d).
Our new lower bound also corrects an error in the literature [27], which claimed to

have established an upper bound of 2h(P)
d/2 on the size of cut free proofs.

Our lower bound can be compared to bounds obtained originally by Zhang [25, 26]
and refined by Gerhardy [11, 12]. They prove that if n is an upper bound on the number
of alternations of groups of ∀ and ∧ connectives and groups of ∃ and ∨ connectives in
cut formulas, then the size of a cut free proof can be bounded essentially by 2

h(P)
n+2 . (This

is a somewhat simplified and weakened restatement of Zhang’s and Gerhardy’s upper
bounds). In addition, Buss [6] shows upper bounds of the form 2

h(P)
n+O(1), where n is the

number of alternation of quantifiers in cut formulas, now allowing arbitrary occurrences
of intervening propositional connectives.

Our lower bound, like the earlier lower bounds of Statman, Orevkov, Gerhardy, and
others, is based on proving that an inductive predicate I contains a large number 20n.
Loosely speaking, it is shown that there are short proofs of I(20n), but that any cut free
proof of this requires superexponential size. These short proofs are based on defining
inductive initial segments (which are sometimes called “inductive cuts”, confusingly, since
they have nothing to do with cut inferences). The method of defining inductive initial
segments goes back essentially to Gentzen [9] who used it for proving transfinite induction.
It became well-known from Solovay [20], who introduced it for use in bounded arithmetic.
A number of other authors have also used this technique or similar ones, independently
rediscovering it on at least two occasions. These include Statman [21, 22], Yessenin-
Volpin [24], Nelson [14], Paris–Dimitracopoulos [18], Pudlák [19], Baaz–Leitsch [1], and
Gerhardy [11].

Orevkov’s lower bound [15] constructs short proofs of I(20n), with cuts, using inter-
mediate formulas that have depth d = O(n). Our principal innovation is to improve the
depth of these formulas to n+O(1). Section 1 establishes notation by proving a form of
Statman’s and Orevkov’s lower bounds, but with ϵ ≈ 1

2 , over a first-order language with
function symbols. This construction is taken almost directly from [11, 19]. In Section 2,
we improve this to obtain our new lower bound ϵ ≈ 1. Section 3 outlines how to prove
the same results for first-order logic without function symbols, also with ϵ ≈ 1.

1 Preliminaries

We begin with a short review of our formal systems, however the reader is presumed to
have basic familiarity with the sequent calculus and cut elimination, as well as at least
some familiarity with bounded arithmetic systems such as PV or I∆0 + exp. We work
with a sequent calculus for classical logic over the connectives ∀, ∃, ∧, ∨, ⊃, and ¬. The
only logical initial sequents are A→A, for A an atomic formula. The rules of inference
are as shown below.

The Infinity Project 135

Γ, A,B,Λ→∆
Exchange:left

Γ, B,A,Λ→∆

Γ→∆, A,B,Λ
Exchange:right

Γ→∆, B,A,Λ

A,A,Γ→∆
Contraction:left

A,Γ→∆

Γ→∆, A,A
Contraction:right

Γ→∆, A

Γ→∆Weakening:left
A,Γ→∆

Γ→∆Weakening:right
Γ→∆, A

Γ→∆, A¬:left ¬A,Γ→∆

A,Γ→∆¬:right
Γ→∆,¬A

A,B,Γ→∆∧:left
A ∧B,Γ→∆

Γ→∆, A Γ→∆, B∧:right
Γ→∆, A ∧B

A,Γ→∆ B,Γ→∆∨:left
A ∨B,Γ→∆

Γ→∆, A,B∨:right
Γ→∆, A ∨B

Γ→∆, A B,Γ→∆⊃:left
A ⊃ B,Γ→∆

A,Γ→∆, B⊃:right
Γ→∆, A ⊃ B

A(t),Γ→∆
∀:left

(∀x)A(x),Γ→∆

Γ→∆, A(b)
∀:right

Γ→∆, (∀x)A(x)
A(b),Γ→∆

∃:left
(∃x)A(x),Γ→∆

Γ→∆, A(t)
∃:right

Γ→∆, (∃x)A(x)
Γ→∆, A A,Γ→∆

Cut
Γ→∆

The ∀:right and ∃:left inferences must satisfy the usual eigenvariable condition that b
does not appear in the lower sequent.

The first six inferences are called weak inferences: these are needed since we treat
cedents as sequences of formulas, rather than as sets or multisets of formulas. However,
the size |P | of a proof is defined to be equal to the number of non-weak inferences. The
height of P is denoted h(P) and is the maximum number of non-weak inferences along
any branch in the proof.

Definition 1.1 The depth of a formula A is defined as follows:
(a) If A is atomic, then depth(A) = 0.
(b) If A is ¬B, (∃x)B, or (∀x)B, then A = 1 + depth(B).
(c) If A is B ◦ C for ◦ one of ∨, ∧ or ⊃, then

depth(A) = 1 +max{depth(B), depth(C)}.
The depth of a cut inference is the depth of its cut formula. The depth of a proof P is
the maximum depth of cuts appearing in P .

We use a special notation for an “extended” superexponential function. Let u⃗ be a
finite sequence u⃗ = ⟨u1, . . . , uk⟩, with k ≥ 1. The value 2u⃗ is defined inductively. For u⃗ =

⟨u1⟩, a sequence of length one, 2⟨u1⟩ = u1. And, for u⃗ = ⟨u1, . . . , uk⟩, 2u⃗ = u1+22⟨u2,...,uk⟩ .
For instance,

2⟨a,b,c,d⟩ = a+ 2b+2c+2d

.

We now review the prior superexponential lower bound for cut elimination, based
on Pudlák’s exposition [19], but with the better lower bound of ϵ ≈ 1

2 as obtained by

136 Sharpened lower bounds for cut elimination

Gerhardy [11]. We let T be a finitely axiomatized theory of bounded arithmetic which
contains a finite fragment of Cook’s theory PV plus the exponential function 2i and the
superexponential functions 2xi and 2⟨u⃗⟩. The language of T contains function symbols
for sufficiently many polynomial time computable functions to formalize the needed ar-
guments described below: this includes sequence coding, and proving simple properties
about the needed polynomial time computable functions and about the exponential and
superexponential functions. The theory T is axiomatized by a finite set of purely universal
formulas.

T contains an additional, uninterpreted, unary predicate symbol I(x), with the two
axioms I(0) and (∀x)(I(x) ⊃ I(Sx)). The predicate I is not permitted in induction
axioms. The predicate I(x) intuitively means that induction works up to x, or that x
can be reached from zero by repeatedly adding 1. Define the formula ψ0(x) to be I(x),
and for i ≥ 0, define ψi+1(x) to be the formula

(∀y)(ψi(y) ⊃ ψi(y + 2x)).

There are then simple proofs of

(1.1) ψi(0) and ∀x(ψi(x) ⊃ ψi(Sx)).

These are proved for successive values of i using simple properties of zero and successor;
namely, as we show below, the formulas (1.1) for i = k + 1 are proved from those for
i = k. In addition, as we detail below, it is easy to prove that ψi+1(x) ⊃ ψi(2x).

Let Γ be the set of universal formulas that axiomatize T , including the two axioms
for the predicate I(x), and the equality axioms for the relation and functions symbols
of T . As we describe below, the sequents ψi+1(x)→ψi(2

x) can be proved with a proof of
height O(i) which contain cuts only on atomic formulas and on substitution instances of
subformulas of ψi. Likewise, the sequent→ψi(0) is proved with proofs with height O(i)
and with the same cut complexity. Combining these sequents with cuts, we get a proof Pℓ
of Γ→I(20ℓ) which has height O(ℓ) and in which all cut formulas either are atomic or are
substitution instances of subformulas of ψℓ(x).

Let Qℓ be a proof with the same conclusion Γ→I(20ℓ) as Pℓ in which all cuts are on
quantifier-free formulas. We claim that the size of Qℓ is ≥ 20ℓ . To prove this, we modify
Qℓ in the following fashion. Find each ∀:left inference in Qℓ, and omit this inference and
instead let the auxiliary formula of the inference remain in the antecedent of that sequent
and in all sequents below that sequent, down to the endsequent. For this, contractions
on (formerly universal) formulas are omitted. The result is a proof Q∗

ℓ of a sequent
Γ∗→I(20ℓ) in which every formula in Γ∗ is a quantifier-free substitution instance of an
axiom of T . Without loss of generality, Γ∗ does not contain any variables, since any
variables that are present may be replaced everywhere with the constant 0. Note that
the number of formulas in Γ∗ is less than or equal to the number of ∀:right inferences
in Qi plus the number of quantifier-free axioms in the (finite) set Γ. In particular, the
number of substitution instances of I(x) ⊃ I(S(x)) in Γ∗ is less than the size of Qℓ.

Each such substitution instance of I(x) ⊃ I(S(x)) is a formula of the form I(s) ⊃
I(S(s)), for s a closed term. Let n0 ∈ N be the least integer so that no s has value equal
to n0. Of course n0 must be less than the size of Qℓ. On the other hand, we claim that
n0 ≥ 20ℓ . Otherwise, we could falsify the sequent Γ∗→I(20ℓ) in the standard model of the
integers by letting I(n) hold for exactly the values n ≤ n0. It follows that the size of Qℓ
is greater than or equal to 20ℓ .

The Infinity Project 137

This is enough to establish the superexponential lower bound on cut free proofs.
However, it is worth examining in more detail how the proof Pℓ can be formed. First, Pℓ
derives the sequents

(1.2) Γ→ψi(0)

and

(1.3) Γ, ψi(a)→ψi(S(a))

for 0 ≤ i ≤ ℓ, where a is a free variable. For i = 0, these are simple to prove without
cuts. For the induction step, Pℓ derives (1.2) with i = k + 1 from the three sequents

(i) Γ, ψk(a)→ψk(S(a)),
(ii) Γ→S(a) = a+ 20,
(iii) Γ, S(a) = a+ 20, ψk(S(a))→ψk(a+ 20),

using cuts on the formulas S(a) = a + 20 and ψk(S(a)) followed by an ⊃:right and a
∀:right. The sequent (i) is (1.3) with i = k. Sequent (ii) is provable by a fixed size cut
free proof. And, since Γ includes equality axioms, (iii) has a cut free proof of height O(k).
(This last fact is readily proved by induction on the depth of ψk from the fact that ψk
has depth O(k).)

As the second part of the induction step, Pℓ derives (1.3) for i = k + 1 from the
sequents

(i) ψk+1(a), ψk(b)→ψk(b+ 2a),
(ii) ψk+1(a), ψk(b+ 2a)→ψk((b+ 2a) + 2a),
(iii) Γ→(b+ 2a) + 2a = b+ 2S(a),
(iv) Γ, (b+ 2a) + 2a = b+ 2S(a), ψk((b+ 2a) + 2a)→ψk(b+ 2S(a)),

using cuts on the atomic formula (b + 2a) + 2a = b + 2S(a) and the formulas ψk(b + 2a)
and ψk((b + 2a) + 2a), followed by an ⊃:right and a ∀:right. Note that (i) and (ii) are
readily provable by fixed proof schemes without any cuts.

After proving all the instances of (1.2) and (1.3), Pℓ derives the sequents

(1.4) Γ, ψk+1(a)→ψk(2
a)

for 0 ≤ k < ℓ. This sequent is proved from the sequents
(i) ψk+1(a), ψk(0)→ψk(0 + 2a),
(ii) Γ→ψk(0),
(iii) Γ→0 + 2a = 2a,
(iv) Γ, 0 + 2a = 2a, ψk(0 + 2a)→ψk(2

a),
using cuts on the formulas 0 + 2a = 2a, ψk(0), and ψk(0 + 2a). Note that (i) is provable
by a small proof with no cuts, and that (ii) is the same as (1.2).

Finally, Pℓ derives Γ→ψ0(2
0
ℓ) from the sequent (1.2) with i = ℓ, the sequents (1.4)

for 0 ≤ i < ℓ, and the sequents

(i) Γ→22
0
i = 20i+1,

(ii) Γ, 22
0
i = 20i+1, ψℓ−i−1(2

20i)→ψℓ−i−1(2
0
i+1),

using cuts on the indicated formulas.
By inspection, the height of Pℓ is O(ℓ). Its depth is 2ℓ, since ψℓ(0) is the cut formula

of maximum depth. We have thus reproved, taking d = 2ℓ, the prior results for lower
bounds on cut-elimination that were described in the introduction:

138 Sharpened lower bounds for cut elimination

Theorem 1.2 There are proofs Pℓ of sequents Sℓ of depth d and height O(d) such that
any cut free proof of Sℓ requires size 20(1/2)d. The formulas in Sℓ are purely universal and
have depth O(1).

The proof Pℓ constructed above has exponential size because the formulas ψi have
exponential size, O(2i). These formulas could be replaced by polynomial size formulas,
as is done by Pudlák [19] using constructions from Ferrante–Rackoff [8]. They could
even be made linear size using the refinements to [8] by Buss–Johnson [7]. With these
modifications, Pℓ would be polynomial size; its depth would become larger than 2ℓ,
although it would still be O(ℓ).

2 Improved lower bounds for cut-elimination

We now improve Theorem 1.2 to establish the ϵ ≈ 1 version of the lower bounds on the
size of cut free proofs. The idea is to modify the formulas ψi used in Pℓ so that they
have depth i + O(1) instead of depth 2i. For this we shall prove there are formulas φi
(equivalent to ψi) such that φi(x) has depth i+O(1), and φ0(x) is I(x), and the formulas

(2.1) φi+1(x) ↔ (∀y)(φi(y) ⊃ φi(y + 2x))

have proofs of height O(i) and depth i+O(1). The proof Pℓ can then be carried out using
the φi’s in place of the ψi’s, and this will give the desired lower bound on cut elimination.

Although the details will be a bit complicated, the intuition behind the construction
of the φi’s is simple. The formula ψi(w), although exponential size, has prenex form
that is a Πi-formula after like quantifiers are collapsed. Thus, ψi(w) can be equivalently
expressed as a formula φi(w) of the form

(2.2) (∀y0)(∃y1) · · · (Qyi−1)R(⟨y0, . . . , yi−1⟩, w),

where R is a superexponential-time computable relation. We will not be able to add R as
a predicate symbol to T as this seems to be precluded by the fact that the predicate
symbol I cannot be used in induction axioms. Instead, we will introduce a finite set of
new predicate and function symbols to the theory T , which will enable T to define R as a
constant depth formula. After doing this, the principal task is to prove that the formulas
(1.1) with ψi replaced with φi have T -proofs of depth i+O(1).

We begin by describing how to express the condition R. Recall that ψ0(z) is I(z),
and that ψ1(y) is ∀z(I(z) ⊃ I(z + 2y)). Expanding further gives that ψ2(x) is

∀y(∀z(I(z) ⊃ I(z + 2y)) ⊃ ∀z(I(z) ⊃ I(z + 2y+2x))),

and that ψ3(w) is

∀x[∀y(∀z(I(z) ⊃ I(z + 2y)) ⊃ ∀z(I(z) ⊃ I(z + 2y+2x))) ⊃

∀y(∀z(I(z) ⊃ I(z + 2y)) ⊃ ∀z(I(z) ⊃ I(z + 2y+2x+2w

)))].

To better see the pattern, consider a “skeletal” tree representation of ψ3(w).

The Infinity Project 139

I(z) I(z + 2y) I(z) I(z + 2y+2x) I(z) I(z + 2y) I(z) I(z + 2y+2x+2w

)

∀z ∃z ∃z ∀z

∃y ∀y

∀x

The skeletal tree shows the quantifier structure of ψ3, but omits the propositional con-
nectives to keep it simpler. The skeletal tree can be written in a more generic form as
follows:

I(t000) I(t001) I(t010) I(t011) I(t100) I(t101) I(t110) I(t111)

∀2x00 ∃1x01 ∃1x10 ∀0x11

∃1x0 ∀0x1

∀0xϵ

This is intended to represent the fact that ψ3 is equivalent to the prenex formula

∀xϵ∀x1∀x11∃x0∃x01∃x10∀x00[((I(t000) ⊃ I(t001)) ⊃ (I(t010) ⊃ I(t011)))
⊃ ((I(t100) ⊃ I(t101)) ⊃ (I(t110) ⊃ I(t111)))].

The superscripts on the quantifiers indicate the order in which quantifiers are pulled out
when putting ψ3 in prenex form. For example, x11 is in the first (outermost) block of
quantifiers of ψ3’s prenex form instead of the third (innermost) block.

The subscripts on the t’s and x’s indicate the path in the tree to reach that node,
with “0” and “1” indicating left and right respectively. For instance, the term t011 (which
is in fact the term x01 + 2x0+2xϵ) is reached by starting at the root and descending left,
then right, then right. The empty sequence is denoted by “ϵ”.

The pattern for ψ3 generalizes to form skeletal trees of ψi, i ≥ 1. The formation rules
are as follows. The quantified variables in ψi are xu⃗, for u⃗ ∈ {0, 1}<i. The level ℓ = ℓ(u⃗)
on the quantifier Qℓxu⃗ is equal to the number of 0’s in u⃗. The variable xu⃗ is universally
quantified iff its level ℓ(u⃗) is even. The atomic subformulas of ψi are of the form I(tu⃗)
for u⃗ ∈ {0, 1}i. If v⃗ is a sequence, let |v⃗| denote the length of v⃗. For p ≤ |v⃗|, let v⃗ ↾ p
denote the sequence containing the first p elements of v⃗. For tu⃗ a term and u⃗ ∈ {0, 1}i,
we define νu⃗ to be the sequence

νu⃗ := ⟨xu⃗↾(i−1), xu⃗↾(i−2), . . . , xu⃗↾1, xϵ, w⟩,
namely, the variables along the path to node u⃗ plus the free variable w: this is the sequence
of variables that potentially could appear in tu⃗. Then, tu⃗ is the superexponential term

tu⃗ := 2νu⃗↾(r+1)

where r is the number of contiguous 1’s occurring at the end of u⃗. For example, in
the formula trees above, for t011, there are two 1’s at the end of “011”, so t011 is equal
to 2⟨x01,x0,xϵ⟩, the extended superexponential function with the subscript a sequence of
length 3 = r + 1.

140 Sharpened lower bounds for cut elimination

A variable yℓ in φi —see (2.2) above— will code a sequence containing the values of
the variables xu⃗ with level ℓ(u⃗) equal to ℓ. Letting y⃗ be ⟨y0, . . . , yi−1⟩, the entry yℓ is
“well-formed” provided that it codes a function with domain equal to the set of sequences
xu⃗ with |u⃗| < i and ℓ(u⃗) = ℓ. If yℓ is not well-formed, then by convention it codes the
constant function which is equal to zero on all inputs in its domain.

For u⃗ ∈ {0, 1}<i, we write X(u⃗) to mean the value that u⃗ is mapped to by the function
encoded by yℓ(u⃗). (The intuition is that X(u⃗) equals the value of the variable xu⃗.) We
write t(u⃗) for the value of tu⃗ when the variables xu⃗′ are given the values X(u⃗′). Note
that, although it is suppressed in the notation, X(u⃗) depends on the vector of values y⃗.
Also, t(u⃗) depends on both y⃗ and w, and we sometimes will write it as t(u⃗, y⃗, w).

Let n be a power of two. Suppose σ⃗ ∈ {T, F}n, σ⃗ = ⟨σ0, . . . , σn−1⟩, where T and F
stand for “True” and “False”. Define the relation BIT(σ⃗) by (“BIT ” stands for “binary
implication tree”)

BIT(σ⃗) =
{
σ0 if |σ⃗| = 1,
BIT(⟨σ0, . . . , σn/2−1⟩) ⊃ BIT(⟨σn/2, . . . , σn−1⟩) otherwise.

We identify binary vectors u⃗ in {0, 1}i with integers, and write nm(u⃗) for the integer with
binary representation given by u⃗.

We now can define the formula R(y⃗, w) in (2.2) to be

(∃σ⃗ ∈ {0, 1}2i)(BIT(σ⃗) ∧ (∀u⃗ ∈ {0, 1}i)[σnm(u⃗) = 1↔ I(t(u⃗))]).

Note that ↔ is not in our first-order language; instead A ↔ B is an abbreviation for
(A ⊃ B) ∧ (B ⊃ A). By inspection, the depth of R equals 5.

This completes the definition (2.2) of the formulas φi(w). Clearly, φi has depth
i+O(1), namely depth i plus the depth of R.

We now give a sketch of the proof that the equivalences (2.1) have T -proofs of depth
i + O(1). Note that the intuition behind the definition of R is that R states that a
tree of implications holds. We define formulas S0 and S1 that express, respectively, the
hypothesis and the conclusion of the implication, so that R is equivalent to S0 ⊃ S1. We
do this in a general way so that we can do prenex quantifier operations with the formulas
S0 and S1.

Suppose yj codes a function f with domain the set of u⃗’s with |u⃗| < i and ℓ(u⃗) = j
for j > 0. We write yj�0 for the code of the function g that has as domain the set of
strings u1 · · ·uk such that 0u1 · · ·uk is in the domain of f and such that g(u1 · · ·uk) =
f(0u1 · · ·uk). Define yj�1 similarly. For y⃗ = ⟨y1, . . . , yi−1⟩, define t0 so that

t0(u⃗, ⟨y0, . . . , yk−1, yk�0, . . . , yi−1�0⟩, k)
is equal to t(0u⃗, ⟨y0, . . . , yi−1⟩, w) for all u⃗’s of length i−1. (Note that t0 does not depend
on w.) Likewise, define t1 so that

t1(u⃗, ⟨y0, . . . , yk−1, yk�1, . . . , yi−1�1⟩, w, k)
is equal to t(1u⃗, ⟨y0, . . . , yi−1⟩, w) for all u⃗’s of length i − 1. Let S0(⟨y0, . . . yi−1⟩, k) be
the formula

(∃σ⃗ ∈ {0, 1}2i−1
)(BIT(σ⃗) ∧ (∀u⃗ ∈ {0, 1}i−1)[σnm(u⃗) = 1↔ I(t0(u⃗, y⃗, k))]).

Let S1(⟨y1, . . . , yi−1⟩, w, k) be

(∃σ⃗ ∈ {0, 1}2i−1
)(BIT(σ⃗) ∧ (∀u⃗ ∈ {0, 1}i−1)[σnm(u⃗) = 1↔ I(t1(u⃗, y⃗, w, k))]).

The Infinity Project 141

Clearly we have that R(y⃗, w) is equivalent to S0(y⃗, w, i) ⊃ S1(y⃗, w, i), and this has a
straightforward proof in the theory T . For k = i, i−1, . . . , 2, 1, consider the formulas

(∀y0) · · · (∃yk−1)[(∃yk)(∀yk+1) · · · (∃yi−1)S0(y⃗, k)

⊃ (∀yk)(∃yk+1) · · · (∃yi−2)S1(y⃗, w, k)],(2.3)

where the notation here assumes k is even and i is odd (and the obvious changes are
made when k is odd or i is even). These formulas correspond to the formulas that are
obtained as φi(w) is converted out of prenex form, and into a quantifier pattern that
matches that of the righthand side of (2.1). These formulas can be proved equivalent
to each other, using proofs of size polynomial in i and using formulas that are no more
complicated than the formulas (2.3). The equivalences of the formulas (2.3) are proved
straightforwardly by noting which parts of the (functions coded by the) variables yℓ are
used by S0 and S1 and using prenex reasoning. Also, note that S1 does not depend
on yi−1, so the quantifier ∀yi−1 has been omitted in front of S1. (The notation y⃗ thus
variously denotes either ⟨y0, . . . , yi−2⟩ or ⟨y0, . . . , yi−1⟩, as appropriate.)

Thus, at k = 1, the formula

(2.4) (∀y0)[(∀y1)(∃y2) · · · (∃yi−1)S0(y⃗, 1) ⊃ (∃y1)(∀y2) · · · (∃yi−2)S1(y⃗, w, 1)]

is equivalent to φi(w). The value y0 codes a function with domain 1<i: y0 can be split
into two parts, the first part codes a value yϵ and the remaining part codes values for
f(1j) for all 1 ≤ j < i. Note that S0 depends only on the yϵ part of y0. Formula (2.4) is
thus equivalent to

(∀yϵ)[(∀y1)(∃y2) · · · (∃yi−1)S0(⟨yϵ, y1, . . . , yi−1⟩, 1)
⊃ (∀y0)(∃y1)(∀y2) · · · (∃yi−2)S1(⟨yϵ ∪ y0, y1, . . . , yi−2⟩, w, 1)],

where the notation yϵ ∪ y0 denotes the number that codes the union of the functions
coded by yϵ and y0.

Paying attention to the way that S1 uses w and the value yϵ, and letting yϵ(x) denote
the code of the function f with domain {ϵ} such that f(ϵ) = x, the last formula is
equivalent to

(∀x)[(∀y1)(∃y2) · · · (∃yi−1)S0(⟨yϵ(x), y1, . . . , yi−1⟩, 1)
⊃ (∀y0)(∃y1)(∀y2) · · · (∃yi−2)S1(⟨y0, y1, . . . , yi−2⟩, w + 2x, 0)].

The hypothesis of the implication is equivalent to φi−1(x): to prove this equivalence in T ,
just prove that the subformulas of the hypothesis are equivalent to the corresponding
subformulas of φi−1(x) starting with the quantifier-free part, and working out to the
entire formula. Similarly, the conclusion of the implication is equivalent to φi−1(w+2x).

That completes the sketch of the T -proof that the formula φi(w) is equivalent to
∀x(φi−1(x) ⊃ φi−1(w+ 2x)). This, plus the lower bound on the size of Qℓ as established
in Section 1, suffices to establish the following theorem.

Theorem 2.1 There is a constant c ∈ N and proofs Pℓ of depth ≤ ℓ+ c and height O(ℓ)
such that every cut free proof Qℓ with the same conclusion as Pℓ has height at least 20ℓ .
Furthermore, the same holds for Qℓ containing cuts on only quantifier-free formulas.

Examination of the proof of Theorem 2.1 reveals that the constant c can equal 6. To
see this, note that the formulas S0 and S1, like the formula R, have depth equal to 5.
Furthermore, the most complex formulas used in the proof Pi, such as formulas (2.3)
and (2.4), have depth i+ 6.

142 Sharpened lower bounds for cut elimination

3 Lower bounds for relational languages

The superexponential lower bound of Theorem 2.1 was obtained for a language including
a number of function symbols, including symbols for exponentiation and superexponenti-
ation. The present section shows that the use of function symbols is entirely unnecessary,
and the same lower bound can be obtained for a purely relational language. In prior
work, Orevkov already obtained superexponential lower bounds for cut elimination in a
purely relational language, but only with ϵ ≈ 1

4 .
The theory T used a finite set of function and relation symbols axiomatized by a

set Γ of universal axioms. By standard techniques, the theory T can be converted to a
purely relational theory T rel with a ∀∃-axiomatization. For this, each function symbol f
of T is replaced by a relation symbol Gf that defines the graph of f ; that is, Gf (x⃗, y)
indicates that f(x⃗) = y. The set Γ of universal axioms can be replaced by a set of axioms
Γrel := Γ0 ∪ Γ1 where Γ0 is a set of universal axioms and Γ1 contains the ∀∃-statements
asserting the totality of the functions. In particular, for each function f , the set Γ1

contains the formula (∀x⃗)(∃y)Gf (x⃗, y). The set Γrel axiomatizes a theory T rel which is
equivalent to T in the sense that models of T and T rel are essentially the same up to the
choice of language.

Since no functions symbols are allowed, the set Γ0 can no longer contain the axiom
(∀x)(I(x) ⊃ I(S(x)). Instead, it now contains the formula

(∀x)(∀y)(y = S(x) ∧ I(x) ⊃ I(y)),
where “y = S(x)” is shorthand notation for a binary relation with parameters x and y.

The construction in the previous section of the proofs Pℓ can be modified straight-
forwardly to give proofs of the corresponding statements in the new language. Formulas
φrel
i that express the same condition as φi can be defined which still have depth i+O(1)

(the constant hidden in the O(1) will be only slightly larger than before). Furthermore,
there are proofs of

Γrel→φrel
k (0)

and of
Γrel, φrel

k (a), b = 2a→φrel
k−1(b)

which have height O(k) and depth k + O(1). Here the formula “b = 2a” does not use
the exponential 2a as a function, but instead is a binary relation on a and b. Combining
these proofs for 1 ≤ k ≤ ℓ, we can form a proof P rel

ℓ of height O(ℓ) and depth ℓ + O(1)
of the sequent

Γrel, a0 = 20, a1 = 2a0 , a2 = 2a1 , . . . , aℓ = 2aℓ−1→I(aℓ).

Let Qrel
ℓ be a cut free proof of this sequent (or, even a proof in which all cut formulas

are quantifier-free). We claim that Qrel
ℓ must have size ≥ 20ℓ . To prove this, we extend the

lower bound argument used earlier for Qℓ in Section 1. This will involve (a) removing all
quantifier inferences in Qrel

ℓ and removing contractions on formulas that (formerly) had
quantifiers, and (b) at the same time, assigning an integer value to every free variable
in Qrel

ℓ .
Without loss of generality, Qrel

ℓ is in free variable normal form. The only free vari-
ables in the endsequent are the variables ak, and these are assigned the integers 20k+1.
The proof Qrel

ℓ is then modified iteratively by removing one quantifier inference at a time.
At each stage in this process, we will have assigned integer values to all variables that

The Infinity Project 143

occur below all quantifiers. To remove the next quantifier, choose the lowest remaining
quantifier inference. If it is a ∀:left inference, just omit the inference, and allow the auxil-
iary formula in the upper sequent to remain unchanged. In addition, omit all contraction
inferences on that formula and its descendants in the proof. On the other hand, suppose
the lowest quantifier inference is an ∃:left. This will be an inference of the form

Gf (s⃗, b),Π→∆

(∃y)Gf (s⃗, y),Π→∆

where s⃗ is a vector of terms and all variables in the terms in s⃗ have already been assigned
integer values n⃗. ModifyQrel

ℓ by omitting this ∃:left inference and propagating the formula
Gf (s⃗, b) down to the endsequent in place of (∃y)Gf (s⃗, y). The free variable b is assigned
the integer value f(n⃗) so as to make Gf (s⃗, b) true.

Once all the quantifier inferences are removed from Qrel
ℓ , we obtain a proof Qrel∗

ℓ
in which all formulas are quantifier-free. The number of substitution instances of y =
S(x)∧ I(x) ⊃ I(y) in the antecedent of the endsequent of Qrel∗

ℓ is less than the size |Qrel
ℓ |

of Qrel
ℓ . By a similar argument as before, this implies that |Qrel

ℓ | is ≥ 20ℓ . This gives the
following lower bound for cut elimination in relational languages.

Theorem 3.1 Theorem 2.1 holds in the purely relational language described above.

By being careful with the constructions of ϕrel
i , Theorem 3.1 can be shown to hold

with the constant c equal to 8.
Although our lower bounds are very close to optimal, there is still a small gap between

the lower bounds of Theorems 2.1 and 3.1 and the known upper bounds discussed in the
introduction. Our lower bounds have the form 20ℓ . But, since Pℓ has height O(ℓ) and
depth ℓ+O(1), the upper bounds of [16, 25, 26] on the size of cut free proofs are equal
to

2
O(ℓ)
ℓ+O(1) = 20ℓ+log∗(ℓ)+O(1),

where log∗ denotes the inverse superexponential function. It is open how to close the log∗

gap between the height of superexponential size upper and lower bounds.

Acknowledgement

Wenhui Zhang provided helpful comments on an earlier draft of this paper. We also
thank the anonymous referee for helpful comments and suggestions.

References
[1] Matthias Baaz and Alexander Leitsch. On Skolemizations and proof complexity. Fundamenta Infor-

maticae, 20:353–379, 1994.
[2] Matthias Baaz and Alexander Leitsch. Cut normal forms and proof complexity. Annals of Pure and

Applied Logic, 97:127–177, 1999.
[3] Matthias Baaz and Alexander Leitsch. Fast cut-elimination by CERES. To appear in Proofs, Cate-

gories and Computations, College Publications, 2010.
[4] Arnold Beckmann and Samuel R. Buss. Corrected upper bounds for free-cut elimination. Theoretical

Computer Science, 412(39):5433–5445, 2011.
[5] Samuel R. Buss. An introduction to proof theory. In S. R. Buss, editor, Handbook of Proof Theory,

pages 1–78. North-Holland, 1998.
[6] Samuel R. Buss. Cut elimination in situ. Typeset manuscript, 2011.

144 Sharpened lower bounds for cut elimination

[7] Samuel R. Buss and Alan Johnson. The quantifier complexity of polynomial-size iterated definitions
in first-order logic. Mathematical Logic Quarterly, 56(6):573–590, 2010.

[8] Jeanne Ferrante and Charles W. Rackoff. The Computational Complexity of Logical Theories. Lecture
Notes in Mathematics #718. Springer Verlag, Berlin, 1979.

[9] Gerhard Gentzen. Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion
in der reinen Zahlentheorie. Mathematische Annalen, 119:140–161, 1943. English translation in [10],
pp. 287–308.

[10] Gerhard Gentzen. Collected Papers of Gerhard Gentzen. North-Holland, 1969. Edited by M. E. Sz-
abo.

[11] Philipp Gerhardy. Refined complexity analysis of cut elimination. In Proc. 17th Workshop on Com-
puter Science Logic (CSL), Lecture Notes in Computer Science #2803, pages 212–225. Springer
Verlag, 2003.

[12] Philipp Gerhardy. The role of quantifier alternations in cut elimination. Notre Dame Journal of
Formal Logic, 46(2):165–171, 2005.

[13] Jean-Yves Girard. Proof Theory and Logical Complexity. Humanities Press, 1987.
[14] Edward Nelson. Predicative Arithmetic. Princeton University Press, 1986.
[15] V. P. Orevkov. Lower bounds for lengthening of proofs after cut-elimination. Journal of Soviet

Mathematics, 20:2337–2350, 1982. Original Russian version in Zap. Nauchn. Sem. L.O.M.I. Steklov,
88:137–162, 1979.

[16] V. P. Orevkov. Upper bound on the lengthening of proofs by cut elimination. Journal of Soviet
Mathematics, 34:1810–1819, 1986. Original Russian version in Zap. Nauchn. Sem. L.O.M.I. Steklov,
137:87–98, 1984.

[17] V. P. Orevkov. Applications of cut elimination to obtain estimates of proof lengths. Soviet Mathe-
matics Doklady, 36:292–295, 1988. Original Russian version in Dokl. Akad. Nauk., 296(3):539–542,
1987.

[18] J. B. Paris and C. Dimitracopoulos. A note on the undefinability of cuts. Journal of Symbolic Logic,
48(3):564–569, 1983.

[19] Pavel Pudlák. The lengths of proofs. In S. R. Buss, editor, Handbook of Proof Theory, pages 547–637.
Elsevier North-Holland, 1998.

[20] Robert M. Solovay. Letter to P. Hájek, August 1976.
[21] Richard Statman. Lower bounds on Herbrand’s theorem. Proceedings of the American Mathematical

Society, 75(1):104–107, 1979.
[22] Richard Statman. Speed-up by theories with infinite models. Proceedings of the American Mathe-

matical Society, 81:465–469, 1981.
[23] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Tracts in Theoretical Computer

Science #43. Cambridge University Press, Cambridge, 2nd edition, 2000.
[24] A. S. Yessenin-Volpin. The ultra-intuitionistic criticism and the antitraditional program for foun-

dations of mathematics. In A. Kino, J. Myhill, and R. E. Vesley, editors, Intuitionism and Proof
Theory, pages 1–45. North-Holland, 1970.

[25] Wenhui Zhang. Cut elimination and automatic proof procedures. Theoretical Computer Science,
91:265–284, 1991.

[26] Wenhui Zhang. Depth of proofs, depth of cut-formulas, and complexity of cut formulas. Theoretical
Computer Science, 129:193–206, 1994.

[27] Wenhui Zhang. Structure of proofs and the complexity of cut elimination. Theoretical Computer
Science, 353:63–70, 2006.

The Infinity Project

From almost optimal algorithms to logics for
complexity classes via listings and a halting
problem

Yijia Chen∗, Jörg Flum†

∗ Department of Computer Science, Shanghai Jiao Tong University, China
yijia.chen@cs.sjtu.edu.cn

† Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

Abstract. Let C denote one of the complexity classes “polynomial time”, “logspace”, or “nondeterministic
logspace”. We introduce a logic L(C)inv and show generalizations and variants of the equivalence (L(C)inv

captures C if and only if there is an almost C-optimal algorithm in C for the set Taut of tautologies of
propositional logic). These statements are also equivalent to the existence of a listing of subsets in C of
Taut by corresponding Turing machines and equivalent to the fact that a certain parameterized halting
problem is in the parameterized complexity class XCuni.

Introduction

As the title already indicates, this paper relates two topics which at first glance seem to
be unrelated. On the one hand we consider almost optimal algorithms. An algorithm,
say deciding the class Taut of tautologies of propositional logic, is almost optimal if
the time it requires to accept tautologies can be polynomially bounded in terms of the
corresponding time of any other algorithm deciding Taut.1 In their fundamental pa-
per [17] Krajíček and Pudlák not only introduced the notion of almost optimality but
they also derived a series of statements equivalent to the existence of an almost optimal
algorithm for Taut, among them the existence of a polynomially optimal propositional
proof system. Furthermore, they stated the following conjecture:

Conjecture 1 There is no almost optimal proof algorithm for Taut.

On the other hand, the question of whether there is a logic capturing the complexity class
P (polynomial time) remains the central open problem in descriptive complexity. By a
result due to Immerman and Vardi [12, 23], least fixed-point logic LFP captures P on
ordered structures. There are artificial logics capturing P (on arbitrary structures), but
they do not fulfill a natural requirement to logics in this context:

(0.1)
There is an algorithm which decides whether A is a model of φ for all
structures A and sentences φ of the logic and which, for fixed φ, has
running time polynomial in the size of A.

∗,†This research has been partially supported by the National Nature Science Foundation of China
(60970011), the Sino-German Center for Research Promotion (GZ400), and the John Templeton Foun-
dation through Project # 13152, the Infinity Project at the Centre de Recerca Matemàtica.

1 All notions will be defined in a precise manner later.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

145

146 Almost optimal algorithms and logics for complexity classes

If this condition is fulfilled for a logic capturing polynomial time, we speak of a P-bounded
logic for P. In [10] Gurevich states the following conjecture:

Conjecture 2 There is no P-bounded logic for P.

The conjecture is false if one waives the effectivity condition (0.1). This is shown in [10,
Section 7, Claim 2] by considering a logic, the order-invariant least fixed-point logic,
introduced by Blass and Gurevich and which we denote by LFPinv.2 For any vocabulary
the sentences of LFPinv are the sentences of least fixed-point logic LFP in a vocabulary
with an additional binary relation symbol for orderings. In LFPinv for a structure A to
be a model of φ it is required that in all structures of cardinality less than or equal to
that of A, the validity of φ (as a sentence of least fixed-point logic) does not depend
on the chosen ordering, and A with some ordering satisfies φ. As LFPinv satisfies all
requirements of a P-bounded logic for P except (0.1), Gurevich implicitly states the
following conjecture:

Conjecture 2a LFPinv is not a P-bounded logic for P.

We show that

(0.2) Conjecture 1 is true ⇐⇒ Conjecture 2a is true.

In general, the experts tend to believe Conjecture 1, as the existence of an almost optimal
algorithm for Taut would have various consequences which seem to be unlikely (see [15,
17]). It is worthwhile to emphasize that we show that Conjecture 1 is equivalent to
Conjecture 2a and do not claim its equivalence to Conjecture 2. The situation with
Conjecture 2 is quite different; no known consequences of the existence of a P-bounded
logic for P seem to be implausible. Moreover, due to results showing that there are logics
capturing polynomial time on always larger classes of structures, Grohe [9] “mildly leans
towards believing” that there is a P-bounded logic for P.

We mentioned that at first glance “almost optimal algorithms for Taut” and “logics
for P” seem to be unrelated topics. However, there are reformulations of Conjecture 1
and Conjecture 2 that are alike. In fact, it is known [22] that Taut has an almost
optimal algorithm if and only if there is an effective enumeration or listing of all subsets
of Taut that are in P by means of polynomial time Turing machines that decide them.
And it is not hard to see that there is a P-bounded logic for P if and only if there is a
listing of all polynomial time decidable classes of graphs closed under isomorphism, again
a listing in terms of polynomial time Turing machines that decide these classes. In fact
the question for a logic for P was stated in this way by Chandra and Harel [1] in the
context of an analysis of the complexity and expressiveness of query languages. Hence
the equivalence (0.2) can be reformulated as follows:

(0.3) LFPinv is a P-bounded logic for P ⇐⇒
there is a listing of the subsets of Taut in P.

And one consequence of (0.2) is:
If there is a listing of the subsets of Taut in P, then there is a list-
ing of the polynomial time decidable classes of graphs closed under iso-
morphism.

2 In [10] the logic is defined in a slightly different form.

The Infinity Project 147

The reformulation (0.3) led us to the idea underlying the proof of the implication from
left to right: We express the property of a propositional formula α of being a tautology
in LFPinv by reducing the second-order quantifier in “all assignments satisfy α” to the
second-order quantifier “for all orderings” hidden in the definition of the satisfaction
relation of LFPinv; then a listing of the appropriate sentences of LFPinv yields a listing
of the subsets of Taut in P.

Later on we realized that one gets a listing of the subsets of Taut in P if one assumes
that there is a listing of its subsets in L (logarithmic space). There are standard logics
DTC (deterministic transitive closure logic) and TC (transitive closure logic) capturing,
on ordered structures, the complexity classes L and NL (nondeterministic logarithmic
space), respectively [13, 14]. We realized that for their corresponding order-invariant
logics DTCinv and TCinv the analogues of the equivalence (0.3) hold. Therefore, by the
result on listings just mentioned, LFPinv captures P if DTCinv captures L. Note that it
is not known whether the existence of a logic capturing P is implied by the existence of
a logic capturing L.

A more general notion of listing turned out to be helpful. For complexity classes C
and C ′ we consider listings of the C-subsets of Taut (that are, subsets of Taut in C) by
means of Turing machines of type C ′; we write List(C,Taut, C ′) if such a listing exists.
Here, C and C ′ range over the complexity classes L, NL, P, and NP. For the classes P
and NP such listings were already considered and put to good use by Sadowski in [22].
This more general notion is also meaningful in the context of logics. If we say that a logic
is a P-bounded logic for P, the second “P” refers to the classes axiomatizable in the logic
and the first one to the polynomial time property expressed in (0.1). This suggests the
definition of a C ′-bounded logic for C. It turns out that these general concepts of listings
and logics match. In fact we get for C ∈ {L,NL,P}, C ′ ∈ {L,NL,P,NP} with C ⊆ C ′,

(0.4) L(C) is a C ′-bounded logic for C ⇐⇒ List(C,Taut, C ′).

Here L(C) is DTCinv, TCinv, and LFPinv if C is L, NL, and P, respectively. This rela-
tionship between listings and logics is not only fruitful for the side of the logics but also
for the side of listings. For example, we get

(0.5) If List(L,Taut,L), then List(NL,Taut,NL).

As shown in [22], the property List(P,Taut,P) is equivalent to the existence of an
almost optimal algorithm for Taut (by (0.2) and (0.3)) and, as already mentioned, to the
existence of a polynomially optimal propositional proof system. We show the analogues of
these equivalences for L instead of P and for space optimality instead of time optimality.
Moreover, we do this not only for Taut but for arbitrary problems Q with padding. In
particular, by (0.5), we get the following, perhaps surprising relationship between space
optimal and time optimal algorithms:

Assume Q has padding. If Q has an almost space optimal algorithm,
then it has an almost (time) optimal algorithm.

While listings were the main tool for proving the implication from left to right of (0.2), a
halting problem plays the role of a bridge leading to the converse direction. In [21] Nash,
Remmel, and Vianu have raised the question whether one can prove Conjecture 2a. They
give a reformulation of this conjecture in terms of the complexity of a halting problem
for nondeterministic TMs. This reformulation is best expressed in the terminology of
parameterized complexity. We introduce the following parameterized halting problem
p-Halt> for nondeterministic Turing machines.

148 Almost optimal algorithms and logics for complexity classes

p-Halt>
Instance: A nondeterministic Turing machineM and 1 . . . 1︸ ︷︷ ︸

n

with n ∈ N.

Parameter: |M|, the size of M.
Problem: Does every accepting run of M on the empty input tape take

more than n steps?

Then, by [21],

(0.6) LFPinv is a P-bounded logic for P ⇐⇒ p-Halt> ∈ XPuni.

Here XPuni denotes a parameterized complexity class (defined in Section 1). As Taut,
the classical problem underlying p-Halt> is co-NP-complete. Based on this fact, we show
that the existence of an almost optimal algorithm for Taut implies (even is equivalent
to) p-Halt> ∈ XPuni, and thereby we get a proof of the missing implication of (0.2).

It seems to be hard to get reasonable upper and lower bounds for the complexity of
p-Halt> by showing its (non-)membership in one of the standard classes of parameterized
complexity like FPTuni, XPuni, XLuni, XNPuni, FPT, XP, XNP, However, for each
of these classes there is a natural extension of (0.6)

(
for the classes FPTuni,XPuni,FPT,

and XP they were already derived in [3] and [21]
)
. These equivalences lead to extensions

of the equivalence (0.2) and, more importantly, to interesting notions of strongly and
effectively almost optimal algorithms. In [17] Krajíček and Pudlák show that an almost
optimal algorithm for Taut exists if NE = E. We can even derive:

If NE = E, then Taut has an effectively and strongly almost optimal
algorithm.

On the other hand we have:
If P[tc] ̸= NP[tc], then Taut has no effectively and strongly almost
optimal algorithm.

Here P[tc] ̸= NP[tc] is an extension of the hypothesis NP ̸= P introduced in [2].
Let us close these introductory remarks by presenting explicitly one of the results

hidden in the previous exposition that relates the four concepts mentioned in the title.
The following are equivalent:
• Taut has an almost space optimal algorithm.
• The logic DTCinv is L-bounded for L.
• List(L,Taut,L).
• p-Halt> ∈ XLuni.

The content of the different sections is the following. After recalling some basic
notions in Section 1, we turn to a proof of statements relating the existence of almost
optimal algorithms for Taut with the complexity of p-Halt> in Section 2. In Section 3
we relate this complexity to capturing properties of the different invariant logics. Part of
the corresponding proof is postponed to Section 4, which is devoted to so-called slicewise
downward monotone parameterized problems. This concept helps us to show that it is
as complex to check the order-invariance of first-order sentences as it is to check that of
LFP-sentences. In Section 5 we extend the known relationship between almost optimal
algorithms, polynomially optimal propositional proof systems, and listings to different
variants (strong, effective, logarithmic space) of these concepts. Finally, in Section 6 we
prove the relationship (0.4) between logics and listings.

This paper is an extended version of the papers [4, 5, 6].

The Infinity Project 149

1 Some preliminaries

In this section we fix some notations and recall some basic definitions and concepts from
parameterized complexity.

We let N[X] and Nd[X], where d ∈ N, be the set of polynomials and the set of
polynomials of degree ≤ d, respectively, with natural numbers as coefficients. We denote
the alphabet {0, 1} by Σ and the length of a string x ∈ Σ∗ by |x|. Let 1n be the string
consisting of n many 1s and let λ denote the empty string. We identify problems with
subsets Q of Σ∗. Sometimes statements containing a formulation like “there is a d ∈ N
such that for all x ∈ Σ∗: . . . ≤ |x|d” or containing a term log |x| can be wrong for x ∈ Σ∗

with |x| ≤ 1. We trust the reader’s common sense to interpret such statements reasonably.
We denote by P and L the classes of problems Q such that x ∈ Q is solvable by a

deterministic Turing machine in time polynomial in |x| and in space O(log |x|), respec-
tively. The corresponding nondeterministic classes are NP and NL. In this paper, C, C ′,
C0, etc. will always denote one of the complexity classes L, P, NL, and NP.

A problem Q ⊆ Σ∗ has padding if there is a function pad : Σ∗×Σ∗ → Σ∗ computable
in logarithmic space having the following properties:

(i) For any x, y ∈ Σ∗, |pad(x, y)| > |x|+ |y| and
(
pad(x, y) ∈ Q⇔ x ∈ Q

)
.

(ii) There is a logspace algorithm which, given pad(x, y), recovers y.

By ⟨. . .⟩ we denote some standard logspace and linear time computable tupling function
with logspace and linear time computable inverses. In this paper we always assume that
Q denotes a decidable and nonempty problem.

If A is any (deterministic or nondeterministic) algorithm and A accepts x ∈ Σ∗, then
we denote by tA(x) the number of steps of a shortest accepting run of A on x; if A does
not accept x, then tA(x) := ∞. By convention, n < ∞ for n ∈ N. Similarly, sA(x)
is the minimum of the space used by accepting runs on x. By default, algorithms are
deterministic. If an algorithm A on input x eventually halts and outputs a value, we
denote it by A(x).

We use deterministic and nondeterministic Turing machines with Σ as alphabet as
our basic computational model for algorithms (and we often use the notions “algorithm”
and TM synonymously). If necessary we will not distinguish between a Turing machine
and its code, a string in Σ∗. If M is a deterministic or nondeterministic TM, then L(M)
is the language accepted by M. We use TMs as acceptors and transducers. Even though
we use formulations like “let M1,M2, . . . be an enumeration of all polynomial time TMs”,
from the context it will be clear that we only refer to acceptors (or that we only refer to
transducers). We assume that a run of a nondeterministic Turing machine is determined
by the sequence of its states.

1.1 Parameterized complexity

We view parameterized problems as pairs (Q,κ) consisting of a classical problem Q ⊆ Σ∗

and a parameterization κ : Σ∗ → N, which is required to be polynomial time computable.
We will present parameterized problems in the form we did it for p-Halt> in the Intro-
duction.

A parameterized problem (Q,κ) is in the class FPTuni (or uniformly fixed-parameter
tractable) if x ∈ Q is solvable by a deterministic algorithm running in time less than or
equal to f(κ(x)) · |x|O(1) for some f : N→ N.

150 Almost optimal algorithms and logics for complexity classes

Let C ∈ {L,NL,P,NP}. A parameterized problem (Q,κ) is in the class XCuni if there
is a deterministic (nondeterministic) algorithm deciding (accepting) Q and witnessing for
every k ∈ N that the classical problem

(Q,κ)k :=
{
x ∈ Q

∣∣ κ(x) = k
}
,

the kth slice of (Q,κ), is in C. For example, (Q, κ) is in the class XPuni if there is a
deterministic algorithm A deciding x ∈ Q in time |x|f(κ(x)) for some function f : N→ N.
And (Q,κ) is in the class XNPuni if there is a nondeterministic algorithm A accepting Q
such that for some function f : N→ N we have tA(x) ≤ |x|f(κ(x)) for all x ∈ Q.

We have added the subscript “uni” to the names of these classes to emphasize that they
are classes of the so-called uniform parameterized complexity theory. If in the definition
of FPTuni, XPuni, and XNPuni we require the function f to be computable, then we get
the corresponding classes FPT, XP, and XNP of the strongly uniform theory. Now the
interested reader will have no difficulties to define the classes XL and XNL, which we do
not use in this paper.

2 Almost optimal algorithms and p-Halt>

In this section we relate the existence of an almost optimal algorithm for the set Taut
of tautologies of propositional logic to the complexity of the parameterized problem
p-Halt>.

Recall that Nd[X] is the set of polynomials of degree ≤ d and that tA(x) denotes the
minimum of the running times of accepting runs of the algorithm A on input x.

Definition 2.1 An algorithm O deciding a problem Q ⊆ Σ∗ is almost optimal if for every
algorithm A deciding Q there is a polynomial p ∈ N[X] such that

(2.1) tO(x) ≤ p(tA(x) + |x|)
for all x ∈ Q. Note that nothing is required for x /∈ Q. If there is a d ∈ N such that the
polynomial p can be chosen in Nd[X] for all A, then O is strongly almost optimal .

We shall need the following fact.

Lemma 2.2 Let Q be polynomial time reducible to Q′ and assume that Q′ has padding.
If Q′ has a (strongly) almost optimal algorithm, then so does Q.

Proof. As Q′ has padding, there is a one-to-one polynomial time reduction S from Q
to Q′ with a polynomial time inverse. Let O′ be a (strongly) almost optimal algorithm
for Q′. Now it is straightforward to show that the algorithm O := O′ ◦ S that on input x
first computes S(x) and then simulates O′ on S(x) is (strongly) almost optimal algorithm
for Q. 2

We come to the main result of this section.

Theorem 2.3
(a) Taut has an almost optimal algorithm ⇐⇒ p-Halt> ∈ XPuni.
(b) Taut has a strongly almost optimal algorithm ⇐⇒ p-Halt> ∈ FPTuni.

Proof. We first prove the directions from left to right in the equivalences. The classical
problem Halt> underlying p-Halt> is easily seen to be co-NP-complete. As Taut
has padding, for part (a), by the previous lemma, we may assume that Halt> has an
almost optimal algorithm O. Let B be a “brute force” algorithm that on input M, a

The Infinity Project 151

nondeterministic TM, by systematically going through all runs of M on input λ (the
empty string) of length 1, of length 2, etc. computes tM(λ), the least k such that there is
an accepting run of M on λ of length k. If M has no such run, then B on input M does
not halt.

We show that the following algorithm O∗ simulating B and O in parallel witnesses
that p-Halt> ∈ XPuni:

O∗ // M a nondeterministic TM, 1n with n ∈ N
1. in parallel simulate B on M and O on ⟨M, 1n⟩
2. if O halts first then answer accordingly
3. if B halts first then
4. if n < tM(λ) then accept else reject.

Clearly, O∗ decides p-Halt>. We still have to verify that for a fixed nondeterministic
Turing machine M0 the algorithm O∗ on input ⟨M0, 1

n⟩ runs in time polynomial in n.

Case “
⟨
M0, 1

ℓ
⟩
/∈ p-Halt> for some ℓ ∈ N”: Then B will halt on input M0. Thus, in

the worst case, O∗ on input ⟨M0, 1
n⟩ has to wait till the simulation of B on M0 halts and

then O∗ must check whether the output tM0(λ) of the computation of B is bigger than n
or not and must answer accordingly. So in the worst case O∗ takes time O(tB(M0)+n).

Case “
⟨
M0, 1

ℓ
⟩
∈ p-Halt> for all ℓ ∈ N”: In this case B on input M0 does not halt.

Hence, the running time of O∗ on input ⟨M0, 1
n⟩ is determined by that of O on this input.

Here we will argue with the almost optimality of O and for this purpose we consider the
algorithm A(M0) that on input ⟨M, 1n⟩ accepts if M =M0; if M ̸=M0, it simulates O on
input ⟨M, 1n⟩ and answers accordingly. Clearly, A(M0) decides Halt> and

(2.2) tA(M0)

(
⟨M0, 1

n⟩
)
≤ O(|M0|+ n)

for all n ∈ N. By the almost optimality of O there is a polynomial p ∈ N[X] (depending
on A(M0) and hence on M0) such that, for all n,

(2.3) tO(⟨M0, 1
n⟩) ≤ p

(
tA(M0)(⟨M0, 1

n⟩) + |M0|+ n
)
.

Therefore, by (2.2), the algorithm O runs in time polynomial in n on inputs of the form
⟨M0, 1

n⟩.
If the algorithm O is strongly almost optimal, there is a d ∈ N such that in the

previous argument for all nondeterministic TMs M0 the polynomial p can be chosen in
Nd[X]. Then, (2.2) and (2.3) show that

tO(⟨M0, 1
n⟩) ≤ f(|M0|) · nd

for all instances ⟨M0, 1
n⟩ of p-Halt> and some function f : N→ N, that is, p-Halt> ∈

FPTuni.
We turn to a proof of the implication from right to left in (b) (that of (a) is obtained by

the obvious modifications). Assume that B is a TM deciding whether ⟨M, 1n⟩ ∈ p-Halt>
in time

(2.4) f(|M|) · nd

for some d ∈ N and f : N→ N. The idea underlying the strongly almost optimal algorithm
O we aim at is simple: Using an effective enumeration of all TMs, for a given input string
x the algorithm O in a diagonal fashion performs steps of the machines in the enumeration
on input x; if A, one of these machines, accepts x, then O using the algorithm B checks

152 Almost optimal algorithms and logics for complexity classes

whether (essentially) all inputs accepted by A in ≤ tA(x) steps are tautologies; if so, O
accepts x.

We come to the details. For a deterministic TM A we introduce machines A′ and A′′,
the first one being nondeterministic and the second deterministic. For the machine A′

and a suitable quadratic polynomial p0 ∈ N2[X] we have:

(i) L(A) ⊆ Taut⇔ tA′(λ) =∞;
(ii) If A accepts a string x which is not a tautology, then tA′(λ) ≤ tA(x) + p0(|x|).

A′

1. guess a string x ∈ Σ∗

2. simulate A on input x
3. if A accepts then
4. if x is not a propositional formula then accept else
5. guess a valuation v for x
6. if v does not satisfy x then accept.

For the algorithm A′′ and every x ∈ Σ∗ we have:

(iii) A′′ accepts x ⇔
(
A accepts x and tA′(λ) > tA(x) + p0(|x|)

)
.

A′′ // x ∈ Σ∗

1. simulate A on input x thereby counting the number tA(x) of
steps

2. if A rejects then reject
3. u← tA(x) + p0(|x|)
4. simulate B on input ⟨A′, 1u⟩ // (it is checked whether
⟨A′, 1u⟩ ∈ p-Halt>)

5. if B accepts then accept else reject.

Thus, we have:

(iv) L(A′′) ⊆ Taut (by (ii) and (iii));
(v) if L(A) ⊆ Taut, then L(A′′) = L(A) (by (i) and (iii)).

If A′′ accepts x, then

tA′′(x) ≤ O
(
tA(x) + |x|2 + tB(

⟨
A′, tA(x) + p0(|x|)

⟩
)
)

≤ O
(
tA(x) + |x|2 + f(|A′|) · (tA(x) + p0(|x|))d

) (
by (2.4)

)
.

As p0 ∈ N2[X], there exists a p ∈ N2d[X] such that

(2.5) tA′′(x) ≤ p(tA(x) + |x|).

Let T be any algorithm deciding Taut and L be an algorithm listing all Turing machines,
that is, the algorithm L, once having been started, eventually prints out exactly all TMs.
For i ∈ N we denote by Ai the last machine printed out by L in i steps; in particular,
Ai is undefined if L has not printed any algorithm in i steps. We define an algorithm O
deciding Taut:

The Infinity Project 153

O // x ∈ Σ∗

1. ℓ← 1
2. simulate the ℓth step of T on input x
3. if T halts then answer accordingly
4. simulate the ℓth step of L
5. for i = 0 to ℓ
6. if Ai is defined then simulate the (ℓ− i)th step of A′′

i on x
7. if A′′

i accepts then accept
8. ℓ← ℓ+ 1
9. goto 2.

By (iv), it should be clear that O decides Taut. We show that O is strongly almost
optimal. Let A be any TM deciding Taut. We choose i0 such that A = Ai0 . By (v), the
algorithm A′′

i0
decides Taut, too. Therefore, O on input α ∈ Taut accepts α in Line 7

for ℓ := i0 + tA′′
i0
(x) if it was not already accepted earlier. Thus,

tO(α) =
(
i0 + tA′′

i0
(α)
)O(1)

where the constant hidden in O(1) does not depend on the algorithm A. Thus by (2.5),
there exists a constant d′ ∈ N such that for all TMs A deciding Taut there is a p′ ∈ Nd′ [X]
such that for α ∈ Taut

tO(α) ≤ p′
(
tA(α) + |α|

)
.

This shows that O is strongly almost optimal. 2

Remark 2.4 For later reference we remark that in the proof of the implication from
right to left we used the time bound (2.4) of the algorithm B only for inputs of the form⟨
A′
i0
, . . .

⟩
. As L(Ai0) = Taut, by (i) we have tA′

i0
(λ) =∞.

2.1 Variants of Theorem 2.3

There exist various variants and extensions of Theorem 2.3. In this subsection we derive
a nondeterministic version, a space version, and an effective one. We leave it to the reader
to combine the variants in order to get further insights.

The nondeterministic variant. The notion of almost optimal nondeterministic algorithm
was introduced by Sadowski in [22]; we recall it, thereby introducing a strong version,
too.

Definition 2.5 A nondeterministic algorithm O accepting a problem Q ⊆ Σ∗ is almost
optimal if for every nondeterministic algorithm A accepting Q there is a polynomial
p ∈ N[X] such that

tO(x) ≤ p
(
tA(x) + |x|

)
for all x ∈ Q. If there is a d ∈ N such that for all A the polynomial p can be chosen in
Nd[X], then O is strongly almost optimal .

Recall that para-NPuni is the class of parameterized problems (Q, κ) accepted by a
nondeterministic algorithm A such that tA(x) ≤ f(κ(x)) · |x|O(1) for all x ∈ Q and some
function f : N → N. The following nondeterministic version of Theorem 2.3 is proven in
the same way.

154 Almost optimal algorithms and logics for complexity classes

Theorem 2.6

(a) Taut has an almost optimal nondeterministic algorithm ⇐⇒
p-Halt> ∈ XNPuni.

(b) Taut has a strongly almost optimal nondeterministic algorithm ⇐⇒
p-Halt> ∈ para-NPuni.

As XPuni ⊆ XNPuni and FPTuni ⊆ para-NPuni, we get from Theorem 2.3 and Theo-
rem 2.6 the following corollary, whose part (a) was already proven in [22]:

Corollary 2.7

(a) If Taut has an almost optimal algorithm, then it also has an almost optimal
nondeterministic algorithm.

(b) If Taut has a strongly almost optimal algorithm, then it also has a strongly
almost optimal nondeterministic algorithm.

The space variant. Recall that sA(x) denotes the minimum space used by an accepting
run of the nondeterministic algorithm A on input x.

Definition 2.8 A deterministic (nondeterministic) algorithm O deciding Q is almost
space optimal for Q if for every deterministic (nondeterministic) algorithm A which de-
cides (accepts) Q there is a d ∈ N such that, for all x ∈ Q,

sA(x) ≤ d ·
(
sB(x) + log |x|

)
.

We say that an algorithm A is loop-free if tA(x) < ∞ implies sA(x) < ∞ for all
x ∈ Σ∗. For an algorithm C the loop-free algorithm C′, claimed to exist in the following
well-known lemma, on input x simulates C on x and thereby records the space and the
time C uses; once the time exceeds the number of configurations using the corresponding
space, C′ rejects.

Lemma 2.9 One can effectively assign to every algorithm C a loop-free algorithm C′

such that:

• L(C) = L(C′);
• for all x ∈ Σ∗, (sC(x) <∞⇔ sC′(x) <∞);
• for all x ∈ Σ∗ with sC(x) <∞ we have sC(x) ≤ sC′(x) ≤ O(sC(x) + log |x|).

Theorem 2.10

(a) Taut has an almost space optimal algorithm ⇐⇒ p-Halt> ∈ XLuni.
(b) Taut has an almost space optimal nondeterministic algorithm ⇐⇒ p-Halt> ∈

XNLuni.

Proof. Note first that the space variant of Lemma 2.2 holds if we assume thatQ is logspace
reducible to Q′. Then one shows the direction from left to right of the statements (a)
and (b) along the lines of the corresponding proof of Theorem 2.3.

We sketch the main changes needed for the implications from right to left. For a TM
A we define A′ and A′′ as there. For part (a), again let T be an algorithm deciding Taut
and L be a listing of all loop-free TMs. The algorithm O deciding Taut is defined by:

The Infinity Project 155

O // x ∈ Σ∗

1. ℓ← 1
2. simulate the ℓth step of T on input x
3. if T halts then answer accordingly
4. simulate L using space at most ℓ · log |x|
5. if L prints a machine A then simulate A′′ on x using

space at most ℓ · log |x|
6. if A′′ accepts then accept
7. ℓ← ℓ+ 1
8. goto 2.

Using a listing of the loop-free machines ensures that the simulation of A′′ in Line 5
eventually stops as A′′ eventually will exceed space ℓ · log |x| if it does not stop before.
One then shows that O is almost space optimal.

For part (b) one uses a listing L of all nondeterministic Turing machines and defines
the nondeterministic algorithm O deciding Taut by:

O // x ∈ Σ∗

1. guess i ≥ 1
2. simulate L till it outputs the ith machine, say, A
3. simulate A′′ on x
4. if A′′ accepts then accept.

2

As XLuni ⊆ XPuni and XNLuni ⊆ XNPuni, we obtain from the previous result the
following corollary by Theorem 2.3 (a) and Theorem 2.6 (a).

Corollary 2.11
(a) If Taut has an almost space optimal algorithm, then it has an almost (time)

optimal algorithm.
(b) If Taut has an almost space optimal nondeterministic algorithm, then it has an

almost (time) optimal nondeterministic algorithm.

The effective variant. In [3] we have shown:

Proposition 2.12
(1) If P[tc] ̸= NP[tc], then p-Halt> /∈ FPT.
(2) If NP[tc] ̸⊆ P[tclog tc], then p-Halt> /∈ XP.

Here P[tc] ̸= NP[tc] means that for all time constructible and increasing functions
h the class of problems decidable in nondeterministic polynomial time in h and the
class of problems decidable in deterministic polynomial time in h are distinct, that is,
NDTIME(hO(1)) ̸= DTIME(hO(1)). By taking as h the identity function on N and the
function n 7→ 2n we see that P[tc] ̸= NP[tc] implies NP ̸= P and NE ̸= E, respec-
tively. And NP[tc] ̸⊆ P[tclog tc] means that NTIME(hO(1)) ̸⊆ DTIME(hO(log h)) for ev-
ery time constructible and increasing function h. In [2] we have related the assumptions
P[tc] ̸= NP[tc] and NP[tc] ̸⊆ P[tclog tc] to the so-called Measure Hypothesis.

156 Almost optimal algorithms and logics for complexity classes

What is the natural effective version of almost optimal algorithm for Taut and is it
equivalent to the statement p-Halt> ∈ XP? If in the definition of almost optimal algo-
rithm (Definition 2.1) the polynomial p in (2.1) can be computed from A, then the algo-
rithm A is said to be effectively almost optimal. More precisely:

Definition 2.13 An algorithm O decidingQ is effectively (and strongly) almost optimal if
there is a computable function p : Σ∗ → N[X] such that, for every deterministic algorithm
A deciding Q,

tO(x) ≤ p(A)
(
tB(x) + |x|

)
for all x ∈ Q (and there is a d ∈ N such that even p : Σ∗ → Nd[X]).

We could not show that the existence of an effectively almost optimal algorithm for
Taut is equivalent to p-Halt> ∈ XP; however by analyzing the proof of Theorem 2.3,
we isolate a property of p-Halt> ∈ XP equivalent to the existence of such an algorithm
for Taut.

We say that p-Halt> is FPT-decidable (XP-decidable) on non-halting machines if
there is an algorithm A deciding p-Halt>, a computable function f : N→ N, and c ∈ N
such that for all nondeterministic TMs M with tM(λ) =∞ we have, for all n ∈ N,

tA(⟨M, n⟩) ≤ f(|M|) · nc
(
tA(⟨M, n⟩) ≤ nf(|M|)

)
.

Lemma 2.14
(a) If p-Halt> ∈ FPT (p-Halt> ∈ XP), then p-Halt> is FPT-decidable (XP-dec-

idable) on non-halting machines.
(b) If p-Halt> is FPT-decidable (XP-decidable) on non-halting machines, then

p-Halt> ∈ FPTuni (p-Halt> ∈ XPuni).

Proof. Part (a) is clear by the definitions. For part (b) we combine an algorithm wit-
nessing that p-Halt> is FPT-decidable (XP-decidable) on non-halting machines with an
algorithm that by “brute-force” on input ⟨M, 1n⟩ computes tM(λ). 2

The effective variant of Theorem 2.3 reads as follows:

Proposition 2.15
(a) Taut has an effectively almost optimal algorithm ⇐⇒ p-Halt> is XP-decid-

able on non-halting machines.
(b) Taut has an effectively and strongly almost optimal algorithm ⇐⇒ p-Halt>

is FPT-decidable on non-halting machines.

Proof. The equivalences are obtained as that of Theorem 2.3; for the implication from
right to left we use Remark 2.4. 2

Corollary 2.16
(1) If P[tc] ̸= NP[tc], then Taut has no effectively and strongly almost optimal

algorithm.
(2) If NP[tc] ̸⊆ P[tclog tc], then Taut has no effectively almost optimal algorithm.

Proof. A slight modification of the proof of Proposition 2.12 in [3] yields that p-Halt>
is not FPT-decidable on non-halting machines if P[tc] ̸= NP[tc] holds. Now the claims
follow from Proposition 2.15. The proof of (2) is similar. 2

On the other hand we have:

The Infinity Project 157

Corollary 2.17 If NE = E, then Taut has an effectively and strongly almost optimal
algorithm.

Proof. We consider the variant of Halt>, where instead of the string 1n we have n in
binary as part of the input. Of course, this problem is in NE and hence, by assumption,
it is solvable by a deterministic machine in time 2c·(logn+|M|) for some c ∈ N. Thus,
p-Halt> ∈ FPT and therefore the claim follows from Proposition 2.15. 2

3 Invariant logics and p-Halt>

For C ∈ {L,NL,P} we introduce a logic L(C)inv. We state the main result of this section,
even though we have not introduced some of the concepts so far.

Theorem 3.1 Let C ∈ {L,NL,P}, C ′ ∈ {L,NL,P,NP}, and C ⊆ C ′. Then

L(C)inv is a C ′-bounded logic for C ⇐⇒ p-Halt> ∈ XC′
uni.

We start by recalling the concepts from logic we need.

Structures. A vocabulary τ is a finite set of relation symbols. Each relation symbol has
an arity. A structure A of vocabulary τ , or τ -structure (or, simply structure), consists
of a nonempty set A called the universe, and an interpretation RA ⊆ Ar of each r-ary
relation symbol R ∈ τ . All structures in this paper are assumed to have finite universe.
Where necessary we identify structures with strings in Σ∗ in a natural way.

Logics capturing complexity classes. For our purposes a logic L consists
• for every vocabulary τ of a set L[τ] of strings, the set of L-sentences of vocabu-

lary τ , and of an algorithm that for every τ and every string ξ decides whether
ξ ∈ L[τ] (in particular, L[τ] is decidable for every τ);
• of a satisfaction relation |=L; if (A, φ) ∈ |=L

(
written: A |=L φ

)
, then A is a

τ -structure and φ ∈ L[τ] for some vocabulary τ ; furthermore for each φ ∈ L[τ]
the class

ModL(φ) :=
{
A
∣∣ A |=L φ

}
of models of φ is closed under isomorphism.

Further on, if we say “let φ be an L-sentence”, we mean that, in addition to φ, a vocabulary
τ with φ ∈ L[τ] is given.

Recall that C and C ′ range over the complexity classes L, P, NL, and NP.

Definition 3.2 Let L be a logic and C a complexity class.
(a) L is a logic for C if for all vocabularies τ and all classes S of τ -structures closed

under isomorphism we have

S ∈ C ⇐⇒ S = ModL(φ) for some φ ∈ L[τ].
(b) Let C ′ be a deterministic (nondeterministic) complexity class. L is a C ′-bounded

logic for C if L is a logic for C and if there is a deterministic (nondetermin-
istic) algorithm A deciding (accepting) |=L, which for fixed φ witnesses that
ModL(φ) ∈ C ′.

Clearly, if L is a C ′-bounded logic for C, then C ⊆ C ′. If C ′ = C, then property (b)
yields the implication from right to left in part (a). One expects from a logic L capturing
the complexity class C that it is C ′-bounded for C with C ′ = C. In fact, one expects

158 Almost optimal algorithms and logics for complexity classes

that L can be viewed as a higher programming language for C, that is, that for a fixed
L-sentence φ the algorithm A in (b) witnesses that ModL(φ) ∈ C. However we use
this more liberal, a little bit artificial notion as in this way we obtain some nontrivial
consequences from our results. Fagin [8] has shown that there exist NP-bounded logics
for NP (e.g., the logic consisting of the Σ1

1-sentences of second-order logic), while for
C ∈ {L,NL,P} it is open whether there is a C-bounded logic for C.

We introduce the notion of an effectively C ′-bounded logic for C only for C ′ = C = P,
as we do not use it for other complexity classes. If L is a P-bounded logic for P, then for
every L-sentence φ the algorithm A of Definition 3.2 (b) witnesses that ModL(φ) ∈ P.
However, we do not necessarily know ahead of time the bounding polynomial. The logic
L is an effectively P-bounded logic for P if L is a P-bounded logic for P and if in addition
to the algorithm A as in Definition 3.2 (b) there is a computable function that assigns
to every L-sentence φ a polynomial q ∈ N[X] such that A decides whether A |=L φ in
≤ q(|A|) steps.

For every vocabulary τ we let τ< := τ ∪ {<}, where < is a binary relation symbol
not in τ chosen in some canonical way. A τ<-structure A is ordered if <A is a (total and
linear) ordering of the universe A of A.

We say that a logic L is a C ′-bounded logic for C on ordered structures if (a) and (b)
of Definition 3.2 hold for ordered structures and classes of ordered structures. In (b), for
fixed φ ∈ L[τ<] the algorithm A must witness that the class of ordered models of φ is
in C ′. It should be clear what we mean by an effectively P-bounded logic for P on ordered
structures.

We denote by FO, DTC, TC, and LFP first-order logic, deterministic transitive clo-
sure logic, transitive closure logic, and least fixed-point logic, respectively. We assume
familiarity with FO. Concerning DTC, TC, and LFP, essentially we only need the fol-
lowing properties:

Theorem 3.3 ([12, 13, 14, 23]) On ordered structures, DTC is an L-bounded logic for
L, TC is an NL-bounded logic for NL, and LFP is an effectively P-bounded logic for P.

For C = L, C = NL, and C = P we let L(C) be the logic DTC, TC, and LFP,
respectively.

Invariant sentences and the logic Linv. We start by introducing the notion of (order-)
invariance.

Definition 3.4 Let L be a logic.
(1) Let φ be an L[τ<]-sentence and n ≥ 1. We say that φ is ≤ n-invariant if for all

τ -structures A with |A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=L φ ⇐⇒ (A, <2) |=L φ.

(2) The parameterized L-invariant problem is the problem
p-L-Inv

Instance: An L-sentence φ and 1n with n ≥ 1.
Parameter: |φ|.

Problem: Is φ ≤ n-invariant?

For better readability we will often write ⟨φ, n⟩ ∈ p-L-Inv instead of ⟨φ, 1n⟩ ∈ p-L-Inv.

We define the logic Linv. For every vocabulary τ we set

Linv[τ] := L[τ<],

The Infinity Project 159

and we define the satisfaction relation by
(3.1)
A |=Linv φ ⇐⇒

(
⟨φ, |A|⟩ ∈ p-L-Inv and (A, <) |=L φ for some ordering < on A

)
.

Assume that for every L-sentence φ, say, of vocabulary τ the string ¬φ is an L[τ]-sentence
such that Mod(¬φ) =

{
A
∣∣ A a τ -structure and A /∈ Mod(φ)

}
. As ⟨φ, n⟩ ∈ p-L-Inv if

and only if ⟨¬φ, n⟩ ∈ p-L-Inv, we get, for every structure A,

(3.2) ⟨φ, |A|⟩ ∈ p-L-Inv ⇐⇒
(
A |=Linv φ or A |=Linv ¬φ

)
.

Now that we have introduced all concepts needed to understand the statement of Theo-
rem 3.1, we start with a series of lemmas that finally will yield a proof of it.

Lemma 3.5 If C ∈ {L,NL,P}, then L(C)inv is a logic for C.

Proof. For a class S of τ -structures let S< be the following class of τ<-structures:

S< :=
{
(A, <)

∣∣ A ∈ S and < is an ordering on A
}
.

Clearly,
(
S ∈ C ⇐⇒ S< ∈ C

)
. Now, if S ∈ C, then, by Theorem 3.3, there is an

L(C)[τ<]-sentence φ such that S< = ModL(C)(φ). Hence, S = ModL(C)inv(φ).
Conversely, let φ be an L(C)inv[τ]-sentence. If φ is not ≤n-invariant for some

n ≥ 1, then ModL(C)inv(φ) contains only structures with universes of less than n el-
ements and thus only finitely many up to isomorphism; hence it is in C. Otherwise,
ModL(C)inv(φ)< = ModL(C)(φ). As the latter class is in C (by Theorem 3.3), so is the
former. 2

Lemma 3.6 Let C ∈ {L,NL,P}, C ′ ∈ {L,NL,P,NP}, and C ⊆ C ′. Then L(C)inv is a
C ′-bounded logic for C if and only if p-L(C)-Inv ∈ XC′

uni.

Proof. By Lemma 3.5, we already know that L(C)inv is a logic for C, that is, part (a) of
Definition 3.2 is fulfilled. By (3.1) and Theorem 3.3, part (b) of this definition is fulfilled
if p-L(C)-Inv ∈ XC′

uni. Conversely, if part (b) is fulfilled, then, by (3.2), p-L(C)-Inv ∈
XC′

uni. 2

In the following section we will prove:

Lemma 3.7 Let C ∈ {L,NL,P} and C ′ ∈ {L,NL,P,NP}. Then

p-Halt> ∈ XC′
uni ⇐⇒ p-L(C)-Inv ∈ XC′

uni

⇐⇒ p-FOinv-Inv ∈ XC′
uni.

Proof of Theorem 3.1: Let C and C ′ be as in the statement of Theorem 3.1. Then

L(C)inv is a C ′-bounded logic for C ⇐⇒ p-L(C)-Inv ∈ XC′
uni (by Lemma 3.6)

⇐⇒ p-Halt> ∈ XC′
uni (by Lemma 3.7). 2

We draw some consequences from Theorem 3.1. Even though it is not known whether
the existence of an L-bounded logic for L implies the existence of a P-bounded logic for P,
we get:

Corollary 3.8 If DTCinv is an L-bounded logic for L, then TCinv is an NL-bounded
logic for NL and LFPinv is a P-bounded logic for P.

160 Almost optimal algorithms and logics for complexity classes

Proof. As XLuni ⊆ XNLuni and XLuni ⊆ XPuni, the results follow from Theorem 3.1. 2

As XNLuni ̸⊆ XPuni, so far we do not know whether LFPinv is a P-bounded logic
for P if TCinv is an NL-bounded logic for NL. Nevertheless, in Corollary 4.3 of the next
section we will see that this implication holds.

Corollary 3.9
(a) If there is an algorithm deciding A |=FOinv φ which, for fixed first-order φ,

requires space logarithmic in |A|, then DTCinv is an L-bounded logic for L.
(b) If DTCinv is a P-bounded logic for L, then LFPinv is a P-bounded logic for P.

Proof. (a) Assume that the hypothesis on FOinv in (a) is fulfilled. Then, by (3.2),
p-FO-Inv ∈ XLuni and thus p-Halt> ∈ XLuni by Lemma 3.7. Now our claim follows
from Theorem 3.1. The proof of (b) is similar, even easier. 2

It is not known whether the existence of a P-bounded logic for P implies that of an
effectively P-bounded logic for P. However, we can show:

Proposition 3.10 If LFPinv is a P-bounded logic for P, then there is an effectively
P-bounded logic for P.

Proof. By (3.2), for every LFPinv[τ]-sentence and m ≥ 1 we have

(3.3) ⟨φ,m⟩ ∈ p-L-Inv ⇐⇒
(
A(τ,m) |=LFPinv φ or A(τ,m) |=LFPinv ¬φ

)
,

where A(τ,m) is the τ -structure with universe {1, . . . ,m} and empty relations (that is,
every relation symbol in τ is interpreted by the empty set). Assume that LFPinv is a
P-bounded logic for P and let A be an algorithm according to Definition 3.2 (b). Let B
be the algorithm that decides ⟨φ,m⟩ ∈ p-L-Inv via the equivalence (3.3), where it checks
the disjuncts on the right hand side of (3.3) applying the algorithm A. Then, for fixed
φ the algorithm B has running time polynomial in m. We define the logic T (LFPinv),
time-clocked LFPinv, by:

• for every vocabulary τ ,

T (LFPinv)[τ] :=
{
(φ, p)

∣∣ φ ∈ LFPinv[τ] and p ∈ N[X]
}
;

• A |=T (LFPinv) φ iff (a) and (b) hold where
(a) B accepts ⟨φ, |A|⟩ in ≤ p(|A|) steps;
(b) (A, <) |=LFP φ for some ordering <, say for the ordering of A induced by

(the string) A.
It is not hard to verify that T (LFPinv) is an effectively P-bounded logic for P (here we
use for checking (b) an algorithm deciding |=LFP that witnesses that LFP is an effectively
P-bounded logic for P on ordered structures (see Theorem 3.3)). 2

Remark 3.11 In a slightly different way but using the same idea one can define the
time-clocked version T (L) for any P-bounded logic L for P. However, in general, T (L)
is not even a logic, as the class of models of a T (L)-sentence must not be closed under
isomorphism. In the case of T (LFPinv) this is guaranteed by the fact that condition (a)
in the definition of A |=T (LFPinv) φ only refers to the cardinality of the universe of A.

Example 3.12 There are NP-bounded logics for P. In fact, consider the logic LFPinv(not)
which has the same syntax as LFPinv, that is,

LFPinv(not)[τ] := LFPinv[τ]

The Infinity Project 161

and whose semantics is given by

A |=LFPinv(not) φ ⇐⇒ not A |=LFPinv φ.

As P is closed under complements, LFPinv(not) is a logic for P. Using the definition of
the semantics, one easily verifies that LFPinv(not) is even an NP-bounded logic for P.

3.1 A variant

What does p-Halt> ∈ XP or p-Halt> ∈ FPT mean for the invariant logics? For
simplicity, we only consider LFPinv (for which we already answered this question in [3]).
Arguing as in the proof of Lemma 3.6 one gets

LFPinv is an effectively P-bounded logic for P ⇐⇒ p-LFP-Inv ∈ XP.

Using this equivalence, one can obtain:

Theorem 3.13 LFPinv is an effectively P-bounded logic for P ⇔ p-Halt> ∈ XP.

The result for p-Halt> ∈ FPT is more involved and we refer the reader to [3] for
the details. There for an LFP-formula φ we introduce its depth, the maximum nesting
depth of LFP-operators in φ, and its width, essentially the maximum of the number of
variables in subformulas of φ. It is not hard to see that there is an algorithm deciding
whether A |=LFP φ in time

|φ| · |A|O((1+depth(φ))·width(φ)).

We say that LFPinv is an (effectively) depth-width P-bounded logic for P if it is a logic for
P and there is a (computable) function h : N→ N and an algorithm A deciding whether
A |=LFPinv φ in time

h(|φ|) · ∥A∥O
(
(1+depth(φ))·width(φ)

)
.

The following holds:

Theorem 3.14

(a) LFPinv is a depth-width P-bounded logic for P ⇔ p-Halt> ∈ FPTuni.
(b) LFPinv is an effectively depth-width P-bounded logic for P ⇔ p-Halt> ∈ FPT.

4 Slicewise downward monotone parameterized problems

A parameterized problem (Q,κ) is slicewise downward monotone if all elements of Q have
the form ⟨x, 1n⟩ with x ∈ Σ∗ and n ∈ N, if κ(⟨x, 1n⟩) = |x|, and finally if the slices are
downward monotone, that is, for all x ∈ Σ∗ and n, n′ ∈ N,

⟨x, 1n⟩ ∈ Q and n′ < n imply
⟨
x, 1n

′
⟩
∈ Q.

Hence, p-Halt> and p-L-Inv (for any logic L) are slicewise downward monotone. As
already done for p-L-Inv, often for a slicewise downward monotone (Q,κ) we will write
⟨x, n⟩ ∈ Q instead of ⟨x, 1n⟩ ∈ Q.

For any logic L the following parameterized problem is downward monotone, too.

162 Almost optimal algorithms and logics for complexity classes

p-L-Model>
Instance: An L-sentence φ and 1n with n ∈ N.

Parameter: |φ|.
Problem: Does the universe of every L-model of φ have more than

n elements?

In this section we aim to show that all slicewise downward monotone introduced so far
have the same computational complexity.

We denote by coXNLuni the class of parameterized problems (Q,κ) such that their
complement (Σ∗ \Q,κ) is in XNLuni.

Proposition 4.1
(a) If (Q,κ) is slicewise downward monotone, then (Q,κ) is in coXNLuni.
(b) XNLuni ∩ coXNLuni ⊆ XPuni.

Proof. (a) Assume that (Q,κ) is slicewise downward monotone and let Q be an algorithm
enumerating the elements of Σ∗\Q. Then the following algorithm shows that (Σ∗\Q,κ) ∈
XNLuni: If the input y ∈ Σ∗ does not have the form ⟨x, n⟩ for some x ∈ Σ∗ and n ∈ N,
then it accepts. If y = ⟨x, n⟩, it guesses ℓ ∈ N; then it checks whether Q in its first ℓ
steps enumerates some ⟨x,m⟩ with m ≤ n; if so, it accepts.

(b) Let (Q,κ) ∈ XNLuni ∩ coXNLuni. Then there is a nondeterministic TM M and a
function f : N→ N such that, for x ∈ Σ∗,

• if x ∈ Q, then no run of M on x is rejecting and there is at least one accepting
run using space ≤ f(κ(x)) · log |x|;
• if x ̸∈ Q, then no run of M on x is accepting and there is at least one rejecting

run using space ≤ f(κ(x)) · log |x|.
We consider the following algorithm A deciding Q:

A // x ∈ Σ∗

1. ℓ← 1
2. construct the graph of configurations of M on input x using space
≤ ℓ · log |x|

3. if this graph contains an accepting run then accept
4. if this graph contains a rejecting run then reject
5. ℓ← ℓ+ 1
6. goto 2.

Clearly, A decides Q and by our assumptions on M the algorithm A on input x will halt
for some ℓ ≤ f(κ(x)). For fixed ℓ, Lines 2–4 take

2O(ℓ·log |x|) = |x|O(ℓ)

steps. Therefore the running time of A on input x can be bounded by
f(κ(x))∑
ℓ=1

|x|O(ℓ) = |x|O(f(κ(x))). 2

Now we can show the following results extending Corollary 2.11 and complementing
Corollary 3.8.

The Infinity Project 163

Corollary 4.2 If Taut has an almost space optimal nondeterministic algorithm, then it
has an almost (time) optimal algorithm.

Proof. By assumption and Theorem 2.10 (b) we have p-Halt> ∈ XNLuni and thus
p-Halt> ∈ XNLuni ∩ coXNLuni ⊆ XPuni by the previous proposition; now the claim
follows from Theorem 2.3 (a). 2

Corollary 4.3 If TCinv is an NL-bounded logic for NL, then LFPinv is a P-bounded
logic for P.

Proof. By assumption and Theorem 3.1 we have p-Halt> ∈ XNLuni and thus p-Halt> ∈
XNLuni ∩ coXNLuni ⊆ XPuni; applying Theorem 3.1 again we get the claim. 2

To compare the complexity of parameterized problems here we use the notion of
xlog-reduction: Let (Q,κ) and (Q′, κ′) be parameterized problems. We write (Q, κ) ≤xlog

(Q′, κ′) if there is an xlog-reduction from (Q,κ) to (Q′, κ′), that is, a mapping R : Σ∗ → Σ∗

with:
(a) For all x ∈ Σ∗ we have (x ∈ Q⇔ R(x) ∈ Q′).
(b) R(x) is computable in space f(κ(x)) · log |x| for some computable f : N→ N.
(c) There is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x)) for all

x ∈ Σ∗.
The parameterized problems (Q,κ) and (Q′, κ′) are xlog-equivalent if (Q,κ) ≤xlog (Q′, κ′)
and (Q′, κ′) ≤xlog (Q,κ). These are notions of the usual (strongly uniform) parameter-
ized complexity theory. For example, we get the corresponding notion ≤xlog

uni of uniform
parameterized complexity by allowing the functions f and g (in (b) and (c), respectively)
to be arbitrary and not necessarily computable.

As we have not defined XL and XNL explicitly, we mention that we shall use part (b)
of the following simple observation only for C = P.

Lemma 4.4 Let C ∈ {L,NL,P,NP}.
(a) If (Q,κ) ≤xlog

uni (Q′, κ′) and (Q′, κ′) ∈ XCuni, then (Q,κ) ∈ XCuni.

(b) If (Q,κ) ≤xlog (Q′, κ′) and (Q′, κ′) ∈ XC, then (Q,κ) ∈ XC.

We turn again to slicewise downward monotone problems. The goal of this section
mentioned above can be stated in a precise form:

Theorem 4.5 Let C ∈ {L,NL,P}. Then any two of the problems

p-FO-Model>, p-L(C)-Model>, p-FO-Inv, p-L(C)-Inv, and p-Halt>

are xlog-equivalent.

Note that Lemma 3.7 is an immediate consequence of this theorem and Lemma 4.4 (a).
The rest of this section is devoted to a proof of Theorem 4.5. First we remark that

among the slicewise downward monotone problems with underlying classical problem in
co-NP the problem Halt> is of highest complexity:

Proposition 4.6 Let (Q,κ) be slicewise downward monotone and Q ∈ co-NP. Then

(Q,κ)≤xlog p-Halt>.

164 Almost optimal algorithms and logics for complexity classes

Proof. Let M be a nondeterministic Turing machine accepting the complement Σ∗ \ Q
of Q. We may assume that for some d ∈ N the machine M on input ⟨x, n⟩ performs
exactly | ⟨x, n⟩ |d steps. For x ∈ Σ∗ let Mx be the nondeterministic Turing machine that
on empty input tape, first writes x on the tape, then guesses a natural number m, and
finally it simulates the computation of M on input ⟨x,m⟩ and answers accordingly. We
can assume that there is a logspace computable function h such that Mx makes exactly
h(x,m) ∈ O

(
|x|+m+ | ⟨x,m⟩ |d

)
steps if it guesses the natural number m. Furthermore

we can assume that h(x,m) < h(x,m′) for m < m′.
Then ⟨x, n⟩ 7→ ⟨Mx, h(x, n)⟩ is an xlog-reduction from (Q,κ) to p-Halt>: Clearly,

if ⟨Mx, h(x, n)⟩ ∈ p-Halt>, then by construction of Mx we have ⟨x, n⟩ /∈ Σ∗ \ Q and
hence, ⟨x, n⟩ ∈ Q. Conversely, if ⟨x, n⟩ ∈ Q, then by slicewise downward monotonicity
⟨x,m⟩ /∈ Σ∗ \Q for all m ≤ n; thus ⟨Mx, h(x, n)⟩ ∈ p-Halt>. 2

Later on we shall use the following related result.

Lemma 4.7 Let (Q,κ) be slicewise downward monotone and assume that there is a
nondeterministic algorithm A accepting Σ∗ \ Q such that tA(⟨x, n⟩) ≤ nf(|x|) for some
time constructible f and all ⟨x, n⟩ ∈ Σ∗ \Q. Then

(Q,κ)≤xlog p-Halt>.

Proof. Let (Q′, κ′) be the problem

Instance: x ∈ Σ∗ and 1m with m ∈ N.
Parameter: |x|.

Problem: Is ⟨x, n⟩ ∈ Q for all n ∈ N with nf(|x|) ≤ m?

By the previous proposition, we get our claim once we have shown:
(1) (Q′, κ′) is slicewise downward monotone and Q′ ∈ co-NP;
(2) (Q, κ)≤xlog (Q′, κ′).

To see (1), let A be as stated above and let T be an algorithm witnessing the time
constructibility of f ; that is, T on input 1k with k ∈ N computes f(k) in exactly f(k)
steps. An algorithm B witnessing that Σ∗ \Q′ ∈ NP runs as follows on input ⟨x,m⟩:

• B guesses n ∈ N;
• if n = 1, the algorithm B rejects in case m = 0;

if n ≥ 2, the algorithm B simulates m steps of the computation of T on input
1|x|; if thereby T does not stop, B rejects; otherwise, the simulation yields f(|x|)
and B checks whether nf(|x|) > m (this can be detected in time O(m)); in the
positive case B rejects;
• finally B simulates the computation of A on ⟨x, n⟩ and answers accordingly.

(2) Note that the mapping ⟨x, n⟩ 7→
⟨
x, nf(|x|)

⟩
is an xlog-reduction. 2

The following lemmas will finally yield a proof of Theorem 4.5.

Lemma 4.8 Let L = FO or L = L(C) with C ∈ {L,NL,P}. Then p-L-Model> ≤xlog

p-L-Inv.

Proof. Let φ be an L[τ]-sentence. We set τ ′ := τ ∪{P} with a new unary relation symbol
P and consider the L[τ ′<]-sentence

ψ(φ) := φ ∧ “P holds for the first element of <”.

The Infinity Project 165

If φ has no model with exactly one element, then, for n ∈ N,

⟨φ, n⟩ ∈ p-L-Model> ⇐⇒ ⟨ψ(φ), n⟩ ∈ p-L-Inv.

For such φ we define the reduction by ⟨φ, n⟩ 7→ ⟨ψ(φ), n⟩; if the sentence φ has a model
with exactly one element, by ⟨φ, n⟩ 7→ ⟨“P holds for the first element of <”, 2⟩. 2

Lemma 4.9 p-LFP-Inv≤xlog p-Halt> and hence p-L(C)-Inv≤xlog p-Halt> for C = L
and C = NL.

Proof. Consider the nondeterministic algorithm A that on input ⟨φ,m⟩, where φ is an
LFP-sentence and m ≥ 1, guesses a structure A and two orderings <1 and <2, and
accepts if |A| ≤ m, (A, <1) |=LFP φ, and (A, <2) |=LFP ¬φ. It accepts the complement
of p-LFP-Inv. As LFP is an effectively P-bounded logic for P on ordered structures, the
algorithm A witnesses that p-LFP-Inv satisfies the assumptions on (Q,κ) in Lemma 4.7.
This yields the claim. 2

Lemma 4.10 p-Halt> ≤xlog p-FO-Model>.

Proof. Coding configurations of a nondeterministic machine and its nondeterministic
choices in a standard way it is easy to assign to every nondeterministic TMM a first-order
sentence φM such that, for all n ∈ N,

M has accepting run on empty input of length n ⇐⇒
φM has a model with universe of cardinality n.

Thus, ⟨M, n⟩ 7→ ⟨φM, n⟩ is the desired xlog-reduction. 2

Proof of Theorem 4.5: Immediate by Lemmas 4.8, 4.9, and 4.10. 2

5 Optimal proof systems, almost optimal algorithms, and
listings

By Krajíček and Pudlák [17] the existence of an almost optimal algorithm for Taut
is equivalent to the existence of a polynomially optimal proof system for Taut and by
Sadowski [22] it is equivalent to the existence of listings of the subsets of Taut in P.
These equivalences extend to the different variants (strong, effective, and space) of almost
optimal algorithms we considered in Section 2. In Section 5.1 we prove the strong variant;
for the other cases we present the definitions and the results in Section 5.2.

Listings. Listings (or effective enumerations) of problems by means of TMs have been
used to characterize promise classes possessing complete languages (e.g., see [11, 16]).
In the context of almost optimal algorithms, listings of subsets of Taut have been used
systematically by Sadowski (see [22]). We introduce our general notion of listing.

Definition 5.1 Let Q ⊆ Σ∗ and C,C ′ ∈ {L,NL,P,NP}.
(1) A C-subset of Q is a set Y with Y ⊆ Q and Y ∈ C.
(2) A listing of the C-subsets of Q by C ′-machines is an algorithm L that, once

having been started, eventually yields as outputs TMs M1,M2, . . . of type C ′

such that {
L(Mi)

∣∣ i ≥ 1
}
=
{
Y ⊆ Q

∣∣ Y ∈ C}.

166 Almost optimal algorithms and logics for complexity classes

(3) Let C,C ′ ∈ {P,NP}. A listing L of the C-subsets of Q by C ′-machines is strong
if there is a constant d ∈ N such that for every C-subset Y of Q and every
C ′-machine M deciding Y there is a machine listed by L deciding x ∈ Y in time
≤ p(tM(x) + |x|), where p ∈ Nd[X] (that is, p is a polynomial of degree ≤ d).

We write List(C,Q,C ′) and SList(C,Q,C ′) if there is a listing and a strong listing,
respectively, of the C-subsets of Q by C ′-machines.

Sometimes we speak of the listing M1,M2, . . . (instead of the listing L). By system-
atically adding polynomial time clocks (if C ′ is a time class) or devices controlling the
space used, we may assume that all runs of the machines Mi on any input satisfy the
time or space bound characteristic for C ′.

Optimal proof systems. Let Q ⊆ Σ∗. A proof system for Q in the sense of Cook and
Reckhow [7] is a polynomial time algorithm P computing a function from Σ∗ onto Q. If
P(w) = x, we say that w is a P-proof of x. Often we introduce proof systems implicitly
by defining the corresponding function; then this definition will suggest an algorithm.

Let P and P′ be proof systems for Q. A translation from P′ into P is a polynomial
time algorithm T such that P(T(w′)) = P′(w′) for all w′ ∈ Σ∗.

A proof system P for Q is polynomially optimal or p-optimal if for every proof sys-
tem P′ for Q there is a translation from P′ into P. If for P there is a constant d ∈ N
such that for every proof system P′ for Q there is a translation T from P′ into P and a
p ∈ Nd[X] such that

tT(w
′) ≤ p

(
tP′(w

′) + |w′|
)

for all w′ ∈ Σ∗, then P is strongly p-optimal.
A proof system P for Q is optimal if for every proof system P′ for Q and every w′ ∈ Σ∗

there is a w ∈ Σ∗ such that P(w) = P′(w′) and |w| ≤ |w′|O(1). Again, if there is a constant
d ∈ N such that for all P′ and every w′ ∈ Σ∗ there is a w ∈ Σ∗ such that P(w) = P′(w′)
and |w| ≤ p

(
tP′(w

′) + |w′|
)

for some p ∈ Nd[X], then P is strongly optimal.
In the following theorem we summarize the results that are known for Q = Taut

mentioned at the beginning of this section. The extensions to arbitrary Q with padding
are mainly due to Messner [19] or are implicit in Sadowski [22].

Theorem 5.2
(1) For every Q we have (a) ⇒ (b) and (b) ⇒ (c); moreover (a), (b), and (c) are

all equivalent if Q has padding. Here
(a) Q has a p-optimal proof system;
(b) Q has an almost optimal algorithm;
(c) List(P, Q,P).

(2) For every Q we have (a) ⇔ (b) and (b) ⇒ (c); moreover (a), (b), and (c) are
all equivalent if Q has padding. Here
(a) Q has an optimal proof system;
(b) Q has an almost optimal nondeterministic algorithm;
(c) List(NP, Q,NP).

5.1 The strong variant

The following series of lemmas will lead to a proof of the result corresponding to Theo-
rem 5.2 for the strong notions.

The Infinity Project 167

Lemma 5.3 Let Q ⊆ Σ∗. If there is a strongly almost optimal (nondeterministic) algo-
rithm for Q, then SList(P, Q,P)

(
SList(NP, Q,NP)

)
.

Proof. We prove the deterministic case, the nondeterministic one is obtained by obvious
changes. Let O be a strongly almost optimal algorithm for Q. Let d ∈ N bound the
degree of the polynomials p in the definition of strongly almost optimal (Definition 2.1).
Let t : Σ∗ → {1}∗ be a function such that t = tM for some TM M. Let O(t) be the
algorithm that on input x simulates O on input x but rejects if the simulation exceeds
time t(x) (here we identify 1k with k). Clearly,

(i) L(O(t)) is a P-subset of Q if t is computable in polynomial time.
Moreover, we show:

(ii) For every P-subset Y of Q and every TM M deciding Y there is a polynomial
time TM M′ deciding Y with tM′(x) ≤ O(tM(x));

(iii) For every P-subset Y of Q and every polynomial time TM M deciding Y there
is p ∈ Nd[X] with Y ⊆ L(O(p[tM])), where p[tM] : Σ∗ → {1}∗ is defined by

p[tM](x) := p
(
tM(x) + |x|

)
.

We get the TMM′ satisfying (ii) by running M in parallel with any polynomial time TM
deciding Y .

For (iii) we argue as follows. The following algorithm C decides Q: On input x, in
parallel it simulates M and O on input x; if M halts first and accepts, then C accepts,
otherwise it answers as O. Note that tC(x) ≤ O(tM(x)) for x ∈ Y . By the strongly almost
optimality of O there is a p ∈ Nd[X] with

tO(x) ≤ p
(
tC(x) + |x|

)
for all x ∈ Q and thus, for all x ∈ Y ,

tO(x) ≤ p
(
O(tM(x)) + |x|

)
.

Therefore, Y ⊆ L(O(p1[tM])) for some p1 ∈ Nd[X].
We fix a listing M1,M2, . . . of all polynomial time deterministic TMs. By (i)–(iii),(

Mi(O(p[tMi])
)
i≥1, p∈Nd[X]

is a strong listing of the P-subsets of Q, where Mi(O(p[tMi]))
on input x, first simulates O(p[tMi]) on x and if this algorithm accepts, then it simulates
Mi on input x and answers accordingly. 2

In a second step we deal with the transition from listings to optimal proof systems.

Lemma 5.4 Assume that Q has a padding function.
(a) If SList(P, Q,P), then Q has a strongly p-optimal proof system.
(b) If SList(NP, Q,NP), then Q has a strongly optimal proof system.

Proof. Again we prove (a), thereby indicating the changes that are necessary for a proof
of (b). Fix y0 ∈ Q and let pad : Σ∗ × Σ∗ → Σ∗ be a padding function for Q. Let L be a
strong listing of the P-subsets of Q by P-machines and let d ∈ N be such that polynomials
in Nd[X] witness the strongness of L. We say that v ∈ Σ∗ is a proof string if it has the
form

v =
⟨
M, w, y, 1m,M′, 1ℓ, 1r, 1t

⟩
,

where
– M is a TM that on input w outputs y in ≤ m steps;
– L lists M′ in ≤ ℓ steps;

168 Almost optimal algorithms and logics for complexity classes

– M′ accepts pad(y, ⟨w, 1r⟩) in ≤ t steps.
(
For (b) we have to add s in the tuple

v, where s is the sequence of states of a run of M′ accepting pad(y, ⟨w, 1r⟩) in
≤ t steps.

)
Clearly, we can decide in polynomial time whether a string v ∈ Σ∗ is a proof string.
Moreover, if v is a proof string, then y ∈ Q (as L(M′) ⊆ Q andM′ accepts pad(y, ⟨w, 1r⟩)).
We consider the proof system P defined by

P
(⟨
M, w, y, 1m,M′, 1ℓ, 1r, 1t

⟩)
:= y

if
⟨
M, w, y, 1m,M′, 1ℓ, 1r, 1t

⟩
is a proof string, and P(w) := y0 otherwise. Clearly, P is

polynomial time and has a subset of Q as range. So, P is a proof system for Q if we
can show that every y ∈ Q is in its range: As

{
pad(y, ⟨y, 1⟩)

}
is a P-subset of Q, a

machine M′ deciding
{
pad(y, ⟨y, 1⟩)

}
is listed by L, say, in ℓ steps. Then P(v) = y for

v =
⟨
Mid, y, y, 1

m,M′, 1ℓ, 1, 1t
⟩
, where Mid is a machine that on input x outputs x and

that on input y takes m steps, and t is the number of steps of M′ on input pad(y, ⟨y, 1⟩).
It remains to show that P is strongly p-optimal. For this purpose let P′ : Σ∗ → Q be

a proof system for Q. Then,

Graph(P′) :=
{
pad(y,

⟨
w′, 1r

⟩
)
∣∣ y, w′ ∈ Σ∗, P′(w′) = y and r = tP′(w

′)
}

is a P-subset of Q. Let B be the algorithm deciding Graph(P′), which on input x first
applying property (ii) of the padding function (see page 149) computes w′ and r if
x = pad(. . . , ⟨w′, 1r⟩), then it computes y := P′(w′) and checks if r = tP′(w

′), both
by simulating P′ (for at most r steps), and finally it checks whether x = pad(y, ⟨w′, 1r⟩).
Then there is a polynomial q0 depending on the functions pad and ⟨ , ⟩ only, say, of
degree d0 ≥ 1 such that

tB(x) ≤ q0(|x|) + r ≤ 2 · q0(|x|).
Hence, by assumption, L lists a machine M′, say in ℓ steps, that decides x ∈ Graph(P′)
in ≤ p

(
q0(|x|)

)
steps for some p ∈ Nd[X] (as tB(x) + |x| ≤ 3 · q0(|x|)). Furthermore note

that for w′ ∈ Σ∗ and x := pad(P′(w′),
⟨
w′, 1tP′ (w

′)
⟩
) we have

|x| ≤ q1(tP′(w′) + |w′|),

where again the polynomial q1, say of degree d1, depends only on the padding function
and the tupling function. We define the translation T by

(5.1) T(w′) :=
⟨
P′, w′,P′(w′), 1tP′ (w

′),M′, 1ℓ, 1tP′ (w
′), 1t

⟩
where

t := p
(
q0
(
q1(tP′(w

′) + |w′|)
))
.

It is easy to check that T(w′) is a proof string with P(T(w′)) = P′(w′). As M′ and 1ℓ do
not depend on w′, the algorithm T on w′ needs p1

(
tP′(w

′) + |w′|)
)

steps for a polynomial
p1 of degree ≤ d + d0 + d1; this finishes the proof. For (b) we get a tuple w with the
desired properties by adding to the tuple in (5.1) a sequence s of states of a run of M′

accepting pad(P′(w′), w′) of length ≤ t. 2

The reader will have noticed that the previous proof also shows the conclusion of
part (b) under the hypothesis SList(P, Q,NP) as the set Graph(P′) is in P. However, the
equivalence

(
SList(P, Q,NP)⇔ SList(NP, Q,NP)

)
holds for all Q with padding. This

The Infinity Project 169

can be shown along the lines of the proof of Proposition 5.12, where the “non-strong”
version of this equivalence is derived.

We turn to the last step, the transition from proof systems to almost optimal algo-
rithms. We need the following result on inverters due to Levin [18].

Definition 5.5 Let f : Σ∗ → Σ∗ be a function. An algorithm A inverts f if for every
x in the range of f the algorithm A computes some w with f(w) = x. For x not in the
range of f the algorithm A can behave arbitrarily.

By Levin’s result, for any algorithm F computing a function f there is an inverter O,
which is optimal with respect to the time required by the computation of F(O(y)).

Theorem 5.6 There is a d0 ∈ N such that for all algorithms F computing a function
f : Σ∗ → Σ∗ there exists an algorithm O such that:

(a) O inverts f and tO(y) =∞ for every input y not in the range of f ;
(b) for every algorithm I inverting f there is an p ∈ Nd0 [X] such that for every y in

the range of f we have

tO(y) ≤ p
(
|y|+ tI(y) + tF(I(y))

)
.

We now state the result yielding an almost optimal algorithm from a p-optimal proof
system.

Lemma 5.7
(a) If Q has a strongly p-optimal proof system, then Q has a strongly almost optimal

algorithm.
(b) If Q has a strongly optimal proof system, then Q has a strongly almost optimal

nondeterministic algorithm.

Proof. Again we only prove (a); then (b) is obtained by changes similar to that indicated
in the previous proof for the nondeterministic case. Let P : Σ∗ → Q be a strongly p-opt-
imal proof system for Q and let d ∈ N be a bound for the degrees of the polynomials
according to the strongness. Fix y0 ∈ Q. We define the function f : Σ∗ → Σ∗ by

f
(⟨
A, y, 1m, S, 1t

⟩)
:= y

if
(F1) A is an algorithm that accepts y ∈ Σ∗ in ≤ m steps;
(F2) S is an algorithm that on input ⟨y, 1m⟩ computes a string w with P(w) = y in

≤ t steps.
Otherwise, we set f(w) := y0. It is easy to verify that the range of f is Q, in particular,
(F2) guarantees that it is a subset of Q. Moreover there is an algorithm F that computes
the function f in polynomial time, say, in time ≤ qF(n) with qF of degree d(F). We
choose d0 according to Theorem 5.6 and an optimal inverter O, that is, an inverter with
the properties (a) and (b) of Theorem 5.6; in particular, for every inverter I of f there is
a p ∈ Nd0 [X] such that, for every y ∈ Q,

(5.2) tO(y) ≤ p
(
|y|+ tI(y) + tF(I(y))

)
≤ p1(|y|+ tI(y))

with p1 ∈ Nd0+d(F)[X] as tF(I(y)) ≤ qF(|I(y)|) ≤ qF(tI(y))).
Let Q be any algorithm deciding Q. We claim that the following algorithm O∥Q is a

strongly almost optimal algorithm deciding Q, where O∥Q on input y simulates O and Q

170 Almost optimal algorithms and logics for complexity classes

on input y in parallel; if O halts first, then it accepts, and if Q halts first, then it answers
accordingly.

The algorithm O∥Q decides Q (here we use Theorem 5.6 (a)) and for y ∈ Q we have

(5.3) tO∥Q(y) ≤ O(tO(y)).

We claim that O∥Q is strongly almost optimal. For this purpose let A be any algorithm
that decides Q. We get a proof system PA for Q by setting

PA(w′) :=

{
y, if w′ = ⟨y, 1m⟩ and A accepts y in ≤ m steps,
y0, otherwise.

Then, tPA(w
′) = O(|w′|). Since P is strongly p-optimal for Q, there is a translation T and

a polynomial p2 ∈ Nd[X] such that, for all w′ ∈ Σ∗,

P(T(w′)) = PA(w′) and tT(w
′) ≤ p2

(
tPA(w

′) + |w′|
)
≤ p2(O(|w′|)).(5.4)

Using A and T we define an inverter I of the function f : On input y, the algorithm I
simulates the algorithm A on y; if A rejects y, then I does not halt, if A accepts y, then
it outputs ⟨

A, y, 1tA(y),T, 1t
⟩
,

where t is the number of steps of the computation of T on
⟨
y, 1tA(y)

⟩
. Thus, for y ∈ Q,

tI(y) ≤ O
(
tA(y) + tT(

⟨
y, 1tA(y)

⟩
)
)

= O
(
tA(y) + p2(O(|y|+ tA(y)))

) (
by (5.4)

)
.

Hence by (5.2),

tO(y) ≤ p1(|y|+ tI(y)) ≤ p1
(
|y|+O

(
tA(y) + p2(O(|y|+ tA(y)))

))
≤ p3(|y|+ tA(y))

for some p3 ∈ Nd0+d(F)+d[X]. Together with (5.3), this shows the strongly almost opti-
mality of O∥Q. 2

It is well-known that nondeterministic algorithms and propositional proof systems are
more or less the same. We use this fact to show that for arbitrary Q a strongly almost
optimal nondeterministic algorithm yields a strongly optimal proof system. By the way,
we could have already used this fact to get a simpler proof of part (b) of the previous
lemma, a proof tailored only for the nondeterministic case.

Lemma 5.8 If Q has a strongly almost optimal nondeterministic algorithm, then it has
a strongly optimal proof system.

Proof. Let A be a strongly almost optimal nondeterministic algorithm for Q and let d ≥ 1
be such that polynomials in Nd[X] witness the strongness of A. We fix y0 ∈ Q and define
the proof system P for Q by

P(w) :=

{
y, if w = ⟨y, s⟩, where s is the sequence of states of a run of A accepting y,
y0, otherwise.

The Infinity Project 171

The proof system P is strongly optimal: Let P′ be any proof system for Q. The nonde-
terministic algorithm B(P′) accepts Q, where B(P′) on input y ∈ Σ∗ guesses a string w′

and accepts if P′(w′) = y. Hence, there is a q ∈ Nd[X] such that for all y ∈ Q

(5.5) tA(y) ≤ q
(
tB(P′)(y) + |y|

)
.

Let P′(w′) = y. Then

(5.6) tB(P′)(y) = O
(
|w′|+ tP′(w

′)
)
.

Let s be the sequence of states of a run of A accepting y in tA(y) steps and set w := ⟨y, s⟩.
Then P(w) = y and

|w| =
∣∣ ⟨y, s⟩ ∣∣ = O(|y|+ tA(y)) = O

(
tP′(w

′) + q
(
tB(P′)(y) + |y|

))
(by (5.5))

= O
(
tP′(w

′) + q
(
O
(
|w′|+ tP′(w

′)
)
+ tP′(w

′)
))

(by (5.6)).

This shows that |w| ≤ p1(tP′(w′) + |w′|) for some p1 ∈ Nd[X]. 2

Summarizing, we have shown:

Theorem 5.9
(1) For every Q we have (a) ⇒ (b) and (b) ⇒ (c); moreover (a), (b), and (c) are

all equivalent if Q has padding. Here
(a) Q has a strongly p-optimal proof system;
(b) Q has an strongly almost optimal algorithm;
(c) SList(P, Q,P).

(2) For every Q we have (a) ⇔ (b) and (b) ⇒ (c); moreover (a), (b), and (c) are
all equivalent if Q has padding. Here
(a) Q has a strongly optimal proof system;
(b) Q has a strongly almost optimal nondeterministic algorithm;
(c) SList(NP, Q,NP).

5.2 Further variants

Here we present the space variant and the effective variant of the results of Theorem 5.2.

The space variant. First we introduce the notion of space optimal logspace proof system
(for simplicity, only the “deterministic optimality”) and state the result afterwards.

Definition 5.10
(1) A logspace proof system for Q is a logspace algorithm P computing a function

from Σ∗ onto Q.
(2) A logspace proof system P for Q is space optimal if for every logspace proof

system P′ there is a translation from P′ into P computable in logspace.

In [20] Messner and Torán introduced the notions of logspace proof system and
logspace translation. They show the equivalence of the statements “p-optimal proof sys-
tems exist”, “p-optimal proof systems with respect to logspace translation exist”, and
“optimal logspace proof systems with respect to polynomial time translation exist”. Us-
ing this fact, they show that various complexity classes contain problems complete under
logspace reductions if p-optimal proof systems exist.

172 Almost optimal algorithms and logics for complexity classes

Theorem 5.11 Assume Q ⊆ Σ∗ has padding.
(1) The following are equivalent:

(a) Q has a space optimal logspace proof system.
(b) Q has an almost space optimal algorithm.
(c) List(L, Q,L).

(2) The following are equivalent:
(a) Q has an almost space optimal nondeterministic algorithm.
(b) List(NL, Q,NL).

Proof. Part (1) and the implication from (a) to (b) in part (2) can be obtained along the
lines of our proof of Theorem 5.9 in Section 5.1; however, for the implication from (a) to
(b) of part (1), we need a space version of Levin’s result, which we state and prove in
Section 5.3 as we have not found it in the literature.

We now prove (b) ⇒ (a) in (2). Let L be a listing witnessing that List(NL, Q,NL).
It should be clear that the following nondeterministic algorithm O accepts Q.

O // x ∈ Σ∗

1. guess an i ∈ N and compute the ith machine Mi listed by L
2. guess a d ∈ N (in binary)
3. simulate Mi on pad(x, x01d) and output accordingly.

We show that O is almost space optimal. To that end, let A be a nondeterministic
algorithm accepting Q. We consider the subset LOG(A) of Q, where

LOG(A) :=
{
pad(x, x01d)

∣∣ d ∈ N and A accepts x using space at most log d}.

By the properties of a padding function it is easy to show that LOG(A) ∈ NL. Therefore,
there exists an i0 ∈ N such that the i0th machine Mi0 listed by L accepts LOG(A) in
space O(log n); in particular,

sMi0 (pad(x, x01
d)) ≤ O

(
log |pad(x, x01d)|

)
= O

(
log(|x|O(1) + dO(1))

)
(5.7)

= O(log |x|+ log d).

The first equality holds as pad is computable in logspace and hence, in polynomial time.
Let x ∈ Q. We consider the run of the algorithm O on input x, where it guesses

i := i0 (in Line 1) and d := 2sA(x)(in Line 2). These choices show that

(5.8) sO(x) ≤ O
(
c+ sA(x) + log |x|+ log

∣∣pad(x, x01d)∣∣+ sMi0 (pad(x, x01
d))
)
,

where c counts the space for guessing i0 and for computing the machine Mi0 . By (5.7)
and (5.8) we conclude that

sO(x) ≤ O(sA(x) + log |x|). 2

We will use the following simple observations on listings to generalize some results
of the preceding sections from Q = Taut to arbitrary Q with padding. For Q = Taut,
part (c) of the next proposition has already been shown in [22] by completely different
means. Recall that C,C ′, . . . range over the complexity classes L, NL, P and NP.

Proposition 5.12
(a) Let C, C ′, and C ′′ be complexity classes with C ′ ⊆ C ′′. If List(C,Q,C ′), then

List(C,Q,C ′′).

The Infinity Project 173

(b) Let C, C ′, and C0 be complexity classes with C0 ⊆ C ⊆ C ′. If List(C,Q,C ′),
then List(C0, Q,C

′).
(c) Assume Q has padding. Then

List(NP, Q,NP) ⇐⇒ List(P, Q,NP).

In particular, List(P, Q,P) implies List(NP, Q,NP).

Proof. Part (a) is trivial. For (b), let M′ be a TM of type C ′ and M0 one of type C0.
Let M′(M0) be the TM that on input x, first, by brute force, checks whether M′ and
M0 accept the same strings of length ≤ log log |x|; if so, then it simulates M′ on x (and
answers accordingly), otherwise it rejects. One easily verifies that M′(M0) is a machine
of type C ′; furthermore

L(M′(M0)) =

{
L(M′), if L(M0) = L(M′),
a finite subset of L(M′), otherwise.

Therefore, if M′
1,M′

2, . . . is a listing of the C-subsets of Q by C ′-machines and M1,M2, . . .
an enumeration of all TMs of type C0, then the listing

(
M′
i(Mj)

)
i≥1, j≥1

witnesses that
List(C0, Q,C

′).
For (c), let pad be a padding function for Q. By (b) it suffices to show the implication

from right to left. Hence, we assume that List(P, Q,NP). For a nondeterministic Turing
machine M, we set

Comp(M) :=
{
pad(x, ⟨x, c⟩)

∣∣ x ∈ Σ∗ and c is a computation3 of M accepting x
}
.

Clearly, Comp(M) ∈ P; moreover

(5.9) Comp(M) ⊆ Q ⇐⇒ L(M) ⊆ Q.

Hence, if M1,M2, . . . is a listing of the P-subsets of Q by NP-machines, then M∗
1,M∗

2, . . .
is a listing of the NP-subsets of Q by NP-machines, where M∗

i on input x guesses a string
c and simulates Mi on input pad(x, ⟨x, c⟩). 2

Now we can prove Corollary 2.7 (a) for arbitrary Q with padding:

Corollary 5.13 Assume that Q has padding. If Q has an almost optimal algorithm, then
it also has an almost optimal nondeterministic algorithm.

Proof. If Q has an almost optimal algorithm, then List(P, Q,P) by Theorem 5.2. There-
fore List(NP, Q,NP) by part (c) of the previous proposition. Applying again Theorem 5.2
we get the claim. 2

We were unable to prove the logspace analogue of Proposition 5.12 (c), however, as a
byproduct of our main result of Section 6 relating listings and logics (Theorem 6.1),
we will get that (c) holds for Q = Taut, that is, that List(L,Taut,NL) implies
List(NL,Taut,NL).

For the set Comp(M) introduced for any nondeterministic TM in the proof of (c) of
the previous proposition, we even have Comp(M) ∈ L. We use this to obtain the following
observation.

3 That is, c is the sequence of configurations of a run of ⋗ on x.

174 Almost optimal algorithms and logics for complexity classes

Proposition 5.14
(a) If Q has padding and List(L, Q,P), then List(P, Q,P).
(b) If Q has padding and List(NL, Q,NL), then List(NP, Q,NP).

Proof. (a) For deterministic TMs M and M′ let M(M′) be the TM that on input x,
first by simulating M′ on input x stores its sequence c of configurations and then runs
M on input pad(x, ⟨x, c⟩). By (5.9), if M1,M2, . . . is a listing of the L-subsets of Q
by P-machines and M′

1,M′
2, . . . an enumeration of all polynomial time TMs, then the

enumeration
(
Mi(M′

j)
)
i≥1, j≥1

witnesses that List(P, Q,P).
The proof of (b) is obtained by obvious modifications. 2

As a corollary of this proposition we get, using Theorem 5.2 and Theorem 5.9, the
following generalization of Corollary 2.11 and Corollary 4.2.

Corollary 5.15 Assume that Q has padding.
(a) If Q has an almost space optimal algorithm, then Q has an almost (time) optimal

algorithm.
(b) If Q has an almost space optimal nondeterministic algorithm, then Q has an

almost (time) optimal algorithm.

Proof. For (b) note that List(NL, Q,NL) implies List(L, Q,P) by Proposition 5.12 (a)
and (b), and hence it implies List(P, Q,P) by part (a) of the previous proposition. 2

The effective variant. We start by introducing the effective notions.

Definition 5.16 Let Q ⊆ Σ∗.
(1) A proof system P for Q is effectively p-optimal if there are two algorithms T and

B such that:
(a) T and B compute functions defined on Σ∗ × N[X]; the values of T are in

Σ∗, that of B in N[X];
(b) for every proof system P′ for Q and every time bound p′ ∈ N[X] of P′,

T(P′, p′)

is (the code of) a translation from P′ into P and the polynomial B(P′, p′) is
a time bound for it.

(2) An algorithm A deciding Q is effectively almost optimal if there is an algorithm
B computing a function defined on Σ∗ with values in N[X] such that for every
algorithm C deciding Q and every x ∈ Q we have

tA(x) ≤ B(C)
(
tC(x) + |x|

)
.

(3) An effective listing of the P-subsets of Q by P-machines is a listing L of the
P-subsets of Q by P-machines such that for some algorithms I and B we have:
(a) I and B compute functions defined on Σ∗ × N[X]; the values of I are in N,

that of B in N[X];
(b) for every TMM deciding a P-subset X of Q and every time bound p ∈ N[X]

for M the I(M, p)th TM listed by L decides X with time bound B(M, p).

Using an effective version of Levin’s Theorem one gets, essentially by adapting our proof
of Theorem 5.9, the following effective analogue of Theorem 5.2:

The Infinity Project 175

Theorem 5.17 For Q with padding the following are equivalent:
(1) Q has an effectively p-optimal proof system.
(2) Q has an effectively almost optimal algorithm.
(3) Q has an effective listing of the P-subsets of Q by P-machines.

Let us close this part by stating a corollary of this result obtained from Corollary 2.16
and Corollary 2.17. Part (b) is the “effective” generalization of a result due to Krajíček
and Pudlák [17].

Corollary 5.18
(a) If NP[tc] ̸⊆ P[tclog tc], then Taut has no effectively p-optimal proof system.
(b) If NE = E, then Taut has an effectively p-optimal proof system.

5.3 A space version of Levin’s result

Theorem 5.19 Let F be an algorithm computing a function f : Σ∗ → Σ∗. There exists
an algorithm O such that:

(a) O inverts f and sO(y) =∞ for every input y, which is not in the range of f (in
particular, the algorithm O does not stop on y not in the range).

(b) For every algorithm I inverting f there is an a ∈ N such that for every y in the
range of f we have

sO(y) ≤ a ·
(
log |y|+ sI(y) + log |I(y)|+ sF(I(y))

)
.

Proof. First we introduce a notation. If A and A′ are algorithms computing (partial)
functions g and g′ from Σ∗ → Σ∗, then by A;A′ we denote an algorithm that computes
the function g′ ◦ g, i.e., x 7→ g′(g(x)).

Now let F be an algorithm computing a function f : Σ∗ → Σ∗. Let O be the TM that
on input x for k = 0, 1, 2, . . . and every TM M ∈ Σ∗ with |M;F| ≤ k simulates at most
|x| · |M;F| · (k− |M;F|) · 2k−|M;F| steps of M;F on input x as long as space ≤ k− |M;F| is
required;4 if the simulation outputs x (that is, M computes a string w with f(w) = x),
then it simulates M on x (outputting the w) and halts.

Then, O inverts f and sO(y) = ∞ for every input y, which is not in the range of f ;
hence, O satisfies (a). We turn to (b) and let I be any algorithm inverting f . There is
c ∈ N such that the space required to simulate, given I;F and x, the algorithm I;F on
input x is less than or equal to

(5.10) c+ log |I;F|+ log |x|+ sI;F(x).

We get an upper bound on the space that O requires on x if we assume that k gets a
value such that |I;F| ≤ k and the simulation of I;F on x can be performed with space at
most k − |I;F|. Hence, by (5.10),

sO(x) ≤ O
(
|I;F|+ c+ log |I;F|+ log |x|+ sI;F(x)

)
≤ O

(
|I;F|+ c+ log |x|+ sI(x) + log |I(x)|+ sF(I(x))

)
= O

(
log |x|+ sI(x) + log |I(x)|+ sF(I(x))

)
. 2

4 As ℓ := |M;F| ≤ k, the algorithm M;F has at most ℓ states, so on input x we have at most
|x| · ℓ · (k − ℓ) · 2k−ℓ distinct configurations using space at most k − |M;F|. So, if M;F on x halts using
at most this space, so will do the simulation.

176 Almost optimal algorithms and logics for complexity classes

6 Logics and listings

In the concepts “L(C) is a C ′-bounded logic for C” and List(C,Q,C ′) two complexity
classes, C and C ′, appear. We show that they match; more precisely, we show:

Theorem 6.1 Let C ∈ {L,NL,P}, C ′ ∈ {L,NL,P,NP}, and C ⊆ C ′. Then

L(C)inv is a C ′-bounded logic for C ⇐⇒ List(C,Taut, C ′).

We remark that one can also define the notion of “almost C ′-optimal C-algorithm”, an
algorithm of type C almost optimal with respect to all C ′-algorithms, and analyze their
relationship to the notions in the preceding result. For C,C ′ ∈ {P,NP} and listings this
has been done in [22].

Proof of Theorem 6.1: We assume that C ⊆ C ′ and that L(C)inv is a C ′-bounded logic
for C. Let Prop denote the class of all formulas of propositional logic. For a suitable
vocabulary τ in logarithmic space we can associate with every α ∈ Prop a τ -structure
A(α) such that

(i) every propositional variable X of α corresponds to distinct elements aX , bX of
A(α) and there is a unary P ∈ τ such that PA(α) =

{
aX
∣∣ X variable of α

}
;

(ii) the class
{
B
∣∣ B ∼= A(α) for some α ∈ Prop

}
of τ -structures is axiomatizable

by a DTC[τ]-sentence and therefore by an L(C)[τ]-sentence φ(Prop);
(iii) if B |= φ(Prop), then one can determine the unique α ∈ Prop with B ∼= A(α)

in logarithmic space.
An ordered τ<-structure of the form (A(α), <) induces the assignment of the variables
of α that sends a variable X to true if aX < bX . As in logarithmic space we can check
whether this assignment satisfies α, there is a DTC[τ<]-sentence and hence an L(C)[τ<]-
sentence φ(sat) that for every α ∈ Prop expresses in (A(α), <) that the assignment given
by < satisfies α. We introduce the L(C)[τ<]-sentence

φ0 :=
(
φ(Prop)→ φ(sat)

)
.

Then φ0 is an L(C)inv[τ]-sentence. Every assignment of α can be obtained by some
ordering < of A(α). Hence, by the definition of |=L(C)inv , we see that for every α ∈ Prop
and every L(C)inv[τ]-sentence φ

(6.1) if A(α) |=L(C)inv (φ0 ∧ φ), then α ∈ Taut.

For φ ∈ L(C)inv[τ] we consider the class of models of (φ0 ∧ φ), more precisely, the set

Q(φ) :=
{
α ∈ Prop

∣∣ A(α) |=L(C)inv (φ0 ∧ φ)
}
.

Claim The class of sets Q(φ), where φ ranges over all L(C)inv-sentences coincides with
the class of C-subsets of Taut.

Proof of the claim: First let Q be a C-subset of Taut. If Q is finite, it is easy to see
that Q = Q(φ) for some φ ∈ L(C)inv. Now let Q be infinite. The class

{
B
∣∣ B ∼=

A(α) for some α ∈ Q
}

is in C (by (ii) and (iii) as L ⊆ C). As we assume that L(C)inv
is a logic for C, this class is axiomatizable by an L(C)inv[τ]-sentence φ. As the class
contains arbitrarily large structures, the formula φ is invariant. We show that Q = Q(φ).

Assume first that α ∈ Q(φ), i.e., A(α) |=L(C)inv (φ0 ∧ φ). Then, by invariance
of φ, we have A(α) |=L(C)inv φ and thus α ∈ Q. Conversely, assume that α ∈ Q.
Then A(α) |=L(C)inv φ. As α ∈ Taut, in order to get A(α) |=L(C)inv (φ0 ∧ φ)

(
and

hence, α ∈ Q(φ)
)
, it suffices to show that (φ0 ∧ φ) is ≤ |A(α)|-invariant. So let B be

The Infinity Project 177

a τ -structure with |B| ≤ |A(α)|. If B ̸|=L(C)inv φ, then, by invariance of φ, we have
(B, <B) ̸|=L(C) (φ0 ∧ φ) for all orderings <B on B; if B |=L(C)inv φ, then B ∼= A(β) for
some β ∈ Q ⊆ Taut. Hence, (B, <B) |=L(C) (φ0 ∧ φ) for all orderings <B on B.

We still have to show that Q(φ) is a C-subset of Taut for every φ ∈ L(C)inv[τ]. So
we fix φ ∈ L(C)inv[τ]. By (6.1), Q(φ) ⊆ Taut. As L(C)inv is a logic for C, we have
Q(φ) ∈ C. ⊣

As L(C)inv is a C ′-bounded logic for C, the corresponding algorithm A for the satis-
faction relation (cf. Definition 3.2 (b)) restricted to (φ0 ∧ φ) with φ ∈ L(C)inv[τ] yields
an algorithm of type C ′ accepting Q(φ). Thus, by the Claim, the classes Q(φ) where φ
ranges over all L(C)inv[τ]-sentences witness that List(C,Taut, C ′).

Now let us assume that List(C,Taut, C ′). It suffices to show that p-Halt> ∈ XC′
uni

as then Theorem 3.1 yields the claim. Since L ⊆ C, we have List(L,Taut, C ′) (by
Proposition 5.12 (b)). First assume that C ′ is a space complexity class. If C ′ = L,
then List(L,Taut,L) and therefore Taut has an almost space optimal algorithm (by
Theorem 5.11) and hence p-Halt> ∈ XLuni (by Theorem 2.10).

Let C ′ = NL. We fix a logspace one-to-one reduction ⟨M, 1n⟩ 7→ α(M, 1n) from
Halt> (the classical problem underlying p-Halt>) to Taut, which is logspace invertible.
Furthermore, let B be an algorithm that on input M, a nondeterministic TM, computes
tM(λ), the least k such that there is an accepting run of M on the empty string λ, by
“brute force”. Let L be a listing witnessing List(L,Taut,NL). We show that the following
nondeterministic algorithm A witnesses that p-Halt> ∈ XNLuni:

A // M a nondeterministic TM, 1n with n ∈ N
1. guess x ∈ {B,L}
2. if x = B then simulate B on M
3. if B halts then
4. if n < tM(λ) then accept
5. if x = L then guess i ≥ 1
6. simulate L till it outputs the ith machine, say, C
7. simulate C on α(M, 1n)
8. if C accepts then accept.

Whenever during the simulation of C on α(M, 1n) a bit of the input α(M, 1n) is required,
the algorithm A simulates the reduction ⟨M, 1n⟩ 7→ α(M, 1n) till this bit is obtained.

Clearly A accepts Halt>. We still have to verify that for some function f : N→ N and
every ⟨M, 1n⟩ ∈ p-Halt> we have sA(⟨M, 1n⟩) ≤ f(|M|)·log n. We fix ⟨M, 1n⟩ ∈ p-Halt>
and consider the following two cases:

Case “
⟨
M, 1ℓ

⟩
/∈ p-Halt> for some ℓ ∈ N”: Then eventually B will halt on input M.

Thus, in the worst case, A on input ⟨M, 1n⟩ has to wait till the simulation of B onM halts
and then A has to verify that the output tM(λ) of the computation of B is bigger than n.
So the space sA(⟨M, 1n⟩) can be bounded by cM · log |n| for some constant cM ∈ N.

Case “
⟨
M, 1ℓ

⟩
∈ p-Halt> for all ℓ ∈ N”: Then

{
α(M, 1ℓ)

∣∣ ℓ ∈ N} is an L-subset of
Taut and hence L lists a machine C accepting this set. As C is logspace, the claim
follows immediately.

The cases where C ′ is a time complexity class are treated similarly using algorithms
analogous to those used for time classes in Section 2. 2

178 Almost optimal algorithms and logics for complexity classes

We already mentioned that we do not know any direct proof of the following result;
in particular, we do not know whether we can replace Taut by any Q with padding.

Corollary 6.2 If List(L,Taut,L), then List(NL,Taut,NL).

References
[1] A. K. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer

and System Sciences, 25:99–128, 1982.
[2] Y. Chen and J. Flum. On the complexity of Gödel’s proof predicate. The Journal of Symbolic Logic,

75:239–254, 2009.
[3] Y. Chen and J. Flum. A logic for PTIME and a parameterized halting problem. In Fields of Logic

and Computation, Lecture Notes in Computer Science 6300, 251–276, 2010.
[4] Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. In Proceedings of the

37th International Colloquium on Automata, Languages and Programming (ICALP’10, Track B),
Lecture Notes in Computer Science 6199, 321–332, 2010.

[5] Y. Chen and J. Flum. On slicewise monotone parameterized problems and optimal proof systems for
TAUT. In Proceedings of the 19th EACSL Annual Conference in Computer Science Logic (CSL’10),
Lecture Notes in Computer Science 6247, 200–214, 2010.

[6] Y. Chen and J. Flum. Listings and logics. To appear in In Proceedings of the 26th Annual IEEE
Symposium on Logic in Computer Science (LICS’11), 2011.

[7] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The Journal of
Symbolic Logic, 44:36–50, 1979.

[8] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R. M. Karp (ed.),
Complexity of Computation, SIAM-AMS Proceedings, vol. 7, 43–73, 1974.

[9] M. Grohe. Fixed-point definability and polynomial time. In Proceedings of the 23rd International
Workshop on Computer Science Logic (CSL’09), Lecture Notes in Computer Science 5771, pages
20–23, 2009.

[10] Y. Gurevich. Logic and the challenge of computer science. In Current Trends in Theoretical Computer
Science, Computer Science Press, 1–57, 1988.

[11] J. Hartmanis and L. Hemachandra. Complexity classes without machines: On complete languages
for UP. Theoretical Computer Science, 58:129–142, 1988.

[12] N. Immerman. Relational queries computable in polynomial time. Information and Control , 68:86–
104, 1986.

[13] N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing , 16:770–
778, 1987.

[14] N. Immerman. Nondeterministic space is closed under complement. SIAM Journal on Computing ,
17:935–938, 1988.

[15] J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for promise classes.
Information and Computation, 184:71–92, 2003.

[16] W. Kowalczyk. Some connections between presentability of complexity classes and the power of
formal systems of reasonning. In Proceedings of Mathematical Foundations of Computer Science
1984 (MFCS’84), Lecture Notes in Computer Science 176, 364–369, 1984.

[17] J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and
the complexity of computations. The Journal of Symbolic Logic, 54:1063–1088, 1989.

[18] L. Levin. Universal search problems. Problems of Information Transmission, 9(3):265–266, 1973.
[19] J. Messner. On the simulation order of proof systems. PhD Thesis, University of Erlangen, 2000.
[20] J. Messner and J. Torán. Optimal proof systems for propositional logic and complete sets. In Pro-

ceedings of the 15th Annual Symposium of Theoretical Aspects of Computer Science (STACS’98),
Lecture Notes in Computer Science 1373, 477–487, 1998.

[21] A. Nash, J. Remmel, and V. Vianu. PTIME queries revisited. In Proceedings of the 10th International
Conference on Database Theory (ICDT’05), Lecture Notes in Computer Science 3363, 274–288, 2005.

[22] Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets. Theoretical
Computer Science, 288(1):181–193, 2002.

[23] M. Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing (STOC’82), 137–146, 1982.

The Infinity Project

On p-optimal proof systems and logics for PTIME

Yijia Chen∗, Jörg Flum†

∗ Department of Computer Science, Shanghai Jiao Tong University, China
yijia.chen@cs.sjtu.edu.cn

† Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

Abstract. We prove that Taut has a p-optimal proof system if and only if a logic related to least
fixed-point logic captures polynomial time on all finite structures. Furthermore, we show that Taut has
no effective p-optimal proof system if NTIME(hO(1)) ̸⊆ DTIME(hO(log h)) for every time constructible
and increasing function h.

Introduction

As the title already indicates, this paper relates two topics which at first glance seem to
be unrelated. On the one hand we consider optimal proof systems. A proof system in
the sense of Cook and Reckhow [6], say for the class Taut of tautologies of propositional
logic, is a polynomial time computable function defined on {0, 1}∗ and with Taut as
range. A proof system is p-optimal if it simulates any other proof system in polynomial
time.1 In their fundamental paper [13], Krajíček and Pudlák derive a series of statements
equivalent to the existence of a p-optimal proof system for Taut and state the following
conjecture:

Conjecture 1 There is no p-optimal proof system for Taut.

On the other hand, the question of whether there is a logic capturing polynomial time
remains the central open problem in descriptive complexity. There are artificial logics
capturing polynomial time, but they do not fulfill a natural requirement to logics in this
context:

(0.1)
There is an algorithm that decides whether A is a model of φ
for all structures A and sentences φ of the logic and that does this
for fixed φ in time polynomial in the size ∥A∥ of A.

If this condition is fulfilled for a logic capturing polynomial time, we speak of a P-bounded
logic for P. In [10] Gurevich states the following conjecture:

Conjecture 2 There is no P-bounded logic for P.

The conjecture is false if one waives the effectivity condition (0.1). This is shown in [10,
Section 7, Claim 2]) by considering a logic introduced by Blass and Gurevich and which
we denote by L≤. For any vocabulary the sentences of L≤ are the sentences of least fixed-
point logic in a vocabulary with an additional binary relation symbol for orderings. In

∗,†This research has been partially supported by the National Nature Science Foundation of China
(60970011), the Sino-German Center for Research Promotion (GZ400), and the John Templeton Foun-
dation through Project # 13152, the Infinity Project at the Centre de Recerca Matemàtica.

1 All notions will be defined in a precise manner in Section 1.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

179

180 On p-optimal proof systems and logics for PTIME

L≤ for a structure A to be a model of φ it is required that in all structures of cardinality
less than or equal to that of A, the validity of φ (as a sentence of least fixed-point logic)
does not depend on the chosen ordering, and A with some ordering satisfies φ.

As L≤ satisfies all requirements of a P-bounded logic for P except (0.1), Gurevich
implicitly states the following conjecture:

Conjecture 2a L≤ is not a P-bounded logic for P.

The main result of this paper (cf. Theorem 2.1) tells us that

(0.2) Conjecture 1 is true ⇐⇒ Conjecture 2a is true.

We mentioned that at first glance “p-optimal proof systems for Taut” and “logics for P”
seem to be unrelated topics. However, there are reformulations of Conjecture 1 and
Conjecture 2 that are alike. In fact, it is known [15] that Taut has a p-optimal proof
system if and only if there is a (computable) enumeration of all subsets of Taut that are
in P by means of Turing machines that decide them. And it is not hard to see that there
is a P-bounded logic for P if and only if there is an enumeration of all polynomial time
decidable classes of graphs closed under isomorphisms, again an enumeration in terms of
Turing machines that decide these classes. In fact the question for a logic for P was stated
in this way by Chandra and Harel [2] in the context of an analysis of the complexity and
expressiveness of query languages.

Hence one consequence of (0.2) (which we only mention in this Introduction) is:

Theorem 1 If there is an enumeration of all polynomial time decidable subsets of Taut,
then there is an enumeration of all polynomial time decidable classes of graphs closed
under isomorphisms.

Using a special feature of the semantics of the logic L≤, one can construct (cf. Propo-
sition 2.6) a logic that is an effectively P-bounded logic for P, if L≤ is a P-bounded logic
for P. Here this “effectively” means that in (0.1) we can compute from φ a polynomial
bounding the time to decide whether A is a model of φ. In this way we can strengthen
the conclusion of Theorem 1 by requiring that every Turing machine in the enumera-
tion comes with a polynomial time clock. Apparently this is a strengthening, while from
any enumeration of the polynomial time decidable subsets of Taut we obtain one with
polynomial time clocks in a trivial manner, namely by systematically adding such clocks.

In general, the experts tend to believe Conjecture 1, as the existence of a p-optimal
proof system for Taut would have various consequences which seem to be unlikely
(see [12, 13]). It is worthwhile to emphasize that we show that Conjecture 1 is equivalent
to Conjecture 2a and do not claim its equivalence to Conjecture 2. The situation with
Conjecture 2 is quite different; no known consequences of the existence of a P-bounded
logic for P seem to be implausible. Moreover, due to results showing that there are logics
capturing polynomial time on always larger classes of structures, Grohe [9] “mildly leans
towards believing” that there is a P-bounded logic for P.

In [3] we have shown that L≤ is not an effectively P-bounded logic for P under the
assumption NP[tc] ̸⊆ P[tclog tc], which means that NTIME(hO(1)) ̸⊆ DTIME(hO(log h))
for every time constructible and increasing function h. Under this assumption, we get
(see Theorem 3.2) that Taut has no effectively p-optimal proof system. Here a proof
system P for Taut is effectively p-optimal if from every other proof system for Taut we
can compute a polynomial time simulation by P .

The Infinity Project 181

On the other hand, Krajíček and Pudlák [13] showed, assuming E = NE, that Taut
has a p-optimal proof system. Using our result [3] that under the assumption E = NE
the logic

(
L= and hence

)
L≤ is an effectively P-bounded logic for P, we can derive (see

Corollary 3.4) that Taut has an effectively p-optimal proof system if E = NE.
In [5] we extract the main idea underlying the proof of (0.2), apply it to other prob-

lems, and generalize it to the “nondeterministic case”, thus obtaining statements equiva-
lent to the existence of an optimal (not necessarily p-optimal) proof system for Taut.

1 Preliminaries

In this section we recall concepts and results from complexity theory and logic that we
will use later and fix some notation.

1.1 Complexity

We denote the alphabet {0, 1} by Σ. The length of a string x ∈ Σ∗ is denoted by |x|.
We identify problems with subsets Q of Σ∗. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form. We denote by P the class of problems Q
such that x ∈ Q is solvable in polynomial time.

All Turing machines have Σ as their alphabet and are deterministic ones if not stated
otherwise explicitly. If necessary we will not distinguish between a Turing machine and
its code, a string in Σ∗. If M is a Turing machine we denote by ∥M∥ the length of its
code.

By mO(1) we denote the class of polynomially bounded functions from N to N. Some-
times statements containing a formulation like “there is d ∈ N such that for all x ∈ Σ∗:
. . . ≤ |x|d” can be wrong for x ∈ Σ∗ with |x| ≤ 1. We trust the reader’s common sense
to interpret such statements reasonably.

1.1.1 Optimal proof systems, almost optimal algorithms and enumerations of
P-easy subsets

A proof system for a problem Q ⊆ Σ∗ is a surjective function P : Σ∗ → Q computable in
polynomial time. The proof system P for Q is polynomially optimal or p-optimal if for
every proof system P ′ for Q there is a polynomial time computable T : Σ∗ → Σ∗ such
that, for all w ∈ Σ∗,

P (T (w)) = P ′(w).

If A is any algorithm we denote by tA(x) the number of steps of the run of A on input x;
if A on x does not stop, then tA(x) is not defined.

An algorithm A deciding Q is almost optimal or optimal on positive instances of Q if
for every algorithm B deciding Q there is a polynomial p ∈ N[X] such that for all x ∈ Q

tA(x) ≤ p(tB(x) + |x|)

(note that nothing is required of the relationship between tA(x) and tB(x) for x /∈ Q).
By definition a subset Q′ of Q is P-easy if Q′ ∈ P. An enumeration of P-easy subsets

of Q is a computable function M : N→ Σ∗ such that
• for every i ∈ N the string M(i) is a polynomial time Turing machine deciding a

P-easy subset of Q;
• for every P-easy subset Q′ of Q there is i ∈ N such that M(i) decides Q′.

182 On p-optimal proof systems and logics for PTIME

We denote by Taut the class of tautologies of propositional logic. The following theorem
is well-known (cf. [13] for the equivalence of the first two statements and [15] for the
equivalence to the third one):

Theorem 1.1 The following are equivalent:
(1) Taut has a p-optimal proof system.
(2) Taut has an almost optimal algorithm.
(3) Taut has an enumeration of the P-easy subsets.

1.2 Logic

A vocabulary τ is a finite set of relation symbols. Each relation symbol has an arity. A
structure A of vocabulary τ , or τ -structure (or, simply structure), consists of a nonempty
set A called the universe, and an interpretation RA ⊆ Ar of each r-ary relation symbol
R ∈ τ . All structures in this paper are assumed to have finite universe.

For a structure A we denote by ∥A∥ the size of A, that is, the length of a reasonable
encoding of A as a string in Σ∗ (e.g., cf. [8] for details). We only consider properties of
structures that are invariant under isomorphisms, so it suffices that from the encoding
of A we can recover A up to isomorphism. We can assume that there is a computable
function lgth such that for every vocabulary τ and m ≥ 1:

• ∥A∥ = lgth(τ,m) for every τ -structure A with universe of cardinality m;
• for fixed τ , the function m 7→ lgth(τ,m) is computable in time mO(1);
• lgth(τ ∪ {R},m) = O(lgth(τ,m) + mr) for every r-ary relation symbol R not

in τ .

We assume familiarity with first-order logic and its extension least fixed-point logic
LFP (e.g. see [7]). We denote by LFP[τ] the set of sentences of vocabulary τ of LFP. As
we will introduce further semantics for the formulas of least fixed-point logic, we write
A |=LFP φ if the structure A is a model of the LFP-sentence φ. An algorithm based on
the inductive definition of the satisfaction relation for LFP shows (see [17]):

Proposition 1.2 The model-checking problem A |=LFP φ for structures A and LFP-
sentences φ can be solved in time

∥A∥O(|φ|).

1.2.1 Logics capturing polynomial time

For our purposes, a logic L consists of
• an algorithm that for every vocabulary τ and every string ξ decides whether ξ

is in the set L[τ], the set of L-sentences of vocabulary τ ;
• a satisfaction relation |=L; if (A, φ) ∈ |=L, then A is a τ -structure and φ ∈ L[τ]

for some vocabulary τ ; furthermore for each τ and φ ∈ L[τ] the class of structures
A with A |=L φ is closed under isomorphisms.

We say that A is a model of φ if A |=L φ
(
that is, if (A, φ) ∈ |=L

)
. We set ModL(φ) :={

A | A |=L φ
}

and say that φ axiomatizes the class ModL(φ).

Definition 1.3 Let L be a logic.
(a) L is a logic for P if for all vocabularies τ and all classes C (of encodings) of

τ -structures closed under isomorphisms we have

C ∈ P ⇐⇒ C = ModL(φ) for some φ ∈ L[τ].

The Infinity Project 183

(b) L is a P-bounded logic for P if (a) holds and if there is an algorithm A deciding
|=L (that is, for every structure A and L-sentence φ the algorithm A decides
whether A |=L φ) and if moreover A, for every fixed φ, polynomial in ∥A∥.

Hence, if L is a P-bounded logic for P, then for every L-sentence φ the algorithm A
witnesses that ModL(φ) ∈ P. However, we do not necessarily know ahead of time a
bounding polynomial.

(c) L is an effectively P-bounded logic for P if L is a P-bounded logic for P and
if in addition to the algorithm A as in (b) there is a computable function that
assigns to every L-sentence φ a polynomial q ∈ N[X] such that A decides whether
A |=L φ in ≤ q(∥A∥) steps.

1.2.2 The logic L≤ and invariant sentences

In this section we introduce the logic L≤, a variant of least fixed-point logic.
For every vocabulary τ we let τ< := τ ∪ {<}, where < is a binary relation symbol

not in τ chosen in some canonical way. We set

L≤[τ] = LFP[τ<]

for every vocabulary τ . Before we define the satisfaction relation for L≤ we introduce the
notion of ≤ m-invariant sentence.

Definition 1.4 Let φ be an L≤[τ]-sentence.
• For m ≥ 1 we say that φ is ≤ m-invariant if for all structures A with |A| ≤ m

and all orderings <1 and <2 on A we have

(A, <1) |=LFP φ ⇐⇒ (A, <2) |=LFP φ.

• φ is invariant if it is ≤ m-invariant for all m ≥ 1.

Finally we introduce the semantics for the logic L≤ by

A |=L≤ φ ⇐⇒
(
φ is ≤ |A|-invariant and (A, <) |=LFP φ for some ordering < on A

)
.

Immerman [11] and Vardi [16] have shown that LFP is an effectively P-bounded logic
for P on the class of ordered structures, a result we will not need in the proof of our main
theorem. However, using it one can easily show that L≤ is a logic for P.

For later purposes we remark that for every L≤[τ]-sentence φ and m ≥ 1 we have

φ is ≤ m-invariant ⇐⇒ ¬φ is ≤ m-invariant,

and thus, for every τ -structure A,

φ is ≤ |A|-invariant ⇐⇒
(
A |=L≤ φ or A |=L≤ ¬φ

)
.

In particular,

φ is ≤ m-invariant ⇐⇒
(
A(τ,m) |=L≤ φ or A(τ,m) |=L≤ ¬φ

)
,

where A(τ,m) is the τ -structure with universe {1, . . . ,m}, where every relation symbol
in τ is interpreted by the empty relation of the corresponding arity.

Finally we remark that it can happen for L≤-sentences φ and ψ and a structure A
that A |=L≤ (φ ∧ ψ) but neither A |=L≤ φ nor A |=L≤ ψ.

184 On p-optimal proof systems and logics for PTIME

2 Main theorem

In this section we want to show:

Theorem 2.1 Taut has a p-optimal proof system iff L≤ is a P-bounded logic for P.

In view of Theorem 1.1 we get one direction of Theorem 2.1 with the following lemma.

Lemma 2.2 If L≤ is a P-bounded logic for P, then there is an enumeration of the P-easy
subsets of Taut.

Proof. It is easy to introduce a vocabulary τ such that in polynomial time we can associate
with every propositional formula α a τ -structure A(α) such that

• every propositional variable X of α corresponds to two distinct elements aX , bX
of A(α) and there is a unary relation symbol P ∈ τ such that PA(α) =

{
aX |

X variable of α
}
;

• there is an LFP-sentence φ(Prop) of vocabulary τ axiomatizing the class{
B | B ∼= A(α) for some α ∈ Prop

}
(by Prop we denote the class of formulas of propositional logic);
• if B |= φ(Prop), then one can determine the unique α ∈ Prop with B ∼= A(α)

in polynomial time.
Again let τ< := τ ∪ {<} with a new binary <. Note that a τ<-structure of the form
(A(α), <) yields an assignment of the variables of α, namely the assignment sending a
variable X to true if and only if aX < bX . There is an LFP[τ<]-formula φ(sat) that for
every α ∈ Prop expresses in (A(α), <) that the assignment given by < satisfies α.

We introduce the L≤[τ]-sentence

φ0 :=
(
φ(Prop)→ φ(sat)

)
.

By the definition of |=L≤ we see that for every α ∈ Prop and every L≤[τ]-sentence φ

(2.1) if A(α) |=L≤ (φ0 ∧ φ), then α ∈ Taut.

We claim that the class of models of (φ0 ∧ φ), more precisely,

Q(φ) :=
{
α ∈ Prop | A(α) |=L≤ (φ0 ∧ φ)

}
,

where φ ranges over all L≤[τ]-sentences, yields the desired enumeration of P-easy subsets
of Taut. By (2.1), we have Q(φ) ⊆ Taut.

For φ ∈ L≤[τ] let the Turing machine Mφ, given an input α ∈ Prop, first construct
A(α) and then check whether A(α) |=L≤ (φ0 ∧ φ). Clearly, Mφ decides Q(φ) and does
this in polynomial time, as L≤ is a P-bounded logic for P.

Conversely, let Q be a P-easy subset of Taut. If Q is finite, it is easy to see that
Q = Q(φ) for some φ ∈ L≤[τ]. Now let Q be infinite. The class{

B | B ∼= A(α) for some α ∈ Q
}

is in P, and therefore it is axiomatizable by an L≤[τ]-sentence φ. As the class contains
arbitrarily large structures, the formula φ is invariant. We show that Q = Q(φ).

Assume first that α ∈ Q(φ), i.e., A(α) |=L≤ (φ0 ∧ φ). Then, by invariance of φ, we
have A(α) |=L≤ φ and thus α ∈ Q. Conversely, assume that α ∈ Q. Then A(α) |=L≤ φ.
As α ∈ Taut, in order to get A(α) |=L≤ (φ0 ∧ φ)

(
and hence, α ∈ Q(φ)

)
it suffices to

show that (φ0 ∧ φ) is ≤ |A(α)|-invariant. So let B be a τ -structure with |B| ≤ |A(α)|. If

The Infinity Project 185

B ̸|=L≤ φ, then, by invariance of φ, we have (B, <B) ̸|=LFP (φ0∧φ) for all orderings <B on
B; if B |=L≤ φ, then B ∼= A(β) for some β ∈ Q ⊆ Taut. Hence, (B, <B) |=LFP (φ0 ∧ φ)
for all orderings <B on B. 2

Remark 2.3 In the previous proof we have used the definition of the satisfaction rela-
tion |=L≤ in order to express the universal second-order quantifier in the statement “all
assignments satisfy α”. Similarly, we can do with every Π1

1-sentence ∀Rφ, where φ is a
first-order formula or (equivalently) LFP-formula and show in this way that there is an
enumeration of the P-easy subsets closed under isomorphisms of the class of models of
∀Rφ, if L≤ is a P-bounded logic for P. In fact, let k be the arity of R. If a structure A has
n elements, we consider a structure B with additional disjoint unary relations UB, PB

0 , P
B
1

such that
B = UB ∪ PB

0 ∪ PB
1 , UB = A, |PB

0 | = nk |PB
1 | = nk

and with an ordering <B.
With the elements in PB

0 interpreted as 0s and the elements in PB
1 interpreted as 1s,

the first nk-elements of the ordering in PB
0 ∪ PB

1 represent a natural number < 2n
k and

thus a k-ary relation R on A, which we can compute in polynomial time (polynomial in n);
hence we can define R by an LFP-formula. As in this way, by changing the ordering, we
have access to all such k-ary relations R on A, we can express the quantifier ∀R using
the invariance requirement of |=L≤ .

For example, let C be the class of all pairs (G,H) of graphs such that H is not a
homomorphic image of G. By the previous observation, we see that there is an enumera-
tion of the P-easy subclasses of C closed under isomorphisms if L≤ is a P-bounded logic
for P. Of course, a subclass D of C is closed under isomorphisms if

G ∼= G′, H ∼= H′ and (G,H) ∈ D imply (G′,H′) ∈ D.

As the models of such a Π1
1-sentence correspond to a problem Q in co-NP, a simple

complexity-theoretic argument shows that there is an enumeration of the P-easy subsets
of Q provided there is one for the P-easy subsets of Taut (see also [1]). However, in this
way, in the previous example we would not get an enumeration of those P-easy subclasses
that are closed under isomorphisms.

In view of Theorem 1.1 the remaining direction in Theorem 2.1 is provided by the
following result.

Lemma 2.4 If Taut has an almost optimal algorithm, then L≤ is a P-bounded logic
for P.

Proof. We assume that Taut has an almost optimal algorithm O and have to show that
there is an algorithm that decides B |=L≤ φ and does this for fixed φ in time ∥B∥O(1).

By the definition of B |=L≤ φ and Proposition 1.2 it suffices to show the existence
of an algorithm A that for every L≤-sentence φ and every m ∈ N decides whether φ is
≤ m-invariant and does this for fixed φ in time mO(1).

We set

Q :=
{(
χ, ℓ, lgth(τ, ℓ)|χ|

) ∣∣∣ τ a vocabulary, χ ∈ LFP[τ], ℓ ≥ 1, lgth(τ, ℓ)|χ|

in unary, there is a τ -structure B with
(
|B| ≤ ℓ and B |=LFP χ

) }

186 On p-optimal proof systems and logics for PTIME

(compare Section 1.2 for the definition of the function lgth). By Proposition 1.2, Q ∈ NP.
Thus there is a polynomial time reduction R : Q ≤p Sat. We can assume that from R(x)
we can recover x in polynomial time. Let φ be an L≤[τ]-sentence. Then

φ is not ≤ m-invariant ⇐⇒ there is a τ -structure B and orderings <1, <2 with(
|B| ≤ m and (B, <1, <2) |=LFP (φ(<1) ∧ ¬φ(<2))︸ ︷︷ ︸

φ∗

)
⇐⇒

(
φ∗,m, lgth(τ ∪ {<1, <2},m)|φ

∗|
)
∈ Q

⇐⇒ R
(
φ∗,m, lgth(τ ∪ {<1, <2},m)|φ

∗|
)
∈ Sat.

We set α(φ,m) := R
(
φ∗,m, lgth(τ ∪ {<1, <2},m)|φ

∗|). Hence

(2.2) φ is ≤ m-invariant ⇐⇒ ¬α(φ,m) ∈ Taut.

It is clear that there is an algorithm that on input (φ,m) computes α(φ,m) and for
fixed φ

(2.3) it computes α(φ,m) in time mO(1), in particular, |α(φ,m)| ≤ mO(1),

as, for fixed τ , the function m 7→ lgth(τ,m) is polynomial in m.
Let S be the algorithm that on input φ by systematically going through all τ -struc-

tures with universe {1}, all with universe {1, 2}, . . . and all orderings of these universes
computes m(φ) := the least m such that φ is not ≤ m-invariant. If φ is invariant, then
m(φ) is not defined and S does not stop.

We show that the following algorithm A has the desired properties.

A(φ,m)
// φ an L≤-sentence, m ∈ N

1. Compute α(φ,m)
2. In parallel simulate S on input φ and O on input ¬α(φ,m)
3. if O stops first, then output its answer
4. if S stops first, then
5. if m < m(φ) then accept else reject.

By our assumptions on O and S and by (2.2), it should be clear that A on input (φ,m)

decides if φ is ≤ m-invariant. We have to show that for fixed φ it does it in time mO(1).

Case “φ is invariant”: Then for all m we have ¬α(φ,m) ∈ Taut. Thus the following
algorithm Oφ decides Taut: on input β ∈ Prop the algorithm Oφ checks whether
β = ¬α(φ,m) for some m ≥ 1. If so, it accepts and otherwise it runs O on input β and
answers accordingly. By (2.3), we have

(2.4) tOφ(¬α(φ,m)) ≤ mO(1).

As O is optimal, we know that there is a constant d such that for all β ∈ Taut

(2.5) tO(β) ≤
(
|β|+ tOφ(β)

)d
.

In particular, we have

tO(¬α(φ,m)) ≤
(
|¬α(φ,m)|+ tOφ(¬α(φ,m))

)d ≤ mO(1).

By this inequality, (2.3) and (2.4), we see that for invariant φ we have tA(φ,m) ≤ mO(1).

The Infinity Project 187

Case “φ is not invariant”: Then S will stop on input φ. Thus, in the worst case, A on
input (φ,m) has to wait till the simulation of S on φ stops and then must check whether
the result m(φ) of the computation of S is bigger than m or not and answer accordingly.
So the algorithm A at most takes time mO(1) +O(tS(φ) +m) ≤ mO(1) (note that we fix
φ, so that tS(φ) is a constant). 2

Corollary 2.5 If Taut has a p-optimal proof system, then there is an effectively
P-bounded logic for P.

This result follows from Theorem 2.1 using the following proposition:

Proposition 2.6 If L≤ is a P-bounded logic for P, then there is an effectively P-bounded
logic for P.

Proof. In Section 1.2 we have seen that for every L≤-sentence φ and m ≥ 1 it holds that

(2.6) φ is ≤ m-invariant ⇐⇒
(
A(τ,m) |=L≤ φ or A(τ,m) |=L≤ ¬φ

)
,

where A(τ,m) denotes the “empty structure” of vocabulary τ with universe {1, . . . ,m}.
Now assume that L≤ is a P-bounded logic for P and let A be an algorithm witnessing

that L≤ is a P-bounded logic for P. By (2.6), there is a function h assigning to every
L≤-sentence φ a polynomial h(φ) ∈ N[X] such that A decides whether φ is ≤ m-invariant
in time h(φ)(m).

We consider the logic T (L≤), time-clocked L≤, defined as follows:
• for every vocabulary τ

T (L≤)[τ] :=
{
(φ, p) | φ ∈ L≤[τ] and p ∈ N[X]

}
;

• A |=T (L≤) (φ, p) iff (a) and (b) are fulfilled, where
(a) A shows via (2.6) in ≤ p(|A|) steps that φ is ≤ |A|-invariant;
(b) (A, <) |=LFP φ for some ordering <, say with the ordering of A given by

the encoding of A.
It is not hard to verify that T (L≤) is an effectively P-bounded logic for P. 2

Remark 2.7 In a slightly different way but using the same idea one can define the time-
clocked version T (L) for any P-bounded logic L for P. However, in general, T (L) is not
even a logic, as it can happen that the class of models of a T (L)-sentence is not closed
under isomorphisms. In the case of T (L≤) this is guaranteed by the fact that condition
(a) in the definition of A |=T (L≤) (φ, p) only refers to the cardinality of the universe of A.

There is a further consequence of Theorem 2.1. By a reformulation of the statement
“L≤ is a P-bounded logic for P” due to Nash et al. [14] (see [3] for a proof), we get:

Theorem 2.8 The following are equivalent:
(a) Taut has a p-optimal proof system.
(b) There is an algorithm deciding for every nondeterministic Turing machine M

and every natural number m whether M accepts the empty input tape in ≤ m
steps and the algorithm does this for every fixed M in time mO(1).

188 On p-optimal proof systems and logics for PTIME

3 Effective versions

Let NP[tc] ̸⊆ P[tclog tc] mean that NTIME(hO(1)) ̸⊆ DTIME(hO(log h)) for every time
constructible and increasing function h. In [3] we have shown:

Proposition 3.1 Assume that NP[tc] ̸⊆ P[tclog tc]. Then L≤ is not an effectively
P-bounded logic for P.

Are there natural effective versions of the properties of Taut listed in Theorem 1.1
equivalent to the statement “L≤ is not an effectively P-bounded logic for P” and which
therefore, by Proposition 3.1, could not hold under the assumption NP[tc] ̸⊆ P[tclog tc]?
We did not find them. However, by analyzing the proof of Proposition 3.1, we isolate
a property of an effective P-bounded logic for P that cannot be fulfilled if NP[tc] ̸⊆
P[tclog tc]. It turns out that this is equivalent to natural effective versions of the proper-
ties on Taut under consideration. We already state the result we aim at and then define
the concepts appearing in it and present the generalization of Theorem 1.1 on which its
proof is based. Due to space limitations all proofs of results in this section will be given
in the full version of the paper.

Theorem 3.2 If NP[tc] ̸⊆ P[tclog tc], then Taut has no effectively p-optimal proof
system.

Let Q ⊆ Σ∗. A proof system P for Q is effectively p-optimal if there are two com-
putable functions S : Σ∗ × N[X] → Σ∗ and b : Σ∗ × N[X] → N[X] such that for every
proof system P ′ for Q with time bound p ∈ N[X] and every w′ ∈ Σ∗, we have

P ′(w′) = P
(
S(P ′, p)(w′)

)
,

where S(P ′, p) is (the code of) a Turing machine with time bound b(P ′, p) and S(P ′, p)(w′)
denotes the output of S(P ′, p) on input w′.

An algorithm A deciding Q is effectively almost optimal if there is a computable
function b : Σ∗ → N[X] such that for every algorithm B deciding Q we have for every
x ∈ Q we have

tA(x) ≤ b(B)
(
tB(x) + |x|

)
.

We say that Q has an effective enumeration of P-easy subsets, if it has an enumeration
M : N→ Σ∗ of P-easy subsets of Q such that there are functions I : Σ∗ ×N[X]→ N and
b : Σ∗ × N[X]→ N[X] such that for every Turing machine M and polynomial p ∈ N[X],

if the Turing machineM recognizes a subset Q′ ⊆ Q with time bound p,
then the machine M(I(M, p)) recognizes Q′ with time bound b(M, p).

We can prove the effective analogue of Theorem 1.1:

Theorem 3.3 The following are equivalent:
(1) Taut has an effectively p-optimal proof system.
(2) Taut has an effectively almost optimal algorithm.
(3) Taut has an effective enumeration of the P -easy subsets.

In [3] we have shown that if E = NE, then (the logic L= and hence) L≤ are effectively
P-bounded logics for P. The proof of the previous result shows that Taut has an effec-
tively p-optimal proof system if L≤ is an effectively P-bounded logic for P . Therefore we
obtain the following “effective version” of a result due to Krajíček and Pudlák.

Corollary 3.4 If E = NE, then Taut has an effectively p-optimal proof system.

The Infinity Project 189

References
[1] O. Beyersdorff and Z. Sadowski. Characterizing the existence of optimal proof systems and complete

sets for promise classes. In Proceedings of the 4th Computer Science Symposium in Russia (CSR’09),
Lecture Notes in Computer Science 5675, 47–58, 2009.

[2] A. K. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer
and System Sciences, 25:99–128, 1982.

[3] Y. Chen and J. Flum. A logic for PTIME and a parameterized halting problem. In Proceedings of
the 24th IEEE Symposium on Logic in Computer Science, pages 397–406, 2009.

[4] Y. Chen and J. Flum. On the complexity of Gödel’s proof predicate. The Journal of Symbolic Logic,
75(1): 239–254, 2010.

[5] Y. Chen and J. Flum. On slicewise monotone parameterized problems and optimal proof systems
for Taut. Available at http://basics.sjtu.edu.cn/˜chen/papers, 2010.

[6] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The Journal of
Symbolic Logic, 44:36–50, 1979.

[7] H.-D. Ebbinghaus and J. Flum. Finite Model Theory, 2nd edition, Springer, 1999.
[8] J. Flum and M. Grohe. Parameterized Complexity Theory , Springer, 2006.
[9] M. Grohe. Fixed-point definability and polynomial time. In Proceedings of the 23rd International

Workshop on Computer Science Logic (CSL’09), Lecture Notes in Computer Science 5771, pages
20–23, 2009.

[10] Y. Gurevich. Logic and the challenge of computer science. In Current Trends in Theoretical Com-
puter Science, Computer Science Press, 1–57, 1988.

[11] N. Immerman. Relational queries computable in polynomial time. Information and Control , 68:86–
104, 1986.

[12] J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for promise classes.
Information and Computation, 184:71–92, 2003.

[13] J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and
the complexity of computations. The Journal of Symbolic Logic, 54:1063–1088, 1989.

[14] A. Nash, J. Remmel, and V. Vianu. PTIME queries revisited. In Proceedings of the 10th Interna-
tional Conference on Database Theory (ICDT’05), T. Eiter and L. Libkin (eds.), Lecture Notes in
Computer Science 3363, 274–288, 2005.

[15] Z. Sadowski. On an optimal propositionl proof system and the structure of easy subsets. Theoretical
Computer Science, 288(1):181–193, 2002.

[16] M. Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th ACM Sym-
posium on Theory of Computing (STOC’82), pages 137–146, 1982.

[17] M. Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of the 14th ACM
Symposium on Principles of Database Systems (PODS’95), pages 266–276, 1995.

The Infinity Project

On slicewise monotone parameterized problems
and optimal proof systems for Taut

Yijia Chen∗, Jörg Flum†

∗ Department of Computer Science, Shanghai Jiao Tong University, China
yijia.chen@cs.sjtu.edu.cn

† Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

Abstract. For a reasonable sound and complete proof calculus for first-order logic consider the problem
to decide, given a sentence φ of first-order logic and a natural number n, whether φ has no proof of
length ≤ n. We show that there is a nondeterministic algorithm accepting this problem which, for fixed
φ, has running time bounded by a polynomial in n if and only if there is an optimal proof system for the
set Taut of tautologies of propositional logic. This equivalence is an instance of a general result linking
the complexity of so-called slicewise monotone parameterized problems with the existence of an optimal
proof system for Taut.

Introduction

In this paper we relate the existence of optimal proof systems for the class Taut of
tautologies of propositional logic with the complexity of slicewise monotone parameterized
problems. A proof system in the sense of Cook and Reckhow [4], say for the class Taut,
is a polynomial time computable function defined on {0, 1}∗ and with Taut as range. A
proof system P is optimal if for any other proof system P ′ for Taut there is a polynomial
p ∈ N[X] such that for every tautology α, if α has a proof of length n in P ′, then α has a
proof of length ≤ p(n) in P .1 In their fundamental paper [9] Krajíček and Pudlák showed
that an optimal proof system for Taut exists if NE = co-NE and they derived a series
of statements equivalent to the existence of such an optimal proof system; however they
conjectured that there is no optimal proof system for Taut.

On the other hand, Gödel in a letter to von Neumann of 1956 (see [6]) asked for the
complexity of the problem to decide, given a sentence φ of first-order logic and a natural
number n, whether φ has a proof of length ≤ n. In our study [2] of this problem we
introduced the parameterized problem

p-Gödel
Instance: A first-order sentence φ and n ∈ N in unary.

Parameter: |φ|.
Problem: Does φ have a proof of length ≤ n?

Here we refer to any reasonable sound and complete proof calculus for first-order logic.
We do not allow proof calculi, which, for example, admit all first-order instances of

∗,†This research has been partially supported by the National Nature Science Foundation of China
(60970011), the Sino-German Center for Research Promotion (GZ400), and the John Templeton Foun-
dation through Project # 13152, the Infinity Project at the Centre de Recerca Matemàtica.

1 All notions will be defined in a precise manner in later sections.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

191

192 Slicewise monotone problems and optimal proof systems

propositional tautologies as axioms (as then it would be difficult to recognize correct
proofs if P ̸= NP).

In a different context, namely when trying to show that a certain logic L≤ for PTIME
(introduced in [7]) does not satisfy some effectivity condition, Nash et al. introduced
implicitly [12] (and this was done explicitly in [1]) the parameterized acceptance problem
p-Acc≤ for nondeterministic Turing machines:

p-Acc≤
Instance: A nondeterministic Turing machineM and n ∈ N in unary.

Parameter: ∥M∥, the size of M.
Problem: Does M accept the empty input tape in ≤ n steps?

Both problems, p-Gödel and p-Acc≤, are slicewise monotone, that is, their instances
have the form (x, n), where x ∈ {0, 1}∗ and n ∈ N is given in unary,2 the parameter is
|x|, and finally for all x ∈ {0, 1}∗ and n, n′ ∈ N we have

if (x, n) is a positive instance and n < n′, then (x, n′) is a positive instance.

A slicewise monotone problem is in the complexity class XNPuni if there is a nonde-
terministic algorithm that accepts it in time nf(|x|) for some function f : N → N. And
co-XNPuni contains the complements of problems in XNPuni. We show:

Theorem 0.1 Taut has an optimal proof system if and only if every slicewise monotone
problem in NP is in co-XNPuni.

There are trivial slicewise monotone problems which are fixed-parameter tractable.
However, for the slicewise monotone problems mentioned above we can show:

Theorem 0.2 Taut has an optimal proof system ⇐⇒ p-Acc≤ ∈ co-XNPuni

⇐⇒ p-Gödel ∈ co-XNPuni.

In [3] we showed that Taut has a p-optimal proof system if and only if a certain logic
L≤ is a P-bounded logic for P (=PTIME). The equivalence in the first line of Theorem 0.2
is the nondeterministic version of this result; in fact, an immediate consequence of it states
that Taut has an optimal proof system if and only if L≤ is an NP-bounded logic for P
(a concept that we will introduce in Section 5). It turns out that a slight variant of L≤
is an NP-bounded logic for P (without any assumption).

The content of the different sections is the following. In Section 1 and Section 2 we
recall the concepts and results of parameterized complexity and on optimal proof systems,
respectively, we need in Section 3 to derive the equivalence in the first line of Theorem 0.2.
Furthermore, in Section 2 we claim that every problem hard for 2EXP under polynomial
time reductions has no optimal proof system. In Section 4 we derive some basic properties
of slicewise monotone problems, show that p-Acc≤ is of highest parameterized complexity
among the slicewise monotone problems with classical complexity in NP, and finally show
that all the slicewise monotone problems we consider in a certain sense have the same
complexity (see Proposition 4.6 for the precise statement). This yields Theorem 0.1 and
the remaining equivalence of Theorem 0.2. As already mentioned, in Section 5 we analyze
the relationship of the existence of an optimal proof system for Taut and the properties
of the logic L≤.

2 The requirement that n is given in unary notation ensures that the classical complexity of most
slicewise monotone problems we consider is in NP.

The Infinity Project 193

1 Some preliminaries

In this section we recall some basic definitions and concepts from parameterized com-
plexity and introduce the concept of slicewise monotone parameterized problem.

We denote the alphabet {0, 1} by Σ. The length of a string x ∈ Σ∗ is denoted by |x|.
We identify problems with subsets Q of Σ∗. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form or by using other alphabets. We denote by
P the class of problems Q such that x ∈ Q is solvable in time polynomial in |x|.

All deterministic and nondeterministic Turing machines have Σ as their alphabet. If
necessary we will not distinguish between a Turing machine and its code, a string in Σ∗.
If M is a Turing machine we denote by ∥M∥ the length of its code.

Sometimes statements containing a formulation like “there is a d ∈ N such that for all
x ∈ Σ∗: . . . ≤ |x|d” can be wrong for x ∈ Σ∗ with |x| ≤ 1. We trust the reader’s common
sense to interpret such statements reasonably.

If A is any (deterministic or nondeterministic) algorithm and A accepts x, then we
denote by tA(x) the number of steps of a shortest accepting run of A on x; if A does not
accept x, then tA(x) is not defined.

1.1 Parameterized complexity

We view parameterized problems as pairs (Q,κ) consisting of a classical problem Q ⊆ Σ∗

and a parameterization κ : Σ∗ → N, which is required to be polynomial time computable.
We will present parameterized problems in the form we did it for p-Gödel and p-Acc≤
in the Introduction.

A parameterized problem (Q,κ) is fixed-parameter tractable (or, in FPT) if x ∈ Q
is solvable by an fpt-algorithm, that is, by a deterministic algorithm running in time
f(κ(x)) · |x|O(1) for some computable f : N→ N.

Let C be a complexity class of classical complexity theory defined in terms of deter-
ministic (nondeterministic) algorithms. A parameterized problem (Q,κ) is in the class
XCuni if there is a deterministic (nondeterministic) algorithm deciding (accepting) Q and
witnessing for every k ∈ N that the classical problem

(Q, κ)k :=
{
x ∈ Q | κ(x) = k

}
,

the kth slice of (Q,κ), is in C. For example, (Q, κ) is in the class XPuni if there is a
deterministic algorithm A deciding x ∈ Q in time |x|f(κ(x)) for some function f : N→ N.
And (Q,κ) is in the class XNPuni if there is a nondeterministic algorithm A accepting Q
such that for some function f : N → N we have tA(x) ≤ |x|f(κ(x)) for all x ∈ Q. Finally,
a parameterized problem (Q,κ) is in the class co-XCuni if its complement (Σ∗ \ Q,κ) is
in XCuni.

We have added the subscript “uni” to the names of these classes to emphasize that
they are classes of the so-called uniform parameterized complexity theory. If in the
definition of XPuni and XNPuni we require the function f to be computable, then we get
the corresponding classes of the strongly uniform theory. For example, FPT is a class of
this theory.

A parameterized problem (Q,κ) is slicewise monotone if its instances have the form
(x, n), where x ∈ Σ∗ and n ∈ N is given in unary, if κ((x, n)) = |x|, and finally if the
slices are monotone, that is, for all x ∈ Σ∗ and n, n′ ∈ N,

(x, n) ∈ Q and n < n′ imply (x, n′) ∈ Q.

194 Slicewise monotone problems and optimal proof systems

We already remarked that the problems p-Gödel and p-Acc≤ are slicewise monotone.
Clearly, every parameterized problem (Q,κ) with Q ∈ NP is in XNPuni; thus we can

replace co-XNPuni by XNPuni ∩ co-XNPuni everywhere in Theorem 0.1 and Theorem 0.2.

2 Optimal proof systems

Let Q ⊆ Σ∗ be a problem. A proof system for Q is a surjective function P : Σ∗ → Q
computable in polynomial time. Then, if P (w) = x, we say that w is a P -proof of x.
A proof system P for Q is optimal if for any other proof system P ′ for Q there is a
polynomial p ∈ N[X] such that for every x ∈ Q, if x has a P ′-proof of length n, then x
has a P -proof of length ≤ p(n). Hence, any P ′-proof can be translated into a P -proof by
a nondeterministic polynomial time algorithm.

The corresponding deterministic concept is the notion of p-optimality. The proof
system P for Q is polynomially optimal or p-optimal if for every proof system P ′ for Q
there is a polynomial time computable T : Σ∗ → Σ∗ such that for all w′ ∈ Σ∗

P (T (w′)) = P ′(w′).

We list some known results. Part (1) and (2) are immediate from the definitions.
(1) Every p-optimal proof system is optimal.
(2) Every nonempty Q ∈ P has a p-optimal proof system, every nonempty Q ∈ NP

has an optimal proof system.
(3) ([8]) If Q is nonempty and Q ≤p Q′ (that is, if Q is polynomial time reducible

to Q′) and Q′ has a (p-)optimal proof system, then Q has a (p-)optimal proof
system too.

(4) ([10]) Every Q hard for EXP = DTIME
(
2n

O(1)
)

under polynomial time reduc-
tions has no p-optimal proof system.

It is not known whether there is a problem Q /∈ P (Q /∈ NP) with a p-optimal (an optimal)
proof system. As mentioned in the Introduction, Krajíček and Pudlák [9] conjectured
that there is no optimal proof system for the set Taut of tautologies.

Concerning (4) we did not find a corresponding result for optimal proof systems in
the literature. We can show:

Proposition 2.1 Every Q hard for 2EXP = DTIME
(
22
nO(1))

under polynomial time
reductions has no optimal proof system.

We do not need this result (and will prove it in the full version of the paper). However
we state a consequence:

Corollary 2.2 There is no optimal proof system for the set of valid sentences of first-
order logic.

2.1 Almost optimal algorithms and enumerations of P-easy subsets

Let Q ⊆ Σ∗ be a problem. A deterministic (nondeterministic) algorithm A accepting Q
is almost optimal or optimal on positive instances of Q if for every deterministic (nonde-
terministic) algorithm B accepting Q there is a polynomial p ∈ N[X] such that, for all
x ∈ Q,

tA(x) ≤ p(tB(x) + |x|).

The Infinity Project 195

By definition a subset Q′ of Q is P-easy if Q′ ∈ P. An enumeration of the P-easy subsets
of Q by P-machines (by NP-machines) is a computable function M : N→ Σ∗ such that

(i) for every i ∈ N the string M(i) is a deterministic (nondeterministic) Turing
machine deciding (accepting) a P-easy subset of Q in polynomial time;

(ii) for every P-easy subsetQ′ ofQ there is i ∈ N such thatM(i) decides (accepts)Q′.
If in the nondeterministic case instead of (i) we only require

(i′) for every i ∈ N the string M(i) is a nondeterministic Turing machine accepting
a subset of Q in polynomial time,

we obtain the notion of a weak enumeration of P-easy subsets of Q by NP-machines.
We denote by Taut the class of all tautologies of propositional logic. We need the

following theorem:

Theorem 2.3
(1) The following statements are equivalent:

(a) Taut has a p-optimal proof system.
(b) Taut has an almost optimal deterministic algorithm.
(c) Taut has an enumeration of the P-easy subsets by P-machines.

(2) The following statements are equivalent:
(a) Taut has an optimal proof system.
(b) Taut has an almost optimal nondeterministic algorithm.
(c) Taut has a weak enumeration of the P-easy subsets by NP-machines.
(d) Taut has an enumeration of the P-easy subsets by NP-machines.

The equivalence of (a) and (b) in (1) and (2) is due to [9], the equivalence to (c)
to [13]. The equivalence in (2) to (d) will be a by-product of the proof of Theorem 3.3;
the equivalence was already claimed in [13] but its author was so kind to point out to
us that he did not realize the difference between (c) and (d): some machines M(i) of a
weak enumeration might accept subsets of Q which are not P-easy (but only in NP).

3 Linking slicewise monotone problems and optimal proof
systems

The following result yields a uniform bound on the complexity of slicewise monotone
problems whose complements have optimal proof systems.

Theorem 3.1 Let (Q,κ) be a slicewise monotone parameterized problem with decidable Q.
(1) If Σ∗ \Q has a p-optimal proof system, then (Q,κ) ∈ XPuni.
(2) If Σ∗ \Q has an optimal proof system, then (Q,κ) ∈ co-XNPuni.

As by (3) on page 194 every nonempty problem in co-NP has a (p-)optimal proof
system if Taut has one, we immediately get:

Corollary 3.2 Let (Q,κ) be a slicewise monotone parameterized problem with Q in NP.
(1) If Taut has a p-optimal proof system, then (Q, κ) ∈ XPuni.
(2) If Taut has an optimal proof system, then (Q,κ) ∈ co-XNPuni.

Concerning Theorem 3.1(1), we should mention that Monroe [11] has shown that
if the complement of (the classical problem underlying) p-Acc≤ has an almost optimal
algorithm (which by [9] holds if it has a p-optimal proof system), then p-Acc≤ ∈ XPuni.

196 Slicewise monotone problems and optimal proof systems

Proof of Theorem 3.1: We present the proof for (2); the proof for (1) is obtained by the
obvious modifications. Let (Q,κ) be slicewise monotone and let Q be a deterministic
algorithm deciding Q. Assume that Σ∗ \ Q has an optimal proof system. It is well-
known [9] that then Σ∗ \ Q has an almost optimal nondeterministic algorithm O. We
have to show that (Q,κ) ∈ co-XNPuni.

Let S be the algorithm that, on x ∈ Σ∗, by systematically applying Q to the inputs
(x, 0), (x, 1), . . . computes

n(x) := the least n such that (x, n) ∈ Q.

If (x, n) /∈ Q for all n ∈ N, then n(x) is not defined and S does not stop. We show that
the following algorithm A witnesses that (Σ∗ \Q,κ) ∈ XNPuni.

A(x, n) // x ∈ Σ∗, n ∈ N in unary
1. In parallel simulate S on input x and O on input (x, n)
2. if O accepts then accept
3. if S stops, then
4. if n < n(x) then accept else reject.

By our assumptions on O and S and the slicewise monotonicity of Q, it should be clear
that A accepts Σ∗ \Q. We have to show that A does it in the time required by XNPuni.
Hence, we have to determine the running time of A on inputs (x, n) /∈ Q.

Case “(x, ℓ) /∈ Q for all ℓ ∈ N”: In this case S on input x does not stop. Hence, the
running time of A on input (x, n) is determined by O. The following algorithm Ox accepts
Σ∗ \ Q: on input (y, ℓ) the algorithm Ox checks whether y = x. If so, it accepts and
otherwise it runs O on input (y, ℓ) and answers accordingly. Clearly, for all ℓ ∈ N

tOx((x, ℓ)) ≤ O(|x|).

As O is almost optimal, we know that there is a constant dx ∈ N (depending on x) such
that for all (y, ℓ) ∈ Σ∗ \Q

tO((y, ℓ)) ≤
(
|(y, ℓ)|+ tOx((y, ℓ))

)dx .
In particular, we have

tA((x, n)) = O(tO((x, n))) ≤ O
((
|(x, n)|+O(|x|)

)dx) ≤ nd′x
for some constant d′x ∈ N (depending on x).

Case “(x, ℓ) ∈ Q for some ℓ ∈ N”: Then S will stop on input x. Thus, in the worst
case, A on input (x, n) has to wait till the simulation of S on x stops and then A must
check whether the result n(x) of the computation of S is bigger than n or not and answer
according to Line 4. So in the worst case A takes time O(tS(x) +O(n)) ≤ nO(tS(x)). 2

We show the equivalence in the first line of Theorem 0.2:

Theorem 3.3
(1) Taut has a p-optimal proof system iff p-Acc≤ ∈ XPuni.
(2) Taut has an optimal proof system iff p-Acc≤ ∈ co-XNPuni.

The Infinity Project 197

Proof. Again we only prove (2) and by the previous corollary it suffices to show the
corresponding implication from right to left.

So assume that the complement of p-Acc≤ is in XNPuni and let A be a nondetermin-
istic algorithm witnessing it; in particular, tA((M, n)) ≤ nf(∥M∥) for some function f and
all (M, n) /∈ p-Acc≤. We show that Taut has an enumeration of the P-easy subsets by
NP-machines (and this suffices by Theorem 2.3).

We fix a deterministic Turing machine M0 that given a propositional formula α and
an assignment checks if this assignment satisfies α in time |α|2.

For a deterministic Turing machine M let M∗ be the nondeterministic machine that
on empty input tape

• first guesses a propositional formula α;
• then checks (by simulating M) whether M accepts α and rejects if this is not the

case;
• finally guesses an assignment and accepts if this assignment does not satisfy α

(this is checked by simulating M0).
A deterministic Turing machineM is clocked if (the code of)M contains a natural number
time(M) such that ntime(M) is a bound for the running time of M on inputs of length n
(in particular, a clocked machine is a polynomial time one).

Finally, for a clocked Turing machine M let M+ be the nondeterministic Turing
machine that on input α accepts if and only if (i) and (ii) hold:

(i) M accepts α;
(ii) (M∗, |α|time(M)+4) /∈ p-Acc≤.

The machine M+ checks (i) by simulating M and (ii) by simulating A. Hence, if M+

accepts α, then

tM+(α) ≤ O
(
|α|time(M) + tA

(
(M∗, |α|time(M)+4)

))
,

and as tA
(
(M∗, |α|time(M)+4)

)
≤ |α|(time(M)+4)·f(∥M∗∥), the Turing machine M+ accepts in

time polynomial in |α|.
We show that M+, where M ranges over all clocked machines, yields an enumeration

of all P-easy subsets of Taut by NP-machines. First let M be a clocked machine. We
prove that M+ accepts a P-easy subset of Taut.

M+ accepts a subset of Taut: If M+ accepts α, then, by (i), M accepts α and by (ii),
(M∗, |α|time(M)+4) /∈ p-Acc≤. Therefore, by definition of M∗, every assignment satisfies
α and hence α ∈ Taut.

M+ accepts a P-easy set : If (M∗,m) ∈ p-Acc≤ for some m, then, by slicewise mono-
tonicity of p-Acc≤, the machine M+ accepts a finite set and hence a P-easy set. If
(M∗,m) /∈ p-Acc≤ for all m, then M+ accepts exactly those α accepted by M; as M is
clocked, this is a set in P.

Now let Q ⊆ Taut be a P-easy subset of Taut and let M be a clocked machine
deciding Q. Then M+ accepts Q. 2

4 Slicewise monotone parameterized problems

In this section we observe that p-Acc≤ is a complete problem in the class of slicewise
monotone parameterized problems with underlying classical problem in NP. Furthermore,

198 Slicewise monotone problems and optimal proof systems

we shall see that in Theorem 3.3 we can replace the problem p-Acc≤ by other slicewise
monotone parameterized problems (among them p-Gödel) by showing for them that
they are in the class XPuni (co-XNPuni) if and only if p-Acc≤ is.

4.1 The complexity of slicewise monotone problems

We start with some remarks on the complexity of slicewise monotone problems. In [1, 2]
we have shown that p-Acc≤ and p-Gödel are not fixed-parameter tractable if “P ̸= NP
holds for all time constructible and increasing functions”, that is, if DTIME(hO(1)) ̸=
NTIME(hO(1)) for all time constructible and increasing functions h : N→ N. However:

Proposition 4.1
(1) ([2]) Let (Q,κ) be slicewise monotone. Then (Q,κ) is nonuniformly fixed-param-

eter tractable, that is, there is a c ∈ N, a function f : N → N, and for every k
an algorithm deciding the slice (Q,κ)k in time f(k) · nc.

(2) Let (Q,κ) be slicewise monotone with enumerable Q. Then (Q,κ) ∈ XNPuni.

Proof. (2) Let Q be an algorithm enumerating Q. The following algorithm shows that
(Q, κ) ∈ XNPuni: On input (x, n) it guesses m ∈ N and a string c. If c is the code of an
initial segment of the run of Q enumerating (x,m), then it accepts if m ≤ n. 2

We remark that there are slicewise monotone problems with underlying classical prob-
lem of arbitrarily high complexity that are fixed-parameter tractable. In fact, let Q0 ⊆ Σ∗

be decidable. Then the slicewise monotone (Q,κ) with

Q :=
{
(x, n) | x ∈ Q0, n ∈ N, and |x| ≤ n

}
(and κ((x, n)) := |x|) is in FPT.

To compare the complexity of parameterized problems we use the standard notions
of reduction that we recall first. Let (Q,κ) and (Q′, κ′) be parameterized problems. We
write (Q, κ) ≤fpt (Q′, κ′) if there is an fpt-reduction from (Q, κ) to (Q′, κ′), that is, a
mapping R : Σ∗ → Σ∗ with:

(1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(2) R(x) is computable in time f(κ(x)) · |x|O(1) for some computable f : N→ N.
(3) There is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x)) for all

x ∈ Σ∗.
We write (Q,κ) ≤xp (Q′, κ′) if there is an xp-reduction from (Q, κ) to (Q′, κ′), which is
defined as (Q,κ) ≤fpt (Q′, κ′) except that instead of (2) it is only required that R(x) is
computable in time |x|f(κ(x)) for some computable f : N→ N.

These are notions of reductions of the usual (strongly uniform) parameterized com-
plexity theory. We get the corresponding notions ≤fpt

uni and ≤xp
uni by allowing the functions

f and g to be arbitrary (and not necessarily computable).
We shall use the following simple observation.

Lemma 4.2 If (Q,κ) ≤xp
uni (Q

′, κ′) and (Q′, κ′) ∈ XPuni, then (Q,κ) ∈ XPuni. The same
holds for XNPuni instead of XPuni.

We turn again to slicewise monotone problems. Among these problems with under-
lying classical problem in NP the problem p-Acc≤ is of highest complexity.

Proposition 4.3 Let (Q,κ) be slicewise monotone and Q ∈ NP. Then

(Q,κ) ≤fpt p-Acc≤.

The Infinity Project 199

Note that this result together with Theorem 3.3(2) yields Theorem 0.1.

Proof of Proposition 4.3: Let M be a nondeterministic Turing machine accepting Q. We
may assume that for some d ∈ N the machineM on input (x, n) performs exactly |(x, n)|d
steps. For x ∈ Σ∗ let Mx be the nondeterministic Turing machine that on empty input
tape, first writes x on the tape, then guesses a natural number m, and finally simulates
the computation of M on input (x,m). We can assume that there is a polynomial time
computable function h such thatMx makes exactly h(x,m) ∈ O

(
|x|+m+ |(x,m)|d

)
steps

if it chooses the natural number m. Furthermore we can assume that h(x,m) < h(x,m′)
for m < m′.

Then (x, n) 7→
(
Mx, h(x, n)

)
is an fpt-reduction from (Q, κ) to p-Acc≤: Clearly,

if (x, n) ∈ Q then
(
Mx, h(x, n)

)
∈ p-Acc≤ by construction of Mx. Conversely, if(

Mx, h(x, n)
)
∈ p-Acc≤, then by the properties of h we see that M accepts (x,m) for

some m ≤ n. Thus, (x,m) ∈ Q and therefore (x, n) ∈ Q by slicewise monotonicity. 2

Later on we shall use the following related result.

Proposition 4.4 Let (Q,κ) be slicewise monotone and assume that there is a nondeter-
ministic algorithm A accepting Q such that tA(x, n) ≤ nf(|x|) for some time constructible
f and all (x, n) ∈ Q. Then

(Q, κ) ≤xp p-Acc≤.

Proof. Let (Q′, κ′) be the problem

Instance: x ∈ Σ∗ and m ∈ N in unary.
Parameter: |x|.

Problem: Is there an n ∈ N such that nf(|x|) ≤ m and (x, n) ∈ Q?

By the previous proposition we get our claim once we have shown:
(1) (Q′, κ′) is slicewise monotone and Q′ ∈ NP.
(2) (Q, κ) ≤xp (Q′, κ′).

To see (1), let A be as stated above and let T an algorithm witnessing the time
constructibility of f ; that is, T on input k ∈ N computes f(k) in exactly f(k) steps. An
algorithm B witnessing that Q′ ∈ NP runs as follows on input (x,m):

• B guesses n ∈ N;
• if n = 1, the algorithm B rejects in case m = 0;
• if n ≥ 2, the algorithm B simulates m steps of the computation of T on input
|x|; if thereby T does not stop, B rejects; otherwise, the simulation yields f(|x|)
and B checks whether nf(|x|) > m (this can be detected in time O(m)); in the
positive case B rejects;
• finally B simulates the computation of A on (x, n) and answers accordingly.

As for (2), note that the mapping (x, n) 7→
(
x, nf(|x|)

)
is an xp-reduction. 2

4.2 Slicewise monotone problems related to logic

In the next section we will use some further slicewise monotone problems related to
first-order logic and least fixed-point logic that we introduce now.

We assume familiarity with first-order logic FO and its extension least fixed-point logic
LFP (e.g., see [5]). We denote by FO[τ] and LFP[τ] the set of sentences of vocabulary τ

200 Slicewise monotone problems and optimal proof systems

of FO and of LFP, respectively. In this paper all vocabularies are finite sets of relational
symbols.

If the structure A is a model of the LFP-sentence φ we write A |= φ. We only consider
structures A with finite universe A. The size ∥A∥ of the structure A is the length of a
reasonable encoding of A as string in Σ∗. An algorithm based on the inductive definition
of the satisfaction relation for LFP shows (see [14]):

Proposition 4.5 The model-checking problem A |= φ for structures A and LFP-sen-
tences φ can be solved in time ∥A∥O(|φ|).

Let L = FO or L = LFP. First we introduce the parameterized problem

p-L-Model
Instance: An L-sentence φ and n ∈ N in unary.

Parameter: |φ|.
Problem: Is there a structure A with A |= φ and |A| ≤ n?

Here, |A| denotes the size of the universe A of A. For every vocabulary τ we let τ< :=
τ ∪ {<}, where < is a binary relation symbol not in τ . For m ≥ 1 we say that an
L[τ<]-sentence φ is ≤ m-invariant if for all τ -structures A with |A| ≤ m we have

(A, <1) |= φ ⇐⇒ (A, <2) |= φ

for all orderings <1 and <2 on A.
Finally we introduce the slicewise monotone parameterized problem

p-L-Not-Inv
Instance: A vocabulary τ , an L[τ<]-sentence φ and m ≥ 1 in unary.

Parameter: |φ|.
Problem: Is φ not ≤ m-invariant?

4.3 Membership in XPuni and co-XNPuni

Concerning membership in the classes XPuni and co-XNPuni all the slicewise monotone
problems we have introduced behave in the same way:

Proposition 4.6 Consider the parameterized problems
p-Gödel, p-FO-Model, p-LFP-Model, p-FO-Not-Inv,
p-LFP-Not-Inv, and p-Acc≤.

If one of the problems is in XPuni, then all are; if one of the problems is in co-XNPuni,
then all are.

By Theorem 3.3 this result yields Theorem 0.2. We prove it with Lemmas 4.7–4.10.

Lemma 4.7 ([2]) p-Gödel ≤fpt p-FO-Model.

Lemma 4.8 Let L = FO or L = LFP. Then p-L-Model ≤fpt p-L-Not-Inv.

Proof. Let φ be a sentence of vocabulary τ . We set τ ′ := τ ∪ {P} with a new unary
relation symbol P and consider the sentence of vocabulary τ ′<

ψ(φ) := φ ∧ “P holds for the first element of <”.

The Infinity Project 201

Clearly, for every n ≥ 2

(φ, n) ∈ p-FO-Model ⇐⇒
(
ψ(φ), n

)
∈ p-FO-Not-Inv

and the same equivalence holds for p-LFP-Model and p-LFP-Not-Inv. Thus (φ, n) 7→(
ψ(φ), n

)
is the desired reduction in both cases. 2

Lemma 4.9 p-LFP-Not-Inv ≤xp p-Acc≤.

Proof. Consider the algorithm A that on input (φ,m), where φ is an LFP-sentence and
m ≥ 1, guesses a structure A and two orderings <1 and <2 and accepts if |A| ≤ m,
(A, <1) |= φ, and (A, <2) |= ¬φ. Then, by Proposition 4.5, the algorithm A witnesses
that p-LFP-Not-Inv satisfies the assumptions on (Q,κ) in Proposition 4.4. This yields
the claim. 2

Lemma 4.10
(1) If p-Gödel ∈ XPuni, then p-Acc≤ ∈ XPuni.
(2) If p-Gödel ∈ co-XNPuni, then p-Acc≤ ∈ co-XNPuni.

Proof. We give the proof of (2). By standard means we showed in [2, Lemma 7] that there
exists a d ∈ N and a polynomial time algorithm that assigns to every nondeterministic
Turing machine M a first-order sentence φM such that for n ∈ N

(M, n) ∈ p-Acc≤ =⇒ (φM, n
d) ∈ p-Gödel.(4.1)

Moreover,

φM has a proof =⇒ M accepts the empty input tape.(4.2)

Now assume that A is an algorithm that witnesses that the complement of p-Gödel is
in XNPuni. We may assume that every run of A either accepts its input or is infinitely
long. Let d ∈ N be as above. We present an algorithm B showing that the complement
of p-Acc≤ is in XNPuni. On input (M, n) the algorithm B first computes φM and then
runs two algorithms in parallel:

• a brute force algorithm that on input M searches for the least nM such that M
on empty input tape has an accepting run of length nM;
• the algorithm A on input (φM, n

d).
If the brute force algorithm halts first and outputs nM, then B checks whether nM ≤ n
and answers accordingly.

Assume now that A halts first. Then A accepts (φM, n
d) and

(
(φM, n

d) /∈ p-Gödel
and hence (M, n) /∈ p-Acc≤ by (4.1) and therefore

)
B accepts.

The algorithm B accepts the complement of p-Acc≤; note that if no run of A ac-
cepts (φM, nd), then (φM, n

d) ∈ p-Gödel and therefore M accepts the empty input tape
by (4.2), so that in this case the computation of the brute force algorithm eventually will
stop.

It remains to see that B accepts the complement of p-Acc≤ in the time required by
XNPuni. We consider two cases.

M halts on empty input tape: Then an upper bound for the running time is given by the
time that the brute force algorithm needs to compute nM (and the time for the check
whether nM ≤ n); hence we have an upper bound of the form ncM .

202 Slicewise monotone problems and optimal proof systems

M does not halt on empty input tape: Then, by (4.2), we have (φM, n
d) /∈ p-Gödel;

hence an upper bound is given by the running time of A on input (φM, n
d). 2

It should be clear that Lemmas 4.7–4.10 together with Lemma 4.2 yield a proof of
Proposition 4.6.

5 Optimal algorithms and the logic L≤

In this section we interpret Theorem 0.2 in terms of the expressive power of a certain
logic.

For our purposes a logic L consists
• for every vocabulary τ of a set L[τ] of strings, the set of L-sentences of vocabu-

lary τ and of an algorithm that for every vocabulary τ and every string ξ decides
whether ξ ∈ L[τ] (in particular, L[τ] is decidable for every τ);
• of a satisfaction relation |=L; if (A, φ) ∈ |=L, written A |=L φ, then A is a τ -

structure and φ ∈ L[τ] for some vocabulary τ ; furthermore for each φ ∈ L[τ] the
class ModL(φ) :=

{
A | A |=L φ

}
of models of φ is closed under isomorphisms.

Definition 5.1 Let L be a logic.
(a) L is a logic for P if for all vocabularies τ and all classes C (of encodings) of

τ -structures closed under isomorphisms we have

C ∈ P ⇐⇒ C = ModL(φ) for some φ ∈ L[τ].

(b) L is a P-bounded logic for P if (a) holds and if there is an algorithm A deciding
|=L

(
that is, for every structure A and L-sentence φ the algorithm A decides

whether A |=L φ
)

and if moreover, for fixed φ the algorithm A runs in time
polynomial in ∥A∥.

The relationship of these concepts with topics of this paper is already exemplified by
the following simple observation.

Proposition 5.2 Let L be a logic for P and define p-|=L by

p-|=L

Instance: A structure A and an L-sentence φ.
Parameter: |φ|.

Problem: Is A |=L φ

Then L is a P-bounded logic for P if and only if p-|=L ∈ XPuni.

This relationship suggests the following definition.

Definition 5.3 L is an NP-bounded logic for P if it is a logic for P and p-|=L∈ XNPuni.

We introduce the logic L≤, a variant of LFP.3 For every vocabulary τ we set

L≤[τ] = LFP[τ<]

3 In this section, if the structure B is a model of an LFP-sentence φ we write A |=LFP φ instead of
A |= φ.

The Infinity Project 203

(recall that τ< := τ ∪ {<}, with a new binary <) and define the semantics by

A |=L≤ φ ⇐⇒
(
φ is ≤ |A|-invariant and

(A, <) |=LFP φ for some ordering < on A
)
.

Hence, by the previous proposition and the definition of |=L≤ , we get:

Proposition 5.4
(1) The following statements are equivalent:

(a) L≤ is a P-bounded logic for P.
(b) p-|=L≤∈ XPuni.
(c) p-LFP-Not-Inv ∈ XPuni.

(2) The following statements are equivalent:
(a) L≤ is an NP-bounded logic for P.
(b) p-|=L≤∈ XNPuni.
(c) p-LFP-Not-Inv ∈ co-XNPuni.

By Theorem 0.2 and Proposition 4.6 we get:

Theorem 5.5 Taut has an optimal proof system if and only if L≤ is an NP-bounded
logic for P.

Hence, if Taut has an optimal proof system, then there is an NP-enumeration of
P-easy classes of graphs closed under isomorphisms. We do not define the concept of
NP-enumeration explicitly, however the enumeration obtained by applying the algorithm
in XNPuni for p- |=L≤ to the classes ModL≤(φ(graph)∧ψ), where φ(graph) axiomatizes
the class of graphs and ψ ranges over all sentences of L≤ in the language of graphs, is such
an NP-enumeration. Note that even without the assumption that Taut has an optimal
proof system we know that there is such an NP-enumeration of P-easy classes of graphs
closed under isomorphisms, as the following variant L≤(not) of L≤ is an NP-bounded
logic for P. The logic L≤(not) has the same syntax as L≤ and the semantics is given by
the following clause:

A |=L≤(not) φ ⇐⇒ not A |=L≤ φ.

As the class P is closed under complements, L≤(not) is a logic for P. And L≤(not) is an
NP-bounded logic for P, as p-LFP-Not-Inv ∈ XNPuni.

References
[1] Y. Chen and J. Flum. A logic for PTIME and a parameterized halting problem. In Proceedings of

the 24th IEEE Symposium on Logic in Computer Science (LICS’09), pages 397–406, 2009.
[2] Y. Chen and J. Flum. On the complexity of Gödel’s proof predicate. The Journal of Symbolic Logic,

75(1): 239–254, 2010.
[3] Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. In Proceedings of the

37th International Colloquium on Automata, Languages and Programming (ICALP’10, Track B),
Lecture Notes in Computer Science 6199, pages 321–332, 2010.

[4] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The Journal of
Symbolic Logic, 44:36–50, 1979.

[5] H.-D. Ebbinghaus and J. Flum. Finite Model Theory, 2nd edition, Springer, 1999.
[6] K. Gödel. Collected Works, vol. VI, 372–376, Clarendon Press, 2003.

204 Slicewise monotone problems and optimal proof systems

[7] Y. Gurevich. Logic and the challenge of computer science. In Current Trends in Theoretical Com-
puter Science, Computer Science Press, 1–57, 1988.

[8] J. Köbler and J. Messner. Complete problems for promise classes by optimal proof systems for
test sets. In Proceedings of the 13th IEEE Conference on Computational Complexity (CCC’ 98),
132–140, 1998.

[9] J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and
the complexity of computations. The Journal of Symbolic Logic, 54:1063–1088, 1989.

[10] J. Messner. On optimal algorithms and optimal proof systems. In Proceedings of the 16th Symposium
on Theoretical Aspects of Computer Science (STACS’99), Lecture Notes in Computer Science 1563,
361–372, 1999.

[11] H. Monroe. Speedup for natural problems. Electronic Colloquium on Computational Complexity ,
Report TR09-056, 2009.

[12] A. Nash, J. Remmel, and V. Vianu. PTIME queries revisited. In Proceedings of the 10th Interna-
tional Conference on Database Theory (ICDT’05), T. Eiter and L. Libkin (eds.), Lecture Notes in
Computer Science 3363, 274–288, 2005.

[13] Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets. Theoretical
Computer Science, 288(1):181–193, 2002.

[14] M. Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of the 14th ACM
Symposium on Principles of Database Systems (PODS’95), pages 266–276, 1995.

The Infinity Project

Hard instances of algorithms and proof systems

Yijia Chen†, Jörg Flum‡, Moritz Müller§

† Department of Computer Science, Shanghai Jiao Tong University, China
yijia.chen@cs.sjtu.edu.cn

‡ Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

§
Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
moritz.mueller@univie.ac.at

Abstract. Assuming that the class Taut of tautologies of propositional logic has no almost optimal
algorithm, we show that every algorithm A deciding Taut has a polynomial time computable sequence
witnessing that A is not almost optimal. The result extends to every Πpt -complete problem with t ≥ 1;
however, we show that assuming the Measure Hypothesis there is a problem which has no almost optimal
algorithm but has an algorithm without hard sequences.

Introduction

Let A be an algorithm deciding a problemQ. A sequence (xs)s∈N of strings inQ is hard for
A if it is computable in polynomial time and the sequence (tA(xs)s∈N) is not polynomially
bounded in s.1 Here, tA(x) denotes the number of steps the algorithm A takes on input x.
Clearly, if A is polynomial time, then A has no hard sequences. Furthermore, an almost
optimal algorithm for Q has no hard sequences either. Recall that an algorithm A is
almost optimal for Q if for every input x ∈ Q the running time tA(x) is polynomially
bounded in tB(x) for any other algorithm B deciding Q. In fact, if (xs)s∈N is a hard
sequence for an algorithm, then one can polynomially speed up it on {xs | s ∈ N}, so it
cannot be almost optimal.

Central to this paper is the question: To what extent can we show that algorithms
which are not almost optimal have hard sequences? Our main result states:

(a) If a co-NP-complete problem Q has no almost optimal algorithm, then every
algorithm deciding Q has hard sequences.

Perhaps one would expect that one can strengthen (a) and show that even if a co-NP-
complete problem Q has an almost optimal algorithm, then every algorithm, which is not
almost optimal and decides Q, has a hard sequence. However, we show:

If the Measure Hypothesis holds, then every co-NP-complete problem
with padding and with an almost optimal algorithm has an algorithm
which is not almost optimal but has no hard sequences.

Even though we can extend the result (a) to Πpt -complete problems (with t ≥ 1), appar-
ently there are some limitations as we derive the following result:

If the Measure Hypothesis holds, then there is a problem Q which has no
almost optimal algorithm but has an algorithm without hard sequences.

This article appeared in Electronic Colloquium on Computational Complexity, TR11-085, 2011.
1 All notions will be defined in a precise manner later.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

205

206 Hard instances

In particular, there are algorithms deciding such a Q and polynomially speeding up a
given algorithm. That is, this notion of speeding up (e.g., considered in [11, 13]) differs
from our notion of the existence of a hard sequence.

Assume that a co-NP-complete problem Q has no almost optimal algorithm. Can we
even effectively assign to every algorithm deciding Q a hard sequence? We believe that
under reasonable complexity-theoretic assumptions one should be able to show that such
an effective procedure or at least a polynomial time procedure does not exist, but we were
not able to show it. However, recall that by a result due to McCreight and Meyer [11]
and rediscovered by Messner [10] we know:

For every EXP-hard problem Q there is a polynomial time effective
procedure assigning to every algorithm solving Q a sequence hard for it.

Hence, if EXP = NP, then for every NP-hard (and hence for every co-NP-hard) prob-
lem Q there is a polynomial time effective procedure assigning a hard sequence to every
algorithm deciding Q.

Our proof of (a) generalizes to nondeterministic algorithms. This “nondeterministic
statement” yields a version of a result due to Krajíček which he derived for non-optimal
propositional proof systems: If Taut, the set of tautologies of propositional logic, has
no optimal proof system, then for every propositional proof system P there is a poly-
nomial time computable sequence (αs)s∈N of propositional tautologies αs with s ≤ |αs|
which only have superpolynomial P-proofs. While it is well-known that nondeterministic
algorithms for Taut and propositional proof systems are more or less the same (so that
the nondeterministic version of (a) essentially is Krajíček’s result), the relationship be-
tween deterministic algorithms deciding Taut and propositional proof systems is more
subtle. Nevertheless, we are able to use (a) to derive a statement on hard sequences for
propositional proof systems in case that Taut has no polynomially optimal proof system.

As a byproduct, we obtain results in “classical terms” for which we do not know proofs
avoiding the machinery we develop here; for example, we get:

Let Q be co-NP-complete. Then, Q has an almost optimal algorithm if
and only if Q has a polynomially optimal proof system.

If Taut has no almost optimal algorithm, then every co-NP-hard prob-
lem has no almost optimal algorithm.

It is still open whether there exist problems outside of NP with optimal proof sys-
tems. We show their existence (in NE) assuming the Measure Hypothesis. Krajíček and
Pudlák [7] proved that E = NE implies that Taut has an optimal proof system.

If for an algorithm A deciding a problem Q we have a hard sequence (xs)s∈N satisfying
s ≤ |xs|, then {xs | s ∈ N} is a hard set for A, that is, a polynomial time decidable subset
of Q on which A is not polynomial time. Messner [10] has shown for any Q with padding
that all algorithms deciding Q have hard sets if and only if Q has no polynomially
optimal proof system. We show for arbitrary Q that the existence of hard sets for all
algorithms is equivalent to the existence of an effective enumeration of all polynomial
time decidable subsets of Q, a property which has turned out to be useful in various
contexts (cf. [2, 3, 12]). We analyze what Messner’s result means for proof systems.

The content of the sections is the following. In Section 1 we recall some concepts. We
deal with hard sequences for algorithms in Section 2 and for proof systems in Section 3.
Section 4 is devoted to hard sets and Section 5 contains the results and the examples of
problems with special properties obtained assuming that the Measure Hypothesis holds.

The Infinity Project 207

Finally Section 6 gives an effective procedure yielding hard sequences for nondeterministic
algorithms for coNEXP-hard problems.

1 Preliminaries

We denote by Σ the alphabet {0, 1} and by |x| the length of a string x ∈ Σ∗. We identify
problems with subsets of Σ∗. In this paper we always assume that Q denotes a decidable
and nonempty problem.

We denote by P (NP) the class of problems Q such that x ∈ Q is solvable by a
deterministic (nondeterministic) Turing machine in |x|O(1) steps (formally, nO(1) denotes
the class of polynomially bounded functions on the natural numbers). A problem Q ⊆ Σ∗

has padding if there is a function pad : Σ∗ × Σ∗ → Σ∗ computable in logarithmic space
having the following properties:

– For any x, y ∈ Σ∗, |pad(x, y)| > |x|+ |y| and
(
pad(x, y) ∈ Q⇔ x ∈ Q

)
.

– There is a logspace algorithm which, given pad(x, y), recovers y.
By ⟨. . . , . . .⟩ we denote some standard logspace computable tupling function with logspace
computable inverses.

If A is a deterministic or nondeterministic algorithm and A accepts the string x, then
we denote by tA(x) the minimum number of steps of an accepting run of A on x; if A does
not accept x, then tA(x) is not defined. By L(A) we denote the language accepted by A.
We use deterministic and nondeterministic Turing machines with Σ as alphabet as our
basic computational model for algorithms (and we often use the notions “algorithm” and
“Turing machine” synonymously). If necessary we will not distinguish between a Turing
machine and its code, a string in Σ∗. By default, algorithms are deterministic. If an
algorithm A on input x eventually halts and outputs a value, we denote it by A(x).

2 Hard sequences for algorithms

In this section we derive the results concerning the existence of hard sequences for co-
NP-complete problems.

Let Q ⊆ Σ∗. A deterministic (nondeterministic) algorithm A deciding (accepting)
Q is almost optimal if for every deterministic (nondeterministic) algorithm B deciding
(accepting) Q we have

tA(x) ≤
(
tB(x) + |x|

)O(1)

for all x ∈ Q. Note that nothing is required for x /∈ Q.
Clearly, every problem in P has an almost optimal algorithm and every problem in

NP has an almost optimal nondeterministic algorithm. There are problems outside P
with an almost optimal algorithm (see Messner [10, Corollary 3.33]; we slightly improve
his result in Section 5). However, it is not known whether there are problems outside NP
having an almost optimal nondeterministic algorithm and it is not known whether there
are problems with padding outside P having an almost optimal algorithm. We show in
Section 5 that the former is true if the Measure Hypothesis holds.

We introduce the notion of hard sequence.

208 Hard instances

Definition 2.1 Let Q ⊆ Σ∗.
(1) Let A be a deterministic (nondeterministic) algorithm deciding (accepting) Q.

A sequence (xs)s∈N is hard for A if {xs | s ∈ N} ⊆ Q, the function 1s 7→ xs is
computable in polynomial time, and tA(xs) is not polynomially bounded in s.

(2) The problem Q has hard sequences for algorithms if every algorithm deciding Q
has a hard sequence.

(3) The problem Q has hard sequences for nondeterministic algorithms if every non-
deterministic algorithm accepting Q has a hard sequence.

The proof of the following lemma is straightforward; it shows that if (xs)s∈N is hard
for an algorithm A, then A can be polynomially speeded up on {xs | s ∈ N}; thus A
cannot be almost optimal.

Lemma 2.2 Let A be a deterministic (nondeterministic) algorithm deciding (accept-
ing) Q. If A has a hard sequence, then A is not almost optimal.

Proof. We prove the deterministic case, the nondeterministic case is obtained by the
obvious modifications. So assume that the algorithm A decides Q and has a hard sequence
(xs)s∈N; in particular,

(2.1) tA(xs) is not polynomially bounded in s.

Let G be a polynomial time algorithm computing the function 1s 7→ xs. The following
algorithm G∗ accepts the set {xs | s ∈ N} and for x = xs runs in time polynomial in s.

G∗ // x ∈ Σ∗

1. ℓ← 0
2. for s = 0 to ℓ
3. simulate the (ℓ− s)th step of G on 1s

4. if this simulation outputs y and y = x
then accept and halt

5. ℓ← ℓ+ 1
6. goto 2.

We consider the algorithm A∥G∗ that on input x runs A and G∗ in parallel, both on
input x, and halts, when the first of these algorithms halts, then answering in the same
way. Hence, A∥G∗ accepts Q and tA∥G∗(xs) is polynomially bounded in s. As |xs| ≤ sO(1),
by (2.1) we see that tA(xs) is not polynomially bounded in tA∥G∗(xs) + |xs|; thus A∥G∗

witnesses that A is not an almost optimal algorithm. 2

We state the main result of this section (Remark 2.7 contains extensions of the result
to further classes of problems Q). As already remarked in the Introduction part (b) of
this theorem is a straightforward consequence of the corresponding result for propositional
proof systems due to Krajíček.

Theorem 2.3 Let Q be a co-NP-complete problem. Then:
(a) Q has no almost optimal algorithm ⇐⇒ Q has hard sequences for algorithms.
(b) Q has no almost optimal nondeterministic algorithm ⇐⇒ Q has hard sequences

for nondeterministic algorithms.

The proofs of the implications from right to left are clear by the previous lemma. The
following considerations will yield a proof of the converse direction. For a nondeterministic

The Infinity Project 209

algorithm A and s ∈ N, let As be the algorithm that rejects all x ∈ Σ∗ with |x| > s. If
|x| ≤ s, then it simulates s steps of A on input x. If this simulation halts and accepts,
then As accepts; otherwise it rejects.

Recall that by L(A) we denote the language accepted by A. For Q ⊆ Σ∗ we consider
the deterministic (nondeterministic) algorithm subset problem Das(Q) (Nas(Q)):

Das(Q)
Instance: A deterministic algorithm A and 1s with s ∈ N.
Problem: L(As) ⊆ Q ?

Nas(Q)
Instance: A nondeterministic algorithm A and 1s with s ∈ N.
Problem: L(As) ⊆ Q ?

The following two lemmas relate the equivalent statements in Theorem 2.3(a) (in Theo-
rem 2.3(b)) to a statement concerning the complexity of Das(Q) (of Nas(Q)).

Lemma 2.4
(a) If ⟨A, 1s⟩ ∈ Das(Q) is solvable in time sf(A) for some function f , then Q has

an almost optimal algorithm.
(b) If there is a nondeterministic algorithm V accepting Nas(Q) such that for all
⟨A, 1s⟩ ∈ Nas(Q) we have tV(⟨A, 1s⟩) ≤ sf(A) for some function f , then Q has
an almost optimal nondeterministic algorithm.

Proof. Again we only prove (a). Let V be an algorithm deciding ⟨A, 1s⟩ ∈ Das(Q) in time
sf(A) for some function f . Further let Q be an algorithm deciding Q and let A0,A1, . . . be
an effective enumeration of all algorithms. Consider the following algorithm A deciding Q.

A // x ∈ Σ∗

1. simulate Q on x and in parallel do the following
2. for i = 0 to |x| do in parallel
3. simulate Ai on x
4. if Ai accepts then
5. s← max{|x|, length of the run accepting x}
6. if V accepts ⟨Ai, 1s⟩ then accept and halt
7. else never halt
8. else never halt
9. if Q stops first then answer accordingly and halt.

It is easy to see that A decides Q. We show it is almost optimal. Let B be any algorithm
deciding Q. We choose iB ∈ N such that B = AiB . Note that V accepts ⟨B, 1s⟩ for all s.
Hence for inputs x ∈ Q with |x| ≥ iB the algorithm A, for i = iB, accepts x in Line 6 if
it was not already accepted earlier. Thus, tA(x) is polynomially bounded in

|x|+ tB(x) + tV

(⟨
B, 1max{|x|,tB(x)}

⟩)
,

where the term tB(x) takes care of line 3. Hence, by assumption, it is polynomially
bounded in |x|+max

{
|x|, tB(x)

}f(B). Altogether, tA(x) ≤
(
|x|+ tB(x)

)O(1). 2

If Q is co-NP-complete, then the problem Nas(Q) and hence the problem Das(Q) are
in co-NP, too (this is the reason why 1s and not just s is part of the input of Nas(Q) and

210 Hard instances

of Das(Q)). Thus, together with Lemma 2.4 the following lemma yields the remaining
claims of Theorem 2.3.

Lemma 2.5
(a) Assume that Das(Q) ≤p Q, that is, that Das(Q) is polynomial time reducible

to Q. If ⟨A, 1s⟩ ∈ Das(Q) is not solvable in time sf(A) for some function f , then
Q has hard sequences for algorithms.

(b) Assume that Nas(Q) ≤p Q. If there is no nondeterministic algorithm V accept-
ing Nas(Q) such that for all ⟨A, 1s⟩ ∈ Nas(Q) we have tV(⟨A, 1s⟩) ≤ sf(A) for
some function f , then Q has hard sequences for nondeterministic algorithms.

Proof. Again we only prove part (a).

Claim Assume that ⟨A, 1s⟩ ∈ Das(Q) is not solvable in time sf(A) for some function f .
Then there is no algorithm W deciding Das(Q) such that for all algorithms A with
L(A) ⊆ Q there is a cA ∈ N such that for all s ∈ N we have tW(⟨A, 1s⟩) ≤ scA .

Proof of the claim. By contradiction, assume that such aW exists. Let V be the algorithm
that, on an arbitrary input ⟨A, 1s⟩, in parallel runs W on ⟨A, 1s⟩ and computes

rA := the least r such that L(Ar) ̸⊆ Q
by systematically checking for r = 0, 1, . . . whether L(Ar) ̸⊆ Q (this is done by running
for all x with |x| ≤ r the algorithm A at most r steps on input x and a decision procedure
for Q on x). Note that rA is not defined if L(A) ⊆ Q. If W stops first, V answers
accordingly; if rA is obtained first, then V accepts if s < rA and otherwise it rejects. It
should be clear that the algorithm V decides ⟨A, 1s⟩) ∈ Das(Q) in ≤ sf(A) steps for some
function f . ⊣

By assumption, there is a polynomial time reduction S from Das(Q) to Q. Let B
be an arbitrary algorithm deciding Q. Then the algorithm B ◦ S, which on input x first
simulates S on x and then B on S(x), decides Das(Q). Hence, by the Claim, there exists
an algorithm A with L(A) ⊆ Q such that tB◦S(⟨A, 1s⟩) is not polynomially bounded in s.
For s ∈ N we set xs := S(⟨A, 1s⟩). Then xs ∈ Q for all s and the function 1s 7→ xs is
polynomial time computable. Furthermore,

tB◦S(⟨A, 1s⟩) ≤ O
(
tS(⟨A, 1s⟩) + tB(S(⟨A, 1s⟩))

)
≤ sO(1) +O

(
tB(xs)

)
.

As the left hand side is not polynomially bounded in s, neither is tB(xs). Hence (xs)s∈N
is hard for B. 2

Remark 2.6 Assume that Q is co-NP-complete and has padding (the set Taut is an
example of such a Q). If Q has no almost optimal algorithm, then every algorithm B
deciding Q has a hard sequence (xs)s∈N with s ≤ |xs|. Then, in particular

{xs | s ∈ N} ∈ P and B is not polynomial time on {xs | s ∈ N}.
In fact, it is well-known that for Q with padding we can replace any polynomial time
reduction to Q by a length-increasing one. Hence, in the previous proof we may assume
that S is length-increasing and therefore s ≤ |xs|.
Remark 2.7 In the proof of Theorem 2.3 we used the assumption that Q is co-NP-
complete only to ensure that Nas(Q) ≤p Q (cf. Lemma 2.5). This condition is also
fulfilled for every Q complete, say, in one of the classes Πpt with t ≥ 1, E or Pspace.
Thus the statements of Theorem 2.3 hold for such Q.

The Infinity Project 211

The argument in the last part of Lemma 2.5 shows (an instance of) the following
simple lemma. Nevertheless, note that it is important that we do not require s ≤ |xs| in
our definition of hard sequence.

Lemma 2.8 Assume that S is a polynomial time reduction from Q to Q′ and let B be a
(nondeterministic) algorithm deciding (accepting) Q′. If (xs)s∈N is a hard sequence for
B ◦ S, then (S(xs))s∈N is a hard sequence for B.

Therefore, if Q ≤p Q′ and Q has hard sequences for (nondeterministic) algorithms
then so does Q′.

We do not know proofs of the following results not using the machinery developed
here.

Theorem 2.9 Let Q be co-NP-complete. Then, Taut has an almost optimal algorithm
if and only if Q has an almost optimal algorithm.

Proof. Immediate by the previous lemma and Theorem 2.3. 2

We remark that the implication from left to right in the previous result was already
known [7] (see also Theorem 3.2 below).

Theorem 2.10 Assume that Taut has no almost optimal algorithm. Then every co-
NP-hard problem has no almost optimal algorithm.

Proof. By assumption and Theorem 2.3, Taut has hard sequences for algorithms and so
does every co-NP-hard Q by Lemma 2.8. Now the claim follows from Lemma 2.2. 2

3 Hard sequences for proof systems

In this section we translate the results on hard sequences from algorithms to proof sys-
tems. We first recall some basic definitions.

A proof system for Q is a polynomial time algorithm P computing a function from Σ∗

onto Q. If P(w) = x, we say that w is a P-proof of x. Often we introduce proof
systems implicitly by defining the corresponding function; then this definition will suggest
a corresponding algorithm.

Definition 3.1 Let P and P′ be proof systems for Q. An algorithm T is a translation
from P′ into P if P(T(w′)) = P′(w′) for every w′ ∈ Σ∗. Note that translations always
exist. A translation is polynomial if it runs in polynomial time.

A proof system P for Q is p-optimal or polynomially optimal if for every proof sys-
tem P′ for Q there is a polynomial translation from P′ into P. A proof system P for Q is
optimal if for every proof system P′ for Q and every w′ ∈ Σ∗ there is a w ∈ Σ∗ such that
P(w) = P′(w′) and |w| ≤ |w′|O(1). Clearly, every p-optimal proof system is optimal.

We will often make use of the following relationship between the optimality notions
for algorithms and that for proof systems (see [7, 10]).

Theorem 3.2
(1) For every Q we have (a) ⇒ (b) and (b) ⇒ (c); moreover (a), (b), and (c) are

all equivalent if Q has padding. Here
(a) Q has a p-optimal proof system;
(b) Q has an almost optimal algorithm;

212 Hard instances

(c) There is an algorithm that decides Q and runs in polynomial time on every
subset X of Q with X ∈ P.

(2) For every Q we have (a) ⇔ (b), (b) ⇒ (c), and (c) ⇒ (d); moreover (a)–(d)
are all equivalent if Q has padding. Here
(a) Q has an optimal proof system;
(b) Q has an almost optimal nondeterministic algorithm;
(c) There is a nondeterministic algorithm that accepts Q and runs in polynomial

time on every subset X of Q with X ∈ NP;
(d) There is a nondeterministic algorithm that accepts Q and runs in polynomial

time on every subset X of Q with X ∈ P.

We use our results of Section 2 to extend the equivalence between (a) and (b) of
part (1) to arbitrary co-NP-complete problems:

Theorem 3.3 Let Q be co-NP-complete. Then: Q has a p-optimal proof system if and
only if Q has an almost optimal algorithm.

Proof. By Theorem 3.2(1) the left side implies the right side. Now assume that Q has an
almost optimal algorithm. As Q × Σ∗ is co-NP-complete too, it has an almost optimal
algorithm (by Theorem 2.9). As Q× Σ∗ has padding, it has a p-optimal proof system P
(cf. Theorem 3.2(1)). Now it is routine to show that the algorithm P′ that on input w
computes P(w) and outputs its first component is a p-optimal proof system for Q. 2

We already mentioned that for every Q ⊆ Σ∗ there is a well-known and straightfor-
ward correspondence between proof systems and nondeterministic algorithms preserving
the optimality notions, so that the proof of the equivalence between (a) and (b) in The-
orem 3.2(2) is immediate, In fact, if P is a proof system for Q, then the nondeterministic
algorithm A(P) accepts Q, where A(P) on input x ∈ Σ∗ guesses a string w and accepts if
P(w) = x. Conversely, if A is a nondeterministic algorithm accepting Q, then for every
fixed x0 ∈ Q a proof system PA for Q is defined by

PA(w) :=

{
x, if w is a computation of A accepting x,
x0, otherwise.

The proof of the corresponding equivalence in Theorem 3.2(1) is more involved and mostly,
more or less explicitly, it is based on a theorem due to Levin on inverters. As we need
this result, too, we recall it.

Let F be an algorithm computing a function from Σ∗ to Σ∗. An inverter of F is
an algorithm I that given y in the range of F halts with some output I(y) such that
F(I(y)) = y. On inputs not in the range of F, the algorithm I may do whatever it wants.
Levin [8] proved the following result.

Theorem 3.4 Let F be an algorithm computing a function from Σ∗ into Σ∗. Then there
is an optimal inverter that is, an inverter OF of F such that for every inverter I of F and
all y in the range of F we have

tOF(y) ≤
(
tI(y) + tF(I(y)) + |y|

)O(1)
.

Furthermore, OF does not halt on inputs y not in the range of F.

We turn to hard sequences for proof systems.

The Infinity Project 213

Definition 3.5 Let P be a proof system for Q. A sequence (xs)s∈N is hard (length-hard)
for P if {xs | s ∈ N} ⊆ Q, the function 1s 7→ xs is computable in polynomial time, and
there is no polynomial time (nondeterministic) algorithm W with P(W(1s)) = xs for all
s ∈ N.

For nondeterministic W by the unusual notation P(W(1s)) = xs we mean that for
every run of W on 1s outputting a string w we have P(w) = xs and that there is at
least one run that outputs a string. In more conventional terms, instead of “there is no
polynomial time nondeterministic algorithm W with P(W(1s)) = xs”, we equivalently
could require that the function mapping 1s to the minimum length in unary of a P-proof
of xs is not polynomially bounded.

Definition 3.6 The problem Q has hard (length-hard) sequences for proof systems if
every proof system for Q has a hard (length-hard) sequence.

As already remarked in the Introduction part (b) of the following result is due to
Krajíček [6] who proved it by quite different means. Part (a) is already known for
Q = Taut (see e.g. the survey [1, Section 11]). We give a new proof that works for any,
not necessarily paddable coNP-complete problem Q.

Theorem 3.7 Let Q be a co-NP-complete problem. Then:
(a) Q has no p-optimal proof system iff Q has hard sequences for proof systems.
(b) Q has no optimal proof system iff Q has a length-hard sequence for proof systems.

Proof. First we present a proof of the directions from right to left. Let P be any proof
system for Q. By our assumption on Q there is a hard (length-hard) sequence (xs)s∈N
for P. We consider the proof system P′ for Q by

P′(w′) := P(w), if w′ = 0w; P′(w′) := xs, if w′ = 1s;

and P′(w′) := z0 for some fixed element z0 of Q otherwise. By hardness (length-hardness)
no translation from P′ into P is polynomial (polynomially bounded). In fact, assume that
(xs)s∈N is, say, length-hard for P and by contradiction that the translation T from P′ into
P is polynomially bounded. Let q be a polynomial such that |T(w′)| ≤ q(|w′|) for all w′.
Then, the nondeterministic algorithm W that on input 1s guesses a string w of length
≤ q(s) and outputs it in case P(w) = xs runs in polynomial time.

Now we present a proof of the direction from left to right; we do that only for (a)
as that for (b) follows immediately from the result for algorithms by the simple corre-
spondence between proof systems and nondeterministic algorithms mentioned above. So,
assume that Q has no p-optimal proof system. By Theorem 3.3, Q has no almost optimal
algorithm and hence has hard sequences for algorithms by Theorem 2.3.

Let P be any proof system for Q. By Theorem 3.4, we have an inverter OP of P which
is optimal, that is, for every inverter I of P and x ∈ Q we have

(3.1) tOP(x) ≤
(
tI(x) + tP(I(x)) + |x|

)O(1) ≤ (tI(x) + |x|)O(1),

where the second inequality holds as tP(w) ≤ |w|O(1) and hence tP(I(x)) ≤ |I(x))|O(1) ≤
tI(x)

O(1). Moreover, for x /∈ Q the algorithm OP will not halt on input x.
We choose an arbitrary algorithm Q that decides Q and consider the algorithm S

that on input x in parallel simulates Q and OP, both on input x. If Q halts first, then it
answers accordingly and if QP halts first, then it accepts. Obviously S decides Q and for

214 Hard instances

every x ∈ Q we have

(3.2) tS(x) ≤ O
(
tOP(x)

)
.

As Q has hard sequences for algorithms, there is a polynomial time computable algorithm
G generating a hard sequence for S, that is, G on input 1s computes xs ∈ Q in polynomial
time such that

(3.3) tS(xs) is not polynomially bounded in s.

LetG+ be the variant of the algorithmG∗ in the proof of Lemma 2.2 obtained by replacing
Line 4 by

if this simulation outputs y and y = x then output 1s and halt.

Of course, on input x = xs the algorithm G+ runs in time polynomial in s. We show that
(xs)s∈N is a hard sequence for P. So by contradiction, assume that W is a polynomial
time algorithm with P(W(1s)) = xs for all s ∈ N. We consider the inverter I of P that on
input x in parallel simulates OP and G+, both on input x. If OP halts, then it outputs the
output of OP and halts; if G+ halts, then it simulates W on G+(x), outputs W(G+(x)),
and halts.

By definition of G+ the algorithm I runs on input xs in time polynomial in s, hence
so does OP by (3.1) as |xs| ≤ sO(1). But then by (3.2), the same holds for the algorithm S
contradicting (3.3). 2

In the previous proof the hard (length-hard) sequence (xs)s∈N constructed for a proof
system for Q was the hard sequence of a suitable (nondeterministic) algorithm for Q.
Hence, by Remark 2.6, for Q with padding, we can require in Theorem 3.7 that for the
claimed hard sequence (xs)s∈N we have s ≤ |xs|.

4 Hard subsets

As already remarked in the Introduction, if for an algorithm A deciding a problem Q we
have a hard sequence (xs)s∈N satisfying s ≤ |xs|, then {xs | s ∈ N} is a polynomial time
decidable subset of Q on which A is not polynomial time. We then speak of a hard set
for A even if its elements cannot be generated in polynomial time. More precisely:

Definition 4.1 Let Q ⊆ Σ∗.
(1) Let A be a deterministic or nondeterministic algorithm accepting Q. A subset

X of Q is hard for A if X ∈ P and A is not polynomial time on X.
(2) The problem Q has hard sets for algorithms if every algorithm deciding Q has

a hard set.
(3) The problem Q has hard sets for nondeterministic algorithms if every nondeter-

ministic algorithm accepting Q has a hard set.

Using these notions the equivalences (a) ⇔ (c) in Theorem 3.2 can be expressed in
the following way:

Assume that Q has padding. Then:
(1) Q has no almost optimal algorithm ⇐⇒ Q has hard sets for algorithms.
(2) Q has no almost optimal nondeterministic algorithm ⇐⇒ Q has hard sets for

nondeterministic algorithms.

Hence, we get (we leave the nondeterministic variant to the reader):

The Infinity Project 215

Corollary 4.2 Assume Q has padding.
(a) If Q has hard sequences for algorithms, then Q has hard sets for algorithms.
(b) If in addition Q is co-NP-complete, then Q has hard sequences for algorithms if

and only if Q has hard sets for algorithms.

Proof. (a) If Q has hard sequences for algorithms, then, by Lemma 2.2, Q has no almost
optimal algorithm and thus, by the previous remark, Q has hard sets for algorithms.

Again the previous remark together with Theorem 2.3 yields (b). 2

Assume that Q has an almost optimal algorithm. Then, in general, one cannot
show that every algorithm deciding Q, which is not almost optimal, has a hard set. In
fact, Messner [10, Corollary 3.33] has presented a P-immune Q0 with an almost optimal
algorithm. Of course, no algorithm deciding Q0 has a hard set.

For an arbitrary problem Q the existence of hard subsets is equivalent to a (non-)
listing property. We introduce this property.

Let C be the complexity class P or NP. A set X is a C-subset of Q if X ⊆ Q and
X ∈ C. Let C ′ be also one of the classes P or NP. We write List(C,Q,C ′) and say that
there is a listing of the C-subsets of Q by C ′-machines if there is an algorithm that, once
having been started, lists Turing machines M1,M2, . . . of type C ′ such that{

L(Mi) | i ≥ 1
}
=
{
X ⊆ Q | X ∈ C

}
.

For Q with padding the equivalences in the following proposition were known [12].

Proposition 4.3
(1) Q has hard sets for algorithms ⇐⇒ not List(P, Q,P).
(2) Every nondeterministic algorithm A accepting Q is not polynomial on at least

one subset X of Q with X ∈ NP ⇐⇒ not List(NP, Q,NP).

Proof. We only prove the first claim as the second one can be obtained along the same
lines. First we assume that not List(P, Q,P). Let A be an algorithm deciding Q. For
d ∈ N, by A(d) we denote the algorithm that on input x simulates A on input x but
rejects if the simulation exceeds time |x|d.

We show that there is a P-subset X of Q such that, for all d,

X ̸⊆ A(d).

Of course, then this X is hard for A.
Otherwise, we fix an effective enumeration D1,D2, . . . of all polynomial time Turing

machines. Then (Di(A(j))i,j≥1 is a listing of the P-subsets of Q, where Di(A(j)) on input
x, first simulates A(j) on x and if this algorithm accepts, then it simulates Di on input x
and answers accordingly. In fact, as A(j) has to accept x, we have L(Di(A(j))) ⊆ Q.
And if X is a P-subset of Q accepted by Di, we choose a d such that X ⊆ A(d). Then
L(Di(A(d))) = X.

Conversely, assume that Q has hard sets for algorithms. By contradiction assume
that L is a listing witnessing List(P, Q,P). Let Q be an algorithm deciding Q. Consider
the algorithm A that on input x simulates Q on x and in parallel for i = 1, 2, . . . does the
following:

• performs the ith step of L;
• if M1, . . . ,Ms are the machines listed by L so far, it performs an additional step

of each of the Mjs on x; if one of these accepts it accepts.

216 Hard instances

If Q halts first, it answers accordingly.
It should be clear that A accepts Q. By assumption, there is a set X hard for A.

Let Mi0 accept X. By definition of A it should be clear that A is polynomial on X, a
contradiction. 2

We close this section by introducing hard subsets for proof systems and stating the
corresponding result.

Definition 4.4
(1) Let P be a proof system for Q. A subset X of Q is hard (length-hard) for P if

X ∈ P and there is no polynomial time (nondeterministic) algorithm W such
that P(W(x)) = x for all x ∈ X (cf. the remark after Definition 3.5 for the
precise meaning of this last condition in the nondeterministic case).

(2) Q has hard (length-hard) sets for proof systems if every proof system for Q has
a hard (length-hard) set.

The following result can be obtained along the lines of the proof of Theorem 3.7.
Again, due to the close relationship between nondeterministic algorithms and proof sys-
tems, part (b) can be viewed as a reformulation of the result for algorithms.

Theorem 4.5 Let Q be a problem with padding. Then:
(a) Q has no p-optimal proof system ⇐⇒ Q has hard sets for proof systems.
(b) Q has no optimal proof system ⇐⇒ Q has length-hard sets for proof systems.

5 Assuming the Measure Hypothesis

In this section we present some examples of problems with special properties; some yield
limitations to possible extensions of results mentioned in this paper. Most are proven
assuming the Measure Hypothesis.

5.1 Complex sets with optimal algorithms and with optimal proof
systems

For every Q ∈ NP, say, accepted by the polynomial time nondeterministic algorithm A,
the proof system P is optimal, where P(w) := x if w is an accepting computation of A
on input x; and otherwise, P(w) := z0 for some fixed element z0 of Q. The question
whether there are sets outside of NP with optimal proof systems was stated by Krajíček
and Pudlák [7] and is still open. As already mentioned they proved that Taut has an
optimal proof system if E = NE.

We prove that there are problems in NE and outside of NP with optimal proof systems
if the Measure Hypothesis holds. As a byproduct we get that there exist problems in E and
outside of P with optimal algorithms (thereby we do not need the Measure Hypothesis).
Here an algorithm A deciding Q is optimal if for every algorithm B deciding Q we have

tA(x) ≤ (tB(x) + |x|)O(1)

for all x ∈ Σ∗. Clearly, every problem in P has an optimal algorithm.
Let C be a class of problems. Recall that a problem Q is C-immune if no infinite

subset of Q is in C; and it is C-bi-immune if Q and its complement Σ∗ \ Q are C-im-
mune. For a function t : N → N we denote by Dtime0(t) and DTIME(t) the class
of problems decidable by a Turing machine M with tM(x) ≤ t(x) for all x ∈ Σ∗ and

The Infinity Project 217

tM(x) ≤ c · t(x) for all x ∈ Σ∗ and some constant c ∈ N. The nondeterministic classes
Ntime0(t) and Ntime(t) are defined accordingly. Hence E =

∪
d∈NDTIME(2d·n) and

NE =
∪
d∈NNtime(2d·n).

Lemma 5.1 Let ℓ ∈ N with ℓ ≥ 1.
(a) If Q ∈ E is a Dtime0(2

ℓ·n)-bi-immune problem, then Q has an optimal algo-
rithm.

(b) If Q ∈ NE is a Ntime0(2
ℓ·n)-immune problem, then Q has an almost optimal

nondeterministic algorithm.

Proof. We prove (a); part (b) is obtained by the obvious modifications. Assume that the
Turing machine M decides the Dtime0(2

ℓ·n)-bi-immune problem Q in time c · 2d·n for
some c, d ∈ N. We claim that M is optimal.

Assume otherwise, then there is a machine M′ deciding Q and witnessing that M is
not optimal. Then for every i ∈ N there exists an xi such that

tM(xi) >
(
tM′(xi) + |xi|

)i
.

It follows that for every i ∈ N

c · 2d·|xi| ≥ tM(xi) > tM′(xi)
i.

Thus tM′(xi) ≤ 2ℓ·|xi|/2 for all sufficiently large i ∈ N. Of course, infinitely many of these
xi’s are in Q, or they are in Σ∗ \Q. In the first case consider the following machine:

M′′ // x ∈ Σ∗

1. simulate M′ on x for at most 2ℓ·|x|/2 steps
2. if the simulation halts and accepts then accept else reject.

It accepts an infinite subset of Q in time 2ℓ·n. This contradicts our immunity assumption.
The second case is handled similarly. 2

We use the following result due to Mayordomo [9]. Statement (b) of it uses the
Measure Hypothesis [5], that is, the assumption

NP does not have measure 0 in E.

For the corresponding notion of measure we refer to [9]. This hypothesis is sometimes
used in the theory of resource bounded measures.

Theorem 5.2 Let ℓ ≥ 1.
(a) The class of Dtime0(2

ℓ·n)-bi-immune problems has measure 1 in E. In partic-
ular, the class E contains Dtime0(2

ℓ·n)-bi-immune problems.
(b) If the Measure Hypothesis holds, then NP∩E contains Dtime0(2

ℓ·n)-bi-immune
problems.

From the previous lemma and theorem we get:

Corollary 5.3
(1) There exist problems in E \ P with optimal algorithms.
(2) If the Measure Hypothesis holds, then there exist problems in NP\P with optimal

algorithms.

218 Hard instances

We already remarked that Messner [10] showed the existence of problems in E \ P
with almost optimal algorithms.

Theorem 5.4 If the Measure Hypothesis holds, then there exist problems in NE \ NP
with optimal proof systems.

Proof. It suffices to show that there is a Q ∈ NE which is Ntime0(2
n)-immune. Then,

by Lemma 5.1, such a Q has an almost optimal nondeterministic algorithm and hence,
an optimal proof system by Theorem 3.2.

By Theorem 5.2(b) there is a Q0 ∈ NP which is Dtime0(2
2n)-bi-immune problem.

We choose d ≥ 1 such that Q0 ∈ Ntime(nd). We set

Q :=
{
1m
∣∣ m ∈ N and 12

m ∈ Q0

}
.

Then Q ∈ NE. Moreover, Q is infinite as otherwise the set {12m | m ∈ N and 12
m
/∈ Q0}

would be an infinite subset of Σ∗ \Q0 in P contradicting the bi-immunity property of Q0.
Finally we show that Q is Ntime0(2

n)-immune. By contradiction assume that there is
an infinite S ⊆ Q accepted by a nondeterministic algorithm S in time 2n. Then the set

S∗ :=
{
1n | n = 2m for some m ∈ N and 1m ∈ S

}
is an infinite subset of Q0. The algorithm that first computes m from 1n and then
deterministically simulates all possible runs of S on 1m runs in time

nO(1) +O(22
m
) = nO(1) +O(2n) ≤ 22n

for sufficiently large n. This contradicts the Dtime0(2
2n)-immunity of Q0. 2

5.2 Non-optimal algorithms without hard sequences

In this final part we show that, assuming the Measure Hypothesis,
• every problem with padding and with an almost optimal algorithm has an algo-

rithm which is not almost optimal but has no hard sequence;
• there is a problem without almost optimal algorithm having an algorithm with-

out hard sequence.
Our proofs are based on the following proposition.

Proposition 5.5 If the Measure Hypothesis holds, then there is a problem Q0 ∈ P such
that

(a) there is an algorithm B deciding Q0 which is not almost optimal (or, equivalently,
is not polynomial time) but has no hard sequences;

(b) every algorithm A deciding Q0 with

tA(x) ≤ 2e·(log |x|)
2

for every x ∈ Σ∗ and some constant e ≥ 1 has no hard sequences;
(c) there is a proof system for Q0 which is not optimal but has no hard sequences.

In the proof we shall use:

Lemma 5.6 Let A be an algorithm deciding a problem Q0 with

(5.1) tA(x) ≤ 2e·(log |x|)
2

The Infinity Project 219

for all x ∈ Σ∗ and some e ≥ 1. Assume that (xs)s∈N is a hard sequence for A. Then
there is a sequence s0 < s1 < s2 < . . . such that

lim
i→∞

log si
(log |xsi |)2

= 0, i.e., si = 2o((log |xsi |)
2).

In particular, the set {xsi | i ∈ N} is infinite.

Proof. Assume otherwise that, for some ε > 0 and some n ∈ N and all s ≥ n,
log s

(log |xs|)2
≥ ε,

or equivalently, s ≥ 2ε·(log |xs|)
2 ; then s ≥ tA(xs)

ε/e by assumption. This contradicts the
hardness of (xs)s∈N. 2

Proof of Proposition 5.5. (a) and (b): By the Measure Hypothesis there is a Dtime0(2
n)-

bi-immune Q1 ∈ NP. In particular, there exists a nondeterministic Turing machine M
with binary nondeterminism and a d ∈ N such that for all y ∈ Σ∗ (with |y| ≥ 2) the
machine M decides whether y ∈ Q1 in ≤ |y|d steps. Thus for y ∈ Σ∗ every string
x ∈ {0, 1}|y|d determines a unique run of M on y. We set

Q0 :=
{
x ∈ {0, 1}∗ | for some n ∈ N we have |x| = nd and

x determines an accepting run of M on input 1n
}
.

Then Q0 is infinite, as otherwise the set {1n ∈ Q1 | n ∈ N} would be finite contradicting
the Dtime0(2

n)-bi-immunity of Q1. Clearly Q0 ∈ P. Let A0 be an algorithm deciding
Q0 in polynomial time and let B be the algorithm deciding Q0 by first simulating A, and
then making an appropriate number of dummy steps such that, for some e ≥ 1 and all
y ∈ Σ∗,

(5.2) tB(y) = 2e·(log |y|)
2
.

Then A0 witnesses that B is not almost optimal.
We finish our proof by showing that for every algorithm A deciding Q0 such that, for

some e ≥ 1 and all y ∈ Σ∗,
tA(y) ≤ 2e·(log |y|)

2
,

has no hard sequences. Towards a contradiction assume A has a hard sequence (xs)s∈N.
We set

L0 :=
{
1n | for some s ∈ N, |xs| = nd and xs determines an accepting run of M on 1n

}
.

Clearly, L0 ⊆ Q1. We choose a polynomial time algorithm G computing the function
1s 7→ xs. The following algorithm C accepts L0.

C // y ∈ Σ∗

1. n← |y|
2. if y ̸= 1n then reject
3. ℓ← 0
4. for s = 0 to ℓ
5. simulate the (ℓ− s)th step of G on 1s

6. if the simulation outputs x with |x| = nd then accept
7. ℓ← ℓ+ 1
8. goto 3.

220 Hard instances

By (5.2) we can apply Lemma 5.6 to A and get a sequence s0 < s1 < s2 < For i ∈ N
we let

(5.3) ni :=
d
√
|xsi |.

Hence, xsi is an accepting run of M on input 1ni . We show that

(5.4) tC(1
ni) = 2o((logni)

2).

In fact, as G runs in polynomial time, we have |xsi | ≤ |si|O(1), and by (5.3) therefore,
|ni| ≤ |si|O(1). Now one easily sees that C accepts 1ni in time polynomial in si, too. By
Lemma 5.6,

si = 2o((log |xsi |)
2).

Thus (5.3) implies that

si = 2o((logni)
2).

Hence, we get (5.4).
Finally, we consider the algorithm C∗ that on input y simulates C for 2|y| steps and

accepts if the simulation accepts. By (5.4), C∗ accepts an infinite subset of L0. As
L0 ⊆ Q1, this contradicts the Dtime0(2

n)-bi-immunity of Q1.
To prove (c), let Q0 and B be as in part (a). We leave it to the reader to show that

the following proof system P for Q0 is not optimal but has no hard sequence. For w ∈ Σ∗,
let

P(w) := x if w is a computation of B accepting x,

and P(w) := z0 for some fixed z0 ∈ Q0 otherwise. 2

Theorem 5.7 Let Q be a problem with padding and with an almost optimal algorithm. If
the Measure Hypothesis holds, then there is an algorithm deciding Q, which is not optimal,
has hard sets but does not have hard sequences.

Proof. Let pad and O be a padding function and an almost optimal algorithm for Q,
respectively. With Proposition 5.5(a) choose a Q0 ∈ P and an algorithm B deciding
Q0 which is not almost optimal but has no hard sequences. Fix z0 ∈ Q and let A
be the algorithm deciding Q that on input x first checks (in polynomial time) whether
x = pad(z0, y) with y ∈ Q0 (using the properties of the padding function and a polynomial
time algorithm deciding Q0); if so, it simulates B on y; otherwise it simulates O on x.

Clearly, A is not almost optimal as it can be speeded up on {pad(z0, y) | y ∈ Q0}, a
hard set of A. By contradiction, assume (xs)s∈N is a hard sequence for A and let y0 ∈ Q0.
For s ≥ 1 we set

ys :=

{
y, if xs = pad(z0, y) with y ∈ Q0,
ys−1, otherwise

and

zs :=

{
zs−1, if xs = pad(z0, y) with y ∈ Q0,
xs, otherwise.

Then either (ys)s∈N is a hard sequence for B or (zs)s∈N is a hard sequence for O, in both
cases a contradiction. 2

The Infinity Project 221

Corollary 5.8 If the Measure Hypothesis holds, then the following are equivalent:
(i) Every co-NP-complete problem has no almost optimal algorithm.
(ii) Every non-almost optimal algorithm deciding a co-NP-complete problem has hard

sequences.

Proof. We already know that (i) implies (ii) by Theorem 2.3(a). Assume (ii) and by
contradiction, suppose that Q is a co-NP-complete problem with an almost optimal al-
gorithm. By Theorem 2.9, we may assume that Q has padding. Then, by the previous
theorem, there is a non-almost optimal algorithm deciding Q without hard sequences,
contradicting (ii). 2

The following example shows that the padding hypothesis is necessary in Theorem 5.7.

Example 5.9 Let Q := {1n | n ∈ N}. As Q ∈ P, it has an almost algorithm. However,
the set Q itself is a hard set and (1s)s∈N a hard sequence for every non-optimal (that is,
for every superpolynomial) algorithm deciding Q.

Finally, we show that also problems without almost optimal algorithm may have
algorithms without hard sequences:

Theorem 5.10 If the Measure Hypothesis holds, there is a problem which has hard sets
for algorithms (and hence has no almost optimal algorithm) but has algorithms without
hard sequences.

Proof. Let Q0 ∈ P be a problem with the properties stated in Proposition 5.5. We fix an
effective enumeration

(5.5) A0,A1, . . .

of all algorithms such that there is an universal algorithm U which on every input
⟨
1i, x

⟩
simulates the algorithm Ai on input

⟨
1i, x

⟩
in such a way that

(5.6) tU
(⟨

1i, x
⟩)
≤ (i+ 1) · tAi(⟨i, x⟩)

2.

For every i ∈ N we let

(5.7) Si :=
{⟨

1i, x
⟩ ∣∣∣ x ∈ Q0 and Ai does not accept

⟨
1i, x

⟩
in ≤ 2(log |x|)

2
steps

}
.

Finally, we set
Q :=

∪
i∈N

Si

and show that Q is a problem with the properties mentioned in the theorem.

Claim 1 Let k ∈ N. If Ak
(
see (5.5)

)
decides Q, then Sk =

{ ⟨
1k, x

⟩ ∣∣ x ∈ Q0

}
.

Proof of Claim 1. Otherwise, there exists an x0 ∈ Q0 with
⟨
1k, x0

⟩
/∈ Sk. It follows that

x0 ∈ Q0 with
⟨
1k, x0

⟩
/∈ Sk

=⇒ Ak accepts
⟨
1k, x0

⟩
in ≤ 2(log |x|)

2 steps (by (5.7))
=⇒ Ak accepts

⟨
1k, x0

⟩
=⇒

⟨
1k, x0

⟩
∈ Q (as Ak decides Q)

=⇒
⟨
1k, x0

⟩
∈ Sk (since all Si’s are disjoint).

This is a contradiction. ⊣

222 Hard instances

Claim 2 Q has hard sets for algorithms.

Proof of Claim 2. Assume that Ak decides Q. By Claim 1, Sk =
{ ⟨

1k, x
⟩ ∣∣ x ∈ Q0

}
and

by (5.7), for every x ∈ Q0,
tAk
(⟨

1k, x
⟩)

> 2(log |x|)
2
.

As Q0 ∈ P, Sk is thus a hard set for Ak. ⊣
Claim 3 For all sufficiently large d ∈ N there is an algorithm Qd deciding Q such that

tQd
(⟨

1i, x
⟩)

= (i+ 1) · 2d·(log |x|)2

for every i ∈ N and x ∈ Σ∗.

Proof of Claim 3. By (5.6) and (5.7) as Q0 ∈ P. ⊣
Now we choose a sufficiently large d ∈ N and consider the algorithm Qd of Claim 3.

Assume that Qd has a hard sequence(⟨
1is , xs

⟩)
s∈N.

By (5.7) every xs is in Q0 and by hardness,

tQd
(⟨

1is , xs
⟩)

= (is + 1) · 2d·(log |xs|)2

is superpolynomial in s. Since the mapping 1s 7→
⟨
1is , xs

⟩
is computable in polynomial

time, we have |is| ≤ |s|O(1). Therefore,

(5.8) 2d·(log |xs|)
2

is superpolynomial in s.

As Q0 is decidable in polynomial time and d is sufficiently large, we have an algorithm A
deciding Q0 in time 2d·(log |x|)

2 on every instance x ∈ Σ∗. Then (5.8) implies that (xs)s∈N
is a hard sequence for A, which contradicts Proposition 5.5(b). 2

6 Getting hard sequences in an effective way

We have mentioned in the Introduction that McCreight and Meyer [11] have shown that
for every EXP-hard problem Q there is a polynomial time procedure assigning to every
algorithm decidingQ a hard sequence. Based on their proof we derive a “nondeterministic”
version.

Theorem 6.1 Let Q be a coNEXP-hard problem. Then there is a polynomial time com-
putable function g : Σ∗ × {1}∗ → Σ∗ such that for every nondeterministic algorithm A
accepting Q the sequence

(
g(A, 1s)

)
s∈N is hard for A.

Proof. Consider the problem

Q0

Instance: A nondeterministic algorithm A.
Problem: Is it true that A does not accept A in at most 2|A| steps?

Claim 4 If B is a nondeterministic algorithm accepting Q0, then B ∈ Q0 and therefore,
tB(B) > 2|B|.

Proof of Claim 4. Assume that B /∈ Q0. Therefore, B does not accept B. Then, by the
definition of Q0, we have B ∈ Q0, a contradiction. ⊣

The Infinity Project 223

To every nondeterministic algorithm A and every s ∈ N we can assign in time poly-
nomial in A and s a nondeterministic algorithm As with

(6.1) |As| ≥ s, L(As) = L(A), and tAs = tA

(say, by adding s new “dummy” states).

Claim 5 If A is a nondeterministic algorithm accepting Q0, then (As)s∈N is a hard
sequence for A.

Proof of Claim 5. It suffices to verify that, for all s ∈ N,

As ∈ Q0,(6.2)
tA(As) > 2s.(6.3)

By (6.1) we know that L(As) = L(A). Hence, (6.2) holds by Claim 4, which also shows
the first inequality in

tA(As) = tAs(As) > 2|As| ≥ 2s,

the second one and the equality holding by (6.1). ⊣
Now let Q be coNEXP-hard. Since Q0 ∈ coNEXP there is a polynomial time re-

duction S from Q0 to Q. Again, for a nondeterministic algorithm A let A ◦ S be the
nondeterministic algorithm that on input x ∈ Σ∗ first runs S on x and then runs A
on S(x).

For a nondeterministic algorithm A and s ∈ N, we define

g(A, 1s) := S((A ◦ S)s).
Clearly, g is polynomial time computable. If A decides Q, then A◦S decides Q0; therefore,
((A ◦ S)s)s∈N is a hard sequence for A ◦ S by Claim 5. Hence,

(
g(A, 1s)

)
s∈N is a hard

sequence for A by Lemma 2.8. 2

Acknowledgements

The authors wish to thank the John Templeton Foundation for its support under Grant
#13152, The Myriad Aspects of Infinity. This research has also been partially supported
by the National Nature Science Foundation of China (60970011) and the Sino-German
Center for Research Promotion (GZ584). Yijia Chen is affiliated with BASICS and MOE-
MS Key Laboratory for Intelligent Computing and Intelligent Systems which is supported
by National Nature Science Foundation of China (61033002).

References
[1] O. Beyersdorff. On the correspondence between arithmetic theories and propositional proof systems

—a survey. Mathematical Logic Quarterly, 55(2):116–137, 2009.
[2] Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. In Proceedings of the 37th

International Colloquium on Automata, Languages and Programming (ICALP’10, Track B), volume
6199 of Lecture Notes in Computer Science, pp. 321–322, 2010.

[3] Y. Chen and J. Flum. Listings and logics. Electronic Colloquium on Computational Complexity
(ECCC), TR11-020, 2011.

[4] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The Journal of
Symbolic Logic, 44:36–50, 1979.

[5] J. M. Hitchcock and A. Pavan. Hardness hypotheses, derandomization, and circuit complexity. In
Proceedings of the 24th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’04), 336–347, 2004.

224 Hard instances

[6] J. Krajíček. Bounded arithmetic, propositional logic, and complexity theory. Cambridge University
Press, 1995.

[7] J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and
the complexity of computations. The Journal of Symbolic Logic, 54:1063–1088, 1989.

[8] L. Levin. Universal search problems. Problems of Information Transmission, 9(3):265–266, 1973.
[9] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Computer Science,

136(2): 487–506, 1994.
[10] J. Messner. On the simulation order of proof systems. PhD Thesis, University of Erlangen, 2000.
[11] A. Meyer. A supervisor’s reminiscence what we were thinking. Talk at the Stockmeyer-Symposium,

2005.
[12] Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets of TAUT.

Theoretical Computer Science, 288(1):181–193, 2002.
[13] L. Stockmeyer. The complexity of decision problems in automata theory. PhD Thesis, MIT, 1974.

The Infinity Project

On optimal probabilistic algorithms for Sat

Yijia Chen†, Jörg Flum‡, Moritz Müller§

† Department of Computer Science, Shanghai Jiao Tong University, China
yijia.chen@cs.sjtu.edu.cn

‡ Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

§
Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
moritz.mueller@univie.ac.at

Abstract. Assuming the existence of one-way functions we show that Sat does not have in certain sense
optimal probabilistic algorithms.

Introduction

A major aim in the development of algorithms for hard problems is to decrease the running
time. In particular one asks for algorithms that are optimal: A deterministic algorithm
A deciding a language L ⊆ Σ∗ is optimal (or (polynomially) optimal or p-optimal) if for
any other algorithm B deciding L there is a polynomial p such that

(0.1) tA(x) ≤ p(tB(x) + |x|)
for all x ∈ Σ∗. Here tA(x) denotes the running time of A on input x. If (0.1) is only
required for all x ∈ L, then A is said to be an almost optimal algorithm for L (or to be
optimal on positive instances of L).

Various recent papers address the question whether such optimal algorithms exist for
NP-complete or coNP-complete problems (cf. [1]), even though the problem has already
been considered in the seventies when Levin [4] observed that there exists an optimal
algorithm that finds a witness for every satisfiable propositional formula. Furthermore
the relationship between the existence of almost optimal algorithms for a language L and
the existence of “optimal” proof systems for L has been studied [3, 5].

Here we present a result (see Theorem 1.1) that can be interpreted as stating that (un-
der the assumption of the existence of one-way functions) there is no optimal probabilistic
algorithm for Sat.

1 Probabilistic speed-up

For a propositional formula α we denote by ∥α∥ the number of literals in it, counting
repetitions. Hence, the actual length of any reasonable encoding of α is polynomially
related to ∥α∥.

The main result of this short note reads as follows:

Presented at the conference Logical Approaches to Barriers in Computing and Complexity, Greifs-
wald. Preprint of the Department of Mathematics and Computer Science at the University Greifswald
No. 6, 2010. The authors thank the John Templeton Foundation for its support under Grant #13152,
The Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

225

226 On optimal probabilistic algorithms for Sat

Theorem 1.1 Assume one-way functions exist. Then for every probabilistic algorithm
A deciding Sat there exists a probabilistic algorithm B deciding Sat such that, for all
d ∈ N and sufficiently large n ∈ N,

Pr
[
there is a satisfiable α with ∥α∥ = n such that
A does not accept α in at most (tB(α) + ∥α∥)d steps

]
≥ 1

5
.

Note that tA(α) and tB(α) are random variables, and the probability is taken over the coin
tosses of A and B on α.

Here we say that a probabilistic algorithm A decides Sat if it decides Sat as a
nondeterministic algorithm, that is

α ∈ Sat =⇒ Pr[A accepts α] > 0,

α /∈ Sat =⇒ Pr[A accepts α] = 0.

In particular, A can only err on ‘yes’-instances.
Note that in the first condition the error probability is not demanded to be bounded

away from 0, say by a constant ϵ > 0. As a more usual notion of probabilistic decision,
say A decides Sat with one-sided error ϵ if

α ∈ Sat =⇒ Pr[A accepts α] > 1− ϵ,
α /∈ Sat =⇒ Pr[A accepts α] = 0.

For this concept we get

Corollary 1.2 Assume one-way functions exist and let ϵ > 0. Then for every probabilistic
algorithm A deciding Sat with one-sided error ϵ there exists a probabilistic algorithm B
deciding Sat with one-sided error ϵ such that, for all d ∈ N and sufficiently large n ∈ N,

Pr
[
there is a satisfiable α with ∥α∥ = n such that
A does not accept α in at most (tB(α) + ∥α∥)d steps

]
≥ 1

5
.

This follows from the fact that in the proof of Theorem 1.1 we choose the algorithm
B in such way that on any input α the error probability of B on α is not worse than the
error probability of A on α.

2 Witnessing failure

The proof of Theorem 1.1 is based on the following result.

Theorem 2.1 Assume that one-way functions exist. Then there is a probabilistic poly-
nomial time algorithm C satisfying the following conditions.

(1) On input n ∈ N in unary the algorithm C outputs with probability one a satisfiable
formula β with ∥β∥ = n.

(2) For every d ∈ N and every probabilistic algorithm A deciding Sat and sufficiently
large n ∈ N,

Pr
[
A does not accept C(n) in nd steps

]
≥ 1

3
.

The Infinity Project 227

In the terminology of fixed-parameter tractability this theorem tells us that the pa-
rameterized construction problem associated with the following parameterized decision
problem p-CounterExample-Sat is in a suitably defined class of randomized nonuni-
form fixed-parameter tractable problems.

Instance: An algorithm A deciding Sat and d, n ∈ N in unary.
Parameter: ∥A∥+ d.

Problem: Does there exist a satisfiable CNF-formula α with
∥α∥ = n such that A does not accept α in nd many
steps?

Note that this problem is a promise problem. We can show:

Theorem 2.2 Assume that one-way functions exist. Then the problem

p-CounterExample-Sat

is nonuniformly fixed-parameter tractable.1

This result is an immediate consequence of the following

Theorem 2.3 Assume that one-way functions exist. For every infinite set I ⊆ N the
problem

SatI
Instance: A CNF-formula α with ∥α∥ ∈ I.
Problem: Is α satisfiable?

is not in PTIME.

The decision problem p-CounterExample-Sat has the following associated con-
struction problem:

Instance: An algorithm A deciding Sat and d, n ∈ N in unary.
Parameter: ∥A∥+ d.

Problem: Construct a satisfiable CNF-formula α with ∥α∥ = n
such that A does not accept α in nd many steps, if one
exists.

We do not know anything on its (deterministic) complexity; its nonuniform fixed-
parameter tractability would rule out the existence of strongly almost optimal algorithms
for Sat. By definition, an algorithm A deciding Sat is a strongly almost optimal algo-
rithm for Sat if there is a polynomial p such that, for any other algorithm B deciding
Sat,

tA(α) ≤ p(tB(α) + |α|)
for all α ∈ Sat. Then the precise statement of the result just mentioned reads as follows:

Proposition 2.4 Assume that P ̸= NP. If the construction problem associated with
p-CounterExample-Sat is nonuniformly fixed-parameter tractable, then there is no
strongly almost optimal algorithms for Sat.

1 This means that there is a c ∈ N such that for every algorithm A deciding Sat and every
d ∈ N there is an algorithm that decides for every n ∈ N whether (A, d, n) is a positive instance of
p-CounterExample-Sat in time O(nc); here the constant hidden in O() may depend on A and d.

228 On optimal probabilistic algorithms for Sat

3 Some proofs

We now show how to use an algorithm C as in Theorem 2.1 to prove Theorem 1.1.

Proof of Theorem 1.1 from Theorem 2.1: Let A be an algorithm deciding Sat. We choose
a ∈ N such that for every n ≥ 2 the running time of the algorithm C (provided by
Theorem 2.1) on input n is bounded by na. We define the algorithm B as follows:

B(α) // α ∈ CNF
1. β ← C(∥α∥)
2. if α = β then accept and halt
3. else Simulate A on α.

Let d ∈ N be arbitrary. Set e := d · (a+ 2) + 1 and fix a sufficiently large n ∈ N. Let Sn
denote the range of C(n). Furthermore, let Tn,β,e denote the set of all strings r ∈ {0, 1}ne

that do not determine a (complete) accepting run of A on β that consists in at most ne
many steps. Observe that a (random) run of A does not accept β in at most ne steps if
and only if A on β uses Tn,β,e, that is, its first at most ne many coin tosses on input β
are described by some r ∈ Tn,β,e. Hence by (2) of Theorem 2.1 we conclude

(3.1)
∑
β∈Sn

(
Pr[β = C(n)] · Pr

r∈{0,1}ne
[r ∈ Tn,β,e]

)
≥ 1

3
.

Let α ∈ Sn and apply B to α. If the execution of β ← C(∥α∥) in Line 1 yields β = α, then
the overall running time of the algorithm B is bounded by O

(
n2 + tC(n)

)
= O(na+1) ≤

na+2 for n is sufficiently large. If in such a case a run of the algorithm A on input α uses
an r ∈ Tn,α,e, then it does not accept α in time ne = n(a+2)·d+1 and hence not in time
(tB(α) + ∥α∥)d. Therefore,

Pr
[
there is a satisfiable α with ∥α∥ = n such that

A does not accept α in at most (tB(α) + ∥α∥)d steps
]

≥ 1− Pr
[
for every input α ∈ Sn the algorithm B does not generate α

in Line 3, or A does not use Tn,α,e
]

= 1−
∏
α∈Sn

(
(1− Pr[α = C(n)]) + Pr[α = C(n)] · Pr

r∈{0,1}ne
[r /∈ Tn,α,e]

)
= 1−

∏
α∈Sn

(
1− Pr[α = C(n)] · Pr

r∈{0,1}ne
[r ∈ Tn,α,e]

)
≥ 1−

(∑
α∈Sn

(
1− Pr[α = C(n)] · Prr∈{0,1}ne [r ∈ Tn,α,e]

)
|Sn|

)|Sn|

= 1−
(
1−

∑
α∈Sn Pr[α = C(n)] · Prr∈{0,1}ne [r ∈ Tn,α,e]

|Sn|

)|Sn|

≥ 1−
(
1− 1

3 · |Sn|

)|Sn|
≥ 1

5
. 2

Theorem 2.1 immediately follows from the next lemma.

The Infinity Project 229

Lemma 3.1 Assume that one-way functions exist. Then there is a randomized polynomial
time algorithm H satisfying the following conditions:

(H1) Given n ∈ N in unary the algorithm H computes with probability one a satisfiable
CNF α of size ∥α∥ = n.

(H2) For every probabilistic algorithm A deciding Sat and every d, p ∈ N there exists
an nA,d,p ∈ N such that, for all n ≥ nA,d,p,

Pr
[
A accepts H(n) in time nd

]
≤ 1

2
+

1

np
,

where the probability is taken uniformly over all possible outcomes of the internal
coin tosses of the algorithms A and H.

(H3) The cardinality of the range of (the random variable) H(n) is superpolynomial
in n.

Sketch of proof: We present the construction of the algorithm H. By the assumption that
one-way functions exist, we know that there is a pseudorandom generator (e.g., see [2]),
that is, there is an algorithm G such that:

(G1) For every s ∈ {0, 1}∗ the algorithmG computes a stringG(s) with |G(s)| = |s|+1
in time polynomial in |s|.

(G2) For every probabilistic polynomial time algorithm D, every p ∈ N, and all suffi-
ciently large ℓ ∈ N we have∣∣∣∣ Pr

s∈{0,1}ℓ

[
D(G(s)) = 1

]
− Pr
r∈{0,1}ℓ+1

[
D(r) = 1

]∣∣∣∣ ≤ 1

ℓp
.

(In the above terms, the probability is also taken over the internal coin toss
of D.)

Let the language Q be the range of G,

Q :=
{
G(s)

∣∣ s ∈ {0, 1}∗}.
Q is in NP by (G1). Hence, there is a polynomial time reduction S from Q to Sat, which
we can assume to be injective. We choose a constant c ∈ N such that ∥S(r)∥ ≤ |r|c for
every r ∈ {0, 1}∗. For every propositional formula β and every n ∈ N with n ≥ ∥β∥ let
β(n) be an equivalent propositional formula with ∥β(n)∥ = n. We may assume that β(n)
is computed in time polynomial in n.

One can check that the following algorithmH has the properties claimed in the lemma.

H(n) // n ∈ N
1. m←

⌊
c
√
n− 1

⌋
− 1

2. Choose an s ∈ {0, 1}m uniformly at random
3. β ← S(G(s))
4. Output β(n).

2

References
[1] O. Beyersdorff and Z. Sadowski. Characterizing the existence of optimal proof systems and complete

sets for promise classes. Electronic Colloquium on Computational Complexity, Report TR09-081,
2009.

[2] O. Goldreich. Foundations of Cryptography, vol. 1 (Basic Tools). Cambridge University Press, 2001.

230 On optimal probabilistic algorithms for Sat

[3] J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and
the complexity of computations. The Journal of Symbolic Logic, 54(3):1063–1079, 1989.

[4] L. Levin. Universal search problems (in Russian). Problemy Peredachi Informatsii, 9(3):115–116,
1973.

[5] J. Messner. On optimal algorithms and optimal proof systems. STACS’99, Lecture Notes in Com-
puter Science 1563, 541–550, 1999.

The Infinity Project

Consistency, optimality, and incompleteness

Yijia Chen†, Jörg Flum‡, Moritz Müller§

† Department of Computer Science, Shanghai Jiao Tong University, China
yijia.chen@cs.sjtu.edu.cn

‡ Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

§
Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
moritz.mueller@univie.ac.at

Abstract. Assume that the problem P0 is not solvable in polynomial time. Let T be a first-order
theory containing a sufficiently rich part of true arithmetic. We characterize T ∪ {ConT } as the minimal
extension of T proving for some algorithm that it decides P0 as fast as any algorithm B with the property
that T proves that B decides P0. Here, ConT claims the consistency of T . As a byproduct, we obtain a
version of Gödel’s Second Incompleteness Theorem. Moreover, we characterize problems with an optimal
algorithm in terms of arithmetical theories.

Introduction

By Gödel’s Second Incompleteness Theorem, a consistent, computably enumerable and
sufficiently strong first-order theory T cannot prove its own consistency ConT . In other
words, T ∪ {ConT } is a proper extension of T .

In Bounded Arithmetic one studies the complexity of proofs in terms of the com-
putational complexity of the concepts involved in the proofs (see e.g. [1, Introduction]).
Stronger theories allow reasoning with more complicated concepts. For example, a com-
putational problem may be solvable by an algorithm whose proof of correctness needs
tools not available in the given theory; moreover, stronger theories may know of faster
algorithms solving the problem. When discussing these issues with the authors, Sy-David
Friedman asked whether T ∪ {ConT } can be characterized in this context as a minimal
extension of T . We could prove the following (all terms will be defined in the paper).

Theorem 1 Let P0 be a decidable problem which is not decidable in polynomial time.
Then there is a finite true arithmetical theory T0 and a computable function F assigning
to every computably enumerable theory T with T ⊇ T0 an algorithm F (T) such that (a)
and (b) hold.

(a) T0 proves that F (T) is as fast as any algorithm T -provably deciding P0.
(b) For every theory T ∗ with T ∗ ⊇ T the following are equivalent:

(i) T ∗ proves ConT .
(ii) The algorithm F (T) T ∗-provably decides P0.
(iii) There is an algorithm such that T ∗ proves that it decides P0 and that it is

as fast as any algorithm T -provably deciding P0.

A preliminary version of this article appeared in Proceedings of the 7th Computability in Europe,
Mathematical Theory and Computational Practice (CiE’11), Lecture Notes in Computer Science 6735,
pp. 61–70, 2011.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

231

232 Consistency, optimality, and incompleteness

Hence, by merely knowing the extension T of T0 we are able to compute the algorithm
F (T), which is, provably in T0, as fast as any algorithm T -provably deciding P0; however,
in order to prove that F (T) decides P0 we need the full strength of T ∪ {ConT }. In this
sense, T ∪ {ConT } is a minimal extension of T .

It is known [8] that there are problems P0 such that one can effectively assign to
every algorithm A deciding P0 a further algorithm B deciding P0 such that A is not as
fast as B. Based on this fact, from our considerations yielding a proof of Theorem 1 we
obtain a version of Gödel’s Second Incompleteness Theorem.

The content of the different sections is the following. In Section 2, by a standard
diagonalization technique we derive a result showing for every computably enumerable
set D of algorithms the existence of an algorithm that on every input behaves as some
algorithm in D and that is as fast as every algorithm in D (see Lemma 2.1). In The-
orem 3.4 of Section 3 we characterize problems with an optimal algorithm in terms of
arithmetical theories. Section 4 contains a proof of Theorem 1. Finally, we derive the
Second Incompleteness Theorem in Section 5.

Many papers in computational complexity, older and recent ones, address the question
whether hard problems have optimal or almost optimal algorithms. Although Levin [5]
observed that there exists an optimal algorithm that finds a satisfying assignment for
every satisfiable propositional formula, it is not known whether the class of satisfiable
propositional formulas or the class of tautologies have an almost optimal algorithm.

Krajíček and Pudlák [4] showed for the latter class that an almost optimal algorithm
exists if and only if “there exists a finitely axiomatized fragment T of the true arithmetic
such that, for every finitely axiomatized consistent theory S, there exists a deterministic
Turing machine M and a polynomial p such that for any given n, in time ≤ p(n) the ma-
chine M constructs a proof in T of ConS(n)”. Here ConS(n) claims that no contradiction
can be derived from S by proofs of lengths at most n.

Hartmanis [2] and Hutter [3] considered ‘provable’ algorithms, where ‘provable’ refers
to a computably enumerable, more or less specified true theory T . Hartmanis compares
the class of problems decidable within a given time bound with the class of problems
T -provably decidable within this time bound and he studies time hierarchy theorems
in this context. Hutter constructs an algorithm “which is the fastest and the shortest”
deciding a given problem. As Hutter says, Peter van Emde Boas pointed out to him that
it is not provable that his algorithm decides the given problem and that his proof is a
“meta-proof which cannot be formalized within the considered proof system” and he adds
that “a formal proof of its correctness would prove the consistency of the proof system,
which is impossible by Gödel’s Second Incompleteness Theorem”.

Unlike these papers we do not assume in Theorem 1 that T is a true theory.

1 Some preliminaries

First we fix some notations and introduce some basic concepts. We consider problems as
subsets of Σ∗, the set of strings over the alphabet Σ := {0, 1}. For an algorithm A and a
string x ∈ Σ∗ we let tA(x) denote the running time of A on x. In case A does not halt
on x, we set tA(x) :=∞. If tA(x) is finite, we denote by A(x) the output of A on x.

If A and B are algorithms, then A is as fast as B if there is a polynomial p such that

(1.1) tA(x) ≤ p
(
tB(x) + |x|

)
for every x ∈ Σ∗. Note that here we do not require that A and B decide the same P ⊆ Σ∗.

The Infinity Project 233

An algorithm deciding a problem P is optimal if it is as fast as every other algorithm
deciding P , that is, if it has no superpolynomial speedup on an infinite subset of Σ∗.
An algorithm A deciding P is almost optimal if (1.1) holds for every other algorithm B
deciding P and every x ∈ P (hence nothing is required of the relationship between tA(x)
and tB(x) for x /∈ P).

We do not distinguish algorithms from their codes by strings and we do not distinguish
strings from their codes by natural numbers. However, we do not fix a computation model
(Turing machines, random access machines...) for algorithms. We state the results in such
a way that they hold for every standard computation model.

2 Diagonalizing over algorithms

In computability theory diagonalization techniques are used in various contexts. We will
make use of the following result.

Lemma 2.1 (Diagonalization Lemma) Let D be a computably enumerable and nonempty
set of algorithms. Then there is an algorithm A such that (a) and (b) hold.

(a) The algorithm A halts precisely on those inputs on which at least one algorithm
in D halts, and in that case it outputs the same as some algorithm in D; more
formally, for all x ∈ Σ∗,
• tA(x) <∞ ⇐⇒ tD(x) <∞ for some D ∈ D;
• if tA(x) <∞, then there is D ∈ D with A(x) = D(x).

(b) There is a d ∈ N such that 1 for all D ∈ D there is a cD ∈ N such that, for all
x ∈ Σ∗,

tA(x) ≤ cD ·
(
tD(x) + |x|

)d
.

Moreover, there is a computable function that maps any algorithm E enumerating the set
D of algorithms to an algorithm A satisfying (a) and (b).

In particular, if all algorithms in D decide P ⊆ Σ∗, then A is an algorithm deciding
P as fast as every D ∈ D.

Proof. Let the algorithm E enumerate the set D of algorithms, that is, E, once having
been started, eventually prints out exactly the algorithms in D. For each i ∈ N we denote
by Ei the last algorithm printed out by E in i steps; in particular, Ei is undefined if E
hasn’t printed any algorithm in i steps. Algorithm A is defined as follows.

A(x) // x ∈ Σ∗

1. ℓ← 0
2. for i = 0 to ℓ
3. if Ei is defined then simulate the (ℓ− i)th step
4. of Ei on x
5. if the simulation halts then halt and output
6. accordingly
7. ℓ← ℓ+ 1
8. goto 2.

1 As the proof shows, the constant d ∈ N does not even depend on D but it depends on the concrete
machine model one uses.

234 Consistency, optimality, and incompleteness

Of course (the code of) A can be computed from (the code of) E. It is easy to see that
A satisfies (a). Furthermore, there are constants c0, d0 ∈ N such that for all x ∈ Σ∗ and
every ℓ ∈ N, lines 2–6 take time at most

(2.1) c0 · (ℓ+ |x|)d0 .
To verify (b), let D ∈ D and iD be the minimum i ∈ N with Ei = D. Fix an input x ∈ Σ∗.
For

ℓ = iD + tEiD (x) and i = iD

the simulation in line 3 halts if it did not halt before. Therefore

tA(x) ≤ O

iD+tD(x)∑
ℓ=0

(ℓ+ |x|)d0
 (

by (2.1)
)

≤ O
(
(iD + tD(x) + |x|)d0+1

)
≤ cD ·

(
tD(x) + |x|

)d0+1

for an appropriate constant cD ∈ N only depending on D. 2

The preceding proof uses the idea underlying standard proofs of a result due to
Levin [5]. Even more, Levin’s result is also a consequence of Lemma 2.1.

Example 2.2 (Levin [5]) Let F : Σ∗ → Σ∗ be computable. An inverter of F is an algo-
rithm I that given y in the image of F halts with some output I(y) such that F (I(y)) = y.
On inputs not in the image of F , the algorithm I may do whatever it wants.

Let F be an algorithm computing F . For an arbitrary algorithm B define B∗ as
follows. On input y the algorithm B∗ simulates B on y; if the simulation halts, then by
simulating F it computes F (B(y)); if F (B(y)) = y, then it outputs B(y), otherwise it does
not stop. Thus if B∗ halts on y ∈ Σ∗, then it outputs a preimage of y and

(2.2) tB∗(y) ≤ O
(
tB(y) + tF(B(y)) + |y|

)
.

Furthermore, if B is an inverter of F , then so is B∗.
Let D :=

{
B∗ | B is an algorithm

}
. Denote by Iopt an algorithm having for this D

the properties of the algorithm A in Lemma 2.1. By the previous remarks it is easy to
see that Iopt is an inverter of F . Moreover, by Lemma 2.1(b) and (2.2), we see that for
any other inverter B of F there exists a constant cB such that for all y in the image of F

tIopt(y) ≤ cB ·
(
tB(y) + tF(B(y)) + |y|

)d
.

In this sense Iopt is an optimal inverter of F .

3 Algorithms and arithmetical theories

To talk about algorithms and strings we use arithmetical formulas, that is, first-order
formulas in the language LPA := {+, · , 0, 1, <} of Peano Arithmetic. Arithmetical
sentences are true (false) if they hold (do not hold) in the standard LPA-model. For a
natural number n let ṅ denote the natural LPA-term without variables denoting n (in the
standard model).

Recall that an arithmetical formula is ∆0 if all quantifiers are bounded and it is Σ1

if it has the form ∃x1 . . .∃xmψ where ψ is ∆0.
We shall use a ∆0-formula

Run(u, x, y, z)

The Infinity Project 235

that defines (in the standard model) the set of tuples (u, x, y, z) such that u is an algorithm
that on input x outputs y by the (code of a complete finite) run z; recall that we do not
distinguish algorithms from their codes by strings and strings from their codes by natural
numbers.

For the rest of this paper we fix a decidable P0 ⊆ Σ∗ and an algorithm A0

deciding P0.
The formula

DecP0(u) := ∀x∃y∃zRun(u, x, y, z) ∧

∀x∀y∀y′∀z∀z′
(
(Run(Ȧ0, x, y, z) ∧ Run(u, x, y′, z′))→ y = y′

)
defines the set of algorithms deciding P0.

Let Lall with LPA ⊂ Lall be a language containing countably many function and
relation symbols of every arity ≥ 1 and countably many constants. A theory is a set T of
first-order Lall-sentences. We write T ⊢ φ if the theory T proves the sentence φ.

Definition 3.1 Let T be a theory.
(a) An algorithm A T -provably decides P0 if T ⊢ DecP0(Ȧ).
(b) T is sound for P0-decision means that for every algorithm A

if T ⊢ DecP0(Ȧ), then A decides P0.

(c) T is complete for P0-decision means that for every algorithm A

if A decides P0, then T ⊢ DecP0(Ȧ).

For a computably enumerable sound theory T that proves DecP0(Ȧ0) the set

(3.1) D(T) :=
{
D | T ⊢ DecP0(Ḋ)

}
is a computably enumerable and nonempty set of algorithms deciding P0. Thus, by
Lemma 2.1 for D = D(T) we get an algorithm A deciding P0 as fast as every algorithm
in D(T). If in addition T is complete for P0-decision, then D(T) would be the set of
all algorithms deciding P0 and thus A would be an optimal algorithm for P0. So, the
problem P0 would have an optimal algorithm if we can find a computably enumerable
theory that is both sound and complete for P0-decision. Unfortunately, there is no such
theory as shown by the following proposition. We relax these properties in Definition 3.3
and show in Theorem 3.4 that the new ones are appropriate to characterize problems
with optimal algorithms.

Proposition 3.2 There is no computably enumerable theory that is sound and complete
for P0-decision.

Proof. We assume that there is a computably enumerable theory T that is sound and
complete for P0-decision and derive a contradiction by showing that then the halting
problem for Turing machines would be decidable.

For every Turing machine M we consider two algorithms. On every input x ∈ Σ∗ the
first algorithm B1(M) first checks whether x codes a run of M accepting the empty input
tape and then it simulates A0 on x (recall A0 is the fixed algorithm deciding P0). If x
codes an accepting run, then B1(M) reverses the answer A0(x) of A0 on x, otherwise it
outputs exactly A0(x). Clearly B1(M) decides P0 if and only if M does not halt on the
empty input tape.

236 Consistency, optimality, and incompleteness

The second algorithm B2(M), on every input x ∈ Σ∗ first checks exhaustively whether
M halts on the empty input tape; if eventually it finds an accepting run, then it simulates
A0 on x and outputs accordingly. It is easy to verify that B2(M) decides P0 if and only
if M halts on the empty input tape.

As T is sound for P0-decision, it proves at most one of DecP0(
˙B1(M)) and

DecP0(
˙B2(M)), and as it is complete for P0-decision it proves at least one of these sen-

tences. Hence, given M, by enumerating the T -provable sentences we can decide whether
M halts on the empty input tape. 2

Definition 3.3 A theory T is almost complete for P0-decision if for every algorithm A
deciding P0 there is an algorithm T -provably deciding P0 that is as fast as A.

Theorem 3.4 The following are equivalent for decidable P0 ⊆ Σ∗:
(i) P0 has an optimal algorithm;
(ii) There is a computably enumerable and arithmetical theory T that is sound and

almost complete for P0-decision.

Proof. (i)⇒ (ii): We set T :=
{
DecP0(Ȧ)

}
where A is an optimal algorithm for P0. Then

T is a computably enumerable true arithmetical theory. Truth implies soundness and
almost completeness follows from the optimality of A.

(ii) ⇒ (i): Let T be as in (ii). Then the set D(T) defined by (3.1) is nonempty
by almost completeness of T and, by soundness, it is a computably enumerable set of
algorithms deciding P0. By Lemma 2.1 for D = D(T) we get an algorithm A deciding
P0 as fast as every algorithm in D(T) and hence by almost completeness as fast as any
algorithm deciding P0. Thus, A is an optimal algorithm for P0. 2

A result related to the implication (ii) ⇒ (i) is shown by Sadowski in [7]. He shows
assuming that there does not exist an almost optimal algorithm for the set Taut of all
propositional tautologies, that for every theory T there exists a subset of Taut in P
which is not T -provably in PTIME (cf. [7, Definition 7.5]).

4 Proof of Theorem 1

Recall that P0 ⊆ Σ∗ and that A0 is an algorithm deciding P0. A theory T is Σ1-complete if
every true arithmetical Σ1-sentence is provable in T . The following result is a consequence
of Lemma 2.1.

Lemma 4.1 Assume that P0 is not decidable in polynomial time. Let T be a computably
enumerable Σ1-complete theory with T ⊢ DecP0(Ȧ0). Then there is an algorithm A such
that:

(a) The algorithm A is total (i.e., tA(x) < ∞ for all x ∈ Σ∗) and as fast as every
algorithm T -provably deciding P0;

(b) T is consistent if and only if A decides P0.
Moreover, there is a computable function diag that maps any algorithm E enumerating
some Σ1-complete theory T with T ⊢ DecP0(Ȧ0) to an algorithm A with (a) and (b).

Proof. For an algorithm B let B∥A0 be the algorithm that on input x ∈ Σ∗ runs B and
A0 on x in parallel and returns the first answer obtained. Then

(4.1) tB∥A0
≤ O

(
min

{
tB, tA0

})
.

The Infinity Project 237

Claim 1 If T is consistent and T ⊢ DecP0(Ḃ), then B∥A0 decides P0.

Proof of Claim 1: By contradiction, assume that T is consistent and T ⊢ DecP0(Ḃ)
but B∥A0 does not decide P . Then B∥A0 and A0 differ on some input x ∈ Σ∗. Thus
tB(x) ≤ tA0(x) and in particular B halts on x. Therefore, the following Σ1-sentence φ is
true:

φ := ∃x∃y∃y′∃z∃z′
(
Run(Ȧ0, x, y, z) ∧ Run(Ḃ, x, y′, z′) ∧ ¬y = y′

)
.

By Σ1-completeness, T ⊢ φ. However, φ logically implies ¬DecP0(Ḃ) and thus T is
inconsistent, a contradiction. ⊣

The set
D1(T) :=

{
B∥A0

∣∣ T ⊢ DecP0(Ḃ)
}

is nonempty as A0∥A0 ∈ D1(T) by assumption. Let A be the algorithm obtained for
D = D1(T) by Lemma 2.1. We show that statement (a) holds. By Lemma 2.1(b), there
is a d ∈ N such that for all B with T ⊢ DecP0(Ḃ) there is a cB such that for all x ∈ Σ∗ we
have tA(x) ≤ cB ·

(
tB∥A0

(x) + |x|
)d. Now (a) follows from (4.1).

For consistent T , by Claim 1 the set D1(T) only contains algorithms deciding P0,
thus A decides P0 by Lemma 2.1.

If T is inconsistent, let Bbad be an algorithm that accepts every input in the first step.
Then Bbad∥A0 ∈ D1(T) by inconsistency of T . Thus, by Lemma 2.1(b), the algorithm
runs in polynomial time and thus does not decide P0.

As from an algorithm enumerating T we effectively get an algorithm enumerating
D1(T), by Lemma 2.1 it should be clear that a computable function diag as claimed
exists. 2

Remark 4.2 As the preceding proof shows we only need the assumption that P0 is not
decidable in polynomial time in the proof of the implication from right to left in (b).

Proof of Theorem 1: Recall that Robinson introduced a finite, Σ1-complete, and true
arithmetical theoryQ. Let P0 be a decidable problem which is not decidable in polynomial
time. Among others, the finite true arithmetical theory T0 claimed to exist in Theorem 1
will extend Q and contain a formalization of Lemma 4.1.

We choose a Σ1-formula Prov(x, y) defining (in the standard model) the set of pairs
(m,n) such that algorithm m enumerates a theory2 that proves the sentence n. We let

Con(x) := ¬Prov
(
x, ˙p¬0 = 0q

)
(here pφq denotes the Gödel number of φ). If E enumerates a theory T , we write ConT
for Con(Ė).3

Let f : N→ N be the function given by

f(m) := pDecP0(ṁ)q.
Both this function f and the function diag from Lemma 4.1 are computable and hence
Σ1-definable in Q. For the sake of completeness we recall what this means, say, for f .
There is an arithmetical Σ1-formula φf (x, y) such that, for all m, k ∈ N,

2 We may assume that every enumeration algorithm enumerates a theory by deleting those printed
strings that are not sentences.

3 The notation is ambiguous, as the definition depends on the choice of E, however not the arguments
to follow.

238 Consistency, optimality, and incompleteness

• if f(m) = k, then Q ⊢ φf (ṁ, k̇);
• if f(m) ̸= k, then Q ⊢ ¬φf (ṁ, k̇);
• Q ⊢ ∃=1y φf (ṁ, y).

For better readability we write arithmetical formulas using f and diag as function symbols.
Further, let the arithmetical formula As-fast-as(x, y) define the pairs (n,m) such that

algorithm n is as fast as algorithm m and let Ptime(x) define the set of polynomial time
algorithms. Finally, we set

Afap(x, y) := ∀z
(
Prov(x, f(z))→ As-fast-as(y, z)

)
.

Then for an algorithm E enumerating a theory T the statement “the algorithm F (T) is
as fast as any algorithm T -provably deciding P0”, that is, the statement (a) in Theorem 1
is formalized by the sentence

(4.2) Afap
(
Ė, ˙F (T)

)
.

Let e-Rob(x) be a Σ1-formula expressing that the algorithm x enumerates a theory ex-
tending Q ∪ {DecP0(Ȧ0)}.

We now define the theory T0. It extends Q∪ {DecP0(Ȧ0)} by the following sentences
(s1)–(s5):

(s1) ∀x
(
e-Rob(x)→ Afap(x, diag(x))

)
,

(a formalization of Lemma 4.1(a))
(s2) ∀x

(
(Con(x) ∧ e-Rob(x))→ DecP0(diag(x))

)
,

(a formalization of part of Lemma 4.1(b))
(s3) ∀x(Ptime(x)→ ¬DecP0(x)),

(P0 is not in P)
(s4) ∀x

(
¬Con(x)→ ∀y(Sent(y)→ Prov(x, y))

)
(every inconsistent theory proves every sentence; here Sent(y) is a ∆0-form-

ula defining the first-order Lall-sentences)
(s5) ∀x∀y

(
(As-fast-as(x, y) ∧ Ptime(y))→ Ptime(x)

)
(if algorithm x is as fast as the polynomial algorithm y, then it is polynomial

too).
Let T be a computably enumerable extension of T0 and let E be an algorithm enumerat-
ing T . We claim that for the algorithm

F (T) := diag(E)

(see Lemma 4.1) the statements (a) and (b) of Theorem 1 hold.
The arithmetical sentence ˙F (T) = diag(Ė) is Σ1 and true, so T0 proves it by Σ1-

completeness (as T0 ⊇ Q). By the same reason, T0 ⊢ e-Rob(Ė). As T0 contains (s1),
T0 ⊢ Afap(Ė, ˙F (T)); that is, T0 proves that F (T) is as fast as any algorithm T -provably
deciding P0. Thus (a) in Theorem 1 holds.

We turn to (b). Let T ∗ be a theory with T ∗ ⊇ T .

(i) ⇒ (ii): So, we assume that T ∗ ⊢ ConT . We already know that T0, and hence T ∗,
proves e-Rob(Ė). As T ∗ contains (s2), for x = Ė we see that T ∗ ⊢ DecP0(diag(Ė)) and
thus T ∗ ⊢ DecP0(

˙F (T)); that is, F (T) T ∗-provably decides P0.

(ii) ⇒ (iii): Immediate by part (a) of the theorem.

The Infinity Project 239

(iii) ⇒ (i): Let A be an algorithm such that T ∗ ⊢ DecP0(Ȧ) and T ∗ ⊢ Afap(Ė, Ȧ); the
latter means that

(4.3) T ∗ ⊢ ∀z(Prov(Ė, f(z))→ As-fast-as(Ȧ, z)).

Let B be an algorithm such that

(4.4) T ∗ ⊢ Ptime(Ḃ).

Then T ∗ proves the following implications:

¬ConT → Prov(Ė, f(Ḃ)) (by (s4) and as Sent(f(Ḃ)) is Σ1)

¬ConT → As-fast-as(Ȧ, Ḃ) (by (4.3))

¬ConT → Ptime(Ȧ) (by (4.4) and (s5))

¬ConT → ¬DecP0(Ȧ) (by (s3)).

As T ∗ ⊢ DecP0(Ȧ), we see that T ∗ ⊢ ConT . 2

5 Gödel’s Second Incompleteness Theorem

Let Pexp be the following problem:

Pexp
Instance: An algorithm A.
Problem: Is it true that A does not accept A in at

most 2|A| steps?

Theorem 5.1 ([8]) There is a polynomial time computable function g that maps any
algorithm A deciding Pexp to an algorithm g(A) deciding Pexp such that A is not as fast
as g(A).

Proof. We fix a polynomial time computable function which assigns to every algorithm
A and n ≥ 1 an algorithm An where An is “the same as A but padded with n useless
instructions”. The properties of An we need are

(5.1) |An| ≥ n, tAn = tA, and An and A accept the same language.

Note that any algorithm A deciding Pexp does not reject A. Hence, for such an A we have
A ∈ Pexp and tA(A) > 2|A|. Moreover, by (5.1), we have

(5.2) tA(An) = tAn(An) > 2|An| ≥ 2n

(the strict inequality holding as An decides Pexp, too).
The function g computes for any algorithm A the following algorithm B := g(A): On

input x the algorithm B first checks whether x ∈ {A1,A2, . . .} (this can be done in time
polynomial in |x|); if so, B immediately accepts, otherwise it simulates A on x and answers
accordingly. Clearly, if A decides Pexp, then B decides Pexp and superpolynomially speeds
up A on {A1,A2, . . .} by (5.2). 2

Using this result and results of preceding sections we derive the following version of
Gödel’s Second Incompleteness Theorem:

240 Consistency, optimality, and incompleteness

Theorem 5.2 There is a finite true arithmetical theory T1 such that for every computably
enumerable theory T ⊇ T1,

if T is consistent, then T does not prove ConT .

Proof. We take as P0 the problem Pexp of the preceding theorem and let g be the function
defined there. We know that P0 is not decidable in polynomial time. Furthermore, as in
the previous sections, we fix an algorithm A0 deciding P0. Let T0 be the true arithmetical,
finite, and Σ1-complete theory defined in the previous section satisfying Theorem 1.

Being computable, g is Σ1-definable; for simplicity of notation we use g like a function
symbol in arithmetical formulas. This is to be understood as explained in the previous
proof. The theory T1 is obtained from T0 by adding the sentence

(s6) ∀x(DecP0(x)→ DecP0(g(x))).
Let T ⊇ T1 be a theory enumerated by the algorithm E. Assume that T is consistent.

Then, by Lemma 4.1(b),
diag(E) decides P0

and thus, by Theorem 5.1,

(5.3) diag(E) is not as fast as g(diag(E)).

Observe that T ⊢ e-Rob(Ė) being a true Σ1-sentence. By contradiction, suppose that
T ⊢ ConT , that is, T ⊢ Con(Ė). Then, T ⊢ DecP0(diag(Ė)) by (s2) and hence,
T ⊢ DecP0(g(diag(Ė)) by (s6). Setting B := g(diag(E)) the sentence Ḃ = g(diag(Ė)) is a
true Σ1-sentence; so T proves it. Then, T ⊢ DecP0(Ḃ). This means that B = g(diag(E))
T -provably decides P0. By Lemma 4.1(a), diag(E) is as fast as g(diag(E)) contradict-
ing (5.3). 2

Let T1 be the theory just defined. We show that for every true and computably
enumerable arithmetical theory T ⊇ T1, the extension T ∪ {ConT } knows of strictly
faster algorithms deciding Pexp than T :

Corollary 5.3 Let T1 be the theory defined in the previous proof. Then for every true
and computably enumerable arithmetical theory T ⊇ T1 there is an algorithm A such that:

(a) The algorithm A T ∪ {ConT }-provably decides Pexp and is as fast as every
algorithm that T -provably decides Pexp.

(b) No algorithm that T -provably decides Pexp is as fast as A.

Proof. Let T be as stated. By Theorem 1 for P0 := Pexp and T ∗ := T ∪ {ConT }, we get
that the algorithm A := F (T) T ∪ {ConT }-provably decides P0. Furthermore,

(5.4) A is as fast as any algorithm that T -provably decides P0.

This shows (a). For (b), let B be an arbitrary algorithm that T -provably decides P0.
Then, by (s6),

(5.5) the algorithm g(B) T -provably decides P0.

As T is a true arithmetical theory, the algorithms B (and g(B)) decide P0. Hence, by
Theorem 5.1,

(5.6) B is not as fast as g(B).

From (5.4)–(5.6) we conclude that B is not as fast as A. 2

The Infinity Project 241

One can get rid of the assumption that T must be a true arithmetical theory in the
previous result by adding to T1 a further true arithmetical sentence:

Corollary 5.4 There is a finite true arithmetical theory T2 such that for every consistent,
computably enumerable theory T ⊇ T2 there is an algorithm A such that:

(a) The algorithm A T ∪ {ConT }-provably decides Pexp and is as fast as every
algorithm that T -provably decides Pexp.

(b) No algorithm that T -provably decides Pexp is as fast as A.

Proof. Again, we take as P0 the problem Pexp and let A0 be an algorithm deciding it. Let
h be the function that maps an algorithm B to B∥A0 (as in the proof of Lemma 4.1 the
algorithm B∥A0 on input x ∈ Σ∗ runs B and A0 in parallel and returns the first answer
obtained).

The theory T2 is obtained from T1 by adding the true arithmetical sentence
(s7) ∀x(DecP0(x)→ DecP0(h(x))).

Let T be as stated and again let A := F (T). As in the previous proof, we see that
statement (a) holds true.

For (b), let B be an algorithm with T ⊢ DecP0(Ḃ). Using first (s7) and then (s6) we
get

the algorithm g(h(B)) T -provably decides P0.

By (a), therefore it suffices to show that B is not as fast as g(h(B)). As by definition of h,
the algorithm h(B) is as fast as B (see (4.1)), it already suffices to show that h(B) is not
as fast as g(h(B)). By Claim 1 in the proof of Lemma 4.1, we know that h(B) decides P0.
Then Theorem 5.1 indeed proves that h(B) is not as fast as g(h(B)). 2

Acknowledgements

The authors thank the John Templeton Foundation for its support under Grant #13152,
The Myriad Aspects of Infinity. Yijia Chen is affiliated with BASICS and MOE-MS Key
Laboratory for Intelligent Computing and Intelligent Systems, which is supported by
National Nature Science Foundation of China (61033002).

References
[1] S. A. Cook and P. Nguyen. Logical Foundations of Proof Complexity . Cambridge University Press,

2010.
[2] J. Hartmanis. Relations between diagonalization, proof systems, and complexity gaps. Theoretical

Computer Science, 8:239–253, 1979.
[3] M. Hutter. The fastest and shortest algorithm for all well-defined problems. International Journal

of Foundations of Computer Science, 13:431–443, 2002.
[4] J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and

the complexity of computations. The Journal of Symbolic Logic, 54:1063–1079, 1989.
[5] L. Levin. Universal search problems (in Russian). Problemy Peredachi Informatsii, 9:115–116, 1973.
[6] J. Messner. On optimal algorithms and optimal proof systems. In Proceedings of the 16th Symposium

on Theoretical Aspects of Computer Science (STACS’99), Lecture Notes in Computer Science 1563,
361–372, 1999.

[7] Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets. Theoretical
Computer Science, 288:181–193, 2002.

[8] L. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD thesis, MIT,
1974.

The Infinity Project

Some definitorial suggestions for parameterized
proof complexity

Jörg Flum∗, Moritz Müller†

‡ Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

§
Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
moritz.mueller@univie.ac.at

Abstract. We introduce a (new) notion of parameterized proof system. For parameterized versions of
standard proof systems such as Extended Frege and Substitution Frege, we compare their complexity
with respect to parameterized simulations.

Introduction

Consider the following problems for graphs: the vertex cover problem VC, the clique
problem Clique, and the dominating set problem DS; they ask, given a graph G and a
natural number k, whetherG contains a cardinality k vertex cover, clique, and dominating
set, respectively. All three problems are NP-complete and hence, from the point of view
of polynomial reductions any two of them have the same computational complexity.

Taking in each case the natural number k as the parameter of an instance we get the
parameterized problems p-VC, p-Clique, and p-DS. In parameterized complexity there
is not only a new notion of tractability, namely fixed-parameter tractability, but also the
notion of reducibility has been adapted so that it preserves fixed-parameter tractability;
the new notion being that of fpt-reduction. One knows that p-VC ≤fpt p-Clique (that
is, p-VC is fpt-reducible to p-Clique) and p-Clique ≤fpt p-DS. However, accepting
the hypotheses FPT ̸= W[1] and W[1] ̸= W[2] (which are fundamental hypotheses of
parameterized complexity and each of them implies P ̸= NP) neither p-Clique ≤fpt
p-VC nor p-DS ≤fpt p-Clique. As Downey and Fellows write in [7]:

Parameterized reductions tend to be much more structure preserving
than classical reductions, and certainly most classical reductions . . . are
definitely not parameterized reductions. . . . Parameterized reductions
are sufficientlly refined that instead of one large class of naturally in-
tractable problems all of the same complexity, there seem to be many sets
of natural combinatorial problems, all intractable in the parameterized
sense, and yet of differing parameterized complexity.

In proof theory among the proof systems best studied there are Frege systems, Extended
Frege systems, and Substitution Frege systems. Classically, they are compared via poly-
nomial simulations. It is known that there are polynomial simulations between any Ex-
tended Frege system and any Substitution Frege system, while it is not known whether
Extended Frege systems and Substitution Frege systems may be simulated by Frege sys-
tems. The question arises whether also in this context parameterized complexity yields
new insights or even allows a more fine-grained analysis. In this note we want to lay down

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

243

244 Parameterized proof complexity

the conceptual framework for such an analysis. Furthermore, we give some positive and
some negative answers and state some open problems.

What are natural parameterizations of proof systems? Recall that the definitions of
parameterized complexity are tailored to address complexity issues in situations where we
know that the parameter is relatively small. We believe that for Extended Frege systems
the number of extension axioms used in a proof could be a natural parameter. At least,
if we start with an arbitrary, say, random tautology it does not seem plausible that many
extension axioms can be used in a proof with advantage. We should emphasize the word
“random” here. For example, in a standard example often mentioned to motivate the use
of extension axioms, namely the formalization of the pigeon-principle in propositional
logic, the number of extension axioms used to derive the n pigeonhole principle by a
straightforward induction on n is Ω(n3) and hence, by no means, relatively small.1 Simi-
larly the number of applications of the substitution rule seems to be a natural parameter
for Substitution Frege Systems.

As proof systems are functions, simulations between them should be value-preserving
functions (as are the standard polynomial simulations). We believe that this fact has not
been taken into account appropriately in the approaches to proof theory using param-
eterized complexity. Taking this fact seriously, we define the notion of fpt-simulation.
When we realized that our notion coincides with the notion of parsimonious reduction
between parameterized counting functions, we were confirmed in our belief that this is
the appropriate definition.

We show that under fpt-simulations the parameterized versions of Extended Frege
and Substitution Frege are both equivalent to Frege. In this sense, the notion of fpt-
simulation does not offer a more fine-grained complexity analysis of these proof systems;
or, expressing it in positive terms, we gain the insight that there is a simulation, say, of an
Extended Frege system in a Frege system whose superpolynomial running time is confined
to a factor depending only on the number of extension axioms used in the original proof.
Similarly, we see that there is a simulation of Substitution Frege in Extended Frege where
the number of extension axioms is bounded in terms of the number of applications of the
substitution rule.

Having in mind the goal of a more refined analysis, we propose to study the rela-
tionship between these proofs systems under parameterized polynomial simulations, a
notion that in some sense refines both, polynomial simulations and fpt-simulations: such
a simulation is a polynomial simulation with the additional property that it increases the
parameter at most polynomially. We do not see any way to simulate Substitution Frege
in Extended Frege in this sense (while conversely this is easy). However, we construct a
parameterized polynomial simulation of treelike Substitution Frege in treelike Extended
Frege.

Related work

A different approach to introduce parameterizations into proof complexity has been initi-
ated by Dantchev et al. [6]. They introduced parameterized proof systems for parameter-
ized problems. They considered the following parameterized problem: given a pair (α, k)
of a CNF α and k ∈ N, where k is the parameter, decide whether α has no satisfying as-
signment of Hamming weight at most k. The proof systems they had in mind are classical
refutation systems such as Resolution that may freely use additional clauses expressing

1 It is well-known that Buss [3] gave polynomial proofs of the pigeon-principle in Frege systems.

The Infinity Project 245

the constraint on the Hamming weight. The goal of this approach is to strengthen lower
bounds of classical refutation systems by showing that their parameterized counterparts
are not fpt bounded.2 It can be understood as a parameterized analogue of Cook’s pro-
gram, here trying to prove coW[2] ̸⊆ paraNP. For this approach Beyersdorff et al. [1]
lack an interpretation of the parameterization of the proof system and argue that it can
be dispensed with.

1 Preliminaries

In this section we fix some notations and recall some definitions and results, in the first
part of parameterized complexity theory and in the second part of proof theory.

1.1 Parameterized complexity

Formally, a parameterized problem is a pair (Q,κ) consisting of a (classical) problem
Q ⊆ {0, 1}∗ and a polynomial time computable parameterization κ : {0, 1}∗ → N that
maps any input x ∈ {0, 1}∗ to its parameter κ(x) ∈ N. A parameterized problem (Q,κ)
is fixed-parameter tractable, that is, tractable from the point of view of parameterized
complexity, if there is an algorithm solving x ∈ Q in ≤ f(κ(x)) · |x|O(1) steps for some
computable f : N→ N.

A function R : {0, 1}∗ → {0, 1}∗ is fpt-computable with respect to a parameterization
κ if R(x) can be computed in time f(κ(x)) · |x|O(1), where again f : N→ N is computable.

Also the notion of polynomial reduction, that is, the natural notion of reduction
preserving classical tractability, has to be adapted so that it preserves fixed-parameter
tractability. An fpt-reduction R from a parameterized problem (Q,κ) to another (Q′, κ′)
is an fpt-computable (with respect to κ) reduction from Q to Q′ such that κ′(R(x)) ≤
g(κ(x)) for some computable g : N→ N and all x ∈ {0, 1}∗. We write (Q, κ) ≤fpt (Q

′, κ′)
if there is an fpt-reduction from (Q,κ) to (Q′, κ′).

1.2 Proof theory

A proof system for a problem Q ⊆ {0, 1}∗ is a polynomial time computable surjection P
from {0, 1}∗ onto Q. If P (w) = x, then w is a P -proof of x. In case Q = Taut, we call P
propositional. A proof system P is p-bounded if any x ∈ Q has a P -proof of size |x|O(1).
Cook and Reckhow [5] observed that a p-bounded propositional proof system exists if
and only if NP = coNP. Cook’s program asks to prove that natural propositional proof
systems are not p-bounded.

Proof systems for a problem Q are compared in strength via p-simulations: a p-
simulation of a proof system P ′ in a proof system P is a polynomial time computable
function R such that P (R(w′)) = P ′(w′) for all w′ ∈ {0, 1}∗; in case such an R exists,
we say P p-simulates P ′ and write P ′ ≤pol P ; if additionally, P ′ p-simulates P , we call
P and P ′ p-equivalent.

A Frege system F is a propositional proof system given by finitely many axiom
schemes (in the de Morgan language) and finitely many rules including, for simplicity,
modus ponens. An F -proof of a (propositional) formula α from a set of formulas Γ is a
sequence of formulas such that each of them is either a member of Γ or a substitution
instance of an axiom scheme or follows from earlier formulas in the sequence by one of

2 As pointed out in [1] one should restrict attention to instances (α, k) with contradictory α.

246 Parameterized proof complexity

the rules of F ; furthermore, the last formula of the sequence is α. An F -proof of α is
an F -proof of α from the empty set of formulas. Frege systems are assumed to be impli-
cationally complete, that is, whenever a set of formulas Γ logically implies α, then there
exists an F -proof of α from Γ.

For a Frege system F we denote by F ∗ the proof system treelike F : an F -proof π is
treelike if every occurrence of a formula in π is used as an hypothesis in an application
of a rule at most once; equivalently, π is treelike if it can be written as a tree labeled by
the formulas in π such that the leaves are labeled by the substitution instances of the
axiom schemes and the labels of inner nodes are obtained by one of the rules from their
immediate predecessors.

The following are well-known [5, 10].

Theorem 1.1
(1) (Cook, Reckhoff) Any two Frege systems are p-equivalent.
(2) (Krajíček) F and F ∗ are p-equivalent for every Frege system F .

By part (1) of this theorem we get that, instead of (2), we could claim

F1 and F ∗
2 are p-equivalent for Frege systems F1 and F2.

The same observation applies to all equivalences mentioned in this paper (not only to
p-equivalences but also to fpt-equivalences and pp-equivalences introduced later).

There are two well-studied extensions of a Frege system F :

Extension Frege. Let F be a Frege system. The Extension Frege system EF adds to F
the extension rule: It allows to add in a proof of α (without any hypotheses) an extension
axiom (r ↔ σ) where σ is a propositional formula and the extension variable r neither
occurs in σ nor in α nor in any earlier line of the proof.

Equivalently, an EF-proof of α is an F -proof of α from an extension sequence whose
extension variables do not occur in α. Here, an extension sequence (for α) of length k is
a sequence of the form

(r1 ↔ σ1), . . . , (rk ↔ σk)

with pairwise distinct extension variables r1, . . . , rk such that ri does not occur in σj for
1 ≤ j ≤ i.

By EF ∗ we denote the treelike version of EF.

Substitution Frege. Let F be a Frege system. The Substitution Frege system SF adds to
F the substitution rule that allows to derive from the formula α the formula α[x/σ] where
α[x/σ] is obtained from α by substituting the variable x by the formula σ. By SF ∗ we
denote the treelike version of SF.

In [2] Buss introduces two restrictions of SF :
• Boolean Substitution Frege BSF requires that in any application of the substitu-

tion rule the formula σ to be the Boolean constant ⊤ (true) or ⊥ (false).
• Renaming Frege RF requires σ to be a variable.

Again, BSF ∗ and RF ∗ denote the treelike versions of these systems.

Natural simulations of EF and SF in F roughly proceed as follows:
• Let π be an EF -proof. To delete the first extension axiom (r ↔ σ) substitute

everywhere in π the formula σ for r; this transforms the extension axiom into
the tautology (σ ↔ σ) for which we add a linear size F -proof. Proceed like this

The Infinity Project 247

with the second extension axiom and so on. If π contains k extension axioms,
the resulting F -proof has size |π|O(k).
• Let π be an SF -proof. Let the first application in π of the substitution rule

yield α[x/σ] from α. Replace it by a proof of α[x/σ] obtained by applying the
substitution x/σ to the initial segment of π up to α. If π contains k substitution
inferences, the resulting F -proof has size |π|O(k).

Hence, both simulations are not polynomial ones. In fact, it is open whether EF ≤pol F
and whether SF ≤pol F . However, the following is known [2, 12]:

Theorem 1.2
(1) EF, EF ∗, SF, SF ∗, RF, BSF are p-equivalent for every Frege system F .
(2) RF ∗, BSF ∗ and F are p-equivalent for every Frege system F .

Comparing their status with that of RF ∗ and of BSF ∗ we see that perhaps RF and
BSF are proof systems where the ability to reuse already derived lines adds power. We
shall see a similar phenomenon for SF in the parameterized setting.

2 Parameterized proof systems and fpt-simulations

In this section we introduce the main new concepts of this paper, parameterized proof
systems and simulations between them.

Definition 2.1 A parameterized proof system for Q is a pair (P, κ) such that P is a proof
system for Q and κ a parameterization.

Having in mind, as we do, to compare Frege systems, Extended Frege systems, and
Substitution Frege systems, it seems not natural to consider a more general notion of
parameterized proof systems where P is only required to be an fpt-computable (with
respect to κ) function from {0, 1}∗ onto Q instead of a polynomial time computable one.

We identify a (classical) proof system P for Q with the parameterized proof system
(P, 0), i.e., P with the parameterization that is constantly 0.

For an Extended Frege systems EF we denote by κEF the parameterization

κEF (w) := number of extension axioms in w.

Similarly, for a Substitution Frege systems SF we denote by κSF the parameterization

κSF (w) := number of applications of the substitution rule in w.

We consider the restriction EF ∗ of EF with the parameterization κEF and the restrictions
SF ∗, BSF (∗), and RF (∗) of SF with the parameterization κSF . We denote the resulting
parameterized proof systems by p-EF , p-EF ∗, p-SF , p-RF, p-BSF, p-SF ∗, p-RF ∗ and
p-BSF ∗.

In order to compare parameterized proof systems in strength we use the following
notion of simulation. We already mentioned that for parameterized counting problems
the notion coincides with that of fpt parsimonious reduction introduced in [8, Defini-
tion 14.10].

Definition 2.2 Let (P, κ) and (P ′, κ′) be parameterized proof systems for Q ⊆ {0, 1}∗.
An fpt-simulation of (P ′, κ′) in (P, κ) is a function R : {0, 1}∗ → {0, 1}∗ such that

(a) R is fpt-computable with repect to κ′;
(b) P ′(w′) = P (R(w′)) for all w′ ∈ {0, 1}∗;

248 Parameterized proof complexity

(c) κ(R(w′)) ≤ g(κ′(w′)) for some computable g : N→ N and all w′ ∈ {0, 1}∗.
In case such an R exists, we say that (P, κ) fpt-simulates (P ′, κ′) and write (P ′, κ′) ≤fpt
(P, κ). The problems (P, κ) and (P ′, κ′) are fpt-equivalent, written (P, κ) ≡fpt (P, κ), if
(P, κ) ≤fpt (P

′, κ′) and (P ′, κ′) ≤fpt (P, κ).

Note that if P and P ′ are classical proof systems for a problemQ, then P fpt-simulates
P ′ if and only if P p-simulates P ′. However, in general, neither (P, κ) ≤fpt (P

′, κ′) implies
P ≤pol P

′ nor P ≤pol P
′ implies (P, κ) ≤fpt (P

′, κ′).

Lemma 2.3 If (P, κ) ≤fpt (P
′, κ′) and (P ′, κ′) ≤fpt (P

′′, κ′′), then (P, κ) ≤fpt (P
′′, κ′′).

3 Comparing proof systems via fpt-simulations

By the following result all parameterized proof systems introduced so far are fpt-equiva-
lent.

Theorem 3.1 p-EF, p-SF, and F are pairwise fpt-equivalent.3

As F ≤fpt p-EF, the theorem follows from the following three propositions showing
(among others):

p-EF ≤fpt p-SF ≤fpt p-BSF ≤fpt F.

In Proposition 3.2 and Proposition 3.3 we obtain the first two ‘inequalities’ by merely
observing that known p-simulations already are fpt-simulations.

Proposition 3.2 p-EF ≤fpt p-SF and p-EF ∗ ≤fpt p-SF ∗.

Proof. Cook and Reckhow’s original p-simulation [5] of EF in SF is an fpt-simulation of
p-EF in p-SF ; this yields the first assertion.

We turn to the second claim. An EF ∗-proof π of α is an F ∗-proof of α from an
extension sequence (r1 ↔ σ1), . . . , (rk ↔ σk) (recall that the ri have to be pairwise
distinct and that ri neither occurs in σj for 1 ≤ j ≤ i nor in α). By the Deduction
Theorem for F (see [11, Lemma 4.4.10]) there is an F -proof π′ of

(3.1) (rk ↔ σk)→ (rk−1 ↔ σk−1)→ · · · → (r1 ↔ σ1)→ α

(where the iterated implications are associated to the right) of size |π|O(1). By part (2)
of Theorem 1.1 we can assume that π′ is treelike.

By our assumption on the extension variables, the variable rk occurs exactly once
in (3.1). We apply the substitution rule and substitute σk for rk in (3.1); hence we get
the formula obtained from (3.1) by replacing the equivalence (rk ↔ σk) by (σk ↔ σk).
We add a short F ∗-proof of (σk ↔ σk) and apply modus ponens to arrive at formula
(3.1) with k − 1 instead of k. Repeating this process gives an SF ∗-proof of α of size
O(k · |π′|). We observe that in this simulation k extension axioms are simulated in SF ∗

by k applications of the substitution rule. Therefore, this is an fpt-simulation. 2

3 The second author gave a talk at the workshop Proof Complexity (11w5103, Banff International
Research Station) on this subject mentioning that at that time we did not know whether p-EF ≤fpt F .
Kaveh Ghasemloo pointed out that he was convinced that such a simulation could be constructed via
the system G∗

1 (cf. [4, p. 179]).

The Infinity Project 249

Proposition 3.3 p-SF ≤fpt p-BSF.

Proof. Buss [2] simulates an application of the substitution rule α
α[x/σ] as follows: first,

he applies twice the BSF -substitution rule to get

α[x/⊤] and α[x/⊥]
from α; then he adds short proofs of

((σ ∧ α[x/⊤])→ α[x/σ]) and ((¬σ ∧ α[x/⊥])→ α[x/σ]).

Finally, he derives α[x/σ] from these four formulas.
In this way, an SF -proof with k applications of the substitution rule is transformed

in polynomial time into an BSF -proof with 2k applications of the BSF -substitution rule.
Hence, this is an fpt-simulation. 2

Proposition 3.4 p-BSF ≤fpt F.

Proof. Let π be an BSF -proof of β with k applications of the BSF -substitution rule. Let
π1 be the initial segment of π that ends in the premise α of the first application α

α[x/σ]with
σ ∈ {⊤,⊥} of this rule. We obtain the F -proof π′1 of α[x/σ] by applying the substitution
x/σ to every line of π1. Furthermore, delete all occurrences of α[x/σ]in π, thus getting π′.
Then π′1, π

′ is a BSF -proof of β with (k − 1) applications of the BSF -substitution rule
and of size at most 2|π|. Repeating this process we finally obtain an F -proof of β of size
2k · |π|. 2

Standard p-simulations of SF in EF (e.g., see [12]) map an SF -proof π of a formula
α(x) (where x are the propositional variables in α) with k applications of the substitution
rule and ℓ lines to an EF -proof with ℓ·|x| extension axioms. They are not fpt-simulations.
By the previous theorem there is an fpt-simulation of p-SF in p-EF . We encourage the
reader to give a ‘direct’ one.

4 Comparing proof systems via parameterized polynomial
simulations

In the previous section we have seen that fpt-simulations are too coarse in the sense
that they do not distinguish any two of the parameterized proof system considered so
far. In this section therefore we analyze these proof systems under a notion of simula-
tion which strengthens both, the notion of p-simulation and that of fpt-simulation. For
parameterized decision problems this concept was introduced in [9].

Definition 4.1 Let (P, κ) and (P ′, κ′) be parameterized proof systems for Q ⊆ {0, 1}∗.
A pp-simulation (or parameterized polynomial simulation) of (P ′, κ′) in (P, κ) is a p-sim-
ulation R of P ′ in P such that

κ′(R(w′)) ≤ q(κ(w′)) for some polynomial q and all w′ ∈ {0, 1}∗.
In case such an R exists, we say that (P, κ) pp-simulates (P ′, κ′) and write (P ′, κ′) ≤pp
(P, κ). The problems (P, κ) and (P ′, κ′) are pp-equivalent, written (P, κ) ≡pp (P, κ), if
(P, κ) ≤pp (P ′, κ′) and (P ′, κ′) ≤pp (P, κ).

Clearly, if (P ′, κ′) ≤pp (P, κ), then P ′ ≤pol P and (P ′, κ′) ≤fpt (P, κ).
As the proofs of Proposition 3.2 and of Proposition 3.3 show, we get:

250 Parameterized proof complexity

Proposition 4.2 p-EF ≤pp p-SF, p-EF ∗ ≤pp p-SF ∗, and p-SF ≤pp p-BSF.

Example 4.3 The p-simulation of BSF in RF from [2] maps a BSF -proof with k substi-
tution inferences of a formula withm variables to an RF -proof with k·(m−1) substitution
inferences. This is not a pp-simulation (not even an fpt-simulation).

By the results of the previous section there is an fpt-simulation of p-SF in p-EF even
though (as mentioned at the end of that section) standard p-simulations of SF in EF are
not fpt-simulations. We do not know whether p-SF ≤pp p-EF . However, this holds for
the tree-like versions of these proof systems:

Theorem 4.4 p-SF ∗ ≤pp p-EF ∗.

Proof. We say that an SF ∗-proof of β from an extension sequence (for β) is an ESF ∗-proof
of β if every application of the substitution rule has the form

α

α[x/σ]

where the formula x ∧ σ does not contain any extension variable.
Clearly, an EF ∗-proof of β is an ESF ∗-proof of β without applications of the substi-

tution rules.
We now describe how to stepwise eliminate applications of the substitution rule in

ESF ∗-proofs. So, let π be an ESF ∗-proof of β with k applications of the substitution
rule. We depict π as a labeled tree T with β at the root; for any node t of T labeled
by γ the subtree Tt rooted at this node (and consisting of the predecessors of this node)
constitutes an ESF ∗-proof of γ. Consider a node t such that

• t is labeled by a formula α[x/σ] obtained from its predecessor t− labeled by α
by an application of the substitution rule (via the substitution x/σ);
• no further applications of the substitution rule occur in Tt.

Let r be a variable not occuring in π and obtain Tt−(x/r) by substituting x by r in all
formulas of Tt− . By the proviso on the applications of the substitution rule in an ESF ∗-
proof, the variable x is not a substitution variable and hence extension axioms of T are
transformed into extension axioms in Tt−(x/r). Hence, Tt−(x/r) is an F ∗-proof of α[x/r]
from a set of extension axioms.

Let π′ be a short F ∗-proof of

(α[x/r]→ ((r ↔ σ)→ α[x/r][r/σ]︸ ︷︷ ︸
=α[x/σ]

)).

Using the new extension axiom (r ↔ σ) (and adding some applications of modus ponens)
we merge this F ∗-proof with Tt−(x/r) to get a F ∗-proof of α[x/σ] from an extension
sequence.

... Tt−(x/r)
... π′

α[x/r] (α[x/r]→ ((r ↔ σ)→ α[x/σ])
((r ↔ σ)→ α[x/σ]) (r ↔ σ)

α[x/σ]

Replace in the original proof π the subtree Tt(x/r) by this new proof, thus obtaining a
proof π′′. It should be clear that π′′ is an ESF ∗-proof of β with k− 1 applications of the
substitution rule.

The Infinity Project 251

Iterating this process k times we finally get an F ∗-proof π∗ of β from an extension
sequence (for β) consisting of k extension axioms. As π∗ is obtained from π in polynomial
time the mapping π 7→ π∗ is the desired pp-simulation of p-SF ∗ in p-EF ∗. 2

Note that in the previous proof we have used that the SF-proof we start with is
treelike: the simulation replaces all predecessors of a formula obtained by a substitution
rule. In an arbitrary SF-proof some later inferences may be based on some formulas not
further available.

We prove the following result by standard means:

Proposition 4.5 p-EF ≤pp p-EF ∗.

Proof. Let π = α1, . . . , αs be an EF-proof with k extension axioms. For 1 ≤ i ≤ s we set
γi :=

∧i
j=1 αj . We construct for i = 1, . . . , s successively EF ∗-proofs πi of γi such that

the variables in πi are precisely those in α1, . . . , αi and the extension axioms in πi are
the same as in α1, . . . , αi.

The tree π1 just consists of the root labeled by α1. Assume that we have already
constructed the EF ∗-proof πi of γi. To construct πi+1 we first consider the case where
αi+1 is an extension axiom or a substitution instance of an axiom of F . Let π1 be
a short F ∗-proof of (u → (v → (u ∧ v))). Then π1[u/γi, v/αi+1] is an F ∗-proof of
(γi → (αi+1 → γi+1)) of size O(|γi+1|). As an intermediate step we get an F ∗-proof π2
of (αi+1 → γi+1) from the F ∗-proofs πi and π1[u/γi, v/αi+1] by an application of modus
ponens. A further modus ponens inference yields from π2 and the ‘leaf’ αi+1 the desired
F ∗-proof πi+1 of γi+1.

... π1[u/γi, v/αi+1]
... πi

(γi → (αi+1 → γi+1)) γi
(αi+1 → γi+1) αi+1

γi+1

Now assume that αi+1 is obtained by one of the rules of F . The general case being
analogous, we treat the case where this rule is modus ponens. So assume αi+1 is obtained
from αk and αℓ (where 1 ≤ k, ℓ ≤ i) by modus ponens. Let π1 be an F ∗-proof of
(
∧i
j=1 uj → (uk∧uℓ)) of size polynomial in i. Substituting in π1 the ujs by the αjs yields

an F ∗-proof π2 of (γi → (αk ∧ αℓ)) of size polynomial in |γi|.
To a short F ∗-proof of ((u → v) → ((v → w) → (u → (u ∧ w)))) we apply the

substitution [u/γi, v/(αk ∧ αℓ), w/αi+1] obtaining an F ∗-proof π3 of size O(|γi+1|) of

((γi → (αk ∧ αℓ))→ ((αk ∧ αℓ)→ αi+1)→ (γi → γi+1))).

Finally, let π4 be an F ∗-proof of ((αk ∧αℓ)→ αi+1) of size O(|αk|+ |αℓ|+ |αi+1|) (recall
that αi+1 was obtained from αk and αℓ by modus ponens). Now it is easy to merge πi,
π1, π2, π3, and π4 to an F ∗-proof πi+1 of γi+1.

It is easy to construct a treelike proof π∗ of αs from πs. It is clear that π∗ can be
computed from π in polynomial time. 2

Theorem 4.6 F ≡pp p-BSF ∗ ≡pp p-RF ∗ ≤pp p-EF ≡pp p-EF ∗ ≡pp SF ∗ ≤pp p-SF ≡pp
p-BSF.

Proof. The first two equivalences are easy to see. The third equivalence follows from the
preceding proposition. The equivalence p-EF ∗ ≡pp p-SF ∗ follows from Proposition 4.2
and Theorem 4.4. The last equivalence follows from Proposition 4.2, too. 2

252 Parameterized proof complexity

Hence, the proof systems mentioned in the previous theorem belong to at most three
distinct pp-degrees. Are these degrees distinct? Note that this theorem does not mention
p-RF . Does it belong to any of these degrees? Of course, F ≤pp p-RF ≤pp p-SF .
Furthermore, we can show the following:

Proposition 4.7 If p-RF ≤pp p-EF , then p-SF ≤pp p-EF.

Proof. Assume p-RF ≤pp p-EF . By Proposition 4.2 it suffices to show p-BSF ≤pp p-EF .
So let π = α1, . . . , αs be a BSF -proof with k substitution inferences (substituting a
variable by ⊥ or by ⊤). Let y1, . . . , yk and z1, . . . , zk be new variables (not occurring
in π) and let

δ :=
∧k
i=1 ¬yi ∧

∧k
i=1 zi.

Consider the sequence
(δ → α1), . . . , (δ → αs).

This sequence can be “filled up” to an RF -proof with k substitution inferences (substi-
tuting a variable by another variable): if αi in π is a substitution instance of an axiom,
replace (δ → αi) by a short F -proof of (δ → αi). If αi is obtained by modus ponens
from αj , αj′ with j, j′ < i, then replace (δ → αi) by a short F -proof of (δ → αi) from
(δ → αj) and (δ → αj′). Finally, if αi is obtained by a substitution inference, then there
is j < i such that αi = αj [x/⊥] or αi = αj [x/⊤] for some variable x. Assume this is
the ℓth substitution inference (1 ≤ ℓ ≤ k) in π and that αi = αj [x/⊥] (the other case
αi = αj [x/⊤] is similar). Replace (δ → αi) by the following RF -proof: give a short
F -proof of (δ∧αj [x/yℓ]→ αi) (note that ¬yℓ is a conjunct of δ) and derive αj [x/yℓ] from
αj by an RF substitution inference; from these two formulas it is easy to derive (δ → αi).

Clearly, this RF -proof can be computed from π in polynomial time. By assumption
we can in polynomial time compute from this RF -proof an EF -proof π′ of (δ → αs)

with kO(1) extension axioms. Since the yi’s and the zi’s occur in δ, they are not used as
extension variables in π′. Let π′′ result from π′ by substituting ⊥ for all occurrences of
the yi’s and ⊤ for all occurrences of the zi’s. Then (note the yi’s and the zi’s do not occur
in αs) π′′ is an EF -proof of (δ′ → αs) where δ′ is a true Boolean sentence (a true formula
without variables). Adding a short proof of δ′ and an application of modus ponens gives
an EF -proof of αs. 2

Acknowledgements

The authors thank the John Templeton Foundation for its support through Grant
#13152, The Myriad Aspects of Infinity. The second author thanks the FWF (Austrian
Research Fund) for its support through Grant P 23989 - N13.

References
[1] O. Beyersdorff, N. Galesi, M. Lauria and A. Razborov. Parameterized bounded-depth Frege is not

optimal. Proceedings of the 38th International Colloquium on Automata, Languages and Program-
ming (ICALP), pp. 630–641, Springer-Verlag, 2011.

[2] S. Buss. Some remarks on the lengths of propositional proofs. Archive for Mathematical Logic,
34:377–394, 1995.

[3] S. Buss. Polynomial size proofs of the propositional pigeon principle. The Journal of Symbolic Logic,
52:916–927, 1987.

[4] S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cambridge University Press, 2010.

The Infinity Project 253

[5] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The Journal of
Symbolic Logic, 44:36–50, 1979.

[6] S. S. Dantchev, B. Martin, and S. Szeider. Parameterized proof complexity. Computational Com-
plexity, 20(1):51–85, 2011.

[7] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
[8] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
[9] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs for NP.

Journal of Computer and System Sciences, 77(1):91–106, 2011.
[10] J. Krajíček. On the number of steps in proofs. Annals of Pure and Applied Logic, 41:153–178, 1989.
[11] J. Krajíček. Bounded arithmetic, propositional logic, and complexity theory. Cambridge University

Press, 1995.
[12] J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and

the complexity of computations. The Journal of Symbolic Logic, 54:1063–1088, 1989.

The Infinity Project

On the structure of honest elementary degrees

Lars Kristiansen∗, Robert S. Lubarsky†, Jan-Christoph Schlage-Puchta‡,
Andreas Weiermann‡

∗ Department of Mathematics, Universitetet i Oslo, Norway
larsk@math.uio.no

† Department of Mathematical Sciences, Florida Atlantic University, USA
Robert.Lubarsky@alum.mit.edu

‡ Department of Mathematics, Universiteit Gent, Belgium
jcsp@cage.ugent.be, weiermann@cage.ugent.be

Abstract. We present some new results, and survey old results, on the structure of honest elementary
degrees. This paper should be a suitable first introduction to the honest elementary degrees.

Introduction

This paper is devoted to the study of the structure of the honest elementary degrees. We
present some new results, but this is also a kind of introduction and survey paper. The
new material is found in Sections 6 and 7. In the remaining sections, we survey the same
material as we do in Part I of [9], but we give more detailed proofs and more elaborated
explanations. This should be the most thorough and readable introduction to the honest
elementary degrees available so far. But be aware that we are talking about a technical
introduction, and it is beyond the scope of this paper to motivate our study of the honest
elementary degrees.

The roots of our subject can be found in subrecursion theory from the 1970s. Some
relevant papers are Meyer & Ritchie [13] and Machtey [10, 11, 12]. The theory of honest
elementary degrees, in the form presented here, was developed by Kristiansen in a series
of papers (and a thesis) [4, 6, 7, 8] ([5]) from the 1990s. A considerable number of the
results surveyed in Sections 2, 3, 4 and 5 was initially published in these papers.

A recent paper by Kristiansen, Schlage-Puchta and Weiermann [9] shows how to gen-
eralise honest elementary degree theory to so-called honest α-elementary degree theory.
This generalisation connects honest degree theory with proof theory and provability of
Π0

2-statements in formal systems for mathematics, e.g. Peano Arithmetic. Such a con-
nection yields a strong motivation for further research in honest degree theory.

1 Preliminaries

We assume that the reader is familiar with the most basic concepts of classical com-
putability theory; see e.g. [14] or [16]. We also assume acquaintance with subrecursion

The first, second and fourth author gratefully acknowledge partial support by grants from the John
Templeton Foundation —grant no. 13396 and grant no. 13152.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

255

256 On the structure of honest elementary degrees

theory and, in particular, with the elementary functions. An introduction to this sub-
ject can be found in [15] or [17]. Here we just state some important basic facts and
definitions; see [15] and [17] for proofs.

The initial elementary functions are the projection functions (Ini), the constants 0
and 1, addition (+) and modified subtraction (

.
−). The elementary definition schemes

are composition, that is, f(x⃗) = h(g1(x⃗), . . . , gm(x⃗)) and bounded sum and bounded prod-
uct, that is, respectively f(x⃗, y) =

∑
i<y g(x⃗, i) and f(x⃗, y) =

∏
i<y g(x⃗, i). A function is

elementary if it can be generated from the initial elementary functions by the elementary
definition schemes. A relation R(x⃗) is elementary when there exists an elementary func-
tion f with range {0, 1} such that f(x⃗) = 0 iff R(x⃗) holds. Relations may also be called
predicates, and we will use the two words interchangeably. A function f has elementary
graph if the relation f(x⃗) = y is elementary. When we can define a function g from the
function f plus the initial elementary functions by the elementary schemes, we will say
that g is elementary in f .

The definition scheme (µz ≤ x)[. . .] is called the bounded µ-operator, and

(µz ≤ y)[R(x⃗, z)]
denotes the least z ≤ y such that the relation R(x⃗, z) holds. Let (µz ≤ y)[R(x⃗, z)] = 0
if no such z exists. The elementary functions are closed under the bounded µ-operator.
If f is defined by a primitive recursion over g and h and f(x⃗, y) ≤ j(x⃗, y), then f is
defined by bounded primitive recursion over g, h and j. The elementary functions are
closed under bounded primitive recursion, but not under primitive recursion. Moreover,
the elementary relations are closed under the operations of the propositional calculus and
under bounded quantification, i.e., (∀x ≤ y)[R(x)] and (∃x ≤ y)[R(x)].

Let 2x0 = x and 2xn+1 = 22
x
n , and let S denote the successor function. The class

of elementary functions equals the closure of {0,S, Ini , 2x,max} under composition and
bounded primitive recursion. Given this characterisation of the elementary functions,
it is easy to see that for any elementary function f , we have f(x⃗) ≤ 2

max(x⃗)
k for some

fixed k. It is also easy to see that the class of functions elementary in f is the closure of
{0,S, Ini , 2x,max, f} under composition and bounded primitive recursion. As remarked
above, the elementary functions are not closed under primitive recursion, but the ele-
mentary predicates will be closed under (unbounded) primitive recursion, that is, when
a predicate P (x⃗, y) is defined by P (x⃗, 0)⇔ ϕ(x⃗) and P (x⃗, y+1)⇔ ψ(x⃗, P (x⃗, y), y), then
P will be elementary if ϕ and ψ are elementary.

Uniform systems for coding finite sequences of natural numbers are available in-
side the class of elementary functions. Let f(x) be the code number for the sequence
⟨f(0), f(1), . . . , f(x)⟩. Then f belongs to the elementary functions if f does. We will
be quite informal and indicate the use of coding functions with the notations ⟨. . .⟩ and
(x)i where (⟨x0, . . . , xi, . . . , xn⟩)i = xi. (So (x, i) 7→ (x)i is an elementary function.)
Our coding system is monotone, i.e., ⟨x0, . . . , xn⟩ < ⟨x0, . . . , xn, y⟩ holds for any y, and
⟨x0, . . . , xi, . . . , xn⟩ < ⟨x0, . . . , xi+1, . . . , xn⟩. All the closure properties of the elementary
functions can be proved by using Gödel numbering and coding techniques.

For unary functions f, g, we use f ≤ g to denote ∀x ∈ N[f(x) ≤ g(x)], and we use fk
to denote the k-th iterate of the function f , that is, f0(x) = x and fk+1(x) = ffk(x).

The Infinity Project 257

2 Honest elementary degrees and the growth theorem

Definition 2.1 A function f : N → N is honest if it is monotone (f(x) ≤ f(x + 1)),
dominates 2x (f(x) ≥ 2x) and has elementary graph.

Note that, when f is honest, we have fy+1(x) > fy(x), but we do not necessarily
have f(x + y) > f(x). From now on, we reserve the letters f, g, h, . . . to denote honest
functions. Small Greek letters like ϕ, ψ, ξ, . . . will denote number-theoretic functions not
necessarily being honest.

Definition 2.2 A function ϕ is elementary in a function ψ, written ϕ ≤E ψ, if ϕ can
be generated from the initial functions ψ, 2x, max, 0, S (successor), Ini (projections) by
composition and bounded primitive recursion.

We define the relation ≡E by f ≡E g ⇔ f ≤E g ∧ g ≤E f . Now, ≡E is an equival-
ence relation on the honest functions, and we will use H denote the set of ≡E-equivalence
classes of honest functions. The elements of H are the honest elementary degrees. Honest
elementary degrees will normally just be called degrees, and following the tradition of
classical computability theory, we use boldface lowercase Latin letters a,b, c, . . . to denote
our degrees.

We will use deg(f) to denote the degree of the honest function f , that is,

deg(f) = {g | g ≡E f}.
We define the relation <E by f <E g ⇔ f ≤E g ∧ g ̸≤E f ; and the relation |E by

f |E g ⇔ f ̸≤E g ∧ g ̸≤E f . We will use <, ≤, | to denote the relations induced on
the degrees by <E ,≤E , |E respectively. We use standard, and presumably very familiar,
language with respect to these ordering relations, and we will, e.g., say that f lies below
g if f ≤E g; that g is strictly above f if f <E g; that c lies strictly between a and b if
a < c < b; that a and b are incomparable if a | b; and so on.

Theorem 2.3 (Growth Theorem) Let f and g be honest functions. Then,

g ≤E f ⇐⇒ g ≤ fk for some fixed k.

Proof. Recall that f is monotone and dominates 2x. By induction on the build-up
of a function ψ, form the initial functions 0, S, Ini , 2x, max, f by composition and
bounded primitive recursion, it is easy to prove that there exists k ∈ N such that
ψ(x⃗) ≤ fk(max(x⃗)). Hence, if g ≤E f , we have g ≤ fk for some fixed k.

Now, suppose that g ≤ fk. Since g is honest, the relation g(x) = y is elementary. We
have g(x) = (µy ≤ fk(x))[g(x) = y]. Hence g ≤E f , since the functions elementary in f
are closed under composition and the bounded µ-operator. �

The structure of honest elementary degrees is comparable to a classical computability-
theoretic degree structure, e.g., the structure of Turing degrees, but the Growth Theorem
makes it possible to abandon classical computability-theoretic proof methods and inves-
tigate this structure by asymptotic analysis and methods of number theoretic nature. To
prove that g ≤E f , it is sufficient to provide a fixed k such that g(x) ≤ fk(x); to prove
that g ̸≤E f , it is sufficient to prove that such a k does not exist. Thus, there is no need1

for the standard computability-theoretic machinery involving enumerations, diagonalisa-
tions and constructions with requirements to be satisfied. This makes the proofs concise
and transparent.

1 Well, at least we can achieve a lot without resorting to such a machinery; see Section 6.

258 On the structure of honest elementary degrees

3 The lattice of honest elementary degrees

Definition 3.1 Least upper bounds and greatest lower bounds are defined the usual way,
and a partially ordered structure where each pair of elements has both a least upper
bound and a greatest lower bound is called a lattice.

We define the join of the honest functions f and g, written max[f, g], by

max[f, g](x) = max(f(x), g(x)).

We define the meet of the honest functions f and g, written min[f, g], by

min[f, g](x) = min(f(x), g(x)).

Lemma 3.2 Let f and g be honest functions. Then, max[f, g] and min[f, g] are honest
functions.

Proof. It is trivial that max[f, g] and min[f, g] are monotone and dominate 2x. To verify
that max[f, g] and min[f, g] have elementary graphs, observe that max[f, g](x) = y holds
iff

(f(x) = y ∧ (∃i ≤ y)[g(x) = i]) ∨ (g(x) = y ∧ (∃i < y)[f(x) = i])

and that min[f, g](x) = y holds iff

(f(x) = y ∧ (∀i ≤ y)[g(x) ̸= i]) ∨ (g(x) = y ∧ (∀i < y)[f(x) ̸= i]).

The relations f(x) = y and g(x) = y are elementary. Furthermore, the elementary
relations are closed under bounded quantification and the operations of the propositional
calculus. Hence, both max[f, g](x) = y and min[f, g](x) = y are elementary relations. �
Lemma 3.3 Let f and g be honest functions. Then, we have

min(fm(x), gn(x)) ≤ min[f, g]m+n(x).

Proof. We prove this lemma by induction on m + n. The lemma holds trivially when
m = 0 or n = 0. Now, assume that m > 0 and n > 0. Then, without loss of generality,
we may assume that min[f, g](x) = f(x). Together with the induction hypothesis this
yields

min(fm(x), gn(x)) ≤ min(fm−1(f(x)), gn(f(x)))

≤ min[f, g]m−1+n(f(x)) = min[f, g]m+n(x). �

Lemma 3.4 Let f, g, h be honest functions.
(i) min[f, g] ≤E f and min[f, g] ≤E g.
(ii) If h ≤E f and h ≤E g, then h ≤E min[f, g].

Proof. We prove (ii). Assume h ≤E f and h ≤E g. By the Growth Theorem we have
m,n such that h(x) ≤ fm(x) and h(x) ≤ gn(x). By Lemma 3.3, we have

h(x) ≤ min(fm(x), gn(x)) ≤ min[f, g]n+m(x).

By another application of the Growth Theorem, we have h ≤E min[f, g]. This proves (i).
The proof of (ii) is straightforward by the Growth Theorem. �
Lemma 3.5 Let f, g, h be honest functions.

(i) f ≤E max[f, g] and g ≤E max[f, g].
(ii) If f ≤E h and g ≤E h, then max[f, g] ≤E h.

The Infinity Project 259

Proof. Both (i) and (ii) follow straightforwardly from the Growth Theorem. �

Lemma 3.6 For any honest functions f, f1, g, g1 such that f ≤E f1 and g ≤E g1,
(i) min[f, g] ≤E min[f1, g1];
(ii) max[f, g] ≤E max[f1, g1].

Proof. Now ≤E is transitive, and thus (i) follows immediately from Lemma 3.4, and (ii)
follows immediately from Lemma 3.5. �

Our previous lemma entails that

(f ≡E f1 ∧ g ≡E g1) ⇒ (max[f, g] ≡E max[f1, g1] ∧ min[f, g] ≡α min[f1, g1])

when f, f1, g, g1 are honest functions. By Lemma 3.2, we know that max[f, g] and
min[f, g] are honest functions whenever f and g are. Hence, the next definition makes
sense.

Definition 3.7 Let f and g be honest functions such that deg(f) = a and deg(g) = b.
We define the join of a and b, written a ∪ b, by a ∪ b = deg(max[f, g]). We define the
meet of a and b, written a ∩ b, by a ∩ b = deg(min[f, g]).

Theorem 3.8 (Distributive Lattice) The structure ⟨H,≤,∪,∩⟩ is a distributive lattice,
that is, for any a,b, c ∈ H, we have

(i) a ∩ b is the greatest lower bound of a and b under the ordering ≤;
(ii) a ∪ b is the least upper bound of a and b under the ordering ≤;
(iii) a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) and a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c).

Proof. It follows from Lemma 3.4 (i) that a ∩ b is a lower bound of a and b, and by
Lemma 3.4 (ii), a ∩ b is indeed the greatest lower bound of a and b. This proves (i).

The proof of (ii) is symmetric, using Lemma 3.5 in place of Lemma 3.4. Finally,
(iii) holds since max(x,min(y, z)) = min(max(x, y),max(x, z)) and min(x,max(y, z)) =
max(min(x, y),min(x, z)). �

Let a and b be two degrees such that a ≤ b. Now, we do not necessarily have f ≤ g
for any f ∈ a and g ∈ b. But there will always be some f ∈ a and some g ∈ b such that
we have f(x) ≤ g(x), or even f(x) < g(x), for all x. This is consequence of the lemmas
above: Pick an arbitrary f1 ∈ a and an arbitrary g1 ∈ b, and let f = min[f1, g1] and
g = max[f1, g1]. Now we obviously have and f(x) ≤ g(x) < g2(x) for all x, but we also
have f ∈ a and g, g2 ∈ b.

Theorem 3.9 (Density-Splitting) Let a and b be degrees such that a < b. Then, there
exist incomparable degrees c0 and c1 such that a = c0 ∩ c1 and b = c0 ∪ c1.

Proof. Pick honest functions f and g such that deg(g) = a < b = deg(f) and g(x) < f(x).
We define the sequence d0 < d1 < d2 < Let d0 = 0, let d2i+1 be the least y such that

(3.1) (∃z ≤ y) [f(z) ≤ y ∧ (∃w ≤ z) [d2i ≤ w ∧ gi(w) < f(w)]]

and let d2i+2 = f(d2i+1). Next we define the functions h0 and h1. For ȷ ∈ {0, 1}, let
hȷ(x) = max(Hȷ(x), g(x)), where

Hȷ(x) =

{
f(x) if d4i+2ȷ ≤ x ≤ d4i+2ȷ+1 for some i,
Hȷ(x− 1) otherwise.

260 On the structure of honest elementary degrees

Since f ̸≤E g, there will for each i exist infinitely many z such that gi(z) < f(z). Thus,
there will always be a number satisfying the definition of d2i+1, and thus the sequence
d0 < d1 < d2 < . . . is well defined.

We will now prove that h1 and h2 are honest functions. First, we will argue that
the relation di = y is elementary. This is not obvious as a relation like gi(w) < f(w) is
not necessarily elementary even if f and g are honest functions. However, the relation
gi(w) < f(w) ≤ y will be elementary (in i, w and y) whenever g and f are honest. Now,
the statement (3.1) involved in the definition of di = y is equivalent to

(∃z ≤ y) [f(z) ≤ y ∧ (∃w ≤ z) [d2i ≤ w ∧ gi(w) < f(w) ≤ y]].
Moreover, the elementary relations are closed under primitive recursion, bounded quanti-
fiers and propositional operations. Thus, di = y is indeed an elementary relation. When
we know that di = y is elementary, it becomes easy to see that h0 and h1 have elementary
graphs. Furthermore, it is obvious that h0 and h1 are monotone and dominate 2x, and
thus, we are dealing with two honest functions.

Next, we will prove that min[h0, h1] ≡E g, that max[h0, h1] ≡E f , and that h0 |E h1.
The theorem follows.

We start by proving min[h0, h1] ≡E g. By the Growth Theorem it suffices to prove
that min[h0, h1](x) = g(x). Assume we have d4i+2 ≤ x < d4i+4. Then

h0(x) = max(H0(x), g(x)) def. of h0

= max(H0(d4i+1), g(x)) def. of H0

= max(f(d4i+1), g(x)) def. of H0

= max(d4i+2, g(x)) def. of d4i+2

= max(x, g(x)) as d4i+2 ≤ x

= g(x) as g(x) ≥ 2x.

A symmetric argument shows that h1(x) = g(x) when there exists i such that d4i ≤
x < d4i+2. Hence, for any x, we either have h0(x) = g(x) or h1(x) = g(x), and since
min[h0, h1](x) ≥ g(x), we can conclude that min[h0, h1](x) = g(x). This proves that
min[h0, h1] ≡E g.

Our next task is to prove that max[h0, h1] ≡E f . It follows straightaway from our def-
initions that we have max[h0, h1](x) ≤ f(x). We will prove that f(x) ≤ max[h0, h1]

2(x),
and thus, we have max[h0, h1] ≡E f by the Growth Theorem. The proof of f(x) ≤
max[h0, h1]

2(x) splits into two cases. Case (i): When x is in the interval d2i . . . d2i+1 − 1
for some i, we have f(x) ≤ max[h0, h1]

2(x) as either h0 or h1 will equal f in this interval.
Case (ii): Assume x is in the interval d2i+1 . . . d2i+2 − 1 for some i, and note that

(3.2) h0(dj) = f(dj) or h1(dj) = f(dj)

holds for any j. We have

f(x) ≤ f(d2i+2) f is monotone

= max[h0, h1](d2i+2) (3.2)

= max[h0, h1](f(d2i+1)) def. of d2i+2

= max[h0, h1]
2(d2i+1) (3.2)

≤ max[h0, h1]
2(x) max[h0, h1] is monotone.

This completes the proof of max[h0, h1] ≡E f .

The Infinity Project 261

Finally, we prove h0 |E h1. Fix an arbitrary m ∈ N. We will argue that there exists x
such that hm0 (x) < h1(x). Let k ≥ 2m. By the definition of d4k+3 there exists a number
xk in the interval d4k+2, . . . , d4k+3 such that

(3.3) d4k+2 ≤ gm(xk) ≤ gk(xk) < f(xk) ≤ d4k+3.

Now, since d4k+2 ≤ xk ≤ gk(xk) < d4k+3, it follows from the definitions of h0 and H0

that

h0(g
ℓ(xk)) = max(H0(g

ℓ(xk)), gg
ℓ(xk)) = max(H0(d4k+1), g

ℓ+1(xk))(3.4)

= max(d4k+2, g
ℓ+1(xk)) = max(xk, g

ℓ+1(xk)) = gℓ+1(xk)

holds for any ℓ < k. When we combine (3.3), (3.4) and the definition of h1, we get
hm0 (xk) = gm(xk) ≤ gk(xk) < f(xk) = h1(xk). This proves that, for any m, we can find
x such that hm0 (x) < h1(x). By the Growth Theorem, we have h1 ̸≤E h0. The proof that
h0 ̸≤E h1 is symmetric. Hence, h0 |E h1. �

Results being obviously equivalent to Theorem 3.8 and Theorem 3.9 are proved by
Machtey [11, 12] by traditional computability-theoretic methods.

4 A jump operator on honest elementary degrees

We will now define an operator (·)′ transforming an honest function f into a faster
increasing honest function f ′. This operator will be called the jump operator.

Definition 4.1 For any honest function f , we define the jump of f , written f ′, by
f ′(x) = fx+1(x).

Lemma 4.2 Let f be an honest function. Then, f ′ is an honest function.

Proof. It is obvious that f ′ is monotone and dominates 2x. Let ψ(x, y) be an elementary
function that places a bound on the code number for the sequence ⟨y, y, . . . , y⟩ of length
x+ 1. Then, f ′(x) = y is equivalent to

(∃s ≤ ψ(x, y))[(s)0 = f(x) ∧ (∀i < x)[(s)i+1 = f((s)i)] ∧ (s)x = y].

Thus, the relation f ′(x) = y is elementary since all the functions, relations and operations
involved in this expression are elementary. This proves that f ′ has elementary graph. �

Lemma 4.3 (Monotonicity of the Jump Operator) Let f and g be honest functions.
Then, we have

g ≤E f ⇒ g′ ≤E f ′.

Proof. Suppose that g ≤E f . By the Growth Theorem, we have a fixed k such that
g(x) ≤ fk(x). Now

g′(x) = gx+1(x) ≤ (fk)x+1(x) ≤ f (kx+k)+1(kx+ k) = f ′(kx+ k) ≤ (f ′)2k(x)

and g′ ≤E f ′ follows by another application of the Growth Theorem. �

Lemma 4.3 entails that f ′ ≡E g′ whenever f and g are honest functions such that
f ≡E g. Hence, the jump operator on the honest functions induce an operator on the
honest elementary degrees.

262 On the structure of honest elementary degrees

Definition 4.4 For any honest elementary degree a, we define the jump of a, written a′,
by a′ = deg(f ′) where f is some honest function such that a = deg(f). Furthermore, we
define the zero degree, written 0, by 0 = deg(2x).

The proof of the next theorem is straightforward. See Kristiansen [6] for the details.

Theorem 4.5 (Canonical Degrees) We have 0 < 0′ < 0′′ < Furthermore, 0 is the
least degree, that is, 0 ≤ a holds for any degree a.

The jump operators of classical computability theory are defined by enumerating all
the functions reducible to an oracle function f , e.g., the Turing jump J (f) of the function
f is defined by J (f)(⟨e, x⟩) = {e}f (x) where {e}f denotes the e-th function Turing
computable in f and ⟨·, ·⟩ is a computable bijection from N× N into N. Jump operators
based on enumerations are considered to be natural. The reader should note that our
jump operator is equivalent to such a natural jump operator of classical computability
theory: Let {[i]f}i∈N be an elementary enumeration of the functions elementary in the
honest functions f , and let J (f)(⟨e, x⟩) = [e]f (x) where ⟨·, ·⟩ is an elementary bijection
from N × N into N. Then, we indeed have f ′ ≡E J (f). For a proof and further details,
see [6] and [5].

However, in our context, the advantage of defining f ′ as an iteration of f is obvi-
ous: The Growth Theorem is very well suited for dealing with a jump operator based
on iterations; we can introduce the canonical degrees 0,0′, . . . , and proceed to develop
our degree theory without resorting to enumerations and the apparatus of classical com-
putability theory.

Definition 4.6 We define the n-th jump of an honest degree a (function f), written a[n]

(f [n]), by a[0] = a and a[n+1] = a[n]′ (f [0] = f and f [n+1] = f [n]′). A degree a strictly
below 0′ is lown if a[n] = 0[n], and highn if a[n] = 0[n+1].

Our strategy for proving the existence of lown and highn degrees, will be as follows:
First we provide degrees aℓ and ah strictly between 0[n] and 0[n+1] such that a′

ℓ = 0[n+1]

a′
h = 0[n+2]. Thereafter we prove that for any degree b strictly between 0[k+1] and 0[k+2],

we can find a degree c strictly between 0[k] and 0[k+1] such that c′ = b.

Theorem 4.7 Let f be a strictly monotone and honest function. Then, there exists an
honest function g such that f <E g and g′ ≡E f ′.

Proof. Let g(x) = f ′f(f ′)−1(x) where (f ′)−1 denotes the inverse of f ′ given by

(f ′)−1(x) = (µi)[f ′(i) ≥ x].

Since f ′ is strictly monotone, we have (f ′)−1f ′(x) = x and f ′(f ′)−1(x) ≥ x. Furthermore,
we have g(x) = y iff

(∃u, v < y) [(∀w < u)[f ′(w) < x] ∧ f ′(u) ≥ x ∧ f(u) = v ∧ f ′(v) = y]

and thus it is easy to see that the graph of g is elementary. It is also easy to see that g
is monotone and dominates 2x. Hence, g is an honest function.

The Infinity Project 263

Now, f(x) ≤ ff ′(f ′)−1(x) ≤ f ′f(f ′)−1(x) = g(x), and for any fixed k and sufficiently
large x, we have

fk(x) ≤ fkf ′(f ′)−1(x)

= fkf (f
′)−1(x)+1((f ′)−1(x)) def. of f ′

≤ fk+(f ′)−1(x)+1(k + (f ′)−1(x))

= f ′(k + (f ′)−1(x)) def. of f ′

< f ′(f(f ′)−1(x)) f(x) ≥ 2x and x is large

= g(x) def. of g.

Hence, we have f <E g by the Growth Theorem.
Next, we observe that gk(x) = f ′gk(f ′)−1(x) for any k > 0. This is trivially true

when k = 1, and, by an induction hypothesis, we have

gk+1(x) = ggk(x) = gf ′fk(f ′)−1(x) = f ′f(f ′)−1f ′fk(f ′)−1(x) = f ′fk+1(f ′)−1(x).

Thereby, g′(x) = gx+1(x) = f ′fx+1(f ′)−1(x) ≤ f ′fx+1(x) = f ′f ′(x), and then we have
g′ ≤E f ′ by the Growth Theorem. Since f <E g, we also have g′ ≡E f ′ by the mono-
tonicity of the jump operator. �

Theorem 4.8 Let f be an honest function. Then, there exists an honest function g such
that g <E f ′ and g′ ≡E f ′′.

Proof. For any i ∈ N, let d3i+1 = f ′′(d3i), let d3i+2 = f ′(d3i+1), and let d3i+3 = f ′(d3i+2).
Let d0 = 0. Furthermore, let

G(x) =

{
f ′(x) if d3i ≤ x ≤ d3i+1 for some i,
G(x− 1) otherwise,

and let g(x) = max(G(x), f(x)). It is easy to check that g is honest.
First we prove that f ′′ ≡E g′. Observe that for any j ≤ d3i+1 + 1, we have d3i ≤

(f ′)j(d3i) ≤ (f ′)d3i+1(d3i) = f ′′(d3i) = d3i+1. Hence, by the definition of g, we have

(4.1) f ′′(d3i) = (f ′)d3i+1(d3i) = gd3i+1(d3i) = g′(d3i)

for any i ∈ N. Now, let x be arbitrary and let i be the unique number such that
d3i ≤ x < d3i+3. Then

(g′)4(x) ≥ (g′)4(d3i) as g′ is monotone

= (g′)3f ′′(d3i) (4.1)

= (g′)3(d3i+1) def. of d3i+1

≥ (g′)(f ′)2(d3i+1) as f(x) ≤ g(x)

≥ (g′)(d3i+3) def. of d3i+3

= f ′′(d3i+3) (4.1)

≥ f ′′(x) as f ′′ is monotone.

This proves f ′′ ≤ (g′)4, and f ′′ ≤E g′ follows by the Growth Theorem. Moreover, since
g ≤ f ′, we have g ≤E f ′, and thus also g′ ≤E f ′′ by the monotonicity of the jump
operator. This proves that f ′′ ≡E g′.

264 On the structure of honest elementary degrees

Next we prove that g <E f ′. It is obvious that g ≤E f ′ since g(x) ≤ f ′(x). Hence,
we are left to prove that f ′ ̸≤E g. Assume d3i+2 ≤ x < d3i+3. Then, straightaway from
the definition of g and the sequence {dj}j∈N, we have

g(x) = max(G(x), f(x)) = max(G(d3i+1), f(x))

= max(f ′(d3i+1), f(x)) = max(d3i+2, f(x)) = max(x, f(x)) = f(x),

that is, g(x) = f(x) holds for any x in the interval d3i+2, . . . , d3i+3 − 1. Let k be an
arbitrary fixed number, and pick any i such that d3i+2 + 1 > k. Then,

d3i+3 = f ′(d3i+2) = fd3i+2+1(d3i+2) > fk(d3i+2) = gk(d3i+2).

The last equality holds since we have d3i+2 ≤ f ℓ(d3i+2) < d3i+3 when ℓ ≤ k. This, proves
that for any fixed k there exists x such that f ′(x) > gk(x), and thus the Growth Theorem
yields f ′ ̸≤E g. �

Corollary 4.9 For any n, there exists degrees aℓ and ah strictly between 0[n] and 0[n+1]

such that a′
ℓ = 0[n+1] and a′

h = 0[n+2].

Proof. Let f be an honest function such that deg(f) = 0[n]. By Theorem 4.7, we have
an honest function g0 such that f <E g0 and f ′ ≡E g′0. Let aℓ = deg(g0). Then we
have 0[n] < aℓ < 0[n+1] = a′

ℓ. By Theorem 4.8, we have an honest function g1 such
that g1 <E f ′ and f ′′ ≡E g′1. Let ah = deg(g1). Then we have 0[n] < ah < 0[n+1] and
0[n+2] = a′

h. (The monotonicity of the jump operator assures that aℓ < 0[n+1] and that
0[n] < ah.) �

Theorem 4.10 (Jump Inversion) Let f and g0 be honest functions such that

f ′ ≤E g0 ≤E f ′′.

Then, there exists an honest function h such that h ≤E f ′ and h′ ≡E g0.

Proof. Since f is honest, we have f ′(x+1) ≥ 2f
′(x) (and we also have f ′(x) ≥ 2xx+1). We

can assume without loss of generality that we also have g0(x+1) ≥ 2g0(x). Otherwise, let
g1(0) = g0(0) and g1(x + 1) = max(2g1(x),max[g0, f

′](x + 1)). Then we obviously have
max[g0, f

′] ≤ g1. Furthermore, for some u, v ≤ x we have

g1(x) = 2max[g0,f ′](v)
u ≤ 2

max[g0,f ′](x)
max[g0,f ′](x)+1 ≤ max[g0, f

′]max[g0, f
′](x).

Thus, we have max[g0, f
′] ≡E g1 by the Growth Theorem, moreover, since f ′ ≤E g0, we

have g0 ≡E g1. This shows that we may replace g0 by g1 to ensure that g0(x+1) ≥ 2g0(x).
We define the function g by recursion on its argument x. Let g(0) = g0(0) and let

g(x+ 1) =

f ′′(y + 1) where y is the least number such that

g(x) ≤ f ′′(y) < f ′′(y + 1) < g0(x+ 1),

g0(x+ 1) if such y does not exist.

Claim I The function g is honest and
(a) g ≡E g0;
(b) g(x) ≤ f ′′(y)⇒ g(x+ 1) ≤ f ′′(y + 1) for any x, y ∈ N.

The Infinity Project 265

It is easy to see that g is an honest function, and Clause (b) of the claim is a straight-
forward consequence of the definition of g. We will now argue that g(x+1) ≤ g0(x+1) ≤
g(2x + 1), and thus, Clause (a) follows by the Growth Theorem. It is obvious that
g(x+1) ≤ g0(x+1). In order to verify that g0(x+1) ≤ g(2x+1), we observe that there
might, or might not, exist ℓ > 0 and a sequence y0, . . . , yℓ such that

g(x) ≤ f ′′(y0) ≤ f ′′(y1) ≤ . . . ≤ f ′′(yℓ) ≤ g0(x+ 1) ≤ f ′′(yℓ + 1).

If such a sequence does not exist, we have g(x+1) = g0(x+1) and thus also g0(x+1) ≤
g(2x + 1). If such a sequence exists, we have g(x + i) = f ′′(yi) for y = 1, . . . , ℓ and
g(x + ℓ + 1) ≥ g0(x + 1). Moreover, since g0(z) ≤ f ′′(z) holds for any z, the sequence
y0, . . . , yℓ cannot be very long; indeed, ℓ ≤ x. Hence g0(x+1) ≤ g(x+ℓ+1) ≤ g(x+x+1).
This completes the proof of Claim I.

For any injection ϕ, we define the function Iϕ by Iϕ(x) = max(Sϕ(x), 2x) where
Sϕ(0) = 0 and

Sϕ(x) =
{
ϕ(i+ 1) if x = ϕ(i) for some i,
Sϕ(x− 1) otherwise,

when x > 0. The straightforward proof that Iϕ is an honest function whenever ϕ is an
honest function, is left to the reader. We will prove that I ′g ≡E g and Ig ≤E If ′′ and
If ′′ ≤E f ′. Our theorem follows from these facts as we have g0 ≡E g by Claim I (a).

Claim II For any honest function h where h(x+ 1) ≥ 2h(x), we have
(a) h(x+ 1) = Ih(h(x));
(b) h(i) ≤ x < h(i+ 1) ⇒ Ih(x) = max(h(i+ 1), 2x).

Clause (a) of this claim holds since

Ih(h(x)) = max(Sh(h(x)), 2h(x)) = max(h(x+ 1), 2h(x)) = h(x+ 1)

and Clause (b) follows easily from Clause (a) and the definition of Ih.
We will now prove that I ′g ≡E g. Since g(x+ 1) ≥ 2g(x), we have g(x) = Ixg (g(0)) by

Claim II(a). Hence, it is easy to see that there exist fixed m,n such that (I ′g)m(x) ≥ g(x)
and gn(x) ≥ I ′g(x) (recall that I ′g(x) = Ix+1

g (x)), and thus, the Growth Theorem yields
I ′g ≡E g.

Next we prove that Ig ≤E If ′′ . By the Growth Theorem, it suffices to prove Ig ≤ I2f ′′ .
Pick an arbitrary x. If Ig(x) = 2x, we have Ig(x) ≤ I2f ′′(x) as f ′′ grows sufficiently fast.
Now, assume Ig(x) ̸= 2x. Fix the unique i and j such that g(i) ≤ x < g(i + 1) and
f ′′(j) ≤ g(i) < f ′′(j + 1). Now

I2f ′′(x) ≥ I2f ′′(f ′′(j)) as I2
f ′′ is monotone and x ≥ f ′′(j)

= f ′′(j + 2) Claim II (a)

≥ g(i+ 1) Claim I (b) and g(i) < f ′′(j + 1)

= Ig(x) Claim II (b).

This proves Ig ≤E If ′′ .
Finally, we will prove that If ′′ ≤E f ′. Indeed, we will prove something stronger

(given the Growth Theorem), namely that we have Ih′ ≤ h2 for any honest function h

where h(x+ 1) ≥ 2h(x). For such an h, we have

(4.2) Ih′(h′(x)) = h′(x+ 1) = hx+2(x+ 1) ≤ h2hx+1(x) = h2(h′(x)).

266 On the structure of honest elementary degrees

Claim II assures that the first equality of (4.2) holds. The remaining relations of (4.2)
hold trivially. Now, pick any x and fix the unique i such that h′(i) ≤ x < h′(i + 1). If
Ih′(x) = 2x, then Ih′(x) ≤ h2(x) holds trivially. If Ih′(x) ̸= 2x, we have Ih′(x) = h′(i+1)
by Claim II (b), and thus

Ih′(x) = h′(i+ 1)

= Ih′(h′(i)) Claim II (a)

≤ h2(h′(i)) (4.2)

≤ h2(x) as x ≥ h′(i).

This completes the proof of the theorem. �

Corollary 4.11 Let a be a degree strictly between 0[n+1] and 0[n+2]. Then, there exists
a degree b strictly between 0[n] and 0[n+1] such that b′ = a.

Proof. Let f, g be honest function such that deg(f) = 0[n+1] and deg(g) = a. We can
without loss of generality assume that f(x) ≥ 2xx+1. Now, Theorem 4.10 yields an honest
function h such that h ≤ f and h′ ≡ g. Let b = deg(h). Then, we have b′ = a, and by
the monotonicity of the jump operator we also have 0[n] < b < 0[n+1]. �

The next corollary follows straightforwardly from Corollary 4.9 and Corollary 4.11.

Corollary 4.12 (Low and High Degrees) For any n ∈ N, there exists a degree which is
lown, and there exists a degree which is highn.

Clause (i) of the next theorem is also proved in [6], whereas (ii) is stated as an open
problem in [6].

Theorem 4.13
(i) For any degrees a and b, we have a′∪b′ ≤ (a∪b)′. Moreover, there exist a and

b such that a′∪b′ = (a∪b)′, and there exist a and b such that a′∪b′ < (a∪b)′.
(ii) For any degrees a and b, we have a′ ∩ b′ = (a ∩ b)′.

Proof. We start by proving (ii). Now, a ≥ a ∩ b holds in any lattice, and thus, by the
monotonicity of the jump operator, we also have a′ ≥ (a ∩ b)′. By the same token, we
have b′ ≥ (a ∩ b)′. Hence, as a′ ∩ b′ is the greatest lower bound of a′ and b′, we have
a′∩b′ ≥ (a∩b)′. We will now prove that a′∩b′ ≤ (a∩b)′ also holds. Let f, g be honest
functions such that a = deg(f) and b = deg(g). We have

min[f ′, g′](x) = min(f ′(x), g′(x))

= min(fx+1(x), gx+1(x)) def. of the jump

≤ min[f, g]2(x+1)(x) Lemma 3.3

≤ min[f, g]min[f,g]′(x)+1+x+1(x)

= min[f, g]min[f,g]′(x)+1min[f, g]x+1(x)

= min[f, g]min[f,g]′(x)+1(min[f, g]′(x))

= min[f, g]′min[f, g]′(x),

and thus, by the Growth Theorem, we infer that min[f ′, g′] ≤E min[f, g]′. This proves
that a′ ∩ b′ ≤ (a ∩ b)′, and (ii) follows.

The Infinity Project 267

We turn to the proof of (i). The proof of a′ ∪ b′ ≤ (a ∪ b)′ (for any degrees a,b) is
symmetric to the proof of a′ ∩ b′ ≥ (a ∩ b)′ given above. Furthermore, it is obvious that
there exist degrees a,b such that a′ ∪ b′ = (a ∪ b)′. The existence of a and b such that
a′ ∪ b′ < (a ∪ b)′ is a consequence of the following claim.

Claim For any degree c ≥ 0′, there exist degrees a and b such that c = a∪b = a′ = b′.

By this claim, we have degrees a,b, c such that

a′ ∪ b′ = c ∪ c = c < c′ = (a ∪ b)′.

To prove the claim, let c be a degree above 0′, and let f be an honest function such
that deg(f ′) = c. Such a f exists by Theorem 4.10. Define the sequence {di}i∈N by
d0 = 0 and di+1 = f ′(di); define the functions G and H by G(0) = H(0) = 0 and, for
x > 0, by

G(x) =

{
f ′(x) if x = d2i for some i,
G(x− 1) otherwise,

H(x) =

{
f ′(x) if x = d2i+1 for some i,
H(x− 1) otherwise,

and, finally, let g(x) = max(f(x), G(x)) and h(x) = max(f(x),H(x)). It turns out that
the claim holds when a = deg(g) and b = deg(h). The proof that this is indeed the case
is nontrivial, and the details can be found in [6]. �

An intermediate degree is a degree below 0′ which, for any n ∈ N, is neither lown nor
highn. We conclude this section by a theorem stating the existence of an intermediate
degree.

Theorem 4.14 There exists a degree a such that, for any n ∈ N, 0[n] < a[n] < 0[n+1].

Proof. Let f(x) = 2x. Define the sequence {di}i∈N by d0 = 0 and di+1 = f di; define
the function G by G(0) = 0 and, for x > 0, by

G(x) =

{
f ′(x) if d3i ≤ x < d3i+1 for some i,
G(x− 1) otherwise,

and let g(x) = max(f(x), G(x)). Now, g is an honest function, and f ≤ g ≤ f ′. By the
Growth Theorem, we have

0 = deg(f) ≤ deg(g) ≤ deg(f ′) = 0′.

By the monotonicity of the jump operator, we have 0[n] ≤ deg(g)[n] ≤ 0[n+1] for any
n ∈ N. It remains to prove that deg(g)[n] ̸≤ 0[n] and 0[n+1] ̸≤ deg(g)[n]. The details can
be found in [7]. �

5 On cupability and capability

Definition 5.1 A degree a cups (up) to a degree b if there exists c such that c < b
and a ∪ c = b. A degree a caps (down) to a degree b if there exists c such that b < c
and a ∩ c = b.

Next we define the binary relation ≪ on honest functions. A function ρ : N×N→ N
is universal for an honest degree a = deg(f) if for every ξ : N→ N such that ξ ≤E f , we
have ξ(x) = ρ(n, x) for some n ∈ N. The relation f ≪ g holds if there exists a universal

268 On the structure of honest elementary degrees

function ρ for the degree deg(f) such that ρ ≤E g. We will also use ≪ to denote the
corresponding relation on honest degrees.

The situation a≪ b implies that a < b, but there exist degrees a,b such that a < b
and a ̸≪ b. The next lemma gives a characterisation of the ≪-relation.

Lemma 5.2 Let g and f be honest functions. Then (1) and (2) are equivalent:
(1) g ≪ f .
(2) There exists m such that, for any k, we have we have gk(x) < fm(x) for all but

finitely many x.

Proof. To prove this lemma, we need a refined version of the Kleene Normal Form The-
orem. We assume the reader is familiar with the computable functions, indexes for com-
putable functions, computation trees and other well-known concepts in computability
theory. When e is an index for the computable function f , we adopt the traditional
abuse of notation and write {e}(x⃗) both for (i) the computation of f(x⃗) associated with
e and for (ii) the eventual result of the computation. Let U be a function such that
U(⟨x1, . . . , xm⟩) = xm, i.e., a function giving the last coordinate of a sequence number.
Let T be the Kleene predicate, i.e., the predicate T (e, ⟨x1, . . . , xn⟩, t) holds iff t is a com-
putation tree for {e}(x1, . . . , xn). The relation T is elementary, so is the function U , and
for each total computable function ϕ we have

ϕ(x1, . . . , xn) = {e}(x1, . . . , xn) = U(µz[T (e, ⟨x1, . . . , xn⟩, z)])
when e is a computable index for ϕ.

Claim (Normal Form Theorem) An n-ary function ψ is elementary in
an honest function f iff there exist a recursive index e for ψ and a fixed
number k such that

{e}(x1, . . . , xn) = U(µy ≤ fk(max(x1, . . . , xn))[T (e, ⟨x1, . . . , xn⟩, y)]).
We sketch a proof of this claim: Assume

ψ(x⃗) = {e}(x⃗) = U(µy ≤ fk(max(x⃗))[T (e, ⟨x⃗⟩, y)]).
The predicate T is elementary, and U and max are elementary functions. The elementary
functions are closed under composition and the bounded µ-operator. Thus, ψ is elemen-
tary in f . To prove the other direction of the equivalence, assume that ψ is elementary
in the honest function f . Then, ψ can be build from the functions 0,S, Ini ,max and f
by composition and bounded primitive recursion. Complete the proof of the claim by
induction on such a build-up of ψ. (The details can be found in [5].)

We will now turn to the proof of the lemma. Fix m such that, for any k, we have
gk(x) < fm(x) for all but finitely many x. Then, for every k, there exists nk ∈ N such
that

(5.1) gk(x) < nk + fm(x)

holds for all x. Let ξ be any unary function elementary in g. By the claim we have an
index e for ξ, an elementary predicate T1, an elementary function U and a fixed ℓ ∈ N
such that

ξ(x) = U((µt ≤ gℓ(x))[T1(e, x, t)]).
By (5.1), we have nℓ ∈ N such that

ξ(x) = U((µt ≤ gℓ(x))[T1(e, x, t)]) = U((µt ≤ nℓ + fm(x))[T1(e, x, t)]).

The Infinity Project 269

Let ρ(⟨e, n⟩, x) = U((µt < n+ fm(x))[T1(e, x, t)]). Then, we have ρ ≤E f , and for every
unary function ξ elementary in g, there exists n such that ξ(x) = ρ(n, x). This proves
that (1) implies (2).

Assume g ≪ f . Then, there exists a function ρ such that ρ is a universal function
for deg(g) and ρ ≤E f . Let ψ(x) = (maxi≤xmaxj≤x ρ(i, j)) + 1. Then, we have ψ ≤E f ,
and hence, there exists m such that ψ(x) ≤ fm(x). It is easy to see that for any unary
function ϕ elementary in g, we have ϕ(x) < ψ(x) ≤ fm(x) for all but finitely many x.
Thus, for any k, as gk ≤E g, we have gk(x) < fm(x) for all but finitely many x. This
proves that (2) implies (1). �

The next theorem was proved for the first time in [8].

Theorem 5.3 If 0≪ a < b, then a cups to b.

Proof. Let f and g be honest functions such that deg(f) = a, and deg(g) = b, and
f ≤ g. Define the sequence {di}i∈N by d0 = 0; d2i+1 = g(d2i); and d2i+2 = f(d2i+1).
Furthermore, define the function h by h(x) = max(H(x), 2x) where H(0) = 0 and, for
x > 0

H(x) =

{
g(x) if x = d2i for some i,
H(x− 1) otherwise.

It is possible to prove that h is an honest function such that max[f, h] ≡E g and g ̸≤E h.
The details can be found in [8]. �

We have tried hard to strengthen Theorem 5.3 by proving that a cups up to b when-
ever 0 < a < b. We have not succeeded, and thus it remains an open problem if there
exist degrees other than 0 that do not cup up to degrees above them. However, with
a possible exceptions of some degrees not being ≪-above 0, any degree cups up to any
degree above it, and thus, “cups up to” is a not a very restrictive relation. We will see
that the relation “caps down to” is far more restrictive.

Lemma 5.4 Let g, f be honest functions such that f caps to g and g ≤ f . Then, there
exist a fixed c ∈ N such that for each k, we have fk(x) ≤ gck(x) for infinitely many x.

Proof. Since f caps to g we have an honest h such that min[f, h] ≤E g. By the Growth
Theorem, we can fix a c ∈ N such that min[f, h] ≤ gc. Now, as min[f, h] and g are
monotone, we also have min[f, h]k ≤ gck (for any k). Moreover, as we have assumed
g ≤ f , we have min[f, h]k ≤ gck ≤ f ck (for any k). As f caps to g by h, we have
h ̸≤E f , and thus, by the Growth Theorem, for any c, k ∈ N we have infinitely many
values x0, x1, x2, . . . such that f ck(xi) < h(xi). For each xi of these values, we have

(5.2) min[f, h]k(xi) ≤ gck(xi) ≤ f ck(xi) < h(xi).

This entails that min[f, h]k(xi) = fk(xi). If not, (5.2) yields a contradiction. Thus, (5.2)
entails that fk(xi) ≤ gck(xi) for each xi in the sequence x0, x1, x2, �

Theorem 5.5 If a≪ b, then b does not cap to a.

Proof. Assume that deg(g) = a ≪ b = deg(f) and that b caps to a. We can without
loss of generality assume g ≤ f . Since a≪ b, Lemma 5.2 yields a fixed m such that for
any k, we have gk(x) < fm(x) for all but finitely many x. Since b caps to a, Lemma 5.4
yields a fixed c such that for each k, we have fk(x) ≤ gck(x) for infinitely many x. This
is a contradiction. �

270 On the structure of honest elementary degrees

It is natural to ask whether the converse of Theorem 5.5 also holds, that is, do we
have a ≪ b if, and only if, b does not cap to a? (This was stated as an open problem
in [7].) The next theorem gives a negative answer to this question.

Theorem 5.6 There exist degrees a < b such that b does not cap to a even if we have
a ̸≪ b.

Proof. Let f be an honest function such that f(x) ≥ 2xx. We will construct an honest
function g and prove the two following claims.

Claim I For any m, we have gm2
(x) = fm(x) for infinitely many x.

Claim II For any m, we have gm2
(x) < f3m+1(x) for all but finitely

many x.

Let ν(k) equal 1 plus the exponent of 2 in the prime factorisation of k + 2. Thus, ν
is an elementary function. (Any elementary function ϕ such that the set {x | ϕ(x) = n}
is infinite for all n > 0, could replace ν in this proof.) For each k ∈ N, we will define a
sequence dk,0 < dk,1 < . . . < dk,ν(k)2 . Moreover, for each k, we will have dk,ν(k)2 < dk+1,0.
Let d0,0 = 0. For each j ∈ {1, . . . , ν(k)2}, let

dk,j =

{
f(dk,j−ν(k)) if ν(k) divides j,
2dk,j−1 otherwise,

and let dk+1,0 = f ′(dk,ν(k)2). Furthermore, let

G(x) =

{
dk,i+1 if dk,i ≤ x < dk,i+1 for some k, i,
dk,ν(k)2 if dk,ν(k)2 ≤ x < dk+1,0 for some k, i,

and let g(x) = max(2x, G(x)). This completes the construction of g. The reader should
note the following properties of g (and f):

(P1) g(dk,i) = dk,i+1 for any k and any i < ν(k)2;
(P2) for any k and any i < ν(k)2, we have g(dk,i) = f(dk,i) if ν(k) divides i;
(P3) for any k and any i < ν(k)2, we have g(dk,i) = 2dk,i if ν(k) does not divide i;
(P4) gν(k)2(dk,0) = dk,ν(k)2 = fν(k)(dk,0) for any k;

(P5) for any m, we have gm(dk,ν(k)2) = 2
dk,ν(k)2
m < dk+1,0 for all but finitely many k.

These five properties are more or less straightforward consequences of the construction
of g; in particular, to see that (P5) holds, note that dk+1,0 = f ′(dk,ν(k)2) and f(x) ≥ 2xx.

Claim I follows straightaway from (P4). For any m we have gm2
(dk,0) = fm(dk,0) for

each of the infinitely many k’s such that ν(k) = m. We turn to the proof of Claim II.
The proof splits into two cases, namely the case when x lies in an interval of the form
dk,0, . . . , dk,ν(k)−1, and the case when x lies in an interval of the form dk,ν(k), . . . , dk+1,0−1.

We will first prove that we have gm2
(x) < f3m+1(x) when x is sufficiently large and

lies in an interval of the form dk,0, . . . , dk,ν(k)−1. The proofs splits into the two sub-cases

The Infinity Project 271

m ≥ ν(k) and m < ν(k). First, assume that m ≥ ν(k). We have

f3m+1(x) = f (3m+1)−ν(k)fν(k)(x)

≥ f (3m+1)−ν(k)fν(k)(dk,0) f is monotone

= f (3m+1)−ν(k)(dk,ν(k)2) (P4)

> f(dk,ν(k)2) as m ≥ ν(k)

≥ 2
dk,ν(k)2

dk,ν(k)2
as f(x) ≥ 2xx

≥ 2
dk,ν(k)2

m2 x is large

= gm
2
(dk,ν(k)2) (P5) and x is large

≥ gm2
(x) g is monotone.

Next, assume that m < ν(k). Fix the unique i such that dk,i ≤ x < dk,i+1. Since
m < ν(k), there will be at most one number j in the interval i, . . . ,min(i + m, ν(k)2)
such that ν(k) divides j. Hence, by (P2), (P3) and (P5), there exist m0,m1 such that

(5.3) gm(x) ≤ 2
f(2xm1

)
m0 ≤ f3(x).

Furthermore, g is monotone and x ≤ dk,ν(k)2 , and then, by (P5), we have

(5.4) gm
2
(x) ≤ gm

2
(dk,ν(k)2) < dk+1,0

for all but finitely many x. It follows from (5.3) and (5.4) that gm2
(x) < f3m+1(x) for

all sufficiently large x.
The reader is invited to verify that we also have gm2

(x) < f3m+1(x) for sufficiently
large x lying in intervals of the form dk,ν(k), . . . , dk+1,0 − 1. To verify this, note that for
any x in such an interval we have g(x) = 2x whereas f(x) ≥ 2xx. This completes the proof
of Claim II.

We will briefly now argue that g is honest an honest function. The function f is
honest by assumption. First we argue that dk,j = x is an elementary relation in k, j, x.
Let a | b denote the relation “a divides b”. This relation is elementary. We have

dk,j = x ⇐⇒(
j ̸= 0 ∧ ν(k) | j ∧ ∃x0 < x [dk,j−ν(k) = x0 ∧ f(x0) = x]

)
∨ (j ̸= 0 ∧ ¬ ν(k) | j ∧ ∃x0 < x [dk,j−1 = x0 ∧ 2x0 = x])

∨
(
j = 0 ∧ ∃x0 < x [dk,ν(k)2 = x0 ∧ 2x0 = x]

)
∨ (k = 0 ∧ j = 0 ∧ x = 0) .

This can be viewed as a recursive definition of dk,j = x. All the functions, relations and
operations involved are elementary. Thus, we have defined the relation dk,j = x by a
recursion scheme of the form

R(k, j, x) ⇐⇒ ϕ(R(k0, j0, x0), R(k1, j1, x1), R(k2, j2, x2))

where ϕ is an elementary predicate and k0, k1, k2 ≤ k; j0, j1, j2 ≤ k; and x0, x1, x2 ≤ x.
The elementary predicates are closed under such a recursion scheme, and hence, dk,j = x
is an elementary relation. Thus, ∃k, j ≤ x[dk,j = x] is an elementary predicate. Once

272 On the structure of honest elementary degrees

we have realised that this predicate is elementary, it becomes easy to see that g has
elementary graph. Obviously, g is monotone and dominates 2x. Thereby, g is honest.

We will now prove the theorem. We have g ≤E f by the Growth Theorem since
g ≤ f . Let m be any number. Pick x such that x > m and x = dk,ν(k)2 for some k.
By (P5), we have gm(x) = 2xm < 2xx ≤ f(x). Hence, we have f ̸≤E g by the Growth
Theorem. This proves g <E f . Claim I says that for any m there exist infinitely many
x such that gm2

(x) = fm(x). This entails that there cannot exist a fixed number n such
that we for any m have gm(x) < fn(x) for all but finitely many x. Thus, we have g ̸≪ f
by Lemma 5.2. Finally, Claim II and Lemma 5.4 entail that f does not cup to g, and
then, our theorem holds when a = deg(g) and b = deg(f). �

6 Controllable irreducibility and the pendulum theorem

Definition 6.1 A sequence of natural numbers {di}i∈N is elementary if the relation di = y
is elementary. An honest function f is controllably irreducible to an honest function g
if there exists an elementary sequence d0 < d1 < d2 < . . . such that for any k we have
gk(di) < f(di) for all but finitely many i.

In the next theorem we assume that a function f is controllably irreducible to a
function h. We do not know how to prove this theorem if we only assume that f is
irreducible to h.

Theorem 6.2 (Pendulum) Let f, g and h be honest functions such that f is controllably
irreducible to h and g <E f ≤E g′. Then there exists an honest function g0 such that

(i) g <E g0 <E f (and f is controllably irreducible to g0),
(ii) g0 ̸≤E h, and
(iii) g′0 ≡E g′.

Proof. Let e0 < e1 < e2 < . . . be an elementary sequence such that for any k we have
hk(ei) < f(ei) for all sufficiently large ei. Such a sequence exists since f is controllably
irreducible to h. We construct the sequence d0 < d1 < d2 < . . . by letting d0 = 0 and
di+1 = ej where where ej is the least element in the sequence e0 < e1 < e2 < . . . such
that

g′g′g′(di) < ej ∧ ∃y ≤ ej∃x ≤ y [f(x) = y ∧ gi(x) < y].

The sequence {di}i∈N is well defined as f ̸≤E g, and, by the Growth Theorem, for
each i there exists infinitely many x such that gi(x) < f(x). Moreover, the sequence is
elementary as di+1 is defined from di by elementary operations.

Let g0(x) = max(Sf (x), g(x)) where Sf (0) = 0 and

Sf (x) =
{
f(x) if x = di for some i,
Sf (x− 1) otherwise,

when x > 0. Since that f and g are honest and {di}i∈N is elementary, it is straightforward
to verify that that g0 is an honest function.

We will first prove that Clause (i) of the Theorem holds. Since g <E f , we can without
loss of generality assume that g(x) ≤ f(x). This entails that we also have g0(x) ≤ f(x),
and thus, g0 ≤E f follows by the Growth Theorem. Moreover, we have constructed g0
such that we for each k have infinitely many x such that gk0 (x) < f(x), and thus, again
by the Growth Theorem, we have f ̸≤E g0. This proves that g0 <E f . Obviously, we
also have g <E g0. Thus, (i) holds.

The Infinity Project 273

It is easy to prove that (ii) holds. In order to see that g0 ̸≤E h, just observe that
for any k we have g0(di) = f(di) > hk(di) for all but finitely many di, and then, use the
Growth Theorem. This completes the proof of (ii).

Claim Let g′(di) ≤ x ≤ g′g′(di). Then, gy0(x) = gy(x) whenever y ≤ x.
It should not be hard to see that this claim holds: Observe that

(a) g0(z) = g(z) for any z in the interval g′(di), . . . , di+1 − 1;
(b) gy(x) < g′(x) < g′(g′g′(di)) ≤ di+1.

The claim follows easily from (a) and (b).
Next we prove that g′0(x) ≤ g′g′g′(x). Pick an arbitrary x and fix i such that di ≤

x < di+1. There exists a maximal number z such that z ≤ x+ 1 and

g′0(x) = gx+1
0 (x) = g

(x+1)−z
0 gz(x).

If z = x + 1, then g′0(x) ≤ g′g′g′(x) holds trivially. Assume z < x + 1. Now, z < x + 1
implies that di+1 ≤ gz(x). This is easily verified by inspecting the definition of g0.
Furthermore, note that we can assume that f(x) ≤ g′(x). There will be no loss of
generality to assume this as f ≤E g′. We have

g′0(x) = g
(x+1)−z
0 gz(x)

= gx−z0 g0g
z(x)

= gx−z0 max(Sf (gz(x)), ggz(x)) def. of g0

≤ gx−z0 max(f(gz(x)), ggz(x)) def. of Sf

≤ gx−z0 max(f(g′(x)), g′(x)) def. of g′ and z ≤ x

≤ gx−z0 g′g′(x) since f(x) ≤ g′(x).

This proves that g′0(x) ≤ gx−z0 g′g′(x) for some z ≤ x such that di+1 ≤ gz(x). We also
have g′(di+1) ≤ g′gz(x) ≤ g′g′(x) ≤ g′g′(di+1), and hence, g′0(x) ≤ g′g′g′(x) follows by
Claim.

This proves that g′0(x) ≤ g′g′g′(x) holds for any x. By the Growth Theorem, we have
g′0 ≤E g′. Furthermore, it is easy to see that g ≤E g0, and hence, we have g′ ≤E g′0 by the
monotonicity of the jump operator. Thus, g0 ≡E g. This completes the proof of (iii). �

Before we investigate the notion of controllable irreducibility further, we will discuss
what it should mean for a degree to be controllably irreducible to another degree: The
Growth Theorem entails that if f is controllably irreducible to g, then f is controllably
irreducible to any h elementary in g. So we can say that f is controllably irreducible
to deg(g) if f is controllably irreducible to some, or equivalently all, representative(s) in
deg(g). The same cannot be said when replacing f by its degree. This motivates the
next definition.

Definition 6.3 A degree a is controllably irreducible to a degree b when some function
in a is controllably irreducible to some, or equivalently all, function(s) in b. A degree a is
not controllably irreducible to a degree b when no function in a is controllably irreducible
to some, or equivalently all, function(s) in b. A degree b is slightly above a degree a when
a < b and b is not controllably irreducible to a.

The next theorem entails that if there exists one degree that is slightly above a
degree a, then there will be a lot of degrees slightly above a.

274 On the structure of honest elementary degrees

Theorem 6.4 Let b be slightly above a, and let a ≤ ci ≤ b for i = 1, 2. Then, c2 cannot
be controllably irreducible to c1.

Proof. Assume that c2 is controllably irreducible to c1 = deg(g). Then, there exist
f ∈ c2 and and elementary sequence d0 < d1 < d2 < . . . such that for any k we have
gk(di) < f(di) for all but finitely many i. Let a = deg(h1) and b = deg(h2). We can
without loss of generality assume that h1 ≤ g and f ≤ h2, and then, for any k, we have
hk1(di) < h2(di) for all but finitely many i. This contradicts that b is slightly above a. �

The next theorem requires proof techniques based on enumerations and diagonalisa-
tions. This is the first result we prove on the structure of honest elementary degrees that
requires such techniques.

Theorem 6.5 There exists a degree that is slightly above 0.

Proof. We will construct an honest function f such that deg(f) is not controllably ir-
reducible to 0 = deg(2x). We have to prove that no function in deg(f) is controllably
irreducible to 2x. By the Growth Theorem, it is sufficient to prove that no finite iterate
of f is controllably irreducible to 2x. Besides, we have to prove that f is not elementary,
that is, we have to prove that no fixed iterate of 2x dominates f .

Thus, on the one hand, f will have to grow somewhat fast: at some point it must
be greater than any given iterate of 2x. On the other hand, we must make certain that
no elementary sequence d0 < d1 < d2 < . . . is a witness to the undesired controlled irre-
ducibility. That involves diagonalising against all such possible sequences. Furthermore,
this diagonalisation must work for all finite iterations of f .

To improve readability, we will throughout this proof use the notation 2x(y) in place
of 2yx.

We need a master list of sequences d0 < d1 < d2 < There is no good elementary
listing of all such total sequences, but there is one if we allow for partial (finite) sequences,
as follows. Let t0, t1, t2 . . . be a listing of all elementary functions in two variables induced
by using some primitive recursive coding of the base functions and operations allowed in
the definition of elementarity. There is no universal elementary function for this listing;
that is, the relation ti(x, y) = z is not elementary. However, because of the simplicity of
the coding, one can code a particular computation as an integer and use that the relation

q bounds a witness that ti(x, y) = z

is elementary. For every elementary sequence d0 < d1 < d2 < . . . there is an i such that
ti(x, y) is the characteristic function of the relation dx = y. In the other direction, given
i and q, it is elementary to see whether ti looks like the characteristic function of such a
sequence when considering only witnesses beneath q. If ti is not the characteristic function
of such a sequence, then eventually there will be a witness beneath q showing that. Let
Ti be the sequence so induced by ti, either an infinite sequence d0 < d1 < d2 < . . . if ti
is a good characteristic function, or a finite sequence if not. We will have to diagonalise
against Ti if it is total without knowing whether it is total.

We now define a function f as follows. At stage n we will define f on the n-th interval
In = [xn, xn+1). To start, put I0 = {0}, and f(0) = 2. We use an auxiliary function
L(n) ⊆ n, which tells us at stage n+1 which Ti’s (for i < n) do not need to be attended
to. (One problem is that some Ti might always demand attention. Once it gets attended
to, it gets put on the list L, allowing other requirements to be met. It will eventually be
taken off the list and, if it remains active, will then be attended to again.) To start, put

The Infinity Project 275

L(0) = ∅. Suppose inductively that we have defined the set L(n − 1) and the function
f up to xn. We will define In (i.e., determine xn+1), and f on In, and L(n), in several
steps. First consider Jn,0 = [xn, 2n(xn)] (the first sub-interval of In). We would like to
pick a Ti to work on, if possible. So consider all j < n not in L(n − 1) for which some
z ∈ Jn,0 is in the range of Tj . Choose the pair j, z for which y = 2j(z) is less than
2n+1(xn), bounds a witness that z is in the range of Tj , and is the minimal such number;
if there are several choices giving the same value, pick the one with j minimal. We call
this value of j the active index for the interval In. Then we put f(x) = max(y, 2x)
on [xn, 2n(xn)]. The outcome of this action is that f grows reasonably fast (at least as
fast as 2j) from xn to that z, and no faster than that afterwards for a while. We set
L(n) = (L(n−1)∪{j})\{0, . . . , j−1}: since j just got attended to, it can be ignored for
a while, yet allows smaller requirements to receive attention. If no such pair j, z exists,
we put f(x) = 2n+1(xn) on Jn,0.

Now we need to consider iterations of f , and make sure that they grow slowly. We
will define Jn,k and Xk inductively on k. Jn,0 is already defined; let X0 = {0, . . . , n− 1}.
Suppose we have already defined the interval Jn,k−1 = [xn,k−1, xn,k) and f on Jn,k−1.
Then we put Jn,k = [xn,k, 2n(xn,k)) and set f(x) = 2x on this interval. If there exists
some i ∈ Xk−1 such that Ti has a value in Jn,k−1, then we put Xk = Xk−1 \{i}. For some
k there will be so such i (as X0 is finite and the X-sequence is monotonically shrinking).
When that happens, put xn+1 = xn,k+1. That completes stage n.

This completes the definition of f . To complete the proof of the theorem, we will
prove that

(1) f is honest;
(2) f is not elementary;
(3) no function in deg(f) is controllably reducible to a function in 0.

First we prove (1). We obviously have f(x) ≥ 2x for every x. Furthermore, each
interval In contains one subinterval [xn, q] (namely for q = 2j−1(z)), on which f is
constant and equal to 2q, and one subinterval [z + 1, xn+1], on which f equals 2x. Hence
in the interior of each In f is non-decreasing. Finally f(xn+1 − 1) = 2xn+1−1 < 2xn+1 ≤
f(xn+1), hence f is globally non-decreasing. It remains to show that the graph of f is
elementary. The auxiliary function L can be encoded into integers up to 2n, so for a given
x we can decide what kind of interval x is in, and which values j ∈ {1, . . . , n}\L(n−1) are
possible. In particular for each x we can compute the value xn for which xn ≤ x < xn+1,
and it suffices to compute f(xn) from these data. This is possible because we have
f(xn) = y iff

(∃j ≤ n)(∃ξ, ζ < y)[j ̸∈ L(n− 1) ∧ tj(ξ, ζ) = 1 ∧ 2j(ζ) = y]

∧ (∀y′ < y)¬(∃j ≤ n)(∃ξ, ζ < y)[j ̸∈ L(n− 1) ∧ tj(ξ, ζ) = 1 ∧ 2j(ζ) = y].

Hence, the graph of f is elementary. This proves that f is an honest function.
We turn to the proof of (2). We have to show that for every k there exists some x,

such that f(x) > 2k(x). For this it is sufficient to show that for every k there exists some
ℓ > k such that ℓ is active in some interval In. There are infinitely many simple ways
to describe the function x 7→ 2x, so choose some term tℓ describing this function with
ℓ > k such that 2ℓ(x) bounds a witness that Tℓ(x) = 2x. The range of Tℓ intersects each
of the intervals Jn,0. Hence, if neither ℓ nor any j > ℓ is active for any n, then for every
n some j < ℓ is active. Then in each step some integer is added to L(n), while some
smaller integers are removed. Eventually every integer less than ℓ is either in L(n) or

276 On the structure of honest elementary degrees

never active. (In some detail, if ℓ − 1 is ever active, it will be put onto L(n) and never
removed, while if ℓ− 1 is never active then it is fine too. Once ℓ− 1 is settled, continue
to the stage, if any, when ℓ− 2 is active. Iterate. Since ℓ is finite, this eventually halts.)
At that point there is nothing stopping ℓ from being active, which is what we wanted to
show. This proves that f is not an elementary function.

We will now prove (3). By the Growth Theorem, it suffices to show the following
claim:

(*) Let ℓ ∈ N. Then there does not exist any elementary sequence
d0 < d1 < d2 < . . . such that for any k we have f ℓ(dm) > 2k(dm) for
all but finitely many m.

Now, for every elementary sequence d0 < d1 < d2 < . . . , we have Ti(ȷ) = dȷ for some i.
Thus, by (*), it suffices to show the following claim:

(**) Let ℓ ∈ N, and let Ti be total. Then there exists a k such that we
have f (ℓ)(Ti(m)) ≤ 2k(Ti(m)) for infinitely many m.

The proof of (**) splits into two cases.

Case I: Ti(m) ∈ Jn,ȷ with ȷ > 0 for infinitely many m. Then, for n > i we have that such
an interval Jn,ȷ is not the last interval in the chain Jn,0, . . . , Jn,k. Hence f(x) = 2x holds
true on [Ti(m), 2n(Ti(m))], and for n > ℓ we have f ℓ(Ti(m)) = 2ℓ(Ti(m)).

Case II: not Case I. Then, Ti(m) ∈ Jn,0 for all but finitely many m. If i is active
infinitely often, then for the witness z = Ti(m) to this we have f(Ti(m)) = 2i(Ti(m)),
and f (ℓ)(Ti(m)) = 2i+ℓ−1(Ti(m)) for i+ ℓ ≤ n, which suffices. If not, then i is active only
finitely often. Once i is no longer active, it is never added to L(n), but it is eventually
removed from L(n) (by the proof that f is not elementary). Once that happens, for each
interval Jn,0 containing a value Ti(m), i was not active because of some pair j, z with
2j(z) ≤ 2i(Ti(m)). But then we have again f (ℓ)(Ti(m)) ≤ 2i+ℓ−1(Ti(m)) for i+ ℓ ≤ n.

This completes the proof that no function in deg(f) is controllably reducible to a
function in 0. �
Corollary 6.6

(i) There exist degrees a and b such that a is not controllably irreducible to b and
vice versa.

(ii) Any countable partial ordering can be embedded in the degrees slightly above 0.

Proof. By Theorem 6.5 and the Density-Splitting Theorem, we have a degree a slightly
above 0 and two incomparable degrees b1,b2 such that 0 < bi < a (for i = 1, 2). By
Theorem 6.4, b1 will not be controllably irreducible to b2, and b2 will not be controllably
irreducible to b1. This proves (i). Furthermore, we know that any countable partial
ordering can be embedded between two degrees a and b whenever a < b. Thus, (ii)
follows from Theorem 6.5 and Theorem 6.4. �

7 A Σ1-complete first-order theory

In this section we give a first-order theory for deriving theorems on honest elementary de-
grees. We will prove that this theory is powerful enough to derive any true Σ1-statement,
that is, any true statement in the form ∃x1, . . . , xnA where A is a quantifier-free and does
not contain other variables than x1, . . . , xn. The reader should be aware that the proofs
in this section may be a bit sketchy.

The Infinity Project 277

Definition 7.1 Let

a ∪ b = c ≡ a ≤ c ∧ b ≤ c ∧ ∀d [a ≤ d ∧ b ≤ d → c ≤ d]
and let

a ∩ b = c ≡ a ≥ c ∧ b ≥ c ∧ ∀d [a ≥ d ∧ b ≥ d → c ≥ d].
Furthermore, let a | b ≡ a ̸≤ b ∧ b ̸≤ a and a < b ≡ a ≤ b ∧ a ̸= b.

Let L be the first-order language {≤, ·′, 0}, and let T be an L-theory which, in addition
to standard axioms stating that ≤ is a partial ordering, contains the following axioms:

• ∀a [0 ≤ a] (Bottom Element)
• ∀a, b [a ≤ b→ a′ ≤ b′] (Monotonicity)
• ∀a [a ̸= a′] (Strictness)
• ∀a, b∃c [a ∪ b = c] and ∀a, b∃c [a ∩ b = c] (Lattice)
• ∀a, b, c [a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ b)] (Distributivity)
• ∀a, b [a < b→ ∃c1, c2 [c1 | c2 ∧ c1 ∩ c2 = a ∧ c1 ∪ c2 = b]] (Density)
• ∀a∃b [a < b ∧ b′ = a′] (Low Degrees)
• ∀a∃b [b < a′ ∧ b′ = a′′] (High Degrees)
• ∀a, b [a′ ≤ b ≤ a′′ → ∃c [c ≤ a ∧ c′ = b]] (Jump Inversion)
• ∀a, b, c [a < b ≤ a′ ∧ b ̸≤ c→ ∃d [a < d < b ∧ d′ = a′ ∧ d ̸≤ c]] (Pendulum)
• ∀a, b[a′ ∩ b′ = (a ∩ b)′].

Note that ∩ and ∪ are not symbols of the language L, but all the axioms can be
reduced to first-order statements over L in an obvious way. That ∩ distributes over ∪,
that is a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ b), follows from the axioms; see Birkhoff [1].

Definition 7.2 A sublattice L of a jump lattice is complete when

a, b ∈ L ∧ a′ < b ⇒ a′ ∈ L.
A lattice L is connected if for any two elements x, y ∈ L there exists a sequence of elements
z1, . . . , zk ∈ L such that

• x = z1 and y = zk;
• zi < zi+1 or zi > zi+1 (for i ∈ {1, . . . , k − 1}).

Lemma 7.3 Let L be a finite complete and connected sublattice of a jump lattice which is
a model of T . There exists a homomorphism L→ N where the jump in N is the successor
function.

Proof. If L is a complete connected lattice containing n points, then we can enumerate
the points of L as ℓ1, . . . , ℓn such that {ℓ1, . . . , ℓk} is a complete and connected lattice for
all k ≤ n: choose ℓ1 arbitrarily, and choose jumps or jump inverses of existing elements
whenever this is possible.

We prove the lemma by induction on the number of elements in L. Suppose that L
is a complete sublattice together with a homomorphism φ : L → N, and let ℓ be some
point not occurring in L. If ℓ is neither the jump of an element in L, nor is ℓ′ ∈ L, then
we define φ(ℓ) to be the maximum of {φ(x) : x < ℓ}. Thus we have φ(ℓ) ≥ φ(x) for all
x < ℓ. Since < is transitive, this also implies φ(ℓ) ≤ φ(x) for all x > ℓ.

If ℓ′ ∈ L, we put φ(ℓ) = φ(ℓ′) − 1. If this happens to be negative, we just increase
all values of φ by 1. As L is a complete lattice, there are no elements x ∈ L with x < ℓ.
Suppose that x > ℓ. Then x′ > ℓ′, hence φ(x′) ≥ φ(ℓ′), and therefore φ(x) ≥ φ(ℓ).
A similar argument applies if there is some x ∈ L with x′ = ℓ. �

278 On the structure of honest elementary degrees

Lemma 7.4 Let L be any model of T . Let L be a finite lattice, and let a, b, c1, . . . , cn
elements of L such that a < b ≤ a′ and b | ci for i = 1, . . . , n. Then, there exists an
embedding ψ : L→ L such that for any x ∈ ψ(L) we have

• a < x < b;
• x | ci for i = 1, . . . , n;
• x′ = a′.

Proof. To prove this lemma, we must use that L satisfies the Pendulum Axiom and the
Density Axiom. We omit the details. �

Lemma 7.5 Let L be a finite jump lattice which is contained in a model of T , and let L
be an arbitrary model of T . Then there exists an embedding ψ : L→ L.

Proof. We can without loss of generality assume that the lattice L is complete and
connected. Let φ be the homomorphism given by Lemma 7.3, and assume that
n = max{φ(a) | a ∈ L}. Furthermore, let L(k) = {a ∈ L | φ(a) = k}. We will call
L(k) the k-th level of L. We can without loss of generality assume that there is only one
element of level L(n) and that each element of level k jumps to an element of level k+1,
that is, for each a ∈ L(k) there exists b ∈ L(k + 1) such that a′ = b.

We will construct the embedding ψ : L → L level by level. First we construct
ψ : L(n) → L, then we construct ψ : L(n − 1) → L, and so on. There is only one
degree a at level n, let ψ(a) be an arbitrary degree strictly between 0[n] and 0[n+1].

Assume we have constructed ψ : L(k+ 1)→ L. We will now construct ψ : L(k)→ L.
Let m0,m1, . . . ,mnk be an enumeration of the elements in L(k + 1) such that mi is a
maximal element in the set {mi, . . . ,mnk}, and let

inv(a) = { b | b ∈ L(k) ∧ b′ = a }.

Now, inv(m0), inv(m1), . . . , inv(mnk) are disjunct sets, and

L(k) = inv(m0) ∪ inv(m1) ∪ . . . ∪ inv(mnk).

We construct the embedding ψ : L(k) → L by constructing first the embedding
ψ : inv(m0)→ L, then the embedding ψ : inv(m1)→ L, and so on.

Here is how to construct ψ : inv(mi) → L (for any i ∈ {0, . . . , nk}). Pick a maximal
element a ∈ inv(mi). The embedding ψ is now defined for all b ∈ L such that b > a. Let
α ∈ L be given by α =

∩
{ψ(b) | b > a}. Now we have α′ ≥ ψ(a′) ≥ α as L satisfies

the axiom ∀a, b[a′ ∩ b′ = (a ∩ b)′]. As L satisfies the Jump Inversion Axiom, the Low
Degree Axiom and the Pendulum Axiom, we can now find a suitable interval where we
can, by Lemma 7.4, embed all elements in inv(mi) that cannot be distinguished from a
by comparing them to elements already embedded. Next we consider a maximal element
in inv(mi) not yet treated, and construct ψ on the set of elements equivalent to this
element as we did for the elements equivalent to a. Continuing downwards in this way
we construct ψ for all elements in inv(mi). �

Theorem 7.6 (Σ1-completeness) Let H denote the L-structure of honest elementary
degrees (our standard model for T), and let A be a Σ1-statement in the language L. Then

H |= A ⇐⇒ T ⊢ A.

Proof. By Theorem 7.5, we know that if a finite jump lattice does not embed into an
arbitrary model for T , then it will not embed into any model of T . Thus, a Σ1-statement

The Infinity Project 279

A will be satisfied in all models for T if, and only if, A is satisfied in some model for T .
By the Completeness Theorem for first-order logic, we have

H |= A ⇐⇒ T |= A ⇐⇒ T ⊢ A. �

References
[1] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, Volume

XXV, 1967.
[2] Blankertz, B. and Weiermann, A.: How to characterize provably total functions, in: Gödel ’96:

Logical Foundations of Mathematics, Computer Science and Physics (ed. Hajek), Springer Lecture
Notes in Logic, 6, Springer, 1996, 205–213.

[3] Buchholz, W., Cichon, A. and Weiermann, A.: A uniform approach to fundamental sequences and
hierarchies, Mathematical Logic Quarterly 40(2) (1994), 273–286.

[4] Kristiansen, L.: Information content and computational complexity of recursive sets, in: Gödel ’96:
Logical Foundations of Mathematics, Computer Science and Physics (ed. Hajek), Springer Lecture
Notes in Logic, 6, Springer, 1996, 235–246.

[5] Kristiansen, L.: Papers on Subrecursion Theory, Dr Scient Thesis, ISSN 0806-3036, ISBN 82-7368-
130-0, Research report 217, Department of Informatics, University of Oslo, 1996.

[6] Kristiansen, L.: A jump operator on honest subrecursive degrees, Archive for Mathematical Logic
37 (1998), 105–125.

[7] Kristiansen, L.: Lown, highn, and intermediate subrecursive degrees, in: Combinatorics, Compu-
tation and Logic (eds. Calude and Dinneen), Australian Computer Science Communications 21(3),
Springer, Singapore, 1999, 286–300.

[8] Kristiansen, L.: Subrecursive degrees and fragments of Peano Arithmetic, Archive for Mathematical
Logic 40 (2001), 365–397.

[9] Kristiansen, L., Schlage-Puchta, J.-C. and Weiermann, A.: Streamlined subrecursive degree theory,
Annals of Pure and Applied Logic (2011), doi:10.1016/j.apal.2011.11.004.

[10] Machtey, M.: Augmented loop languages and classes of computable functions, Journal of Computer
and System Sciences 6 (1972), 603–624.

[11] Machtey, M.: The honest subrecursive classes are a lattice, Information and Control 24 (1974),
247–263.

[12] Machtey, M.: On the density of honest subrecursive classes, Journal of Computer and System Sci-
ences 10 (1975), 183–199.

[13] Meyer A. R. and Ritchie D. M: A classification of the recursive functions, Zeitschrift für Mathema-
tische Logik und Grundlagen der Mathematik 18 (1972), 71–82.

[14] Odifreddi, P: Classical Recursion Theory, North-Holland, 1989.
[15] Péter, R.: Rekursive Funktionen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest,

1957. [English translation: Academic Press, New York, 1967.]
[16] Rogers, H.: Theory of Recursive Functions and Effective Computability, McGraw Hill, 1967.
[17] Rose, H. E.: Subrecursion. Functions and Hierarchies, Clarendon Press, Oxford, 1984.

Part III

Computations and Sets

The Infinity Project

Partially definable forcing and bounded arithmetic

Albert Atserias∗, Moritz Müller†

∗ Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Barcelona, Spain
atserias@lsi.upc.edu

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
moritz.mueller@univie.ac.at

Abstract. We present a general forcing framework to prove independence results in bounded arithmetic
and, closely related, lower bounds in propositional proof complexity.

Introduction

Various independence results in bounded arithmetic have been obtained using forcing
type arguments. By bounded arithmetic we mean a first-order theory of arithmetic where
induction is restricted to formulas of some particular syntactic form, typically formulas
with bounded quantifiers. We describe a frame for forcing that can be seen as a common
generalization of these arguments and Cohen forcing in set theory.

This introduction informally gives some general motivation, describes the connection
to propositional proof complexity, reviews the mentioned forcing type arguments, com-
pares them with Cohen forcing and then describes in some more detail the contents of this
paper. More precise information can be found following the references, mainly pointing
to surveys. All results are stated and proved in a generally accessible language. Some of
their links to bounded arithmetic and propositional proof complexity are made explicit
by remarks intended for the informed reader.

Foundational questions and complexity

Basic questions concerning the foundations of mathematics quickly lead to fundamental
open problems from computational complexity theory such as P vs. NP or NP vs. co-NP.
Indeed, Krajíček argues that these questions can be understood as “quantitative versions”
[27, Section 5] of the central questions of mathematical logic a century ago, namely for
the consistency and the decidability of first-order theories. Also Krajíček and Pudlák [29]
tie the viability of versions of Hilbert’s program to the nondeterministic time complexity
of co-NP.

Pudlák argues that our understanding of independence is unsatisfactory in that “ex-
cept for Gödel’s theorem which gives only special formulas, no general method is known
to prove independence of (arithmetical) Π1 sentences” [34, Section 3]. Here progress
is braked by the fact that already weak arithmetical theories like those in Buss’ hier-
archy correspond in a certain precise sense to the complexity classes in the polynomial
hierarchy; [11, 23] are monographs, [9, 10] surveys on the subject.

†The second author thanks the John Templeton Foundation for its support under Grant #13152,
The Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

283

284 Partially definable forcing and bounded arithmetic

Furthermore, establishing independence from bounded arithmetics is roughly equiv-
alent to establishing proof-size lower bounds for propositional logic.

Proof complexity

For a sufficiently general notion of propositional proof system, the conjecture NP ̸= co-NP
means that no propositional proof system has short proofs of all tautologies (i.e., of size
polynomial in the length of the tautology) [12]. But today this is open even for the
usual textbook systems, called Frege systems: Hilbert style calculi given by finitely many
inference rules; [4, 35, 37, 41, 48] survey known lower bounds for weaker systems with
partly different emphases.

Now, arithmetical theories are simulated by (often natural) propositional proof sys-
tems in the sense that theorems of the theory translate to sequences of tautologies with
short proofs in the system (see [29] for a general treatment, [7] for a recent survey).

Example 0.1 (Paris–Wilkie translation) The theory I∆0(R) is Peano arithmetic where
the induction scheme is adopted only for bounded formulas but in the language augmented
by some new, say, binary relation symbol R. If I∆0(R) proves a ∆0-formula φ(R, x), then
∀R∀xφ(R, x) is true (in the standard model). This translates to a sequence of tautologies
⟨φ(R, x)⟩m,m ∈ N : insertm for x in φ(R, x), replace bounded quantifiers by conjunctions
or disjunctions, replace atoms not mentioning R by their truth values and keep atoms of
the form Rkℓ as propositional variables.

Paris and Wilkie [32] construct from a proof of φ(R, x) in I∆0(R) and m ∈ N a short
(length mO(1)) proof of ⟨φ(R, x)⟩m in a bounded depth Frege system. This is a Frege
system where only formulas of at most some fixed ∧/∨-alternation rank are allowed. y

This way, independence can be inferred from proof-size lower bounds. A weak con-
verse holds too. It is based on a type of argument invented by Ajtai [1], and it is here
where forcing comes in.

Forcing in bounded arithmetic

Cohen’s method of forcing cannot be used to prove independence of arithmetical state-
ments because Vω is not changed in generic extensions. In an informal sense however,
forcing has been used to prove independence from weak arithmetics.

Paris and Wilkie used “a simple forcing argument” [32, p. 333] to show that the
least number principle for existential formulas mentioning R does not suffice to prove
the (bijective) pigeonhole principle PHP(R, x): “R is not a bijection from {y | y ≤ x}
onto {y | y < x}”. Riis [38] “proved by forcing” [38, p. 1] that even the least number
principle for formulas with a certain amount of universal quantification does not suffice
(Buss’ theory T 1

2 (R)). Furthermore, Riis generalized this to other principles.
Ajtai [1] proved that I∆0(R) does not prove PHP(R, x). In fact, he proved that

the tautologies ⟨PHP(R, x)⟩n, n ≥ 1, do not have short proofs in bounded depth Frege
systems; [30, 33] improved this to an exponential proof-size lower bound, implying inde-
pendence from Buss’ T2(R).

Ajtai’s argument

Ajtai constructs an expansion (M,R) of a model M of true arithmetic where PHP(R,n)
fails for some n ∈ M . Assume that M contains a size n100 depth 17 Frege proof π of
⟨PHP(R, x)⟩n. But this formula is ‘false’ in (M,R) under the assignment corresponding

The Infinity Project 285

to R. The art is to construct R in such a way that (M,R) satisfies the least number
principle up to n100 for the property of being a ‘false’ line in π. Then π contains a first
‘false’ line. One argues that this contradicts the soundness of the system and concludes
that π cannot exist.

The construction of R is “done according to the general ideas of Cohen’s method of
forcing ” [1, p. 348]. However, the argument is “mostly combinatorial and probabilistic” [1,
p. 347] relying on specialized and difficult versions of so-called switching lemmas in circuit
complexity. As Ben-Sasson and Harsha put it, it is “extremely difficult to understand
and explain” [6, § 1]. Lots of efforts have been made to simplify and reinterpret Ajtai’s
argument e.g. as a construction of valuations in Boolean algebras [35] or partial Boolean
algebras [23, 24] or recently in terms of Buss–Pudlák games [6, 36]. In [26] Krajíček gives
some general account, motivated “to understand the combinatorics behind constructions”
[26, p. 437] like Ajtai’s. Conceptually, later improvements [5, 30, 33, 49] of Ajtai’s result
“eliminate the non-standard model theory” [5, p. 367] and the forcing mode of speech.
And technically, the mentioned switching lemmas have been improved and simplified (see
[3, 47] for surveys).

Despite these efforts, not much is known on how to apply Ajtai’s argument to stronger
systems or other principles (cf. [23, Chapter 12] for known results). Perhaps one can say
the abovementioned efforts did not lead to an understanding of Ajtai’s argument as
instantiating some general method as Pudlák asks for.

Comparison with Cohen forcing

This sorry state of affairs clearly contrasts with Cohen forcing in set theory. We recall
briefly and informally its set-up. With a model M of ZF and a ‘generic’ set G external
to M one associates a model M [G] containing G. Intuitively, G being ‘generic’ means
being ‘random’ with respect to possible partial information about it. Forcing is a way to
reason about M [G] using partial information about G. A piece of partial information p
forces φ if any generic G ‘satisfying’ p leads to a model M [G] satisfying φ. Such pieces
can be extended in various, possibly incompatible ways, so we think of them as being
partially ordered (the forcing frame).

The Extension Lemma states that extension preserves forcing. Reasoning about forc-
ing rests on this and, following Shoenfield [42], two more central lemmas: the Truth
Lemma asserts that every sentence true in M [G] is already forced by some partial infor-
mation p about G; the Definability Lemma states that forcing, as a binary relation, is
definable in M . In turn, these forcing lemmas rest on the Forcing Completeness Theorem,
a characterization of the ‘semantic’ forcing notion above by a handier ‘syntactic’ notion
that is defined via recursion on logical syntax. This understanding of forcing underlies
the “Principal Theorem” [42] stating that M [G] models ZF. This way an independence
question is reduced to a combinatorial task of designing an appropriate forcing frame.

In contrast, the mentioned forcing type arguments [1, 32, 38] in bounded arithmetic
are not based on some more general background theory of forcing. Ajtai writes “Our
terminology will be similar to the terminology of forcing but we actually do not use any
result from it” [1, p. 348]. Insofar it is not completely clear why one should refer to these
arguments as forcing arguments. Technically, the crucial difference is that the Definability
Lemma fails. Forcing Completeness is proved neither in the original arguments nor in
later presentations [23, § 12.7], [50], that emphasize the forcing mode of speech. In [1, 32]
no ‘syntactic’ notion is defined, in [38] it is, but one for which Forcing Completeness fails.

286 Partially definable forcing and bounded arithmetic

This work

We propose a general background theory of forcing as a unifying way to understand the
arguments of Paris, Wilkie, Riis and Ajtai [1, 32, 38]. In Section 1 we develop forcing
generally as a method to construct generic “associates” that may happen to be extensions
or expansions or neither, and without a Definability Lemma. It is general enough to
naturally accommodate the mentioned forcing arguments [1, 32, 38] as well as Cohen
forcing and many others.

In the context of bounded arithmetics, a Principal Theorem would state that generic
expansions satisfy the least number principle for a certain fragment of formulas. In
Section 2 we show this holds true when using a forcing that is in an appropriate sense
‘definable’ for the fragment in question. Thereby again, independence questions reduce
to a combinatorial task of designing forcing frames.

In Section 3 we prove the independence results in [1, 32, 38] by this method. The
aim is to understand the progress as being constituted by inventing forcings that are
‘definable’ for larger and larger fragments.

Related work

Forcing has been developed outside set theory in many different settings ([2, 19] survey
some), and the development here follows these known lines. We refer to the examples
throughout the text for a comparison with some other works. Forcing against bounded
arithmetic has been developed by Takeuti and Yasumoto [45, 46] following not Cohen’s
original method but its reformulation by Scott and Solovay [40] as a method to construct
Boolean valued models (see Remark 1.7). Scott [40] describes such a model for a 3rd
order theory of the reals, by interpreting the language over real valued random variables.
In his recent book [28] Krajíček develops such forcing with random variables in full detail
as a method to study bounded arithmetics by using algorithmically restricted random
variables. Ajtai’s result can be proved using this method.

1 Forcing in general

This section develops a general frame for forcing arguments. In 1.1 we fix notation
and establish basic facts concerning ‘syntactic’ forcing relations. In principle, countless
‘syntactic” forcing relations may be defined, depending on how interacts with the
logical symbols. Throughout this paper we assume (first-order) formulas to be written in
the logical symbols {∀, ∃,∧,∨,¬} and we shall restrict attention to two kinds of forcings
only, namely, universal and existential forcings.1 Roughly, the choice depends on whether
{∀,∧,¬} or {∃,∨,¬} is taken as primitive while the other logical symbols are defined
using the usual classical dualities. Existential forcing is often used, but we shall see
that it has some disadvantages over universal forcing (Remark 1.34). In 1.2 we define
a notion of genericity that is sufficiently general for all our purposes. In 1.3 we define
generic associates and prove the Truth Lemma and the Forcing Completeness Theorem.
Section 1.4 considers an important type of forcing that we call conservative. Section 1.5
gives examples and, finally, Section 1.6 discusses weak forcing.

In this section we fix
– a countable forcing frame (P,≤, D0, D1, . . .) (defined below);

1 See [2, 18] for examples of forcings that are neither universal nor existential.

The Infinity Project 287

– a countable structure M interpreting a countable language L;
– a countable language L∗ ⊇ L.

The forcing language is L∗(M), that is L∗ together with all a ∈ M as constants (we
do not distinguish between M and its universe notationally). If not explicitly specified
otherwise we let φ,ψ, . . . range over L∗(M)-sentences.

1.1 Forcing relations

We recall some elementary forcing terminology. A forcing frame is a structure (P,≤,
D0, D1, . . .) such that ≤ partially orders P and D0, D1, . . . are subsets of P . We use
p, q, r, . . . to range over elements of P , called conditions. If p ≤ q we say p extends q
and call p an extension of q. If p, q have a common extension, then they are compatible,
symbolically p∥q; otherwise they are incompatible, symbolically p⊥q.

A set of conditions X ⊆ P is downward-closed if it contains all extensions of its
elements; being upward-closed is similarly explained. The set X is consistent if it contains
a common extension of any two of its elements. IfX is both upward-closed and consistent,
then it is a filter. Further, X is dense below p if for every q ≤ p there is r ≤ q such that
r ∈ X. Finally, X is dense if it is dense below all conditions, or equivalently, if every
condition has an extension in X.

Definition 1.1 A pre-forcing is a binary relation between conditions and L∗(M)-sen-
tences. If p φ, we say p forces φ.

We use the notation

[φ] := {p | p φ}.

Definition 1.2 A pre-forcing is universal or existential if it satisfies the following
conditions of universal respectively existential forcing recurrence:

universal existential

p ¬φ iff ∀q ≤ p : q ̸ φ iff ∀q ≤ p : q ̸ φ
p (φ ∧ ψ) iff p φ and p ψ iff p ¬(¬φ ∨ ¬ψ)
p (φ ∨ ψ) iff p ¬(¬φ ∧ ¬ψ) iff p φ or p ψ
p ∀xχ(x) iff ∀a ∈M : p χ(a) iff p ¬∃x¬χ(x)
p ∃xχ(x) iff p ¬∀x¬χ(x) iff ∃a ∈M : p χ(a)

Observe that a universal or existential pre-forcing is uniquely determined by its re-
striction to the atomic sentences of the forcing language.

Solving the recurrence one sees, for universal pre-forcings, that p ∃xχ(x) if and only
if
∪
a∈M [χ(a)] is dense below p. For existential pre-forcings one sees p ∀xχ(x) if and

only if [χ(a)] is dense below p for all a ∈M . We collect some further direct consequences:

Lemma 1.3 If is a universal or an existential pre-forcing, then

(1) p ¬¬φ if and only if [φ] is dense below p.
(2) (Consistency) [φ] ∩ [¬φ] = ∅.
(3) [φ] ∪ [¬φ] is dense.

288 Partially definable forcing and bounded arithmetic

Definition 1.4 Let be a pre-forcing and Φ be a set of L∗(M)-formulas.
(a) satisfies Extension for Φ if for every φ ∈ Φ, the set [φ] is downward-closed.
(b) satisfies Stability for Φ if for every φ ∈ Φ and p ∈ P , we have that p forces φ

whenever [φ] is dense below p.
For Φ = L∗(M) we omit the reference to it.

(c) is a forcing if it satisfies Extension and Stability for L∗(M)-atoms.

Lemma 1.5
(1) (Extension) Universal and existential forcings satisfy Extension.
(2) (Stability) Universal forcings satisfy Stability.
(3) For a universal forcing it holds that p φ if and only if [φ] is dense below p.
(4) For a universal forcing it holds that p ̸ φ if and only if q ¬φ for some

q ≤ p.

Proof. Extension can be shown by a straightforward induction using forcing recurrence.
We prove Stability by induction on (the number of logical symbols) in φ. Having a
universal forcing we can assume that φ is written in the logical base {∧,¬, ∀}.

– For atomic φ Stability is part of the definition of being a forcing.
– For the ¬-step argue indirectly: if p ̸ ¬φ, then by forcing recurrence some q ≤ p

forces φ, so by Extension and Consistency no extension of q forces ¬φ. Hence
[¬φ] is not dense below p.

– For the ∧-step, note [(φ ∧ ψ)] = [φ] ∩ [ψ] by universal recurrence. If this set is
dense below p then so are both [φ] and [ψ]. By induction p forces both φ and
ψ, and hence p (φ ∧ ψ) by universal recurrence.

– The ∀-step is similar.
Part (3) is immediate by (1) and (2), and (4) follows from (3): p ̸ φ if and only if

[φ] is not dense below p if and only if there is q ≤ p such that for all r ≤ q, r ̸ φ, if and
only if (by forcing recurrence) there is q ≤ p such that q ¬φ. �

Example 1.6 Let be a universal forcing. A pre-forcing of obvious interest is:

p∥φ if and only if p ̸ ¬φ, that is, q φ for some q ≤ p.

We have ⊆ ∥ by Consistency. Stability of implies: p∥¬¬φ if and only if p∥φ. Further

p∥¬φ iff ∃q ≤ p : q ̸ ∥φ
p∥(φ ∨ ψ) iff p∥φ or p∥ψ (as existential pre-forcing)
p∥∃xχ(x) iff ∃a ∈M : p∥χ(a) (as existential pre-forcing).

Remark 1.7 (Boolean valued models) The last lemma has a natural topological reading.
Namely, (P,≤) carries the topology whose open sets are the downward-closed sets. A set
X ⊆ P has interior X̊ = {p | ∀q ≤ p : q ∈ X} and closure X = {p | ∃q ∈ X : q ≤ p}. For
example, {p | p∥φ} = [φ]. The sets equal to the interior of their closure are the regularly
open ones. Note X̊ = {p | X is dense below p}.

Thus Extension means that the sets [φ] are open and Stability means that they are
even regularly open. The regularly open sets form a complete Boolean algebra in such
a way that, for universal forcings, the map φ 7→ [φ] is a Boolean valuation of L∗(M) in
this algebra.

The Infinity Project 289

1.2 Genericity

Let be an existential or universal forcing. Ideally, one would like to call a set generic if
it intersects every dense set. As in general such sets do not exist, one has to restrict at-
tention to those dense sets coming from a certain ‘sufficiently rich’ but countable Boolean
algebra B().

In set theory usually the forcing frame is a set in M and one simply takes the algebra
of its M -definable subsets (cf. Example 1.25). As M models ZF it is not surprising that
this algebra is sufficiently rich. For some purposes (cf. Examples 1.27, 1.29, 1.30) already
the algebra generated by the [φ]s is sufficiently rich, but not so in forcing against bounded
arithmetic. One needs the family to contain certain sets as e.g.

∪
a∈M

∩
b∈M [φ(a, b)] that

we do construct in proofs. In [1, 32, 38] suitable algebras are defined ad hoc for their
respective situations and there seems to be no canonical choice. That is why we padded
the forcing frame by the setsD0, D1, . . .: these sets will determine an algebra B() defined
below (Definition 1.10).

Definition 1.8 A set G ⊆ P is generic if it is a filter and intersects every dense (in P)
set in B().

Our definition of B() follows Stern [44]: consider the two-sorted first-order structure
(P,M) consisting of one sort carrying the forcing frame (P,≤, D0, D1, . . .) and a second
sort carrying the structure M . We let individual variables µ, ν, ξ, . . . range over the first
sort and x, y, z, . . . range over the second sort.

For each L∗-atom φ = φ(x1, . . . , xr) let Rφ be an r + 1-ary relation symbol of sort
P ×M r. The structure (P,M) expands (P,M) by interpreting such a symbol Rφ by
{pa ∈ P ×M r | p φ(a)}.

We call the two-sorted first-order language of (P,M) the Stern formalism. By forcing
recurrence it is straightforward to show:

Lemma 1.9 For every L∗-formula φ(x) the set {pa | p φ(a)} is definable in (P,M).

Given an L∗-formula φ(x) we write

ξ ⊢ φ(x)

for a formula of the Stern formalism defining {pa | p φ(a)} in (P,M). Here and in
the following, definable (in a certain structure) always means definable with parameters
(from the structure).

Definition 1.10 The forcing algebra B() is the set of all subsets of P definable in
(P,M) by a formula φ(ξ) of the Stern formalism.

Clearly, the forcing algebra B() is countable. Thus, by a well-known argument:

Lemma 1.11 Every condition is contained in some generic set.

Sketch of Proof. Given p ∈ P , choose p1 ≤ p in the first dense set, then p2 ≤ p1 in
the second dense set and so on. The filter generated by the sequence p, p1, p2, . . . is
generic. �

Lemma 1.12 If G is generic and D ∈ B() is dense below p ∈ G, then there is q ∈ G∩D
with q ≤ p.

290 Partially definable forcing and bounded arithmetic

Proof. Let D ∈ B() be dense below p. It is routine to verify that

D(p) := (D ∩ {q | q ≤ p}) ∪ {q | p⊥q}
is dense. Further D(p) ∈ B(): if D is defined by φD(ξ), then D(p) is defined by

(φD(ξ) ∧ ξ ≤ p) ∨ ¬∃ν(ν ≤ ξ ∧ ν ≤ p),
a formula (with parameters) of the Stern formalism. By genericity there exists an r ∈
G ∩D(p). As p ∈ G and G is consistent, r /∈ {q | p⊥q}, so r ∈ D ∩ {q | q ≤ p}. �

1.3 Generic associates

Let be a universal or existential forcing. The aim is to define for suitable G ⊆ P
(and our fixed structure M) an L∗(M)-structure M [G] in such a way, that it models the
following theory in the forcing language L∗(M):

Th(G) :=
{
φ ∈ L∗(M) | ∃p ∈ G : p φ

}
.

Obviously this cannot work in general, e.g. Th(G) may contradict usual first-order equal-
ity axioms. But we shall see that this is the only obstacle provided we stick to the idea
that the constants from M “name” all the elements of M [G].

First observe that for generic G, the theory Th(G) is complete and formally consistent
in the following sense:

Lemma 1.13 Let G be generic. For every L∗(M)-sentence φ either φ ∈ Th(G) or
¬φ ∈ Th(G), but not both.

Proof. By Lemmas 1.3(3) and 1.9, G intersects [φ] ∪ [¬φ] ∈ B(). Hence φ ∈ Th(G) or
¬φ ∈ Th(G) – but not both: assume there would be p ∈ G forcing φ and q ∈ G forcing
¬φ. Since G is a filter and filters are consistent, there would exist r extending both p and
q; by Extension, r would force both φ and ¬φ contradicting Consistency (of forcing). �

To define M [G] we rely on some elementary facts about factorizations: for a theory
T in a language L containing some constant symbol, the Herbrand term structure T(T)
for T has as universe all closed L-terms, interprets a function symbol f ∈ L by t 7→ f(t)
and interprets a relation symbol R ∈ L by {t | Rt ∈ T}. Note that in T(T) every closed
term denotes itself. A congruence ∼ on T(T) is an equivalence relation on T(T) such
that functions in T(T) (i.e., interpretations of function symbols of L) map equivalent
arguments (i.e., componentwise equivalent argument tuples) to equivalent values and
every relation of T(T) is a union of equivalence classes of tuples. In this case, let T(T)/∼
denote the L-structure induced by T(T) on the ∼-classes in the natural way. In T(T)/∼
every closed term t denotes its ∼-class t/∼.

Fact 1.14 If ∼T := {(s, t) | s = t ∈ T} is a congruence on T(T), then the atomic sentences
true in T(T)/∼T are precisely those contained in T .

Definition 1.15 Let G ⊆ P . If ∼Th(G) is a congruence on T(Th(G)) and every closed
term of the forcing language is ∼Th(G)-congruent to a constant a ∈M , then we say M [G]
is defined and set

M [G] := T(Th(G))/∼Th(G) .

If G is generic and M [G] defined, then M [G] is a generic associate of M .
We call M [G] a generic extension of M , if L = L∗ and there is an embedding of M

into M [G].

The Infinity Project 291

We call M [G] a generic expansion of M , if

a 7→ a/∼Th(G):M ∼=M [G] ↿ L,
that is, if the map that sends each a ∈M to its ∼Th(G)-congruence class a/∼Th(G) is an
isomorphism of M onto the restriction of M [G] to L.

Remark 1.16 Sometimes we shall need the assumption that M [G] is defined for every
generic G. Because this assumption is trivially satisfied in all applications we are aware
of, we consider it as a mere technicality and make no efforts to avoid it.

Lemma 1.17 Let G be generic.
(1) M [G] is defined if for all closed L∗(M)-terms t, t′, all L∗(M)-atoms φ(x) and

all p ∈ P ,
(a) if p t = t′, then q t′ = t for some q ≤ p,
(b) if p φ(t) and p t = t′, then q φ(t′) for some q ≤ p,
(c) q t = a for some q ≤ p and a ∈M .

(2) If M [G] is defined, then it has universe {a/∼Th(G)| a ∈M}.

We omit the proof.

Theorem 1.18 (Truth Lemma) Let G be generic. If M [G] is defined, then

Th(M [G]) = Th(G).

Proof. We have to show: M [G] |= φ if and only if p φ for some p ∈ G. We have two
cases depending of whether is universal or existential. In both cases we proceed by
induction on φ.

The case where is existential is easy. The base case follows by construction (Fact
1.14). Both the ∨-step and the ∃-step are trivial. Finally, ¬φ ∈ Th(M [G]), that is,
φ /∈ Th(M [G]), is equivalent to φ /∈ Th(G) by induction and thus to ¬φ ∈ Th(G) by
Lemma 1.13.

The case where is universal is more complicated. The base case and the ¬-step fol-
low exactly as in the existential case. The ∧-step is straightforward using the consistency
of G. For the ∀-step, first assume that some p ∈ G forces ∀xφ(x), i.e., p φ(a) for every
a ∈ M by universal recurrence. By induction M [G] |= φ(a) for every a ∈ M . Hence
M [G] |= ∀xφ(x) by Lemma 1.17(2). Conversely, assume ∀xφ(x) /∈ Th(G). We aim to
show φ(a) /∈ Th(M [G]) for some a ∈ M . By Lemma 1.13, ¬∀xφ(x) ∈ Th(G), i.e., some
p ∈ G forces ¬∀xφ(x). By universal recurrence this means that for every q ≤ p there is
a ∈M such that q ̸ φ(a). By Lemma 1.5(4) this means: for every q ≤ p there is a ∈M
and there is r ≤ q such that r ¬φ(a). In other words, the set

D :=
∪
a∈M

[¬φ(a)]

is dense below p. Clearly, D ∈ B(): it is defined by ∃x(ξ ⊢ ¬φ(x)), a formula (with
parameters) of the Stern formalism (cf. Lemma 1.9). As p ∈ G, G intersects D by Lem-
ma 1.12, i.e., there is some a ∈ M such that ¬φ(a) ∈ Th(G). Then φ(a) /∈ Th(G) by
Lemma 1.13, so φ(a) /∈ Th(M [G]) by induction. �
Corollary 1.19 Assume M [G] is defined for every generic G. Then:

(1) If is existential, then p φ implies M [G] |= φ for every generic G contain-
ing p.

292 Partially definable forcing and bounded arithmetic

(2) (Forcing Completeness) If is universal, then p φ if and only if M [G] |= φ
for every generic G containing p.

Proof. By the Truth Lemma p φ implies M [G] |= φ for every generic G containing p.
This shows (1) and the forward direction of (2). The backward direction of (2) relies
on Lemma 1.5(4) for universal forcings: if p ̸ φ, there is q ≤ p such that q ¬φ. By
Lemma 1.11 there is a generic G containing q. By the Truth Lemma M [G] |= ¬φ, i.e.,
M [G] ̸|= φ. Being a filter, G contains p. �

Corollary 1.20 Assume that M [G] is defined for every generic G and that is universal.
Then for every condition p ∈ P the set {φ | p φ} is closed under logical consequence.

Proof. For every p ∈ P , the set of φ satisfying the right hand side of Forcing Completeness
is obviously closed under logical consequence. �

Example 1.21 Let be a universal forcing and recall Example 1.6. Assume M [G] is
defined for every generic G. Then p∥φ if and only if M [G] |= φ for some generic G
containing p. Further, {φ | p∥φ} is closed under logical consequence. y

We have the following preservation result.

Theorem 1.22 Let T be a universal L∗-theory. If both
(i) for every condition p, the theory T is consistent with

Lit(p) := {φ | p φ,φ is an L∗(M)-Literal},

(ii) and for every closed L∗(M)-term t, the set
∪
a∈M [t = a] is dense,

then M [G] is defined for every generic G and satisfies T .

Proof. Let G be generic. To show M [G] is defined we verify the three conditions (a),
(b), (c) in Lemma 1.17(1). For (a), if p t = t′ but q ̸ t′ = t for every q ≤ p, then
p ¬t′ = t by forcing recurrence. But then Lit(p) and hence Lit(p) ∪ T is inconsistent,
contradicting (i). Condition (b) is similarly verfied and (c) is the same as (ii).

To show M [G] |= T is suffices to show that M [G] embeds into a model of T (since T
is universal). For this it suffices to show that T ∪Diag(M [G]) is consistent. So let ∆ be a
finite subset of Diag(M [G]). Then ∆ ⊆ Th(G) by the Truth Lemma, that is, every literal
λ ∈ ∆ is forced by some pλ ∈ G. Since G is consistent it contains a common extension p
of all the pλ’s. Then ∆ ⊆ Lit(p) by Extension and T ∪∆ is consistent by (i). �

1.4 Conservative forcing

Let be an existential or universal forcing. Which forcings produce generic expansions?
We characterize these as follows.

Definition 1.23 The forcing is conservative if for every condition p and every atomic
L(M)-sentence φ (i.e., without a symbol from L∗ \ L)

p φ if and only if M |= φ.

Proposition 1.24 If is conservative, then every generic associates is a generic ex-
pansion. The converse holds true in case is universal and M [G] is defined for every
generic G.

The Infinity Project 293

Proof. For the first statement, let M [G] be a generic associate of M . By Lemma 1.17
the map a 7→ a/∼Th(G): M → M [G] ↿ L is surjective. If it is not an isomorphism, then
Th(M) and Th(M [G]) disagree on some atomic L(M)-sentence. As Th(M [G]) = Th(G)
by the Truth Lemma, this contradicts conservativity.

For the second statement, argue indirectly and assume is not conservative. Choose
an atomic L(M)-sentence φ and a condition p witnessing this. Then p φ if and only
if M ̸|= φ. By Forcing Completeness we find a generic associate M [G] of M such that
M [G] |= φ if and only if p φ. Therefore φ ∈ Th(M)△Th(M [G]), so we infer that
Th(M) ̸= Th(M [G] ↿ L) and M [G] cannot be an expansion of M . �

1.5 Some examples

Cohen forcing from set theory can be viewed as a special case of our general set-up:

Example 1.25 (Cohen forcing) Cohen forcing starts with a countable transitive standard
model M of, say, ZF + GCH and wants M [G] to be an extension of M . In particular
L∗ = L = {∈}. Different forcing extensions are obtained by different choices of (P,≤),
typically a set in M , while the forcing Co is kept fix.

Following e.g. [16] one can define this forcing by universal forcing recurrence stipu-
lating for atoms:

p Co a ∈ b ⇐⇒
{
q | ∃r∃c ((c, r) ∈ b ∧ q ≤ r ∧ q Co a = c)

}
is dense below p,

p Co a = b ⇐⇒ ∀c ∈ dom(a ∪ b) : p Co (c ∈ a↔ c ∈ b).

It is not hard to show that this uniquely determines a universal pre-forcing. The tech-
nicality of the definition is to ensure that it is a forcing. Genericity is defined to mean:
intersect every dense set that is definable in M . This coincides with our notion for
∅ = D0 = D1 =

In set theory one defines M [G] as follows: the membership symbol ∈ is interpreted by
membership and the constants a ∈M are interpreted by aG := {bG | ∃p ∈ G : (b, p) ∈ a}.
It is easily seen that M [G] is an extension of M for every generic G.

Under this definition of M [G], one can show the Truth Lemma for atoms, that is: for
every generic G, aG = bG if and only if a ∼Th(G) b and aG ∈ bG if and only if Th(G)
contains the atom a ∈ b. It follows that M [G] in our sense is defined for every generic
G. Second it follows that M [G] in our sense is isomorphic to M [G] in the sense of set
theory. Indeed, {(a/∼Th(G), aG) | a ∈M} is such an isomorphism. y

Feferman was the first explicitly using forcing outside set-theory, namely to adress
questions in computability theory. But already Cantor’s back and forth method can be
seen as a forcing argument. Both are examples of conservative forcing:

Example 1.26 (Cantor’s Theorem) We give this simple example in some detail, because
it reappears in similar form in Section 3.

Let M = (A,A′) be a countable two-sorted structure where the two sorts A and A′

carry dense linear orders without endpoints ≼ and ≼′ respectively (i.e., L = {≼,≼′}).
Set L∗ := L ∪ {R} for a new binary relation symbol R.

Define the forcing frame (P,≤, D0, D1, . . .) as follows: P is the set of all finite partial
isomorphisms between A and A′; take p ≤ q to mean p ⊇ q; finally the sets D0, D1, . . .
enumerate the sets {p | a ∈ dom(p)}, {p | a′ ∈ im(p)} for a ∈ A, a′ ∈ A′. Each of these
sets is dense.

294 Partially definable forcing and bounded arithmetic

To define a conservative universal pre-forcing Ca it suffices to define p Ca φ for φ
an atom of the form Rab. Take this to mean (a, b) ∈ p.

Then Ca is a forcing: that Ca satisfies Extension for atoms is obvious. Because
Ca is conservative we only have to show that it satifies Stability for atoms of the form
Raa′ for a ∈ A, a′ ∈ A′. Argue indirectly: if p ̸Ca Raa

′, then (a, a′) /∈ p. Choose b′ ̸= a′

such that q := p ∪ {(a, b′)} is a condition (im(p) is finite). Then q ≤ p and no extension
of q contains (a, a′), so no extension of q forces Raa′. Hence [Raa′] is not dense below p.

It is easy to see that M [G] is defined for every generic G (e.g. by Lemma 1.17(1)).
By Proposition 1.24 every generic associate M [G] is a generic expansion of M , that is,
a 7→ a/∼Th(G):M ∼=M [G] ↿ L. By definition, M [G] interprets R by{

(a/∼Th(G), b/∼Th(G))
∣∣ ∃p ∈ G : p Ca Rab

}
=
{
(a/∼Th(G), b/∼Th(G))

∣∣ (a, b) ∈∪G
}
.

Thus a 7→ a/∼Th(G): (M,
∪
G) ∼=M [G]. From this and the fact that G intersects all the

sets D0, D1, . . ., it easily follows that
∪
G is an isomorphism from (A,≼) onto (A′,≼′).y

Example 1.27 (Feferman forcing) In [14] Feferman considers M = N interpreting the
language L that has relation symbols for the graphs of successor, addition and multipli-
cation. L∗ expands L by at most countably many unary predicate symbols. A condition
p is a finite consistent set of literals in the new predicates L∗ \ L and constants from N.
A condition p extends another q if p ⊇ q. For the sets D0, D1, . . . choose, say, always
∅. Feferman defines a conservative existential pre-forcing Fe by letting p force an atom
involving a new predicate if and only if the atom belongs to p. It is not hard to see that
Fe is a forcing and that M [G] is defined for every generic G. Applications of Feferman
forcing in computability theory are surveyed in [31]. y

Variations and generalizations of Feferman forcing have been studied in complexity
theory:

Example 1.28 (Generic oracles) In [15] Fenner et al. generalize Feferman forcing for the
case where L∗ = L ∪ {R} for one new unary predicate R. View a Feferman condition p
as the set of functions in {0, 1}N that map n ∈ N to 0 or 1 whenever Rn ∈ p or ¬Rn ∈ p
respectively. Now, instead of using these basic clopen sets as conditions, [15] use perfect
sets in {0, 1}N. Forcing frames considered in [15] are certain subframes of this forcing
frame (cf. [15, Definition 3.3]). Straightforwardly, Fenner et al. let a perfect set p force an
atom Rn if and only if every function in p maps n to 1. This determines a conservative
existential pre-forcing, that is actually a forcing on the frames considered. For various
frames, Fenner et al. study complexity classes relativized by R in generic expansions. y

Finally Robinson developed forcing in model theory:

Example 1.29 (Finite Robinson forcing) We degrade M to a set of constants, i.e., we
let L = ∅. Further let L∗ be a countable language and T be a consistent L∗-theory; T∀ is
the set of universal consequences of T .

Define the following forcing frame (P,≤, D0, D1, . . .). A condition p is a finite set of
L∗(M)-literals such that T∀ ∪ p is consistent. Define p ≤ q to mean p ⊇ q. Finally, let
D0, D1, . . . enumerate the sets

∪
a∈M [t = a] for closed L∗(M)-terms t. It is easy to see

that these sets are dense in P .
To define an existential pre-forcing Ro, it suffices to define p Ro φ for atomic φ.

Take this to mean T∀ ∪ p ⊢ φ.

The Infinity Project 295

Then Ro is a forcing: Extension for atoms is obvious. To verify Stability for atoms,
argue indirectly and assume p ̸Ro φ where φ is an atom. Then q := p ∪ {¬φ} is a
condition. Clearly no extension of q forces φ, so [φ] is not dense below p.

By Theorem 1.22, M [G] is defined for every generic G and satisfies T∀. Note
∪
G

is roughly the same as Diag(M [G]). Hence the Truth Lemma essentially2 says, that
generic associates are finitely generic for T , so in particular such structures exist ([18,
Theorem 5.11]). Their theory can be seen as a generalized model-companion for T . We
refer to the book [18] for more information. Keisler [21] gives some more model-theoretic
and algebraic applications of Robinson forcing and some variants of it. y

1.6 Weak forcing

This section is not needed in the following. In [42] Shoenfield develops Cohen forcing
in an indirect way: as an intermediate step he introduces an existential forcing and
verifies the Truth Lemma for it. The actual forcing wanted, namely one satisfying Forcing
Completeness, is then obtained as the weak forcing ∗:

p ∗ φ if and only if p ¬¬φ.
Cohen forcing, and more generally, any universal forcing coincides with its weak version
(Lemmas 1.3(1) and 1.5(3)). In other contexts weak forcings play a more important role
[2, 15, 18, 21, 31, 44]. Often, starting with a particular existential forcing one verifies
certain desired properties for the corresponding weak forcing. We use the opportunity of
having a more general set-up and include a short discussion of the two notions.

Example 1.30 (Keisler forcing) In [21] Keisler studies generally existential pre-forcings
that satisfy Extension for atoms and the conditions in Lemma 1.17(1), and proves Forcing
Completeness for ∗ [21, Corollary 1.6]. In a similar context, Stern notes universal
recurrence for ∗ [44, Proposition 1-1]. y
Proposition 1.31 Assume is a universal or existential pre-forcing satisfying Extension
for atoms. Then:

(1) ⊆ ∗.
(2) ∗ satisfies Stability, i.e., (∗)∗ = ∗.
(3) If M [G] is defined for every generic G, then ∗ is a universal forcing.

Proof. Recall Remark 1.7. By Lemma 1.3(1)

{p | p ∗ φ} = {p | [φ] is dense below p} = ˚
[φ].

Part (1) is clear as the sets [φ] for φ ∈ L∗(M), are open and trivially X ⊆ X̊ for open X.
Part (2) then follows from

˚̊
X ⊆ X̊.

For (3) we have to show that ∗ satisfies Extension and Stability for atoms and
satisfies universal forcing recurrence. But ∗ satisfies Extension (for all sentences of the
forcing language) as sets of the form X̊ are open. Further ∗ satisfies Stability by (2).
So ∗ is a forcing. To show ∗ satisfies universal recurrence we first observe:

Claim 1 ∗ satisfies Forcing Completeness, i.e., p ∗ φ if and only if M [G] |= φ for
every generic G containing p.

2 The forcing used in [18] is slightly different from Ro as defined here.

296 Partially definable forcing and bounded arithmetic

Proof of Claim 1: We infer from (2) that ∗ satisfies Lemma 1.5(4) as seen in the proof
there. The claim then follows as in the proof of Corollary 1.19(2). �

The claim implies that ∗ satisfies the ∀-clause and the ∧-clause of universal recur-
rence. The ¬-clause for ∗ follows immediately from the ¬-clause for . �

Corollary 1.32 Assume is a universal forcing and � is an existential forcing such
that and � agree on atoms of the forcing language. If further M [G] is defined for every
generic G, then = �∗.

Proof. As � is a forcing, we have for atomic φ: {p | p � φ} = {p | {q | q �
φ} is dense below p} = {p | p � ¬¬φ} = {p | p �∗ φ}. Thus � and �∗ agree on atoms
and hence so do �∗ and . By Proposition 1.31(3), �∗ satisfies universal recurrence, so
�∗ = . �

Proposition 1.33 Assume is an existential pre-forcing such that there are p0, φ0 such
that p0 ̸ φ0 and p0 ̸ ¬φ0. Then {φ | p0 φ} is not closed under logical consequence.
If satisfies Extension for atoms and M [G] is defined for every generic G, then does
not satisfy Stability.

Proof. By assumption, p0 does not force (φ0 ∨ ¬φ0). This is valid, so {φ | p0 φ} is
not closed under logical consequence. If satisfies Extension for atoms and M [G] is
defined for every generic G, then ∗ is a universal forcing by Proposition 1.31(3), so by
Corollary 1.20 every valid sentence is weakly forced by every condition. Hence ̸= ∗

and does not satisfy Stability . �

Remark 1.34 (Universal versus existential forcing) Intuitively, Corollary 1.20 says that
universal forcing refers to the meaning of a sentence, not to its syntax. In contrast existen-
tial forcing is syntax sensible, if not trivial (Proposition 1.33), and Forcing Completeness
fails. Informally, existential forcing has defects and these defects may be repaired when
moving to the weak forcing (Proposition 1.31).

1.7 Summary

To sum up, given an L-model M and L∗ ⊇ L, one specifies a forcing frame (P,≤,
D0, D1, . . .), a relation between conditions and atoms of the forcing language that
satisfies Extension and Stability (for atoms, cf. Definition 1.4).

Then (universal or existential) forcing recurrence determines a (universal or existen-
tial) forcing . For every generic G the generic associate M [G], if defined, satisfies the
Truth Lemma, i.e., in M [G] is true exactly what is forced by some condition in G.

Moreover, to get a conservative forcing (Definition 1.23) it suffices to specify only
for L∗(M) \ L(M)-atoms. In this case, M [G] is isomorphic to an L∗-expansion of M .

2 Principal theorems

In set theory one usually considers the case where M [G] is an extension of a model M
of ZF (Example 1.25). Independence results are based on the “Principal Theorem” [42]
stating that every generic extension M [G] models ZF.

In weak theories of arithmetic one is often interested in constructing generic expan-
sions of a countable nonstandard model M of true arithmetic (cf. Introduction). To get
relativized independence results one needs the generic expansions to model some weak

The Infinity Project 297

arithmetic. This boils down to the question of when generic expansions satisfy certain
least number principles.

In this section we fix
– a countable forcing frame (P,≤, D0, D1, . . .);
– a conservative universal forcing ;
– an ordered countable L-structure M satisfying the least number principle (de-

fined below);
– a countable language L∗ ⊃ L.

A model is ordered if it interprets the symbol < by some linear order on its universe.
Given an ordered model N and b0 ∈ N , the quantifiers ∀x < b0 and ∃x < b0 are called
b0-bounded.

Remark 2.1 Due to conservativity, forcing recurrence works for bounded quantifiers as
it does for unbounded quantifiers:

p ∀x < b0χ(x) iff ∀a <M b0 : p χ(a)
p ∃x < b0χ(x) iff p ¬∀x < b0¬χ(x)

Note, p ∃x < b0χ(x) if and only if
∪
a<M b0

[χ(a)] is dense below p.

Definition 2.2 Let N be an ordered model, b0 ∈ N and Φ be a set of formulas in the
language of N with parameters from N .

(a) N satisfies the least number principle for Φ if every nonempty subset of its
universe that is definable by a formula in Φ has a <N -least element.

(b) N satisfies the least number principle for Φ up to b0 if it satisfies the least number
principle for {(φ(x) ∧ x < b0) | φ(x) ∈ Φ}.

We omit reference to Φ, if it is the set of all formulas in the language of N with parameters
from N .

2.1 Partial definability

Recall Examples 1.6, 1.21: a condition p is compatible with φ, written p∥φ, if p does not
force ¬φ, or equivalently, if some extension of p forces φ.

Definition 2.3 Let b0 ∈M and φ = φ(x) be an L∗(M)-formula.
(a) is definable for φ if for every p ∈ P the set {a | p∥φ(a)} is definable in M .
(b) is densely definable for φ up to b0 if for every p ∈ P there is q ≤ p such that
{c <M b0 | q∥φ(c)} is definable in M .

We say is (densely) definable (up to b0) for a set Φ of L∗(M)-formulas if is (densely)
definable (up to b0) for every φ ∈ Φ.

Here, for c = c1 · · · ck by c <M b0 we mean ci <M b0 for every 1 ≤ i ≤ k.
Lemma 2.4 Let b0 ∈M and Φ be a set of L∗(M)-formulas that is closed under negations.
Then

(1) is definable for Φ if and only if for every φ(x) ∈ Φ and p ∈ P the set {c | p
φ(c)} is definable in M .

(2) is densely definable for Φ up to b0 if and only if for every φ(x) ∈ Φ and p ∈ P
there is q ≤ p such that {c <M b0 | q φ(c)} is definable in M .

Proof. For the forward directions note p φ if and only if p ¬¬φ (by Stability) if and
only if p ̸ ∥¬φ. For the backward directions note p∥φ if and only if p ̸ ¬φ. �

298 Partially definable forcing and bounded arithmetic

Recall that, by conservativity, every generic associate is a generic expansion (Propo-
sition 1.24).

Theorem 2.5 (Principal) Let b0 ∈M and Φ be a set of L∗(M)-formulas. If is densely
definable for Φ up to b0, then every generic expansion of M satisfies the least number
principle for Φ up to b0.

In particular, if is definable for Φ, then every generic expansion of M satisfies the
least number principle for Φ.

Proof. The second statement follows from the first noting that definability implies dense
definability up to any b0 ∈M . To prove the first, let M [G] be a generic expansion of M
and φ(x) ∈ Φ be such that M [G] |= ∃x < b0φ(x). We look for a least element in the
set defined by φ(x) in M [G]. It suffices to find a <M b0 such that M [G] |= φ(a) and
M [G] ̸|= φ(b) for every b <M a. Define

Dφ :=
∪

a<M b0

∩
b<Ma

[(φ(a) ∧ ¬φ(b))].

Claim 2 Dφ is dense below every condition forcing ∃x < b0φ(x).

Proof of Claim 2. Given p forcing ∃x < b0φ(x) we are looking for some q ≤ p in Dφ. By
universal recurrence

∪
a∈M [a < b0∧φ(a)] is dense below p. By conservativity each set [a <

b0 ∧ φ(a)] equals [φ(a)] or ∅ depending on whether a <M b0 or not. Hence
∪
a<M b0

[φ(a)]

is dense below p, so for some b <M b0 there is an extension qb ≤ p forcing φ(b).
By dense definability applied to φ ∈ Φ and qb ∈ P we find some q̃ ≤ qb such that

C := {c <M b0 | q̃ ̸ ¬φ(c)}
is definable in M . By Extension q̃ φ(b), so q̃ ̸ ¬φ(b) by Consistency. Hence b ∈ C,
so C ̸= ∅. Because M satisfies the least number principle, C has a least element a ≤M
b <M b0. As a ∈ C we have q̃ ̸ ¬φ(a), so by forcing recurrence we find qa ≤ q̃ forcing
φ(a). Then qa ≤ q̃ ≤ qb ≤ p. To show qa ∈ Dφ, it suffices to show qa ¬φ(b′) for every
b′ <M a. But any b′ <M a ≤M b <M b0 is not in C by minimality of a, so q̃ ¬φ(b′)
and hence also qa ¬φ(b′) by Extension. �

Choose p0 ∈ G forcing ∃x < b0φ(x) by the Truth Lemma. Note that Dφ ∈ B()
as it is defined by the following formula (with parameters) of the Stern formalism (cf.
Lemma 1.9):

∃x
(
x < b0 ∧ ∀y

(
y < x→

(
ξ ⊢ (φ(x) ∧ ¬φ(y))

)))
.

The claim and Lemma 1.12 imply that there is a condition p ∈ G ∩Dφ. Hence there
is a <M b0 such that for every b <M a we have p (φ(a)∧¬φ(b)). By the Truth Lemma
M [G] |= φ(a) and M [G] |= ¬φ(b) for every b <M a. Thus a is a least element as we are
looking for. �

Here is a dual formulation of the Principal Theorem:

Corollary 2.6 Let b0 ∈ M and Φ be a set of L∗(M)-formulas. If for every φ(x) ∈ Φ
and p ∈ P there is q ≤ p such that

{c <M b0 | q φ(c)}
is definable in M , then every generic expansion of M satisfies transfinite induction for Φ
up to b0, that is, for every φ(x) ∈ Φ the sentence

∀y < b0(∀z < yφ(z)→ φ(y))→ ∀x < b0φ(x).

The Infinity Project 299

Proof. The assumption implies that is densely definable for ¬Φ up to b0 (see the proof
of Lemma 2.4). Now observe that the least number principle for ¬Φ up to b0 is equivalent
to transfinite induction for Φ up to b0. �

Lemma 2.7
(1) Let Ψ be the set of L∗(M)-formulas φ such that is definable for φ. Then Ψ is

closed under disjunctions and existential quantification.
(2) Let b0 ∈M and Ψ be the set of L∗(M)-formulas φ such that is densely definable

for φ up to b0. Then Ψ is closed under disjunctions and b0-bounded existential
quantification.

Proof. (1) and closure under disjunction in (2) follow easily from the recurrence in Ex-
ample 1.6. We show closure under b0-bounded existential quantification in (2).

Let φ(yx) ∈ Ψ and p ∈ P . We are looking for q ≤ p such that {a <M b0 | q∥∃y <
b0φ(ya)} is definable in M . Because φ ∈ Ψ we find q ≤ p such that {aa <M b0 | q∥φ(aa)}
is definable in M . Then also

{a <M b0 | ∃a <M b0 : q∥φ(aa)}

is definable in M . By conservativity a <M b0 is equivalent with s a < b0 for any
condition s. Hence the above set equals

{a <M b0 | ∃a ∈M : q∥(a < b0 ∧ φ(aa))},

and this is the set we want (see the recurrence in Example 1.6). �

2.2 Definable antichains

We sketch a method to establish dense definability. We are going to apply it in the
next section. The method is intended for the typical situation where P is an (in general
undefinable) subset of M and there are L(M)-formulas φ(x, y), ψ(x, y) such that, for all
p, q ∈ P ,

(p ≤ q ⇐⇒M |= φ(p, q)) and (p∥q ⇐⇒M |= ψ(p, q)).

In this case, the following two lemmas reduce dense definability of forcing to the defin-
ability of predense antichains refining given definable antichains.

We recall some standard forcing terminology: an antichain is a set of pairwise incom-
patible conditions. An antichain A is maximal in X ⊆ P if A ⊆ X and every p ∈ X is
compatible with some element of A. A set X ⊆ P is predense (below p) if every condition
(extending p) is compatible with some condition in X. E.g. an antichain is predense if
and only if it is maximal in P . We write

X ↓ q := {p ∈ X | p ≤ q} and X ↓ Y :=
∪
q∈Y X ↓ q.

The method is based on the simple observation that in order to define the forcing for
some φ it suffices to define a maximal antichain in [φ]:

Lemma 2.8 If p ≤ q and X is a maximal antichain in [φ] ↓ q, then p∥φ if and only if p
is compatible with some condition in X.

Proof. If p∥φ, then there is r ∈ [φ] extending p. Then r ∈ [φ] ↓ q since r ≤ p ≤ q. By
maximality of X, r is compatible with some condition in X, and hence, as r ≤ p, so is p.
The converse is immediate by Extension. �

300 Partially definable forcing and bounded arithmetic

To find maximal antichains we intend to proceed by induction on φ. How to get, say,
a maximal antichain in [¬φ] from a maximal antichain X in [φ]? The next lemma shows
that this can be done via a predense antichain refining X in the following sense:

Definition 2.9 For X,Y ⊆ P we say X refines Y if every condition in X that is
compatible with some condition in Y already extends some condition in Y .

Lemma 2.10 Let φ,ψ be L∗(M)-sentences, χ(x) an L∗(M)-formula, b0 ∈M and p ∈ P .
(1) If X is a maximal antichain in [φ] ↓ p, and A ⊆ P ↓ p is an antichain that

is predense below p and refines X, then A \ (A ↓ X) is a maximal antichain in
[¬φ] ↓ p.

(2) If X and Y are maximal antichains in [¬φ] ↓ p and [¬ψ] ↓ p respectively, and
A ⊆ P ↓ p is an antichain that is predense below p and refines X ∪ Y , then
A \ (A ↓ (X ∪ Y)) is a maximal antichain in [φ ∧ ψ] ↓ p.

(3) If for every a <M b0, the set Xa is a maximal antichain in [¬χ(a)] ↓ p, and
A ⊆ P ↓ p is an antichain that is predense below p and refines

∪
a<M b0

Xa, then
A \ (A ↓

∪
a<M b0

Xa) is a maximal antichain in [∀x < b0χ(x)] ↓ p.

Proof. We only show (3). Obviously A′ := A \ (A ↓
∪
a<M b0

Xa) is an antichain in P ↓ p.
To see A′ ⊆ [∀x < b0χ(x)], let q /∈ [∀x < b0χ(x)] be given. We claim q /∈ A′. If q /∈ A,
there is nothing to show, so we assume q ∈ A and claim q ∈ A ↓

∪
a<M b0

Xa. Since
q ̸ ∀x < b0χ(x) there is a0 <M b0 such that q ̸ χ(a0) (Remark 2.1). By Lemma 1.5(4)
some extension r ≤ q forces ¬χ(a0). By maximality of Xa0 , the condition r, and hence
also q, is compatible with some condition in Xa0 ⊆

∪
a<M b0

Xa. Since q ∈ A and A refines∪
a<M b0

Xa, we get q ∈ A ↓
∪
a<M b0

Xa.
To see that A′ is maximal, let q ≤ p force ∀x < b0χ(x). Then q is compatible with

some r ∈ A since A is predense below p. We claim r ∈ A′, i.e., r /∈ A ↓
∪
a<M b0

Xa.
Otherwise r forces ¬χ(a0) for some a0 <M b0 by Extension, and thus also ¬∀x < b0χ(x)
(Corollary 1.20). Hence r cannot be compatible with q by Extension and Consistency, a
contradiction. �

Corollary 2.11 Let Φ be a set of L∗(M)-sentences and assume P has a maximum 1P .
Assume further that A is a predense antichain such that A ⊆ [φ] ∪ [¬φ] for every φ ∈ Φ.
If ψ, χ are Boolean combinations of sentences from Φ, then

(1) A ∩ [ψ] is a maximal antichain in [ψ];
(2) A ∩ [¬ψ] = A \ (A ∩ [ψ]) is a maximal antichain in [¬ψ];
(3) A ∩ [ψ ∧ χ] = (A ∩ [ψ]) ∩ (A ∩ [χ]) is a maximal antichain in [ψ ∧ χ].

Proof. First show by a straightforward induction that A ⊆ [ψ] ∪ [¬ψ] for every Boolean
combination ψ of sentences from Φ. This implies (1): to see maximality, observe that
any p ∈ [ψ] must be compatible with some condition in A by predensity, and since such
a condition cannot be in [¬ψ] by Extension and Consistency, it must be in [ψ].

Knowing (1) for ψ and χ, we get (2) and (3) applying Lemma 2.10 for p := 1P : note
that, in general, if A is an antichain and X ⊆ A, then A refines X, and A ↓ X = X. �

2.3 Full definability

The forcing frame P is definable in M if there is a first-order interpretation of (P,≤)
in M .

The Infinity Project 301

Examples 2.12 In set theory, Cohen forcing (Example 1.25) uses definable forcing
frames. Easton forcing extends Cohen forcing in that it allows the forcing frame to
be a proper class in M , i.e., instead of being a set in M it is only assumed to be de-
finable in M . In case the class frame is in a certain sense approximable by set frames,
one can define a forcing that satisfies the forcing lemmas and the Principal Theorem
(cf. Introduction).

In arithmetic, Feferman forcing (Example 1.27) uses definable forcing frames. This
is due to the fact that it starts with the standard model. Simpson [43] gives an example
of a definable forcing frame starting with a nonstandard model of arithmetic. y

An easy induction shows (as Lemma 1.9):

Lemma 2.13 Assume that the forcing frame is definable in M and is definable for
L∗(M)-atoms. Then is definable for all L∗(M)-formulas.

Then the Principal Theorem implies:

Corollary 2.14 Assume the forcing frame is definable in M and is definable for
L∗(M)-atoms. Then every generic expansion of M satisfies the least number principle.

Example 2.15 (Knight’s trick) In [22] Knight uses a forcing frame (P,≤, D0, D1, . . .)
with D0 = D1 = · · · = ∅ and pads M with some other sorts such that (P,≤) becomes
interpretable in the padded structure. Then this structure interprets the Stern formalism.
Knight uses a conservative existential forcing (on the padded structure).3 Lemma 1.9 then
gives full definability ([22, Lemma 2.2]).

To sample one of Knight’s applications, her padding becomes superfluous when M
is an ω-model of ZFC and the forcing becomes definable in M . Knight shows that any
elementary end extension of M by another ω-model has a generic expansion interpreting
a universal choice function that preserves the elementary embedding. y

2.4 Forcing and propositional proofs

We give an intuitive summary of the development sofar as a method to establish lower
bounds on the size of propositional proofs.

Recall Example 0.1. Let φ be a relational first-order sentence that is true in all finite
models and let φ<x result from φ by replacing every quantifier Qy by Qy < x. Then
every ⟨φ<x⟩m,m ≥ 1, is a tautology. We would like to establish a lower bound on the
length of proofs of these tautologies in a given propositional proof system. Assume proofs
in our system are sequences of ‘lines’ with the last line being the formula proved.

Let M be elementary equivalent to some ‘standard’ L-model (N, <, . . .) and contain
nonstandard elements. Let L∗ extend L by te language of φ. Design a forcing such
that φ<x is falsified by some nonstandard n ∈ M in some generic expansion M [G] of
M . Define an L∗-formula ‘line y in proof z is false’ such that any (code of a) proof π of
⟨φ<x⟩n has a ‘false’ last line. Show in M [G] that the system is sound: if line y in proof
z is false, then so is some line y′ < y.

The art is to construct the forcing frame such that the forcing is densely definable up
to b0 for all sentences ‘line i in proof π is false’ where b0 ∈M is as large as possible and
π is any (code of a) size <M b0 proof of ⟨φ<x⟩n. Typically, the logical complexity of the

3 To be correct, Knight uses a conservative existential pre-forcing that satisfies Extension but not
necessarily Stability for atoms.

302 Partially definable forcing and bounded arithmetic

formula ‘line i in proof π is false’ will reflect the logical complexity of the propositional
formulas the system operates with as well as the bound b0.

For every L-term s(x) such that sM (n) <M b0, one can then conclude that the func-
tion sN : N→ N cannot upper bound the sizes of proofs of the tautologies ⟨φ<x⟩m,m ≥ 1.

3 Forcing against bounded arithmetic

We define Paris–Wilkie forcing, Riis forcing and Ajtai forcing, prove a definability result
for each and give the corresponding independence results.

In this section we fix
– a countable language L containing {+, · , 0, 1, <};
– a countable L-structure M that is elementarily equivalent to an L-expansion of
(N,+, · , 0, 1, <);

– L∗ := L ∪ {R} for a new binary relation symbol R /∈ L.
We fix some notation. For n ∈M we write

[n] := {a ∈M | a <M n}.

A relation R over M is bounded (in M) if there is b ∈ M such that any component
of any tuple in R is <M b. As N codes every bounded (in N) relation by an element, M
codes every definable bounded (in M) relation by an element. If m ∈ N is such a code
we let

∥m∥
denote the cardinality of the coded relation. This is not to be confused with

|m|

denoting log(m + 1) (rounded down). Using the definitions of these functions in the
standard model (N,+, · , 0, 1, <), we get corresponding functions ∥ · ∥M and | · |M in M
and we shall omit the superscripts.

For arbitrary n,m ∈M ,
n <M mo(1)

means that nℓ <M m for every ℓ ∈ N.

3.1 Paris–Wilkie forcing

Paris and Wilkie [32] gave “the first forcing argument in the context of weak arithmetic”
[23, p. 278] establishing independence of the pigeonhole principle ∀xPHP(R, x) from the
least number principle for existential formulas. Recall PHP(R, x) expresses “R is not a
bijection from {y | y ≤ x} onto {y | y < x}”.

Theorem 3.1 (Paris–Wilkie, 1985) Let n ∈M be such that [n] is infinite. Then M has
an L∗-expansion satisfying both ¬PHP(R,n) and the least number principle for existential
L∗(M)-formulas.

Let n ∈M with infinite [n]. We define a forcing frame

(P,≤, D0, D1, . . .).

Note that every finite bijection from a subset of [n] ∪ {n} onto a subset of [n] is coded
by an element in M . We let P be the set of all these codes. Note that P is not definable

The Infinity Project 303

in M . As partial order we use p ≤ q if and only if p ⊇ q. Here, and below, we blur the
distinction between p and the bijection coded.

The family D0, D1, . . . enumerates the (countably many) sets

{p | b ∈ dom(p)}, {p | c ∈ im(p)} for b ≤M n, c <M n.

To determine a universal pre-forcing PW it suffices to define p PW φ for atoms φ.
Furthermore, we want a conservative forcing, so it suffices to define p PW φ for φ an
L∗(M)-atom that is not an L(M)-atom. Such an atom has the form Rst for closed
L(M)-terms s, t. We set

p PW Rst ⇐⇒ (sM , tM) ∈ p.

It is easy to check (cf. Example 1.26):

Lemma 3.2
(1) PW is a forcing.
(2) M [G] is defined and a generic expansion of M for every generic G.
(3) M [G] violates PHP(R,n) for every generic G.

Lemma 3.3 PW is definable for quantifier free L∗(M)-formulas.

We give the proof exemplifying the method of definable antichains from Section 2.2.
However, a direct proof would be equally easy. Note that we are in the “typical situation”
that we have L(M)-formulas φ(x, y), ψ(x, y) such that, for all p, q ∈ P ,

(p ≤ q ⇐⇒M |= φ(p, q)) and (p∥q ⇐⇒M |= ψ(p, q)).

E.g. ψ(x, y) is a formula expressing that both x and y code partial bijections that agree
on arguments on which they are both defined.

Proof of Lemma 3.3. Let φ = φ(x) be a quantifier free L∗(M)-formula. For c from M let
T (c) be the set of those a ∈ M that are denoted by some closed term in φ(c). Further
let Ac be the set of all inclusively minimal partial bijections p such that both dom(p)
contains T (c) ∩ [n + 1] and im(p) contains T (c) ∩ [n]. As T (c) is finite, Ac ⊆ P . It
is routine to verify that Ac is a predense antichain in P and equal to α(y, c)(M) for a
suitable L(M)-formula α(y, x).

For an atom ψ = ψ(x) occuring in φ(x) we have Ac ⊆ [ψ(c)]∪ [¬ψ(c)]. Further there
is an L(M)-formula ξψ(y, x) such that ξψ(y, c)(M) defines Ac ∩ [ψ(c)]. We find such a
formula ξχ(z, x) for every Boolean combination χ of such atoms following the recursion in
Corollary 2.11(2), (3). In particular, we find an L(M)-formula ξφ(y, x) such that ξφ(y, c)
defines a maximal antichain in [φ(c)].

Lemma 2.8 (for q = ∅) implies that PW is definable for φ(x). �

Proof of Theorem 3.1. Choose a generic G (Lemma 1.11). Up to isomorphism, thenM [G]
expands M and violates PHP(R,n) (Lemma 3.2). By Lemmas 3.3 and 2.7, PW is
definable for existential L∗(M)-formulas. By the Principal Theorem 2.5, M [G] satisfies
the least number principle for these formulas. �

3.2 Riis forcing

One may wonder what in the above proof is special about the pigeonhole principle.
Riis pointed out that essentially what is needed is that the principle fails in the infinite

304 Partially definable forcing and bounded arithmetic

[38, 39]. He uses existential forcing and allows for certain infinite conditions. The point
is that the new forcing frame allows to define the forcing for more formulas.

For an L(M)-formula φ0(x, y), let

(R : ŷφ0(x, y) ∼ [x])

be a formula expressing “R is a bijection from {y | φ0(x, y)} onto [x]”. This is an L∗(M)-
formula with free variable x.

Definition 3.4 An L(M)-formula φ0(xy) defines an nΩ(1) family in M if there are ℓ ∈ N
and an L(M)-formula σ(yz, x) such that for every n ∈ M , σ(yz, n)(M) is a surjection
from (φ0(n, y)(M))ℓ onto [n] provided φ0(n, y)(M) is nonempty.

If every φ(ny)(M), n ∈ M, is bounded and, say, coded by cn ∈ M , then defining a
nΩ(1)-family means that there is an ℓ ∈ N such that n ≤M ∥cn∥ℓ for every n ∈ M . For
example, b0 <M no(1) if and only if (x = n∧ y < b0) does not define a nΩ(1)-family in M .

Examples 3.5 If we choose for φ0(x, y) the formula y ≤ x, then (R : ŷφ0(n, y) ∼ [n])
becomes ¬PHP(R,n). If we choose y < x·x, then our formula negates the weak pigeonhole
principle with n2 pigeons and n holes. Choosing y = y we negate the cardinal principle
(cf. [20]).

If we assume that the L-structure (N,+, · , 0, 1, <, . . .) additionally interprets an
infinite unary predicate U and a binary relation E ⊆ U × U , then (R : ŷφ0(n, y) ∼ [n])
with φ0(x, y) := Uy expresses that R copies the infinite directed graph (U,E) to the new
universe [n] (“Finitization” [38]).

These examples define nΩ(1) families in M . y

Let Σb01 (R) denote the closure of the set of quantifier-free L∗(M)-formulas by exis-
tential and b0-bounded quantification (i.e., quantifiers of the form ∃x < b0 and ∀x < b0,
cf. page 297).

Theorem 3.6 (Riis, 1993) Let φ0(xy) define an nΩ(1) family in M and let b0, n ∈M be
such that b0 <M no(1). Then M has an L∗-expansion satisfying both (R : ŷφ0(ny) ∼ [n])

and the least number principle for Σb01 (R).

Remark 3.7 The reader familiar with bounded arithmetic will notice the following. Use
Buss’ language for L and choose n and b0 such that both b0 <

M no(1) and |n| <M b
o(1)
0 .

By the second inequality M |= |t(n)| < b0 for every (parameter free) L-term t(x) and
hence Σb01 (R) includes all Σb1(R) formulas with parameters bounded by some L-term in n.
Thus the restriction of the expansion to the corresponding cut is a model of T 1

2 (R) and
(R : ŷφ0(ny) ∼ [n]).

Let φ0(xy) and b0, n ∈ M accord the assumption of Theorem 3.6. We prove the
theorem only for the case where [b0] is infinite. In case [b0] is finite, b0-bounded quantifiers
can be eliminated and one can argue as in the last section.

Definition 3.8 A relation R over M is ℓ-small if it is empty or there are ℓ ∈ N and an
L(M)-definable surjection from [b0]

ℓ onto R. R is small if it is ℓ-small for some ℓ ∈ N.

Then [n] is not small and neither is

A0 := φ0(ny)(M).

Here, and only here, we use the assumption that φ0(xy) defines a nΩ(1)-family in M .

The Infinity Project 305

We define the forcing. An ℓ-small bijection from a subset of A0 onto a subset of [n] is
L(M)-definable and bounded in M , and hence coded by an element of M . Let Pℓ ⊆ M
be the set of all these codes. The set of conditions is

P :=
∪
ℓ∈N

Pℓ.

Again we set p ≤ q if p ⊇ q, and let the family D0, D1, . . . enumerates the sets {p | a ∈
dom(p)}, {p | c ∈ im(p)} for a ∈ A0, c ∈ [n].

The forcing relation is defined as in the previous section: p Ri Rst if and only if
(sM , tM) ∈ p. This uniquely determines a conservative universal pre-forcing, and in fact
a forcing (cf. Example 1.26).

Lemma 3.9 Let ℓ ∈ N.
(1) Pℓ ⊆ Pℓ+1 ⊆ P ⊆M .
(2) Pℓ is L(M)-definable.
(3) If p, q ∈ Pℓ, then p ∪ q ∈ Pℓ+1 and p ∩ q ∈ Pℓ.
(4) The sets D0, D1, . . . are dense.

Proof. We only show (4). Observe that both the domain and range of a condition p ∈ P
are small. As neither A0 nor [n] is small, both (A0 \dom(p)) and ([n]\ im(p)) are infinite.
Then (4) follows easily. �

Lemma 3.10 Ri is definable for Σb01 (R).

This implies the theorem:

Proof of Theorem 3.6. Clearly, M [G] is defined for every generic G. By Proposition 1.24
all generic associates of M are generic expansions and it should be clear that they all
satisfy (R : ŷφ0(ny) ∼ [n]). Thus Theorem 3.6 follows from Lemma 3.10 and the Principal
Theorem. �

To prove Lemma 3.10 we rely on the following lemma. It can be shown following the
proof of Lemma 3.3 in the previous section.

Lemma 3.11 For every quantifier free L∗(M)-formula φ(x) there is an L(M)-formula
3φ(y, x) such that for every p ∈ P

3φ(p, x)(M) = {c | p∥φ(c)}.

Proof of Lemma 3.10. For variable tuples x = x1 · · ·xℓ, y = y1 · · · yℓ let Qxy abbreviate
the quantifier prefix

∀x1 < b0∃y1 ∀x2 < b0∃y2 · · · ∀xℓ < b0∃yℓ.
It suffices to show that Ri is definable for every formula of the form Qxyφ where φ
is a quantifier free L∗(M)-formula (by Corollary 1.20 since M [G] is defined for every
generic G). Fix a quantifier free L∗(M)-formula φ(z). Define the formula

�φ(y, z) := ¬3¬φ(y, z).

By Lemma 3.11 and Stability, we have for every condition p ∈ P
�φ(p, z)(M) = {c | p Ri φ(c)}.

For a tuple c from M let Ac be the predense antichain as defined in the proof of
Lemma 3.3. In particular, Ac ⊆ [φ(c)] ∪ [¬φ(c)] and Ac ∩ [φ(c)] is a maximal antichain

306 Partially definable forcing and bounded arithmetic

in [φ(c)]. Further Ac ⊆ P1 since every condition in Ac is finite and we assumed that [b0]
is infinite.

For any two tuples x, y of variables of the same length ℓ we show the following: for
all p ∈ P and all c′ there is q ∈ Pℓ+1, q∥p such that

(3.1) if p∥Qxy φ(x, y, c′), then M |= Qxy �φ(p ∪ q, x, y, c′),
where c′ ranges over assignments to the free variables z′ of Qxy φ. It is not hard to see
that then

∃u(u ∈ Pℓ+1 ∧ u∥p ∧Qxy �φ(p ∪ u, x, y, z′))
defines {c′ | p∥Qxy φ(x, y, c′)} in M . Here “u ∈ Pℓ+1” is an L(M)-formula according
Lemma 3.9(2) and “x∥y” is an L(M)-formula expressing compatibility as in the previous
section.

We prove (3.1) by induction on ℓ. The base case, ℓ = 0, is easy: if p∥φ(c), then p is
compatible with some q ∈ Ac ∩ [φ(c)] by Lemma 2.8. But Ac ⊆ P1 and p ∪ q Ri φ(c).

For the inductive step, let xx, yy be length ℓ+ 1 tuples of variables, let c′ range over
assigments to the free variables z′ in Qxxyy φ and write φ = φ(xx, yy, z′).

Let p ∈ P and c′ be such that p∥Qxxyy φ(xx, yy, c′), i.e., there is p̃ ≤ p forcing
∀x < b0∃y Qxy φ(xx, yy, c′). Using universal recurrence and Remark 2.1, this is easily
seen to be equivalent to: for every a <M b0 and every q ≤ p̃ there is b ∈ M such that
q∥Qxy φ(ax, by, c′). By induction we get for every a <M b0 and every q ≤ p̃

M |= ∃u(u ∈ Pℓ+1 ∧ u∥q ∧ ∃y Qxy �φ(q ∪ u, ax, yy, c′)).
Let ψ(z) be the formula

∃u
(
(u = ∅ ∨ ∃v“v is a surjection from [z]× [b0]

ℓ+1 onto u”)

∧ u∥p̃ ∧ ∀x < z∃y Qxy �φ(p̃ ∪ u, xx, yy, c′)
)
.

Claim 3 M |= ψ(b0).

Proof of Claim 3. It is straightforward to verify M |= ψ(0) and M |= (ψ(a)→ ψ(a+ 1))
for every a <M b0. �

By the claim there is q̃ ∈ P (even in Pℓ+2) compatible with p̃ such that

M |= Qxxyy �φ(p̃ ∪ q̃, xx, yy, c′).
As M satisfies the least number principle it defines Skolem functions: there are L(M)-

definable functions ff = f, f1, f2, f3, . . . such that

M |= ∀xx < b0�φ
(
p̃ ∪ q̃, xx, f(x)f(xx), c′

)
.

Here, f(xx) is shorthand for f1(xx1)f2(xx1x2)f3(xx1x2x3) · · · . Recall how the antichains
Ac are defined: they consist in all ⊆-minimal conditions whose domain contains T (c) ∩
[n + 1] and whose image contains T (c) ∩ [n], where T (c) is the set of things named by
closed terms in φ(c). Write T (z) = T (xx, yy, z′) and set

S(c′) :=
∪

aa<M b0

T (aa, f(a)f(aa), c′).

Let Bc′ be defined for S(c′) as Ac is for T (c). Then Bc′ is an L(M)-definable set of
(ℓ + 2)-small conditions. Furthermore Bc′ is a predense antichain that refines every Ac,
where c is of the form aaf(a)f(aa)c′ for some aa <M b0.

Claim 4 If aa <M b0 and c = aaf(a)f(aa)c′, then Bc′ ⊆ [φ(c)] ∪ [¬φ(c)].

The Infinity Project 307

Proof of Claim 4. Let aa <M b0 and c = aaf(a)f(aa)c′. Every r ∈ Bc′ is compatible
with some condition in Ac by predensity. Since Bc′ refines Ac, r extends some condition
in Ac. Since Ac ⊆ [φ(c)] ∪ [¬φ(c)], also r ∈ [φ(c)] ∪ [¬φ(c)] by Extension. �

By predensity there is r ∈ Bc′ such that (p̃ ∪ q̃)∥r. Then r∥p and r ∈ Pℓ+2, so we
are left to check M |= ∀xx < b0�φ

(
p ∪ r, xx, f(x)f(xx), c′

)
. By Extension it suffices

to verify M |= ∀xx < b0�φ
(
r, xx, f(x)f(xx), c′

)
. But otherwise there is aa <M b0 such

that r ̸Ri φ(aa, f(a)f(aa), c
′). By the last claim, then r Ri ¬φ(aa, f(a)f(aa), c′). But

p̃ ∪ q̃ Ri φ(aa, f(a)f(aa), c
′) (by the choice of q̃), so r cannot be compatible with p̃ ∪ q̃

by Extension and Consistency, a contradiction. �

3.3 Ajtai forcing

We prove Ajtai’s result [1] including its improvements from [30, 33]. Compared to Riis’
Theorem 3.6 it embodies an exponential improvement concerning the bound b0, but only
concerns b0-bounded formulas. Citing Zambella [50, p. 403], any techniques that can
allow to handle Σb01 (R) for such big b0 would be extremely interesting.

Let ∆b0
0 (R) denote the closure of the set of quantifier-free L∗(M)-formulas by b0-

bounded quantification (cf. page 297).

Theorem 3.12 (Ajtai, 1988) Let b0, n ∈M be such that |b0| <M no(1). Then M has an
L∗-expansion satisfying both ¬PHP(R,n) and the least number principle for ∆b0

0 (R) up
to b0.

Remark 3.13 The reader familiar with bounded arithmetic will notice the following. Use
Buss’ language for L and choose b0, n ∈M such that both |b0| < no(1) and |n| < |b0|o(1).
By the second inequality b0 bounds tM (n) for every L-term t(x). Thus the restriction of
the expansion to the corresponding cut is a model of T2(R) that violates PHP(R,n).

Fix some d ∈ N. Following Section 2.4 it is not hard to infer from Theorem 3.12 that
proofs of ⟨PHP(R, x)⟩m,m ∈ N, in depth d Frege systems must have size at least 2mϵ for
some ϵ > 0 (depending on d).

For m ∈ N consider the following finite forcing frame (P (m),≤) (without a family
D0, D1, . . .): the conditions are all finite partial bijections from [m+ 1] to [m] and p ≤ q
means p ⊇ q. Again, we blur the distinction of the bijection and its code in N. The size
∥p∥ of a condition p is its cardinality, i.e., the number of pigeons mapped. The rank of a
set X ⊆ P (m) is the maximal size of a condition in X (and, say, 0 if X is empty).

Now fix M and n, b0 ∈M according the assumptions of Theorem 3.12. Observe that
there are uniform definitions of P (m) in the standard model (N,+, · , 0, 1, <) meaning
that there is a {+, · , 0, 1, <}-formula φ(x, y) such that P (m) = φ(m, y)(N) for every
m ∈ N. Applied in M , these definitions give forcing frames (P (m),≤) with size function
∥ · ∥ also for (nonstandard) m ∈ M . Further note that M defines the function m 7→ mϵ

(rounded up) for any (standard) rational 0 < ϵ < 1.
We now define the forcing frame P . It is going to be an undefinable subframe of the

definable frame P (n). The set {p ∈ P (n) | ∥p∥ <M n − nϵ} is definable in M for every
standard rational 0 < ϵ < 1. We let P be the union of all these sets. As usual p ≤ q
means p ⊇ q, and the family D0, D1, . . . enumerates the sets {p ∈ P | b ∈ dom(p)} and
{p ∈ P | c ∈ im(p)} for b ≤M n, c <M n. It is easy to see that these sets are dense (in P).

308 Partially definable forcing and bounded arithmetic

We define the forcing as in the previous two sections: we let p ∈ P force an atom Rst if
(sM , tM) ∈ p and denote by Aj the resulting conservative universal pre-forcing. It is easy
to see that Aj is a forcing and that M [G] is defined for every generic G (cf. Section 3.1).

Lemma 3.14 Aj is densely definable for ∆b0
0 (R) up to b0.

Proof of Theorem 3.12. It is clear that every generic associate of M violates PHP(R,n)
and by conservativity it is a generic expansion of M (Proposition 1.24). Thus Theo-
rem 3.12 follows from the above lemma by the Principal Theorem. �

To prove Lemma 3.14 we follow the method of definable antichains from Section 2.2.
Note that Lemma 3.14 follows easily from Lemma 2.8 and:

Lemma 3.15 Let p ∈ P . For every φ(x) ∈ ∆b0
0 (R) there is r ∈ P, r ≤ p and a sequence

of sets (Xa)a<M b0 in M such that for every a <M b0, the set Xa is a maximal antichain
in [φ(a)] ↓ r of rank at most ∥r∥+ |b0|.

Here, by saying that a sequence (Xa)a<M b0 of subsets of M is in M we mean that
the set {(a, c) | a <M b0, c ∈ Xa} is coded in M .

We are thus left to prove this lemma. To do so we intend to use Lemma 2.10.
Therefore we need to define predense antichains refining given sets and it is here where
the finite combinatorics enter the argument. The idea is to show that suitable antichains
exist in P (m) for m ∈ N sufficiently large. Then M codes these antichains for the
infinite P (n).

As a first problem, predensity does not make much sense in finite frames nor in P (n).
Therefore we shall calibrate the notion in the definition below. Second, suitable antichains
need not to exist, but they do exist after restricting attention to conditions that extend a
suitably chosen condition r. This choice is done according to the Switching Lemma 3.18
below, the combinatorial core of the argument.

Details follow.

Definition 3.16 Let m, k ∈ N, q ∈ P (m) and X ⊆ P (m). Then X is k-predense (in
P (m)) below q if every condition that extends q and has size at most m−k is compatible
with a condition in X.

For m ∈M , p ∈ P (m) and X ⊆ P (m) write

Xp := {q \ p | q ∈ X, p∥q} and X ∪ p := {q ∪ p | q ∈ X, p∥q}.
Note that P (m)p ∼= P (m − ∥p∥) via a size preserving isomorphism. By saying that
an antichain is k-predense in P (m)p we mean that its image under this isomorphism is
k-predense in P (m− ∥p∥). In the same way k-predensity is explained in P (n)p.

Lemma 3.17 Let X ⊆ P , p, q ∈ P, q ≤ p and let φ be an L∗(M)-sentence. If X is a
maximal antichain in [φ] ↓ p and has rank at most ∥p∥ + |b0|, then X ∪ q is a maximal
antichain in [φ] ↓ q.

Proof. As X ⊆ P ↓ p, Xp has rank at most |b0|. Then X ∪ q = Xp ∪ q has rank at most
∥q∥+ |b0|, so X ∪ q ⊆ P . Clearly, X ∪ q is an antichain.

To show containment in [φ] ↓ q, let r ∈ X ∪ q and choose s ∈ X, q∥s such that
r = s ∪ q. Since X ⊆ [φ], we have s ∪ q ∈ [φ] ↓ q by Extension.

To show maximality, let r ∈ [φ] ↓ q. By maximality of X, r is compatible with some
s ∈ X. As r ≤ q, q is compatible with s. Then s ∪ q ∈ X ∪ q is compatible with r. �

The Infinity Project 309

Lemma 3.18 (Switching) Let ℓ,m, k,N ∈ N, k ≤ ℓ be sufficiently large and X1, . . . , XN

be subsets of P (m) of rank at most k. Assume

(3.2) N2/kℓ100 < m.

Then there is q ∈ P (m) of size at most m− ℓ such that for every 1 ≤ i ≤ N there is an
antichain Ai ⊆ P (m)q refining Xq

i that is k-predense in P (m)q and has rank at most k.

This lemma can be proved by the probabilistic method or a direct (involved) counting
argument. Details can be found in [23, Lemma 12.3.10] or in the references pointed out
in the Introduction.

Applied inM the Switching Lemma provides us with suitable antichains in restrictions
of P (n). The following easy lemma allows to move these antichains to P .

Lemma 3.19 Let p ∈ P and X,Y ⊆ P (n)p have rank at most |b0|.
(1) If X is an antichain in P (n)p, then X ∪ p is an antichain in P .
(2) If X is |b0|-predense in P (n)p, then X ∪ p is predense in P below p.
(3) If X refines Y in P (n)p, then X ∪ p refines Y ∪ p in P .

Proof. We only show (2). Note X ∪ p ⊆ P because it has rank at most ∥p∥ + |b0|. Let
q ∈ P, q ≤ p and choose 0 < ϵ < 1 such that ∥q∥ <M n−nϵ. Then ∥q\p∥ = ∥q∥−∥p∥ <M
n− nϵ − ∥p∥ <M (n− ∥p∥)− |b0|. Since (q \ p) ∈ P (n)p and X is |b0|-predense in P (n)p,
there is r ∈ X such that q \ p is compatible with r in P (n)p. Then q ∪ r = q ∪ (r ∪ p)
extends both q and r ∪ p ∈ X ∪ p. As q ∪ r has size <M ∥q∥ + |b0| it is in P , so q and
r ∪ p are compatible in P . �

The rest of the argument is straightforward:

Proof of Lemma 3.15. Let p ∈ P . Call a L∗(M)-formula good if the lemma holds for it.
It is easy to verify that atomic formulas are good: for an atom φ(x) of the form Rst with
L(M)-terms t = t(x), s = s(x) take r := p and define Xa := {r ∪ {(sM (a), tM (a))}} or
Xa := ∅ depending on whether r ∪ {(sM (a), tM (a))} is a partial bijection from [n + 1]
to [n] or not. Similarly, for an L(M)-atom φ(x) set r := p and Xa := {r} or Xa := ∅
depending on whether M |= φ(a) or not.

We leave it to the reader to verify that the set of good formulas is closed under
conjunctions and negations. As the set of good formulas is closed under logical equiva-
lence (Corollary 1.20), we are thus left to show it is closed under b0-bounded universal
quantification.

So assume φ(xx) is good. Then ¬φ(xx) is good and we can choose r ∈ P, r ≤ p and
antichains (Xaa)aa<M b0 that satisfy the claim for ¬φ(xx). Since every antichain Xaa is
in P ↓ r and has rank at most ∥r∥+ |b0|, we know that Xr

aa has rank at most |b0|.
Choose 0 < ϵ < 1 such that ∥r∥ <M n − nϵ. Then nϵ <M n − ∥r∥ =: m. Observe

that as partial orders
P (n)r ∼= P (m),

via an isomorphism that is definable in M and preserves the size ∥ · ∥. For a <M b0 let

Ya :=
∪

a<M b0

Xr
aa.

Note Ya has rank at most |b0|, and the sequence (Ya)a<M b0 is in M .
We intend to apply the Switching Lemma in M to get refining antichains for the

sequence (Ya)a<M b0 . We check its assumptions: calculated in M , the sequence has length

310 Partially definable forcing and bounded arithmetic

N := bℓ00 for ℓ0 the length of x. Especially N2/|b0| (calculated in M) is bounded by
a standard number in M (i.e., by a closed {+, 1}-term). Therefore we can choose a
rational 0 < ϵ′ < 1 (e.g. ϵ′ := 1/101) such that the inequality (3.2) of the Switching
Lemma is satisfied for ℓ := mϵ′ and k := |b0| (and m,N as defined above). Further
k = |b0| <M (nϵ)ϵ

′
<M mϵ′ = ℓ.

Thus the lemma applies: we find r′ ∈ P (n)r of size at most m−mϵ′ such that, writing
s := (r ∪ r′), the following holds: for every a <M b0 there is an Aa ⊆ (P (n)r)r

′
= P (n)s

coded in M such that, in P (n)s,
(i) Aa is an antichain that is |b0|-predense,
(ii) Aa refines Y r′

a ⊆ P (n)s,
(iii) Aa has rank at most |b0|.

Note that s has size ∥r∥+ ∥r′∥ ≤M n−m+m−mϵ′ <M n−nϵϵ′ , so s ∈ P . Further note
that with Ya also Y r′

a has rank at most |b0|. By Lemma 3.19 we get in P :
(iv) (Aa ∪ s) is an antichain that is predense below s,
(v) (Aa ∪ s) refines Y r′

a ∪ s =
∪
a<M b0

(Xaa ∪ s),
(vi) (Aa ∪ s) has rank at most ∥s∥+ |b0|.
By Lemma 3.17 (Xaa∪s) is a maximal antichain in [¬φ(aa)] ↓ s. By (Aa∪s) ⊆ P ↓ s,

(iv) and (v) the assumptions of Lemma 2.10(3) are satisfied. Thus we get a maximal
antichain in [∀x < b0φ(xa)] ↓ s setting

Za := (Aa ∪ s) \
(
(Aa ∪ s) ↓

∪
a<M b0

(Xa ∪ s)
)
.

Then (Za)a<M b0 is in M and has rank at most ∥s∥+ |b0| by (vi). �

3.4 Notes

Compared to Riis’ original argument [38] our proof of Theorem 3.6 relies on the stability
of universal forcing (and Corollary 1.20) while Riis uses an existential forcing, and it is
simpler in that it sidesteps the analysis of an auxiliary pre-forcing in [38].

Compared with other proofs of Theorem 3.12, roughly, the predense antichains in our
argument correspond to the complete systems in [30] and in [50], to branches in shallow
decision trees in [28, 49] or to the small covers in [1].

Forcing type arguments for Ajtai’s result have been given in [1, 50] and [23, Sec-
tion 12.7] and recently in [28]. In [23, Section 12.7] Krajíček presents the method of
k-evaluations of propositional formulas [30] as a forcing type argument. Our proof con-
structs for certain φ a predense antichain together with its maximal part in [φ]. These
pairs of sets give rise to a modified notion of |b0|-evaluation. As Zambella’s [50] our
argument sidesteps a detour through propositional logic like in [1, 23, 30, 49]. Further
it avoids the restriction to “internal” generics in [50].

Krajíček’s recent proof in [28] (cf. Introduction) uses forcing with random variables,
developed in [28] as a general method to construct Boolean valued models of bounded
arithmetics. This recent argument, the argument given here and in fact all known ar-
guments for Ajtai’s result use the Switching Lemma in one or another form. The main
obstacle to generalize Ajtai’s argument to other principles is the difficulty to find ana-
logues of this lemma. Our interpretation of the role of this lemma is roughly as follows:
it states the existence of refining antichains. The rest of the argument can be taken over

The Infinity Project 311

by the general machinery, the method of definable antichains and the Principal Theorem
as described in Section 2.

Acknowledgements

We thank Achim Blumensath, Sam Buss, Jörg Flum, Sy-David Friedman and Juan-Carlos
Martínez for their comments and encouragement at earlier stages of this work.

References
[1] M. Ajtai, The complexity of the pigeonhole principle, Proceedings of the 29th Annual Symposion on

the Foundations of Computer Science (1988), 346–355.
[2] J. Avigad, Forcing in proof theory, The Bulletin of Symbolic Logic 10(3) (2004), 305–333.
[3] P. Beame, A switching lemma primer, Technical Report UW-CSE-95-07-01, University of Washing-

ton, 1994.
[4] P. Beame and T. Pitassi, Propositional Proof Complexity: Past, Present, and Future, Bulletin of the

European Association for Theoretical Computer Science, The Computational Complexity Column,
65, E. Allender (ed.), 1998,66–89.

[5] S. Bellantoni and T. Pitassi and A. Urquhart, Approximation and small-depth Frege proofs, SIAM
Journal on Computing 21(6) (1992).

[6] E. Ben-Sasson and P. Harsha, Lower bounds for bounded depth Frege proofs via Buss–Pudlák games,
ACM Transactions on Computational Logic 11(3) (2010).

[7] O. Beyersdorff, On the correspondence between arithmetic theories and propositional proof systems
—a survey, Mathematical Logic Quarterly 55(2) (2009), 116–137.

[8] S. R. Buss, Handbook of Proof Theory, Studies in Logic and the Foundations of Mathematics 137,
Elsevier, 1998.

[9] S. R. Buss, Bounded Arithmetic and Propositional Proof Complexity, Logic of Computation,
Springer, 1995, 67–122.

[10] S. R. Buss, First-order proof theory of arithmetic, chapter II in Handbook of Proof Theory, S. R.
Buss (ed.), 1998, 79–147.

[11] S. A. Cook and P. Nguyen, Logical Foundations of Proof Complexity, Cambridge University Press,
2010.

[12] S. A. Cook and A. R. Reckhow, The relative efficiency of propositional proof systems, The Journal
of Symbolic Logic 44(1) (1979), 36–50.

[13] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Perspectives in Mathematical Logic, Springer,
2nd edition, 1999.

[14] S. Feferman, Some applications of forcing and generic sets, Fundamentae Mathematicae 56 (1965),
325–345.

[15] S. Fenner, L. Fortnow, S. A. Kurtz and L. Li, An oracle builder’s toolkit, Information and Compu-
tation 182 (2003), 95–136.

[16] S. D. Friedman, Topics in Set Theory, Course Notes.
[17] J. Hastad, Almost optimal lower bounds for small depth circuits, Proceedings of the 18th Annual

ACM Symposium on Theory of Computing 1986, 6–20.
[18] J. Hirschfeld and W. H. Wheeler, Forcing, Arithmetic, Division Rings, Lecture Notes in Mathematics

454, 1975.
[19] W. Hodges, Building Models by Games, Cambridge University Press, 1985.
[20] R. Kaye, The theory of κ-like models of arithmetic, Notre Dame Journal of Formal Logic 36(4),

1995, 547–559.
[21] H. J. Keisler, Forcing and the omitting types theorem, in: Studies in Model Theory, Morley (ed.),

Studies in Mathematics, 8, The Mathematical Association of America, 1973, 96–133.
[22] J. F. Knight, Generic expansions of structures, The Journal of Symbolic Logic 38(4) (1973), 561–570.
[23] J. Krajíček, Bounded Arithmetic, Propositional Logic, and Complexity Theory, Encyclopedia of

Mathematics and its Applications, Cambridge University Press, 1995.
[24] J. Krajíček, On Frege and extended Frege proof systems, in: Feasible Mathematics II, P. Clote and

J. Remmel (eds.), Birkhäuser, 1995, 284–319.

312 Partially definable forcing and bounded arithmetic

[25] J. Krajíček, Tautologies from pseudo-random generators, The Bulletin of Symbolic Logic 7(2) (2001),
197–212.

[26] J. Krajíček, Combinatorics of first order structures and propositional proof systems, Archive of
Mathematical Logic 43 (2004), 427–441.

[27] J. Krajíček, Proof complexity, in: European Congress of Mathematics (ECM), A. Laptev (ed.),
Stockholm, Sweden, Zurich: European Mathematical Society, 2005, 221–231.

[28] J. Krajíček, Forcing with Random Variables and Proof Complexity, London Mathematical Society
Lecture Note Series, Cambridge University Press 382, 2011.

[29] J. Krajíček and P. Pudlák, Propositional Proof systems, the consistency of first order theories and
the complexity of computations, The Journal of Symbolic Logic 54(3) (1989), 1063–1079.

[30] J. Krajíček, P. Pudlák and A. Woods, An exponential lower bound to the size of bounded eepth
Frege proofs of the pigeonhole principle, Random Structures and Algorithms 7(1) (1995), 15–39.

[31] P. Odifreddi, Forcing and reducibilities, The Journal of Symbolic Logic 48(2) (1983), 288–310.
[32] J. Paris and A. J. Wilkie, Counting problems in bounded arithmetic, Methods in Mathematical Logic

1130 (1985), 317–340.
[33] T. Pitassi, P. Beame and R. Impagliazzo, Exponential lower bounds for the pigeonhole principle,

Computational Complexity 3 (1993), 97–108.
[34] P. Pudlák, A bottom-up approach to foundations of mathematics, Proceedings Gödel’96, Logical

Foundations of Mathematics, Computer Science and Physics —Kurt Gödel’s Legacy, Springer Lec-
ture Notes in Logic 6, 1996, 81–97.

[35] P. Pudlák, The lengths of proofs, chapter VIII of Handbook of Proof Theory, S. R. Buss (ed.), 1998,
547–637.

[36] P. Pudlák and S. R. Buss, How to lie without being (easily) convicted and the lengths of proofs in
propositional calculus, Computer Science Logic’94, Pacholski and Tiuryn (eds.), Springer Lecture
Notes in Computer Science 933, 1994, 151–162.

[37] A. Razborov, Lower bounds for propositional proofs and independence results in Bounded Arith-
metic, Proceedings of the 23rd ICALP, Lecture Notes in Computer Science 1099, 1996, 48–62.

[38] S. Riis, Finitisation in bounded arithmetic, BRICS Report Series RS-94-23, 1994.
[39] S. Riis, Making infinite structures finite in models of second order bounded arithmetic, in: Arith-

metic, Proof Theory and Computational Complexity, Oxford University Press, 1993, 289–319.
[40] D. Scott, A proof of the independence of the continuum hypothesis, Mathematical Systems Theory

1(2) (1967), 89–111.
[41] N. Segerlind, The complexity of propositional proofs, The Bulletin of Symbolic Logic 13(4) (2007),

417–481.
[42] J. R. Shoenfield, Unramified forcing, Axiomatic Set Theory, Proceedings of Symposia in Pure Math-

ematics VIII, American Mathematical Society, 1971, 357–381.
[43] S. G. Simpson, Forcing and models of arithmetic, Proceedings of the American Mathematical Society

43(1) (1974), 193–194.
[44] J. Stern, A new look at the interpolation problem, The Journal of Symbolic Logic 40(1) (1975),

1–13.
[45] G. Takeuti and M. Yasumoto, Forcing on bounded arithmetic, in Gödel’96, P. Hájek (ed.), Lecture

Notes in Logic 6, 1996, 120–138.
[46] G. Takeuti and M. Yasumoto, Forcing on bounded arithmetic 2, The Journal of Symbolic Logic

63(3) (1998).
[47] N. Thapen, Notes on switching lemmas, manuscript, 2009.
[48] A. Urquhart, The complexity of propositional proofs, The Bulletin of Symbolic Logic 1(4) (1995),

425–467.
[49] A. Urquhart and X. Fu, Simplified lower bounds for propositional proofs, Notre Dame Journal of

Formal Logic 73(4) (1996), 523–544.
[50] D. Zambella, Forcing in finite structures, Mathematical Logic Quarterly 43(3) (1997), 401–412.

The Infinity Project

Safe recursive set functions

Arnold Beckmann∗, Samuel R. Buss†, Sy-David Friedman‡

∗ Department of Computer Science, College of Science, Swansea University, UK
a.beckmann@swansea.ac.uk

† Department of Mathematics, University of California, San Diego, USA
sbuss@math.ucsd.edu

‡ Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

Abstract. We introduce the safe recursive set functions based on a Bellantoni–Cook style subclass of the
primitive recursive set functions. We show that under a natural encoding of finite strings by hereditarily
finite sets, the functions computed by safe recursive set functions are exactly the functions computed by
alternating exponential time Turing machines with polynomially many alternations.

We characterise the safe recursive set functions on arbitrary sets in definability-theoretic terms. In
its strongest form, we show that a function on arbitrary sets is safe recursive if, and only if, it is uniformly
definable in some polynomial level of a refinement of Jensen’s J-hierarchy, relativised to the transitive
closure of the function’s arguments.

We observe that safe-recursive functions on infinite binary strings are equivalent to functions com-
puted by so-called infinite-time Turing machines in time less than ωω. We also give a machine model for
safe recursion which is based on set-indexed parallel processors and the natural bound on running times.

1 Safe recursive set functions

We consider a subclass of the primitive recursive set functions [10]. Inspired by Bellantoni
and Cook’s characterization of the polynomial time computable functions [1], we divide
arguments of set functions into normal and safe ones. By writing f(x⃗ / a⃗) we indicate
that x⃗ are f ’s normal arguments, and a⃗ its safe arguments. Bellantoni and Cook use
the notation f(x⃗; a⃗) instead of f(x⃗ / a⃗), using semicolon (;) instead of slash (/). We use
the slash instead, as we find it improves readability. Set functions whose arguments are
typed in this way will be denoted safe set functions.

1.1 Safe rudimentary set functions

We first define safe rudimentary set functions based on rudimentary set functions [9].

Definition 1.1 The set of safe rudimentary set functions (sRud) is the smallest class of
safe set functions that contains the initial functions (i)–(iii) and is closed under bounded
union (iv) and safe composition (v):

All three authors thank the John Templeton Foundation, Project #13152, for supporting their
participation in the CRM Infinity Project at the Centre de Recerca Matemàtica, Barcelona, Catalonia,
Spain, during which this project was instigated.

∗This research was partially done while the author was a visiting fellow at the Isaac Newton Institute
for the Mathematical Sciences in the programme “Semantics & Syntax”.

†Supported in part by NSF grants DMS-0700533 and DMS-1101228, and by a grant from the Simons
Foundation (#208717 to Sam Buss).

‡Supported in part by the FWF (Austrian Science Fund) through FWF project number P 22430-N13.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

313

314 Safe recursive set functions

(i) (Projection) πn,mj (x1, . . . , xn / xn+1, . . . , xn+m) = xj , for 1 ≤ j ≤ n+m, is in sRud.
(ii) (Difference) d(/ a, b) = a \ b is in sRud.
(iii) (Pairing) p(/ a, b) = {a, b} is in sRud.
(iv) (Bounded Union) If g is in sRud, then

f(x⃗ / a⃗, b) =
∪
z∈b

g(x⃗ / a⃗, z)

is in sRud.
(v) (Safe Composition) If h, r⃗, t⃗ are in sRud, then

f(x⃗ / a⃗) = h(r⃗(x⃗ /) / t⃗(x⃗ / a⃗))

is in sRud.

We list a few functions which are definable in sRud. Details of the definitions of some
of these can also be found in [9]. Let (a, b) denote Kuratowski’s ordered pair {{a}, {a, b}}.
The functions prℓ and prr extract the first and second element from an ordered pair.

• Union(/ a) = ∪a and Intersec(/ a, b) = a ∩ b.
Union(/ a) =

∪
z∈a π

0,1
1 (/ z) and Intersec(/ a, b) = c \ ((c \ a) ∪ (c \ b)) for c = a ∪ b.

• Succ(/ a) = a ∪ {a}, kop(/ a, b) = (a, b), prℓ(/ (a, b)) = a, prr(/ (a, b)) = b.

f(/ c) =
∪
z∈c

∪
y∈c(z \ y) satisfies f(/ (a, b)) =

{
{b} if a ̸= b

∅ otherwise.
Thus prℓ(/ c) = ∪(∪c \ f(/ c)).

g(/ c) = ∪(c \ {∪c}) satisfies g(/ (a, b)) =

{
{a} if a ̸= b

∅ otherwise.
Thus prr(/ c) = ∪(∪c \ g(/ c)).

• Cond=(/ a, b, c, d) =

{
a if c = d

b otherwise.
Let g(/ a, c, z) =

∪
{a : u ∈ c\z ∪ z\c} and g(/ a, c, z) = a \ g(/ a, c, z).

Then g(/ a, c, z) =

{
a if z ̸= c

∅ otherwise
and g(/ a, c, z) =

{
a if z = c

∅ otherwise.
Thus Cond=(/ a, b, c, d) = g(/ a, c, d) ∪ g(/ b, c, d).

• Cond∈(/ a, b, c, d) =

{
a if c ∈ d
b otherwise.

Let h(/ a, c, d) =
∪

{g(/ a, c, z) : z ∈ d} (g as defined for Cond=) and h(/ b, c, d) = b\h(/ b, c, d).

Then h(/ a, c, d) =

{
a if c ∈ d

∅ otherwise
and h(/ b, c, d) =

{
b if c /∈ d

∅ otherwise.
Thus Cond∈(/ a, b, c, d) = h(/ a, c, d) ∪ h(/ b, c, d).

• Appl(/ a, b) = {y : (∃x ∈ b)(x, y) ∈ a}.

Let g(/ b, c) =

{
{prr(c)} if prℓ(c) ∈ b

∅ otherwise.
Then Appl(/ a, b) =

∪
{g(/ b, c) : c ∈ a}.

• Prod(/ a, b) = {(x, y) : x ∈ a, y ∈ b} =: a× b, by first observing that

f(/ x, b) = {(x, y) : y ∈ b} =
∪{
{(x, y)} : y ∈ b

}
is in sRud, and then that Prod(/ a, b) =

∪{
f(x, b) : x ∈ a

}
.

The Infinity Project 315

1.2 Predicative set recursion

We extend the safe rudimentary set function by a predicative set recursion scheme.

Definition 1.2 The set of safe recursive set functions (SRSF) is the smallest class which
contains the safe rudimentary set functions and is closed under safe composition, bounded
union and the following scheme:

(Predicative Set Recursion) If h is in SRSF, then

f(x, y⃗ / a⃗) = h(x, y⃗ / a⃗, {f(z, y⃗ / a⃗) : z ∈ x})
is in SRSF. Observe that according to our convention for denoting functions, x is a
normal argument of f , and {f(z, y⃗ / a⃗) : z ∈ x} is substituted at a safe argument of h.

We show that ordinal addition and multiplication are in SRSF. We will see later that
ordinal exponentiation cannot be defined in SRSF. In a set context, let 0, 1, 2, . . . denote
ordinals in the usual sense, e.g., 0 = ∅ and 1 = {∅}.

• Add(x / a) =

a if x = 0

Succ(/
∪
{Add(z / a) : z ∈ x}) if x = Succ(/

∪
x)∪

{Add(z / a) : z ∈ x} otherwise.

α+ β := Add(β /α) satisfies the usual recursive equations for ordinal addition.
Observe that for α+ β, β is a normal argument and α a safe argument.

• Mult(x, y /) =

0 if x = 0

Add(y /
∪
{Mult(z, y /) : z ∈ x}) if x = Succ(/

∪
x)∪

{Mult(z, y /) : z ∈ x} otherwise.

α · β := Mult(β, α /) satisfies the usual recursive equations for ordinal multipli-
cation. Observe that for α · β, both α and β are normal.

It should be pointed out here that as Mult has no safe arguments we cannot similarly
define exponentiation via predicative set recursion, as we did for Add and Mult.

In many situations it will be convenient to define predicates instead of functions. In
the following we provide the necessary background for this.

Definition 1.3 (Predicates) A predicate R(x⃗ / a⃗) is in SRSF (resp. in sRud) if the func-
tion

χR(x⃗ / a⃗) =

{
1 if R(x⃗ / a⃗)
0 otherwise

is in SRSF (resp. in sRud). Recall that 0 and 1 in a set theoretic context denote ordinals.

Examples of predicates in sRud are a ∈ b, a /∈ b, a = b, and a ̸= b for safe a, b, which
can be seen using the safe rudimentary functions Cond∈ and Cond= as provided before.

Predicates can be used to define functions by separation in the usual way. E.g., assume
R(x⃗ / a⃗, b) is a predicate in SRSF, and B(x⃗ / a⃗) a function in SRSF. Then f(x⃗ / a⃗) =
{b ∈ B(x⃗ / a⃗) : R(x⃗ / a⃗, b)} is a function in SRSF. To see this, let

sel(x⃗ / a⃗, b) =

{
{b} if R(x⃗ / a⃗, b)
∅ otherwise

= Cond=(/ ∅, {b}, χR(x⃗ / a⃗, b), 0).

Then f(x⃗ / a⃗) can be defined by bounded union as
∪
b∈B(x⃗ / a⃗) sel(x⃗ / a⃗, b).

316 Safe recursive set functions

Proposition 1.4 (Closure Properties of Predicates) Predicates in SRSF (in sRud, resp.)
are closed under Boolean operations and bounded quantification over safe arguments.

Proof. Let Q, Q1 and Q2 be predicates in SRSF (in sRud, resp.). Then ¬Q1(x⃗ / a⃗),
Q1(x⃗ / a⃗) ∨Q2(x⃗ / a⃗) and (∃c ∈ a1)Q(x⃗ / a⃗, c) are predicates in SRSF (in sRud, resp.):

• P (x⃗ / a⃗) ⇔ ¬Q1(x⃗ / a⃗) can be defined as

χP (x⃗ / a⃗) = {∅} \ χQ1(x⃗ / a⃗).

• P (x⃗ / a⃗) ⇔ Q1(x⃗ / a⃗) ∨Q2(x⃗ / a⃗) can be defined as

χP (x⃗ / a⃗) = Cond∈

(
/ 1, 0, 1,

{
χQ1(x⃗ / a⃗), χQ2(x⃗ / a⃗)

})
.

• P (x⃗ / a⃗) ⇔ (∃c ∈ a1)Q(x⃗ / a⃗, c) can be defined as

χP (x⃗ / a⃗) = Cond∈

(
/ 1, 0, 0,

∪
c∈a1

χQ(x⃗ / a⃗, c)
)
. �

Further examples of predicates in sRud are trans(/ a) (a is transitive) and Ord(/ a)
(a is an ordinal). This can be seen using the previous proposition:

trans(/ a) ⇐⇒ ∀b ∈ a ∀c ∈ b c ∈ a
Ord(/ a) ⇐⇒ trans(/ a) ∧ ∀b ∈ a trans(/ b).

1.3 Bounding ranks

A very important property of safe recursive set functions is that they increase ranks only
polynomially. This can be proven similarly to the corresponding Lemma 4.1 in [1]. Let

rk(x) =
∪
{rk(y) + 1: y ∈ x}

denote the rank of x. Observe that rk(x /) is in SRSF. It should be stressed that the
next theorem is not restricted to sets of finite rank.

Theorem 1.5 Let f be a function in SRSF. There is a polynomial qf such that

rk(f(x⃗ / a⃗)) ≤ max
i

rk(ai) + qf (rk(x⃗))

for all sets x⃗, a⃗.

Proof. The proof is by induction on the definition of f in SRSF. Our construction
will ensure that qf will always be a multi-variable polynomial with coefficients given by
natural numbers. This implies that it will be a monotone polynomial on ordinals, i.e., if
any of its arguments will be increased, leaving the other arguments the same, its value
does not decrease.

We will only consider the case that f is defined by predicative set recursion, the other
cases (base cases, bounded union, safe composition) are left to the reader.

If f(x, y⃗ / a⃗) is defined by predicative set recursion from h, then by induction hypoth-
esis we have qh bounding h. Define qf such that

qf (α, β⃗) = (1 + qh(α, β⃗)) · (1 + α).

The Infinity Project 317

We show that rk(f(x, y⃗ / a⃗)) ≤ max{rk(⃗a)}+ qf (rk(x), rk(y⃗)) by ∈-induction on x:

rk(f(x, y⃗ / a⃗))

= rk
(
h(x, y⃗ / a⃗, {f(z, y⃗ / a⃗) : z ∈ x})

)
≤ max

{
rk(⃗a), rk

(
{f(z, y⃗ / a⃗) : z ∈ x}

)}
+ qh(rk(x), rk(y⃗))

= max
{
rk(⃗a),

∪{
rk(f(z, y⃗ / a⃗)) + 1: z ∈ x

}}
+ qh(rk(x), rk(y⃗))

≤ max
{
rk(⃗a),

∪{
max{rk(⃗a)}+ qf (rk(z), rk(y⃗)) + 1: z ∈ x

}}
+ qh(rk(x), rk(y⃗))

= max{rk(⃗a)}+
∪{

qf (rk(z), rk(y⃗)) + 1: z ∈ x
}
+ qh(rk(x), rk(y⃗))

= max{rk(⃗a)}+
∪{

qf (rk(z), rk(y⃗)) + 1 + qh(rk(x), rk(y⃗)) : z ∈ x
}
,

where for the second “≤” we used the ∈-induction hypothesis. Let α be rk(x), βi be
rk(yi), and γ be rk(z). Assume γ < α; then we will show that

(1.1) qf (γ, β⃗) + 1 + qh(α, β⃗) ≤ qf (α, β⃗).

Using this we can continue our calculation showing

rk(f(x, y⃗ / a⃗)) ≤ max{rk(⃗a)}+ qf (rk(x), rk(y⃗)).

We finish by proving (1.1):

qf (γ, β⃗) + 1 + qh(α, β⃗) = (1 + qh(γ, β⃗)) · (1 + γ) + 1 + qh(α, β⃗)

≤ (1 + qh(α, β⃗)) · (1 + γ) + 1 + qh(α, β⃗)

= (1 + qh(α, β⃗)) · (1 + γ + 1)

≤ (1 + qh(α, β⃗)) · (1 + α)

= qf (α, β⃗). �

Corollary 1.6 Ordinal exponentiation cannot be computed by a safe recursive set func-
tion.

2 Computing on hereditarily finite sets

For this section, we restrict our attention to the set HF of hereditarily finite sets only.
Our main result for HF is that the SRSF functions acting on HF can be characterized
in terms of ATIME

(
2n

O(1)
, nO(1)

)
; namely, the class of predicates computable by an

alternating Turing machine which runs in time 2n
O(1) with up to nO(1) many alternations.

It is interesting to note that this complexity class is known to characterize the decision
problem for the theory of the reals with addition. In particular, the theory of the reals
with addition is many-one complete for ATIME

(
2n

O(1)
, nO(1)

)
under polynomial time

reductions [2, 3, 5].
On HF we will often drive a recursion by some special sets which we denote skinny

drivers. We define the skinny drivers of rank n, sdn, by induction on n as follows: sd0 = ∅
and sdn+1 = {sdn}. Turning our attention to skinny drivers on HF is not a restriction,

318 Safe recursive set functions

as the function sd(x /) = sdrk(x) is in SRSF, which can be seen as follows:

sd(x /) = sd(rk(x /) /); sd(α/) = h(/
{
sd(β) : β ∈ α

}
);

h(/ b) =
∪
z∈b

g(/ z,
∪
b); g(/ z, c) =

{
∅ if z ∈ c
{z} otherwise.

Predicative set recursion based on skinny drivers can be written in a simplified way.

Proposition 2.1 (Skinny Predicative Set Recursion) Let g, h be in SRSF of appropriate
arities. Then there exists some f in SRSF which satisfies

f(∅, y⃗ / a⃗) = g(y⃗ / a⃗);

f({d}, y⃗ / a⃗) = h({d}, y⃗ / a⃗, f(d, y⃗ / a⃗)).

Proof. Let

H(x, y⃗ / a⃗, b) =

{
g(y⃗ / a⃗) if x = ∅
h(x, y⃗ / a⃗,

∪
b) otherwise.

Then f defined by predicative set recursion on x in H satisfies the required equations. �

In the previous subsection we have seen one important property of SRSF that ranks
of sets grow polynomially only. Another important property deals with sizes of sets, in
particular their growth rate. Since there are super-exponentially many sets of rank n,
Theorem 1.5 implies a super-exponential bound on the size of the transitive closure of
f(x⃗ / a⃗) for f ∈ SRSF. The following Theorem 2.3 will give a substantial improvement
over this by showing a double exponential upper bound. Functions which satisfy such a
double exponential size upper bound will be called dietary —the following definition will
make this notion precise.

Let |a| denote the cardinality of a set a, and tc(a) its transitive closure.

Definition 2.2 A function f(x⃗ / a⃗) in SRSF is called dietary if, for some polynomial p,

| tc(f(x⃗ / a⃗))| ≤ | tc({x⃗, a⃗})|2p(rk(x⃗))

for all x⃗, a⃗ ∈ HF .

Theorem 2.3 All functions in SRSF are dietary.

Proof. The proof is by induction on the definition of f in SRSF. We will construct
monotone polynomials qf , and show that they can serve as the polynomial p in the
bound of the assertion that f is dietary. We will only consider the case that f is defined
by predicative set recursion, the other cases (base cases, bounded union, safe composition)
are left to the reader.

If f is defined by predicative set recursion from h, then by induction hypothesis we
have h dietary with bounding polynomial qh. Define qf such that

qf (α, β⃗) = (1 + qh(α, β⃗)) · (1 + α).

The Infinity Project 319

We will show that |f(x, y⃗ / a⃗)| ≤ | tc(x, y⃗, a⃗)|2
qf (rk(x),rk(y⃗)) by ∈-induction on x. We have

|f(x, y⃗ / a⃗)| = |h(x, y⃗ / a⃗, {f(z, y⃗ / a⃗) : z ∈ x})|

≤ | tc
(
{x, y⃗, a⃗, {f(z, y⃗ / a⃗) : z ∈ x}}

)
|2
qh(rk(x),rk(y⃗))

≤
(
| tc({x, y⃗, a⃗})|+

∑
z∈x
| tc(f(z, y⃗, a⃗))|+ |x|+ 1

)2qh(rk(x),rk(y⃗))
.

Let α be rk(x) and βi be rk(yi). For z ∈ x we compute, using ∈-induction hypothesis,

| tc(f(z, y⃗ / a⃗))| ≤ | tc({x, y⃗, a⃗})|2
qf (rk(z),β⃗) ≤ | tc({x, y⃗, a⃗})|2

qf (α−1,β⃗)

.

We continue our computation from above:

|f(x, y⃗ / a⃗)| ≤
(
| tc({x, y⃗, a⃗})|+ |x| · | tc({x, y⃗, a⃗})|2

qf (α−1,β⃗)

+ |x|+ 1
)2qh(α,β⃗)

≤
(
(|x|+ 1) · | tc({x, y⃗, a⃗})|2

qf (α−1,β⃗)
)2qh(α,β⃗)

≤ | tc({x, y⃗, a⃗})|2
qf (α−1,β⃗)+1·2qh(α,β⃗)

≤ | tc({x, y⃗, a⃗})|2
qf (α,β⃗)

.

For the last inequality we observe:

2qf (α−1,β⃗)+1 · 2qh(α,β⃗) = 2qf (α−1,β⃗)+1+qh(α,β⃗)

= 2(1+qh(α−1,β⃗))·(1+α−1)+1+qh(α,β⃗)

≤ 2(1+qh(α,β⃗))·(1+α−1)+1+qh(α,β⃗)

= 2(1+qh(α,β⃗))·(1+α) = 2qf (α,β⃗). �

That the bounds given in the definition of “dietary” are sharp, can be seen in the
following way. Let Sq(/ a) = Prod(/ a, a). Define f by skinny predicative set recursion
as follows: f(∅ / a) = a and f({d} / a) = Sq(/ f(d / a)). Then f is in SRSF, and satisfies
|f(sdn / a)| = |a|2

n
.

2.1 Simulating alternating Turing machines

We will describe a way in which alternating Turing machine computations can be
simulated in SRSF. An alternating Turing machine (ATM) is given by an 8-tuple
(Q,Σ,Γ, δ, q0, qaccept, qreject, g) where the first 7 components form the ingredients of a non-
deterministic Turing machine in the usual way, that is, Q is a finite set of states which
includes three designated states: the start state q0, the accepting state qaccept, and the
rejecting state qreject, Σ is the input alphabet, Γ the work tape alphabet which includes
Σ and an additional symbol ⊔ denoting a blank tape cell, and δ ⊂ Q×Γ×Q×Γ×{L,R}
is the transition relation. In addition to this, g : Q→ {∨,∧} divides the set of states into
universal (∧) and existential (∨) states. A configuration is given by a 3-tuple (u, q, v)
where q is a state in Q, u and v are words over Γ , which indicates the configuration
where the current state is q, the tape content is uv, and the head position is the first
symbol of v (the tape contains only blanks following the last symbol of v), and the label
of this configuration is given by g(q).

320 Safe recursive set functions

We will not define the behavior of our ATMs in full detail, these will be obvious from
the context. We do use two special conventions, however, that might lead to confusion if
not stated explicitly. First, we assume that the tape is open only to the right, initially
the input word is written as the first entries from the left with the head positioned at the
first symbol. Second, when we mention a time bound for an ATM, then we assume that
the ATM is equipped with a counter, and enters the reject state should the time bound
be exceeded.

We are interested in a complexity class of alternating time with a bounded number of
alternation. Given functions t(n) and q(n) we define the set ATIME(t(n), q(n)) to consist
of all languages which can be decided by some alternating Turing machine which runs,
on inputs of length n, in time bounded by O(t(n)), such that the number of alternations
on each computation path is bounded by O(q(n)).

For our simulation of an ATM (Q,Σ,Γ, δ, q0, qaccept, qreject, g) within SRSF, we assume
that the alphabet Γ consists of sets only, and that ∅ /∈ Γ. Taking into considerations that
functions in SRSF are dietary, and increase ranks of sets only polynomially, we will rep-
resent configurations as sets in the following way: The tape content will be encoded as
a full binary tree (the tape tree) whose leaves are labeled with elements from Γ; and
the head position will be encoded as a binary sequence (the head path) of length corre-
sponding to the height of the tape tree. For this, we define the empty sequence by ∅,
and in general the binary sequence ⟨i1, . . . , in⟩ of length n by (i1, (i2, . . . , (in, ∅) . . .)).
Let T Γ

n be the set of all tape trees of height n, and Pn be the set of all head paths
of length n. Observe that a tape tree of height n stores tapes of length 2n. The set
of all configurations of size 2n is now given as CMn = Q × Pn × T Γ

n . All these sets
can be defined by functions in SRSF: Choose P in SRSF satisfying P(∅ /) = {∅} and
P({d} /) = Prod(/ {0, 1},P(d /)), then P(sdn /) = Pn. Choose T M in SRSF such that
T M (∅ /) = Γ and T M ({d} /) = Sq(/ T M (d /)), then T M (sdn /) = T Γ

n . Define CM (d /)
as Prod(/Q,Prod(/P(d /), T M (d /))) then CM (sdn /) = CMn .

We define a predicate NextM describing successor configurations according to M .
NextM (sdn / c, c

′) will be true if c, c′ ∈ CMn and c′ is a possible next configuration from c.
It can be defined as a predicate in SRSF in the following way:

NextM (d / (q, p, t), (q′,p′, t′)) ⇐⇒∨
(q,s,q′,s′,o)∈δ

[
Read(d / p, t) = s ∧ Moveo(d / p) = p′ ∧ Prt(d / p, t, s′) = t′

]
,

where Read(d / p, t) outputs the symbol on tape t at position p:

Read(∅ / p, t) = t;

Read({d} / (i, p), (t0, t1)) = Read(d / p, ti).

Moveo(d / p) computes the head position obtained by moving from position p in direction
o ∈ {L,R}, where ⟨0, . . . , 0⟩ denotes the very left position (see Figure 1):

⟨0, 0, 0⟩ ⟨1, 0, 0⟩ ⟨0, 1, 0⟩ ⟨1, 1, 0⟩ ⟨0, 0, 1⟩ ⟨1, 0, 1⟩ ⟨0, 1, 1⟩ ⟨1, 1, 1⟩

Figure 1. A tape of length 8 with pointers. Note that the cells are
indexed by binary strings in reversed bit order.

The Infinity Project 321

Moveo(∅ / p) = 0;

MoveL({d} / (i, p)) =

⟨0, . . . , 0⟩ if (i, p) = ⟨0, . . . , 0⟩
(0, p) if i = 1

(1,MoveL(d / p)) if i = 0;

MoveR({d} / (i, p)) =

⟨1, . . . , 1⟩ if (i, p) = ⟨1, . . . , 1⟩
(1, p) if i = 0

(0,MoveR(d / p)) if i = 1;

and Prt(d / p, t, s′) computes the tape obtained by printing the symbol s′ on tape t at
position p:

Prt(∅ / p, t, s) = s;

Prt({d} / (0, p), (t0, t1), s) = (Prt(d / p, to, s), t1);

Prt({d} / (1, p), (t0, t1), s) = (t0, P rt(d / p, t1, s)).

We also need a predicate Next
M describing successor configurations according to M for

which the label according to g does not change. Let the labeling function g be extended
to configurations in the obvious way: g((q, p, t)) := g(q). Next

M
(d / c, c′) can be defined

as NextM (d / c, c′) and g(c) = g(c′).
Our next aim is to define a binary relation NM

n on CMn which represents the iteration
of Next

M . The situation of iterating a binary relation R on a set A will occur at various
places, therefore we will first explain how to achieve this as a function in SRSF.

Given two sets r and s (think of r ⊆ A×B and s ⊆ B×C) we define their composition
r ◦ s to be the set {(x, z) ∈ A× C : (∃y ∈ B)(x, y) ∈ r ∧ (y, z) ∈ s} . This can be defined
in sRud as Comp(/ r, s) = r ◦ s because sRud is closed under Boolean connectives and
bounded quantification. Let A and R be sets (think of R being a binary relation on A).
We define the iteration of R on A as

Iter(dn /R,A) = {(x, y) ∈ A×A : there is a path in R from x to y of length ≤ 2n} ,

which can be defined by skinny recursion in SRSF as follows:

Iter(∅ /R,A) = R ∪ {(x, x) : x ∈ A} ;
Iter({d} /R,A) = Comp(/ Iter(d /R,A), Iter(d /R,A)).

Let us return to our task of iterating Next
M . We define

NM
(d /) =

{
(c, c′) ∈ CM (d /) : Next

M
(d / c, c′)

}
;

NM (d /) = Iter(d /NM
(d /), CM (d /)).

Thus NM
n = NM

(sdn /) and NM
n = NM (sdn /).

Let NEXTM (sdn / c, c
′) denote the predicate on configurations c, c′ ∈ CMn which is

true iff c′ follows from c according to M such that either c, c′ and all intermediate
configurations have the same label and c′ is an accepting or rejecting configuration, or
c and all intermediate configurations have the same label, and c′ is the first with a

322 Safe recursive set functions

different label:

NEXTM (d / c, (q′, p′, t′))

⇐⇒ (∃c′′ ∈ CM (d /))
[
(c, c′′) ∈ NM (d /) ∧ NextM (d / c′′, (q′, p′, t′))

∧ [g(c) ̸= g(q′) ∨ q′ ∈ {qaccept, qreject}]
]
;

NEXTM (d /) =
{
(c, c′) ∈ CM (d /) : NEXTM (d / c, c′)

}
.

Finally, we define the accepting states of an alternating computation according to M .
Let C be a set (the set of configurations) and N a binary relation on C (taking configu-
rations to a next alternating configuration). AcceptM (sdn / c, C,N) will be true if c has
an accepting computation of at most n alternations:

AcceptM (∅ / c, C,N) ⇐⇒ c ∈ C ∧ state(c) = qaccept;

AcceptM ({d} / c, C,N) ⇐⇒
AcceptM (d / c, C,N)

∨ [g(c) = “∧” ∧ (∀c′ ∈ C)((c, c′) ∈ N → AcceptM (d / c′, C,N))]

∨ [g(c) = “∨” ∧ (∃c′ ∈ C)((c, c′) ∈ N ∧ AcceptM (d / c′, C,N))];

AcceptM (d /c) ⇐⇒ AcceptM (d / c, CM (d /),NEXTM (d /)).

Now that we have described how accepting configurations of ATMs can be computed
in SRSF, we turn to the missing bit of initializing the tape with an input word. This
initialization part depends on how words are coded in HF , a topic we will discuss next.

2.2 Encoding words in HF

Any encoding ν : Σ∗ → HF of finite words into HF gives rise to a class of computable
functions over Σ∗ which we will denote by SRSFν .

Definition 2.4 A function f : Σ∗ → Σ∗ is in SRSFν , if there exists some F ∈ SRSF such
that the following diagram commutes:

HF F−−−−→ HFxν xν
Σ∗ f−−−−→ Σ∗.

In general, the function f : (Σ∗)k → Σ∗ is in SRSFν if

∀w1, . . . , wk ∈ Σ∗ ν(f(w1, . . . , wk)) = F (ν(w1), . . . , ν(wk) /)

for some F ∈ SRSF.

Definition 2.5 We call two encodings ν and ν ′ equivalent if they can be transformed in
each other with functions from SRSF. That is, there exist f, g ∈ SRSF such that

∀w ∈ Σ∗ (
f(ν(w) /) = ν ′(w) and g(ν ′(w) /) = ν(w)

)
.

Lemma 2.6 If ν and ν ′ are equivalent, then SRSFν = SRSFν′.

Several encodings of Σ∗ in HF are possible, but not all will be suitable. We will
discuss a few encodings mentioned in the literature.

The Infinity Project 323

2.2.1 The Ackerman encoding

The Ackerman encoding (cf. [11]) Ack: N→ HF is given by

Ack(2n1 + 2n2 + · · ·+ 2nk) = {Ack(n1),Ack(n2), . . . ,Ack(nk)}
for n1 > n2 > · · · > nk ≥ 0, k ≥ 0. This encoding does not give rise to a nice class
SRSFAck of functions. For example, SRSFAck does not include the function n 7→ n ·− 1:
Let 2n denote the exponentiation tower to base 2 of height n, then Ack(2n) = sdn. It is
then easy to see that a function F which represents n 7→ n ·− 1 on HF with respect to
Ack cannot be dietary, by considering F ’s behavior on Ack(2n).

2.2.2 Two feasible encodings

We will now define two feasible encodings νl and νm. We call them feasible, because
the rank of the encoded word will be of order the length of the word. Actually, both
encodings will be equivalent and thus give rise to the same class of functions.

The first encoding, νl, encodes words as a list using ordered pairs. Let νl(λ) = ∅ and
νl(wx) = (x, νl(w)), then rk(νl(w)) = 2|w| + O(1) (the constant term comes from the
ranks contributed by elements in Σ).

The second encoding, νm, of a word is given as a map from the position of a letter
(coded by the rank of a skinny driver) to the letter. Let xn . . . x1 denote a word over Σ
of length n. We define

νm(xn . . . x1) = {(sdj , xj) : j = 1, . . . , n} .
Then rk(νm(w)) = |w|+O(1).

We leave it to the reader to verify that νl and νm are equivalent.
The main result of this section is the characterization of SRSFνm as the functions

computable by an ATM in exponential time with polynomial many alternations.

Theorem 2.7 A function f(x) is in SRSFνm if, and only if, f can be computed by some
machine in ATIME(2n

c
, nc) for some constant c.

Here we prove one part of this result, that all functions computable by ATM’s in
exponential time with polynomial many alternations are in SRSFνm . The other part will
be the subject of the next section.

Theorem 2.8 Let f be a function computable in ATIME(2n
k
, nk) for some constant k.

Then f is in SRSFνm .

Proof. Let L ⊆ Σ∗ be a language computable by some O(2n
k
)-time ATM M with O(nk)

many alternations on each computation path. We will define some predicate P ∈ SRSF
such that

w ∈ L ⇐⇒ P (νm(w))

for all w ∈ Σ∗. In the following, we will use w to range over words in Σ∗, and m to range
over codes of words νm(Σ∗).

First, we define a function cwl in sRud which computes the length of a coded word
as a skinny driver:

cwl(/m) =
∪

x∈
∪
m

h(/ x,m); h(/ x,m) =

{
{x} if Appl(m,x) ̸= ∅ and Appl(m, {x}) = ∅
∅ otherwise;

cwl(m/) = cwl(/m).

324 Safe recursive set functions

Then cwl(/ νm(w)) = sd|w| for w ∈ Σ∗.
Second, we have seen that ordinal multiplication is in SRSF, so is f1(α/) = αk for

ordinals α. Let
f2(m/) = sd(f1(rk(cwl(m/) /) /) /).

Fix w ∈ Σ∗. Let l denote the ordinal representing |w|. We observe that rk(sd|w| /) = l.
Thus

f2(νm(w) /) = sd(f1(rk(sd|w| /) /) /) = sd(f1(l /) /)

= sd(lk /) = sdrk(lk) = sd|w|k .

Third, we define some functions suitable to produce the initial configuration based
on an input word. null(sdn /) = ⟨0, . . . , 0⟩ points to the first position of the tape:

null(∅ /) = ∅; null({d} /) = (0, null(d /)).

blank(sdn /) computes the blank tape of length 2n:

blank(∅ /) = ⊔; blank({d} /) = (blank(d /), blank(d, /)).

The next function, moveR, computes the movement of the head position to the right.
moveR(sdk, sdn / p) computes the head position after moving k steps to the right from
position p, assuming that p is of length n:

moveR(∅, e / p) = p; moveR({d}, e / p) =MoveR(e / moveR(d, e / p)).

moveR(sdk, e /) = moveR(sdk, e / null(e /)) then computes the head position after mov-
ing k steps to the right from the first position.

Finally, we can compute initial configurations. InitM (νm(w) /) computes the initial
tape of length 2|w|

k with νm(w) standing at the very left end of the tape:

Init(m/) = Init(cwl(m/), f2(m/) /m);

Init(∅, e /m) = blank(e /);

Init({d}, e /m) = Prt(e / moveR(d, e /), Init(d, e /m),Appl(/m, d)).

Now we can put things together. Define P as

P (m/) ⇐⇒ AcceptM (f2(m/) / InitM (/)).

Then P ∈ SRSF has the desired property that w ∈ L if and only if P (νm(w)) for all
w ∈ Σ∗. �

2.3 The converse of Theorem 2.8

For the converse of Theorem 2.8, we shall prove the following theorem.

Theorem 2.9 Let f(x) be an SRSFνm function. Then f can be computed y some machine
in ATIME(2n

c
, nc), for some constant c.

The proof of Theorem 2.9 will use induction on the formation of SRSFνm functions,
with the main induction step being the definition by safe recursion. However, the defi-
nition of an SRSFνm function may use intermediate SRSF functions which may not be
SRSFνm functions. Even worse, these intermediate functions may output sets which have
double exponential size 22

nc . For instance, the set CMn defined above is an example of
a set with double exponential size. For this reason it is necessary to state and prove a

The Infinity Project 325

generalized form of Theorem 2.9 that will apply to all SRSF functions, not just SRSFνm
functions.

Definition A set A has local cardinality N provided A and every member of tc(A) has
cardinality ≤ N .

Definition An indexed tree T is a finite rooted tree in which, for a given node x in T ,
the children of x are indexed by non-negative integers. That is, for each i ≥ 0, there is at
most one node y which is the child of x of index i. We call y the i-th child of x, however
it should be noted that some children may be missing; for example, x might have a third
child, but no second child.

Definition An indexed tree T has local index rank N provided that all nodes in T have
their children indexed by numbers < N .

Definition Let A be a set with local cardinality N and rank ≤ R. A can be (non-
uniquely) represented by an indexed finite tree T as follows. The subtree of T rooted at
the i-th child of the root of T is called the i-th subtree of T . If A is empty, then T is
the tree with a single node, namely its root node has no children. For A a general set, T
represents A is defined by the condition that the elements of A are precisely the sets B
for which there is some i < N such that the i-th subtree of T represents B. That is, T
represents A provided:

A = {B : for some i, the i-th subtree of T exists and represents B} .

Definition Let ⟨i1, . . . , iℓ⟩ be a sequence of integers and T be a tree. This sequence
denotes a path in T that starts at the root, and proceeds to the i1-st node of T if it
exists, and continues along the path represented by ⟨i2, . . . , iℓ⟩ in the i1-st subtree of T
(if it exists). For I = ⟨i1, . . . , iℓ⟩, we write TI for the subtree of T rooted at the end of
the path I in T .

Let the rank of an indexed tree T be defined by assigning the tree with a single node
rank 0, and inductively assigning a general tree rank the supremum of the successors
of ranks of children of T ’s root, i.e., max

{
(rank of T⟨i⟩) + 1 : i < N

}
where N is the

local index rank of T . We observe that a set of local cardinality N and rank R can be
represented by an indexed tree of local index rank N and rank R. Conversely, an indexed
tree of local index rank N and rank R represents a set of local cardinality N and rank R.

Definition An algorithm M recognizes a tree T provided that on input ⟨i1, . . . , iℓ⟩, M
returns a Boolean value indicating whether the path ⟨i1, . . . , iℓ⟩ exists in T .

When working with an algorithm M that recognizes a tree T of local index rank N ,
we shall often have N equal to the value 22

p for some p ≥ 0. Note that if the rank of T
is bounded by R, then any path ⟨i1, . . . , iℓ⟩ is bounded by NR, and hence is coded by a
bit string of length O(R logN) = O(R · 2p).

More generally, we may have N = q2
p for some value q, at least for the intermediate

parts of some of our proofs.
In our applications, we will have both p and R equal to nO(1), and we usually have

q = 2. Logarithms are always base 2.

Lemma 2.10 There are algorithms M= and M∈ which take as input values p,R > 0 and
oracles for trees S and T both with local index rank ≤ N = 22

p and rank ≤ R, and which
output Boolean values indicating whether A = B and A ∈ B, respectively, where A and B

326 Safe recursive set functions

are the sets represented by S and T , respectively. Furthermore, the algorithms M= and
M∈ run in time 2p ·RO(1) using O(R) many alternations.

Proof. We define slightly more general algorithms MS,T
= (p,R, I, J) and MS,T

∈ (p,R, I, J)
which decide whether AI = BI and AI ∈ BI , where AI and BJ are the sets represented
by SI and TJ .

Here MS,T
= (p,R, I, J) universally calls two algorithms for checking AI ⊆ BJ and

AI ⊇ BJ . The algorithm for AI ⊆ BJ first universally chooses i < N and checks whether
path I ∗ ⟨i⟩ exists in S. If not, it accepts. Otherwise, it then existentially chooses
j < N , checks that J ∗ ⟨j⟩ in T exists and rejects if not. Otherwise, it verifies whether
MS,T

= (p,R, I ∗ ⟨i⟩ , J ∗ ⟨j⟩). This determines whether AI ⊆ BJ .
The same algorithm is used to determine whether AI ⊇ BJ .
MS,T

∈ (p,R, I, J) existentially chooses j < N , and checks whether J ∗ ⟨j⟩ is in T . If
not, it rejects, otherwise it determines whether MS,T

= (p,R, I, J ∗ ⟨j⟩). �

The proof of Lemma 2.10 actually proves a better bound on the number of alternations
used by the two algorithms. Namely,

Lemma 2.11 Lemma 2.10 still holds if M is required to use O(min{RS , RT }) alterna-
tions, where RS and RT are the ranks of S and T , respectively.

Proof. The algorithms as described already have alternations bounded in this way. �
Definition A safe set function f(x⃗ / a⃗) is AEP-computable (where “AEP” stands for
“ATIME(Exp,Poly)”) provided there are polynomials p, q and r, and an ATM M , such
that the following holds. Let X⃗ and A⃗ be trees which represent sets x⃗ and a⃗. Let the
local index rank of X⃗ and A⃗ be bounded by Nx and Na, respectively, and their ranks be
bounded by Rx and Ra, respectively. Let Nxa = max{Nx, Na, 2} and Ha = max{Ra, 1}.
Then M X⃗,A⃗ recognizes a tree T which represents the set f(x⃗ / a⃗) such that T has local
index rank ≤ N = N2p(Rx)

xa and rank ≤ R = Ra + r(Rx). Furthermore, M X⃗,A⃗ runs in
time (Ha · logN)O(1) with ≤ Q = Ha · q(Rx) many alternations.

Note that Q depends on Ra multiplicatively, and N depends on only Rx.

Lemma 2.12 The set equality relation, the set membership relation, the projection func-
tions, the difference function and the pairing function are AEP-computable.

Proof. For set equality and set membership, use the algorithm from the proof of
Lemma 2.10 above. The theorem is obvious for the projection functions since M just
computes the same function as one of its oracles. Next consider the pairing function
p(/ a, b) = {a, b}. If A and B are trees representing the sets a and b, then the tree
representing the pair {a, b} is

{⟨i⟩ ∗ I : I is a path in A if i = 0, or a path in B if i = 1} .
The property “I is a path in A” (resp, “in B”) is computed by invoking one of the

oracle inputs. Finally, consider the set difference function d(/ a, b) = a \ b. The tree
representing the set difference a \ b consists of the following paths:

{I = ⟨i1, i2, ..., iℓ⟩ : I is a path in A, and for all j, Ai1 is not equal to Bj} .
M computes this property by universally branching to verify both (a) check that

I ∈ A using the oracle for A, and (b) universally choosing j (this takes logNb time where

The Infinity Project 327

Nb bounds the local index rank of tree B) and invoking M= to verify that Ai1 is not
equal to Bj . �

Theorem 2.13 Every SRSF function is AEP-computable.

The proof of Theorem 2.13 will show that the formation methods of bounded union,
safe composition, and safe recursion preserve the property of being AEP computable.
An important ingredient in the construction is how one composes algorithms that use
alternation without losing control of the number of alternations. Specifically, suppose
that f and g are algorithms that use run times tf and tg, and have number of alternations
bounded by qf and qg. Then, loosely speaking, their composition f ◦ g can be computed
in time approximately tf + tg with qf + qg +O(1) many alternations. The basic idea for
the algorithm for f ◦ g is as follows. Run the algorithm for f ; but whenever it needs to
query its input (namely, the value of g), it existentially guesses the needed input value,
and branches universally to both (a) verify the correctness of its guess by executing the
algorithm for g, and (b) continue the computation of f . (Alternately, it could branch
universally and then existentially.) Note that the algorithm for g is run only once in
any given execution path, so contributes only additively to the run time. However, this
“basic idea” can increase the number of alternations by the number of times f reads its
input (which is more than we can allow); and a better construction is needed. The better
construction is as follows:

Algorithm for f ◦ g: Simulate f by splitting the computation up into existential
portions and universal portions. There are at most qf such portions by assumption. When
starting an existential portion, initially guess all input values provided by g that will be
needed throughout the computation for this portion. In addition, existentially guess (or,
non-deterministically execute) the entire computation for this existential portion using
the guessed input values. Then branch universally to either (a) check any one of the
guessed input values, by running the algorithm for g and accepting iff it gives the guessed
input value, or (b) proceed to the next universal portion. Universal portions of the
computation of f are handled dually.

The run time for the algorithm is clearly O(tf + tg). And, the number of alternations
is at most qf + qg +O(1). (The +O(1) is needed for an alternation that may occur as g
is invoked; it is also needed to handle the case where f is deterministic and qf = 0.)

Clearly, this construction can be iterated for repeated compositions and this will allow
us to handle safe recursion.

Proof of Theorem 2.13. The argument splits into cases of bounded union, safe composi-
tion, and safe recursion. The basic idea is to use the method described above for nesting
calls to functions, along with the bounds established in the proofs of Theorems 1.5 and 2.3.

Case: Bounded union. f(x⃗ / a⃗, b) = ∪z∈b g(x⃗ / a⃗, z). The induction hypothesis that g is
AEP-computable gives polynomials pg, qg and rg, and an ATM Mg. Let X⃗, A⃗, B be
trees representing sets x⃗, a⃗, b, with local index ranks bounded by Nx, Na and Nb, respec-
tively, and ranks bounded by Rx, Ra and Rb, respectively. Without loss of generality,
Nx, Na, Nb ≥ 2 and Ra, Rb ≥ 1. Let Nxab = max{Nx, Na, Nb}, and Rab = max{Ra, Rb}.

We describe the behavior of M X⃗,A⃗,B on input ⟨i⟩∗I: M treats i as a pair (j1, j2), and

universally (a) checks that ⟨j1⟩ is a path in B, and (b) runs M X⃗,A⃗,Bj1
g on input ⟨j2⟩ ∗ I.

Clearly, M X⃗,A⃗,B computes a tree T representing f(x⃗ / a⃗). Let Ng be an upper bound to

328 Safe recursive set functions

the local index rank of the tree computed by M
X⃗,A⃗,Bj1
g , and Rg an upper bound to its

rank. Let Qg bound the number of alternations for M X⃗,A⃗,Bj1
g .

T has local index rank bounded by O(Ng ·Nb) = O(N2pg(Rx)

xab ·Nb) = N2pg(Rx)+O(1)

xab and
rank bounded by Rg ≤ Rab + rg(Rx). The algorithms runs in time bounded by

(Rab logNxab)
O(1) + (Rab logNg)

O(1) ≤ (Rab logN
2pg(Rx)

xab)O(1)

with Qg + 1 ≤ Rab · (qg(Rx) + 1) many alternations.

Case: Safe composition. f(x⃗ / a⃗) = h(s(x⃗/)/t(x⃗/a⃗)). Here s and t may be vectors of
functions, but we omit this for simplicity (nothing essential is changed in the proof). The
induction hypotheses give polynomials ph, ps, pt, qh, qs, qt, rh, rs, and rt, and machines
Mh, Ms, and Mt. Let X⃗ and A⃗ be trees representing sets x⃗ and a⃗, repectively, with
local index ranks bounded by Nx and Na, respectively, and ranks bounded by Rx and Ra
respectively. Without loss of generality, Nx, Na ≥ 2 and Ra ≥ 1. LetNxa = max(Nx, Na),
Nst = max(Ns, Nt), pst = ps + pt, and qst = qs + qt. We have that Nst ≤ N2pst(Rx)

xa .
Let M be the straightforward algorithm for f , based on composing the algorithms

for h, s and t. M X⃗,A⃗ will recognize a tree T whose rank is bounded by

Rt + rh(Rs) ≤ Ra + rt(Rx) + rh(rs(Rx))

so we can choose rf = rt + rh ◦ rs. The local index rank of T is bounded by

N2ph(Rs)

st ≤
(
N2pst(Rx)

xa

)2ph(rs(Rx))
= N2pst(Rx)+ph(rs(Rx))

xa .

The run time of M is bounded by, for some c = O(1),

O(max{(runtime(s), runtime(t)}+ runtime(h))

≤ O
(
max{(logNx) · 2ps(Rx), Ra · (logNxa) · 2pt(Rx)}c +

(
Rt · (logNst) · 2ph(Rs)

)c)
≤ O

((
Ra · (logNxa) · 2pst(Rx)

)c
+
(
(Ra + rt(Rx)) · (logNxa) · 2pst(Rx)+ph(rs(Rx))

)c)
≤
(
Ra · (logNxa) · 2pf (Rx)

)c
for an appropriately chosen polynomial pf . Say, pf = ps + pt + rt + ph ◦ rs +O(1).

The number of alternations of this algorithm is bounded by

max{alternations(s), alternations(t)}+ alternations(h) +O(1)

≤ max{qs(Rx), Ra · qt(Rx)}+Rt · qh(Rs) +O(1)

≤ Ra · qst(Rx) + (Ra + rt(Rx)) · qh(rs(Rx)) +O(1)

≤ Ra · qf (Rx)

for an appropriate polynomial qf .

Case: Safe recursion. f(x, y⃗ / a⃗) = h(x, y⃗ / a⃗, {f(z, y⃗ / a⃗) : z ∈ x}). The induction hy-
pothesis gives polynomials ph, qh, rh, and a machine Mh. Let X, Y⃗ and A⃗ be trees repre-
senting sets x, y⃗ and a⃗, respectively, with local index ranks bounded by Nx, Ny and Na,
respectively, and ranks bounded by Rx, Ry and Ra, respectively. Without loss of general-
ity, Nx, Ny, Na ≥ 2 and Ra ≥ 1. Let Nxya = max(Nx, Ny, Na), and Rxy = max(Rx, Ry).
With M we denote the (yet to be defined) algorithm for computing f .

The Infinity Project 329

Let f(x, y⃗ / a⃗) be the set {f(z, y⃗ / a⃗) : z ∈ x}. Then f can be computed by a machine
MX,Y⃗ ,A⃗

f
which on input ⟨i⟩ ∗ I first tests whether ⟨i⟩ is a path in X, and if so calls

MXi,Y⃗ ,A⃗ on input I. Then, MX,Y⃗ ,A⃗ computes the composition of h with f using the
above algorithm. Let Rf (Nf , respectively) denote a bound to the rank (local index

rank, respectively) of the tree computed by MX,Y⃗ ,A⃗

f
.

Clearly, MX,Y⃗ ,A⃗ computes a tree T which represents f(x, y⃗ / a⃗). To obtain a bound for
the rank of T we can choose rf similar to the proof of Theorem 1.5: Let rf (z) = r′f (z, z)
with

r′f (z, z
′) = (1 + rh(z

′))(1 + z).

The same calculation done in that proof carries over here to show by induction on Rx
that the rank is ≤ Ra + r′f (Rx, Rxy).

In order to bound the local index rank of T we choose pf similar to the proof of
Theorem 2.3. Let pf (z) = p′f (z, z) for

p′f (z, z
′) = (ph(z

′) + rf (z
′) +O(1)) · (1 + z).

We show by induction on Rx that the local index rank of T is ≤ N = N2
p′f (Rx,Rxy)

xya and
that the run time is ≤ (Ra logN)O(1). In case Rx = 0 both assertions follow easily. For
Rx > 0, we calculate as a bound for the local index rank of T

max{Nxya, Nf}
2ph(Rxy) ≤ max{Nxya, Nx, N

2
p′f (Rx−1,Rxy)

xya }2
ph(Rxy)

≤ N2
p′f (Rx−1,Rxy)+ph(Rxy)

xya ≤ N2
p′f (Rx,Rxy)

xya .

The run time of M can be bounded by, for some c = O(1),

O(runtime(Mh) + runtime(Mf))

≤ O
((

max{Ra, Rf} · (logmax{Nxya, Nf}) · 2
ph(Rxy)

)c
+
(
Ra · (logNf) +Ra · (logNxya) · 2p

′
f (Rx−1,Rxy)

)c)
≤ O

((
(Ra + rf (Rxy)) · (logNxya) · 2p

′
f (Rx−1,Rxy) · 2ph(Rxy)

)c
+
(
Ra · (logNxya) · 2p

′
f (Rx−1,Rxy) +Ra · (logNxya) · 2p

′
f (Rx−1,Rxy)

)c)
≤
(
log(Nxya) · 2ph(Rxy)+rf (Rxy)+O(1)+p′f (Rx−1,Rxy)

)c
=
(
log(Nxya) · 2p

′
f (Rx,Rxy)

)c
.

Let q′f (z, z
′) = (rf (z

′)+O(1)) ·qh(z′) ·(1+z). We will show that the overall number of

alterations of MX,Y⃗ ,A⃗ is bounded by Ra · q′f (Rx, Rxy) by induction on Rx. Then choosing
qf (z) = q′f (z, z) gives the desired bound. If Rx = 0, the overall number of alterations can
be calculated as

alternations(Mh) ≤ Ra · qh(Rxy) ≤ Ra · q′f (0, Rxy).

330 Safe recursive set functions

If Rx > 0 we obtain

alternations(Mh) + alternations(Mf) +O(1)

≤ max{Ra, Rf} · qh(Rxy) +Ra · q′f (Rx − 1, Rxy) +O(1)

≤ (Ra + rf (Rxy)) · qh(Rxy) +Ra · q′f (Rx − 1, Rxy) +O(1)

≤ Ra · ((rf (Rxy) +O(1)) · qh(Rxy) + q′f (Rx − 1, Rxy))

= Ra · q′f (Rx, Rxy). �

It is easy to verify that Theorem 2.9 is a corollary of Theorem 2.13.

3 Computing on arbitrary sets

Our goal in this section is to characterise the safe-recursive functions (i.e., the functions
in SRSF) in definability-theoretic terms. To achieve this we will use a relativisation of
Gödel’s L-hierarchy. Our result breaks into two parts: an upper bound result, showing
that every safe-recursive function satisfies our definability criterion, and a lower bound re-
sult, showing that any function satisfying our definability criterion is in fact safe-recursive.
First we introduce:

3.1 The relativised Gödel hierarchy

For a transitive set T , define the LT -hierarchy as follows:

LT0 = T

LTα+1 = Def(LTα)

LTλ = ∪α<λLTα for limit λ,

where for any set X, Def(X) denotes the set of all subsets of X which are first-order
definable over the structure (X,∈) with parameters. The following facts are easily verified:

Lemma 3.1 For any transitive set T ,
(1) T is an element of LT1 ;
(2) each LTα is transitive and α ≤ β implies LTα ⊆ LTβ ;
(3) Ord(LTα) = Ord(T) + α, where Ord(X) denotes Ord∩X for any set X.

Gödel demonstrated the following definability result for the L-hierarchy: For limit α,
the sequence (Lβ : β < α) is definable over (Lα,∈) and the definition is independent of α.
(See for example [4, Chapter II, Lemma 2.8].) His argument readily yields the following
refinement, which will be needed for our upper bound result.

Lemma 3.2 Let k < ω be sufficiently large, and let T be transitive, α an ordinal and
φ(x⃗, y⃗) a formula. Let D consist of all triples (U, β, p⃗) such that for some γ < α: U
is a transitive element of LTγ+1, γ + β + k < α and p⃗ is a sequence (with the same
length as y⃗) of elements of LUβ . Then the function with domain D sending (U, β, p⃗) to
(LUβ , {x⃗ : LUβ � φ(x⃗, p⃗)}) is definable over LTα via a definition independent of T, α.

For our lower bound result we will need the following (see [8, Corollary 13.8]):

The Infinity Project 331

Lemma 3.3 (Gödel) There exists a list of functions G1(x, y), . . . , G10(x, y) such that for
transitive T , T ∪

∪
1≤i≤10 range(Gi ↾ T × T) is transitive and Def(T) consists of those

subsets of T which belong to the closure of T ∪ {T} under the Gi’s. Moreover, for each i
the associated function G∗

i defined by G∗
i (/ x, y) = Gi(x, y) belongs to sRud.

3.2 The upper bound result

Recall that we identify finite sequences x⃗ of sets with individual sets, using Kuratowski
pairing. For any set x let tc(x) denote the transitive closure of x. The rank of tc(x) (in
the von Neumann hierarchy of Vα’s) is the same as rk(x), the rank of x. Given two finite
sequences x⃗, y⃗, we write x⃗ ∗ y⃗ for their concatenation.

Definition 3.4 For sequences x⃗, y⃗ and 0 < n ≤ ω we define SRn(x⃗ / y⃗) as Ltc(x⃗∗y⃗)
n+rk(x⃗)n .

Our upper bound result is the following refinement of Theorem 1.5:

Theorem 3.5 If f(x⃗ / y⃗) is safe-recursive then for some finite n, f(x⃗ / y⃗) is uniformly
definable in SRn(x⃗ / y⃗), i.e., for some formula φ(x⃗, y⃗, z) we have:

(1) f(x⃗ / y⃗) belongs to SRn(x⃗ / y⃗) for all x⃗, y⃗;
(2) f(x⃗ / y⃗) = z if and only if (SRn(x⃗ / y⃗),∈) � φ(x⃗, y⃗, z).

To see that this implies Theorem 1.5, note that all elements of SRn(x⃗ / y⃗) have rank
at most rk(x⃗ ∗ y⃗) + n+ rk(x⃗)n ≤ max(rk(x⃗), rk(y⃗)) + k + rk(x⃗)n for some finite k, which
is bounded by maxi rk(yi) + a polynomial in rk(x⃗).

Proof of Theorem 3.5. As in the proof of Theorem 1.5 we proceed by induction on the
clauses that generate f as a safe-recursive function. The base cases of Projection, Differ-
ence and Pairing are left to the reader. For Bounded Union, we have:

f(x⃗ / y⃗, z) =
∪
w∈z

g(x⃗ / y⃗, w)

and by induction there is a finite n such that g(x⃗ / y⃗, w) is uniformly definable in
SRn(x⃗ / y⃗, w). By the definability of union, it then follows from Lemma 3.2 that f(x⃗ / y⃗, z)
is uniformly definable in SRn+k(x⃗ / y⃗, z) for sufficiently large k.

For Safe Composition, we have:

f(x⃗ / y⃗) = h(r⃗(x⃗ /) / t⃗(x⃗ / y⃗))

and by induction nh, nri and ntj witnessing the theorem for the functions h, ri for
each i and tj for each j, respectively. By Lemma 3.2 we can choose a large n and
combine the uniform definitions of the ri(x⃗ /)’s in the SRnri (x⃗ /)’s, of the tj(x⃗ / y⃗)’s in
the SRntj (x⃗ / y⃗)’s and of h(r⃗(x⃗ /) / t⃗(x⃗ / y⃗)) in SRnh(r⃗(x⃗ /) / t⃗(x⃗ / y⃗)) to produce a uniform
definition of f(x⃗ / y⃗) inside SRn(x⃗ / y⃗).

For Predicative Set Recursion, we have:

f(x, y⃗ / z⃗) = h(x, y⃗ / z⃗, {f(w, y⃗ / z⃗) : w ∈ x}).

Choose n > 1 to witness the Theorem for h, i.e., so that h(x, y⃗ / z⃗, u) is uniformly definable
in SRn(x, y⃗ / z⃗, u). Fix y⃗ and z⃗. By induction on rk(x) we show that f(x, y⃗ / z⃗) is uni-
formly definable in Ltc(⟨x⟩∗y⃗∗z⃗)

n+rk(⟨x⟩∗y⃗)n·k·(rk(x)+1) (where k > n is fixed as in Lemma 3.2). If rk(x)

is 0 then we want to show that f(0, y⃗ / z⃗) = h(0, y⃗ / z⃗, 0) is an element of Ltc(⟨0⟩∗y⃗∗z⃗)
n+rk(⟨0⟩∗y⃗)n·k,

332 Safe recursive set functions

which is true by the choice of n. If rk(x) > 0 then by induction we know that for w ∈ x,
f(w, y⃗ / z⃗) is uniformly definable in

L
tc(⟨w⟩∗y⃗∗z⃗)
n+rk(⟨w⟩∗y⃗)n·k·(rk(w)+1);

it follows that {f(w, y⃗ / z⃗) : w ∈ x} is uniformly definable over Ltc(⟨x⟩∗y⃗∗z⃗)
n+rk(⟨x⟩∗y⃗)n·k·rk(x).

By choice of n, f(x, y⃗ / z⃗) = h(x, y⃗ / z⃗, {f(w, y⃗ / z⃗) : w ∈ x}) is uniformly definable in

L
tc(⟨x⟩∗y⃗∗z⃗∗⟨{f(w,y⃗ / z⃗) : w∈x}⟩)
n+rk(⟨x⟩∗y⃗)n

and hence in Ltc(⟨x⟩∗y⃗∗z⃗)
n+rk(⟨x⟩∗y⃗)n·k·(rk(x)+1) by Lemma 3.2. This completes the induction step.

Now by choosing m large enough so that n + rk(⟨x⟩ ∗ y⃗)n · k · (rk(x) + 1) is less
than m+ rk(⟨x⟩ ∗ y⃗)m we have that f(x, y⃗ / z⃗) is uniformly definable in SRm(x, y⃗ / z⃗), as
desired. �

Note that if there are no safe arguments then SRn(x⃗ /) takes a particularly nice form
and we have:

Corollary 3.6 Suppose that f(x⃗ /) is safe-recursive. Then for some finite n and some
formula φ we have, for x⃗ ̸= ⟨0⟩, that

(1) f(x⃗ /) belongs to Ltc(x⃗)
n+rk(x⃗)n ;

(2) f(x⃗ /) = y if and only if Ltc(x⃗)
n+rk(x⃗)n � φ(x⃗, y).

For any transitive set T let SR(T) denote LT(2+rk(T))ω .

Corollary 3.7 For transitive T , SR(T) contains T ∪ {T} and is closed under SRSF
functions (i.e., T contains f(x⃗ / y⃗) whenever f is safe-recursive and T contains the com-
ponents of x⃗, y⃗).

We shall soon see that SR(T) is in fact the smallest such set.

3.3 The lower bound result

Now we aim for a converse of Theorem 3.5. We begin by showing that a certain initial
segment of the LT -hierarchy can be generated by iteration of a safe-recursive function.

Lemma 3.8 Suppose that f(x /) is safe-recursive with ordinal values and g(/ x) is safe-
recursive with the property that x ⊆ g(/ x) for all x. By induction on α define gα(/ x)
by: g0(/ x) = x, gα+1(/ x) = g(/ gα(/ x)), gλ(/ x) = ∪α<λgα(/ x) for limit λ. Then the
function h(x /) = gf(x /)(/ x) is safe-recursive.

Proof. Imitating the proof that multiplication can be defined from addition via a safe
recursion, first define the function k(x, y /) via a safe recursion as follows:

k(x, y /) =

y if x = 0

g(/ ∪ {k(z, y /) : z ∈ x}) if x = Succ(/ ∪ x)
∪{k(z, y /) : z ∈ x} otherwise.

Then k is safe-recursive and note that for each ordinal α, k(α, y /) = gα(/ y). It
follows from safe composition that h(x /) = k(f(x /), x /) is also safe-recursive. �

The Infinity Project 333

Recall that the rank function rk(x /) is safe-recursive. We say that a function f(x⃗ / y⃗)
is safe-recursive with parameter p iff for some safe-recursive function g(x⃗, z / y⃗), we have
f(x⃗ / y⃗) = g(x⃗, p / y⃗) for all x⃗, y⃗.

Corollary 3.9
(1) The function tc(x /) computing the transitive closure of x, is safe-recursive.
(2) The function L(x, T /) = LTrk(x) is safe-recursive with parameter ω.
(3) For each finite n, the function SRn(x⃗ /) is safe-recursive with parameter ω.

Proof.
(1) The transitive closure of x is obtained by iterating the sRud function g(/ x) =

(x ∪ (∪x)) rk(x) times. So the result follows from the previous lemma.
(2) The function g(/ x) = x∪ the union of the ranges of the Gödel functions on x

(see Lemma 3.3) belongs to sRud. It follows from the previous lemma that the
function g∗(T /) = Def(T) = the closure of T ∪{T} under g∗ (restricted to tran-
sitive T) is safe-recursive with parameter ω, as Def(T) is obtained by iterating
g ω times. Similarly, as the function rk(x /) is safe-recursive, an application of
the previous lemma gives the safe-recursiveness of L(x, T /).

(3) This follows from 1 and 2, using the fact that ordinal multiplication is safe-
recursive. �

We therefore get the following partial converse to Theorem 3.5.

Theorem 3.10 Suppose that for some finite n, f(x⃗ / y⃗) is uniformly definable in
SRn(x⃗ / y⃗). Then f(x⃗ / y⃗) is safe-recursive with parameter ω. Moreover there is a safe-
recursive function g(x⃗ / y⃗) such that f(x⃗ / y⃗) = g(x⃗ / y⃗) whenever x⃗ has a component of
infinite rank (i.e., whenever rk(x⃗) is infinite).

Proof. By Corollary 3.9, 3.9, the function SRn(x⃗ / y⃗) is safe-recursive with parameter ω.
For any formula φ(x⃗, y⃗, z), the function g(/ T, p) = {(x⃗, y⃗) : T � φ(x⃗, y⃗, p)} is in sRud (see
for example [4, Chapter VI, Lemma 1.17]). It follows that any function which is uniformly
definable in SRn(x⃗ / y⃗) is also safe-recursive with parameter ω. For the “moreover” clause,
note that there is a safe-recursive function f(x /) whose value is ω for x of infinite rank,
and therefore ω can be eliminated as a parameter when x⃗ has a component of infinite
rank. �
Corollary 3.11 The safe-recursive functions with parameter ω are exactly the functions
f(x⃗ / y⃗) which are uniformly definable in SRn(x⃗ ∗ ⟨ω⟩ / y⃗) for some finite n.

Note that the closure of {0} under safe-recursive functions is Lω, the set of hereditarily
finite sets and when T is transitive of infinite rank then ω belongs to the safe-recursive
closure of T . Therefore we have:

Corollary 3.12 For transitive T , SR(T) = LT(2+rk(T))ω is the smallest set which contains
T ∪ {T} as a subset and is closed under safe-recursive functions.

We therefore obtain the following hierarchy of iterated safe-recursive closures. Define:

SR0 = ∅
SRα+1 = SR(SRα)

SRλ = ∪α<λ SRα for limit λ.

334 Safe recursive set functions

Corollary 3.13 For every α, SR1+α = Lωωα .

To eliminate the parameter ω from Corollary 3.11 we redefine SRn slightly, using a
slower hierarchy for LT . Define MT

α inductively as follows:

MT
0 = T

MT
α+1 =MT

α ∪
∪

1≤i≤10

range(Gi ↾ ((MT
α ∪ {MT

α })× (MT
α ∪ {MT

α }))

MT
λ = ∪α<λMT

α for limit λ.

This hierarchy is very close to Jensen’s S-hierarchy, a refinement of his J-hierarchy
(see [9, p. 244]). We have the following (see [9, p. 255]):

Lemma 3.14 For any transitive set T :
(1) T is an element of MT

1 .
(2) Each MT

α is transitive and α ≤ β implies MT
α ⊆MT

β .
(3) Ord(MT

λ) = Ord(T) + λ for limit λ.
(4) MT

α = LTα if α is ω or ω · α = α. In particular, MT
rk(x)ω = LTrk(x)ω if x has rank

greater than 1.

Definition 3.15 For sequences x⃗, y⃗ and 0 < n ≤ ω we define SR∗
n(x⃗ / y⃗) to be M tc(x⃗∗y⃗)

n+rk(x⃗)n .

Lemma 3.2 and Theorem 3.5 (the upper bound result) go through with L replaced
by M and SRn(x⃗ / y⃗) replaced by SR∗

n(x⃗ / y⃗). But now the lower bound result can be
improved, as the parameter ω can be dropped in the version of Corollary 3.9 (3.9), (3.9) in
which L is replaced by M and SR is replaced by SR∗: Whereas obtaining LTα+1 from LTα
requires a safe recursion of length ω, MT

α+1 is obtained from MT
α by a single application

of a function in sRud. In conclusion, we get the following characterisation:

Theorem 3.16 The safe-recursive functions are exactly the functions f(x⃗ / y⃗) which are
uniformly definable in SR∗

n(x⃗ / y⃗) for some finite n.

3.4 Safe recursion on binary ω-sequences

We let {0, 1}ω denote all ω-sequences of 0’s and 1’s. Note that if x belongs to {0, 1}ω

then x has rank ω. It follows that SRn(x /) is equal to Ltc(x)
ωn for 0 < n ≤ ω. Moreover

the latter can be equivalently written as Lωn [x], where Lα[x] is the α-th level of the
relativised Gödel’s L-hierarchy in which x is introduced as a new unary predicate.

Thus the safe-recursive functions restricted to elements of {0, 1}ω as normal inputs
take the following form:

f(x /) = y iff Lωn [x] � φ(x, y)
for some formula φ.

The following is implicit in the analysis of the “Theory Machine”, the universal infinite-
time Turing machine considered in [6].

Theorem 3.17 For any function g : {0, 1}ω → {0, 1}ω, the following are equivalent:
(1) g is computable by an infinite-time Turing machine (see [7]) in time β for some

β < ωω.

The Infinity Project 335

(2) g is of the form

g(x) = y iff Lβ[x] � φ(x, y)
for some formula φ and some β < ωω.

From this we see that the safe-recursive functions restricted to normal inputs in {0, 1}ω
with values in {0, 1}ω are equivalent to the functions computed by an infinite-time Turing
machine in time less than ωω. Interestingly, these are exactly the functions which are
“computable in polynomial time” on an infinite-time Turing machine in the sense of [12].

4 A machine model for safe recursion

We finish by briefly describing a simple machine model with parallel processors which
with the natural bound on running times yields the class of safe-recursive functions.

To each set x assign a processor Px, which computes in ordinal stages. The value
computed by Px at stage α is denoted by Pαx . The entire machine M is determined by a
function h(/ x) in sRud and a finite n > 0. We write M =Mn

h .
Pαx is defined by induction on α as follows. for any x and α we denote {(y, β, P βy) : y ∈

x, β ≤ α} by P≤α
∈x and {(x, β, P βx : β < α} by P<αx . Now define:

(4.1) Pαx = h(/P≤α
∈x ∪ P<αx).

Thus the value computed by processor Px at stage α is determined by the history of
the values of processors Py for y ∈ x at stages ≤ α together with the values of processor
Px itself at stages < α.

The function f(x /) = fM
n
h (x /) computed by Mn

h is given by: f(x /) = P
rk(x)n

x .

Theorem 4.1 The safe-recursive functions f(x /) are exactly those computed by a ma-
chine Mn

h for some h(/ x) in sRud and some finite n > 0.

Proof. It follows from the safe-recursion scheme that the function g(x, y /) = P
rk(y)n

x is
safe-recursive (where Pαx is defined as above, using h). It follows that f(x /) = g(x, x /),
the function computed by Mn

h , is also safe-recursive. Conversely, in view of the improved
characterisation of safe-recursive functions given by Theorem 3.16, it suffices to observe
that the M -hierarchy, given by applying the Gödel functions iteratively, is obtained by
iteration of a function in sRud and therefore is captured by Definition (4.1) above. �

References
[1] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the polytime

functions. Comput. Complexity, 2(2):97–110, 1992.
[2] Leonard Berman. The complexity of logical theories. Theoretical Computer Science, 11:71–77, 1980.
[3] Anna R. Bruss and Albert R. Meyer. On the time-space classes and their relation to the theory of

real addition. Theoretical Computer Science, 11:59–69, 1980.
[4] Keith J. Devlin. Constructibility. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1984.
[5] Jeanne Ferrante and Charles W. Rackoff. A decision procedure for the first order theory of real

addition with order. SIAM Journal on Computing, 4(1):69–76, 1975.
[6] S. D. Friedman and P. D. Welch. Two observations concerning infinite time Turing machines. Techni-

cal report, I. Dimitriou (ed.), BIWOC 2007 Report, pages 44–47. Hausdorff Centre for Mathematics,
Bonn, January 2007.

[7] Joel David Hamkins and Andy Lewis. Infinite time Turing machines. J. Symbolic Logic, 65(2):567–
604, 2000.

336 Safe recursive set functions

[8] Thomas Jech. Set Theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The
third millennium edition, revised and expanded.

[9] Ronald Björn Jensen. The fine structure of the constructible hierarchy. Ann. Math. Logic, 4:229–308,
1972.

[10] Ronald Björn Jensen and Carol Karp. Primitive recursive set functions. In Axiomatic Set Theory
(Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, 1967), pages 143–176.
Amer. Math. Soc., Providence, RI, 1971.

[11] Vladimir Yu. Sazonov. On bounded set theory. In Logic and Scientific Methods (Florence, 1995),
volume 259 of Synthese Lib., pages 85–103. Kluwer Academic Publishers, Dordrecht, 1997.

[12] Ralf Schindler. P ̸= NP for infinite time Turing machines. Monatsh. Math., 139(4):335–340, 2003.

The Infinity Project

Strong isomorphism reductions in complexity
theory

Samuel R. Buss†, Yijia Chen‡, Jörg Flum§, Sy-David Friedman¶,
Moritz Müller¶

† Department of Mathematics, University of California, San Diego, USA
sbuss@math.ucsd.edu

‡ Department of Computer Science, Shanghai Jiao Tong University, China
yijia.chen@cs.sjtu.edu.cn

§ Mathematisches Institut, Albert-Ludwigs Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

¶ Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at,moritz.mueller@univie.ac.at

Abstract. We give the first systematic study of strong isomorphism reductions, a notion of reduction
more appropriate than polynomial time reduction when, for example, comparing the computational
complexity of the isomorphim problem for different classes of structures. We show that the partial
ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between
classes of structures based on purely comparing for every n the number of nonisomorphic structures of
cardinality at most n in both classes. Furthermore, in a more general setting we address the question of
the existence of a maximal element in the partial ordering of the degrees.

Introduction

In many areas of computational complexity, polynomial time reduction is the appropriate
notion for comparing the complexity of problems. However, suppose that we face, for
example, the problem of comparing the complexity of the isomorphism problem for two
classes C and D of graphs. Here

Iso(C) :=
{
(A,B) | A,B ∈ C and A ∼= B

}
is the isomorphism problem for C (more precisely, the set of positive instances of this
problem) and Iso(D) is defined analogously. Probably we would not accept a polynomial
time computable function f : C × C → D ×D with

(A,B) ∈ Iso(C) ⇐⇒ f(A,B) ∈ Iso(D)

as the right notion of reduction in this context but we would seek a strong isomorphism
reduction, that is, a polynomial time computable function f : C → D with

(0.1) A ∼= B ⇐⇒ f(A) ∼= f(B).
This paper is devoted to the study of this type of reduction. For us the motivation for
this study came from various areas:

Published in Journal of Symbolic Logic 76(4):1381–1402, 2011. The authors thank the John Tem-
pleton Foundation for its support through Grant #13152, The Myriad Aspects of Infinity.

†The first author has been supported in part by NSF grant DMS-0700533.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

337

338 Strong isomorphism reductions in complexity theory

Computational complexity : The isomorphism relation (on a class C) is an equivalence
relation. In the context of arbitrary equivalence relations a notion of reduction defined
analogously as in (0.1) (and that for the isomorphism relation coincides with our notion)
has been introduced in [7]. However that paper is mainly devoted to other problems (see
the end of Section 6 for some more details); concerning the notion of reduction only some
open problems are stated in [7], problems we address in our paper.

Descriptive set theory : For the isomorphism relation our notion of reduction was first
considered by the fourth author (see [8]) inspired by the analogous notion from descriptive
set theory (see [9]). In descriptive set theory, C and D denote classes of structures with
universe N and the function f satisfying (0.1) is required to be Borel (in the topology
generated by the first-order definable classes).

Descriptive complexity : The existence of a logic capturing polynomial time remains the
central open problem of descriptive complexity theory. For many classes C of graphs (or
of other types of structures), one shows that a logic L captures polynomial time on C by
defining in L an invariantization for C. From the definition of invariantization (given in
Section 3), one immediately gets that if C is strongly isomorphism reducible to D, then
C has an invariantization if D has one.

This paper contains the first systematic study of strong isomorphism reductions. In
Section 2 and Section 3 we introduce our framework, derive some basic properties of
strong isomorphism reductions, and explain via invariantizations and canonizations the
relationship to logics capturing polynomial time mentioned above. At various places of
our analysis, invariantizations and canonizations will be valuable tools. Their relationship
and the computational complexity of problems related to these notions have been studied
in [2, 3, 7, 11, 15, 16].

We denote by ≤iso the partial ordering on the set of degrees induced by strong
isomorphism reductions. In Section 2 we observe that (the degree of) the class of graphs
is the ≤iso maximum element. Furthermore, by Theorem 3.7 we see that some “basic
algebraic classes of structures” all have the same strong isomorphism degree. In Section 4
we show that the structure of ≤iso is rich already when restricting to classes with an
invariantization.

Assume that C is strongly isomorphism reducible to D. Since such reductions are
computable in polynomial time we know that for some polynomial p ∈ N[X] and all
n ∈ N the number of isomorphism types of structures in C with at most n elements is at
most the number of isomorphism types of structures in D with at most p(n) elements. If
this condition is satisfied, then following [8] we say that C is potentially reducible to D.
Already in Section 4 this concept is the main tool to demonstrate the richness of the
partial ordering ≤iso . We believe that the notions of strong isomorphism reducibility and
that of potential reducibility are distinct but can only show this under the hypothesis
U2EXP ∩ co-U2EXP ̸= 2EXP (see Section 5). It turns out in Section 6 that we would
get P ̸= #P if we could separate the two notions without any complexity-theoretic
assumption.

The isomorphism relation is an equivalence relation in NP. In Section 7 we study
reductions (defined in analogy to (0.1)) between arbitrary equivalence relations in NP. In
particular, we show that there is a maximum element in the corresponding partial ordering
if and only if there is an effective enumeration of these equivalence relations by means of
clocked Turing machines. Even if we restrict to equivalence relations in P (= PTIME), we

The Infinity Project 339

cannot show that a maximum element exists; we can guarantee its existence if a p-optimal
propositional proof system exists. The existence of a maximum element for equivalence
relations in P was addressed in [7, Open Question 4.14].

The authors wish to acknowledge the generous support of the John Templeton Foun-
dation and the Centre de Recerca Matemàtica through the CRM Infinity Project. Sam
Buss’ work was supported in part by NSF grant DMS-0700533. This article will appear
in the December 2011 issue of the Journal of Symbolic Logic.

1 Some preliminaries

Throughout the paper Σ denotes the alphabet {0, 1}, and Σ∗ is the set of strings over
this alphabet. For n ∈ N we denote by 1n the string 11 . . . 1 of length n. An ordered
pair (x, y) of strings x = x1 . . . xk, y = y1 . . . yℓ with x1, . . . , yℓ ∈ Σ is coded (identified)
with the string x1x1 . . . xkxk01y1y1 . . . yℓyℓ. We do similarly for tuples of arbitrary length.
Sometimes statements containing a formulation like “there is a d ∈ N such that for all
x ∈ Σ∗: . . . ≤ |x|d” can be wrong for x ∈ Σ∗ with |x| ≤ 1 (here |x| denotes the length of the
string x). We trust the reader’s common sense to interpret such statements reasonably.

1.1 Structures and classes of structures

A vocabulary τ is a finite set of relation symbols, function symbols, and constant symbols.
The universe of a τ -structure A will be denoted by the corresponding Latin letter A and
the interpretation of a symbol s ∈ τ in A by sA.

All structures in this paper are assumed to be finite and to have [n] :=
{1, 2, . . . , n} as universe for some n ∈ N.

Therefore, in a canonical way we can identify structures with nonempty strings over Σ. In
particular, |A| for a structureA is the length of the stringA. Furthermore, we may assume
that for every vocabulary τ there is a polynomial qτ ∈ N[X] such that |A| ≤ |A| ≤ qτ (|A|)
for every τ -structure A, where for a set M we denote by |M | its cardinality.

A class C of τ -structures is closed under isomorphism if, for all structures A and B,

A ∈ C and A ∼= B imply B ∈ C
(recall that we restrict to structures with universe [n] for some n ∈ N).

In the rest of the paper C (and D) will always denote a class of struc-
tures which is in P, is closed under isomorphism, and contains arbi-
trarily large (finite) structures. Moreover, all structures in a fixed class
will have the same vocabulary.

Examples of such classes are:
• The classes Set, Boole, Field, Group, Abelian, and Cyclic of sets (struc-

tures of empty vocabulary), Boolean algebras, fields, groups, abelian groups,
and cyclic groups, respectively.
• The class Graph of (undirected and simple) graphs. We view graphs as τGraph-

structures, where τGraph := {E} for a binary relation symbol E.
• The class Ord of linear orderings. Here we use the vocabulary τOrd := {<}

with a binary relation symbol <.
• The class Lop of Linear Orderings with a distinguished Point and the class

Lou of Linear Orderings with a Unary relation. Let τLop := τOrd ∪ {c} with
a constant symbol c and τLou := τOrd ∪ {P} with a unary relation symbol P .

340 Strong isomorphism reductions in complexity theory

Then Lop (Lou) is the class of all τLop-structures (τLou-structures) A such that
(A,<A) ∈ Ord.

There is a natural one-to-one correspondence between strings in Σ∗ and structures in Lou,
namely the function which assigns to a string x = x1 . . . xn ∈ Σ∗ the structure A ∈ Lou
with universe [n], where <A is the natural ordering on [n] and PA := {i ∈ [n] | xi = 1}.

2 Strong isomorphism reductions

We define the notion of strong isomorphism reduction already indicated in the Introduc-
tion and present first examples.

Definition 2.1 Let C and D be classes. We say that C is strongly isomorphism reducible
to D and write C≤isoD, if there is a function f : C → D computable in polynomial time
such that, for all A,B ∈ C,

A ∼= B ⇐⇒ f(A) ∼= f(B).
We then say that f is a strong isomorphism reduction from C to D and write f : C≤isoD.
If C≤isoD and D≤isoC, denoted by C≡isoD, then C and D have the same strong iso-
morphism degree.

Examples 2.2
(a) The map sending a field to its multiplicative group shows that

Field≤iso Cyclic.

(b) Cyclic≤iso Abelian≤iso Group; more generally, if C ⊆ D, then idC : C≤isoD
for the identity function idC on C.

(c) Set≡iso Ord≡iso Cyclic.

Remark 2.3 We can reduce the notion of strong isomorphism reduction to the notion
of polynomial time reduction. For this, we introduce the problem

Iso(C)
Instance: A,B ∈ C.
Problem: Is A ∼= B?

A function f : C → D induces the function f̂ : C × C → D × D with f̂(A,B) :=(
f(A), f(B)

)
. Then

f : C≤isoD ⇐⇒ f̂ : Iso(C) ≤p Iso(D),

where f̂ : Iso(C) ≤p Iso(D) means that f̂ is a polynomial time reduction from Iso(C)
to Iso(D).

Of course, it is easy to construct polynomial time reductions from Iso(C) to Iso(D)

that are not of the form f̂ for some f : C≤isoD. Moreover, in Remark 4.2 we shall present
classes C and D such that

Iso(C) ≤p Iso(D) but not C≤isoD.

This answers [7, Open Question 4.13].

As already mentioned in the Introduction one of our goals is to study the relation
≤iso . First we see that this relation has a maximum element:

The Infinity Project 341

Proposition 2.4 C≤iso Graph for all classes C.

Proof. Let τ be a vocabulary and S be the class of all τ -structures. It is well-known that
there is a strong isomorphism reduction from S to Graph (even a first-order interpre-
tation, e.g. see [6, Proposition 11.2.5(i)]). In particular, its restriction to a class C of
τ -structures shows that C≤iso Graph. �

3 Invariantizations and canonizations

One of the central aims of algebra and of model theory is to describe the isomorphism type
of a structure by means of an invariant. The underlying notion of invariantization is also
relevant in our context. We use it (and the related notion of canonization) to show that
most classes of structures mentioned in Section 1.1 have the same strong isomorphism
degree (cf. Corollary 3.8).

Definition 3.1 An invariantization for C is a polynomial time computable function
Inv : C → Σ∗ such that, for all A,B ∈ C,

A ∼= B ⇐⇒ Inv(A) = Inv(B).

Lemma 3.2 If C≤isoD and D has an invariantization, then also C has an invarianti-
zation.

Proof. If Inv is an invariantization forD and f : C≤isoD, then Inv◦f is an invariantization
for C. �

Lou is a maximum class among those with an invariantization:

Proposition 3.3 For a class C, the following are equivalent:
(1) C has an invariantization.
(2) C≤iso Lou.
(3) There is a class D of ordered structures such that C≤isoD.

Here, a class D is a class of ordered structures if its vocabulary contains a binary relation
symbol which in all structures of D is interpreted as a linear ordering of the universe.

Proof. (1) implies (2) by the natural correspondence between strings in Σ∗ and structures
in Lou. That (2) implies (3) is trivial. To see that (3) implies (1) assume that there is a
class D of ordered structures such that C≤isoD. As ordered structures have no nontrivial
automorphisms, every ordered structure A is isomorphic to a unique structure A′ whose
ordering <A′ is the natural linear ordering on its universe {1, . . . , |A′|}. Thus the mapping
on D defined by A 7→ A′ is an invariantization of D. Now we apply Lemma 3.2. �

It is open whether the class Graph has an invariantization or equivalently (by Propo-
sition 2.4 and Proposition 3.3) whether Lou is a maximum element of ≤iso . Moreover,
it is known [11, 15] that an invariantization for Graph yields a canonization.

Definition 3.4 A function Can : C → C computable in polynomial time is a canonization
for C if

(1) for all A,B ∈ C,
(
A ∼= B ⇐⇒ Can(A) = Can(B)

)
;

(2) for all A ∈ C, A ∼= Can(A).

342 Strong isomorphism reductions in complexity theory

Every class C of ordered structures, in particular Lou, has a canonization. In fact, the
mapping A 7→ A′ defined for all ordered structures in the previous proof is a canonization
for C.

We do not define the notion of a logic capturing P on a class C (e.g., see [6]).
However we mention that canonizations and invariantizations are important in descriptive
complexity theory as:

Proposition 3.5
(1) If C has a canonization, then there is a logic capturing P on C.
(2) If Graph has an invariantization, then there is a logic capturing P (on all finite

structures).

Clearly, every canonization is an invariantization. Often the invariantizations we
encounter in mathematics yield canonizations. For example, consider the class Field of
fields. Then an invariant for a field K is the pair (pK, nK), where pK is its characteristic
and nK its dimension over the prime field. As for every invariant (p, n) one can explicitly
construct a canonical field Fpn of this invariant, we see that the mapping K 7→ FpnKK

is
a canonization. This canonization has a further property, it is a canonization that has a
polynomial time enumeration:

Definition 3.6 Let Can be a canonization for the class C. The enumeration induced by
Can is the enumeration

A1,A2, . . .

of the image Can(C) of C such that Ai<lexAj1 for i < j. If the mappings An 7→ 1n

and 1n 7→ An are computable in polynomial time, then Can has a polynomial time
enumeration.

Note that the mapping An 7→ 1n is computable in polynomial time if and only if we
get an invariantization Inv of C by setting

Inv(A) := 1n ⇐⇒ Can(A) = An.
The classes Set, Field, Abelian, Cyclic, Ord, and Lop have canonizations with

polynomial time enumerations (for Abelian see [13], for example). The classes Boole
and Lou have canonizations but none with a polynomial time enumeration: For Boole
the function 1n 7→ An will not be computable in polynomial time, as there are, up to
equivalence, “too few” Boolean algebras of cardinality ≤ n, namely ⌊log n⌋; for Lou the
function An 7→ 1n won’t be computable in polynomial time, as there are “too many”
structures in Lou of cardinality ≤ n, namely 2n+1 − 1.

Theorem 3.7 Assume that the classes C and D have canonizations with polynomial time
enumerations. Then C≡isoD.

Corollary 3.8 The classes Set, Field, Abelian, Cyclic, Ord, and Lop all have the
same strong isomorphism degree.

Proof of Theorem 3.7. Let C and D be classes with canonizations CanC and CanD which
have polynomial time enumerations A1,A2, . . . and B1,B2, . . . respectively. We define a
strong isomorphism reduction f from C to D by:

f(A) = Bn ⇐⇒ CanC(A) = An.
1 By <lex we denote the standard (length-)lexicographic ordering on Σ∗.

The Infinity Project 343

Hence, C≤isoD; by symmetry we get D≤isoC. �
An analysis of the previous proof shows that we already obtain C≤isoD if the map-

pings An 7→ 1n and 1n 7→ Bn are computable in polynomial time. By this, we get, for
example, Boole≤iso Cyclic.

4 On ≤iso below Lop

As we have seen that the structure of ≤iso between Lou and Graph is linked with central
open problems of descriptive complexity, we turn our attention to the structure below
Lou. In this section we show that there, in fact even below Lop, the structure is quite
rich. In fact, this section is devoted to a proof of the following result:2

Theorem 4.1 The partial ordering of the countable atomless Boolean algebra is em-
beddable into the partial ordering induced by ≤iso on the degrees of strong isomorphism
reducibility below Lop. More precisely, let B be a countable atomless Boolean algebra.
Then there is a one-to-one function b 7→ Cb defined on B such that, for all b, b′ ∈ B,

• Cb is a subclass of Lop;
• b ≤ b′ ⇔ Cb≤isoCb′.

Recall that the partial ordering of an atomless Boolean algebra has infinite antichains
and infinite chains, even chains of ordertype the rationals.

Remark 4.2 By the preceding result, for example we see that there exist an infinite
≤iso -antichain of classes C below Lop, whose problems Iso(C) are pairwise equivalent
under usual polynomial time reductions. Indeed, even Iso(C) ∈ P for all C ⊆ Lop.

The reader not interested in the details of the proof of Theorem 4.1 should read
until Lemma 4.5 and can then skip the rest of this section. We obtain Theorem 4.1
by comparing the number of isomorphism types of structures with universe of bounded
cardinality in different classes. First we introduce the relevant notations and concepts.

For a class C we let C(n) be the subclass consisting of all structures in C with universe
of cardinality ≤ n and we let #C(n) be the number of isomorphism types of structures
in C(n), more formally,

C(n) := {A ∈ C | |A| ≤ n} and #C(n) := |C(n)/∼=|.
Here, for a class of structures S we denote by S/∼= the set of isomorphism classes in S.

Examples 4.3
(1) #Boole(n) = ⌊log n⌋, #Cyclic(n) = n and #Set(n) = #Ord(n) = n+ 1.
(2) #Lop(n) =

∑n
i=1 i = (n+ 1) · n/2 and #Lou(n) =

∑n
i=0 2

i = 2n+1 − 1.
(3) For every vocabulary τ there is a polynomial pτ ∈ N[X] such that #C(n) ≤

2pτ (n) for all n ∈ N (see Subsection 1.1).
(4) (E.g., see [1]) #Group(n) is superpolynomial but subexponential (more pre-

cisely, #Group(n) ≤ nO(log2 n)).

Definition 4.4 A class C is potentially reducible to a class D, written C≤potD, if there
is some polynomial p ∈ N[X] such that #C(n) ≤ #D(p(n)) for all n ∈ N. Of course, by
C ≡pot D we mean C≤potD and D≤potC.

2 Recall that up to isomorphism there is a unique countable atomless Boolean algebra (e.g., see [10]).

344 Strong isomorphism reductions in complexity theory

The following lemma explains the term potentially reducible.

Lemma 4.5 If C≤isoD, then C≤potD.

Proof. Let f : C≤isoD. As f is computable in polynomial time, there is a polynomial
p such that for all A ∈ C we have |f(A)| ≤ p(|A|), where f(A) denotes the universe of
f(A). As f strongly preserves isomorphisms, it therefore induces a one-to-one map from{
A ∈ C | |A| ≤ n

}
/∼= to

{
B ∈ D | |B| ≤ p(n)

}
/∼=. �

We state some consequences of this simple observation:

Proposition 4.6
(1) Cyclic ̸≤iso Boole and Lou ̸≤iso Lop.
(2) C≤pot Lou for all classes C and Lou ≡pot Graph.
(3) The strong isomorphism degree of Group is strictly between that of Lop

and Graph, that is, Lop≤iso Group≤iso Graph, but Lop ̸≡iso Group and
Group ̸≡iso Graph.

(4) The potential reducibility degree of Group is strictly between that of Lop and
Lou, that is, Lop≤pot Group≤pot Lou, but Lop ̸≡pot Group and Group ̸≡pot
Lou.

Proof. Using the previous lemma we see that
• (1) follows by Examples 4.3 (1), (2);
• (2) from Examples 4.3 (2), (3) and Proposition 2.4;
• Group≤iso Graph holds by Proposition 2.4 and

Lop≤iso Cyclic≤iso Group

by Corollary 3.8 and Example 2.2 (b); the remaining claims in (3) follow from
(4) as Lou ≡pot Graph;
• the first claim follows from the first claim in (3) as Lou ≡pot Graph; the

remaining claims follow from Examples 4.3 (2), (4). �

The following concepts and tools will be used in the proof of Theorem 4.1. We call a
function f : N→ N value-polynomial if it is increasing and f(n) can be computed in time
f(n)O(1). Let VP be the class of all value-polynomial functions.

For f ∈ VP the set
Cf :=

{
A ∈ Lop | |A| ∈ im(f)

}
is in P and is closed under isomorphism. As there are exactly f(k) pairwise nonisomorphic
structures of cardinality f(k) in Lop, we get

#Cf (n) =
∑

k ∈ N with f(k) ≤ n

f(k).

The following proposition contains an essential idea underlying the proof of Theorem 4.1,
even though it is not used explicitly. Loosely speaking, if the gaps between consecutive
values of f ∈ VP “kill” every polynomial, then there are classes C and D with C ̸≤pot D.

Proposition 4.7 Let f ∈ VP and assume that for every polynomial p ∈ N[X] there is
an n ∈ N such that

(4.1)
∑

k ∈ N with f(2k) ≤ n

f(2k) >
∑

k ∈ N with f(2k + 1) ≤ p(n)

f(2k + 1).

The Infinity Project 345

Then Cg0 is not potentially reducible to Cg1 , where g0, g1 : N→ N are defined by g0(n) :=
f(2n) and g1(n) := f(2n+ 1).

Proof. By contradiction, assume that there is some polynomial p ∈ N[X] such that
#Cg0(n) ≤ #Cg1(p(n)) for all n ∈ N. Choose n such that (4.1) holds. Then

#Cg0(n) =
∑

f(2k)≤n

f(2k) >
∑

f(2k+1)≤p(n)

f(2k + 1) = #Cg1(p(n)),

a contradiction. �
Lemma 4.8 The images of the functions in VP together with the finite subsets of N are
the elements of a countable Boolean algebra V (under the usual set-theoretic operations).
The factor algebra V/≡, where for b, b′ ∈ V

b ≡ b′ ⇐⇒ (b \ b′) ∪ (b′ \ b) is finite,

is a countable atomless Boolean algebra.

Proof. For a function f : N→ N we denote by im(f) the image of f . Using the definition
of value-polynomial function we verify that for f, g ∈ VP the sets

N \ im(f), im(f) ∩ im(g), and im(f) ∪ im(g)

are images of value-polynomial functions provided they are infinite. For example, assume
that N\ im(f) is infinite. We choose an algorithm A and a polynomial p ∈ N[X] such that
for every n ∈ N the algorithm A computes f(n) in time p(f(n)). Let h be the function
enumerating N \ im(f) in increasing order, that is, h : N→ (N \ im(f)) is increasing and
surjective. We show that h is value-polynomial too.

A corresponding algorithm inductively computes pairs (h(0),m0), (h(1),m1), . . . with

f(mn) < h(n) < f(mn + 1)

for all n ∈ N; if f(0) > 0 and hence h(0) = 0, we set (h(0),m0) = (0,−1). For n ≥ 1 the
algorithm gets (h(n),mn) from (h(n− 1),mn−1) by the following steps:

1. Let k := h(n− 1) + 1 and ℓ := mn−1.
2. Simulate A on ℓ+ 1 for at most p(k) steps.
3. If A does not halt or if it outputs f(ℓ+ 1) and f(ℓ+ 1) > k, then (h(n),mn) =

(k, ℓ).
4. Otherwise (i.e., if f(ℓ+ 1) = k), let k := k + 1 and ℓ := ℓ+ 1, and goto 2.

It should be clear that the algorithm yields (h(n),mn) (more precisely, (h(0),m0),
(h(1),m1), . . ., (h(n),mn)) in time polynomial in h(n).

We leave the proof of the remaining claims to the reader. �
The lemma just proved shows that the set of images of functions in VP has a rich

structure. We compose the functions in VP with a “stretching” function h, which guar-
antees that the gaps between consecutive values “kill” every polynomial. Then we can
apply the idea of the proof of Proposition 4.7 to show that the set of the ≤pot -degrees
has a rich structure too.

We define h : N→ N by recursion: h(0) := 0 and

h(n+ 1) = (h(0) + · · ·+ h(n))n .

One easily verifies that h is value-polynomial.
For f, g ∈ VP set

f ⊆∗ g ⇐⇒ im(f) \ im(g) is finite.

346 Strong isomorphism reductions in complexity theory

By the homogeneity properties of atomless countable Boolean algebras, to prove Theo-
rem 4.1 it suffices to find a corresponding embedding defined only on the nonzero elements
of V/≡. In general f ⊆∗ g and g ⊆∗ f do not imply Ch◦f = Ch◦g. However, by the fol-
lowing lemma we get an embedding of V/≡ into the partial ordering of the ≤iso -degrees
as required by Theorem 4.1 by defining the mapping on a set of representatives, more
precisely on a set R ⊆ VP such that

• for every f ∈ VP there is exactly one g ∈ R with f ⊆∗ g and g ⊆∗ f .

Lemma 4.9 The mapping f 7→ Ch◦f from VP to {C ⊆ Lou | C a class} is one-to-one,
and for all f, g ∈ VP:

(1) if Ch◦f≤isoCh◦g, then f ⊆∗ g;
(2) if f ⊆∗ g and g ̸⊆∗ f , then Ch◦f≤isoCh◦g.

For the proof of Lemma 4.9 we need an appropriate way to invert increasing functions
f : N→ N. We define f−1 : N→ N by

f−1(n) := max{i | f(i) ≤ n},
where we set max ∅ := 0. We collect some properties of this inverse in the following
lemma, whose simple proof we omit. We denote by idN the identity function on N.

Lemma 4.10
(1) If f : N→ N is increasing, then f−1 is nondecreasing, f−1 ≤ idN, f−1 ◦ f = idN

and f(f−1(n)) ≤ n for all n ≥ f(0).
(2) If f, g : N→ N are increasing, then (f ◦ g)−1 = g−1 ◦ f−1.
(3) If f ∈ VP, then f−1 is computable in polynomial time.

A further notation is useful. For f : N→ N let fΣ : N→ N be defined by

fΣ(n) :=
∑
i≤n

f(i).

Lemma 4.11 Let f, g : N→ N be functions and assume that the function g is increasing.
Then (f ◦ g)Σ ≤ fΣ ◦ g.

Proof. This is seen by direct calculation:

(f ◦ g)Σ(n) =
∑
i≤n

f(g(i)) =
∑
i≤g(n)
i∈im(g)

f(i) ≤
∑
i≤g(n)

f(i) = fΣ ◦ g(n);

here the second equality uses that g is increasing. �
Furthermore observe that:

Lemma 4.12 If f ∈ VP, then for all n ∈ N we have #Cf (n) = (fΣ ◦ f−1)(n).

Proof of Lemma 4.9. The mapping f 7→ Ch◦f is one-to-one: Assume Ch◦f = Ch◦g. Then
im(h ◦ f) = im(h ◦ g) and thus, im(f) = im(g) as h is one-to-one. Since f and g are both
increasing, this yields f = g. We prove the remaining statements of Lemma 4.9 by the
following two claims.

Claim 1 Let f, g ∈ VP and f ⊆∗ g and g ̸⊆∗ f . Then Ch◦f≤isoCh◦g.

Proof of Claim 1: By our assumptions, the set im(h ◦ f) \ im(h ◦ g) is finite (as f ⊆∗ g
implies h◦f ⊆∗ h◦g) and (by injectivity of h) the set im(h◦g)\ im(h◦f) is infinite. Then

The Infinity Project 347

Ch◦f≤isoCh◦g is witnessed by a function sending the (up to ∼=) finitely many structures
in Ch◦f \ Ch◦g to Ch◦g \ Ch◦f and which is the identity on all other structures in Ch◦f .

Claim 2 Let f, g ∈ VP and f ̸⊆∗ g. Then Ch◦f ̸≤iso Ch◦g.

Proof of Claim 2: By contradiction assume Ch◦f≤isoCh◦g. Then Ch◦f is potentially
reducible to Ch◦g by Lemma 4.5. Hence there is p ∈ N[X] such that #Ch◦f (n) ≤
#Ch◦g(p(n)) for all n ∈ N. We show that this is wrong for some n. For this purpose we
choose k such that

(4.2) g(0) < f(k), p(h(f(k))) < h(f(k) + 1), and f(k) ∈ im(f) \ im(g)

(by the definition of h and the assumption f ̸⊆∗ g such a k exists). Then we get

#Ch◦g(p(h(f(k))))

= (h ◦ g)Σ ◦ (h ◦ g)−1(p(h(f(k)))) (by Lemma 4.12)

= (h ◦ g)Σ ◦ (g−1 ◦ h−1)(p(h(f(k)))) (by Lemma 4.10(2))

≤ (h ◦ g)Σ ◦ g−1(f(k)) (by p(h(f(k))) < h(f(k) + 1) —see (4.2)—

and by definition of h−1)

= (h ◦ g)Σ ◦ g−1(f(k)− 1) (as f(k) /∈ im(g))

≤ hΣ ◦ g ◦ g−1(f(k)− 1) (by Lemma 4.11)

≤ hΣ(f(k)− 1) (by Lemma 4.10(1) as g(0) < f(k))
< h(f(k)) (by definition of h)
≤ #Ch◦f (h(f(k))) (by definition of #Ch◦f). �

5 Strong isomorphism reducibility and potential reducibility

We know that Graph≤pot Lou while Graph≤iso Lou is equivalent to Graph having an
invariantization (cf. Propositions 4.6(2) and 3.3). However, so far in all concrete examples
of classes C and D, for which we know the status of C≤isoD and of C≤potD, we had
that

C≤isoD ⇐⇒ C≤potD.

So the question arises whether the relations of strong isomorphism reducibility and po-
tential reducibility coincide. Recall that we require the classes C and D to be closed
under isomorphism and decidable in polynomial time. Generalizing the proof idea of
Theorem 3.7, we shall see in the next section that indeed the relations ≤iso and ≤pot
coincide if P = #P. We believe that they are distinct but could only show:

Theorem 5.1 If U2EXP∩co-U2EXP ̸= 2EXP, then the relations of strong isomorphism
reducibility and that of potential reducibility are distinct.

Recall that

2EXP := DTIME
(
22
nO(1))

and N2EXP := NTIME
(
22
nO(1))

.

The complexity class U2EXP consists of those Q ∈ N2EXP for which there is a nondeter-
ministic Turing machine of type N2EXP that for every x ∈ Q has exactly one accepting
run. Finally, co-U2EXP := {Σ∗ \Q | Q ∈ U2EXP}.

348 Strong isomorphism reductions in complexity theory

The rest of this section is devoted to a proof of this result. We explain the underlying
idea: Assume Q ∈ U2EXP ∩ co-U2EXP. We construct classes C and D which contain
structures in the same cardinalities and which contain exactly two nonisomorphic struc-
tures in these cardinalities. Therefore they are potentially reducible to each other. While
it is trivial to exhibit two nonisomorphic structures in C of the same cardinality, from any
two concrete nonisomorphic structures in D we obtain information on membership in Q
for all strings of a certain length. If C≤isoD, we get concrete nonisomorphic structures
in D (in time allowed by 2EXP) by applying the strong isomorphism reduction to two
nonisomorphic structures in C and therefore obtain Q ∈ 2EXP.

Proof of Theorem 5.1. Let Q ∈ U2EXP ∩ co-U2EXP. Then there exists a nondetermin-
istic Turing machine M and a constant d ≥ 2 such that (M1)–(M5) hold:

(M1) The machine M has three terminal states ‘yes,’ ‘no,’ and ‘maybe’.

(M2) For x ∈ Σ∗, every run of M on input x stops after exactly 22
|x|d many steps.

(M3) For x ∈ Q exactly one run of M on x stops in ‘yes’ and none in ‘no’.
(M4) For x ̸∈ Q exactly one run of M on x stops in ‘no’ and none in ‘yes’.
(M5) The machine M has exactly two different choices for the next step in every

nonterminal state.
We say that a run of M takes a decision if it ends in ‘yes’ or in ‘no’.

For n ∈ N we set ℓ(n) := 22
nd . For x ∈ Σn, by (M2) and (M5), every run of M on

input x can be identified with a binary string r ∈ {0, 1}ℓ(n). Conversely, from such a
string r we can determine a run of M on x.

Let m(n) := 2n and x1, x2, . . . , xm(n) be the enumeration of all strings of Σn in the

lexicographic ordering. We call a binary string s of length m(n) · ℓ(n) = 2n · 22n
d

a
decision string if for every i ∈ [m(n)] the ith substring of s of length ℓ(n) corresponds
to a run of M on xi taking a decision; more precisely, if we have s = s1̂s2̂ · · ·̂ sm(n) with
|si| = ℓ(n) for i ∈ [m(n)], then si corresponds to a run of M on xi taking a decision. By
our assumptions (M3) and (M4) we get:

for every n ∈ N there is exactly one decision string(5.1)
of length m(n) · ℓ(n).

We turn every string s of length m(n) · ℓ(n) into a structure A(s) over the vocabulary
τ = {One,Zero, R}, where One and Zero are unary relation symbols and R is a binary
relation symbol. Let

A(s) := [m(n) · ℓ(n)],

RA(s) :=
{
(j, j + 1) | j ∈ [m(n) · ℓ(n)− 1]

}
.

For s a decision string, let

OneA(s) :=
{
j | j ∈ [m(n) · ℓ(n)] and the jth bit of s is one

}
,

ZeroA(s) :=
{
j | j ∈ [m(n) · ℓ(n)] and the jth bit of s is zero

}
,

and let OneA(s) = ZeroA(s) = ∅ otherwise. By (5.1) for every s, s′ ∈ {0, 1}m(n)·ℓ(n)

A(s) ̸∼=A(s′) ⇐⇒ exactly one of s and s′ is a decision string.(5.2)

Let Dn be the class containing, up to isomorphism, the structures A(s) with s ∈
{0, 1}m(n)·ℓ(n). The following is straightforward.

The Infinity Project 349

(D1) The universe of every structure in Dn has cardinality m(n) · ℓ(n).
(D2) |Dn/∼=| = 2.

We set

D :=
∪
n∈N

Dn.

Finally, we let

C :=
∪
n∈N

Cn,

where for n ∈ N every structure in the class Cn is isomorphic to the complete graph
Km(n)·ℓ(n) on m(n) · ℓ(n) vertices or to its complement Km(n)·ℓ(n). Then:

(C1) The universe of every structure in Cn has cardinality m(n) · ℓ(n).
(C2) |Cn/∼=| = 2.

Hence, C≤potD.

Claim If f : C≤isoD, then there is n0 ∈ N such that, for all n ≥ n0,

(5.3) f (Cn/∼=) = Dn/∼=.

By this equality we mean:
• f(A) ∈ Dn for every A ∈ Cn;
• for every B ∈ Dn there exists an A ∈ Cn such that f(A) ∼= B.

Proof of the claim: First observe that by (C2) and (D2) it suffices to show that f (Cn) ⊆
Dn for all sufficiently large n ∈ N. As f is computable in polynomial time there is c ∈ N
such that for every n ∈ N and A ∈ Cn

the universe of f(A) has ≤
(
2n · 22n

d)c
elements.

We choose n0 ∈ N such that, for all n ≥ n0,(
2n · 22n

d
)c

< 2n+1 · 22(n+1)d

.

Hence, for n ≥ n0,

f

∪
q≤n

Cq

 ⊆ ∪
q≤n

Dq.

As
∪
q≤nCq and

∪
q≤nDq contain, up to isomorphism, the same number of structures,

the Claim follows.

Now assume f : C≤isoD. Then the following algorithm A witnesses that Q ∈ 2EXP.
Let n0 be as in the Claim. For x ∈ Σn with n ≥ n0 the algorithm A computes the
structures

f
(
Km(n)·ℓ(n)

)
and f

(
Km(n)·ℓ(n)

)
;

they are nonisomorphic and in Dn by the Claim. In particular, by (5.2) we get a run of
M on input x taking a decision; the algorithm A answers accordingly. �

350 Strong isomorphism reductions in complexity theory

6 If strong isomorphism reducibility and potential
reducibility are distinct then P ̸= #P

In the previous section we have seen that under some complexity-theoretic assumption the
two notions of reduction (strong isomorphism reducibility and potential reducibility) are
distinct. One might wonder whether we can separate them without any such complexity-
theoretic assumption. We show in this section that this would settle some open problem
in complexity theory; more precisely, we show the statement of the title of this section.3
In particular, by Proposition 4.6(2), if Lou is not a maximum element of ≤iso , then
P ̸= #P. We prove the main result in a more general setting.

For a class C consider the equivalence relation E(C) on Σ∗ induced by the isomor-
phism relation, that is,

E(C) :=
{
(A,B) | A,B ∈ C and A ∼= B

}
(6.1)

∪
{
(x, y) | x, y ∈ Σ∗, x /∈ C and y /∈ C

}
.

Of course, E(C) is in NP. In this section we consider arbitrary such equivalence relations
on Σ∗ and show that the corresponding two notions of reduction coincide if P = #P.
We start by introducing all relevant concepts; we do not restrict ourselves to equivalence
relations in NP, but consider equivalence relations in an arbitrary complexity class (for
an equivalence relation E on Σ∗ we also write xEy for (x, y) ∈ E).

Definition 6.1

(1) Let CC be an arbitrary complexity class. Then we denote by CC(eq) the set of
equivalence relations E on Σ∗ with E ∈ CC.

(2) Let E and E′ be equivalence relations on Σ∗. We say that E is strongly equiv-
alence reducible to E′ and write E≤eqE

′, if there is a function f : Σ∗ → Σ∗

computable in polynomial time such that, for all x, y ∈ Σ∗,

xEy ⇐⇒ f(x)E′f(y).

We then say that f is a strong equivalence reduction from E to E′ and write
f : E≤eqE

′.

Clearly, E(C) ∈ NP(eq) for every class C of structures; furthermore, E(Lou) ∈ P(eq).
Let Prop and Taut denote the set of all formulas of propositional logic and the set of
tautologies, respectively. Note that Eequiv ∈ co-NP(eq), where

Eequiv :={(α, β) | α, β ∈ Prop and (α↔ β) ∈ Taut}
∪ {(x, y) | x, y /∈ Prop}.

Clearly, if C and D are classes of structures as in the previous sections, then

C≤isoD ⇐⇒ E(C)≤eqE(D).

We generalize the notion of potential reducibility to equivalence relations.

3 Recall that P = #P means that for every polynomial time nondeterministic Turing machine M the
function fM such that fM(x) is the number of accepting runs of M on x ∈ Σ∗ is computable in polynomial
time. The class #P consists of all the functions fM.

The Infinity Project 351

Definition 6.2 Let E and E′ be equivalence relations on Σ∗. We say that E is potentially
reducible to E′ and write E≤potE

′ if there is a p ∈ N[X] such that for all n ∈ N the
number |Σ≤n/E| of E-equivalence classes containing a string in

Σ≤n :=
{
x ∈ Σ∗ | |x| ≤ n

}
is at most

∣∣Σ≤p(n)/E′∣∣.
Due to our definition (6.1) of E(C), the new notion coincides with the old one for

equivalence relations of the form E(C):

Proposition 6.3 Let C and C ′ be classes. Then

C≤potC
′ ⇐⇒ E(C)≤potE(C ′).

Proof. Recall that the empty string is not (the encoding of) a structure. Let C be a class
of τ -structures and C ′ a class of τ ′-structures. By the assumptions made in Subsection 1.1,
there are polynomials pτ , pτ ′ ∈ N[X] such that for every τ -structure A
(6.2) |A| ≤ |A| ≤ pτ (|A|)
and for every τ ′-structure B
(6.3) |B| ≤ |B| ≤ pτ ′(|B|).
Assume first that C≤potC

′, say #C(n) ≤ #C ′(p(n)) for some polynomial p. Then

|Σ≤n/E(C)| ≤ #C(n) + 1 ≤ #C ′(p(n)) + 1 ≤ |Σ≤pτ ′ (p(n))/E(C ′)|
(the first inequality holds by (6.1) and (6.2), the last one by (6.1) and (6.3)). Conversely,
assume that E(C)≤potE(C ′), say |Σ≤n/E(C)| ≤

∣∣Σ≤p(n)/E(C ′)
∣∣ with p ∈ N[X]. Then

#C(n) + 1 ≤ |Σ≤pτ (n)/E(C)| ≤
∣∣∣Σ≤p(pτ (n))/E(C ′)

∣∣∣ ≤ #C ′(p(pτ (n))) + 1. �

Along the lines of the proof of Lemma 4.5, one shows that E≤eqE
′ implies E≤potE

′.
For equivalence relations we can show that ≤eq is finer than ≤pot under weaker assump-
tions than that of Theorem 5.1:

Proposition 6.4 If NP ̸= P, then the relations of strong equivalence reduction and that
of potential reducibility do not coincide on NP(eq).

Proof. Assume Q ∈ NP \ P. We define EQ by

xEQy ⇐⇒
(
x = y or

(
x = b̂ z and y = (1− b)̂ z for some z ∈ Q and b ∈ Σ

))
.

By our assumptions on Q, we have EQ ∈ NP(eq). We let E be the identity on Σ∗. Clearly,
EQ≤potE. As Q /∈ P, we get EQ ̸≤eq E, as any f : EQ≤eqE would yield a polynomial
time decision procedure for Q. �

Generalizing the proof idea of Theorem 3.7 we show:

Theorem 6.5 If the relations of strong equivalence reduction and that of potential re-
ducibility do not coincide on NP(eq), then P ̸= #P.

To prove this theorem we first generalize the notions of canonization and of enumer-
ation induced by a canonization.

Definition 6.6 Let E ∈ CC(eq). A function Can : Σ∗ → Σ∗ is a canonization for E if it
is polynomial time computable and

352 Strong isomorphism reductions in complexity theory

(1) for all x, y ∈ Σ∗,
(
xEy ⇐⇒ Can(x) = Can(y)

)
;

(2) for all x ∈ Σ∗, xE Can(x).
Let Can be a canonization of E. The enumeration induced by Can is the enumeration

x1, x2 . . .

of Can(Σ∗) such that xi <lex xj for i < j.

If E has a canonization, then E ∈ P: to decide whether xEy we compute Can(x) and
Can(y) and check whether Can(x) = Can(y).

Now it is easy to explain the idea underlying the proof of Theorem 6.5. First we show
that (under the assumption P = NP) every E ∈ P(eq) has a canonization CanE . Then,
given E,E′ ∈ P(eq), we define a strong equivalence reduction f : Σ∗ → Σ∗ from E to E′

as follows: Let x ∈ Σ∗. If CanE(x) is the ith element in the enumeration induced by
CanE , then we let f(x) be the ith element in the enumeration induced by CanE′ . By the
properties of canonizations it should be clear that

xEy ⇐⇒ f(x)E′f(y)

(we can even replace f(x)E′f(y) by f(x) = f(y)). So it remains to show (under suitable
assumptions) that f is computable in polynomial time and to show that every equivalence
relation has a canonization.

The following lemma was already proven in [2].

Lemma 6.7 If P = NP, then every E ∈ P(eq) has a canonization; in fact, then the
mapping sending each x ∈ Σ∗ to the ≤lex -first member of the E-equivalence class of x is
a canonization.

Proof. Let E ∈ P(eq) and assume P = NP. Then we know that the polynomial hierarchy
collapses, P = PH. So it suffices to show that the mapping defined in the statement
of this lemma can be computed by an alternating polynomial time algorithm A with a
constant number of alternations. This is easy: on input x ∈ Σ∗ the algorithm A guesses
existentially y ∈ Σ∗ with |y| ≤ |x| and xEy; then A guesses universally a further z ∈ Σ∗

with |z| ≤ |x| and xEz; if y≤lex z, then A outputs y otherwise it rejects. �
Lemma 6.8 Let E ∈ P(eq) be an equivalence relation with a canonization Can. Then
the following problem is in #P:

Instance: x ∈ Σ∗.
Problem: Compute i (in binary) such that Can(x) is the ith

element in the enumeration induced by Can.

Proof. Consider a nondeterministic polynomial time algorithm A which on input x ∈ Σ∗

runs as follows: It first computes the string y := Can(x). Then A guesses a string z ∈ Σ∗

with |z| ≤ |y|. Finally it accepts if Can(z) = z and z ≤lex y. It should be clear that the
number of accepting runs of A on x is

|{z | z ≤lex Can(x) and Can(z) = z}|. �
Proof of Theorem 6.5. Assume that P = #P. Let E,E′ ∈ NP(eq) be equivalence rela-
tions and assume that E≤potE

′, that is, |Σ≤n/E| ≤ |Σ≤p(n)/E′| for some polynomial p
and all n ∈ N. We show E≤eqE

′.
As P = #P, we have P = NP. Hence E,E′ ∈ P(eq). Therefore, by Lemma 6.7 there

are canonizations CanE of E and CanE′ of E′ and there are polynomial time algorithms

The Infinity Project 353

A and A′ that solve the problem of the preceding lemma for E and E′, respectively.
The following nondeterministic polynomial time algorithm computes an f : E≤eqE

′. On
input x ∈ Σ∗, it computes CanE(x) and n := |CanE(x)| and guesses a string x′ ∈ Σ≤p(n)

with CanE′(x′) = x′. Simulating A and A′, it checks whether CanE(x) and x′ are at the
same position in the enumeration induced by CanE and in the enumeration induced by
CanE′ , respectively; in the positive case it outputs x′, otherwise it rejects. As |Σ≤n/E| ≤
|Σ≤p(n)/E′| such an x′ ∈ Σ≤p(n) with CanE′(x′) = x′ at the same position as CanE(x)
exists. As P = NP, the function f is computable in polynomial time. �

We briefly point to the papers [2, 3, 7] that deal with related problems. Let Inv(eq)
be the class of equivalence relations having an invariantization (defined in analogy to
Definition 3.1), Can(eq) the class of equivalence relations having a canonization and
finally, Lexfirst(eq) the class of equivalence relations having a canonization that maps
every string to the ≤lex -first element of its equivalence class. Clearly

(6.4) Lexfirst(eq) ⊆ Can(eq) ⊆ Inv(eq) ⊆ P(eq).

Lemma 6.7 shows that Lexfirst(eq) = Can(eq) = Inv(eq) = P(eq) if P = #P. Blass
and Gurevich [2], for example, prove that Lexfirst(eq) ̸= Can(eq) unless the polynomial
hierarchy collapses, and Fortnow and Grochow [7] show that Can(eq) = Inv(eq) would
imply that integers can be factored in probabilistic polynomial time. Blass and Gure-
vich [2, 3] compare the complexity of the “problems underlying the definition of the sets
in (6.4)”. Finally, the book [16], among other things, deals with the question whether two
propositional formulas are logically equivalent up to a permutation of their variables. It
is not hard to see that the isomorphism problem for a class C can be rephrased in these
terms; however no analogue of ≤iso is considered in [16].

7 On maximum elements in P(eq) and NP(eq)

In this section we study whether there is a maximum element with respect to strong equiv-
alence reductions in the classes P(eq) and NP(eq), that is, in the classes of deterministic
and nondeterministic polynomial time equivalence relations. We already mentioned that
the existence of a maximum element in P(eq) is mentioned as [7, Open Question 4.14]; the
notion of strong equivalence reduction was already introduced in that paper and called
kernel reduction there.

Let Sat be the set of satisfiable propositional formulas. Consider the NP-equivalence
relation

Esat :=
{
(α, β) | α, β ∈ Prop and

(
α = β or α, β ∈ Sat

)}
;

more precisely, to get an equivalence relation on Σ∗, we define Esat to be{
(α, β) | α, β ∈ Prop and

(
α = β or α, β ∈ Sat

)}
∪
{
(x, y) | x, y /∈ Prop

}
.

However, henceforth if we speak of an equivalence relation E whose field Fld(E) :=
{x | (x, x) ∈ E} is a proper subset of Σ∗, we identify it with the equivalence relation
E ∪

{
(x, y) | x, y ∈ Σ∗ \ Fld(E)

}
. We use Esat to show:

Proposition 7.1 If the polynomial hierarchy PH does not collapse, then E(Graph) is
not a maximum element in (NP(eq),≤eq); in fact, then Esat ̸≤eq E(Graph).

Proof. For α ∈ Prop and a propositional variable X, we have (α ∈ Sat⇔ αEsatX). By
contradiction, assume that f : Esat≤eqE(Graph). We have f(X) ∈ Graph; otherwise,

354 Strong isomorphism reductions in complexity theory

Sat ∈ P, which contradicts our assumption that the polynomial hierarchy does not
collapse. Then, for every α ∈ Prop,

α ∈ Sat ⇐⇒ f(α) ∼= f(X).

Thus E(Graph) would be NP-complete. It is well-known [4] that this fact implies that
Σp2 = PH. �

We show that the existence of a maximum element in (NP(eq),≤eq) is equivalent to
the existence of an effective enumeration of NP(eq). This result is also true for P(eq) and
co-NP(eq). Effective enumerations of problems have been used to characterize promise
classes possessing complete languages, that is, maximum elements under polynomial time
reductions (e.g., see [12, 14]). Even though we are dealing with a different type of re-
duction, our method is similar. To state our precise result we introduce some notions.
A deterministic or nondeterministic Turing machine M is clocked (more precisely, poly-
nomially time-clocked), if (the code of) M contains a natural number time(M) such that
ntime(M) is a bound for the running time of M on inputs of length n. So, by this defi-
nition, all runs of a clocked machine are of polynomial length. Of course, the function
M 7→ time(M), defined on the set of clocked machines, is computable in polynomial time.

Definition 7.2 Let CC ∈ {P,NP, co-NP}. Let L be a set of languages L with L ⊆ Σ∗.
We say that

L0, L1, . . .

is a CC-enumeration of L by clocked Turing machines, if L = {L0, L1, . . .} and there is a
computable function M defined on N such that M(i) for i ∈ N is (the code of) a clocked
Turing machine of type CC accepting Li.

Proposition 7.3 Let CC ∈ {P,NP, co-NP}. Then the following are equivalent:
(1) (CC(eq),≤eq) has a maximum element.
(2) There is a CC-enumeration E0, E1, . . . of CC(eq) by clocked Turing machines.

Proof. (1) ⇒ (2): Assume that E is a maximum in (CC(eq),≤eq) and let Mmax be a
Turing machine of type CC accepting E. Of course, there is a computable function M′

such that M′(i) for i ∈ N is a deterministic clocked Turing machine computing a function
fi : Σ

∗ → Σ∗ such that f0, f1, . . . is an enumeration of all polynomial time computable
functions from Σ∗ to Σ∗. We define the machineMmax◦M′(i) in a straightforward manner
such that it decides

Ei :=
{
(x, y) | (fi(x), fi(y)) ∈ E

}
.

We let M be the function defined on N with M(i) :=Mmax ◦M′(i). As from a polynomial
bounding Mmax and time(M′(i)) we get a time bound for M(i), we can assume that M(i)
is clocked. It should be clear that E0, E1, . . . has the desired properties.

(2)⇒ (1): Let E0, E1, . . . be as in (2) and let M be a corresponding computable function.
By padding if necessary, we may assume that the graph {(1i, 1|M(i)|) | i ∈ N} is decidable
in polynomial time and that i ≤ |M(i)| for all i ∈ N. We define the relation E as follows
(for better reading we denote here, and in the proof of Lemma 7.6, the string 1ℓ, that is
the string 11 . . . 1 of length ℓ, by ⟨ℓ⟩):

E :=
{(

(M(i), x, ⟨(2 + 2|x|)time(M(i))⟩), (M(i), y, ⟨(2 + 2|y|)time(M(i))⟩)
)

∣∣∣ i ∈ N and (x, y) ∈ Ei
}
.

The Infinity Project 355

By the effectivity properties ofM, we have E ∈ CC(eq) (more precisely E∪{(x, y) | x, y ∈
Σ∗\Fld(E)} ∈ CC(eq)). Clearly, for i ∈ N the mapping x 7→ (M(i), x, ⟨(2+2|x|)time(M(i))⟩)
is a strong equivalence reduction from Ei to E, hence E is a maximum element. �

Below we will show that (NP(eq),≤eq) has a maximum element if NP = co-NP. Note
that we do not even know whether (P(eq),≤eq) has a maximum element. The main result
concerning this problem that we have reads as follows (later we recall the definition of
p-optimal proof system):

Theorem 7.4 If Taut has a p-optimal proof system, then (P(eq),≤eq) has a maximum
element.

The following observations will lead to a proof of this result.

Definition 7.5 LetM be a deterministic or nondeterministic Turing machine and n ∈ N.
The machine M defines an equivalence relation on Σ≤n if the set{

(x, y) | x, y ∈ Σ≤n and M accepts (x, y)
}

is an equivalence relation on Σ≤n.

An analysis of the complexity of the first of the following problems will be crucial for
our purposes.

Equiv(P)
Instance: A deterministic clocked Turing machine M and n ∈ N.
Problem: Does M define an equivalence relation on Σ≤n?

Equiv(NP)
Instance: A nondeterministic clocked Turing machineM and n ∈ N.
Problem: Does M define an equivalence relation on Σ≤n?

Lemma 7.6
(1) If (M, n) ∈ Equiv(P) is solvable by a deterministic algorithm in time nf(∥M∥)

for some function f : N→ N, then P(eq) has a maximum element.4

(2) If (M, n) ∈ Equiv(NP) is solvable by a nondeterministic algorithm in time
nf(∥M∥) for some function f : N→ N, then NP(eq) has a maximum element.

Proof. Let A be an algorithm, deterministic for (1) and nondeterministic for (2), witness-
ing that (M, n) ∈ Equiv(P) in (1) and (M, n) ∈ Equiv(NP) in (2) is solvable in time
nf(∥M∥) for some f : N→ N. An equivalence relation E0 on Σ∗ is defined by letting uE0v
hold if and only if

u = v or
(
u =

(
M, x, (2 + 2 · |x|)time(M), 1t

)
and

v =
(
M, x′, (2 + 2 · |x′|)time(M), 1t

′)
and (i) – (iii) are fulfilled

)
,

where
(i) M is a clocked Turing machine of type CC, where CC = P for (1) and CC = NP

for (2);
(ii) A accepts (M, |x|) in at most t steps and (M, |x′|) in at most t′ steps;
(iii) M accepts (x, x′).

4 By ∥M∥ we denote the length of a reasonable encoding of M by a string of Σ∗.

356 Strong isomorphism reductions in complexity theory

Clearly, E0 ∈ CC(eq). We show that E0 is a maximum element. Let E ∈ CC(eq) be
arbitrary and let M be a clocked Turing machine deciding E. Then

x 7→ (M, x, (2 + 2 · |x|)time(M), ⟨|x|f(∥M∥)⟩)
is computable in polynomial time and hence a strong equivalence reduction from E
to E0. �
Theorem 7.7 The following hold:

(1) If E = NE, then P(eq) has a maximum element.
(2) If NP = co-NP, then NP(eq) has a maximum element.

Proof. (1) We may assume that n is written in binary in the instances (M, n) of Equiv(P)
(and that a string of length ∥M∥ · log n is given as an additional input). We consider the
following nondeterministic algorithm A accepting the complement of Equiv(P). On input
(M, n), it guesses one of the three axioms of an equivalence relation, say, the transitivity
axiom; then A guesses x, y, z ∈ Σ≤n, it simulates M on input (x, y), on input (y, z), and
on input (x, z) and accepts if M accepts the first two inputs but not the third one. As
we may assume that ∥M∥ ≥ time(M), the algorithm A runs in time ∥M∥ · nO(time(M)) =

2O(∥M∥·logn). By the assumption E = NE, there is a deterministic algorithm deciding the
complement of Equiv(P) and hence Equiv(P) itself in time 2O(∥M∥·logn). Now our claim
follows from the preceding lemma.

(2) The following alternating algorithm A decides the complement of Equiv(NP): On
input (M, n) (again we may assume that ∥M∥ ≥ time(M)), it existentially guesses one
of the three axioms of an equivalence relation, say, the transitivity axiom; then A exis-
tentially guesses x, y, z ∈ Σ≤n and runs of M accepting (x, y) and (y, z); furthermore it
yields the string ⟨n∥M∥⟩. Finally A universally simulates M on input (x, z) and accepts
if M rejects. The algorithm A has one alternation. By our assumption NP = co-NP, its
universal part (an algorithm of type co-NP with inputs M, (x, z), and ⟨n∥M∥⟩) can be
simulated by a nondeterministic algorithm running in time nO(∥M∥). Altogether we get a
nondeterministic algorithm accepting (the complement of) Equiv(NP) in time nO(∥M∥).
Now our claim follows from the preceding lemma. �

We consider the acceptance problem for nondeterministic Turing machines:

Acc≤
Instance: A nondeterministic Turing machine M and n ∈ N.
Problem: Does M accept the empty input tape in ≤ n steps?

Lemma 7.8 The following are equivalent:
(1) (M, n) ∈ Acc≤ is solvable deterministically in time nf(∥M∥) for some f : N→ N.
(2) (M, n) ∈ Equiv(P) is solvable deterministically in time nf(∥M∥) for f : N→ N.

Proof. (1)⇒ (2): Assume that (M, n) ∈ Acc≤ (where M is a nondeterministic machine
and n ∈ N) can be solved by an algorithm A in time nf(∥M∥) for some f : N → N. Then
the following algorithm B will witness that Equiv(P) is decidable in the time claimed
in (2). Let (M, n) be an instance of Equiv(P), in particular M is a deterministic clocked
Turing machine. We may assume that M on input (x, y) runs for exactly |(x, y)|time(M)

steps. Let M̃ be the nondeterministic Turing machine that on empty input tape, in the
first phase guesses one of the three axioms of an equivalence relation, say, the transitivity

The Infinity Project 357

axiom; then in the second phase M̃ guesses x, y, z ∈ Σ∗; finally in the third phase it
simulates M on input (x, y), on input (y, z), and on input (x, z) and accepts if M accepts
the first two inputs but not the third one. We can assume that M̃ does this simulation
in such a way that it runs for exactly (2 + 2 · max{x, y, z})time(M) steps on each of the
tuples (x, y), (y, z), and (x, z).

Let k1, k2(x, y, z), and k3(x, y, z) be the exact time M̃ uses for the first phase, the
second phase and the third phase, respectively. As indicated for the third phase we may
arrange things in such a way that there are (nonconstant) polynomials k′2, k

′
3 such that

k2(x, y, z) = k′2(max{|x|, |y|, |z|}) and
k3(x, y, z) = k′3(max{|x|, |y|, |z|})

and such that if for example M̃ has chosen the symmetry axiom and x, y ∈ Σ∗, then
k′2(max{|x|, |y|}) is also the exact number of steps M̃ uses for the second phase. As k′2
and k′3 are increasing functions, we get

(M, n) /∈ Equiv ⇐⇒ (M̃, k + k′2(n) + k′3(n)) ∈ Acc≤,

which gives the desired bound.

(2) ⇒ (1): For a nondeterministic Turing machine M let M̂ be the deterministic Turing
machine that on input (x, y) with x, y ∈ Σ∗ first checks whether x ̸= y; if so, it accepts;
if x = y, it simulates the |x| steps of a run of M on empty input tape, namely the steps
corresponding to (the bits in) x and rejects if in these |x| steps M accepts; otherwise M̂
accepts. Thus, for every n ∈ N,

(M, n) ∈Acc≤ ⇐⇒

M̂ does not define an equivalence relation on Σ≤n.

As from the definition of M̂ we immediately get a polynomial time bound, we can assume
that M̂ is clocked, so that the preceding equivalence immediately gives the claim. �

A proof system for Taut is a surjective function S : Σ∗ → Taut computable in
polynomial time. The proof system S for Taut is p-optimal if for every proof system S′

for Taut there is a polynomial time computable T : Σ∗ → Σ∗ such that, for all w ∈ Σ∗,

S(T (w)) = S′(w).

It is not known whether there is a p-optimal proof system for Taut, even though it is
conjectured there is no such p-optimal proof system. In [5] it has been shown that:

Proposition 7.9 The following are equivalent:

(1) There is a p-optimal proof system for Taut.
(2) (M, n) ∈ Acc≤ is solvable in time nf(∥M∥) for some function f : N→ N.

Proof of Theorem 7.4. If there is a p-optimal proof system for Taut, by the previous
proposition and Lemma 7.8 we see that (M, n) ∈ Equiv(P) is solvable in time nf(∥M∥)

for some function f : N→ N. Now the claim follows from Lemma 7.6. �

358 Strong isomorphism reductions in complexity theory

References
[1] H. U. Besche, B. Eick and E. A. O’Brien. The groups of order at most 2000, Electronic Research

Announcements of the American Mathematical Society, 7:1–4, 2001.
[2] A. Blass and Y. Gurevich. Equivalence relations, invariants, and normal forms. SIAM Journal of

Computing, 13:682–689, 1984.
[3] A. Blass and Y. Gurevich. Equivalence relations, invariants, and normal forms, II. Lecture Notes in

Computer Science, 171:24–42, 1984.
[4] R. B. Boppana, J. Hastad and S. Zachos. Does co-NP have short interactive proofs? Information

Processing Letters, 25(2):127–132, 1987.
[5] Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. In Proceedings of the 37th

International Colloquium on Automata, Languages and Programming (ICALP’10), Lecture Notes in
Computer Science 6199, pp. 321–332, Springer, 2010.

[6] H.-D. Ebbinghaus and J. Flum. Finite Model Theory, Second Edition. Perspectives in Mathematical
Logic, Springer 1999.

[7] L. Fortnow and J. Grochow. Complexity classes of equivalence problems revisited, 2009, arXiv:

0907.4775v1 [cs.CC].
[8] S. Friedman. Descriptive set theory for finite structures, Lecture at the Kurt Gödel Research Center,

2009, Available at http://www.logic.univie.ac.at/˜sdf /papers/wien-spb.pdf.
[9] H. Friedman and L. Stanley. A Borel reducibility theory for classes of countable structures, Journal

Symbolic Logic, 54:894–914, 1989.
[10] S. Givant and P. Halmos. Introduction to Boolean Algebras, Springer, 2008.
[11] Y. Gurevich. From invariants to canonization. Bulletin of the European Association for Theoretical

Computer Science 63, pp. 115–119, 1997.
[12] J. Hartmanis and L. Hemachandra. Complexity classes without machines: On complete languages

for UP. Theoretical Computer Science, 58:129–142, 1988.
[13] T. Kavitha. Efficient algorithms for abelian group isomorphism and related problems. In Proceedings

of the 23rd Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’02), Lecture Notes in Computer Science 2914, pp. 277–288, Springer, 2003.

[14] W. Kowalczyk. Some connections between presentability of complexity classes and the power of
formal systems of reasoning. In Proceedings of Mathematical Foundations of Computer Science,
(MFCS’84), Lecture Notes in Computer Science 176, Springer, pp. 364–369, 1984.

[15] G. Miller. Isomorphism testing for graphs of bounded genus. In Proceedings of the 12th Annual ACM
Symposium on Theory of Computing (STOC’80), 225–235, 1980.

[16] T. Thierauf. The computational complexity of equivalence and isomorphism problems. Lecture Notes
in Computer Science, 1852, Springer, 2000.

The Infinity Project

On Σ1
1 equivalence relations over the natural

numbers

Ekaterina B. Fokina†, Sy-David Friedman†

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
efokina@logic.univie.ac.at, sdf@logic.univie.ac.at

Abstract. We study the structure of Σ1
1 equivalence relations on hyperarithmetical subsets of ω under re-

ducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF -reducibility,
respectively. We show that the structure is rich even when one fixes the number of properly Σ1

1 (i.e., Σ1
1

but not ∆1
1) equivalence classes. We also show the existence of incomparable Σ1

1 equivalence relations
that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We study
complete Σ1

1 equivalence relations (under both reducibilities) and show that existence of infinitely many
properly Σ1

1 equivalence classes that are complete as Σ1
1 sets (under the corresponding reducibility on

sets) is necessary but not sufficient for a relation to be complete in the context of Σ1
1 equivalence relations.

Introduction

In [7, 9] the notion of hyperarithmetical and computable reducibility of Σ1
1 equivalence

relations on hyperarithmetical subsets of ω was used to study the question of completeness
of natural equivalence relations on hyperarithmetical classes of computable structures as
a special class of Σ1

1 equivalence relations on ω. In this paper we use this approach to
study the structure of Σ1

1 equivalence relations on ω as a whole.
In descriptive set theory, the study of definable equivalence relations under Borel

reducibility has developed into a rich area. The notion of Borel reducibility allows one
to compare the complexity of equivalence relations on Polish spaces; for details see e.g.
[11, 14, 15]. As proved by Louveau and Velickovic in [19], the partial order of inclusion
modulo finite sets on P(ω) can be embedded into the partial order of Borel equivalence
relations modulo Borel reducibility. Thus, the structure of Borel equivalence relations
under ≤B is shown to be very rich.

In computable model theory, equivalence relations have also been a subject of study,
e.g. [2, 4, 16], etc. In these papers, equivalence relations of rather low complexity
were studied (computable, Σ0

1,Π
0
1, having degree in the Ershov hierarchy). In [7] Σ1

1

equivalence relations on computable structures were investigated. The authors used the
notions of hyperarithmetical and computable reducibility of Σ1

1 equivalence relations on
ω to estimate the complexity of natural equivalence relations on hyperarithmetical classes
of computable structures.

In this paper we take up the general theory of Σ1
1 equivalence relations on hyperarith-

metical subsets of ω. We show that the general structure of Σ1
1 equivalence relations on

hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or com-
putable functions is very rich. Namely, the structure of Σ1

1 sets under hyperarithmetical

Appeared in Mathematical Logic Quarterly, vol. 58 (2012), no. 1–2, pp. 113–124.
†The authors would like to thank the FWF (Austrian Research Fund) for supporting this research

through Grants number P 19898 - N18 and M 1188 - N13, as well as the John Templeton Foundation for
its support through Project #13152, Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

359

360 On Σ1
1 equivalence relations over the natural numbers

many-one-reducibility (hm-reducibility) is embeddable into the structure of Σ1
1 equiva-

lence relations under reducibility given by a hypearithmetical function. Moreover, this
embedding can be taken to have range within the class of Σ1

1 equivalence relations with a
unique properly Σ1

1 equivalence class. Furthermore, we show that there are properly Σ1
1

equivalence relations with only finite equivalence classes, and there are Σ1
1 relations with

exactly n properly Σ1
1 equivalence classes, for n ≤ ω. We also show that a Σ1

1 equivalence
relation with infinitely many properly (moreover, hm-complete) Σ1

1 classes need not be
complete with respect to the hyperarithmetical reducibility.

1 Background

Here we list some definitions and facts that we will use throughout the paper. We
assume familiarity with the main notions from recursion theory. The standard references
are [22, 24].

1.1 Linear orderings

Definition 1.1 Let K be a class of structures closed under isomorphism and Kc be the
set of its computable members.

(1) An enumeration of Kc/∼= is a sequence (An)n∈ω of elements of Kc representing
each isomorphism type in Kc at least once.

(2) An enumeration (An)n∈ω of Kc/∼= is computable (hyperarithmetical) if there is
a computable (hyperarithmetical) function f which, for every n, gives a com-
putable index f(n) for the computable structure An.

As proved in [13]:

Proposition 1.2 There exists a computable enumeration of all isomorphism types for
computable linear orderings.

Thus, we can consider ω as a set of effective codes for computable linear orderings.
We will denote by Ln the n-th computable linear order in this enumeration. We will
abbreviate the set of codes for linear orderings as LO and the set of codes for well-
orderings as WO.

Theorem 1.3 (e.g. [22, Chapter 16, Corollary XXa]) The set WO is a Π1
1-complete set;

moreover, there exists a computable function f(z, x) such that, for every z, the Π1
1 set

with the Π1
1 index z is 1-reducible to WO by the function λx[f(z, x)].

In view of Theorem 1.3 one can think about Π1
1 sets in the following way. Let A be

a Π1
1 set and let m be its Π1

1 index. Then for every x ∈ A, the ordinal isomorphic to
Lf(m,x) may be considered as “the level” at which the membership of x is determined.

Theorem 1.4 (Bounding) For each computable ordinal α, let WOα denote the set of
codes for computable well-orderings isomorphic to an ordinal less than α. Then if F is a
hyperarithmetical function from a hyperarithmetical subset of ω into WO, there exists a
computable α such that the range of F is contained in WOα.

Theorem 1.5 (Uniformization) Every Π1
1 binary relation on X × Y , where X,Y ⊆ ω

are hyperarithmetical, contains a Π1
1 (hyperarithmetical) function with the same domain.

The Infinity Project 361

1.2 Reducibilities on Σ1
1 equivalence relations

The following definitions were introduced in [7]:

Definition 1.6 Let E,E′ be Σ1
1 equivalence relations on hyperarithmetical subsets

X,Y ⊆ ω, respectively.
(1) The relation E is h-reducible to E′, denoted by E ≤h E′, iff there exists a

hyperarithmetical function f such that, for all x, y ∈ X,

xEy ⇐⇒ f(x)E′f(y).

(2) The relation E is FF -reducible to E′, denoted by E ≤FF E′, iff there exists a
partial computable function f with X ⊆ dom(f), f [X] ⊆ Y such that, for all
x, y ∈ X,

xEy ⇐⇒ f(x)E′f(y).

Remark 1.7 A definition analogous to that of FF -reducibility was introduced in [1] for
the case of c.e. equivalence relations.

Definition 1.8 We say that equivalence relations E,F are h-equivalent (FF -equivalent),
denoted by E ≡h F (E ≡FF F , respectively), if E ≤h F and F ≤h E (E ≤FF F and
F ≤FF E, respectively).

Obviously, every Σ1
1 equivalence relation on a hyperarithmetical subset of ω is h-

equivalent to a Σ1
1 equivalence relation on ω. For FF -reducibility the situation is different:

Fact 1.9 There exists a Σ1
1 equivalence relation E on a hyperarithmetical subset X of ω

such that for no Σ1
1 equivalence relation E′ on ω, E ≡FF E′.

Proof. Consider an arbitrary Σ1
1 equivalence relation on a hyperarithmetical set X and

suppose there exists a relation E′ on ω such that E ≡FF E′. Let f be a computable
function which witnesses E′ ≤FF E. Then f(ω) is a c.e. subset of X. Therefore if a Σ1

1

equivalence relation is defined on a hyperarithmetical set without a c.e. subset, it cannot
be FF -equivalent to an equivalence relation on ω. �

From [12], every computable equivalence relation on ω is FF -equivalent to one of the
following:

(1) For some finite n, the equivalence relation x ≡ y mod n, which defines a com-
putable equivalence relation with exactly n infinite equivalence classes and no
finite classes.

(2) The equality relation, which defines a computable equivalence relation with in-
finitely many classes of size one, and no other classes.

Thus, the partial ordering of the computable equivalence structures, modulo the FF -
reducibility, is isomorphic to ω + 1.

In the current paper we are mostly interested in properly Σ1
1 equivalence relations,

i.e., equivalence relations that are Σ1
1 but not ∆1

1. The reason is the following:

Fact 1.10 Let idω denote the equality on ω.
(1) idω ≤h E for any Σ1

1 equivalence relation E with infinitely many equivalence
classes.

(2) Any ∆1
1 equivalence relation on a hyperarithmetical subset of ω is h-reducible

to idω.

362 On Σ1
1 equivalence relations over the natural numbers

Proof. Define a function f : ω → X, where X = dom(E) is hyperarithmetical, in the
following way:

f(x) = µy[y ∈ X&
∧
z≤x
¬f(z)Ey].

By its definition, f is a Π1
1 function with dom(f) = ω, thus f is a hyperarithmetical

function. Obviously, x = y ⇐⇒ f(x)Ef(y).
To prove the second statement, let E be a ∆1

1 equivalence relation on a hyperarith-
metical set X. Without loss of generality we assume 0 /∈ X. Consider a function f(x)
defined on X in the following way:

f(x) = µz[xEz].

For x /∈ X define f(x) = 0. Then the function f is hyperarithmetical and xEy ⇐⇒
f(x) = f(y) ̸= 0. �

Therefore all the ∆1
1 equivalence relations on ω with infinitely many equivalence

classes are h-equivalent.
The question we study in the present paper is the following:

Question 1.11 How complicated is the structure of all Σ1
1 equivalence relations on ω

under h-reducibility (or FF -reducibility)?

1.3 Hyperarithmetical many-one reducibility on Σ1
1 sets

In what follows we use the standard notions of m-reducibility and 1-reducibility [24]:

Definition 1.12
(1) A set A ⊆ ω is many-one reducible (m-reducible) to a set B ⊆ ω, denoted by

A ≤m B, if there exists a computable function f such that, for every n ∈ ω,

n ∈ A ⇐⇒ f(n) ∈ B.
(2) A set A ⊆ ω is 1-reducible to a set B ⊆ ω, denoted by A ≤1 B, if A ism-reducible

to B via a 1-1 computable function.

These reducibilities will be useful for the study of the structure of Σ1
1 equivalence

relations with respect to FF -reducibility.
Consider a hyperarithmetical version of them-reducibility on subsets of ω. It will play

an important role in the investigation of complexity of the structure of Σ1
1 equivalence

relations relative to h-reducibility.

Definition 1.13 Let A,B be subsets of ω. We say that A is hyperarithmetically m-
reducible to B, denoted by A ≤hm B, iff there exists a hyperarithmetical function f with
A ⊆ dom(f), such that, for every n ∈ ω,

n ∈ A ⇐⇒ f(n) ∈ B.

Every equivalence relation can also be considered as a set of pairs, thus, compared to
other sets via m- or hm-reducibilities. The following is straightforward:

Fact 1.14 Let E,F be Σ1
1 equivalence relations on hyperarithmetical subsets of ω.

(1) If E ≤FF F then E ≤m F .
(2) If E ≤h F then E ≤hm F .

We state that the structure of hm-degrees of Σ1
1 subsets of ω is rather complicated.

The Infinity Project 363

Theorem 1.15 The countable atomless Boolean algebra may be embedded into the hm-
degrees of Π1

1 subsets of ω.

Proof. We start as in the proof of [24, Chapter IX, Theorem 2.1]. Let (αi)i∈ω be a
uniformly computable sequence of computable subsets of ω which form a dense Boolean
algebra under ∪,∩. For each i ∈ ω, we are going to build a Π1

1 set Ai such that the
mapping

α 7−→ Aα = {⟨i, x⟩ | i ∈ α, x ∈ Ai}
gives the desired embedding, i.e.,

(1) α ⊆ β iff Aα ≤hm Aβ ;
(2) deg(Aα∩β) ≤ deg(Aα), deg(Aβ);
(3) deg(Aα∪β) ≥ deg(Aα), deg(Aβ).

Notice that the implication from left to right of the first property, as well as the second
and the third properties follow from the definition of Aαi . To ensure the implication from
right to left of the first property, we will use the ideas of metarecursion [23]. We will
build the Π1

1 sets Ai’s in ωCK
1 steps in such a way that no Ai is hm-reducible to the set

A̸=i = {⟨k, x⟩ | k ∈ ω, k ̸= i, x ∈ Ak}.
The whole construction will take now ωCK

1 steps, but as only the Π1
1 subsets of ω

are considered, there will be only ω-many requirements. Thus, each of them may be
injured only finitely many times. This approach is used, for example, in [23, Chapter VI,
Theorems 2.1, 2.4].

Let (fj)j∈ω be a universal Π1
1 enumeration of all Π1

1 functions on ω. Such an enumer-
ation exists, e.g., by [22, Section 16.5]. Recall that the hyperarithmetical functions are
the total Π1

1 functions. Then our requirements are:

Ri,j : Ai ̸= f−1
j [A̸=i] and Ai is co-infinite.

We build our sets in stages σ < ωCK
1 . We assign requirements to stages in such a way

that each requirement is assigned to cofinally many stages. At stage 0 we do nothing.
At stage 0 < σ < ωCK

1 , let Ri,j be the current requirement. The strategy to satisfy
Ri,j is the following. Look for an n > 2j such that fσj (n) ↓/∈ Aσ̸=i. Put n into Ai and
restrain fσj (n) from entering A̸=i. This may injure requirements with lower priority.

Lemma 1.16 For all i, j, the requirement Ri,j acts only finitely many times.

Proof. This is because the requirements are ordered in order type omega, and between
any two stages at which the (n+ 1)-st requirement acts, one of the first n requirements
must have acted. It follows by induction on n that the n-th requirement only acts finitely
many times. �

Lemma 1.17 For all i, j ∈ ω, Ai ̸= f−1
j [A̸=i].

Proof. Assume the opposite, i.e., for some i ∈ ω, Ai ≤hm A̸=i via fj . Choose a stage
σ where requirement Ri,j is considered and requirements of higher priority have ceased
to act; also choose an n > 2j such that fσj (n) ↓ and fσj (n) /∈ Aσ̸=i. Such an n exists,
as at most 2k numbers less than 2k+1 are added to Ai for each k and therefore Ai is
co-infinite. But then at stage σ a number was added to Ai to violate the reduction fj ,
contradiction. �

The lemmas above prove the theorem. �

364 On Σ1
1 equivalence relations over the natural numbers

Corollary 1.18 The countable atomless Boolean algebra may be embedded into the hm-
degrees of Σ1

1 subsets of ω.

Note that there are, or course, much deeper statements about the structure of c.e.
m-degrees (e.g., [5, 18, 21]) that one could try to lift to hm-degrees of Π1

1 sets. However,
Corollary 1.18 provides enough evidence that the structure of hm-degrees of Σ1

1 sets is
rich.

2 A complete Σ1
1 equivalence relation

We start the section by establishing some general properties of Σ1
1 equivalence relations.

Definition 2.1 An equivalence relation E is complete in a classR of equivalence relations
(with a specified reducibility), if E ∈ R and every equivalence relation fromR is reducible
to E (with respect to the chosen reducibility).

Theorem 2.2
(1) There exists a universal Σ1

1 enumeration of all Σ1
1 equivalence relations on ω.

(2) There exists a complete Σ1
1 equivalence relation U (with respect to h- or FF -red-

ucibility).

Proof. Let {Ae}e∈ω be the standard Σ1
1 enumeration of all Σ1

1 subsets of ω × ω (for
instance, as in [22]). Define the equivalence relation Re as the reflexive transitive closure
of Ae, i.e.,

xRey ⇐⇒ x = y ∨ (∃z0, . . . , zk)[z0 = x& . . .&zk = y&(∀i < k)(⟨zi, zi+1⟩) ∈ Ae]
∨ (∃z0, . . . , zk)[z0 = y& . . .&zk = x&(∀i < k)(⟨zi, zi+1⟩) ∈ Ae].

Then every Σ1
1 equivalence relation appears in this enumeration; moreover, from the

properties of the enumeration {Ae}e∈ω, the enumeration {Re}e∈ω is universal.
Now define an equivalence relation R as follows:

⟨x, e⟩R⟨y, e⟩ ⇐⇒ xRey.

Then R is an h- and FF -complete Σ1
1 equivalence relation. �

A useful and rather straightforward property of complete Σ1
1 equivalence relations is

the following:

Proposition 2.3 An h-complete (or FF -complete) Σ1
1 equivalence relation has infinitely

many properly Σ1
1 equivalence classes.

Proof. Under h- or FF -reducibility properly Σ1
1 equivalence classes are mapped to prop-

erly Σ1
1 equivalence classes. In Theorem 6.1 below we show that there exist Σ1

1 equiv-
alence relations with infinitely many properly Σ1

1 equivalence classes. Thus, a complete
Σ1
1 equivalence relation must also have this property. �

Recall the notion of hm-reducibility on subsets of ω introduced in Section 1.3. There
exist Σ1

1 equivalence relations with infinitely many hm-complete classes (e.g., as in The-
orem 6.1 below). Therefore,

Corollary 2.4 An h-complete (FF -complete) Σ1
1 equivalence relation must have infinitely

many properly Σ1
1 equivalence classes that are hm-complete (m-complete, respectively).

The Infinity Project 365

In a following section we will show that this condition is necessary but not sufficient
for a relation to be h- or FF -complete among Σ1

1 equivalence relations.

Remark 2.5 In [7] the authors showed that, in fact, the natural equivalence relation of
bi-embeddability on the class of computable trees (here we mean the standard model-
theoretic notion of embedding of structures) is FF -complete (thus, also h-complete) for
the class of all Σ1

1 equivalence relations on ω, where trees are considered in the signature
with one unary function symbol interpreted as the predecessor function. Furthermore, [9]
shows that the isomorphism relation on many natural classes of computable structures is
FF -complete among Σ1

1 equivalence relations.

By the above results, there exist h-degrees formed by ∆1
1 equivalence relations with

exactly n equivalence classes, for n ≤ ω, and a greatest h-degree of Σ1
1 equivalence

relations, namely, that of a complete Σ1
1 equivalence relation. The next step is to show

that the structure of h-degrees of properly Σ1
1 equivalence relations is not trivial.

Proposition 2.6 There exists a Σ1
1 equivalence relation on ω which is neither ∆1

1 nor
h-complete.

Proof. Let (Lm)m∈ω be the numbering of all computable linear orderings on ω. Consider
the following equivalence relation EωCK

1
:

mEωCK
1
n ⇐⇒ either Lm, Ln are not well-orders (i.e., m,n /∈WO)

or Lm ∼= Ln.

The relation EωCK
1

is Σ1
1 but not ∆1

1 as otherwise the equivalence class consisting of
non-well-orderings would be a ∆1

1 set, a contradiction. Moreover, for every computable
ordinal α, the equivalence class of EωCK

1
containing α is hyperarithmetical. The only

properly Σ1
1 equivalence class is the class consisting of the computable non well-orderings.

As the complete relation R constructed above has infinitely many properly Σ1
1 equivalence

classes, it cannot be reduced to EωCK
1

. Thus EωCK
1

is not complete. �

We would like to mention another natural example of an incomplete properly Σ1
1

equivalence relation, namely, the relation of bi-embeddability on the class of linear orders
studied in [20]. Recall the notion of Scott rank: it is a measure of model theoretic
complexity of countable structures. For a computable structure, the Scott rank is at
most ωCK

1 + 1 (see, for instance, [3] for a definition and an overview of results about the
Scott rank of computable structures). In the class of computable linear orderings with
the relation of bi-embeddability, the only equivalence class that contains structures of
high (i.e., non-computable) Scott rank is the class of the dense linear order η. All other
equivalence classes contain only structures of computable Scott rank (see [20] for details).
If bi-embeddability on linear orderings were complete, it would necessarily have infinitely
many equivalence classes with structures of high Scott rank. Therefore, bi-embeddability
on linear orders cannot be complete.

3 Embedding Σ1
1 sets into Σ1

1 relations

For the reasons stated in Fact 1.10, we are interested in the structure of properly Σ1
1

equivalence relations, i.e., relations that are Σ1
1 but not ∆1

1. In this section we prove the
following theorem:

366 On Σ1
1 equivalence relations over the natural numbers

Theorem 3.1 The structure of properly Σ1
1 sets with the relation of m-reducibility is

order-preservingly (and effectively) embedded into the structure of properly Σ1
1 equivalence

relations with the relation of FF -reducibility, i.e., one can assign to every properly Σ1
1 set

A a properly Σ1
1 equivalence relation EA such that, for all properly Σ1

1 sets A,B,

A ≤m B ⇐⇒ EA ≤FF EB.

Before we give the proof of this theorem we will show the following:

Theorem 3.2 The structure of properly Σ1
1 sets with the relation of 1-reducibility is

order-preservingly (and effectively) embedded into the structure of properly Σ1
1 equivalence

relations with the relation of FF -reducibility where the reducing function is 1-1.

Proof. Let A be a properly Σ1
1 set. Define the relation EA in the following way:

xEAy ⇐⇒ x, y ∈ A
or x = y.

The relation EA is properly Σ1
1.

Lemma 3.3 For all properly Σ1
1 sets A,B,

A ≤1 B ⇐⇒ EA ≤FF EB,

where the FF -reducibility is witnessed by a computable 1-1 function.

Proof. The direction from right to left is obvious. To prove the direction from left to
right suppose A ≤1 B via a computable 1-1 function f . Consider x, y such that xEAy.
By definition of EA, EB and by properties of f ,

xEAy ⇐⇒ x, y ∈ A or x = y ⇐⇒ f(x), f(y) ∈ B or f(x) = f(y) ⇐⇒ f(x)EBf(y).

We use the fact that f is injective to prove the equivalence of the third and the second
statement. �

The lemma proves the theorem. �

Remark 3.4 Relations of this kind for Σ0
1 sets were considered in [12].

Proposition 3.5 There exists an effective procedure which transforms a properly Σ1
1 set

A into a properly Σ1
1 set A∗ in such a way that

A ≤m B ⇒ A∗ ≤1 B
∗;

A∗ ≤m B∗ ⇒ A ≤m B.

Proof. For every set A, define A∗ = A× ω = {⟨x, i⟩ | x ∈ A, i ∈ ω}. For every i, denote
by Ai the set {⟨x, i⟩ | x ∈ A}. Then A∗ = ∪iAi. Note that, by definition of A∗,

x ∈ A ⇐⇒ ∀i⟨x, i⟩ ∈ A∗ ⇐⇒ ∃i⟨x, i⟩ ∈ A∗.

Suppose A ≤m B via a computable function f . We define a computable function h in
the following way: for x′ = ⟨x, i⟩ let h(x′) = ⟨f(x), ⟨x, i⟩⟩, i.e., we send every x′ ∈ Ai to
an element of Bx′ . It guarantees that the function h is 1-1. Thus we only need to show
that h witnesses the 1-reduction of A∗ to B∗:

x′ ∈ A∗ ⇐⇒ x ∈ A ⇐⇒ f(x) ∈ B ⇐⇒ ⟨f(x), ⟨x, i⟩⟩ ∈ B∗.

The Infinity Project 367

Now suppose that A∗ ≤m B∗ via a computable function h. Define f(x) = y ⇐⇒
l(h(⟨x, 0⟩)) = y, i.e., h(⟨x, 0⟩) = ⟨y, j⟩, for some j ∈ ω. Then the function f m-reduces A
to B:

x ∈ A ⇐⇒ ⟨x, 0⟩ ∈ A∗ ⇐⇒ h(⟨x, 0⟩) = ⟨y, j⟩ ∈ B∗ ⇐⇒ y ∈ B. �
Proof of Theorem 3.1. The proof now follows directly from Proposition 3.5 and Theo-
rem 3.2. �
Corollary 3.6 For any 1 ≤ n ≤ ω, there exists an effective embedding of the structure
of properly Σ1

1 sets under m-reducibility into the structure of properly Σ1
1 relations with

exactly n properly Σ1
1 equivalence classes under FF -reducibility.

In Section 1.3 we introduced the notion of hm-reducibility on sets, which is a hyper-
arithmetical analogue of m-reducibility. We showed that the structure of hm-degrees of
Σ1
1 sets is complicated. Consider now a hyperarithmetical version of the 1-reducibility of

subsets of ω:

Definition 3.7 Let A,B be subsets of ω. We say that A is hyperarithmetically 1-reduc-
ible to B, denoted by A ≤h1 B, iff there exists a hyperarithmetical 1-1 function f such
that, for every n ∈ ω,

n ∈ A ⇐⇒ f(n) ∈ B.

Using this definition and ideas from above one can show the following:

Theorem 3.8 The structure of properly Σ1
1 sets with the relation of hm-reducibility is

order-preservingly (and effectively) embedded into the structure of properly Σ1
1 equivalence

relations with the relation of h-reducibility, i.e., one can assign to every properly Σ1
1 set

A a properly Σ1
1 equivalence relation EA such that, for all properly Σ1

1 sets A,B,

A ≤hm B ⇐⇒ EA ≤h EB.
Moreover, for every n ≤ ω, there is such an embedding into the structure of properly

Σ1
1 equivalence relations with exactly n properly Σ1

1 equivalence classes.

Thus, the structure of h-degrees of Σ1
1 equivalence relations even with just one

properly Σ1
1 equivalence class is at least as rich as the structure of Σ1

1 sets under hm-
reducibility.

4 Properly Σ1
1 equivalence relations with only

hyperarithmetical equivalence classes

In this section we show that a properly Σ1
1 equivalence relation need not contain properly

Σ1
1 equivalence classes. Moreover, the example we present contains only equivalence

classes of size 1 or 2.
Let A be a Σ1

1 subset of ω which is not ∆1
1. Define the corresponding equivalence

relation FA on ω × 2 in the following way:

(m0, n0)FA(m1, n1) ⇐⇒ m0 = m1 ∈ A
or (m0, n0) = (m1, n1).

The relation FA is Σ1
1. The equivalence classes of FA are of the form {(m,n) | 1 ≤ n ≤ 2}

if m ∈ A, and {(m,n)} if m /∈ A. In particular, every equivalence class has size 1 or 2.
Again, similar relations constructed from Σ0

1 sets were considered in [12].

368 On Σ1
1 equivalence relations over the natural numbers

Claim 4.1 The equivalence relation FA is properly Σ1
1.

Proof. If FA were ∆1
1, so would be the set A, as A = {m | (m, 0)FA(m, 1)}, which is a

contradiction. �
One can easily modify the example to get an equivalence relation with classes of size

at most (and including) k, for 2 ≤ k < ω.

Definition 4.2 Following [12], we call an equivalence relation k-bounded if all its equiv-
alence classes have size at most k.

Theorem 4.3 There exists a properly Σ1
1 equivalence relation Sk+1 with all its equivalence

classes containing at most k+1 elements such that for no Σ1
1 equivalence relation R with

its equivalence classes containing at most k elements do we have Rk+1 ≤h S (hence, for
no such R do we have Rk+1 ≤FF S).

Proof. As shown in [12], the analogous result is true for the case of c.e. relations. Simple
transformation of this argument proves the theorem for Σ1

1 equivalence relations. �

5 Equivalence relations with finitely many properly
Σ1

1 classes

One can modify the example from the proof of Proposition 2.6 to get, for every finite
k ≥ 2, a Σ1

1 equivalence relation which has exactly k properly Σ1
1 equivalence classes:

Proposition 5.1 For every finite k ≥ 1 there exists a Σ1
1 equivalence relation on ω with

infinitely many equivalence classes, such that exactly k of them are properly Σ1
1.

Proof. Let A1, . . . , Ak be disjoint properly Σ1
1 sets. Consider the relation EA1,...,Ak :

xEA1,...,Aky ⇐⇒ x = y ∨ x, y ∈ A1 ∨ . . . ∨ x, y ∈ Ak.
Then EA1,...,Ak has the desired properties. �

We give another example of equivalence relations with exactly k properly Σ1
1 classes,

for k ≥ 1. The reason is that in the next section we will use a generalization of this
example.

Again consider ω as a set of codes for linear orders. We will define relations Fk,
for k ≥ 1, on pairs of linear orders. First of all, we define additional hyperarithmetical
equivalence relations Ek (here we identify natural numbers k, k′ with ordinals):

n1Ekn2 ⇐⇒ either Ln1
∼= Ln2

∼= k′ < k − 1

or both n1, n2 are not codes for well-orders of type k′ < k − 1.

By definition, Ek is hyperarithmetical and has exactly k equivalence classes. We now
define Fk as follows: for (mi, ni) ∈ ω2, i = 1, 2,

(m1, n1)Fk(m2, n2) ⇐⇒ either (Lm1 , Lm2 are not well-orders and n1Ekn2)
or (Lm1

∼= Lm2).

The idea is that we “cut” the properly Σ1
1 class of EωCK

1
(the relation defined in

Proposition 2.6) into k properly Σ1
1 pieces. The relations Fk, k ≥ 1, have the necessary

properties. Moreover,

Proposition 5.2 For all 1 ≤ k1 < k2 < ω, Fk1 <h Fk2 .

The Infinity Project 369

Proof. Let f be a hyperarithmetical function which witnesses Ek1 <h Ek2 . Consider
the function g(m,n) = (m, f(n)). It is hyperarithmetical and reduces Fk1 to Fk2 . The
reduction is strict, as Fk1 has fewer properly Σ1

1 equivalence classes than Fk2 . �
Remark 5.3 No Fk, for k ≥ 1, is complete as no Σ1

1 equivalence relation with only finitely
many properly Σ1

1 equivalence classes can be complete for the class of Σ1
1 equivalence

relations.

6 Equivalence relations with infinitely many properly Σ1
1

classes

In this section we show that an infinite number of properly Σ1
1 equivalence classes does

not guarantee the h- or FF -completeness of a Σ1
1 equivalence relation.

Indeed, it is easy to construct a non-complete Σ1
1 equivalence relation with infinitely

many properly Σ1
1 equivalence classes. Take a computable sequence (An)n∈ω of disjoint

Σ1
1 sets such that none of them is complete, and consider the relation R∞ defined as

follows:
xR∞y ⇐⇒ x = y ∨ ∃n(x, y ∈ An).

As the sequence (Ai)i∈ω is computable, the relationR∞ is Σ1
1. Moreover, it is not complete

as, for example, the relation RB for a complete Σ1
1 set B constructed as in Section 3 is

not reducible to R∞.
By Corollary 2.4, an h-complete (a FF -complete) Σ1

1 equivalence relation must have
infinitely many equivalence classes that are hm-complete (m-complete) as Σ1

1 sets. Below
we will show that this condition is not sufficient:

Theorem 6.1 There exists a non-h-complete (non-FF -complete) Σ1
1 equivalence relation

with infinitely many classes that are hm-complete (m-complete) among Σ1
1 sets.

The proof of the theorem will follow from Proposition 6.3 below.
For every computable infinite ordinal α, we define equivalence relations Eα and Fα

in the following way:

n1Eαn2 ⇐⇒ either Ln1
∼= Ln2

∼= α′ < α

or [neither n1 nor n2 code well-orders of type < α].

In other words, for each α′ < α, there is an equivalence class consisting of linear orders
isomorphic to α′. All the linear orders that are not isomorphic to any α′ < α form a single
equivalence class. By definition, if α is computable, then Eα is hyperarithmetical with
infinitely many equivalence classes, provided α is infinite. Indeed, for a fixed α < ωCK

1

it is hyperarithmetical to check whether or not some n ∈ ω is a code for a well-order of
type α or of type < α. Then both the first and the second line of the definition give
hyperarithmetical conditions. Hence, for infinite α < ωCK

1 , all Eα are hyperarithmetical
and h-equivalent to each other. Notice that there is some non-uniformity in the definition
of Eα for finite (defined in the previous section) and infinite α.

Now define:

(m1, n1)Fα(m2, n2) ⇐⇒ either Lm1 , Lm2 are not well-orders and n1Eαn2
or Lm1

∼= Lm2 .

Proposition 6.2 For all computable infinite α1, α2, Fα1 ≡h Fα2 .

370 On Σ1
1 equivalence relations over the natural numbers

Proof. Consider the function h that witnesses the h-equivalence of the corresponding
Eα1 , Eα2 . The function h′ which sends a pair (m,n) into the pair (m,h(n)) gives the
equivalence of Fα1 , Fα2 . �

Recall the definition of the relation EωCK
1

from Section 2:

mEωCK
1
n ⇐⇒ either Lm, Ln are not well-orders (i.e., m,n /∈WO)

or Lm ∼= Ln.

Finally, we define an equivalence relation FωCK
1

as follows:

(m1, n1)FωCK
1

(m2, n2) ⇐⇒ either Lm1 , Lm2 are not well-orders and n1EωCK
1
n2

or Lm1
∼= Lm2 .

Note that all Fα, α < ωCK
1 , and FωCK

1
have infinitely many equivalence classes that

are m-complete (thus, also hm-complete) among Σ1
1 sets.

Proposition 6.3 For every computable α,

Fα <h FωCK
1
.

Proof. Obviously, Fα ≤h FωCK
1

: let f reduce Eα to EωCK
1

; then g(m,n) = (m, f(n))

reduces Fα to FωCK
1

. We only need to prove that FωCK
1

is not reducible to Fα for any
computable α. Suppose that for some computable α there were such a hyperarithmetical
reduction h:

(m1, n1)FωCK
1

(m2, n2) ⇐⇒ h((m1, n1))Fαh((m2, n2)).

Consider n1, n2 ∈ ω. For every m /∈WO we have:

n1EωCK
1
n2 ⇐⇒ (m,n1)FωCK

1
(m,n2) ⇐⇒ h((m,n1))Fαh((m,n2)) ⇐⇒

⇐⇒ Lm1
∼= Lm2

∼= γ, where γ is an ordinal, or [m1,m2 /∈WO and l1Eαl2],
where h(m,ni) = (mi, li), i = 1, 2. Fix this notation for the rest of the proof.

If there exists an m /∈ WO such that for all n1, n2 the corresponding m1,m2 /∈ WO,
then the proposition is proved. Indeed, fix such an m. Then, for all n1, n2 ∈ ω,

n1EωCK
1
n2 ⇐⇒ (m,n1)FωCK

1
(m,n2) ⇐⇒ (m1, l1)Fα(m2, l2) ⇐⇒ l1Eαl2,

which gives a hyperarithmetical reduction of EωCK
1

to Eα, a contradiction.
Suppose now that for every m /∈WO there exist n1, n2 ∈ ω such that Lm1

∼= Lm2
∼= γ

for some γ < ωCK
1 . Define a Π1

1 relation R(m,n) as follows:

R(m,n) ⇐⇒ (m ∈WO ∧m = n)

or (n ∈WO ∧ Ln ∼= Lm1
∼= Lm2 associated to some h(m,n1), h(m,n2)).

By Uniformization, R can be uniformized by a Π1
1 function f . The function f is total,

thus hyperarithmetical from ω to WO. By Bounding, the range of f is bounded by a
computable ordinal γ0.

Consider now all m ∈ WO for which there exist n1, n2 such that Lm1
∼= Lm2

∼= γ0.
Then there is a computable bound α0 on ordinals coded by such elements m.

Now we have

WO = {m | m ̸= code(β) for β ≤ α0 and ∃n1, n2Lm1
∼= Lm2

∼= γ ≤ γ0},
which gives a hyperarithmetical definition of WO, a contradiction. �

The Infinity Project 371

Remark. The process above of constructing Σ1
1 equivalence relations may be iterated

further. In particular, the relation FωCK
1

is not complete among Σ1
1 equivalence relations.

7 More results

The following result from [12] shows the difference between the theory of Σ0
1 equivalence

relations and that of Σ1
1 equivalence relations:

Theorem 7.1 Let A1, . . . , An be disjoint c.e. sets the complement of whose union is
infinite. Then

idω ≤FF RA1,...,An ⇐⇒ A1 ∪ . . . ∪An is not simple.

Here
xRA1,...,Any ⇐⇒ x = y ∨ ∃i ≤ n(x, y ∈ Ai).

In the case of h-reducibility and disjoint Σ1
1 sets A1, . . . , An,

idω ≤h RA1,...,An

always holds. Indeed, the complement C of
∪
i≤nAi is a Π1

1 set, thus it contains a hyper-
arithmetical subset B. Then a 1-1 hyperarithmetical function from ω onto B witnesses
the reduction.

The analogy with c.e. equivalence relations might be more complete if we considered
Π1

1 equivalence relations.
Using ideas from [12] one can show the following:

Theorem 7.2 There exist properly Σ1
1 equivalence relations that are m-complete (hm-

complete) as Σ1
1 sets but FF -incomparable (respectively, h-incomparable) as Σ1

1 equiva-
lence relations.

Proof. Let A be an m-complete, hence, also hm-complete Σ1
1 set. Let EA be a Σ1

1 equiv-
alence relation built from A as in Section 3. Let FA be a Σ1

1 equivalence relation with all
its equivalence classes finite built from A as in Section 4. Then EA and FA are neither
FF -comparable nor h-comparable.

Suppose EA is reducible to FA via a computable (or hyperarithmetical) function f .
Fix an arbitrary x0 ∈ A and let y0 = f(x0). Then A = {x | f(x)FAy0}; therefore A ≤
[y0]FA , where [y0]FA is finite. Thus A is computable (hyperarithmetical), a contradiction.

Suppose now that FA is reducible to EA via g. Consider the set B = {g(x) | x ∈ ω}.
Then B ∩ A ̸= ∅, otherwise FA would be reducible to idω, thus hyperarithmetical. Now
let C = {x | g(x) ∈ A}; then C is an equivalence class of FA. Pick an arbitrary y ∈ A
and define h(x) in the following way:

h(x) =

{
y if x ∈ C,
g(x) otherwise.

All equivalence classes of FA are finite, thus h is a computable (hyperarithmetical) func-
tion which reduces FA to the equality on ω. �

8 Questions

If an equivalence relation E is reducible to an equivalence relation E′ (under any of the
two reducibilities considered here) then E is reducible to E′ as sets (under the corre-
sponding reducibility). On the other hand, if a Σ1

1 equivalence relation is m-complete

372 On Σ1
1 equivalence relations over the natural numbers

(hm-complete) as a Σ1
1 set, it does not guarantee that it is FF -complete (h-complete)

as a Σ1
1 equivalence relation. Indeed, let A be an m-(hm-)complete Σ1

1 set. Let EA be a
Σ1
1 equivalence relation built as in Sections 3 or 4. Then EA is not complete among Σ1

1

relations but it is obviously complete as a Σ1
1 set. One can also build such equivalence re-

lations with any number of properly Σ1
1 equivalence classes.

As it follows from Theorem 7.2, two Σ1
1 equivalence relations may be incomparable

while both being m-complete among Σ1
1 sets. However in the above example one of the

relations had only finite classes while the other relation had an infinite class and all the
other classes of size 1. Thus the following set of questions arises naturally:

Question 8.1 Let E,E′ be Σ1
1 equivalence relations with only finite (or hyperarith-

metical) equivalence classes. Suppose E,E′ are both complete as sets (under m- or
hm-reducibility). As follows from Theorem 4.3, it may be the case that E < E′. Is it
possible that E and E′ are incomparable?

Question 8.2 The same for relations with a fixed number of properly Σ1
1 (Σ0

1) equivalence
classes.

We studied properly Σ1
1 equivalence relations according to the number of their prop-

erly Σ1
1 equivalence classes. We saw examples of equivalence relations with only hyper-

arithmetical classes, with exactly n properly Σ1
1 equivalence classes, for n ∈ ω and with

infinitely many properly Σ1
1 equivalence classes.

Question 8.3 Does there exist a properly Σ1
1 equivalence relation on (a hyperarith-

metical subset of) ω with infinitely many equivalence classes such that all its classes are
properly Σ1

1?

References
[1] C. Bernardi, A. Sorbi, Classifying positive equivalence relations, J. Symbolic Logic 48 (1983), 529–

538.
[2] W. Calvert, D. Cenzer, V. Harizanov, A. Morozov, Effective categoricity of equivalence structures,

Ann. Pure Appl. Logic 141 (2006), 61–78.
[3] W. Calvert, E. Fokina, S. Goncharov, J. Knight, O. Kudinov, A. Morozov, V. Puzarenko, Index sets

for classes of high rank structures, J. Symbolic Logic 72 (2007), 4, 1418–1432.
[4] D. Cenzer, V. Harizanov, J. Remmel, Σ0

1 and Π0
1 equivalence structures, Proceedings of “Computabil-

ity in Europe 2009”, Heidelberg, Lecture Notes in Computer Science 5635, 99–108, 2009.
[5] S. D. Denisov, Structure of the upper semilattice of recursively enumerable m-degrees and related

questions, Algebra and Logic 17 (1978), 6, 643–683.
[6] Yu. L. Ershov, Definability and computability, Siberian School of Algebra and Logic, Consultants

Bureau, New York, 1996.
[7] E. Fokina, S. Friedman, Equivalence relations on classes of computable structures, Proceedings of

“Computability in Europe 2009”, Heidelberg, Lecture Notes in Computer Science 5635, 198–207,
2009.

[8] E. Fokina, S. Friedman, A. Törnquist, The effective theory of Borel equivalence relations, Ann. Pure
Appl. Logic 161 (2010), 837–850.

[9] E. Fokina, S. Friedman, V. Harizanov, J. Knight, C. McCoy, A. Montalbán, Isomorphism and bi-
embeddability relations on computable structures, to appear in J. Symbolic Logic.

[10] H. Friedman, L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic
Logic 54 (1989), 894–914.

[11] S. Gao, Invariant Descriptive Set Theory, Pure and Applied Mathematics, CRC Press/Chapman &
Hall, 2009.

[12] S. Gao, P. Gerdes, Computably enumerable equivalence relations, Studia Logica 67 (2001), 27–59.

The Infinity Project 373

[13] S. S. Goncharov, J. F. Knight, Computable structure and non-structure theorems, Algebra and Logic
41 (2002), 351–373 (English translation).

[14] V. Kanovei, Borel Equivalence Relations: Structure and Classification, University Lecture Series,
44, American Mathematical Society, 2008.

[15] A. Kechris, New directions in descriptive set theory, Bull. Symbolic Logic 5 (1999), 2, 161–174.
[16] B. Khoussainov, F. Stephan, Y. Yang, Computable categoricity and the Ershov hierarchy, Ann. Pure

Appl. Logic 156 (2008), 86–95.
[17] A. Lachlan, A note on positive equivalence relations, Zeit. Mat. Logik Grundl. Math. 33 (1987),

43–46.
[18] A. Lachlan, Recursively enumerable many-one degrees, Algebra and Logic 11 (1972), 3, 326–358.
[19] A. Louveau, B. Velickovic, A note on Borel equivalence relations, Proc. Amer. Math. Soc. 120 (1994),

1, 255–259.
[20] A. Montalbán, On the equimorphism types of linear orderings, Bull. Symbolic Logic 13 (2007), 71–99.
[21] S. Yu. Podzorov, The universal Lachlan semilattice without the greatest element, Algebra and Logic

46 (2007), 3, 163–187.
[22] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.
[23] G. Sacks, Higher Recursion Theory, Springer-Verlag, 1989.
[24] R. Soare, Recursively enumerable sets and degrees: A study of computable functions and computably

generated sets, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987.

The Infinity Project

Transfinite machines, analysis and determinacy

Philip D. Welch∗

∗ School of Mathematics, University of Bristol, UK
p.welch@bristol.ac.uk

Abstract. We survey recent connections between inductive operators, discrete transfinite machine mod-
els of computation, and determinacy. These are all at low levels of the arithmetic hierarchy, and concern
results provable within second-order number theory.

Introduction

Transfinite machine models are interesting in their own right, and seeing how they may
computes integers or reals can be an intricate question of programme design. However,
dealing as they do essentially with the infinite, deeper insights, we claim, are obtained
when relating their action to some well-known set-theoretic hierarchy, such as L, the
Gödel universe of constructible sets; or else to a much studied concept from the early
70’s, that of (monotone) inductive definitions. Infinite games enter in to this discussion, as
the inductive operators then considered can be given a generalised quantifier expression in
often in terms of infinite sequences of ordinary alternating ∀ ∃ quantifiers which represent
game moves.

We survey only some of these connections, concentrating for the most part on the
Infinite Time Turing Machines (ITTM’s) of Hamkins and Kidder ([4]) in the first section.
Then we give a very brief survey of a few results relating games and operators. Our aim
here is to concentrate on Σ0

3 —the last pointclass left which seems to have been not well
studied, or perhaps understood, in terms of its relation to L and describing the locations
of strategies for games with payoff sets in this pointclass. The case of Σ0

3 has now been
given a classification by a characterisation of a level of the Lβ hierarchy (Theorem 2.8
below), but somewhat unsatisfactorily in terms of non-wellfounded end extensions with
a certain technical property. So there is some more work to be done here to get theorems
like those of Solovay on Σ0

2 below.

1 Infinite Time Turing Machines

We sketch a model which is minor variant of that proposed by Hamkins and Kidder in [4].
Allow a standard Turing machine to run through transfinite stages using one of the usual
Turing programs ⟨Pe | e ∈ N⟩. We simply have to specify some limit rules to declare how
the machine behaves at limit stages λ of time. We take an alphabet of three symbols:
{0, 1,B(lank)}.

• Enumerate the cells of the tape ⟨Ck | k ∈ N⟩ with contents at time τ as Ck(τ).
• Let the current instruction about to be performed at time τ be Ip(τ); and let the

current cell being inspected be Ci(τ).

∗The author thanks the John Templeton Foundation for its support through Project #13152, The
Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

375

376 Transfinite machines, analysis and determinacy

• Behaviour at successor stages α → α + 1: use the Turing program procedures
just as normal.
• At limit times λ:

(a) we specify cell values by

Ci(λ) =

{
k iff ∃α < λ∀β < λ(α < β → Ci(β) = k) for k ∈ {0, 1,B}
B otherwise;

(b) we put the R/W to cell Ci(λ), where

i(λ) = Liminf∗α 7→λ{i(β) | α < β < λ};
(c) we set p(λ) = Liminfα 7→λ{p(β) | α < β < λ}.

In the above, we define Liminf∗ to be the usual Liminf if the latter value is finite,
and set it to be 0 if it is has become infinite.

This together with the value of the next instruction number p has the virtue of putting
the R/W at the beginning of the outermost loop of any the outermost subroutine I(α)
called unboundedly often in λ.

Hamkins and Lewis proved there is a universal machine, an Smn -Theorem, and a
Recursion Theorem for ITTM’s, and a wealth of results on the resulting ITTM-degree
theory to which we refer the reader. Halting sets may be defined in the usual way:

H = {(e, x) | e ∈ N, x ∈ 2N ∧ Pe(x) ↓};
H0 = {(e, 0) | e ∈ N ∧ Pe(0) ↓}.

Natural occurring questions then are the following:

• What is H or H0?
• How long do we have to wait to discover if e ∈ H0 or not?
• What are the ITTM (semi)-decidable sets of integers? Or reals?

These questions can all be answered. However first we would like some type of an
“ITTM Normal Form Theorem”:

Theorem 1.1 ([9, Corollary 36]) There is a universal predicate T which satisfies ∀e∀x:
Pe(x) ↓ z ↔ ∃y ∈ 2N[T(e, x, y) ∧ Last(y) = z].

However for this to occur we need to know whether the ordinal length of any compu-
tation is capable of being output or written by a(nother) computation. (The “Clockables
= Writables” Problem of [4].)

Theorem 1.2 (The λ, ζ,Σ-Theorem [9, Corollary 32]) Let Σ be the least ordinal so that
there exists ζ < Σ with the property that

Lζ ≺Σ2 LΣ .

(i) Then the universal ITTM machine first enters a loop at time ζ.
Let λ be the least ordinal satisfying

Lλ ≺Σ1 Lζ .

(ii) Then

λ = sup{α | ∃e Pe(0)↓ in α steps}
= sup{α | ∃e Pe(0)↓y ∈WO ∧ ||y|| = α}.

The Infinity Project 377

The Normal Form Theorem follows as a corollary as does:

Corollary 1.3
(i) ([9, Theorem 41]) The complete ITTM semi-decidable subset of ω is recursively

isomorphic to the T 1
λ =df Σ1-Th(Lλ).

(ii) (Corollary 34 op. cit.) The ITTM-decidable reals are precisely those of Lλ.

2 Games and inductive definitions

The theory of inductive definitions and Gale–Stewart infinite games of perfect information
over N is well studied. (We refer the reader to Moschovakis [7] for all notions of this
section.)

We recall the definition of the game quantifier a:

Definition 2.1 A set A ⊆ N is aΓ if there is B ∈ N× R so that

n ∈ A ⇐⇒ Player I has a winning strategy in GAn
where An = {x ∈ R | B(n, x)}.

It is a result of Spector that monotone Π1
1 inductive definitions do not lead out of the

pointclass Π1
1. We write (mon.-Π1

1)-IND for the class of sets (1-1) reducible to fixed points
of such monotone inductions starting with ∅. Part of Spector’s analysis was that such
inductions result in a fixed point at an ordinal at most the least non-recursive ordinal
ωck1 : it is thus the ‘closure ordinal’ for monotone Π1

1-inductive definitions.

Theorem 2.2 (Folklore) A set A ⊆ N is (mon.-Π1
1)-IND iff it is aΣ0

1 iff it is Σ1(Lωck1
).

A closely related theorem:

Theorem 2.3 For any Σ0
1 game, if it is a win for Player I, then she has a (mon.-Π1

1)-IND
winning strategy. (And thus it is also Σ1(Lωck1

).)

We now consider over N the result of inductive definitions in the dual class: Σ1
1-IND.

Theorem 2.4 (Solovay) A set A ⊆ N is Σ1
1-IND iff it is aΣ0

2 iff it is Σ1(Lσ1
1
), where σ11

is the closure ordinal of Σ1
1-inductive definitions.

The corresponding closely related theorem to this is:

Theorem 2.5 (Solovay) Any Σ0
2 game, if it is a win for Player I then she has a Σ1

1-IND
winning strategy. (And thus also Σ1(Lσ1

1
).)

The reader by now naturally expects an answer to the question at the level of Σ0
3?

Recall that the results of Harvey Friedman on the non-provability of levels of determinacy
in the Borel hierarchy in the system of analysis, Z2, start at Σ0

4-Det (Martin, refining
Friedman [2]).

• Z2 0 Σ0
4-Det.

Recently Montalbán and Shore have shown:

• Z2 0 Bool(Σ0
3)-Det (Montalbán–Shore, [6]).

However Det(Σ0
3) has been known provable in analysis since Morton Davis’s proof

of this fact ([1]). Perhaps there is some link between such and the ‘quasi-inductive’
definitions that ITTM’s constitute?

378 Transfinite machines, analysis and determinacy

Question: Are strategies for Σ0
3 sets ITTM-semi-decidable? Thus, are they Σ1(LΣ)?

Definition 2.6 Let “ITTM” abbreviate “∀X(HX
0 exists)”; in other words, “the complete

ITTM-semi-decidable-in-X set exists”.

Theorem 2.7 ([11]) The theories

Π1
3-CA0, ∆1

3-CA0 +Σ0
3-Det, ∆1

3-CA0 + ITTM, ∆1
3-CA0

are in strictly descending order of strength.

But where are the strategies? For sufficiently large β the following can happen: there
is a non-wellfounded end extensionM of Lβ whose wellfounded part is precisely Lβ but
which contains an “infinite nesting” of Σ2 elementary substructures. More precisely, there
could be a sequence ofM-ordinals

ζ(i) ≤ ζ(i+ 1) < · · · < s(i+ 1) < s(i) for i ∈ ω
with both (ζ(i))i and (s(i))i converging on β, and Lζ(i) ≺Σ2 Ls(i).

Theorem 2.8 Let β be least so that Lβ is the WFP(M) for some illfounded end-extension
of Lβ with this “infinite Σ2 elementary extension nesting” configuration as above. Then
β is also the least such that any Σ0

3 game has a winning strategy definable over Lβ.

3 Hypermachines

Can we find ‘machines’ that will lift the Σ2 “Liminf” of [HL] to a Σn-rule at limit stages?
Yes, we can:

Theorem 3.1 ([3]) For any n ≥ 2 there is such a Σn limit rule, so that for a machine
running under such a rule, the universal Σn-machine on integer input first enters a loop
at the least ζ(n) such that ∃Σ(n) > ζ(n) with

Lζ(n) ≺Σn LΣ(n).

Such machines then compute, taken as a whole with n varying, all the reals of the
least β-model of analysis 2ω ∩ Lβ0 . It has to be said that with increasing n the machine
intuition becomes more distanced, and considerations concerning stability of ordinals in
L play an essential role in order for the universal Σn-hypermachine to satisfy the theorem.

Nevertheless, e.g. using Montalbán–Shore ([6]), strategies for n-Σ0
3 games are com-

putable by the Σ(n+ 2)-machines.

4 Open questions

We finish with some questions which we think merit further study.

Question 4.1 Give another description of the least β over which strategies for Σ0
3 sets

are definable.

Conjecture 4.2 Lubarsky’s “Feedback-ITTM’s” ([5]) are related to this.

Lubarsky has generalised the Hamkins–Kidder ITTM to one that allows calls to other
ITTM’s as sub-routines for enhanced input to the main program. In order not to have
a nested, and so non-wellfounded, computation tree of machines calling each other he
associates ordinals with each call, and insists they are descending in the usual ordering

The Infinity Project 379

with each sub-call made. The computation times of such machines are then related to
Mahlo limits of the Σ2-extendible ordinal operation so-to-speak. He points out that one
can consider lifting the restriction on ordinal labels and consider ill-founded computation
trees. These may return no output of course and so are deemed to be non-terminating.
Allowing this model somewhat more curious patters emerge: the “feedback-writable” reals
turn out to be those that occur on any tape of any of these generalised computations,
whether halting or not. This is something that does not occur on the usual ITTM models
or the hypermachines. However it seems to us with the analysis of Theorem 2.8 above
that the parallel between nested (and so ill-founded) calls of machines stuck inside a nest
of Σ2-extendible loops is strongly suggestive of a connection with the ordinal β of that
theorem.

Another conjecture concerning this β relates it to the more standard theory of mono-
tone inductive operators.

Conjecture 4.3 Does β equal the closure ordinal of mon.-aΣ0
3-inductive operators?

Question 4.4 Develop an ordinal-theoretic analysis of the theory ITTM.

We note that if the Rathjen approach [8] to the ordinal analysis of Π1
2-CA is taken

to apply to that for Π1
3-CA then the analysis he makes use of for chains of models

Lγn ≺Σ1 Lγn+1 for arbitrary n < ω must be lifted by one, to an analysis of chains
of models of the form Lζn ≺Σ2 Lζn+1 . The ITTM’s require a chain of just one link:
Lζ ≺Σ2 LΣ, and so an ordinal analysis of the theory stating that the universe is closed
under such chains is but a first, but necessary, step along this path.

Question 4.5 Find the βn where strategies for n-Σ0
3 games can be located.

Define semi-decidable sets of reals using the ITTM’s (and Σn-hypermachines) in a
standard way; this yields pointclasses Γn strictly within ∆1

2.

Question 4.6 Quantify Det(Γn).

Usually levels of determinacy (beyond that of Π1
1) are calibrated by associating it

with an embedding of a core model or a level of L(R). A sample theorem of what is
known:

Theorem 4.7 ([10]) ZFC + Det(Γ2) ⇒ There is an inner model with a proper class of
strong cardinals.

References
[1] M. Davis. Infinite games of perfect information. Annals of Mathematical Studies, 52:85–101, 1964.
[2] H. Friedman. Higher set theory and mathematical practice. Annals of Mathematical Logic, 2(3):325–

327, 1970.
[3] S. D. Friedman and P. D. Welch. Hypermachines. Journal of Symbolic Logic, 76(2):620–636, 2011.
[4] J. D. Hamkins and A. Lewis. Infinite time Turing machines. Journal of Symbolic Logic, 65(2):567–

604, 2000.
[5] R. Lubarsky. Well founded iterations of infinite time turing machines. In R.-D. Schindler (ed.), Ways

of Proof Theory. Ontos, 2010.
[6] A. Montalbán and R. Shore. The limits of determinacy in second order number theory. Proceedings

of the London Mathematical Society, to appear.
[7] Y. N. Moschovakis. Elementary Induction on Abstract Structures, volume 77 of Studies in Logic

series. North-Holland, Amsterdam, 1974.

380 Transfinite machines, analysis and determinacy

[8] M. Rathjen. An ordinal analysis of parameter-free Π1
2 comprehension. Archive for Mathematical

Logic, 44(3):263–362, 2005.
[9] P. D. Welch. Characteristics of discrete transfinite Turing machine models: halting times, stabiliza-

tion times, and normal form theorems. Theoretical Computer Science, 410:426–442, 2009.
[10] P. D. Welch. Determinacy in strong cardinal models. Journal of Symbolic Logic, 76(2):719–728, 2011.
[11] P. D. Welch. Weak systems of determinacy and arithmetical quasi-inductive definitions. Journal of

Symbolic Logic, 76(2):418–436, 2011.

Part IV

History and Philosophy of Set Theory

The Infinity Project

Foundational implications of the inner model
hypothesis

Tatiana Arrigoni†, Sy-David Friedman‡

† Fondazione Bruno Kessler, Trento, Italy
arrigoni@fbk.eu

‡ Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

Introduction

The goal of this paper is to bring the Inner Model Hypothesis (IMH), an axiomatic ap-
proach formulated by the second author in [6], into the current debate on the implications
of independence results in set theory. We argue that the IMH provides an alternative to
the two main contenders in this debate: the view that the universe of sets is inherently
undetermined, its essential features being exhausted by the axioms of ZFC, and the op-
posing view that the next step toward the goal of making our knowledge of the universe
of sets more determinate consists in the search for a suitable extension of the system
“ZFC + large cardinal axioms”. Both perspectives are objectionable in principle and the
Inner Model Hypothesis confirms this in fact.

A brief overview of the current situation with regard to independence in set theory
is given in Section 2. Section 3 illustrates the main views in the current debate on the
implications of independence phenomena. Criticism against these views is presented in
Section 4, while the implications of the Inner Model Hypothesis are discussed in Section 5.

Both authors wish to thank the John Templeton Foundation for its generous support
of this work in the framework of the Infinity Project at the Centre de Recerca Matemàtica,
Bellaterra, Spain.

1 A puzzling state of affairs

As a consequence of Gödel’s construction of the inner model L and Cohen’s introduction
of forcing techniques in set theory, the existence of alternative universes satisfying the
accepted axioms (i.e., the axioms of the system ZFC) has emerged as an inescapable fact.
In addition to ZFC, the universe L of constructible sets satisfies the Generalized Con-
tinuum Hypothesis (GCH) —and therefore the Singular Cardinal Hypothesis (SCH)—,
the assertion that there is a definable non-measurable set of reals, and the Singular
Square Principle; it fails to satisfy the Suslin Hypothesis, the Whitehead Conjecture,
the Borel Conjecture and the existence of a Borel bijection between any two non-Borel
analytic sets.1 On the other hand, many of these principles behave differently in forcing

To appear in Annals of Pure and Applied Logic.
†The first author is supported by Provincia Autonoma di Trento, Italy (Bando Post-Doc 2007).
1 GCH is the assertion that for any cardinal number κ, 2κ = κ+, while the SCH, implied by GCH,

is the same assertion for κ a singular strong limit cardinal. For the other principles mentioned see [13].

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

383

384 Foundational implications of the inner model hypothesis

extensions of L and, relative to the existence of large cardinals, they all behave differently
in some model of ZFC.2

As a natural move in the attempt to decide statements independent from ZFC and
thereby make our picture of the universe of sets more determinate, candidate axioms for
extending ZFC have been proposed and investigated. In line with a suggestion of Gödel,
a prominent role in this investigation has been played by large cardinal axioms.3 With
reference to such axioms Gödel says:

It is not impossible that [...] some completeness theorem would hold
which would say that every proposition expressible in set theory is
decidable from the present axioms plus some true assertion about the
largeness of the universe of all sets. ([4, pp. 150–153])

What came to be known as “Gödel’s program for new axioms” did not however produce the
desired results as far as independence is concerned. The statement of greatest interest
which is independent from ZFC, Cantor’s Continuum Hypothesis, is also independent
from “ZFC + large cardinal axioms”. But a relevant general fact emerged: The study
of large cardinal axioms took the form of a strictly mathematical venture (“the theory
is assumed and theorems are proved in the ordinary mathematical manner” [5, ix]), and
its mathematical success was used as a source of evidence in set theory. Success is meant
here as Gödel intended it, i.e., as consisting in axioms being “fruitful in consequences,
exactly in ‘verifiable’ consequences, i.e., consequences demonstrable without the new
axiom, whose proofs by means of the new axiom, however, are considerably simpler and
easier to discover [...]”,4 as well as in axioms shedding light “upon a whole discipline, and
furnishing [...] powerful methods for solving given problems” ([8, p. 183]).5

It is however worth noting that mathematical success can be reasonably ascribed to
extensions of ZFC incompatible with “ZFC + large cardinal axioms”. ZFC + V = L, for
instance, is fruitful in consequences, furnishes powerful methods for solving problems and
introduces the concept of constructibility, important throughout set theory.6 Of course
this theory is incompatible with “ZFC + there exists a measurable cardinal”.7

How the mathematical success of large cardinal axioms is related to the program of
making the picture of the set-theoretical universe more determinate —and, more gener-
ally, to the aim of producing definitive set-theoretical hypotheses— is discussed in the
next two sections.

2 Specifically, there are forcing extensions of L in which GCH is false, definable sets of reals are
measurable and the Suslin Hypothesis, Whitehead Conjecture and the Borel Conjecture are true. Models
of the negation of SCH, the negation of the Singular Square Principle and the existence of a Borel bijection
between any two non-Borel analytic sets can be obtained assuming the existence of a hypermeasurable
cardinal, a supercompact cardinal and a measurable cardinal, respectively.

3 Large cardinal axioms assert the existence of cardinals κ with various strong properties, always
implying that the family of sets of hereditary cardinality < κ is a model of ZFC.

4 “[...] and make it possible to condense into one proof many different proofs”, [8, p. 183].
5 On the success of large cardinal axioms, see [11] and [1].
6 Inner and core models for large cardinals can be regarded as generalizations of the universe L of

constructible sets; see [14].
7 That if a measurable cardinal exists, then V ̸= L was proved by Scott in 1961; see [13] for details.

The Infinity Project 385

2 Reactions

Faced with the situation described in Section 2, set-theorists show diverse reactions.
The existence of mutually incompatible, successful extensions of ZFC led some to the
conclusion that the notion set-theoretic universe is inherently undetermined. This position
is clearly expressed by Shelah in [16]:

I do not feel “a universe of ZFC” is like “the Sun”, it is rather like
“a human being” or “a human being of some fixed nationality”. [...]
You may think “does CH, i.e., 2ℵ0 = ℵ1 hold?” is like “Can a typical
American be Catholic?” ([16, p. 211])

A different attitude is endorsed by those who, due to the success of large cardinal axioms,
regard ZFC as “the twentieth century choice” for the axioms of set theory and consider
“ZFC + large cardinal axioms” to be the contemporary theory of sets, “to be adopted
by all, as part of a broadest point of view”.8 In fact these authors do not draw conclu-
sions similar to Shelah’s from the fact that large cardinals are preserved under forcing,
and hence models of “ZFC + large cardinal axioms” exist in which mutually exclusive
propositions are true. They put stress not on the failure of large cardinals to produce a
determinate picture of the universe of sets but instead on the mathematical success of
large cardinal axioms, and explicitly take this as providing evidence for the correctness
(or truth) of these axioms, even regarding them as definitive hypotheses.9 At the same
time the hope is expressed that new correct (true) axioms will emerge that decide ques-
tions independent from the system “ZFC + large cardinals”. As a result, the program
of making the picture of the set-theoretical universe more determinate is placed in the
restricted form: find suitable axiomatic extensions of “ZFC + large cardinals”.

This forms part of Woodin’s conclusions in [19], where an axiomatic proposal is
advanced that is intended to play the same role with regard to third order number theory,
in which the Continuum Hypothesis (CH) can be formulated, that is played by large
cardinal axioms with regard to second order number theory.10

So, is the Continuum Hypothesis solvable? Perhaps I am not completely
confident that the “solution” I have sketched is the solution, but it is
for me convincing evidence that there is a solution. [...] The universe
of all sets is a large place. We have just barely begun to understand it.
([19, p. 690])

8 See, respectively, [19] and [17], where the point is made that the “broadest point of view” proviso
is meant to exclude from attention the temporary adoption of restrictive assumptions as a convenient
device for avoiding irrelevant structure” (e.g., “V = L is often temporarily assumed for such reasons by
set-theorists who do not believe it [...]” [17, p. 422]).

9 E.g., Projective Determinacy (PD), implied by the existence of infinitely many Woodin cardinals,
is said in [19] to be “the correct axiom for the projective sets”, yielding forcing invariant answers to
questions independent of ZFC (e.g., the measurability of projective sets), which, when first formulated,
were considered unsolvable; see [19, p. 570]. By forcing invariance is here meant that no sentence in the
language of second order arithmetic, in which properties of projective sets are formulated, can be shown
to be independent of the existence of large cardinals implying PD by the method of set-forcing. In fact,
by a theorem of Woodin, if you suppose that every set belongs to an iterable inner model satisfying “there
are ω Woodin cardinals”, then, if M and N are set-generic extensions of V , you have L(R)M ≡ L(R)N ;
see [19].

10 Second and third order number theory are presented in [19] as the theories of the structures
⟨H(ω1),∈⟩ and ⟨H(ω2),∈⟩. See [19] for details.

386 Foundational implications of the inner model hypothesis

Both Shelah’s and Woodin’s positions are not immune to criticism. Objections to
them are advanced in the next section.

3 Criticism

Let us start with positions like those expressed by Woodin regarding extensions of “ZFC +
large cardinal axioms”. According to them, successful, hence correct (true), set-theoretic
axioms (large cardinal axioms) have been discovered that settle some notable questions
independent from ZFC. This implies that the program for making the picture of the
universe more determined cannot but consist in extending “ZFC + large cardinal axioms”.
We argue that the implication “success→ correctness (or truth)” presupposed by this view
is objectionable, and makes it ultimately untenable.

Observe first that by assuming the implication: “success → correctness (or truth)”,
one cannot do justice to the existence of mutually incompatible successful systems of
set theory (like “ZFC + large cardinal axioms” and “ZFC + V = L”). For correctness
(truth) is commonly intended as a matter of all or nothing, ruling out the possibility of
equally correct (true) but mutually exclusive axiomatic systems. This would be the case,
though, if evidence due to success were to imply correctness (truth) in set theory. On
the other hand, assuming the implication “success→ correctness (or truth)” and denying
correctness or truth to e.g. “ZFC + V = L”, one would ipso facto deny its mathematical
success, which is undeniable.

The success of the axiom of constructibility (V = L) is often regarded as a counterex-
ample to the view that success is all there is to correctness and truth in set theory.

A favorite example against the pragmatic view that we accept an axiom
because of its elegance (simplicity) and power (usefulness) is the con-
structibility hypothesis. It should be accepted according to the prag-
matic view but is not generally accepted as true. ([18, p. 196])

Wang suggests what would be necessary and sufficient conditions for an axiomatic system
to be accepted (as correct or true). Beyond being successful, the system should be
explicitly suggested by the meaning of set.

[V = L] is likely to be false according to the iterative concept of set.
Basically it is felt that the pragmatic view leaves out the criterion of
intuitive plausibility. ([18, p. 196])

Wang’s argument, however, does not apply to most large cardinal axioms and, especially,
to the ones discussed by Woodin. “Correct” (“true”) principles like Projective Determi-
nacy, and the large cardinal axioms implying it, lack any clear direct link to the iterative
concept, which Wang calls upon as the meaning of set. In fact referring to these axioms,
and explicitly describing them as “true”, Woodin comments:

There are natural questions about H(ω1) which are not solvable from
ZFC. However, there are axioms forH(ω1) which resolve these questions
[...] and which are clearly true. But the truth of these axioms became
evident only after a great deal of work. ([19, p. 569])

Moreover, also the implication “success and intuitive plausibility (adherence to the
iterative concept) → correctness (truth)” is objectionable. For it can be plausibly sug-
gested that the iterative concept is a concept that arose alongside successful set-theoretic
developments, and as such is a metaphorical reformulation of the insights delivered by the

The Infinity Project 387

latter.11 The same holds for methodological maxims that are often presented as inspired
by the iterative concept, like e.g. “maximize”, the view that the universe of sets should be
high and wide, so “the more sets one proves to exist, the better”. A mathematical concept
could only be attached to the sentence “the universe is maximal” only after Scott’s result
that if a measurable cardinal exists then V ̸= L was obtained. Viewing the iterative
concept and methodological principles like “maximization” in this way leads one to reject
Wang’s suggestion that “intuitive plausibility” (i.e., adherence to the iterative concept or
“maximization”) is sufficient, in conjunction with success, to produce truth or correctness
in set theory. For, along with every system of set theory that turns out to be successful
(according to Gödel’s characterization of success), a distinguished concept of set and a
system of preferred methodological maxims is likely to emerge.12 Since competing suc-
cessful systems of axioms exist in set theory, taking the conjunction “success and intuitive
plausibility” to imply correctness (or truth), would still leave one with mutually exclu-
sive, correct (true) systems of axioms. This contrasts with how the term correct (true) is
meant to be used.

It is also worth noting that methodological maxims are very far from suggesting
unique proposals for axiomatic extensions of ZFC. E.g., “maximization” may suggest the
principle “there exists a j : V → V ”, which is incompatible with the Axiom of Choice,
also in line with maximality considerations.13 The Inner Model Hypothesis, incompatible
with large cardinal axioms, offers yet another example of the ambiguity of the concept of
“maximization” (see the next section).

One might still object to our criticism by asserting that success comes in degrees
in set theory, making it possible to draw a distinction between incompatible successful
systems according to their degree of success, and suggest that it is only the most successful
set-theoretic system that deserves to be regarded as correct or true. That mathematical
success comes in degrees seems to be the case. According to Gödel’s characterization
of success, in fact, the term “successful” is to be applied to mathematical developments
through which a link is established between formerly unrelated mathematical facts. A
link may consist in one theory’s enabling the interpretation of another in its own terms.
Under these circumstances, the former would reveal itself to be “more successful” than
the latter. In fact, as an implication of Scott’s theorem, the universe L could be seen
as a proper sub-universe of V and studied “from within” V under large cardinal axioms,
thereby convincing some of the superior success of “ZFC + large cardinals” over “ZFC +
V = L”. Supposing “maximality” to be essentially a matter of maximizing interpretative
power, Steel says the following with regard to ZFC + V = L:

In this light we can see why most set-theorists reject V = L as restric-
tive: adopting it restricts the interpretative power of the language of set
theory. The language of set theory as used by the believer of V = L can
certainly be translated into the language of set theory as used by the be-
liever in measurable cardinals, via the translation ϕ 7→ ϕL. There is no
translation in the other direction. While it is true that adopting V = L
enables one to settle new formal sentences, this is in fact a completely

11 See [1] and [2].
12 This view is presented and motivated in [2].
13 This point is made in [12]. The principle “there exists a j : V → V ” (there is a nontrivial elementary

embedding of the universe into itself) was proved to be contradictory with Choice by Kunen. See [13]
for details.

388 Foundational implications of the inner model hypothesis

sterile move, because one settles ϕ by giving it the same interpretation
as ϕL which can be settled in anyone’s theory. ([17, p. 423])

Yet it remains that while one may accept that success comes in degrees, this is usually
not the case as far as correctness and truth are concerned. Accordingly, correctness
(truth) might well be supposed to be an attribute of the “most successful system of set
theory”, but this could not be done by arguing that correctness (truth) is an implication
of success. The only possible way for one to coherently say that a successful axiomatic
system for sets is correct (true) seems to be that of explicitly presenting one’s position
as a deliberate act, an act based on the decision to attach correctness (truth) to success
“at the highest degree”, as well as on a shared agreement as to what the most successful
axiomatic system for sets currently is. However, at the moment, there is no agreement
among set-theorists as to what the most successful theory of sets is.14 Skeptical positions
on the status of large cardinal axioms have been expressed (see, e.g., [16]). Arguments
like Steel’s to the effect that an interpretation of “ZFC + V = L” in terms of “ZFC + large
cardinal axioms” is possible but not vice-versa, have been contested as well. Jensen, for
instance, maintains that the relation between “ZFC + large cardinal axioms” and “ZFC
+ V = L” is one of mutual interpretability. For L itself can see the existence of “natural”
models for large cardinal axioms if there are such cardinals in V . As a consequence of
Shoenfield’s Absoluteness Lemma, in fact, L and V have transitive countable models for
the same large cardinal hypotheses.15 “Hence we could just assume ourselves to be in a
countable segment of L when we assume H”.16

To sum up: the view that success furnishes evidence for correctness (truth), though
not per se contradictory, does not help in defending the view that the program for making
our picture of the universe more determinate must consist in finding suitable extensions
of “ZFC + large cardinal axioms”. At most it suggests that one should be cautious in
taking as correct (true) what one regards as the most successful axiomatic system for
sets, as there exist views about success that run contrary to one’s own.

Let us add that, in fact, neither a simple identification of correctness (truth) with
success, nor the view that correctness (truth) is conventionally attached to success “at the
highest degree”, seems to underlie positions like Woodin’s. A Platonistic attitude appears
to be at work. This is explicitly admitted by Foreman in [5]; with regard to consistency
results involving large cardinal axioms, he observes:

This type of unifying deep structure is taken as strong evidence that the
axioms proposed reflect some underlying reality and so is often cited as
a primary reason for accepting the existence of large cardinals. ([5, x])

Under these circumstances, correctness (truth) rests no longer on success. Success may
well be regarded as a clue to it —if it is supposed that it is correctness (truth), meant as a
matter of “reflecting some underlying reality”, that ultimately implies success (or, better,
success “at the highest degree”). Moreover, by regarding correctness (truth) as sufficent,

14 Nor is there, one may guess, on the “conventional” view of correctness and truth introduced here.
15 In fact, if the hypothesis H holds in V , then by reflection H should have a model that is a level Vκ

of V (note this informal step in the argument) for some cardinal κ. By the Löwenheim–Skolem theorem,
there is a countable elementary sub-model of Vκ, call it N , in which H holds. By Mostowski’s Collapsing
Theorem there is a transitive N that is a countable model of H. Let be a ∈ R be a code for N . The
formula asserting the existence of such an a is Σ1

2. By Shoenfield’s Absoluteness Lemma, it is true in L.
That is, L sees the existence of a transitive countable set model for H.

16 Quoted with permission from the handout of a talk given by Jensen in Krakow in 1999.

The Infinity Project 389

as opposed to necessary, to success, an explanation would be given, too, for the existence
of mutually exclusive successful systems of set theory. For, under these circumstances,
the existence of successful set theories that cannot be said to be correct (true) is no longer
contradictory. However, one should still justify Platonism in order for this position to be
sound. This is no easy task. Neither pursuing this justification nor criticizing it belongs
to the aims of the present paper.

Having focused on the positions of Woodin, Steel and Foreman, let us now return to
Shelah’s views. Here one abdicates the search for new axioms that may yield solutions
to questions independent of ZFC, solutions to which correctness or truth can be attached
as the end-stage of a process through which a shared consensus is reached that certain
mathematical developments, and the axioms that make them possible, are the most suc-
cessful ones. This abdication may have positive consequences. It may work as a heuristic
for exploiting the available resources (ZFC), to the effect that light is shed on still undis-
covered implications of them, perhaps relevant with regard to independence phenomena.
Shelah’s pcf theory, developed entirely within ZFC, has a bearing on questions of cardinal
arithmetic like the Generalized Continuum Hypothesis.17 However, it might be felt that
whereas positions like Shelah’s are supported by the existence of incompatible successful
set-theoretical developments, they also prescribe a halt to such developments by regard-
ing ZFC as all there is to be said about sets. Shelah’s conclusions also sound arbitrary.
Why should the view that a universe of ZFC be not like “the Sun” but like “a human
being of some fixed nationality” be a definitive one? Why not regard it as a description
of a state of affairs that need not be permanent, merely reflecting the actual situation in
set theory, where no development stands out as the most successful (and hence, one may
add, the correct or true) one? As it seems premature to say that convincing evidence is
available that the correct answer to the question “Is CH true/false?” is given by a suitable
extension of “ZFC + large cardinal axioms”, so seems it premature to rule this out and
be content with the view that the notion universe of all sets is inherently undetermined.

As a case study supporting the above criticisms, we discuss the second author’s Inner
Model Hypothesis (IMH) in the following section. The IMH also provides a striking exam-
ple of a phenomenon alluded to above, the ambiguity of the concept of “maximization”.

4 The Inner Model Hypothesis

We begin with a restatement of our thesis. Objections can be raised against the view that
the notion universe of all sets can only be made determinate by finding axiomatic exten-
sions of “ZFC + large cardinal axioms” which successfully decide questions independent
of the latter. In advancing this view it is assumed that mathematical success provides
evidence for the correctness or truth of large cardinal axioms, which renders these axioms
definitive set-theoretic principles that one can only “extend” but not contradict. In as-
suming that success implies correctness (truth), however, one is either tacitly committed
to Platonism or faces the embarrassing situation that mutually exclusive and successful
axiomatic systems for sets coexist. On the other hand, no a priori ground seems to exist
for ruling out the possibility of making the notion universe of all sets more determinate
than it is now through the introduction of new axiomatic proposals.

17 See [16, p. 220]: “Cardinal arithmetic is loaded with consistency results because we ask the wrong
questions. [...]. We should replace cardinality by cofinality, as explained below (pcf theory)”.

390 Foundational implications of the inner model hypothesis

By advancing the Inner Model Hypothesis, one de facto remains open to the possibility
of making the universe of sets more determinate. At the same time, one does not impose
the restriction of consistency with “ZFC + large cardinal axioms”. The approach of the
Inner Model Hypothesis is not to “determine” the universe by directly postulating what
sets exist in it (which is done when e.g. large cardinals are assumed to exist in V), but to
state from a metatheoretical perspective what properties the universe of sets is supposed
to possess.

Let us discuss the hypothesis in more detail. How can metatheoretical properties be
identified which one may wish the universe V of sets to have? The suggestion made in
[6] is that one start from ZFC (or from a theory for sets and classes like Gödel–Bernays)
and provisionally regard V as a model for it endowed with countably many sets (and
classes). For a countable universe V many techniques are available for creating not only
inner universes of V but also outer universes of V , i.e., universes V ∗ such that V ⊆ V ∗,
to which V can be compared. These techniques not only include (set and class) forcing,
but also methods that arise from further generalizations of the forcing method (such
as hyperclass forcing) or from infinitary model theory. Being able to compare V to a
multitude of other universes enables one to better formulate properties that one wishes
the intended universe V to obey. The Inner Model Hypothesis takes advantage of this
method of comparison:

If a statement ϕ without parameters holds in an inner universe of some
outer universe of V (i.e., in some universe compatible with V), then it
already holds in some inner universe of V .

Equivalently: statements that are internally consistent with respect to an outer uni-
verse of V are already internally consistent in V , where a statement is internally consistent
if it holds in some inner universe. It follows that by enlarging V one gains nothing as far
as internal consistency is concerned. So according to the Inner Model Hypothesis, V is
maximal with respect to internal consistency.18

Although the IMH is formulated by supposing V to be countable, the Inner Model
Hypothesis can also be formulated as a (weaker) hypothesis for an uncountable V . This
is done by restricting the notion of outer universe to the set- and class-generic extensions
of the given universe that preserve the Gödel–Bernays axioms, thereby reducing the
hypothesis to a principle of ordinary class theory. Alternatively, one may regard the IMH
as saying that although V itself is not countable, it should satisfy sentences that are
true in countable universes which are maximal with respect to internal consistency. It is
also worth noting that having the universe maximize internal consistency via the IMH
generalizes a phenomenon known to hold for formulas (without parameters) proved to be
consistent by set-forcing.19

One knows a lot about the consistency strength of the Inner Model Hypothesis. It
is established by the following results.20 1) Assume that there is a Woodin cardinal
and a larger inaccessible cardinal. Then there are universes which maximize internal
consistency, so the Inner Model Hypothesis is consistent. 2) The Inner Model Hypothesis

18 To put it in other terms, if L = language of set/class theory and, for a universe W , Φ(W) = all
sentences of L which are true in some inner universe of W , then, under the Inner Model Hypothesis, if
V ⊆W then Φ(V) = Φ(W).

19 See [6] for the details of this claim.
20 See [7].

The Infinity Project 391

implies that there are inner models with measurable cardinals of arbitrarily large Mitchell
order.

Note that by adopting the Inner Model Hypothesis, while not extending “ZFC +
large cardinal axioms”, one does appeal to large cardinals in two respects. First, large
cardinal axioms are invoked for establishing its consistency strength. This acknowledges
the major feature of the mathematical success of large cardinal axioms, their ability
to prove consistency. The relevance of these axioms is seen here as metamathematical
rather than as mathematical. Second, one asks whether the Inner Model Hypothesis has
relevant implications with regard to large cardinals. This is in fact the case. Among
the consequences of the Inner Model Hypothesis is that no inaccessibles, hence no large
cardinals, exist in V and that the real numbers are not closed under the ♯ operation.
That is to say: not only is the Inner Model Hypothesis not an extension of the system
“ZFC + large cardinals”; it is also incompatible with it! The consistency of large cardinal
axioms is however preserved under the IMH (V sees inner models for them); it is only
their existence that is contradicted.

This latter point also has important consequences for the methodological notion of
“maximization”. The IMH clearly asserts a maximal property of the universe of sets,
namely that internal consistency has been maximized. But it is at the same time in
conflict with the existence of large cardinals. This is despite the fact that large cardi-
nal axioms have also been traditionally assumed to assert a form of maximality for the
universe of sets. Let us return to Gödel:

From an axiom in some sense opposite to [V = L], the negation of
Cantor’s conjecture could perhaps be derived. I am thinking of an
axiom which ... would state some maximum property of the system of
all sets, whereas [V = L] states a minimum property. Note that only a
maximum property would seem to harmonize with the concept of set.
([9, pp. 262–263])

Note that there is no implication in this quote that “maximization” must be based on
large cardinal axioms. And indeed, the IMH provides an alternative way of maximizing
the universe of sets, thereby revealing the profound ambiguity of this concept.

What about questions which are independent from ZFC? Some of them are decided
under the Inner Model Hypothesis, e.g., the Singular Cardinal Hypothesis and the ex-
istence of a projective non-measurable set of reals, which turn out to be true, and the
existence of a Borel bijection between any two non-Borel analytic sets, which, instead,
turns out to be false.21 The Continuum Hypothesis remains undecided, though. For,
suppose that V satisfies the Inner Model Hypothesis. One can create, by set forcing, a
larger universe V [G], in which CH is true (using a “Lévy collapse”). Since V is contained
in V [G], The Inner Model Hypothesis is also true in V [G]. So the hypothesis is consistent
with CH. It cannot imply its negation. Similarly, one can create a larger universe V [H]

21 Theorem 15 in [6] proves that that IMH implies the existence of a real R such that ZFC fails
in Lα[R] for all ordinals α. This property implies that (a) for some real R, ℵ1 = ℵL[R]

1 , which in turn
implies that (b) for some real R, R♯ does not exist, which is equivalent to (c): for some real R, Jensen’s
covering property holds relative to L[R] (i.e., every uncountable set of ordinals is a subset of a set in L[R]
of the same size). The truth of the Singular Cardinal Hypothesis and the Singular Square Principle and
the falsity of the existence of a Borel-isomorphism of non-Borel analytic sets (via the results presented
in [10]) follow from (c), while the existence of a projective non-measurable set of reals (via the results in
[15]) follows from (a).

392 Foundational implications of the inner model hypothesis

in which CH is false (by adding ℵ2 Cohen reals), the Inner Model Hypothesis being true
in V [H]. So the Inner Model Hypothesis cannot imply CH either. One needs a stronger
version of the Inner Model Hypothesis to settle CH, i.e., the hypothesis for formulas with
globally absolute parameters.22 A consistency proof for the resulting Strong Inner Model
Hypothesis (SIMH) is however still lacking.

Let us conclude with a bold question. Will the Inner Model Hypothesis, and its impli-
cations, be accepted as a definitive feature of the universe, making it more determinate
than it is now? According to the views presented throughout this paper, the considerable
mathematical success of the IMH is to play a decisive role in this respect, whether or not
one deliberately decides to attach correctness (truth) to the most successful set-theoretic
hypotheses. But the philosophical implications of the IMH are clear, as it presents an
important challenge to two widely-shared views in contemporary set theory.

References
[1] Tatiana Arrigoni. What is meant by V? Reflections on the Universe of all Sets. Mentis Verlag,

Paderborn, 2007.
[2] Tatiana Arrigoni. V = L and intuitive plausibility in set theory. A case study. Bulletin of Symbolic

Logic, 17(3):337–360, 2011.
[3] Paul Benacerraf and Hilary Putnam (eds.). Philosophy of Mathematics. Selected Readings. Second

Edition. Cambridge University Press, 1983.
[4] S. Feferman, J. Dawson, S. Kleene, G. Moore, and J. Van Heijenoort (eds.). Kurt Gödel. Collected

Works, Volume II. Oxford University Press, New York, 1990.
[5] Matthew Foreman and Akihiro Kanamori (eds.). Handbook of Set Theory. Springer, 2010.
[6] S. D. Friedman. Internal consistency and the inner model hypothesis. Bulletin of Symbolic Logic,

12(4):591–600, 2006.
[7] S. D. Friedman, P. Welch, and H. Woodin. On the consistency strength of the inner model hypothesis.

Journal of Symbolic Logic, 73(2):391–400, 2008.
[8] Kurt Gödel. What is Cantor’s continuum problem? American Mathematical Monthly, 54, 1947.

Reprinted in [4], 176–187.
[9] Kurt Gödel. What is Cantor’s continuum problem? In P. Benacerraf and H. Putnam (eds.), Philos-

ophy of Mathematics. Selected Readings, pages 258–273. 1964. Revised and expanded version of [8].
Reprinted in [3], 470–485 and [4], 254–269. Quoted from [4].

[10] Leo A. Harrington. Analytic determinacy and 0#. Journal of Symbolic Logic, 43(4):685–693, 1978.
[11] Kai Hauser. Was sind und was sollen neue Axiome. In G. Link (ed.), One Hundred Years of Russell’s

Paradox, pages 93–117. De Gruyter, Berlin, 2004.
[12] Kai Hauser. Is Choice self-evident? American Philosophical Quarterly, 42:237–261, 2005.
[13] Thomas Jech. Set Theory. The Third Millenium Edition, Revised and Expanded. Springer-Verlag,

Berlin, Heidelberg, New York, 2003.
[14] Ronald Jensen. Inner models and large cardinals. The Bulletin of Symbolic Logic, 1:393–407, 1995.
[15] Saharon Shelah. Can you take Solovay’s inaccessible away? Israel Journal of Mathematics, 48(1):1–

47, 1984.
[16] Saharon Shelah. Logical dreams. Bulletin of the American Mathematical Society, 40(2):203–228,

2003.
[17] John Steel. Mathematics needs new axioms. The Bulletin of Symbolic Logic, 4:422–433, 2000.
[18] Hao Wang. From Mathematics to Philosophy, chapter VI. The concept of set, pages 181–223. Rout-

ledge and Kegan Paul, London, 1974.
[19] Hugh Woodin. The Continuum Hypothesis, i-ii. Notices of the American Mathematical Society,

48(7):567–576, 681–690, 2001.

22 See [6].

Part V

Models and Sets

The Infinity Project

Amalgamation, absoluteness, and categoricity

John T. Baldwin†

† Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, USA
jbaldwin@uic.edu

Abstract. We describe the major result on categoricity in Lω1, ω, placing it in the context of more
general work in abstract elementary classes. In particular, we illustrate the role of higher dimensional
amalgamations and sketch the role of a weak extension of ZFC in the proof. We expound the translation of
the problem to studying atomic models of first order theories. We provide a simple example of the failure
of amalgamation for a complete sentence of Lω1, ω. We prove some basic results on the absoluteness of
various concepts in the model theory of Lω1, ω and publicize the problem of absoluteness of ℵ1-categoricity
in this context. Stemming from this analysis, we prove the following theorem: The class of countable
models whose automorphism groups admit a complete left invariant metric is Π1

1 but not Σ1
1.

Introduction

The study of infinitary logic dates from the 1920’s. Our focus here is primarily on the
work of Shelah using stability theoretic methods in the field (beginning with [30]). In the
first four sections we place this work in the much broader context of abstract elementary
classes (AEC), but do not develop that subject here. The main result discussed, Shelah’s
categoricity transfer theorem for Lω1, ω, explicitly uses a weak form of the GCH. This
raises questions about the absoluteness of fundamental notions in infinitary model theory.
Sections 5–7 and the Appendix due to David Marker describe the complexity and thus
the absoluteness of such basic notions as satisfiability, completeness, ω-stability, and
excellence.1 We state the question, framed in this incisive way by Laskowski, of the
absoluteness of ℵ1-categoricity. And from the model theoretic characterization of non-
extendible models we derive the theorem stated in the abstract on the complexity of
automorphism groups. Most of the results reported here in Sections 1–4 are due to
Shelah; the many references to [2] are to provide access to a unified exposition. I do not
know anywhere that the results in Section 5 have been published. The techniques are
standard. Our main goal was to provide a reference for this material; but the distinction
between the complexity of various notions for atomic classes as opposed to sentences of
Lω1, ω seems to be a new observation. The result in Section 6 is new but easy.

Appeared in the Proceedings of the 11th Asia Logic Conference, Toshiuasu Arai, Qi Feng, Bjungang
Kim, Guoha Wu, Yue Yang (eds.), 2012, World Scientific Publishing Co. Pte. Ltd., Singapore, pp. 22–51.

†This article is a synthesis of the paper given in Singapore with later talks, including the Mittag-
Leffler Institute in 2009 and CRM Barcelona in 2010. It reflects discussions with set theorists during my
stay at Mittag-Leffler and discussion with the Infinity Project members in Barcelona. The author wishes
to thank the John Templeton Foundation for its support through Project #13152, Myriad Aspects of
Infinity, hosted during 2009–2011 at the Centre de Recerca Matemàtica, Bellaterra, Spain. Baldwin was
partially supported by NSF-0500841.

1David Marker is partially supported by National Science Foundation grant DMS-0653484.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

395

396 Amalgamation, absoluteness, and categoricity

1 The universe is wide or deep

Shelah made the following rough conjecture: Let K be a reasonable class of models. Either
for some λ there are many models of cardinality λ or there are models of arbitrarily large
cardinality.

Our metaphor requires some explanation. ‘The universe’ should perhaps be ‘each
universe’; universe refers to all models in a specific class. Further we are taking ‘or’
in the inclusive sense. Certainly, there are classes (e.g., dense linear orders) which are
both wide and deep. Perhaps, taking narrow, as meaning there are few models in each
cardinality, the aphorism better reads. A narrow universe is deep. It turns out that this
question depends very much on the choice of ‘reasonable’. It also seems to be sensitive to
the choice of axioms of set theory. In order to give a precise formulation of the conjecture
we have to specify ‘many’ and the notion of a ‘reasonable class’. In general ‘many’ should
mean 2λ; but in important cases that have been proved, it is slightly smaller.

As is often the case there are some simplifying assumptions in this area that have been
internalized by specialists but obscure the issues for other logicians. We try to explain a
few of these simplifications and sketch some of the major results.

Some historical background will help clarify the issues. Much model theoretic research
in the 60’s focused on general properties of first order and infinitary logic. A number of
results seemed to depend heavily on extensions of ZFC. For example, both Keisler’s
proof that two structures are elementarily equivalent if and only if they have isomorphic
ultrapowers and Chang’s proof of two cardinal transfer required GCH. In general, even
the existence of saturated models depends on the GCH. Shelah removed the set-theoretic
hypothesis from Keisler’s theorem. But various versions of two cardinal transfer were
proven to require GCH and even large cardinal hypotheses; see [7].

The invention of stability theory radically recast the subject of model theory. E.g.,
for various classes in the stability hierarchy, it is straightforward to characterize in ZFC
exactly in which cardinals there are saturated models. And for the best behaved theories
the answers is: all cardinals. Further, for countable stable theories Shelah and Lachlan
independently showed that two cardinal transfer between any pair of cardinalities is true
in ZFC. Moreover, the fundamental notions of first order stability theory are absolute.

For first order logic, our guiding question is trivial.2 If a theory has an infinite
model then it has arbitrarily large models. The question is interesting for theories in
logics which fail the upward Löwenheim–Skolem theorem. The notion of an Abstract
Elementary Class (AEC) provides a general framework for analyzing such classes. But
as we show in the next section the conjecture is trivially false in that case. It is not too
difficult to find in ZFC examples (Example 2.1) of AEC that have no model above ℵ1 but
that are ℵ1-categorical [2, 34]. And in Lω1, ω(Q), it is consistent (via Martin’s axiom)
that there are ℵ1-categorical sentences with no model of cardinality greater than 2ℵ0 . But
those sentences have many models in 2ℵ0 . In this note we describe how for Lω1, ω there
are major advances on the target problem. They use extensions of ZFC but rather mild
ones; the initials below refer to the ‘Weak Continuum Hypothesis’ and the ‘Very Weak
Continuum Hypothesis’:

WGCH: Cardinal exponentiation is an increasing function.

2 The main gap theorem, every first order theory either eventually has the maximal number of models
or the number of models is bounded by a small function, has the same flavor. And in fact the argument
for this result arose after Shelah’s consideration of the infinitary problems.

The Infinity Project 397

VWGCH: Cardinal exponentiation is an increasing function below ℵω.
This leaves us with two more precise questions:
(1) Does the proof of the conjecture for Lω1, ω (see Section 4) really need VWGCH?
(2) Is the conjecture ‘eventually true’ for AEC’s? 3

Much of core mathematics studies either properties of particular structures of size at
most the continuum or makes assertions that are totally cardinal independent. E.g., if
every element of a group has order two then the group is abelian. Model theory and even
more clearly infinitary model theory allows the investigation of ‘structural properties’ that
are cardinal dependent such as: existence of models, spectra of stability, and number of
models and existence of decompositions. Often these properties can be tied to global
conditions such as the existence of a ‘good’ notion of dependence.

2 Abstract elementary classes

We begin by discussing the notion of an abstract elementary class. The examples show
that this is too broad a class to be ‘reasonable’ for our target problem. But some positive
results can be proved in this general setting; this generality exposes more clearly what is
needed for the argument by avoiding dependence on accidental syntactic features.

An abstract elementary class4 (K,≺K) is a collection of structures for a fixed vo-
cabulary τ that satisfy the following, where A ≺K B means in particular that A is a
substructure of B:

(1) If A,B,C ∈K, A ≺K C, B ≺K C and A ⊆ B then A ≺K B.
(2) Closure under direct limits of ≺K -embeddings.
(3) Downward Löwenheim–Skolem: If A ⊂ B and B ∈ K then there is an A′ with

A ⊆ A′ ≺K B and |A′| ≤ |A|+ LS(K).
The invariant LS(K) is a crucial property of the class. The class of well-orderings satisfies
the other axioms (under end extension) but is not an AEC.

Two easy examples are: First order and Lω1, ω-classes; L(Q) classes have Löwenheim–
Skolem number ℵ1. For the second case one has to be careful about the definition of
≺K —being an L(Q)-elementary submodel does not work (a union of a chain can make
(Qx)ϕ(x) become true even if it is false along the chain).

The notion of AEC has been reinterpreted in terms of category theory by Kirby:
“Abstract Elementary Categories” [18] and by Lieberman: “AECs as accessible categories”
[22]. It is easy to see that just AEC is too weak a condition for the general conjecture.

Example 2.1 The class of well-orderings with order-type at most ω1 with ≺K as initial
segment is an AEC with ℵ1 countable models. It is ℵ1-categorical and satisfies both
amalgamation and joint embedding but is not ω-Galois stable [19]. And in fact there is
no model of cardinality ℵ2. So this universe is neither wide nor deep.

Let us clarify the specific meaning of the amalgamation property in this context. The
arrows here denote morphisms in the abstract elementary class; various strengthening
requiring certain maps to be inclusions are well-known.

3 For much positive work in this direction, see [34].
4 Naturally we require that both K and ≺K are closed under isomorphism.

398 Amalgamation, absoluteness, and categoricity

Definition 2.2 The class K satisfies the amalgamation property if, for any situation
with A,M,N ∈K,

A

M ,

N
��3

QQs

there exists an N1 ∈K such that

A

M

N1.
N

��3 QQs

QQs ��3

Note that we have required the base structure A to be in K; this is sometimes referred
to as ‘model amalgamation’. Requiring amalgamation over arbitrary substructures A is
a much stronger condition, which fails for important natural examples such as Zilber’s
pseudo-exponential field [40]. There is much work in homogenous model theory where
the stronger homogeneity condition is assumed.

The existence of amalgamations is an absolutely fundamental problem for AEC and
for any study of infinitary logic. In first order logic it is easy to show that for complete
theories amalgamation always holds over models with ≺ as elementary extension. And
it holds over arbitrary subsets of models if T admits elimination of quantifiers. Here is a
basic example of failure for a complete sentence of Lω1, ω.

Example 2.3 Let T be the first order theory in a language with binary relation symbols
⟨Ei : i < ω⟩ that asserts that the Ei are infinitely many refining equivalence relations
with binary splitting.

Using Lω1, ω, the equivalence relation E∞ —the intersection of the given equivalence
relations— is definable. Add two unary predicates (blue and red) and the following
infinitary axioms:

(1) Each E∞-class contains infinitely many elements.
(2) Every element of an E∞-class is red or every element is blue.
(3) Blue and red divide the E∞-classes into dense and codense subsets of the natural

linear order of the paths.
Now it is easy to check that these axioms are ℵ0-categorical but fail amalgamation

(since a new path may be either red or blue).

We introduced the notion of abstract elementary class in this paper in order to state
‘one completely general result’ which can be found in [34, I.3.8] or [2, 32].

Theorem 2.4 (WGCH) Suppose λ ≥ LS(K) and K is λ-categorical. If amalgamation
fails in λ, then there are 2λ

+ models in K of cardinality λ+.

As opposed to many other results in the study of abstract elementary classes which
rely on an additional collection of model theoretic hypotheses, this result is about all
AEC’s. Moreover, variants of the proposition recur repeatedly in the proof of the main
result being expounded. The argument uses weak diamond and is primarily combinato-
rial; it proceeds directly from the definition of an AEC. The result fails underMA+¬CH.
An example is presented in [34, 38] and a simpler one in [2]. It is an AEC (even given

The Infinity Project 399

by a theory in L(Q)) which fails amalgamation in ℵ0, but becomes ℵ1-categorical in a
forcing extension. But it remains open whether there are such examples in Lω1, ω. Easy
examples ([4]) show that categoricity is a necessary condition for Theorem 2.4. This has
a fundamental impact on the structure of the main proof. Because of this we must pass
to complete sentences and gain categoricity in ℵ0. One strategy in Shelah’s approach
through frames in [34] evades the categoricity difficulty by restricting to subclasses of the
AEC, e.g., the λ-saturated models.

Amalgamation plays a fundamental role in the study of AEC’s. One line of research
pioneered by Shelah [33] and highly developed by Grossberg, VanDieren, and Lessmann
in a series of papers (e.g., [12]) assumes arbitrarily large models, joint embedding, and
amalgamation; under strong model theoretic assumptions the results are proved in ZFC.
An account of this work with full references to the published papers appears in Part II
of [2]. In this paper we focus on earlier work on Lω1, ω, which is a little more concrete as the
logic is fixed. But it is more general in another way. Rather than assuming amalgamation,
failure of amalgamation is shown to create width. Both amalgamation and the existence
of large models are proved for narrow classes; this brings the set theoretic difficulties into
view. The work of Hyttinen and Kesala on finitary AEC (e.g., [15]) continues the program
of assuming arbitrarily large models and amalgamation. However, even stronger model
theoretic assumptions lead to the development of a geometric stability theory. Several
further directions of study in AEC are explored in [34]. The introduction to that book
surveys the field and explains Shelah’s viewpoint. The method of frames, expounded in
[34], provides an approach to the problem of building larger models from categoricity
in one or several successive uncountable cardinals; he attempts to avoid the traces of
compactness that simplify the work starting at ℵ0 and ℵ1 in Lω1, ω. In other papers,
Shelah (e.g., [39]) considers the general problem of eventual categoricity assuming large
cardinal axioms.

3 From Lω1, ω to first order

We begin by translating the problem from infinitary logic into the study of specific sub-
classes of models of first order theories. This removes the distraction of developing new
notions of each syntactic idea (e.g., type) for each fragment of Lω1, ω. More subtly, for
technical reasons we need to restrict to complete sentences in Lω1, ω. (This restriction to
complete sentences is automatic in the first order case but its legitimacy is only proved
in certain cases for infinitary logic.)

Definition 3.1 For ∆ a fragment of Lω1, ω, a ∆-theory T is ∆-complete if, for every
∆-sentence ϕ, either T |= ϕ or T |= ¬ϕ. We may write complete when ∆ = Lω1, ω.

Definition 3.2

(1) A model M of a first order theory is called atomic if each finite sequence from M
realizes a principal type over the empty set —one generated by a single formula.

(2) An atomic class is an AEC, consisting of the atomic models of a complete first
order theory T with elementary submodel as the notion of strong submodel.
Thus, M is a large saturated model of T , usually not atomic. A set A ⊂ M is
an atomic set if each finite sequence from A realizes a principal type over the
empty set-generated by a single formula.

400 Amalgamation, absoluteness, and categoricity

The study of categoricity (at least from ℵ1 upwards), in Lω1, ω can be translated to
the study of atomic models of a first order theory. This is non-trivial. The argument
begins with a fundamental result from the early 60’s.

Theorem 3.3 (Chang and López-Escobar) Let ϕ be a sentence in Lω1, ω in a countable
vocabulary τ . Then there is a countable vocabulary τ ′ extending τ , a first order τ ′-theory
T , and a countable collection of τ ′-types Γ such that reduct is a 1-1 map from the models
of T which omit Γ onto the models of ϕ.

The proof is straightforward. E.g., for any formula ψ of the form
∧
i<ω ϕi, add to

the language a new predicate symbol Rψ(x). The theory T will contain the sentences for
each subformula ψ of ϕ:

(∀x)[Rψ(x)→ ϕi(x)]

for i < ω and omit the type p = {¬Rψ(x)}∪{ϕi : i < ω}. There are similar requirements
for other steps in the inductive definition of θ.

Thus we have restricted to the models of a theory that omit a family Γ of types, but
that may realize some non-principal types. Shelah observed that if T had only countably
many types then a similar expansion of the vocabulary gives a T ′ such that the required
interpretation is obtained by omitting all non-principal types. That is, the object of
study is the atomic models of T ′. This further reduction is technically important. In
particular it implies ω-categoricity.

But why can we assume that the T associated with θ has only countably many types
over the empty set? We need a few definitions to give an explanation.

Definition 3.4 Fix a sentence ϕ ∈ Lω1, ω and let ∆ be a countable fragment of Lω1, ω

containing ϕ.
(1) A τ -structure M is ∆-small if M realizes only countably many ∆-types (over

the empty set).
(2) An Lω1, ω-sentence ϕ is ∆-small if there is a countable set X of complete ∆-types

over the empty set and each model realizes some subset of X.
Here ‘small’ means ∆ = Lω1, ω.

It is easy to see that if M is small then M satisfies a complete sentence. If ϕ is small
then Scott’s argument for countable models generalizes and there is a complete sentence
ψϕ such that ϕ ∧ ψϕ has a countable model. So ψϕ implies ϕ. But ψϕ is not in general
unique. For example ϕ might be just the axioms for algebraically closed fields. Two
choices for ψϕ are the Scott sentence of the prime field and the Scott sentence for the
model of transcendence degree ℵ0. Only the second has an uncountable model.

We can make an appropriate choice of ψϕ if ϕ is ℵ1-categorical. There are two
ingredients in the choice.

Theorem 3.5 (Shelah) If ϕ has an uncountable model M that is ∆-small for every
countable ∆ and ϕ is ℵ1-categorical then ϕ is implied by a complete sentence ψ with a
model of cardinality ℵ1.

This result appears first in [31]. It is retold in [2]; in [1], we adapt the argument to
give a model theoretic proof of a result of Makkai (obtained by admissible set theory)
that a counterexample to Vaught’s conjecture is not ℵ1-categorical. The crux of Shelah’s
argument is an appeal to the non-definability of well-order in Lω1, ω.

The second step is to require that for each countable fragment ∆ there are only
countably many ∆-types over the empty set. If ϕ has arbitrarily large models this is easy

The Infinity Project 401

by using Ehrenfeucht–Mostowski models. But if not, the only known argument is from
few models in ℵ1 and depends on a subtle argument of Keisler [17] (see also Appendix C
of [2]).

Theorem 3.6 (Keisler) If ϕ has < 2ℵ1 models of cardinality ℵ1, then each model of ϕ is
∆-small for every countable ∆.

Now Theorems 3.5 and 3.6 immediately yield:

Theorem 3.7 (Shelah) If ϕ has < 2ℵ1 models of cardinality ℵ1, then there is a complete
sentence ψ such that ψ implies ϕ and ψ has an uncountable model. In particular, if ϕ is
ℵ1-categorical there is a Scott sentence for the model in ℵ1, i.e., the model in ℵ1 is small.
So an atomic class K is associated with ϕ .

It is easy to construct a sentence ϕ such that no completion has an uncountable model,
i.e., no uncountable model is small. Let τ contain binary relations En for n < ω. Let ϕ
assert that the En are refining equivalence relations with binary splitting, and that there
do not exist two distinct points that are En equivalent for all n. And add a countable set
A of constants that realize a dense set of paths. Now every uncountable model realizes
uncountably many distinct types over A.

We have the following question, which is open if κ > ℵ1.

Question 3.8 If ϕ is κ-categorical must the model in κ be small?

Thus for technical work we will consider the class of atomic models of first order
theories. Our notion of type will be the usual first order one —but we must define a
restricted Stone space.

Definition 3.9 Let A be an atomic set; Sat(A) is the collection of p ∈ S(A) such that if
a ∈M realizes p then Aa is atomic.

Here M is the monster model for the ambient theory T ; in interesting cases it is not
atomic. And the existence5 of a monster model for the atomic class associated with a
sentence categorical in some set of cardinals is a major project. (It follows from excellence;
after Theorem 4.3, we see under VWGCH categoricity up to ℵω is sufficient.)

Definition 3.10 K is λ-stable if for every model M in K (thus necessarily atomic) with
cardinality λ, |Sat(M)| = λ.

The insistence that M be a model is essential. The interesting examples of pseudo-
exponential fields, covers of Abelian varieties and the basic examples of Marcus and Julia
Knight all are ω-stable but have countable sets A with |Sat(A)| > ℵ0.

With somewhat more difficulty than the first order case, one obtains:

Theorem 3.11 For a class K of atomic models, ω-stable implies stable in κ for all κ.

A fundamental result in model theory is Morley’s proof that an ℵ1-categorical first or-
der theory is ω-stable. This argument depends on the compactness theorem in a number
of ways. The key idea is to construct an Ehrenfeucht–Mostowski model over a well-order
of cardinality ℵ1. Such a model realizes only countably many types over any countable
submodel. But the existence of the model depends on a compactness argument in the

5 The difficulties we discuss here concern obtaining amalgamation. For simplicity, think only of
gaining a monster model in λ with λ<λ = λ. Weakening that hypothesis is a different project (see [2, 14]
or any first order stability book for comments on the cardinality question).

402 Amalgamation, absoluteness, and categoricity

proof of the Ehrenfeucht–Mostowski theorem. Further, this only contradicts ω-stability
because amalgamation allows the construction from a model M0 in ℵ0 that has uncount-
ably many types over it an elementary extension M1 of M0 with power ℵ1 that realizes all
of them. And again amalgamation in the first order case is a consequence of compactness.
In Lω1, ω, the work of Keisler and Shelah evades the use of compactness —but at the cost
of set theoretic hypotheses.

Theorem 3.12 (Keisler–Shelah) Let K be the atomic model of a countable first order
theory. If K is ℵ1-categorical and 2ℵ0 < 2ℵ1 then K is ω-stable.

This proof uses WCH directly and weak diamond via the ‘one completely general
result’. That is, from amalgamation failure of ω-stability yields a model of cardinality ℵ1
that realizes uncountably many types from Sat(M) for a countable model M . Naming
the elements of M yields a theory which has uncountably many types over the empty set.
Thus by Theorem 3.6 the new theory has 2ℵ1 models in ℵ1 and (since 2ℵ0 < 2ℵ1) so does
the original theory. Is CH is necessary?

Example 3.13 There are examples [2, 37] of an AEC K and even one given by a
sentence of Lω1, ω(Q) such that MA + ¬ CH imply that K is ℵ1-categorical, but K

(a) is not ω-stable;
(b) does not satisfy amalgamation even for countable models.

Laskowski (unpublished) showed that the example proposed for Lω1, ω by Shelah [34,
38] fails. The question of whether such an Lω1, ω-example exists is a specific strategy for
answering the next question.

Question 3.14 Is categoricity in ℵ1 of a sentence of Lω1, ω absolute (with respect to
suitable forcings)?

By suitable, I mean that, e.g., it is natural to demand cardinal preserving. This
result has resisted a number of attempts although, as we lay out in Section 5, many other
fundamental notions of the model theory of Lω1, ω are absolute.

4 The conjecture for Lω1, ω

Using the notion of splitting, a nice theory of independence (Definition 5.6) can be defined
for ω-stable atomic classes [2, 31, 32]. This allows the formulation of the crucial notion
of excellence and the proof of a version of Morley’s theorem. We will not discuss the
details but outline some aspects of the argument. These results are non-trivial but the
exposition of the entire situation in [2] occupies less than 100 pages.

The concept of an independent system of models is hard to grasp although it is playing
an increasing role in many areas of model theory. Rather than repeating the notation-
heavy definition (see [2, 21, 32] or various first order stability texts), I give a simple
example. Let X be a set of n algebraically independent elements in an algebraically
closed field. For each Y X, let MY be the algebraic closure of Y . The MY form
an independent system of 2n − 1-models. This is exactly the concept needed in Zilber’s
theory of quasiminimal excellence. For Shelah’s more general approach the notion is
axiomatized using the independence notion from the previous paragraph. In the example,
there is clearly a prime model over the union of the independent system. In various more
complicated algebraic examples (e.g., [6]) the existence of such a prime model is non-
trivial. Here we discuss how to find one from model theoretic hypotheses.

The Infinity Project 403

Definition 4.1 An atomic class K is excellent if K is ω-stable and any of the following
equivalent conditions hold.

For any finite independent system of countable models with union C,
(1) Sat(C) is countable;
(2) there is a unique primary model over C;
(3) the isolated types are dense in Sat(C).

The key point is that this is a condition of ‘n-dimensional amalgamation’. A primary
model is a particulary strong way of choosing a prime model over C. Thus, condition (2)
specifies the existence of a strong kind of amalgamation of n independent models. This
definition emphasizes the contrast of the current situation with first order logic; condi-
tion (1) does not follow from ω-stability. See [2] for details of the notation.

Note that excellence is a condition on countable models. It has the following con-
sequence for models in all cardinalities. The key to this extension is the proof that
n-dimensional amalgamation in ℵn implies (n − 1)-dimensional amalgamation in ℵn+1.
Thus amalgamation for all n in ℵ0 implies amalgamation for all n below ℵω and then for
all cardinals by a short argument.

Theorem 4.2 (Shelah, ZFC) If an atomic class K is excellent and has an uncountable
model, then

(1) K has models of arbitrarily large cardinality;
(2) categoricity in one uncountable power implies categoricity 6 in all uncountable

powers.

This result is in ZFC but extensions of set theory are used to obtain excellence.
Recall that by VWGCH we mean the assertion 2ℵn < 2ℵn+1 for n < ω. The following is
an immediate corollary of Theorem 4.6.

Theorem 4.3 (Shelah, VWGCH) An atomic class K that is categorical in ℵn for each
n < ω is excellent.

We remarked after Definition 3.9 on the difficulty of constructing a monster model for
an atomic class associated with a sentence categorical in some power. Of course such a
monster model in appropriate cardinalities is immediate from the amalgamation property.
But, even assuming categoricity up to ℵω, we need to use the VWGCH to get excellence,
then derive amalgamation and finally a monster model.

The requirement of categoricity below ℵω in Theorem 4.3 is essential. Indeed, Baldwin
and Kolesnikov [3] (refining [13]) show:

Theorem 4.4 For each 2 ≤ k < ω there is an Lω1, ω-sentence ϕk such that:
(1) ϕk has an atomic model in every cardinal;
(2) ϕk is categorical in µ if µ ≤ ℵk−2;
(3) ϕk is not categorical in any µ with µ > ℵk−2;
(4) ϕk has the (disjoint) amalgamation property.

Note that of course the ϕk are not excellent. There is one further refinement on the
‘wide’ versus ‘deep’ metaphor. How wide?

Definition 4.5 We say that
(1) K has few models in power λ if I(K, λ) < 2λ;

6 In contrast to some authors, we say K is categorical in κ if there is exactly one model in cardinality κ.

404 Amalgamation, absoluteness, and categoricity

(2) K has very few models in power ℵn if I(K,ℵn) ≤ 2ℵn−1 .

These are equivalent under GCH. And Shelah argues on the last couple of pages of
[32] (see also [36]) that they are equivalent under ¬0+. But in general we have a theorem
and a conjecture [31, 32], which differ only in the word ‘very’.

Theorem 4.6 (Shelah) (For n < ω, 2ℵn < 2ℵn+1) An atomic class K that has at least
one uncountable model and that has very few models in ℵn for each n < ω is excellent.

Conjecture 4.7 (Shelah) (For n < ω, 2ℵn < 2ℵn+1) An atomic class K that has at least
one uncountable model and that has few models in ℵn for each n < ω is excellent.

The proof of Theorem 4.6 uses the technology of atomic classes very heavily. But
the calculation of the categoricity spectrum in Theorem 4.2(2) can be lifted to arbitrary
sentences of Lω1, ω by a calculation [31, 32], reported as Theorem 25.19 of [2].

5 Absoluteness of properties of atomic classes

As remarked in the introduction, one of the significant attributes of first order stability
theory is that the basic notions: stable, ω-stable, superstable, ℵ1-categoricity can be seen
absolute in very strong ways. We sketch proofs of similar results, except the open ℵ1-cat-
egoricity, for Lω1, ω. This section and the appendix tie together some results which are
folklore with the use of well-known methods which are systematically applied to discuss
the case of Lω1, ω. We are indebted for discussions with Alf Dolich, Paul Larson, Chris
Laskowski, and Dave Marker for clarifying the issues. Among the few places model the-
oretic absoluteness issues have recently been addressed in print is [35]. Earlier accounts
include [5, 28].

For example a first order theory T is unstable just if there is a formula ϕ(x,y) such
that, for every n,

T |= (∃x1, . . .xn∃y1, . . .yn)
∧
i<j

ϕ(xi,yj) ∧
∧
i≥j
¬ϕ(xi,yj).

This is an arithmetic statement and so is absolute by basic properties of absoluteness
[16, 20]. In first order logic, ω-stability is Π1

1; there is no consistent tree7

{ϕσ(i)i (xσ,aσ ↾ n) : σ ∈ 2ω, i < ω}.
With a heavier use of effective descriptive set theory, suggested by David Marker, the
same applies for the atomic class case.

To demonstrate absoluteness of various concepts of infinitary logic we need the full
strength of the Shoenfield absoluteness lemma. In this section, we work with atomic
classes (Definition 3.2). We noted Shelah’s observation Theorem 3.7 that each ℵ1-categ-
orical sentence of Lω1, ω determines such a class. In this section we first show absoluteness
for various properties of atomic classes. In the last theorem, we show that the properties
for sentences of Lω1, ω remain absolute although in some cases they are more complex.
The Appendix (written by David Marker) makes a precise definition of a formula in
Lω1, ω as a subset of ω<ω so that we can apply descriptive set theoretic techniques. It
gives an effective analysis of the transformation in Theorem 3.3. The Appendix fixes
some notation for the rest of the paper and clarifies the complexity of a number of basic
notions; e.g., that the collection of complete sentences in Lω1, ω is complete Π1

1.

7 We use the convention that ϕσ(i)ϕ(x) denotes ϕ(x) or ¬ϕ(x) depending on whether σ(i) is 0 or 1.

The Infinity Project 405

Theorem 5.1 (Shoenfield Absoluteness Lemma) If
(1) V ⊂ V ′ are models of ZF with the same ordinals, and
(2) ϕ is a lightface Π1

2 predicate of a set of natural numbers,
then for any A ⊂ N , V |= ϕ(A) iff V ′ |= ϕ(A).

Note that this trivially gives the same absoluteness results for Σ1
2-predicates.

Lemma 5.2 (Atomic models)
(1) ‘T has an atomic model’ is an arithmetic property of T .
(2) ‘M is an atomic model of T ’ is an arithmetic property of M and T .
(3) For any vocabulary τ , the class M of countable atomic τ -structures is Borel.

Proof. The first condition is given by: for every formula ϕ(x) there is a formula ψ(x),
consistent with T , such that ψ(x) → ϕ(x) and, for every χ(x), either ψ(x) → χ(x) or
ψ(x)→ ¬χ(x). Let θ(M,T) be the arithmetic predicate of the reals M , T asserting that
T is the theory of M . The third condition is a ∆1

1-predicate of M given by: there exists
(for all) T such that θ(M,T) and, for every a ∈M , there exists a T -atom ψ(x) such that
M |= ψ(a). �5.2

Earlier versions of this paper had weaker characterizations; e.g., a Σ1
2 characterization

of ω-stability and Π1
2 characterization of excellence. Marker pointed out the application

of Harrison’s theorem, Fact 5.4(ii), to improve the result to Π1
1.

Definition 5.3 We say that x ∈ ωω is hyperarithmetic if x ∈ ∆1
1, and x is hyperarithmetic

in y, written x ≤hyp y, if x ∈ ∆1
1(y).

Fact 5.4
(i) The predicate {(x, y) : x ≤hyp y} is Π1

1.
(ii) If K ⊂ ωω is Σ1

1, then for any y, K contains an element which is not hyperarith-
metic in y if and only if K contains a perfect set.

The unrelativized version of statement (i) is [29, II.1.4.ii]; the relativized version is
[25, 7.15]. Again, the unrelativized version of statement (ii) is [29, III.6.2]; in this case
the relativization is routine. �5.4

In the next theorem, the atomic set A must be regarded as an element of ωω. There
are at least two ways to think of this: 1) a pair (M,A) where is M is a countable atomic
model of T and A is a subset (automatically atomic) of M , or 2) as a pair (A,Φ) where
Φ is the diagram of A as an atomic subset of the monster model M.

Lemma 5.5 (Marker) Let K be an atomic class (Definition 3.2) with a countable com-
plete first order theory T .

(1) Let A be a countable atomic set. The predicate of p and A, ‘p is in Sat(A)’, is
arithmetic.

(2) ‘Sat(A) is countable’ is a Π1
1-predicate of A.

Proof. (1) Note first that ‘q(x) is a principal type over ∅ in T ’ is an arithmetic property.
Now p is in Sat(A) if and only if for all a ∈ A, p ↾ a is a principal type. So this is also
arithmetic.

(2) By (1), the set of p such that ‘p is in Sat(A)’ is arithmetic (a fortiori Σ1
1) in A,

so by Fact 5.4(ii), each such p is hyperarithmetic in A. Since the Continuum Hypothesis

406 Amalgamation, absoluteness, and categoricity

holds for Σ1
1-sets, ‘Sat(A) is countable’ is formalized by:

(∀p)[p ∈ Sat(A)→ (p ≤hyp A)],

which is Π1
1. �5.5

In order to show the absoluteness of excellence we need some more detail on the
notion of independence. We will use item (1) of Definition 4.1. The independent families
of models [2, 32] in that definition are indexed by subsets of n with strictly less than
n elements; we denote this partial order by P−(n). We will show that independence of
models is an arithmetic property.

Definition 5.6
(1) A complete type p over A splits over B ⊂ A if there are b, c ∈ A which realize

the same type over B and a formula ϕ(x,y) with ϕ(x,b) ∈ p and ¬ϕ(x, c) ∈ p.
(2) Let ABC be atomic. We write A⌣

C
B and say A is free or independent from

B over C if for any finite sequence a from A, tp(a/B) does not split over some
finite subset of C.

Lemma 5.7 Let T be a complete countable first order theory. The properties that the
class of atomic models of T is

(1) ω-stable;
(2) excellent;

are each given by a Π1
1-formula of set theory and so are absolute.

Proof. (1) The class of atomic models of T is ω-stable if and only if for every atomic
model M , ‘Sat(M) is countable’. This property is Π1

1 by Lemma 5.5.
(2) The class of atomic models of T is excellent if and only if for any finite set of

countable atomic models {As : s ∈ P−(n)} that form an independent system, with
A =

∪
{As : s ∈ P−(n)}, Sat(A) is countable. Here we have universal quantifiers over

finite sequences of models (using a pairing function, this is quantifying over a single real).
The stipulation that the diagram is independent requires repeated use of the statement
A⌣
C
B, where A,B,C are finite unions of the models in the independent system. This

requires quantification over finite sequences from the As; thus, it is arithmetic. The
assertion ‘Sat(A) is countable’ is again π11 by Lemma 5.5 and we finish. �5.7

Lemma 5.8 The property that an atomic class K has arbitrarily large models is absolute.
In fact it is Σ1

1.

Proof. Let K be the class of atomic models of a first order theory T in a vocabulary τ .
K has arbitrarily large models if and only if there are T̂ , τ̂ , M and C such that T̂ is a
Skolemization of T in a vocabulary τ̂ and M is a countable model of T̂ such that M ↾ τ
is atomic and M contains an infinite set C of τ̂ -indiscernibles. This formula is Σ1

1. �5.8

Finally, following Lessmann [2, 21], we prove that the absolute ‘Baldwin–Lachlan’
characterization of first order ℵ1-categoricity has a natural translation to the Lω1, ω

situation; the resulting property of atomic classes is absolute and in ZFC it implies
ℵ1-categoricity. But we do not see how to derive it from ℵ1-categoricity without using
the Continuum Hypothesis. We need some definitions. To be a bit more specific we speak
of Vaughtian triples instead of Vaughtian pairs.

The Infinity Project 407

Definition 5.9 The formula ϕ(x, c) with c ∈ M ∈ K is big if for any M ′ ⊇ A with
M ′ ∈K there exists an N ′ with M ′ ≺K N ′ and with a realization of ϕ(x, c) in N ′−M ′.

This definition has no requirements on the cardinality of M,M ′, N ′ so it is saying
that ϕ(x, c) has as many solutions as the size of the largest models in K. This condition
is equivalent to one on countable models. A translation of Lemma 25.2 of [2] gives:

Lemma 5.10 Let A ⊆M and ϕ(x, c) be over A. The following are equivalent:
(1) There is an N with M ≺ N and c ∈ N −M satisfying ϕ(x, c);
(2) ϕ(x, c) is big.

The significance of this remark is that it makes ‘ϕ(x, c) is big’ a Σ1
1 predicate.

Definition 5.11
(1) A triple (M,N, ϕ) where M ≺ N ∈ K with M ̸= N , ϕ defined over M , ϕ big,

and ϕ(M) = ϕ(N) is called a Vaughtian triple.
(2) We say K admits (κ, λ), witnessed by ϕ, if there is a model N ∈K with |N | = κ

and |ϕ(N)| = λ and ϕ is big.

Now we have the partial characterization.

Lemma 5.12 Let K be a class of atomic models. If K is ω-stable and has no Vaughtian
triples then K is ℵ1-categorical. The hypothesis of this statement is Π1

1.

Proof. The sufficiency of the condition is found by tracing results in [2]: ω-stability gives
the existence of a quasiminimal formula ϕ. Note from the proof of Theorem 24.1 in [2]
that ω-stability is sufficient to show that there are prime models over independent subsets
of cardinality ℵ1. (The point of excellence is that higher dimensional amalgamation is
needed to extend this result to larger sets.) So if |M | = ℵ1, there is an N ≺K M
which is prime over a basis for ϕ(M). As noted in [2, Chapter 2], this determines N
up to isomorphism (again without use of excellence because we are in ℵ1). So we are
done unless N �M . But then Löwenheim–Skolem gives us a countable Vaughtian triple,
contrary to the hypothesis. �5.12

Since the second condition below is true if 2ℵ0 < 2ℵ1 and we have shown that the
conclusion of this condition is absolute, we have:

Corollary 5.13 ℵ1-categoricity is absolute for atomic classes if and only if in ZFC
ℵ1-categoricity implies countable amalgamation and ω-stabity.

Consequence 5.14 Let K be a class of atomic models. Then ℵ1-categoricity of K is
absolute between models of set theory that satisfy either of the following conditions:

(1) K has arbitrarily large members and K has amalgamation in ℵ0, or
(2) 2ℵ0 < 2ℵ1 .

Proof. Each hypothesis implies the characterization in Lemma 5.12. �5.14

Note the hypothesis of condition (1) is absolute. It seems unlikely that ℵ1-categoricity
implies the existence of arbitrarily large models in K; but no counterexample has yet
been constructed. The use of the Continuum Hypothesis is central to current proofs that
ℵ1-categoricity implies amalgamation and ω-stability. For general AEC, Example 3.13
shows ZFC does not imply the assertion (A): ℵ1-categoricity implies amalgamation in ℵ0
and ω-stability. But [9] have shown (employing standard forcings) that for each AEC

408 Amalgamation, absoluteness, and categoricity

K that fails amalgamation in ℵ0, there is a model of set theory such that in that model
2ℵ0 = 2ℵ1 , K continues to fail amalgamation in ℵ0, and K has 2ℵ1 models in ℵ1. So
assertion (A) does not imply CH.

Consequence 5.15 Let K be a class of atomic models. Categoricity in all cardinals is
absolute between models of set theory that satisfy the VWGCH.

Proof. Under VWGCH, categoricity in all powers is equivalent to the Π1
1-condition:

excellence with no two cardinal models. �5.15

Theorem 5.16 Each of the properties that a complete sentence of Lω1, ω is ω-stable,
excellent, or has no two-cardinal models is Σ1

2.

Proof. Let Q(T) denote any of the conditions above as a property of the first order theory
T in a vocabulary τ∗. Now write the following properties of the complete sentence ϕ in
vocabulary τ :

(1) ϕ is a complete sentence.
(2) There exists a τ∗ ⊇ τ and τ∗ theory T satisfying the following:

(a) T is a complete theory that has an atomic model.
(b) The reduct to τ of any atomic model of T satisfies ϕ.
(c) There is a model M of ϕ and there exists an expansion of M to an atomic

model of T .
(d) Q(T).

Proof. We know that condition (1) is Π1
1. Condition (2) is an existential function quan-

tifier followed by conditions which are at worst Π1
1. �5.16

So, as far as we know the conditions on sentences of Lω1, ω are more complicated than
those for atomic classes and the application of Harrison’s lemma8 was needed to obtain
absoluteness of these conditions for sentences of Lω1, ω.

6 Complexity

We prove the following claim. This result was developed in conversation with Martin
Koerwien and Sy Friedman at the CRM Barcelona and benefitted from further discussion
with Dave Marker.

Claim 6.1 The class of countable models whose automorphism groups admit a complete
left invariant metric is Π1

1 but not Σ1
1.

Our proof is by propositional logic from known results of Gao [10] and Deissler [8].

Definition 6.2 A countable model is minimal (equivalently non-extendible) if it has no
proper Lω1, ω-elementary submodel.

We showed in Lemma 5.2 that the class of atomic structures is Borel. The following
claim is an easy back and forth.

Claim 6.3 If M is atomic, τ -elementary submodel is the same as Lω1, ω(τ)-elementary
submodel.

8 Grossberg has pointed out that by suitably modifying the rank for ω-stable atomic classes the
result could be given a direct model theoretic proof. This is slightly tricky because this rank will only be
defined on some atomic sets.

The Infinity Project 409

Claim 6.3 shows that an atomic model is minimal iff it is minimal in first order logic.
Note that the class of first order minimal models is obviously Π1

1. Now if the class of
minimal models were Borel, it would follow that the class of minimal atomic (equal first
order minimal prime) models is also Borel. But Corollary 2.6 of Deissler [8] asserts for
first order theories:

Lemma 6.4 (Deissler) There is a countable relational vocabulary τ such that the class
of minimal prime models for τ is not Σ1

1.

Gao [10] characterized non-extendible models in terms of metrics on their automor-
phism group.

Lemma 6.5 (Gao) The following are equivalent:

(1) Aut(M) admits a compatible left-invariant complete metric.
(2) There is no Lω1, ω-elementary embedding from M into itself which is not onto.

So we can transfer to the characterization of automorphism groups and prove
Claim 6.1.

Gao pointed out to me that Malicki [23] recently proved a related result: the class of
Polish groups with a complete left invariant metric is Π1

1 but not Σ1
1. We now analyze

the connection between the two results and show that the properties studied are Borel
equivalent. This observation was made jointly with Christian Rosendal.

Recall that S∞ is is a Borel subspace of NN . We denote by SG(S∞) the collection
of closed subgroups of S∞. It is contained in F, the hyperspace of closed subsets of S∞.
F is a standard Borel space with the Effros–Borel structure generated by

{F ∈ F : F ∩ U ̸= ∅}

for some open U ⊂ S∞. Proposition 1 of [23] implies that with this topology SG(S∞) is
a standard Borel space.

Claim 6.6 The map A taking M to Aut(M) mapping the standard Borel space of count-
able atomic models models into SG(S∞) is Borel.

Proof. We have to show that for any basic open set X ∈ SG(S∞), A−1(X) is a Borel
subset of A. That is, for fixed open U , if X is the set of F with F ∩ U ̸= ∅, the inverse
image of X is Borel in the space of atomic models.

Say U is all permutations mapping a to b where a,b ∈ Nn. Now there is g ∈ Aut(M)
mapping a to b if and only if a and b realize the same type in M if and only if they
satisfy the same formulas over the empty set, which is a Borel condition. �6.6

Corollary 6.7 The class of Polish groups with a complete left invariant metric is Π1
1 but

not Σ1
1.

Conversely, we want to reduce the CLI groups to the class of minimal atomic models.
The reduction is a map B from a group G acting on N to a structure M on N with
Aut(M) = G. This is easily done by mapping G to a structure with universe N which
has a predicate for each orbit of G on Nn.

Deissler also uses a vocabulary with infinitely many n-ary predicates for each n so
the vocabulary is in fact the same for both directions of reduction.

410 Amalgamation, absoluteness, and categoricity

7 Conclusion

The spectrum problem for first order theories motivated many technical developments
that eventually had significant algebraic consequences. A similar possibility for applica-
tion of infinitary logic to algebraic problems is suggested by Zilber’s program [40, 41].
But the basic development is far more difficult and less advanced. The notion of excel-
lence provides one useful context. And others are being developed under the guise of
abstract elementary classes and metric abstract elementary classes. But while first order
stability theory is developed in ZFC, the current development of the model theory of
Lω1, ω uses a (rather weak) extension of set theory: the VWGCH. This raises both model
theoretic and set theoretic questions. The proof of the ‘one completely general result’,
Theorem 2.4, is a fundamentally combinatorial argument using no sophisticated model
theoretic lemmas. The current proof uses 2λ < 2λ

+ . Can this hypothesis be removed?
Like first order logic such fundamental definitions of Lω1, ω as satisfaction, ω-stability,

and excellence are absolute. And in fact the complexity of their description can often
be computed. But while ℵ1-categoricity is seen (by a model theoretic argument) to be
absolute in the first order case, this issue remains open for Lω1, ω.

We have also investigated the complexity of various properties of Lω1, ω-sentences and
associated atomic classes. It is shown in Lemma 8.7 that the graph of the translation
from a sentence to a finite diagram (T,Γ) is arithmetic. In Theorem 5.16, we avoided a
precise calculation of the translation from a complete sentence to the atomic models of a
first order theory. The tools of the appendix should allow a careful computation of this
complexity. Note that while, for example, we showed that ω-stability was Π1

1 as a property
of an atomic class, we only showed it to be Σ1

2 as a property of the Lω1, ω-sentence.

8 Appendix: Basic definability notions for Lω1, ω

by David Marker

Fix a vocabulary τ and let Xτ be the Polish space of countable τ -structures with uni-
verse ω. Our first goal is to describe the collection of codes for Lω1, ω(τ)-formulas. This
is analogous to the construction of Borel codes in descriptive set theory.

Definition 8.1

(1) A labeled tree is a non-empty tree T ⊆ ω<ω with functions l and v with domain
T such that for any σ ∈ T one of the following holds:
• σ is a terminal node of T then l(σ) = ψ where ψ is an atomic τ -formula

and v(σ) is the set of free variables in ψ;
• l(σ) = ¬, σˆ0 is the unique successor of σ in T and v(σ) = v(σˆ0);
• l(σ) = ∃vi, σˆ0 is the unique successor of σ in T and v(σ) = v(σˆ0) \ {i};
• l(σ) =

∧
and v(σ) =

∪
σ ˆ i∈T v(σˆi) is finite.

(2) A formula ϕ is a well founded labeled tree (T, l, v). A sentence is a formula
where v(∅) = ∅.

Proposition 8.2 The set of labeled trees is arithmetic and the set of formulas is com-
plete-Π1

1, as is the set of sentences.

Now it is easy to see:

The Infinity Project 411

Proposition 8.3 There is R(x, y) ∈ Π1
1 and S(x, y) ∈ Σ1

1 such that if ϕ is a sentence
and M ∈ Xτ , then

M |= ϕ ⇐⇒ R(M,ϕ) ⇐⇒ S(M,ϕ).

In particular, {(M,ϕ) : ϕ is a sentence and M |= ϕ} is Π1
1. However, for any fixed ϕ,

Mod(ϕ) = {M ∈ Xτ :M |= ϕ} is Borel, indeed ∆1
1(ϕ).

Proof. We define a predicate ‘f is a truth definition for the labeled tree (T, l, v) in M ’ as
follows:

• The domain of f is the set of pairs (σ, µ) where σ ∈ T and µ : v(σ) → M is an
assignment of the free variables at node σ and f(σ, µ) ∈ {0, 1}.
• If l(σ) = ψ an atomic formula, then f(σ, µ) = 1 if and only if ψ is true in M

when we use µ to assign the free variables.
• If l(σ) = ¬, then f(σ, µ) = 1 if and only if f(σˆ0, µ) = 0.
• If l(σ) = ∃vi there are two cases. If vi ∈ v(σˆ0), then f(σ, µ) = 1 if and only if

there is a ∈M such that f(σˆ0, µ∗) = 1, where µ∗ ⊃ µ is the assignment where
µ∗(vi) = a. Otherwise, f(σ, µ) = f(σˆ0, µ).
• If l(σ) =

∧
, then f(σ, µ) = 1 if and only if f(σˆi, µ|v)(σˆi) = 1 for all i such

that σˆi ∈ T .

This predicate is arithmetic. If ϕ is a sentence, there is a unique truth definition f
for ϕ in M . Let R(x, y) ⇔ x ∈ Xτ and y is a labeled tree and f(∅, ∅) = 1 for all truth
definitions f for y in x, and let S(x, y)⇔ y is a labeled tree and there is a truth definition
f for y in x such that f(∅, ∅) = 1. �8.3

Notation 8.4 We write that a property of a set of reals is Π1
1 ∧Σ1

1 if it is defined by the
conjunction of a Π1

1 and a Σ1
1 formula.

Proposition 8.5 {ϕ : ϕ is a satisfiable sentence} is Π1
1 ∧ Σ1

1, but neither Π1
1 nor Σ1

1.

Proof. ‘ϕ is a sentence’ is Π1
1; ‘there is a model for ϕ’ is equivalent to ∃x S(x, ϕ), which

is Σ1
1. The set of satisfiable sentences is not Σ1

1 since otherwise the set of underlying
trees would be a Σ1

1-set of trees and there would be a countable bound (e.g., [24, Theo-
rem 3.12]), on their heights.

We show that the set of satisfiable sentences is not Π1
1 by constructing a reduction

of non-well ordered linear orders to satisfiable sentences.
Let τ = {U, V,<, s, f, 0, cn : n ∈ ω}. For each linear order ≺ of ω we write down an

Lω1, ω sentence ϕ≺ asserting:
• the universe is the disjoint union of U and V ;
• U = {c0, c1, . . . } all of which are distinct;
• < is a linear order of U ;
• cn < cm, if n ≺ m;
• s is a successor function on V and V = {0, s(0), s(s(0)), . . . };
• f : V → U and f(s(n)) < f(n) for all n.

It ≺ is not a well order, and n0 ≻ n1 ≻ . . . is an infinite descending chain, then by
defining f(n) = cn we get a model of ϕ≺. On the other hand if ≺ is a well order we can
find no model of ϕ≺.

Thus ≺7→ ϕ≺ is a reduction of non-well-ordered linear orders to {ϕ : ϕ is satisfiable}
which is impossible if satisfiability is Π1

1. �8.5

412 Amalgamation, absoluteness, and categoricity

We now effectivize Chang’s observation (Lemma 3.3) that for each sentence ϕ in Lω1, ω

we can find a first order theory T ∗ in a vocabulary τ∗ and a countable set Γ of partial
τ∗-types such that the models of ϕ are exactly the τ -reducts of models of T ∗ that omit
all the types in Γ.

Definition 8.6 A Chang-assignment to a labeled tree (T, l, v) is a pair of functions S, γ
with domain T such that S(σ) is a set of sentences in the vocabulary τσ = τ∪{Rτ : τ ⊇ σ},
where τ and σ are in T and Rτ is a relation symbol in |v(τ)|-variables and γ(σ) is a
function with domain ω such that each γ(σ)(n) is a partial τσ type.9 We also require:

• if l(σ) = ψ is atomic, S(σ) = {∀v(σ)(Rσ(v)↔ ψ}, and each γ(σ)(i) = {v1 ̸= v1};
• if l(σ) = ¬, then S(σ) = S(σˆ0)∪ {∀v(σ)Rσ ↔ NegRσ ˆ 0} and γ(σ) = γ(σˆ0);
• if l(σ) = ∃vi, then S(σ) = S(σˆ0)∪{∀v(σ)Rσ ↔ ∃viRσ ˆ 0} and γ(σ) = γ(σˆ0);
• if l(σ) =

∧
; then S(σ) =

∪
σ ˆ i∈T S(σˆi) ∪ {∀v(σ)(Rσ → Rσ ˆ i) : σˆi ∈ T}.

Fix a pairing function µ : ω × ω → ω. Let

γ(σ)(0) = {Rσ,¬Rσ ˆ i : σˆi ∈ T}
and

γ(σ)(µ(i, n) + 1) =

{
γ(σˆi)(n) if σˆi ∈ T
{v1 ̸= v1} otherwise.

In other words, γ(σ) lists all the types listed by the successors of σ and the additional
type {Rσ,¬Rσ ˆ i : σˆi ∈ T}.

It is now easy to see:

Lemma 8.7 The predicate “(S, γ) is a Chang-assignment for the labeled tree (T, l, v)” is
arithmetic. If ϕ is a sentence then there is a unique Chang-assignment for ϕ.

To simplify notation we will call (T,Γ) the Chang-assignment where T is the theory
S(∅) and Γ is the set of types γ(∅)(0), γ(∅)(1),

The following remark is implicit in [11].

Lemma 8.8 The property that a sentence ϕ of Lω1, ω has arbitrarily large models is
absolute. In fact it is Π1

1 ∧ Σ1
1, but neither Π1

1 nor Σ1
1.

Proof. A τ -sentence ϕ has arbitrarily large models if and only if there is a Chang-
assignment (T,Γ), τ∗ ⊇ τ and T ∗ ⊇ T a Skolemized τ∗-theory such that there is a model
of T ∗ omitting all types in Γ and containing an infinite set of τ∗-indiscernibles. This
condition is Σ1

1 once we restrict to the Π1
1-set of sentences.

For any sentence ϕ let ϕ∗ be the sentence which asserts we have two sorts, the first
of which is a model of ϕ and the second is an infinite set with no structure. Then ϕ is
satisfiable if and only if ϕ∗ has arbitrarily large models. Thus ϕ 7→ ϕ∗ is a reduction
of satisfiable sentences to sentences with arbitrarily large models. By Proposition 8.5,
the set of sentences with arbitrarily large models is neither Σ1

1 nor Π1
1. �8.8

Recall that an Lω1, ω-sentence is complete if and only if it is satisfiable and any two
countable models are isomorphic. This is easily seen to be Π1

2. Drawing on some results
of Nadel, we show that in fact:

Theorem 8.9 {ϕ : ϕ is a complete sentence} is complete-Π1
1.

9 We allow relation symbols in 0 variables, but these could easily be eliminated.

The Infinity Project 413

The argument requires some preparation. We begin by recalling the usual Karp–Scott
back-and-forth analysis.

Definition 8.10 If M and N are τ -structures, we inductively define ∼α by: (M,a) ∼0

(N,b) if M |= ϕ(a) if and only if N |= ϕ(b) for all atomic τ -formulas ϕ. For all ordinals
α, (M,a) ∼α+1 (N,b) if for all c ∈ M there is d ∈ N such that (M,a, c) ∼α (N,b, d)
and for all d ∈ N there is c ∈ M such that (M,a, c) ∼α (N,b, d). For all limit ordinals
β, (M,a) ∼β (N,b) if and only if (M,a) ∼α (N,b) for all α < β.

A classical fact is that (M,a) ∼α (N,b) if and only if M |= ϕ(a) ⇔ N |= ϕ(b) for
all formulas ϕ of quantifier rank at most α.

We say that ϕ has Scott rank α if α is the least ordinal such that if M,N |= ϕ and
(M,a) ∼α (N,b) then (M,a) ∼β (N,b) for all ordinals β.

We need to analyze the complexity of ∼α.

Definition 8.11 Let WO∗ (the class of pseudo-well-orders) be the set of all linear orders
R with domain ω such that:

(i) 0 is the R-least element;
(ii) if n is not R-maximal, then there is y such that xRy and there is no z such that

xRz and zRx, we say y is the R-successor of x and write y = sR(x).
If n ̸= 0 is not an R-successor, we say it is an R-limit.

Note that WO∗, sR(n) = m and ‘n is an R-limit’ are arithmetic.

Definition 8.12 We say that z is an R-analysis of M and N if
(i) z ⊆ ω ×

∪
n∈ω(ω

n × ωn);
(ii) (0,a,b) ∈ z if and only if M |= ϕ(a)↔ N |= ϕ(b) for all quantifier free ϕ;
(iii) if (n,a,b) and mRn, then (m,a,b);
(iv) (sR(n),a,b) ∈ z if and only if for all c ∈ ω there is d ∈ ω such that

(n,aˆc,bˆd) ∈ z and for all d ∈ ω there is c ∈ ω such that (n,aˆc,bˆd) ∈ z;
(v) if n is an R-limit, then (n,a,b) ∈ z if and only if (m,a,b) ∈ z for all mRn.

Note:
• ‘{(z,R,M,N) : ‘z is an R-analysis’} is arithmetic.
• Suppose R is a well-order of order type α. Let β(n) < α be the order type of
{m : mRn}. If z is an R-analysis of M,N , then

(n,a,b) ∈ z if and only if (M,a) ∼β(n) (N,b).

In particular, there is a unique R-analysis of M,N .
We need two results of Mark Nadel.

Theorem 8.13 (Nadel)
(a) If ϕ is complete, then there is M |= ϕ with M ≤hyp ϕ.
(b) If ϕ is complete then the Scott rank of ϕ is at most qr(ϕ) +ω where qr(ϕ) is the

quantifier rank of ϕ.

Here (a) is [27, Theorem 2], while (b) is [26, Theorem 5.1]. For completeness we
sketch the proofs.

For (a), add new constants c1, c2, . . . to τ . Let F be a countable fragment such that
ϕ ∈ F —we can choose F arithmetic in ϕ. Let S = {s : s a finite set of F -sentences using

414 Amalgamation, absoluteness, and categoricity

only finitely many ci such that ϕ |= ∃v
∧
ψ∈s ψ(v)}. S is a consistency property. Since ϕ

is complete,

ϕ |= θ ⇔ ∀M (M |= ϕ→M |= θ)⇔ ∃M(M |= ϕ ∧M |= θ).

It follows that S is ∆1
1(ϕ, F) and hence S ≤hyp ϕ. Using the consistency property S, one

can easily construct M |= ϕ with M ≤hyp ϕ.
Towards (b), let F be as above. Since ϕ is complete, there are only countably many

F -types. By the Omitting Types Theorem for Lω1, ω, there is a model of ϕ where every
element satisfies an F -complete formula. Since ϕ is complete, this is true in the unique
countable model M .

The usual arguments show that we can do a back and forth in M with F -types. Thus
if a,b in M and (M,a) ≡F (M,b) then there is an automorphism of M mapping a to b.
If we pick α such that every ψ is F has quantifier rank below α and (M,a) ∼α (M,b),
then (M,a) ∼β (M,b) for all β. Thus the Scott rank of ϕ is at most α.

If F is the smallest fragment containing ϕ, every formula in F has Scott rank below
qr(ϕ) + ω, so this is an upper bound on the Scott rank. �8.13

Proof of Theorem 8.9. First note that if α is a bound on the Scott rank of models of ϕ,
then any two countable models M and N of ϕ are isomorphic if and only if we can do
a back-and forth construction using ∼α. Thus by Nadel’s Theorems, a sentence ϕ is
complete if and only if

(i) (∃M)M ≤hyp ϕ ∧M |= ϕ, and
(ii) ∃α recursive in ϕ such that for all M,N |= ϕ if a ∈ M,b ∈ N and (M,a) ∼α

(N,b), then for all c ∈M there is d ∈ N such that (M,a, c) ∼α (N,b, d).

Here (i) is easily seen to be Π1
1, using Fact 5.4, while (ii) is equivalent to ∀M,N |= ϕ

(∃R, ∃z)z ≤hyp ϕ ,R ∈ WO∗ and z is an R-analysis of M and N and there is an n such
that if a, c ∈M,b ∈ N with (n,a,b) ∈ z, then there is d ∈ N such that (n,a, c,b, d) ∈ z.
This is also Π1

1, again using Fact 5.4.
Finally, to each linear order ≺ of ω we will assign an Lω1, ω sentence ϕ≺ such that ≺

is a well order if and only if ϕ≺ is complete. This will show that {ϕ : ϕ is complete} is
Π1

1-complete.
The vocabulary τ is {Pn : n ∈ ω} where Pn is a unary predicate.

• We say that every element is in some Pn.
• We say that each Pn is infinite and that if n ≺ m, then Pn ⊂ Pm and Pm \ Pn

is infinite.
• Moreover if ∀m ≺ n∃k m ≺ k ≺ n, then we also say that Pn \

∪
m≺n Pm is

infinite.

If ≺ is a well ordering, then ϕ≺ is ℵ0-categorical as for each n we just put ℵ0 elements
in each Pn \

∪
m≺n Pm. On the other hand if n0 ≻ n1 ≻ . . . is an infinite descending

chain, let X = {m : m ≺ ni for all i}. We can put any number of elements in

∞∩
i=0

Pni \
∪
m∈X

Pm,

so ϕ≺ is not complete. �8.9

The Infinity Project 415

References

[1] J. T. Baldwin. The Vaught conjecture: Do uncountable models count? Notre Dame Journal of
Formal Logic, 48(1):79–92, 2007.

[2] J. T. Baldwin. Categoricity. No. 51 in University Lecture Notes. American Mathematical Society,
2009. www.math.uic.edu/\~\jbaldwin.

[3] J. T. Baldwin and A. Kolesnikov. Categoricity, amalgamation, and tameness. Israel Journal of
Mathematics, 170, 2009. www.math.uic.edu/\~\jbaldwin.

[4] J. T. Baldwin, A. Kolesnikov, and S. Shelah. The amalgamation spectrum. Journal of Symbolic
Logic, 74:914–928, 2009.

[5] J. Barwise (ed.). Admissible Sets and Structures. Perspectives in Mathematical Logic. Springer-
Verlag, 1975.

[6] M. Bays and B. I. Zilber. Covers of multiplicative groups of an algebraically closed field of arbitrary
characteristic. arXiv math.AC/0401301, 2004.

[7] C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 1973. 3rd edition, 1990.
[8] R. Deissler. Minimal models. Journal of Symbolic Logic, 42:254–260, 1977.
[9] S.-D. Friedman and M. Koerwien. On absoluteness of categoricity in abstract elementary classes.

Notre Dame Journal of Formal Logic, 52(4):395–402, 2011.
[10] S. Gao. On automorphism groups of countable structures. Journal of Symbolic Logic, 63:891–896,

1996.
[11] R. Grossberg and S. Shelah. On the number of non isomorphic models of an infinitary theory which

has the order property, part A. Journal of Symbolic Logic, 51:302–322, 1986.
[12] R. Grossberg and M. VanDieren. Categoricity from one successor cardinal in tame abstract elemen-

tary classes. Journal of Mathematical Logic, 6:181–201, 2006.
[13] B. Hart and S. Shelah. Categoricity over P for first order T or categoricity for ϕ ∈ lω1ω can stop at

ℵk while holding for ℵ0, . . . ,ℵk−1. Israel Journal of Mathematics, 70:219–235, 1990.
[14] W. Hodges. Model Theory. Cambridge University Press, 1993.
[15] T. Hyttinen and M. Kesälä. Superstability in simple finitary AECs. Fundamenta Mathematicae,

195(3):221–268, 2007.
[16] T. Jech. Multiple Forcing, vol. 88 of Cambridge Topics in Mathematics. Cambridge University Press,

1987.
[17] H. J. Keisler. Model Theory for Infinitary Logic. North-Holland, 1971.
[18] J. Kirby. Abstract elementary categories. http://arxiv.org/abs/1006.0894v1, 2008.
[19] D. W. Kueker. Abstract elementary classes and infinitary logics. Annals of Pure and Applied Logic,

156:274–286, 2008.
[20] K. Kunen. Set Theory, An Introduction to Independence Proofs. North-Holland, 1980.
[21] O. Lessmann. An introduction to excellent classes. In Yi Zhang (ed.), Logic and its Applications,

Contemporary Mathematics, 231–261. American Mathematical Society, 2005.
[22] M. Lieberman. Accessible categories vrs aecs. www.math.lsa.umich.edu/~liebermm/vita.html.
[23] M. Malicki. On Polish groups admitting a compatible complete left-invariant metric. Journal of

Symbolic Logic, 76(2):437–447, 2011,
[24] R. Mansfield and G. Weitkamp. Recursive Aspects of Descriptive Set Theory. Oxford University

Press, 1985.
[25] D. Marker. Descriptive set theory, 2002. http://www.math.uic.edu/~marker/math512/dst.pdf.
[26] M. Nadel. More Löwenheim–Skolem results for admissible sets. Israel J. Math., 18:53–64, 1974.
[27] M. Nadel. Scott sentences and admissible sets. Annals of Mathematical Logic, 7:267–294, 1974.
[28] G. Sacks. Saturated Model Theory. Benjamin, Reading, Mass., 1972.
[29] G. Sacks. Higher Recursion Theory. Springer-Verlag, Berlin, Heidelberg, 1990.
[30] S. Shelah. Categoricity in ℵ1 of sentences in Lω1, ω(Q). Israel Journal of Mathematics, 20:127–148,

1975. Paper 48.
[31] S. Shelah. Classification theory for nonelementary classes, I. The number of uncountable models of

ψ ∈ Lω1ω part A. Israel Journal of Mathematics, 46:3:212–240, 1983. Paper 87a.
[32] S. Shelah. Classification theory for nonelementary classes, I. The number of uncountable models of

ψ ∈ Lω1ω part B. Israel Journal of Mathematics, 46:3:241–271, 1983. Paper 87b.
[33] S. Shelah. Categoricity for abstract classes with amalgamation. Annals of Pure and Applied Logic,

98:261–294, 1999. Paper 394. Consult Shelah for post-publication revisions.

416 Amalgamation, absoluteness, and categoricity

[34] S. Shelah. Classification Theory for Abstract Elementary Classes. Studies in Logic. College Pub-
lications. www.collegepublications.co.uk, 2009. Binds together papers 88r, 600, 705, 734 with
introduction E53.

[35] S. Shelah. Model theory without choice? Categoricity. Journal of Symbolic Logic, 74:361–401, 2009.
[36] S. Shelah. Non-structure in λ++ using instances of WGCH. Paper 838.
[37] S. Shelah. Abstract elementary classes near ℵ1 sh88r. Revision of Classification of nonelementary

classes II, Abstract elementary classes; on the Shelah archive.
[38] S. Shelah. Classification of nonelementary classes II, abstract elementary classes. In J. T. Baldwin

(ed.), Classification Theory (Chicago, IL, 1985), 419–497. Springer, Berlin, 1987. Paper 88: Pro-
ceedings of the USA-Israel Conference on Classification Theory, Chicago, December 1985; vol. 1292
of Lecture Notes in Mathematics.

[39] S. Shelah. Categoricity of theories in Lκω when κ is a measurable cardinal, part II. Fundamenta
Mathematicae, 170:165–196, 2001.

[40] B. I. Zilber. Pseudo-exponentiation on algebraically closed fields of characteristic 0. Annals of Pure
and Applied Logic, 132:67–95, 2004.

[41] B. I. Zilber. Covers of the multiplicative group of an algebraically closed field of characteristic zero.
Journal of the London Mathematical Society, 74(1):41–58, 2006.

The Infinity Project

Beyond first order logic: from number of structures
to structure of numbers, part I

John T. Baldwin†, Tapani Hyttinen‡, Meeri Kesälä‡

† Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, USA
jbaldwin@uic.edu

‡ Department of Mathematics and Statistics, University of Helsinki, Finland
tapani.hyttinen@helsinki.fi, meeri.kesala@helsinki.fi

Abstract. The paper studies the history and recent developments in non-elementary model theory
focusing in the framework of abstract elementary classes. We discuss the role of syntax and semantics
and the motivation to generalize first order model theory to non-elementary frameworks and illuminate
the study with concrete examples of classes of models.

This first part introduces the main conceps and philosophies and discusses two research questions,
namely categoricity transfer and the stability classification.

Introduction

Model theory studies classes of structures. These classes are usually a collection of struc-
tures that satisfy an (often complete) set of sentences of first order logic. Such sentences
are created by closing a family of basic relations under finite conjunction, negation and
quantification over individuals. Non-elementary logic enlarges the collection of sentences
by allowing longer conjunctions and some additional kinds of quantification. In this paper
we first describe for the general mathematician the history, key questions, and motiva-
tions for the study of non-elementary logics and distinguish it from first order model
theory. We give more detailed examples accessible to model theorists of all sorts. We
conclude with questions about countable models which require only a basic background
in logic.

For the last 50 years most research in model theory has focused on first order logic.
Motivated both by intrinsic interest and the ability to better describe certain key math-
ematical structures (e.g., the complex numbers with exponentiation), there has recently
been a revival of ‘non-elementary model theory’. We develop contrasts between first order
and non-elementary logic in a more detailed way than just noting ‘failure of compactness’.
We explain the sense in which we use the words syntax and semantics in Section 1. Many
of the results and concepts in this paper will reflect a tension between these two view-
points. In Part II, as we move from the study of classes that are defined syntactically to
those that are defined semantically, we will be searching for a replacement for the funda-
mental notion of first order model theory, i.e., the notion of a complete theory. Section 1
also defines the basic notions of non-elementary model theory. Section 2 describes some
of the research streams in more detail and illuminates some of the distinctions between el-
ementary and non-elementary model theory. Subsection 2.1 describes the founding result

Accepted for publication in 2012 in the Bulletin of the Iranian Mathematical Society.
†Partially supported by grant NSF-0500841.
‡Partially supported by the Academy of Finland, grant number 1123110.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

417

418 From number of structures to structure of numbers, part I

of modern first order model theory, Morley’s categoricity theorem, and sketches Shelah’s
generalization of it to Lω1ω. In Part II we study several generalizations of the result
to abstract elementary classes (AEC). The remainder of Section 2 studies the so-called
stability classification and provides specific mathematical examples that illustrate some
key model theoretic notions. We describe concrete examples explaining the concepts
and problems in non-elementary model theory and a few showing connections with other
parts of mathematics. Two of these illustrate the phrase ‘to structure of numbers’ in
the title. Example 2.11, initiated by Zilber, uses infinitary methods to study complex
exponentiation and covers of abelian varieties. The example in Subsection 2.3 of Part II
studies models of Peano Arithmetic and the notion of elementary end-extension. This is
the first study of models of Peano arithmetic as an AEC. Furthermore, Part II contains
new results and explores the proper analogy to complete theory for AECs; it answers a
question asked by David Kueker and includes Kossak’s example of a class of models of
PA interesting from the standpoint of AEC.

Neither of the standard approaches, Lκω-definable class or AECs, has been successful
in studying the countable models of an infinitary sentence. The first approach is too
specific. It rapidly reduces to a complete infinitary sentence which has only one countable
model. Results so far in studying general AECs give little information about countable
models. We seek to find additional conditions on an AEC that lead to a fruitful study
of the class of countable models. In particular we would like to find tools for dealing
with one famous and one not so famous problem of model theory. The famous problem is
Vaught’s conjecture. Can a sentence of Lω1ω have strictly between ℵ0 and 2ℵ0 countable
models? The second problem is more specific. What if we add the condition that the class
is ℵ1-categorical? Can we provide sufficient conditions for having less than 2ℵ0 countable
models or for actually counting the number of countable models? In Part II we describe
two sets of concepts for addressing this issue; unfortunately so far not very successfully.
The first is the notion of a simple finitary AEC and the second is an attempt to define
a notion of a ‘complete AEC’, which like a complete first order theory imposes enough
uniformity to allow analysis of the models but without trivializing the problem to one
model.

One thesis of this paper is that the importance of non-elementary model theory lies
not only in widening the scope of applications of model theory but also in shedding light
on the essence of the tools, concepts, methods and conventions developed and found
useful in elementary model theory.

We thank Jouko Väänänen and Juliette Kennedy from the University of Helsinki
for discussions that led to better understanding on the history of non-elementary model
theory, the philosophical issues discussed in Section 1, and for helpful references.

1 Non-elementary model theory

In this section we study the history of non-elementary model theory during the second
half of the twentieth century and compare that to the development of more ‘mainstream’
first order model theory. We identify two different trends in the development. In both the
‘elementary’ and non-elementary cases the focus of research has moved from ‘syntactic’
consideration towards ‘semantic’ ones —we will explain what we mean by this. We see
some of the cyclic nature of science. Non-elementary classes bloom in the 60’s and 70’s;
the bloom fades for some decades, overshadowed by the success and applications arising

The Infinity Project 419

from the ‘elementary’ field. But around the turn of the 21st century, innovative examples
and further internal developments lead to a rebirth.

We will focus on some ‘motivating questions’ that have driven both the elementary and
non-elementary approaches, such as the categoricity transfer problem. While counting
models seems a rather mundane problem, new innovations and machinery developed
for the solution have led to the recognition of systems of invariants that are new to
mathematics and in the first order case to significant mathematical advances in e.g.
number theory [13]. It is hoped that the deeper developments of infinitary logic will
have similar interactions with core mathematics. Boris Zilber’s webpage contains many
beginnings.

1.1 Syntax and semantics

The distinction between syntax and semantics has been present throughout the history
of modern logic starting from the late 19th century: completeness theorems build a bridge
between the two by asserting that a sentence is provable if and only if it is true in all
models. By syntax we refer to the formalism of logic, objects of language as strings
of symbols and deductions as manipulations of these strings according to certain rules.
Semantics, however, has to do with interpretations, ‘meaning’ and ‘sense’ of the language.
By the semantics for a language we mean a ‘truth definition’ for the sentences of the
language, a description of the conditions when a structure is considered to be a model
for that sentence. ‘Semantic properties’ have to do with properties of such models.

In fact these two notions can also be seen as methodologies or attitudes toward
logic. The extreme (formalist) view of the syntactic method avoids reference to any
‘actual’ mathematical objects or meaning for the statements of the language, considering
these to be ‘metaphysical objects’. The semantic attitude is that logic arises from the
tradition of mathematics. The method invokes a trace of Platonism, a search for the
‘truth’ of statements with less regard for formal language. The semantic method would
endorse ‘proof in metamathematics or set theory’ while the syntactic method seeks a
‘proof in some formal system’. Traditionally model theory is seen as the intersection of
these two approaches. Chang and Keisler [17] write: universal algebra + logic = model
theory. Juliette Kennedy [33] discusses ideas of ‘formalism freeness’, found in the work
of Kurt Gödel. Motivated by issues of incompleteness and faithfulness and hence the
‘failure’ of first order logic to capture truth and reasoning, Gödel asked if there is some
(absolute) concept of proof (or definability) ‘by all means imaginable’. One interpretation
of this absolute notion (almost certainly not Gödel’s) is as the kind of semantic argument
described above. We will spell out this contrast in many places below.

Model theory by definition works with the semantic aspect of logic, but the dialectics
between the syntactic and semantic attitudes is central. This becomes even clearer when
discussing questions arising from non-elementary model theory. Non-elementary model
theory studies formal languages other than ‘elementary’ or first order logic; most of them
extend first order. We began by declaring that model theory studies classes of models.
Traditionally, each class is the collection of models that satisfy some (set of) sentence(s) in
a particular logic. Abstract elementary classes provide new ways of determining classes:
a class of structures in a fixed vocabulary is characterized by semantic properties. The
notion of AEC does not designate the models of a collection of sentences in some formal
language, although many examples arise from such syntactic descriptions. In first order
logic, the most fruitful topic is classes of models of complete theories. A theory T is a

420 From number of structures to structure of numbers, part I

set of sentences in a given language. We say that T is complete if for every sentence ϕ
in the language, either T implies ϕ, or T implies ¬ϕ. In Part II we seek an analogue to
completeness for AEC.

Model-Theoretic Logics, edited by Barwise and Feferman [8], summarizes the early
study of non-elementary model theory. In this book, ‘abstract model theory’ is a study
comparing different logics with regard to such properties as interpolation, expansions,
relativizations and projections, notions of compactness, Hanf and Löwenheim–Skolem
numbers.

A vocabulary1 L consists of constant symbols, relation symbols and function symbols,
which have a prescribed number of arguments (arity). An L-structure consists of a
universe, which is a set, and interpretations for the symbols in L. When L′ is a subset of
a vocabulary L, andM is an L-structure, we can talk about the reduct ofM to L′, written
M ↾ L′. Then M is the expansion of M ↾ L′ to L. If M and N are two L-structures, we
say that M is an L-substructure of N if the domain of M is contained in the domain of
N and the interpretations of all the symbols in L in M agree with the restriction of N
to M .

A formal language or logic in the vocabulary L is a collection of formulas that are
built by certain rules from the symbols of the vocabulary and from some ‘logical symbols’.
In this paper we focus on countable vocabularies but do not needlessly restrict definitions
to this case.

L-terms are formed recursively from variables and the constant and function symbols
of the vocabulary by composing in the natural manner. With a given interpretation
for the constants and assignment of values for the variables in a structure, each term
designates an element in the structure.

An atomic formula is an expression R(t1, . . . , tn) where R is an n-ary relation symbol
(including equality) of the vocabulary and each ti is a term.

Definition 1.1 (The language Lλκ) Assume that L is a vocabulary. The language Lλκ
consists of formulas ϕ(x), where the free variables of the formula are contained in the
finite sequence x and where the formulas are built with the following operations:

• Lλκ contains all atomic formulas in the vocabulary L.
• If ϕ(x), ψ(x) are in Lλκ, then the negation ¬ϕ(x) and implication (ϕ(x)→ ψ(x))

are in Lλκ.
• If ϕi(x) is in Lλκ for every i in the index set I, and |I| < λ, the conjunction∧

i∈I ϕi(x) and disjunction
∨
i∈I ϕi(x) are in Lλκ.

• If ϕ(yi, x) is in Lλκ for each i in the well-ordered index set I, and |I| < κ, then
the quantified formula (Qiyi)i∈Iϕ(x) is in Lλκ, where each quantifier Qi is either
∀ (‘for all yi’) or ∃ (‘there exists yi’).

First order logic is the language Lωω, i.e., only finite operations are allowed. We define
that L∞κ is the union of all Lλκ for all cardinal numbers λ.

The languages Lλω allowing only finite strings of quantifiers are much better behaved.
We will later introduce abstract elementary classes generalizing, among other things,
classes of structures definable with a sentence in Lλω. The definition of the truth of a

1Another convention specifies the vocabulary by a small Greek letter and the L with decorations
describes the particular logic. What we call a vocabulary is sometimes called a language. We have written
language or logic for the collections of sentences; more precisely, this might be called the language and
the logic would include proof rules and even semantics.

The Infinity Project 421

formula in a structure is crucial. For a formula ϕ(x), with the sequence x containing
all the free variables of ϕ, we define what it means that the formula ϕ(x) is true in
an L-structure M with the variables x interpreted in a particular way as elements a,
written M |= ϕ(a). The definition is done by induction on the complexity of the formula,
following the inductive definition of the formula in Definition 1.1.

Definition 1.2 (The language L(Q)) The language L(Q) is formed as the first order
logic Lωω, but we allow also formulas of the form Qyϕ(y, x) with the following truth
definition: M |= Qyϕ(y, a) if there are uncountable many b ∈M such that M |= ϕ(b, a).

Definition 1.3 (Elementary substructure with respect to a fragment) A subset F ⊆ L is
a fragment of some formal language L if it contains all atomic formulas and is closed under
subformulas, substitution of variables with L-terms, finite conjunction and disjunction,
negation and the quantifiers ∀ and ∃, applied finitely many times. For two L-structures
M and N , we say that M is an F-elementary substructure of N , written M 4F N, if M
is an L-substructure of N and for all formulas ϕ(x) of F and sequences a of elements in
M , M |= ϕ(a) if and only if N |= ϕ(a).

Definition 1.4 (Elementary class and PC-class) An elementary class K of L-structures
is the class of all models of a given theory in first order logic. A pseudo-elementary (PC)
class K is the class of reducts M ↾ L of some elementary class in a larger vocabulary
L′ ⊇ L.

We say that a formal language (logic) L is compact if whenever a set of sentences
is inconsistent, that is, has no model, then there is some finite subset which is already
inconsistent. This is a crucial property that, along with the upwards Löwenheim–Skolem
property, fails in most non-elementary logics.

The Löwenheim–Skolem number and the Hanf number are defined for a formal logic
L (i.e., ‘the Löwenheim–Skolem or Hanf number of L’). In the following definitions K
is a class definable with a sentence of L, 4K is given as the F-elementary substructure
relation in some given fragment F of L, usually the smallest fragment containing the
sentence defining K, and the collection C is the collection of all classes definable with
a sentence L.

Definition 1.5 (Löwenheim–Skolem number) The Löwenheim–Skolem number LS(K)
for a class of structures K and a relation 4K between the structures is the smallest
cardinal number λ with the following property: For any M ∈ K and a subset A ⊆ M
there is a structure N ∈ K containing A such that N 4K M and |N | ≤ max{λ, |A|}.
Definition 1.6 (Hanf number) The Hanf number H for a collection C of classes of
structures is the smallest cardinal number with the property: for any K ∈ C, if there is
M ∈ K of size at least H, then K contains arbitrarily large structures.

Modern model theory began in the 1950’s. Major achievements in the mid 60’s
and early 70’s included Morley’s categoricity transfer theorem in 1965 [43] and Shelah’s
development of stability theory [49]. These works give results on counting the number
of isomorphism types of structures in a given cardinality and establishing invariants in
order to classify the isomorphism types. Such invariants arise naturally in many concrete
classes: the dimension of a vector space or the transcendence degree of an algebraically
closed field are prototypical examples. A crucial innovation of model theory is to see
how to describe structures by families of dimensions. The general theory of dimension
appears in e.g. ([45, 49]); it is further developed and applied to valued fields in [23].

422 From number of structures to structure of numbers, part I

Non-elementary model theory thrived in the mid 60’s and early 70’s. Results such
as Lindström theorem in 1969, Barwise’s compactness theorem for admissible fragments
of Lω1ω published in 1969, Mostowski’s work on generalized quantifiers in 1957 [44] and
Keisler’s beautiful axiomatization of L(Q) in [31] gave the impression of a treasury of
new formal languages with amenable properties, a possibility to extend the scope of
definability and maybe get closer to the study of provability with ‘all means imaginable’.
However, the general study turned out to be very difficult. For example, the study of
the languages Lλκ got entangled with the set-theoretical properties of the cardinals λ
and κ. Since the real numbers are definable as the unique model of a sentence in L2ωω,
the continuum hypothesis would play a major role. But perhaps the study was focused
too much on the syntax and trying to study the model theory of languages? Why not
study the properties of classes of structures, defined semantically. One might replace
compactness with, say, closure under unions of chains?

One can argue that a major achievement of non-elementary model theory has been
to isolate properties that are crucial for classifying structures, properties that might not
be visible to a mathematician working with only a specific application or even restricted
to the first order case. Excellence (see below) is a crucial example. Some examples of
applications of non-elementary model theory to ‘general mathematics’ are presented in
the chapter ‘Applications to Algebra’ by Eklof in [8]. In many of these applications we
can see that some class of structures is definable in Lω1ω or in L∞ω and then use the model
theory of these languages to, for example, count the number of certain kind of structures
or classify them in some other way. Barwise writes in Model-Theoretic Logics [8]:

Most important in the long run, it seems, is where logic contributes
to mathematics by leading to the formation of concepts that allow the
right questions to be asked and answered. A simple example of this
sort stems from ‘back-and-forth arguments’ and leads to the concept
of partially isomorphic structures, which plays such an important role
in extended model theory. For example, there is a classical theorem by
Erdős, Gillman and Henriksen; two real-closed fields of order type η1
and cardinality ℵ1 are isomorphic. However, this way of stating the the-
orem makes it vacuous unless the continuum hypothesis is true, since
without this hypothesis there are no fields which satisfy both hypothe-
ses. But if one looks at the proof, there is obviously something going
on that is quite independent of the size of the continuum, something
that needs a new concept to express. This concept has emerged in the
study of logic, first in the work of Ehrenfeucht and Fraïssé in first-order
logic, and then coming into its own with the study of infinitary logic.
And so in his chapter (in [8]), Dickmann shows that the theorem can be
reformulated using partial isomorphisms as: Any two real-closed fields
of order type η1, of any cardinality whatsoever, are strongly partially
isomorphic. There are similar results on the theory of abelian torsion
groups which place Ulm’s theorem in its natural setting. (...) Extended
model theory provides a framework within which to understand existing
mathematics and push it forward with new concepts and tools.

One of the foundational discoveries of abstract model theory was Per Lindström’s
theorem that first order logic is the strongest logic which has both the compactness prop-
erty and a countable Löwenheim–Skolem number. In order to study such concepts as ‘the

The Infinity Project 423

strongest logic’, one has to define the notion of an ‘abstract logic’. The book [8] presents
the syntax as a crucial part: an abstract logic is a class of sentences with a satisfaction
relation between the sentences and the structures, where this relation satisfies certain
properties. However, Barwise comments on Lindström’s formulation of his theorem [38]:

To get around the difficulties of saying just what a logic is, they dealt en-
tirely with classes of structures and closure conditions on these classes,
thinking of the classes definable in some logic. That is, they avoided the
problem of formulating a notion of a logic in terms of syntax, semantics,
and satisfaction, and dealt purely with their semantic side.

Lindström defined a logic to be a non-empty set of objects called sentences, but the
role of these is only to name a class of structures as ‘structures modeling one sentence’.
Then it is possible to define for example compactness as the property that if a countable
intersection of such classes is empty, then already some finite intersection must be empty.

Saharon Shelah built on these insights and introduced abstract elementary classes
in [51]. Semantic properties of a class of structures K and a relation 4K are prescribed,
which are sufficient to isolate interesting classes of structures. But more than just the class
is described; the relation 4 between the structures in K provides additional information
that, as examples in Subsection 2.2 illustrate, may be crucial.

Definition 1.7 For any vocabulary τ , a class of τ -structures (K,4K) is an abstract
elementary class (AEC) if

(1) Both K and the binary relation 4K are closed under isomorphism.
(2) If A 4K B, then A is a substructure of B.
(3) 4K is a partial order on K.
(4) If ⟨Ai : i < δ⟩ is an 4K-increasing chain:

(a)
∪
i<δ Ai ∈ K;

(b) for each j < δ, Aj 4K
∪
i<δ Ai;

(c) if each Ai 4KM∈ K, then
∪
i<δ Ai 4KM.

(5) If A,B, C ∈ K, A 4K C, B 4K C and A ⊆ B then A 4K B.
(6) There is a Löwenheim–Skolem number LS(K) such that if A ∈ K and B ⊂ A a

subset, there is A′ ∈ K such that B ⊂ A′ 4K A and |A′| = |B|+ LS(K).

When A 4K B, we say that B is an K-extension of A and A is an K-submodel of B.
If A,B ∈ K and f : A → B is an embedding such that f(A) 4K B, we say that f is
a K-embedding. Category-theoretic versions of the axioms are studied by Kirby [34],
Liebermann [37] and Beke and Rosický [11].

A basic example of an AEC is the class of models defined by some sentence ϕ ∈ L∞ω,
where 4K is taken as the elementary substructure relation in the smallest fragment of
L∞ω containing ϕ. Then the Löwenheim–Skolem number is the size of the fragment. An
even simpler example is that of an elementary class, where ϕ is a complete theory in first
order logic.

A class defined with a sentence in Lω1ω(Q) with the quantifier Qxϕ(x) standing for
‘there exists uncountably many x such that ϕ(x) holds’ can be an AEC. The natural
syntactic notion of elementary submodel is inadequate but substitutes are available. Ar-
bitrary pseudo-elementary classes are often not AEC. For example, If K is the class of all
structures A in a language L with a single unary predicate such that |A| ≤ 2|U(A)| then
K fails to be an AEC with respect to L-elementary submodels as it is not closed under
unions of chains; see [4, Chapter 5 and 4.29].

424 From number of structures to structure of numbers, part I

In contemporary first order model theory, the most fundamental concept is the class
of models of a complete theory in first order logic. This can be seen as a form of focusing ;
instead of studying different vocabularies, expansions and projections, one fixes one class:
the class of differentially closed fields of fixed characteristic (see [41]) or the class of
models of ‘true’ arithmetic. This focus on classes and of properties determining ‘similar’
classes has become a crucial tool in applications to algebra. The difference from the
‘Lindström-style’ study of classes of structures is significant: we do not study many
classes of structures each corresponding to the ‘models of one sentence’, but focus on
a fixed class, ‘models of a theory’. Abstract elementary classes, which will be one of
the main notions studied in this paper, takes the ‘semantic view’ to the extreme by
eliminating the syntactic definition.

2 Several research lines in non-elementary logic

2.1 Categoricity transfer in Lωω and Lω1ω

Definition 2.1 (Categoricity) Let κ be a cardinal. We say that a class of structures K
is κ-categorical if there is exactly one model of size κ in K, up to isomorphism. A theory
T is κ-categorical if Mod(T), the class of models of T , is κ-categorical.

The transition to the focus on classes of models begins with Morley’s theorem:

Theorem 2.2 (Morley’s categoricity transfer theorem) Assume that T is a complete
theory in Lωω, where L is countable. If there exists an uncountable cardinal κ such that
T is κ-categorical, then T is λ-categorical for all uncountable cardinals λ.

Categoricity transfer will be our first example of a motivating question in the history of
model theory. Its proof gave many new tools and concepts that are nowadays contained
in every basic course in model theory. Furthermore, both the tools and the theorem
itself have been generalized to different frameworks. A categoricity transfer theorem for
elementary classes in an uncountable vocabulary was proved by Shelah in [47] (announced
in 1970): if the language has cardinality κ and a theory is categorical in some uncountable
cardinal greater than κ then it is categorical in all cardinalities greater than κ. This
widening of scope led to many tools, such as weakly minimal sets and a greater focus
on the properties of individual formulas, that proved fruitful for countable vocabularies.
We will look more closely at some of the many extensions of categoricity results to non-
elementary classes.

We consider a syntactical type in some logic L as a collection of L-formulas in some
finite sequence of variables x with parameters from a given subset A of a structure M
such that an element b in an L-elementary extension N of M realizes (simultaneously
satisfies) p. If no such sequence exists in a model N , we say that the type is omitted
in N . In elementary classes, the compactness theorem implies all finitely consistent such
collections p of formulas are really realized. If there is a structure N and a finite sequence
b ∈ N such that M 4 N and

p = {ϕ(x, a) : a ∈ A ⊆M,N |= ϕ(b, a)},

then p is called a complete type over A for two reasons. Semantically, it gives a complete
description of the relation of b and A. Syntactically, every formula ϕ(x, a) over A or its
negation is in p.

The Infinity Project 425

An essential concept in Morley’s argument is a saturated structure M : M is saturated
if all consistent types over parameter sets of size strictly less than |M | are realized in M .
Two saturated models of T of size κ are always isomorphic. Morley shows that if T is
categorical in some uncountable power, saturated models exist in each infinite cardinality.
Then he concludes that if T is not categorical in some uncountable power λ, there is a
model of power λ which is not saturated or even ℵ1-saturated; some type over a countable
subset is omitted. But then he shows that if some model of uncountable power λ omits
a type over a countable set, then in any other uncountable power κ some model omits
the type. Hence, T cannot be categorical in κ either. This method, saturation transfer,
generalizes to many other frameworks. While proving saturation transfer for elementary
classes he introduced many new concepts such as a totally transcendental theory (ℵ0-stable
theory), prime models over sets and Morley sequences.

Keisler generalized many of the ideas from Morley’s proof to the logic Lω1ω; see [32].
He studies a class of structures (K,4F), where K is definable with a sentence in Lω1ω

and F is some countable fragment of Lω1ω containing the sentence. He uses a concept of
homogeneity, which is closely related to saturation.

Definition 2.3 For L-structures M and N and a fragment F of Lω1ω, A ⊂M a subset
and f : A→ N a function, write (M,A) ≡F (N, f(A)) if for every formula ϕ(x) ∈ F and
every a ∈ A,

M |= ϕ(a) if and only if N |= ϕ(f(a)).

A model is (κ,F)-homogeneous if for every set A ⊆M of cardinality strictly less than
κ and every f : A → M , if (M,A) ≡F (M,f(A)), then for all b ∈ M there exists c ∈ M
such that

(M,A ∪ {b}) ≡F (M,f(A) ∪ {c}).

Keisler proved the following theorem ([32, Theorem 35]):

Theorem 2.4 (Keisler 1971, announced in 1969) Let F be a countable fragment of Lω1ω,
T ⊆ F a set of sentences and κ, λ > ω. Assume that:

(1) T is κ-categorical.
(2) For every countable model M of T , there are models N of T of arbitrarily large

power such that M 4F N .
(3) Every model M of power κ is (ω1,F)-homogeneous.

Then T is λ-categorical. Moreover, every model of T of power λ is (λ,F)-homogeneous.

One stage in the transition from strictly syntactic to semantic means of defining
classes is Shelah’s version of Theorem 2.4. To understand it, we need the following fact,
which stems from Chang, Scott and López-Escobar (see for example [16] from 1968); the
current formulation is Theorem 6.1.8 in the book [4].

Theorem 2.5 (Chang, Scott and López-Escobar) Let ϕ be a sentence in Lω1ω in a
countable vocabulary L. Then there is a countable vocabulary L′ extending L, a first-
order L′ theory T and a countable collection Σ of L′-types such that reduct is a 1-1 map
from the models of T which omit Σ onto the models of ϕ.

A crucial point is that the infinitary aspects are translated to a first order context, at
the cost of expanding the vocabulary. If ϕ is a complete sentence, the pair (T,Σ) can be
chosen so that the associated class of models is the class of atomic models of T (every tuple
realizes a principal type). Saharon Shelah generalized this idea to develop a more general

426 From number of structures to structure of numbers, part I

context, finite diagrams [46]. A finite diagram D is a set of types over the empty set and
the class of structures consists of the models which only realize types from D. Shelah
defined a structure M to be (D,λ)-homogeneous if it realizes only types from D and is
(|M |, Lωω)-homogenous (in the sense of Definition 2.3). He (independently) generalized
Theorem 2.4 to finite diagrams. His argument, like Keisler’s, required the assumption of
homogeneity. Thus, [46] is the founding paper of homogeneous model theory, which was
further developed in for example [15, 21, 29, 30]. The compact case (‘Kind II’ in [48])
was transformed into the study of continuous logics and abstract metric spaces [12] and
finally generalized to metric abstract elementary classes [24]. These last developments
have deep connections with Banach space theory.

Baldwin and Lachlan in 1971 [7] give another method for first order categoricity
transfer. They develop some geometric tools to study structures of a theory categorical
in some uncountable cardinal: any model of such a theory is prime over a strongly mini-
mal set and the isomorphism type is determined by a certain dimension of the strongly
minimal set. This gives a new proof for the Morley theorem for elementary classes but
also the Baldwin–Lachlan Theorem: if an elementary class is categorical in some un-
countable cardinal, it has either just one or ℵ0-many countable models. The geometric
analysis of uncountably categorical elementary classes was developed even further by
Zilber (see [57], earlier Russian version [56]), giving rise to geometric stability theory.
We discuss the number of countable models of an ℵ1-categorical non-elementary class in
Part II.

A further semantic notion closely tied to categoricity is Shelah’s ‘excellence’. Excel-
lence is a kind of generalized amalgamation (details in [4]). The rough idea is to posit
a type of unique prime models over certain independent diagrams of models. ‘Excel-
lence’ was discovered independently by Boris Zilber while studying the model theory of
an algebraically closed field with pseudo-exponentiation (a homomorphism from (F,+)
to (F ∗, ·). He defines the notion of a quasiminimal excellent (qme) class by ‘semantic
conditions’; Kirby [35] proved they can be axiomatized in Lω1ω(Q). Zilber showed that
any qme class is categorical in all uncountable powers and finds such a class of pseudo-
exponential fields. Natural algebraic characterizations of excellence have been found in
context of algebraic groups by Zilber and Bays [9, 10, 60]. Excellence implies that the
class of structures has models in all cardinalities, has the amalgamation property (see
Part II), and admits full categoricity transfer. Zilber’s notion of ‘excellence’ specializes
Shelah’s notion of excellence for sentences in Lω1ω, invented while proving the following
general theorem for transferring categoricity for sentences in Lω1ω [50].2 The theorem
uses a minor assumption on cardinal arithmetic.

Theorem 2.6 (Shelah 1983) Assume that 2ℵn < 2ℵn+1 for all n < ω. Let ϕ ∈ Lω1ω be
a sentence which has an uncountable model, but strictly less than the maximal number of
models in each cardinality ℵn for 0 < n < ω. Then the sentence is excellent.

(ZFC) Assume that a sentence ϕ in Lω1ω is excellent and categorical in some un-
countable cardinality. Then ϕ is categorical in every uncountable cardinality.

The excellence property is defined only for complete sentences in Lω1ω, more precisely
for the associated classes of atomic models (each model omits all non-isolated types) of
a first order theory T in an extended vocabulary. Excellent classes have been further

2 The important first order notion of the OTOP discussed in Subsection 2.2 was derived from the
earlier concept of excellence for Lω1ω.

The Infinity Project 427

studied in [20, 27, 36]. Theorem 2.6, expounded in [4], extends easily to incomplete
sentences:

Corollary 2.7 Assume that 2ℵn < 2ℵn+1 for all n < ω. Let ϕ ∈ Lω1ω be a sentence
which is categorical in ℵn for each n < ω. Then ϕ is categorical in every cardinality.

Shelah and Hart [22], made more precise in [6], show the necessity of considering
categoricity up to ℵω; there are examples of Lω1ω-sentences ϕn which are categorical in
each ℵk for k ≤ n but have the maximal number of models in ℵn+1. However, it is not
known whether the assumption on cardinal arithmetic can be removed from the theorem.

In the discussion above we isolated properties such as homogeneity and excellence,
which enable one to prove categoricity transfer theorems. More importantly, they support
the required tools for classifying and analyzing structures with model-theoretic meth-
ods; both generated subfields: homogeneous model theory and model theory for excellent
classes. These properties have applications to ‘general mathematics’: L∞ω-free algebras
[42] for homogeneous model theory or Zilber’s pseudo-exponentiation and the work on
covers of abelian varieties [59] for excellence. We argue that finding such fundamental
properties for organizing mathematics is one of the crucial tasks of model theory.

The investigation of Lω1ω surveyed in this section makes no assumption that the
class studied has large models; the existence of large models is deduced from sufficient
categoricity in small cardinals. Shelah pursues a quite different line in [52]. He abandons
the syntactic hypothesis of definability in a specific logic. In attempting to prove eventual
categoricity, he chooses smaller AEC’s in successive cardinalities. Thus he attempts to
construct a smaller class which is categorical in all powers. Crucially, this work does not
assume the existence of arbitarily large models.

We discuss more on categoricity transfer in AECs in Part II. There we will concen-
trate on certain type of AECs, namely Jónsson classes, where some categoricity transfer
results are known and some stability theory along with a natural notion of type can
be constructed. These classes are generalizations of homogeneous and excellent classes
and they have arbitrarily large models and for example the amalgamation property by
assumption.

2.2 The stability classification: first order vs. non-elementary

One of the major themes of contemporary model theory is the notion of classification
theory. Classification is used in two senses. On the one hand models in a particular class
can be classified by some assignment of structural invariants. On the other hand, the
classes of models3 are split into different groups according to common properties, which
may be semantic or syntactic; many examples are given below. Shelah (e.g. [52]) has
stressed the importance of certain properties of theories, those which are dividing lines:
both the property and its negation have strong consequences. In the following we discuss
various important classes of theories and emphasize those properties which are dividing
lines.

Saharon Shelah originated stability theory for elementary classes [49] and produced
much of the early work. Now, however, the field embraces much of model theory and the

3 The word class is vastly overloaded in this context. In first order logic, a complete theory is a
natural unit. In studying infinitary logic, the natural unit often becomes an AEC (in the first order case
this would be the class of models of the theory).

428 From number of structures to structure of numbers, part I

tools are pervasive in modern applications of model theory. Among the many texts are
[2, 14, 45].

We can define stability in λ as the property that there are no more than λ many
distinct complete types over any subset of size λ. However, stability has many equiva-
lent definitions in elementary classes. A remarkable consequence of the analysis is that
counting the number of types is related to the geometry of the structures in the class.
For example, if the class of structures is stable in any cardinal at all, one can define a
notion of independence between arbitrary subsets of any model, which is a useful tool to
analyze the properties of the structures in the class. The importance of such a notion of
independence is well established and such independence calculus has been generalized to
some unstable elementary classes such as classes given by simple [54] or NIP theories [1].
Stability theory has evolved to such fields as geometric stability theory [45], which is the
major source for applications of model theory to ‘general mathematics’.

Stability theory divides classes into four basic categories. This division is called the
stability hierarchy :

(1) ℵ0-stable classes;
(2) superstable classes, that is, classes stable from some cardinal onwards;
(3) stable classes, that is, stable in at least one cardinal;
(4) unstable classes.

In elementary classes, ℵ0-stable classes are stable in all cardinalities and hence we get a
hierarchy of implications (1) ⇒ (2) ⇒ (3). Uncountably categorical theories are always
ℵ0-stable whereas non-superstable classes have the maximal number of models in each
uncountable cardinal. An ℵ0-stable or superstable class can also have the maximal num-
ber of models, e.g., if it has one of the properties DOP or OTOP, discussed in Examples
2.9 and 2.10.

Developing stability theory for non-elementary classes is important not only because
it widens the scope of applications but also because it forces further analysis of the tools
and concepts developed for elementary classes. Which of the tools are there only because
first order logic ‘happens’ to be compact and which could be cultivated to extend to
non-elementary classes? Especially, can we distinguish some core properties enabling
the process? What are the problems met in, say, categoricity transfer or developing
independence calculus? Why does the number of types realized in the structure seem to
affect the geometric properties of structures and can we analyze the possible geometries
arising from different frameworks? For example, Hrushovski [25] proved a famous theorem
in geometric stability theory: under assumptions of a logical nature the geometry given by
the notion of independence on the realizations of a regular type, must fall into one of three
natural categories involving group actions. In the available non-elementary versions of the
same theorem ([26, 28]), we cannot rule out a fourth possibility: existence of a so-called
non-classical group, a non-abelian group admitting an ω-homogeneous pre-geometry. We
can identify some quite peculiar properties of such groups. Even their existence is open.

The established notion of type for abstract elementary classes is a so-called Galois
type, which we will define more carefully in Part II. Then κ-stability is defined with
respect to these types: A class of structures is stable in a cardinal κ if no structure in the
class realizes more than κ many Galois types over an 4K-elementary substructure of size
≤ κ. For the remainder of this section the reader can think of the following descriptive
notion on a Galois type: Let A 4K B and a, b be elements in B. We say that a and b

The Infinity Project 429

have the same Galois type over the structure A if there is C such that B 4K C and an
automorphism of C fixing A pointwise and mapping a to b.

We present here some examples of AECs where the choice of the relation 4K affects
the placement of the class in the stability hierarchy. How ‘coincidental’ is the division
of elementary classes according to the stability hierarchy? The placement of a class of
structures in the hierarchy has been shown to affect a huge number of properties that
at first sight do not seem to have much to do with the number of types. Which of
these connections are ‘deep’ or ‘semantic’, or especially, which extend to non-elementary
frameworks? Can an appropriate hierarchy be found?

The moral of these examples is that properties of the ‘same’ class of structures might
look different if definitions in logics with more expressive power are allowed or a different
notion 4K for an abstract elementary class is chosen.

Example 2.8 (Abelian groups) Let K be the class of all abelian groups. Then (K,4K)
is an ℵ0-stable AEC with the notion 4K as the substructure relation.

However, the same class of structures is strictly stable (stable but not superstable)
if we take as 4K the following notion: M 4K N if and only if M is a subgroup and for
each a ∈M and n ∈ N \ {0}, n divides a in M if and only if n divides a in N .

The model theory of abelian groups is studied in Eklof–Fischer [18], where the latter
notion of 4K is in the focus of study. AECs induced by tilting and co-tilting modules are
studied in Baldwin–Eklof–Trlifaj [5]. In [53], a more semantic notion of 4K is provided
and the classes of abelian groups are strictly stable except in one degenerate case.

A number of properties in first order classification theory induce ‘bad behavior’ for an
elementary class of structures, signaled by the existence of the maximal number of models
in a given cardinality. The most basic of these are instability and unsuperstability. Others
include OTOP, ‘the omitting types order property’, and DOP, ‘the dimensional order
property’, with a version ENI-DOP, which gives many countable models. Especially, these
play a role in classifying countable complete first order theories; their negations NOTOP,
NDOP and ENI-NDOP have ‘good’ implications from the viewpoint of classification
theory; they aid in the assigning of invariants.

One equivalent definition for unstability is that there is a formula which in the models
of a first order theory defines an infinite ordering. Then, by compactness, the elementary
class must contain models interpreting various different orderings, which (nontrivially)
forces the number of models to the maximum. Similarly the properties DOP and OTOP
cause certain kind of orderings to appear in the structures; however, the orderings are not
defined by a single first order formula. Just as in Example 2.8, the unsuperstability of
the class of abelian groups is not visible to quantifier-free formulas, the only ones ‘seen’
by the substructure relation, OTOP and DOP are a form of instability not visible to first
order formulas.

The following two examples illustrate the properties OTOP and DOP. In each case
we ‘define’ an arbitrary graph (e.g., an ordering) on P ×P by describing a column above
each point of the plane. The two methods of description, by a type or a single formula,
distinguish OTOP and DOP.

Example 2.9 (An example with OTOP) Let the vocabulary L consist of two predicates
P and Q and ternary relations Rn for each n < ω.

By ternary predicates Rn(x, y, z) we define a decreasing chain of sets Rn(a, b, z) of
subsets of Q over each pair (a, b) in P × P . The sets R0(a, b, z) are disjoint as the pairs

430 From number of structures to structure of numbers, part I

(a, b) vary. And there is exactly one element ca,bn in Rn(a, b, z) but not in Rn+1(a, b, z).
Thus the types pab(x) = {Rn(a, b, x), x ̸= ca,bn : n < ω} can be independently omitted or
realized.

The resulting elementary class is ℵ0-stable but it has the maximal number of models
in each infinite cardinality. Any directed graph (especially any ordering) can be coded
by a structure the following way:

there exists an edge from x to y ⇐⇒ ∃z
∧
n<ω

Rn(x, y, z).

We can study the same class K of structures but replace first order elementary sub-
structure by 4K, elementary submodel in a fragment of Lω1ω containing all first order
formulas and the formula

ϕ(x, y) = ∃z
∧
n<ω

Rn(x, y, z).

The relation 4K ‘sees’ the complexity caused by the formula, and the class (K,4K) is
unstable in the sense of the fragment. But this means it is also unstable as an abstract
elementary class. Galois types always refine syntactic types if the submodel notion has a
syntactic definition.

This example also has ENI-DOP and thus DOP. From ENI-DOP, we can define
another notion 4K for that class so that the new AEC is unstable but still has Löwenheim–
Skolem number ℵ0. Namely, let M 4K N if M is an elementary substructure of N and
whenever there are only finitely many z such thatM |=

∧
n<ω Rn(x, y, z), then the number

of such elements z is not increased in N .

Example 2.10 (An example with DOP) Let the vocabulary L consist of predicates
X1, X2 and P and two binary relation symbols π1 and π2. We define a theory in first
order logic, with definable projections from P to each Xi and study the dimensions of
pre-images of pairs in X1 ×X2. We require that

• the universe of a structure consists of three disjoint infinite predicates X1, X2

and P ,
• the relations πi determine surjective functions πi : P → Xi for i = 1, 2, and
• for each x ∈ X1 and y ∈ X2 there are infinitely many z ∈ P such that π1(z) = x

and π2(z) = y.
Again we get an ℵ0-stable elementary class, which is ℵ0-categorical but has the maximal
number of models in each uncountable cardinality. Now we can code an ordering (I,<)
on the pairs (xi, yi)i∈I in an uncountable model so that (xi, yi) < (xj , yj) if and only if
the set {z ∈ P : π1(z) = xi and π2(z) = yj} is uncountable.

Furthermore, we get an unstable abstract elementary class for the same class of struc-
tures K as follows: strengthen 4K so that M 4K N implies that for all pairs (x, y) in
the set X1 × X2 of the structure M , if there are only countably many z in the set P
of M such that π1(z) = x and π2(z) = y, then no such z is added to the set P of the
structure N . Since automorphisms must preserve the cardinalities of sets described on
the right hand side of the above displayed equivalence, the class is unstable for Galois
types. This notion 4K does not have finite character (see Part II) and the new (K,4K)
has Löwenheim–Skolem number ℵ1.

Similar phenomena appear in differentially closed fields of characteristic zero, whose
elementary theory is ℵ0-stable with ENI-DOP, and thus DOP. They have the maximal
number of models in each infinite cardinality. See the survey articles by Marker [39, 40].

The Infinity Project 431

The following examples exhibit the difference between a traditional first order ap-
proach and a non-elementary approach.

Example 2.11 (Exponential maps of abelian varietes) Martin Bays, Misha Gavrilovich,
Anand Pillay, and Boris Zilber [9, 10, 19] study ‘exponential maps’ or ‘universal group
covers’ π : (Cg,+)→ A(C), where (Cg,+) is the additive group of the complex numbers
to power g and A(C) is an abelian variety. The kernel Λ of π is a free abelian subgroup
of (Cg,+). Two approaches appear in the work: the structures modeling the first order
theory of such a map and the structures modeling the Lω1ω-theory. The Lω1ω-sentence
describing the map is quasi-minimal excellent and so categorical in each uncountable
cardinality. All the models of the sentence share the same Λ and are determined up to
the transcendence degree of the field interpreted in A(C). However, the first order theory
is also ‘classifiable’, it is superstable with NDOP and NOTOP and is ‘shallow’, although
not categorical. Each model of the first-order theory is described by choosing a lattice Λ
and a transcendence degree for the field in A(C).

In this case, the non-elementary framework was understood first; the elementary
class gives a little more information. Both depend on rather deep algebraic number
theory. This topic is an offshoot of trying to understand the model theory of the complex
exponentiation exp: (C,+,×) → (C,+,×), which has a very ill-behaved theory in first
order logic; see [3, 58] for more discussion on the subject.

Example 2.12 (Valued fields) The recent book by Haskell, Hrushovski and Macpher-
son [23] greatly develops the first order model theory of algebraically closed valued fields.
The elementary class is unstable and not even simple, and hence the structure theory has
involved developing new extensions of the stability-theoretic machinery investigating the
class of theories without the independence property.

A valued field consists of a field K together with a homomorphism from its multi-
plicative group to an ordered abelian group Γ, which satisfies the ultrametric inequality.
The problems in the elementary theory of valued fields reduce to that of the value group
Γ and the so called residue field.

However, we can study valued fields as an AEC fixing the value group as (R,+, <)
and taking all substructures as elementary substructures, requiring also that the value
group stays fixed. This class is stable and contains those valued fields that are of most
interest. The cases where (Γ,+, <) is not embeddable to (R,+, <) are often called Krull
valuations. They are forced to be in the scope of study in the first order approach
since first order logic cannot separate them from the usual ones. The non-elementary
class fixing the value group can be seen as ‘almost compact’; see the work of Itaï Ben
Yaacov [55].

Acknowledgements

We thank the Mittag-Leffler Institute in Djursholm, Sweden, for providing ideal surround-
ings for mathematical discussions. The authors and Professor Kossak attended during
the 2009 fall semester the scientific program Mathematical Logic: Set Theory and Model
Theory at the institute. The authors wish to thank the John Templeton Foundation for
its support through Project #13152, Myriad Aspects of Infinity, hosted during 2009–2011
at the Centre de Recerca Matemàtica, Bellaterra, Spain.

432 From number of structures to structure of numbers, part I

References

[1] H. Adler. An introduction to theories without the independence property. To appear in Archive for
Mathematical Logic.

[2] J. T. Baldwin. Fundamentals of Stability Theory. Perspectives in Mathematical Logic. Springer-
Verlag, 1988.

[3] J. T. Baldwin. The complex numbers and complex exponentiation: Why infinitary logic is necessary!
2006.

[4] J. T. Baldwin. Categoricity, vol. 50 of University Lecture Series. AMS, 2009.
[5] J. T. Baldwin, P. C. Eklof, and J. Trlifaj. ⊥N as an abstract elementary class. Annals of Pure and

Applied Logic, 149(1-3):25–39, 2007.
[6] J. T. Baldwin and A. Kolesnikov. Categoricity, amalgamation, and tameness. Israel Journal of

Mathematics, 170:411–443, 2009.
[7] J. T. Baldwin and A. H. Lachlan. On strongly minimal sets. The Journal of Symbolic Logic, 36:79–96,

1971.
[8] J. Barwise and S. Feferman. Model-Theoretic Logics. Springer-Verlag, New York, 1985.
[9] M. Bays. Model theory of exponential maps of abelian varieties. Talk at the meeting Geometric

Model Theory, 25th-28th March 2010, Oxford.
[10] M. Bays and B. Zilber. Covers of multiplicative groups of an algebraically closed field of arbitrary

characteristic. Preprint: arXiv math.AC/0401301, 2004.
[11] T. Beke and J. Rosický. Abstract elementary classes and accessible categories. Preprint, 2010.
[12] I. Ben-Yaacov, A. J. Berenstein, C. W. Henson, and A. Usvyatsov. Model theory for metric struc-

tures. In Z. Chatzidakis, D. Macpherson, A. Pillay, and A. Wilkie, eds., Model Theory with Ap-
plications to Algebra and Analysis vol. 2, London Math Soc. Lecture Note Series 350. Cambridge
University Press, Almaty, 2008.

[13] E. Bouscaren, ed. Model Theory and Algebraic Geometry: An Introduction to E. Hrushovski’s Proof
of the Geometric Mordell–Lang Conjecture. Springer-Verlag, 1999.

[14] S. Buechler. Essential Stability Theory. Springer-Verlag, 1991.
[15] S. Buechler and O. Lessmann. Simple homogeneous models. Journal of the American Mathematical

Society, 16(1):91–121, 2003.
[16] C. C. Chang. Some remarks on the model theory of infinitary languages. In J. Barwise, ed., The

syntax and semantics of infinitary languages, 36–64. Springer-Verlag, 1968.
[17] C. C. Chang and H. Keisler. Model Theory. North-Holland, 1973.
[18] P. C. Eklof and E. R. Fischer. The elementary theory of abelian groups. Annals of Pure and Applied

Logic, 4:115–171, 1972.
[19] M. Gavrilovich. Model theory of universal covering spaces of complex analytic varieties. PhD thesis,

Balliol College Oxford.
[20] R. Grossberg and B. Hart. The classification of excellent classes. The Journal of Symbolic Logic,

54(4):1359–1381, 1989.
[21] R. Grossberg and O. Lessmann. Shelah’s stability spectrum and homogeneity spectrum in finite

diagrams. Archive of Mathematical Logic, 41(1):1–31, 2002.
[22] B. Hart and S. Shelah. Categoricity over P for first order T or categoricity for ϕ ∈ Lω1ω can stop at

ℵk while holding for ℵ0, . . . ,ℵk−1. Israel Journal of Mathematics, 70:219–235, 1990.
[23] D. Haskell, E. Hrushovski, and D. Macpherson. Stable domination and independence in algebraically

closed valued fields. Lecture Notes in Logic. Cambridge University Press, 2008.
[24] Å. Hirvonen and T. Hyttinen. Categoricity in homogeneous complete metric spaces. Archive of

Mathematical Logic, 48(3-4):269–322, 2009.
[25] E. Hrushovski. Almost orthogonal regular types. Annals of Pure and Applied Logic, 45(2):139–155,

1989.
[26] T. Hyttinen and M. Kesälä. Interpreting Groups and Fields in Simple, Finitary AECs. To appear

in the Journal of Symbolic Logic, 2011.
[27] T. Hyttinen and O. Lessmann. Simplicity and uncountable categoricity in excellent classes. Annals

of Pure and Applied Logic, 139(1-3):110–137, 2006.
[28] T. Hyttinen, O. Lessmann, and S. Shelah. Interpreting groups and fields in some nonelementary

classes. Journal of Mathematical Logic, 5(1):1–47, 2005.

The Infinity Project 433

[29] T. Hyttinen and S. Shelah. Strong splitting in stable homogeneous models. Annals of Pure and
Applied Logic, 103:201–228, 2000.

[30] T. Hyttinen and S. Shelah. Main gap for locally saturated elementary submodels of a homogeneous
structure. The Journal of Symbolic Logic, 66:1286–1302, 2001.

[31] H. J. Keisler. Logic with the quantifier “there exists uncountably many”. Annals of Mathematical
Logic, 1(1):1–93, 1970.

[32] H. J. Keisler. Model Theory for Infinitary Logic. Studies in Logic and the Foundations of Mathe-
matics. North-Holland Publishing Company, 1971.

[33] J. Kennedy. Gödel and formalism freeness. Preprint, 2010.
[34] J. Kirby. Abstract elementary categories. Preprint, 2008.
[35] J. Kirby. On quasiminimal excellent classes. The Journal of Symbolic Logic, 75(2):551–564, 2010.
[36] O. Lessmann. An introduction to excellent classes. In A. Blass and Y. Zhang, eds., Logic and its

Applications, vol. 380 of Contemporary Mathematics, 231–259. AMS, 2005.
[37] M. Lieberman. Topological and category-theoretic aspects of abstract elementary classes. PhD thesis,

University of Michigan, 2009.
[38] P. Lindström. On extensions of elementary logic. Theoria, 35:1–11, 1969.
[39] D. Marker. Model theory of differential fields. In Model Theory, Algebra, and Geometry, 53–63.

Cambridge University Press, Cambridge, 2000.
[40] D. Marker. The number of countable differentially closed fields. Notre Dame Journal of Formal

Logic, 48(1):99–113, 2007.
[41] D. Marker, M. Messmer, and A. Pillay. Model Theory of Fields. Springer-Verlag, 1996.
[42] A. H. Mekler and S. Shelah. L∞ω-free algebras. Algebra Universalis, 26:351–366, 1989.
[43] M. D. Morley. Categoricity in power. Transactions of the American Mathematical Society, 114:514–

538, 1965.
[44] A. Mostowski. On a generalization of quantifiers. Polska Akademia Nauk. Fundamenta Mathemati-

cae, 44:12–36, 1957.
[45] A. Pillay. Geometric Stability Theory. Oxford University Press, 1996.
[46] S. Shelah. Finite diagrams stable in power. Annals of Mathematical Logic, 2:293–300, 1970.
[47] S. Shelah. Categoricity of uncountable theories. In Proceedings of the Tarski Symposium (Proc.

Sympos. Pure Math., vol. XXV, University of California, Berkeley, California, 1971), 187–203, AMS,
Providence, RI, 1974.

[48] S. Shelah. The lazy model-theoretician’s guide to stability. Logique et Analyse. Nouvelle Série, 18(71-
72):241–308, 1975.

[49] S. Shelah. Classification Theory and the Number of Nonisomorphic Models. North-Holland, 1978.
Second Revised Edition, 1990.

[50] S. Shelah. Classification theory for for nonelementary classes, I. The number of uncountable models
of ψ ∈ Lω1, ω. Parts A and B. Israel Journal of Mathematics, 46:212–273, 1983.

[51] S. Shelah. Classification of non elementary classes II, Abstract elementary classes. In J. T. Baldwin,
ed. Classification Theory, Proceedings, Chicago 1985, 419–497. Springer-Verlag, Berlin, 1987.

[52] S. Shelah. Classification Theory for Abstract Elementary Classes, vol. 18 of Studies in Logic, Math-
ematical Logic and Foundations. College Publications, 2009.

[53] J. Trlifaj. Abstract elementary classes induced by tilting and cotilting modules have finite character.
Proceedings of the American Mathematical Society, 137(3):1127–1133, 2009.

[54] F. O. Wagner. Simple Theories. Springer, 2000.
[55] I. B. Yaacov. Model theoretic properties of metric valued fields. arXiv:0907.4560, 2009.
[56] B. Zil’ber. Strongly minimal countably categorical theories III. Siberian Mathematics Journal,

25:559–571, 1984.
[57] B. Zilber. Uncountably categorical theories, vol. 117 of Translations of Mathematical Monographs.

American Mathematical Society, Providence, RI, 1993.
[58] B. Zilber. Pseudo-exponentiation on algebraically closed fields of characteristic 0. Annals of Pure

and Applied Logic, 132:67–95, 2004.
[59] B. Zilber. A categoricity theorem for quasi-minimal excellent classes. In Logic and its Applications,

vol. 380 of Contemporary Mathematics, 297–306. Amer. Math. Soc., Providence, RI, 2005.
[60] B. Zilber. Covers of the multiplicative group of an algebraically closed field of characteristic zero.

Journal of the London Mathematical Society, 74(1):41–58, 2006.

The Infinity Project

Beyond first order logic: from number of structures
to structure of numbers, part II

John T. Baldwin†, Tapani Hyttinen‡, Meeri Kesälä‡

† Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, USA
jbaldwin@uic.edu

‡ Department of Mathematics and Statistics, University of Helsinki, Finland
tapani.hyttinen@helsinki.fi, meeri.kesala@helsinki.fi

Abstract. The paper studies the history and recent developments in non-elementary model theory
focusing in the framework of abstract elementary classes. We discuss the role of syntax and semantics
and the motivation to generalize first order model theory to non-elementary frameworks and illuminate
the study with concrete examples of classes of models.

This second part continues to study the question of categoricity transfer and counting the number
of structures of certain cardinality. We discuss more thoroughly the role of countable models, search for
a non-elementary counterpart for the concept of completeness and present two examples: One example
answers a question asked by David Kueker and the other investigates models of Peano Arihmetic and
the relation of an elementary end-extension in the terms of an abstract elementary class.

Introduction

In the article Beyond first order logic: from number of structures to structure of numbers,
part I, we studied the basic concepts in non-elementary model theory, such as syntax and
semantics, the languages Lλκ and the notion of a complete theory in first order logic (i.e.,
in the language Lωω), which determines an elementary class of structures. Classes of
structures which cannot be axiomatized as the models of a first-order theory, but might
have some other ‘logical’ unifying attribute, are called non-elementary.

We discussed the categoricity transfer problem and how this led to the development
of a so-called stability classification. We emphasized how research questions in counting
the number of models of the class in a given cardinality had led to better understanding
of the structures of the class, enabled classification via invariants and found out to have
applications beyond the original research field.

We mentioned two procedures for proving a categoricity transfer theorem: the sat-
uration transfer method and the dimension method. Especially, we discussed types and
how the question whether or how many times certain types are realized in a structure was
essential. Here we describe how these methods have been applied for abstract elementary
classes.

The study of complete sentences in Lω1ω gives little information about countable mod-
els as each sentence is ℵ0-categorical. Another approach to the study of countable models
of infinitary sentences is via the study of simple finitary AEC, which are expounded in
Subsection 1.1. However, while complete sentences in Lω1ω is too strong a notion, some

Accepted for publication in 2012 in the Bulletin of the Iranian Mathematical Society.
†Partially supported by grant NSF-0500841.
‡Partially supported by the Academy of Finland, grant number 1123110.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

435

436 From number of structures to structure of numbers, part II

strengthening of simple finitary AEC is needed to solve even such natural questions as,
‘When must an ℵ1-categorical class have at most countably many countable models?’.
In Section 2 we focus on countable models and study the concept of completeness for
abstract elementary classes. Some interesting examples of models of Peano Arithmetic
enliven the discussion.

1 Abstract elementary classes and Jónsson classes

We recall the definition of an abstract elementary class.
Definition 1.1 For any vocabulary τ , a class of τ -structures (K,4K) is an abstract
elementary class (AEC) if:

(1) Both K and the binary relation 4K are closed under isomorphism.
(2) If A 4K B, then A is a substructure of B.
(3) 4K is a partial order on K.
(4) If ⟨Ai : i < δ⟩ is an 4K-increasing chain:

(a)
∪
i<δ Ai ∈ K;

(b) for each j < δ, Aj 4K
∪
i<δ Ai;

(c) if each Ai 4KM∈ K, then
∪
i<δ Ai 4KM.

(5) If A,B, C ∈ K, A 4K C, B 4K C and A ⊆ B then A 4K B.
(6) There is a Löwenheim–Skolem number LS(K) such that if A ∈ K and B ⊂ A a

subset, there is A′ ∈ K such that B ⊂ A′ 4K A and |A′| = |B|+ LS(K).
Abstract elementary classes arise from very different notions 4K, which do not nec-

essarily have a background in some logic traditionally studied in model theory. If a class
(K,4K) is an AEC, many tools of model theory can be applied to study that class. The
first essential observation is that an analog of the Chang–Scott–López-Escobar Theorem
(see Theorem 2.5 in Part I) holds for any AEC. Here, purely semantic conditions on a
class imply that it has a syntactic definition.
Theorem 1.2 (Shelah) Assume that (K,4K) is an abstract elementary class of L-struc-
tures, where |L| ≤ LS(K). There is a vocabulary L′ ⊇ L with cardinality |LS(K)|, a first
order L′-theory T and a set Σ of at most 2LS(K) partial types such that K is the class
of reducts of models of T omitting Σ and 4K corresponds to the L′-substructure relation
between the expansions of structures to L′.

This theorem has interesting corollaries, since it enables us to use the tools available
for pseudo-elementary classes : for example, we can count an upper bound for the Hanf
number. To extend the notion of Hanf number (see Definition 1.6 in Part I) to AEC,
take C in the definition as the collection of all abstract elementary classes for a fixed
vocabulary and a fixed Löwenheim–Skolem number. (For a more general account of Hanf
numbers, see [2, p. 32].) There is an interesting interplay between syntax and semantics:
we can compute the Hanf number for AECs with a given LS(K), a semantically defined
class. But the proof relies on the methods available only for an associated syntactically
defined class of structures in an extended vocabulary.

The following properties of an AEC play a crucial role in advanced work:
Definition 1.3 (Amalgamation and joint embedding)

(1) We say that (K,4K) has the amalgamation property (AP) if it satisfies the
following: If A,B, C ∈ K, A 4K B, A 4K C and B ∩ C = A, there is D ∈ K and
a map f : B ∪ C → D such that f ↾ B and f ↾ C are K-embeddings.

The Infinity Project 437

(2) We say that (K,4K) has the joint embedding property (JEP) if for all A,B ∈ K
there is C ∈ K and K-embeddings f : A→ C and g : B→ C.

The notion of AEC is naturally seen as a generalization of Jónsson’s work in the 50’s
on universal and homogeneous-universal relational systems; we introduce new terminology
for those AEC’s close to his original notion.

Definition 1.4 (Jónsson class) An abstract elementary class is a Jónsson class if the
class has arbitrarily large models and the joint embedding and amalgamation properties.

The models of a first order theory under elementary embedding form a Jónsson class
in which complete first order type (over a model) coincides exactly with the Galois types
described below and the usual notion of a monster model is the one we now explain.

A standard setting, stemming from Jónsson’s [10] version of Fraïssé limits of classes
of structures, builds a ‘large enough’ monster model ç (or universal domain) for an
elementary class of structures via amalgamation and unions of chains. A monster model
is universal and homogeneous in the sense that

• all ‘small enough’ structures can be elementarily embedded in ç, and
• all partial elementary maps from ç to ç with ‘small enough’ domain extend

to automorphisms of ç.
Here ‘small enough’ refers to the possibility to find all structures ‘of interest’ inside the
monster model; further cardinal calculation can be done to determine the actual size of
the monster model.

The situation is more complicated for AEC. We consider here Jónsson classes, where
we are able to construct a monster model. However, even then the outcome differs cru-
cially from the monster in elementary classes, since we get only model-homogeneity, that
is, the monster model for a Jónsson class is a model ç such that:

• For any ‘small enough’ model M ∈ K there is a K-embedding f : M →ç.
• Any isomorphism f : M → N between ‘small enough’ K-elementary substruc-

tures M,N 4K ç extends to an automorphism of ç.
The first order case has homogeneity over sets; AEC’s have homogeneity only over models.

The first problem in stability theory for abstract elementary classes is to define ‘type’,
since now it cannot be just a collection of formulas. We note two definitions of Galois
type.

Definition 1.5 (Galois type)
(1) For an arbitrary AEC (K,4K) and models M 4K N ∈ K, consider the following

relation for triples (a,M,N), where a is a finite tuple in N :

(a,M,N) ≡ (b,M,N ′)

if there are a model N ′′ ∈ K and K-embeddings f : N → N ′′, g : N ′ → N ′′ such
that f ↾ M = g ↾ M and f(a) = b. Take the transitive closure of this relation.
The equivalence class of a tuple a in this relation, written tpg(a,M,N), is called
the Galois type of a in N over M .

(2) Assume that (K,4K) is a Jónsson class and ç is a fixed monster model for the
class. We say that the tuples a and b in ç have the same Galois type over a
subset A ⊆ç,

tpg(a/A) = tpg(b/A),

if there is an automorphism f of ç fixing A pointwise such that f(a) = b.

438 From number of structures to structure of numbers, part II

Fruitful use of Definition 1.5(2) depends on the class having the amalgamation prop-
erty over the ‘parameter sets’ A. Thus, even with amalgamation, there is a good notion
of Galois types only over models and not over arbitrary subsets.

The monster model is λ-saturated for a ‘big enough’ λ. That is, all Galois types over
4K-elementary substructures M of size ≤ λ, which are realized in some 4K-extension of
M , are realized in ç. When M is a K-elementary substructure of the monster model ç,
the two notions of a Galois type tpg(a,M,ç) agree. As in the first order case, the set of
realization of a Galois type of a (over a model) is exactly the orbits of the tuple a under
automorphisms of ç fixing the model M pointwise. That is,

tpg(a,M,ç) = tpg(b,M,ç)

if and only if there is an automorphism f of ç fixing M pointwise such that f(a) = b.
Furthermore, if N 4K ç is any K-extension of M containing a, tpg(a,M,N) equals
tpg(a,M,ç)∩N . Hence in Jónsson classes we fix a monster model ç and use a simpler
notation for a Galois type, tpg(a/M), which abbreviates tpg(a,M,ç). Since we can also
study automorphisms of ç fixing some subset A of ç, also the notion of a Galois type
over a set A becomes amenable. But over sets, the two forms are not equivalent.

The notion of Galois type lacks many properties that the compactness of first order
logic guarantees for first order types. In the first order case, we can always realize a union
of an increasing chain of types in the monster model and types have finite character : the
types of a and b agree over a subset A if and only if they agree over every finite subset
of A. Many such nice properties disappear for arbitrary Galois types. But we restrict
to better-behaved Jónsson classes. Grossberg and VanDieren [4] isolated the concept of
tameness that is crucial in the study of categoricity transfer for Jónsson classes.

Definition 1.6 (Tameness) We say that a Jónsson class (K,4K) is (κ, λ)-tame for κ ≤ λ
if the following are equivalent for a model M of size at most λ:

• tpg(a/M) = tpg(b/M);
• tpg(a/M ′) = tpg(b/M ′) for each M 4K M with |M ′| ≤ κ.

Furthermore, we say that the class is κ-tame if it is (κ, λ)-tame for all cardinals λ and
tame if it is LS(K)-tame.

Giving up compactness also has benefits: ‘non-standard structures’ that realize un-
wanted types, which are forced by compactness, can now be avoided. For example, we
might study real vector spaces in a two sorted language and demand that the reals be
standard.

The first ‘test question’ for AECs was to ask if one can prove a categoricity transfer
theorem. Shelah stated the following conjecture:

Conjecture 1.7 There exists a cardinal number κ (depending only on LS(K)) such that
if an AEC with a given number LS(K) is categorical in some cardinality λ > κ, then it is
categorical in every cardinality λ > κ.

Shelah introduced the notion of a Jónsson class (not the name) in 1999 [18] and
proved the following categoricity transfer result ([2, Part II]).

Theorem 1.8 (Shelah) Let (K,4K) be a Jónsson class. Then there is a calculable car-
dinal H2, depending only on LS(K), such that if (K,4K) is categorical in some cardinal
λ+ > H2, then (K,4K) is categorical in all cardinals in the interval [H2, λ

+].

The Infinity Project 439

We remark that this almost settles the Categoricity Conjecture for Jónsson classes:
for each such AEC with a fixed Löwenheim–Skolem number LS, let µK be the sup (if it
exists) of the successor cardinals in which K is categorical. Since there does not exist
a proper class of such AECs, there is a supremum for such µK. Denote this number
by Λ(LS). Now if a Jónsson class with Löwenheim–Skolem number LS is categorical
in some successor cardinal λ > µ = sup(Λ(LS),H2), it is categorical in all cardinals in
[H2, λ

+], and in arbitrarily large successor cardinals, and hence in all cardinals above H2.
Two problems remain in this area. Remove the restriction to successor cardinals in
Theorem 1.8; this would avoid the completely non-effective appeal to Λ(LS). Make a
more precise calculation of the cardinal H2 in the successor case ([2, Problem D.1.5]).

Shelah proves a downward categoricity transfer theorem and also shows categoricity
for λ+ > H2 implies certain kind of ‘tameness’ for Galois types over models of size ≤ H2,
which enables the transfer of categoricity up to all cardinals in the interval [H2, λ

+].
Grossberg and VanDieren separated out the upward categoricity transfer argument, and
realized that tameness was the only additional condition needed to transfer categoricity
arbitrarily high. The downward step uses the saturation transfer method, where satura-
tion is with respect to Galois types; the upwards induction uses the dimension method.

Theorem 1.9 (Grossberg and VanDieren) Assume that a χ-tame Jónsson class (K,4K)
is categorical in λ+, where λ > LS(K) and λ ≥ χ. Then (K,4K) is categorical in each
cardinal ≥ λ+.

Lessmann [15] extends the result to LS(K)+-categoricity in the case LS(K) = ℵ0. The
restriction to countable Löwenheim cardinal number reflects a significant combinatorial
obstacle. In these two results the categoricity transfer is only from successor cardinals
and the proof is essentially an induction on dimension. In Subsection 1.1 we discuss
further use of the saturation transfer method for simple, finitary AECs by Hyttinen and
Kesälä in [11].

1.1 Simple finitary AECs

Simple finitary AECs were defined particularly to study independence and stability theory
in a framework without compactness. The idea was both to find a common extension
for homogeneous model theory and the study of excellent sentences in Lω1ω (see Part I)
and also clarify the ‘core’ properties which support a successful dimension theory. The
property finite character is essential for this analysis.

Definition 1.10 (Finite character) We say that (K,4K) has finite character if for any
two models A,B ∈ K such that A ⊆ B the following are equivalent:

(1) A 4K B.
(2) For every finite sequence a ∈ A there is a K-embedding f : A → B such that

f(a) = a.

Definition 1.11 (Finitary AEC) An abstract elementary class is finitary if it is a Jónsson
class with countable Löwenheim–Skolem number that has finite character.

Definition 1.11 slightly modifies Hyttinen–Kesälä [6]; in particular the formulation
of finite character is from Kueker [14]. Elementary classes are finitary AECs. However,
a class defined by an arbitrary sentence in Lω1ω, the relation 4K being the one given
by the corresponding fragment, may not have AP, JEP or even arbitrarily large models.
A relation 4K given by any fragment of L∞ω will have finite character. Most abstract

440 From number of structures to structure of numbers, part II

elementary classes definable in Lω1ω(Q) do not have finite character. An easy example
of a class without finite character, due to Kueker [14], is a class of structures with a
countable predicate P , where M 4K N if and only if M ⊆ N and P (M) = P (N).

The notion of weak type is just Galois type with built-in finite character: two tuples
a and b have the same weak type over a set A, written

tpw(a/A) = tpw(b/A),

if they have the same Galois type over each finite subset A′ ⊆ A. Furthermore, we say
that a model M is weakly saturated if it realizes all weak types over subsets of size < M .

Basic stability theory with a categoricity transfer result for simple finitary AEC’s
is carried out in the papers [5, 6, 7]. However, some parts of the theory hold also
for arbitrary Jónsson classes; this is expounded in [9]. Kueker [14] has clarified when
AEC admit syntactic definitions and particularly the connection of finite character to
definability in L∞ω definablity of AEC’s; unlike in Theorem 1.2, no extra vocabulary is
needed for these results.

Theorem 1.12 (Kueker) Assume that (K,4K) is an abstract elementary class such that
LS(K) = κ. Then:

(1) The class K is closed under L∞κ+-elementary equivalence.
(2) If LS(K) = ℵ0 and (K,4K) contains at most λ models of cardinality ≤ λ for

some cardinal λ such that λω = λ, then K is definable with a sentence in Lλ+ω1
.

(3) If κ = ℵ0 and (K,4K) has finite character, the class is closed under L∞ω-elem-
entary equivalence.

(4) Furthermore, if κ = ℵ0, (K,4K) has finite character and at most λ many models
of size ≤ λ for some infinite λ, K is definable with sentence in Lλ+ω.

The notion of an indiscernible sequence of tuples further illustrates the distinction
between the syntactic and semantic viewpoint. Classically a sequence is indiscernible if
each increasing n-tuple of elements realize the same (syntactic) type. In AEC, a sequence
(ai)i<κ is indiscernible over a set A (or A-indiscernible) if the sequence can be extended
to any ‘small enough’ length κ′ > κ so that any order-preserving partial permutation of
the larger sequence extends to an automorphism of the monster model fixing the set A.

Note that two tuples lying on the same A-indiscernible sequence is a much stronger
condition than two tuples having the same Galois type over A. However, ‘lying on the
same sequence’ is not a transitive relation and hence not an equivalence relation; the
notion of Lascar strong type is obtained by taking the transitive closure of this relation.

Using indiscernible sequences we can define a notion of independence based on Lascar
splitting.1 Furthermore, we say that the class is simple if this notion satisfies that each
type is independent over its domain. Under further stability hypotheses (both ℵ0-stability

1 The notions are defined ‘for weak types’ since they are preserved under the equivalence of weak
types.

Definition 1.13 (Independence) A type tpw(a/A) Lascar-splits over a finite set E ⊆ A if there is a
strongly indiscernible sequence (ai)i<ω such that a0, a1 are in the set A but

tpw(a0/E ∪ a) ̸= tpw(a1/E ∪ a).

We write that a set B is independent of a set C over a set A, written B ↓A C, if for any finite tuple
a ∈ B there is a finite set E ⊆ A such that for all sets D containing A ∪ C there is b realizing the type
tpw(a/A ∪ C) such that tpw(b/D) does not Lascar-split over E.

The Infinity Project 441

[5, 6] and superstability [7, 9] have been developed) we get an independence calculus for
subsets of the monster model. Unlike in elementary stability theory, stability or even
categoricity does not imply simplicity; it is a further assumption. However, we show that
if any reasonable independence calculus exists for arbitrary sets and not just over models,
the class must be simple and the notion of independence must agree with the one defined
by Lascar splitting; see [5].

The saturation transfer method was further analyzed for simple, finitary AECs by
Hyttinen and Kesälä in [11]. It was noted there that, even without tameness, weak
saturation transfers between different uncountable cardinalities. Assuming simplicity,
they developed much of the stability theoretic machinery for these classes and hence were
able to remove the assumption in Theorems 1.8 and 1.9 that the categoricity cardinal is
a successor.

Theorem 1.14 Assume that (K,4K) is a simple finitary AEC, κ > ω, and each model
of size κ is weakly saturated. Then:

(1) For any λ > min{(2ℵ0)+), κ}, each model of size λ is weakly saturated.
(2) Furthermore, each uncountable ℵ0-saturated model is weakly saturated.

If in addition (K,4K) is ℵ0-tame, all weakly saturated models with a common cardinality
are isomorphic.

What then is the role of finite character of 4K? If it happens that there are only
countably many Galois types over any finite set (this holds for example if the class is
ℵ0-stable), the finite character property provides a ‘finitary’ sufficient condition for a
substructure M of ç to be in K: If all Galois types over finite subsets are realized in M ,
M is back-and forth-equivalent to an ℵ0-saturated K-elementary substructure N of ç
with |N | = |M |; a chain argument and finite character give that N ≈ M . Even without
the condition on the number of Galois types, finite character enables many constructions
involving building models from finite sequences. It implies, for example, that under
simplicity and superstability, two tuples with the same Lascar type over a countable set
can be mapped to each other by an automorphism fixing the set (i.e., they have the same
Galois type over the set); see [9]. These Lascar types (also called weak Lascar strong
types) are a major tool in geometric stability theory for finitary classes [8], since they
have finite character.

2 Countable models and completeness

We recall that a theory T in the first order logic Lωω is said to be complete if for any
sentence ϕ ∈ Lωω either ϕ or its negation can be deduced from T .

A famous open conjecture for elementary classes was stated by Vaught in [21]:

Conjecture 2.1 (Vaught) The number of countable models of a countable and complete
first order theory must be either countable or 2ℵ0 .

The conjecture can be resolved by the continuum hypothesis, which is independent
of the axioms of set theory: If there is no cardinality between ℵ0 and 2ℵ0 , the conjecture
is trivially true. The problem is to determine the value in ZFC. Morley [17] proved the
most significant result: not just for first order theories but for any sentence of Lω1ω the
number of countable models is either≤ ℵ1 or 2ℵ0 . He used a combination of descriptive set
theoretic and model theoretic techniques. There has been much progress using descriptive

442 From number of structures to structure of numbers, part II

set theory. The study of this conjecture has also led to many new innovations in model
theory: a positive solution for ℵ0-stable theories was shown by Harrington, Makkai and
Shelah in [19] and a more general positive solution for superstable theories of finite rank
by Buechler in [3]. However, the full conjecture is still open. The article [1] provides
connections with the methods of this paper.

An easier question for elementary classes is the number of countable models of a the-
ory, which has only one model, up to isomorphism, in some uncountable power. Morley
[16] showed that the number of countable models of an uncountably categorical elemen-
tary class must be countable. We consider as a useful ‘motivating question’:

Question 2.2 Must an AEC categorical in ℵ1 or in some uncountable cardinal have only
countably many countable models?

As asked, the answer is opposite to the first order case. For example, we can define a
sentence ψ in Lω1ω as a disjunct of two sentences, one totally categorical and one having
uncountably many countable models but no uncountable models. This problem does not
occur in the first order case because categoricity implies completeness. Lω1ω poses two dif-
ficulties to this approach. First, deducing completeness from categoricity is problematic;
there are several completions. Secondly, Lω1ω-completeness is too strong; it implies ℵ0
categoricity and there are interesting ℵ1-categorical sentences that are not ℵ0-categorical.
But sentences like ψ lack ‘good’ semantic properties such as joint embedding. We might
ask a further question: Are there some semantic properties that allow the dimensional
analysis of the Baldwin–Lachlan proof for an abstract elementary class? For example,
does the question have a negative answer for, say, finitary AECs? (See Subsection 2.1.)
What can we say on the number of countable models in different frameworks? Some
results and conjectures were stated for admissible infinitary logics already by Kierstead
in 1980 [12].

For a non-elementary class with a better toolbox for dimension-theoretic considera-
tions it might be possible to say more on such questions. For example, excellent sen-
tences of Lω1ω have a well-behaved model theory; but such sentences are complete, so
their countable model is unique up to isomorphism. An essential benefit of the approach
of finitary abstract elementary classes is that the framework also enables the study of
incomplete sentences of Lω1ω. The Vaught conjecture is false for finitary abstract ele-
mentary classes: Kueker [14] gives an example, well-orders of length ≤ ω1, where 4K
is taken as end-extension. This example has exactly ℵ1 many countable models. The
example is categorical in ℵ1, but is not a finitary AEC since it does not have arbitrarily
large models. However, we can transform the example to a finitary AEC, by adding a
sort with a totally categorical theory; but we lose categoricity.

Contrast the semantic and syntactic approach. If we require definability in some
specific language, Lωω or Lω1ω, the Vaught conjecture is a hard problem, but it has an
‘easy’ solution under the ‘semantic’ requirements we have suggested, such as, a finitary
AEC. Is there a similar difference for Question 2.2, maybe in the opposite direction?
Kueker had a special reason for asking Question 2.2 for finitary AECs. Recall that, by
Theorem 1.12(4), if (K,4K) is an AEC with finite character, LS(K) = ℵ0, and K contains
at most λ models of cardinality ≤ λ, then it is definable in Lλ+ω. Hence if (K,4K) is
ℵ1-categorical and has only countably many countable models, it is definable in Lω1ω.
But under what circumstances can we gain this? Clearly if (K,4K) is ℵ0-categorical, this
holds. Kueker asks the following, refining Question 2.2:

The Infinity Project 443

Question 2.3 (Kueker) Does categoricity in some uncountable cardinal imply that a
finitary AEC (K,4K) is definable with a sentence in Lω1ω?

Answering the following question positively would suffice:

Question 2.4 (Kueker) Does categoricity in some uncountable cardinal imply that a
finitary AEC (K,4K) has only countably many countable models?

Unfortunately, Example 2.5 gives a negative answer to Question 2.4, leaving the first
question open.

Kueker’s results illuminate the distinction between semantic and syntactic properties.
Abstract elementary classes were defined with only semantic properties in mind; Kueker
provides additional semantic conditions which imply definability in a specific syntax.
Thus, the ability to choose a notion of 4K for an AEC to make it finitary has definability
consequences. The concept of finite character concerns the relation 4K between the
models in an AEC; Kueker’s results conclude definability for the class K of structures.
He does prove some, but remarkably weaker, definability results without assuming finite
character.

2.1 An example answering Kueker’s second question

The following example is a simple, finitary AEC, which is categorical in each uncountable
power but has uncountably many countable models. Hence the example gives a negative
answer to Kueker’s second question.

Example 2.5 We define a language L = {Q, (Pn)n<ω, E, f), where Q and Pn are unary
predicates, E is a ternary relation and f is a unary function. We consider the following
axiomatization in Lω1ω:

(1) The predicates Q and ⟨Pn : n < ω⟩ partition the universe.
(2) Q has at most one element.
(3) If E(x, y, z) then x ∈ Q and z, y are not in Q.
(4) If Q is empty, we have that for each n < ω, |Pn+1| ≤ |Pn|+ 1.
(5) If P0 is nonempty, then Q is nonempty.
(6) For all x ∈ Q, the relation E(x,−,−) is an equivalence relation where each class

intersects each Pn exactly once.
(7) f(x) = x for all x ∈ Q and y ∈ Pn implies f(y) ∈ Pn+1.
(8) f is one-to-one.
(9) For x ∈ Q, y ∈ Pn and z ∈ Pn+1, E(x, y, z) if and only if f(y) = z.

Now we define the class K to be the L-structures satisfying the axioms above and the
relation 4K to be the substructure relation.

The example has two kinds of countable models. When there is no element in Q,
the predicate Pn may have at most n elements, and either |Pn+1| = |Pn| or Pn+1 is one
element larger. If any Pn has more than n elements, the predicate Q gets an element.
When there is an element x in Q, all predicates Pn have equal cardinality, since the
relation E(x,−,−) gives a bijection between the predicates.

Thus we can characterize the countable models of K: There are countably many
models with nonempty Q: one where each Pn is countably infinite and one where each
Pn has size k for 1 ≤ k < ω. If Q is empty, the model is characterized by a function
f : ω → {0, 1} so that f(n) = 1 if and only if |Pn+1| > |Pn|. Hence there are 2ℵ0 countable
models.

444 From number of structures to structure of numbers, part II

This example is an AEC with LS(K) = ℵ0. The key to establish closure under unions
of chains is to note that if the union of a chain has a nonempty Q, some model in the
chain must already have one. This example clearly has finite character, joint embedding
and arbitrarily large models. Furthermore, the class is categorical in all uncountable
cardinals.

We prove that the class has amalgamation. For this, let M,M ′ and M ′′ be in K
such that M ′ and M ′′ extend M . We need to amalgamate M ′ and M ′′ over M . The
case where Q(M) is nonempty is easier and we leave it as an exercise. Hence we assume
that Q(M) is empty. By taking isomorphic copies if necessary we may assume that the
intersection Pn(M ′′) ∩ Pm(M ′) is Pn(M) for n = m and empty otherwise. Furthermore,
we extend both M ′ and M ′′ if necessary so that Q(M ′) and Q(M ′′) become nonempty and
each Pn(M ′) and Pn(M ′′) become infinite. We amalgamate as follows: For two elements
x ∈ Pn(M ′) and y ∈ Pn(M ′′), if there is k < ω such that fk(x) = fk(y) in Pn+k(M),
then we identify x and y. Otherwise, we take a disjoint union.

We prove that the class is simple. For this, define the following notion of independence
for A,B,C subsets of the monster model:

A ↓C B ⇐⇒ For any a ∈ A, b ∈ B, if we have that E(x, a, b),

then there is c ∈ C with E(x, a, c).

This notion satisfies invariance, monotonicity, finite character, local character, extension,
transitivity, symmetry and uniqueness of free extensions. Furthermore, a ̸ ↓C B if and
only if for some D ⊇ B and every b |= tpw(a/C∪B), the type tpw(b/D∪C) Lascar-splits
over C. Hence the notion is the same as the independence notion defined for general
finitary AECs. This ends the proof.

We can divide this AEC into two disjoint subclasses, both of which are AECs with
the same Löwenheim–Skolem number. The class of models where there is no element in
Q has uncountably many countable models and is otherwise ‘badly-behaved’; all models
are countable and the amalgamation property fails. However, the class of models where
Q is nonempty is an uncountably categorical finitary AEC with only countably many
countable models. This resembles the example of the sentence in Lω1ω, mentioned in the
beginning of this section, which was a disjunction of two sentences, a totally categorical
one and one with uncountably many countable models and no uncountable ones. Is
this ‘incompleteness’ the reason for categoricity not implying countably many countable
models? Can we obtain the conjecture if we require the AEC to be somehow ‘complete’?
These concepts and questions are explored in the next section.

Jonathan Kirby recently suggested another example with similar properties. This
example might feel more natural to some readers, since it consists of ‘familiar’ structures.

Example 2.6 Let K be the class of all fields of characteristic 0 which are either alge-
braically closed or (isomorphic to) subfields of the complex algebraic numbers Qalg. Let
4K be the substructure relation. Then K is categorical in all uncountable cardinalities
and has 2ℵ0 countable models which all embed in the uncountable models. Also (K,4K)
is a simple finitary AEC. Further, this class can be divided into smaller AEC’s. For exam-
ple, we can take all algebraically closed fields of characteristic 0, except those isomorphic
to subfields of Qalg as one class and all fields isomorphic to a subfield of Qalg as the other.

The Infinity Project 445

2.2 Complete, irreducible and minimal AECs

We define several concepts to describe the ‘completeness’ or ‘incompleteness’ of an ab-
stract elementary class. A nonempty collection C of structures of an AEC (K,4K) is a
sub-AEC of (K,4K) if

• C is an abstract elementary class with 4C = 4K ∩ C2;
• LS(K) = LS(C), that is, the Löwenheim–Skolem numbers are the same.

This allows both ‘extreme cases’ that C is K or that C consists of only one structure, up
to isomorphism. The latter can happen if the only structure in C is of size LS(K) and is
not isomorphic to a proper 4K-substructure of itself.

Definition 2.7 (Minimal AEC) We say that an AEC is minimal if it does not contain
a proper sub-AEC.

Definition 2.8 (Irreducible AEC) We say that an AEC (K,4K) is irreducible if there
are no two proper sub-AECs C1 and C2 of K such that C1 ∪ C2 = K.

Definition 2.9 (Complete AEC) We say that an AEC (K,4K) is complete if there are
no two sub-AECs C1 and C2 of K such that C1 ∪ C2 = K and C1 ∩ C2 = ∅.

Example 2.5 is not complete, not irreducible and not minimal. The sub-AEC of
Example 2.5, which contains the models where Q is nonempty, is also not complete: One
abstract elementary class can be formed by taking all such models where each Pn is of
equal size ≤ M for some finite M , and the rest of the models of the class form another
AEC.

We make a few remarks that follow from the definitions.

Remark 2.10
(1) Minimality implies irreducibility, which implies completeness.
(2) Minimality implies the joint embedding property for models of size LS(K).
(3) Completeness and the amalgamation property imply joint embedding.
(4) If T is a complete first order theory, then the elementary class of models of T is

not necessarily complete in the sense above.

Item 1 is obvious. Item 2 holds, since if there are a pair M0,M1 of models in K with
size LS(K), which do not have a common extension, those structures of K which K-embed
M0 form a proper sub-AEC. For item 3, note that if the class has the amalgamation
property, the following classes are disjoint sub-AECs:

{M ∈ K :M can be jointly embedded with M0}
and

{M ∈ K :M cannot be jointly embedded with M0}.
Furthermore, the amalgamation property gives that joint embedding for models of size
LS(K) implies joint embedding for all models. Note that an ℵ1- but not ℵ0-categorical
countable first order theory is not complete as an AEC.

Example 2.5 has joint embedding and amalgamation but is not complete nor minimal,
hence the implications of items 2 and 3 are not reversible. Is one or both of the impli-
cations of item 1 of Remark 2.10 reversible? If (K,4K) is an ℵ0-stable elementary class
which is not ℵ0-categorical, the class of ℵ0-saturated models of T is a proper sub-AEC,
so the class is not minimal. Example 2.18 below gives a class which is complete but not
irreducible, minimal or ℵ0-categorical. However, this example is not finitary: it does not
have finite character or even arbitrarily large models.

446 From number of structures to structure of numbers, part II

To discuss the relationship between minimality and LS(K)-categoricity, it is important
to specify the meaning of LS(K)-categoricity. We define an AEC to be LS(K)-categorical
if it has only one model up to isomorphism, of size at most LS(K). We have forbidden
smaller models because models of an AEC which are strictly smaller than the number
LS(K) can cause quite irrational and one could say insignificant changes to the class. We
could add, say, one finite model which is not embeddable in any member of the class; this
would give non-minimality, since the one model constitutes an AEC. However, an AEC
with one model of size LS(K) and no smaller models is automatically minimal: For any
sub-AEC K′ we can show by induction on the size of the models in K, using the union
and Löwenheim–Skolem axioms, that all models of K are actually contained in K′.

Here are some further questions:

Question 2.11
(1) If an AEC is uncountably categorical and complete, can it have uncountably

many countable models?
(2) Is there a minimal AEC which is not LS(K)-categorical?
(3) Is there an irreducible AEC which is not minimal?

2.3 An example of models of Peano Arithmetic: completeness does not
imply irreducibility

In this section we present an example of a class of models of Peano Arithmetic suggested
by Roman Kossak. The example shows that completeness does not imply irreducibility.
The properties of the class are from Section 1.10 and Chapter 10 of the book The Structure
of Models of Peano Arithmetic [13].

A model M of Peano Arithmetic (PA) is recursively saturated if for all finite tuples
b ∈M and recursive types p(v, w), if p(v, b) is finitely realizable then p(v, b) is realized in
M . Clearly an elementary union of recursively saturated models is recursively saturated.
For M , a nonstandard model of PA, define SSy(M), the standard system of M , as
follows:

SSy(M) = {X ⊆ N : ∃Y definable in M such that X = Y ∩ N}.

Lemma 2.12 ([13, Proposition 1.8.1]) Let N,M be two recursively saturated models of
Peano Arithmetic. Then M ≡∞ω N if and only if M ≡ N and SSy(M) = SSy(N).

It follows that any countable recursively saturated elementary end-extension of a
recursively saturated M is isomorphic to M .

We say that N |= PA is ω1-like if it has cardinality ℵ1 and every proper initial
segment of N is countable. We say that N |= PA is an elementary cut in M if M is an
elementary end-extension of N .

Theorem 2.13 ([13, Corollary 10.3.3]) Every countable recursively saturated model
M |= PA has 2ℵ1 pairwise non-isomorphic recursively saturated ω1-like elementary end-
extensions.

The following abstract elementary class (K,4K) has one countable model, 2ℵ1 models
of size ℵ1 and no bigger models. We will use it to generate the counterexample.

Example 2.14 Let M be a countable recursively saturated model of Peano Arithmetic.
Let K be the smallest class, closed under isomorphism, containingM and all ω1-like recur-
sively saturated elementary end-extensions of M . Let 4K be elementary end-extension.

The Infinity Project 447

Lemma 2.15 The AEC of Example 2.14 does not have finite character.

Proof. Let M be a recursively saturated countable model of PA. Let M ′ be a recursively
saturated elementary substructure of M (not necessarily a cut) and let a be a finite tuple
in M ′. We construct a 4K-map f : M ′ →M fixing a. When M ′ is not a cut we contradict
finite character. For this, we will find an elementary cut M ′′ of M and an isomorphism
f : M ′ →M ′′ such that f(a) = a. Since M and M ′ are recursively saturated, both (M,a)
and (M ′, a) are recursively saturated. Furthermore, (M,a) is elementarily equivalent to
(M ′, a). Now let M ′′ be an elementary cut in M such that (M,a) is an elementary end-
extension of (M ′′, a) and (M ′′, a) is recursively saturated. Then (M ′, a) ∼= (M ′′, a). �

From now on, let M be a fixed countable recursively saturated model of PA.
Now we construct a complete but not irreducible AEC. Let ≺end denote elementary

end-extension. We define

M(a) =
∩
{K ≺end M : a ∈ K},

M [a] =
∪
{K ≺end M : a /∈ K},

where M [a] can be empty. Then let gap(a) denote M(a) \M [a].
It is easy to see that an equivalent definition is the following: Let F be the set of

definable functions f : M → M for which x < y implies x ≤ f(x) ≤ f(y). Let a be an
element in M . Then gap(a) in M is the smallest subset C of M containing a such that
whenever b ∈ C, f ∈ F and b ≤ x ≤ f(b) or x ≤ b ≤ f(x), then x ∈ C.

We say that N |= PA is short if it is of the form N(a) for some a ∈ N . Equivalently,
N has a last gap. A short model N(a) is not recursively saturated, since it omits the type

p(v, a) = {t(a) < v : t a Skolem term}.
If N is not short, it is called tall. The following three properties are exercises in [13].

(1) The union of any ω-chain of end-extensions of short elementary cuts in M is tall.
(2) Any tall elementary cut in M is recursively saturated and thus isomorphic to M .
(3) If K is an elementary cut in M and is not recursively saturated, then K =M(a)

for some a ∈M .
It also follows that the union of any ω-chain of elementary end-extensions of models
isomorphic to short elementary cuts in M is isomorphic to M . For the following theorem,
see [20].

Theorem 2.16 Two short elementary cuts M(a) and M(b) are not isomorphic if and
only if the sets of complete types realised in gap(a) and gap(b) respectively are disjoint.
There are countably many pairwise non-isomorphic short elementary cuts in M .

Lemma 2.17 If a ̸∈M(0), the model M(a) is isomorphic to some proper initial segment
M(a′) of M(a), which is an elementary cut of M(a).

Proof. Define the recursive type

p(x, a) = {ϕ(x)↔ ϕ(a) : ϕ(x) ∈ L} ∪ {t(x) < a : t is a Skolem term}.
Any finite subset of tp(a/∅) is realized in M(0) since M(0) ≺ M . Thence p(x, a) is
consistent as M(0) is closed under the Skolem terms. Let a′ ∈ M realize p(x, a). Then
tp(a′) = tp(a) and M(a′) < a. Hence M(a) is isomorphic to M(a′) by Theorem 2.16.
Furthermore, M(a′) is an elementary cut in M(a). �

448 From number of structures to structure of numbers, part II

Lemma 2.17 implies that elementary ≺end-chains can be formed from isomorphic
copies of one M(a), when a ̸∈M0. Hence, each of the following classes Kα is an abstract
elementary class extending the ℵ0-categorical class K from Example 2.14 and Kα has α
many countable models, where α ∈ ω ∪ {ω}.

Example 2.18 Let α be a finite number or ω. Choose (M(ai))i<α to be pairwise non-
isomorphic short elementary cuts in M , where each ai is non-standard. Let Kα be the
smallest class, closed under isomorphism, containing K and M(ai) for all 1 ≤ i < α. Let
4K be elementary end-extension.

The countable models of Kα are exactly M and M(ai) for 1 ≤ i < α. This class is
closed under 4K-unions: if ⟨Mj , j < β⟩ is a 4K-chain of models in Kα, we have that for
every countable limit ordinal β,

∪
j<βMβ is tall and hence isomorphic to M , and if β is

uncountable, the union is isomorphic to some ω1-like recursively saturated model in K.
(Note that the union is also an end-extension of M .)

Any abstract elementary class containing a short elementary cutM(a) for some a ∈M
must contain M , as M is a union of models isomorphic to M(a) elementarily end-ext-
ending each other. Hence any abstract elementary class containing M(a) contains M .

It follows that Kα is complete since it has no disjoint sub-AECs. Furthermore, the
class Kα is not irreducible for α > 2, since we can divide it into two classes, one containing
M(ai) but not M(aj) and one vice versa, for any i ̸= j < α.

However, Example 2.18 is neither a Jónsson class (all models have cardinality below
the continuum) nor a finitary AEC. We ask:

Question 2.19 Is there a Jónsson class which is complete but not irreducible or minimal?
Furthermore, is there such a finitary AEC?

Acknowledgements

We thank the Mittag-Leffler Institute in Djursholm, Sweden, for providing ideal surround-
ings for mathematical discussions. The authors and Professor Kossak attended during
the 2009 fall semester the scientific program Mathematical Logic: Set Theory and Model
Theory at the Institute. The authors wish to thank the John Templeton Foundation for
its support through Project #13152, Myriad Aspects of Infinity, hosted during 2009–2011
at the Centre de Recerca Matemàtica, Bellaterra, Spain.

References
[1] J. T. Baldwin. The Vaught conjecture: do uncountable models count? Notre Dame Journal of

Formal Logic, 48(1):79–92, 2007.
[2] J. T. Baldwin. Categoricity, vol. 50 of University Lecture Series. AMS, 2009.
[3] S. Buechler. Vaught’s conjecture for superstable theories of finite rank. Annals of Pure and Applied

Logic, 155(3):135–172, 2008.
[4] R. Grossberg and M. VanDieren. Galois-stability in tame abstract elementary classes. Journal of

Mathematical Logic, 6(1):25–49, 2006.
[5] T. Hyttinen and M. Kesälä. Categoricity transfer in simple finitary abstract elementary classes. To

appear in the Journal of Symbolic Logic.
[6] T. Hyttinen and M. Kesälä. Independence in finitary abstract elementary classes. Annals of Pure

and Applied Logic, 143(1-3):103–138, 2006.
[7] T. Hyttinen and M. Kesälä. Superstability in simple finitary AEC. Fundamenta Mathematicae,

195(3):221–268, 2007.

The Infinity Project 449

[8] T. Hyttinen and M. Kesälä. Interpreting groups and fields in simple, finitary AECs. To appear in
the Journal of Symbolic Logic.

[9] T. Hyttinen and M. Kesälä. Lascar types and Lascar automorphisms in Abstract Elementary Classes.
Notre Dame Journal of Formal Logic, 52(1):39–54, 2011.

[10] B. Jónsson. Homogeneous universal relational systems. Mathematica Scandinavica, 8:137–142, 1960.
[11] M. Kesälä. Finitary Abstract Elementary Classes. PhD thesis, University of Helsinki, Department

of Mathematics and Statistics, 2006.
[12] H. A. Kierstead. Countable models of ω1-categorical theories in admissible languages. Annals of

Mathematical Logic, 19(1-2):127–175, 1980.
[13] R. Kossak and J. Schmerl. The Structure of Models of Peano Arithmetic. Number 50 in Oxford Logic

Guides. Oxford University Press, 2006.
[14] D. W. Kueker. Abstract elementary classes and infinitary logics. Annals of Pure and Applied Logic,

156(2-3):274–286, 2008.
[15] O. Lessmann. Upward categoricity from a successor cardinal for tame abstract classes with amalga-

mation. The Journal of Symbolic Logic, 70(2):639–660, 2005.
[16] M. Morley. Countable models of ℵ1-categorical theories. Israel Journal of Mathematics, 5:65–72,

1970.
[17] M. Morley. The number of countable models. The Journal of Symbolic Logic, 35:14–18, 1970.
[18] S. Shelah. Categoricity of abstract classes with amalgamation. Annals of Pure and Applied Logic,

98:261–294, 1999. Shelah [Sh:394].
[19] S. Shelah, L. Harrington, and M. Makkai. A proof of Vaught’s conjecture for ω-stable theories. Israel

Journal of Mathematics, 49(1-3):259–280, 1984.
[20] C. Smoryński. Elementary extensions of recursively saturated models of arithmetic. Notre Dame

Journal of Formal Logic, 22(3):193–203, 1981.
[21] R. L. Vaught. Denumerable models of complete theories. In Infinitistic Methods (Proc. Sympos.

Foundations of Math., Warsaw, 1959), 303–321. Pergamon, Oxford, 1961.

The Infinity Project

On Borel equivalence relations in generalized
Baire space

Sy-David Friedman†, Tapani Hyttinen‡

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

‡ Department of Mathematics and Statistics, University of Helsinki, Finland
tapani.hyttinen@helsinki.fi

Abstract. We construct two Borel equivalence relations on the generalized Baire space κκ, assuming
κ<κ = κ > ω, with the property that neither of them is Borel reducible to the other. A small modification
of the construction shows that the straightforward generalization of the Glimm–Effros dichotomy fails.

Introduction

By λκ we denote the set of all functions κ→ λ. We define a topology to (λκ)n by letting
the sets

N(η1,...,ηn) = {(f1, . . . , fn) ∈ (λκ)n | ηi ⊆ fi for all 1 ≤ i ≤ n}
be the basic open sets, where for some α < κ and for all 1 ≤ i ≤ n, ηi is a function from
α to λ. We write Nη for N(η). For κ > ω, the spaces κκ are called generalized Baire
spaces. The study of these spaces started already in [5] and since then many papers have
been written on these; more on the history can be found from [2]. Most of the study of
these spaces (for κ > ω) is done under the assumption that κ<κ = κ and we make this
assumption also.

By closing open sets under complementation and unions of size ≤ κ, we get the class
of Borel sets. A function between these spaces is Borel if the inverse image of every open
set is Borel. As in the case κ = ω, a Borel function F is continuous on a co-meager set,
i.e., there are open dense sets Ui, i < κ, such that F ↾ (

∩
i<κ Ui) is continuous; see [2].

Let X,Y ∈ {κκ, 2κ} and let E ⊆ X2 and E′ ⊆ Y 2 be equivalence relations. We say
that E is Borel reducible to E′ and write E ≤B E′ if there is a Borel function F : X → Y
such that, for all f, g ∈ X, fEg if and only if F (f)E′F (g). We say that they are Borel
bi-reducible if both E ≤B E′ and E′ ≤B E hold.

In [2] these Borel reductions were studied. We were mostly interested in equivalence
relations like isomorphism among (codes of) models of some first-order theory, but also
some general theory was developed. And we were annoyed when we found out that we
could not find Borel equivalence relations which are incomparable with respect to Borel
reducibility. Let us see why one cannot just take some example from the case κ = ω and
carry out a straightforward generalization.

To appear in Archive for Mathematical Logic.
† Supported by the John Templeton Foundation under grant number 13152, and the Austrian Science

Fund (FWF), grant number P20835-N13.
‡ Partially supported by the John Templeton Foundation, grant number 13152, and the Academy of

Finland, grant number 1123110.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

451

452 On Borel equivalence relations in generalized Baire space

Arguments like the one in [4] use machinery available only in the case κ = ω. But
with some basic results like the Borel incomparability of E1 and Eω0 this is not the case.
And indeed one can generalize the definitions of these relations in a straightforward way
and prove that Eκ0 is not Borel reducible to E1; see the proof of Lemma 5. Also if one
takes the classical proof of the other direction (see Theorem 8.2 in [3]), one notices that
everything in the proof holds also in the case κ > ω. However, this does not prove that
the result is true for κ > ω. In the proof two functions are constructed by induction on
i < κ, and, if κ > ω, one needs to go over limits and at least without major changes in
the construction, this cannot be done (and one can prove this).

In this paper, we will modify the definitions of E1 and Eκ0 and prove the following
theorem:

Theorem 1 Suppose κ<κ = κ > ω. Then there are Borel equivalence relations on κκ

such that neither of them is Borel reducible to the other.

The rest of this paper gives a proof for this theorem.

1 Proof

Before defining the equivalence relations, we want to point out that if λ < κ and we
define idλ ⊆ (2κ)2 to be the set of pairs (f, g) such that |{α < κ : f(α) ̸= g(α)}| < λ,
then idλ is Borel bi-reducible with the identity; see [2].

For α, β < κ, by α − β we denote the (unique) ordinal γ such that α + γ = β or
β + γ = α.

Definition 1.1 We let E∗ be the set of pairs (f, g) of functions from κ to κ such that,
for some α < κ, f(β)− g(β) < α for all β < κ.

Clearly E∗ is a Borel equivalence relation on κκ.
Let γ ≤ κ and π : κ→ γ × κ be one to one and onto. We define a topology on 2γ×κ

so that f 7→ g, g(α) = f(π(α)), is a homeomorphism from 2γ×κ onto 2κ. For f ∈ 2γ×κ

and α < γ, by fα we mean the function fα(x) = f(α, x).

Definition 1.2
(I) We let E′

0 be the set of pairs (f, g) ∈ (2κ)2 such that {α < κ : f(α) ̸= g(α)} is
a finite union of intervals bounded in κ, i.e., a finite union of sets of the form
[γ, δ), γ < δ < κ.

(II) We let E∗ be the set of pairs (f, g) ∈ (2κ×κ)2 such that fαE′
0gα for all α < κ.

Clearly both E′
0 and E∗ are Borel and it is easy to see that they are also equivalence

relations. It is also easy to see that E∗ is Borel bi-reducible with a Borel equivalence rel-
ation on κκ (also E∗ is Borel bi-reducible with a Borel equivalence relation on 2κ). So to
prove Theorem 1, it is enough to prove Lemmas 1.3 and 1.4 below.

Lemma 1.3 E∗ ̸≤B E∗.

Proof. For a contradiction, suppose that F : κκ → 2κ×κ is a Borel reduction of E∗ to E∗.
As mentioned above, there are dense and open subsets Ui, i < κ, of κκ such that F is
continuous on U =

∩
i<κ Ui.

By induction on i < κ we construct ordinals αi, βi < κ and functions f0i , f
1
i : αi → κ

and g0i , g
1
i : βi × βi → 2 so that

The Infinity Project 453

(i) for i < j, αi < αj , βi < βj , f0i ⊆ f0j , f1i ⊆ f1j , g0i ⊆ g0j and g1i ⊆ g1j ;
(ii) Nf0i

∪Nf1i
⊆ Uj for all j < i;

(iii) F (Nf0i
∩ U) ⊆ Ng0i

and F (Nf1i
∩ U) ⊆ Ng1i

;
(iv) for some γ < αi+1, f0i+1(γ)− f1i+1(γ) ≥ i;
(v) for all i < κ and γ < βi, there is βi ≤ δ < βi+1 such that g0i+1(γ, δ) = g1i+1(γ, δ).

Notice that if we can construct these so that (i)–(v) hold, then f0 = ∪i<κf0i and
f1 = ∪i<κf1i belong to U , F (f0) = g0 = ∪i<κg0i , F (f1) = g1 = ∪i<κg1i , and f0 and f1

are not in the relation E∗. Also it is not hard to see (as shown below) that for all i < κ
there are h0 ⊇ g0i and h1 ⊇ g1i such that they are in the relation E∗.

For i = 0, we let αi = βi = 0 (and f0i = f1i = g0i = g1i = ∅) and at limits we take
unions. Clearly these are as required.

So suppose we have constructed these for i and we construct then for i + 1. For all
j < κ we construct first h0j , h

1
j ∈ κγj , γj < κ, as follows: h00 = f0i and h10 = f1i and at

limits we take unions. For j = 2k + 1, we choose first h1j ⊇ h12k so that Nh1j
⊆ Uk and h1j

properly extends h12k, and then we choose h0j ⊇ h02k so that dom(h0j) = dom(h1j) and for
all γ ∈ dom(h0j) − dom(h02k), h

0
j (γ) = h1j (γ) + i. For j = 2k + 2 we do the reverse, i.e.,

Nh0j
⊆ Uk and for all γ ∈ dom(h1j)− dom(h12k+1), h

1
j (γ) = h0j (γ) + i. Then h0 = ∪j<κh0j

and h1 = ∪j<κh1j belong to U and they are E∗-equivalent. Then F (h0) and F (h1) are
E∗-equivalent and since at stage i the elements satisfy (iii), F (h0) ⊇ g0i and F (h1) ⊇ g1i .
And so by choosing βi+1 large enough and letting g0i+1 = F (h0) ↾ (βi+1 × βi+1) and
g1i+1 = F (h1) ↾ (βi+1 × βi+1) the requirement (v) and relevant parts of (i) are satisfied.
Since F is continuous on U and h0, h1 ∈ U , by choosing αi+1 large enough and letting
f0i+1 = h0 ↾ αi+1 and f1i+1 = h1 ↾ αi+1, the rest of the requirements can be satisfied.

So now we have f0 and f1 and since they are not E∗-equivalent, g0 = ∪i<κg0i = F (f0)
and g1 = ∪i<κg1i = F (f1) are not E∗-equivalent. Let α < κ witness this, i.e., (g0)α and
(g1)α are not E′

0-equivalent. By (v) from the construction of g0 and g1, it is not possible
that (g0)α(γ) ̸= (g1)α(γ) for all large enough γ. Thus there must exist an increasing
sequence (γi)i<ω of ordinals < κ such that (g0)α(γi) = (g1)α(γi) iff i is odd.

Now choose i∗ < κ so that βi∗ > α∪
∪
i<ω γi. Then there are no h0 and h1 extending

g0i∗ and g1i∗ , respectively, so that h0 and h1 are E∗-equivalent. As pointed out above, this
is a contradiction. �

Lemma 1.4 E∗ ̸≤B E∗.

Proof. Towards a contradiction, suppose that F : 2κ×κ → κκ is a Borel reduction of E∗

to E∗. As above, there are open and dense subsets Ui, i < κ, of 2κ×κ such that F is
continuous on U = ∩i<κUi. By induction on i < κ, we construct ordinals αi, βi < κ and
functions f0i , f

1
i : αi × αi → 2 and g0i , g

1
i : βi → κ so that

(i) for i < j, αi < αj , βi < βj , f0i ⊆ f0j , f1i ⊆ f1j , g0i ⊆ g0j , g1i ⊆ g1j and α0 = β0 = 0;
(ii) Nf0i

∪Nf1i
⊆ Uj for all j < i;

(iii) F (Nf0i
∩ U) ⊆ Ng0i

and F (Nf1i
∩ U) ⊆ Ng1i

;
(iv) for some γ < αi+1, g0i+1(γ)− g1i+1(γ) ≥ i;
(v) for all αi ≤ α < αi+1 ≤ αj , the following hold:

(a) for all γ < αi+1, (f0j)α(γ) ̸= (f1j)α(γ);
(b) for all αi+1 ≤ γ < αj , (f0j)α(γ) = (f1j)α(γ).

454 On Borel equivalence relations in generalized Baire space

If we can construct these so that (i)–(v) hold, we have a contradiction: By (v), f0 =∪
i<κ f

0
i and f1 =

∪
i<κ f

1
i are E∗-equivalent. By (ii) and (iii), F (f0) = g0 =

∪
i<κ g

0
i

and F (f1) = g0 =
∪
i<κ g

1
i , and by (iv) these are not E∗-equivalent.

For i = 0, we let αi = βi = 0 (and f0i = f1i = g0i = g1i = ∅) and at limits we take
unions. Clearly these are as required.

So suppose that we have constructed these for j ≤ i and we construct them for i+1.
First we want to find h0, h1 : κ × κ → 2 such that f0i ⊆ h0, f1i ⊆ h1, h0, h1 ∈ U and for
all (δ, δ′) ∈ (κ × κ) − (αi × αi), h0(δ, δ′) = h1(δ, δ′) if and only if δ < αi. For this we
construct increasing sequences (h0j)j<κ and (h1j)j<κ of functions h0j , h

1
j : γj × γj → 2 as

follows:
For j = 0, we let γj = αi, h0j = f0i and h1j = f1i and at limits we take unions. For

j = 2k + 1, choose the h0j , h
1
j as follows: We let γj > γ2k and h0j : γj × γj → 2 be such

that h02k ⊆ h0j and Nh0j
⊆ Uk, and we let h1j : γj × γj → 2 be such that h12k ⊆ h1j and

for all (δ, δ′) ∈ (γj × γj) − (γ2k × γ2k), h1j (δ, δ′) = h0j (δ, δ
′) if and only if δ < αi. For

j = 2k + 2 we do the reverse, i.e., we let γj > γ2k+1 and h1j : γj × γj → 2 be such that
h12k+1 ⊆ h1j and Nh1j

∈ Uk, and we let h0j : γj × γj → 2 be such that h02k+1 ⊆ h1j and for
all (δ, δ′) ∈ (γj × γj) − (γ2k+1 × γ2k+1), h0j (δ, δ

′) = h1j (δ, δ
′) if and only if δ < αi. Then

h0 =
∪
j<κ h

0
j and h1 =

∪
j<κ h

1
j are as wanted.

Since h0 and h1 are not E∗-equivalent and h0, h1 ∈ U , F (h0) ⊇ g0i and F (h1) ⊇ g1i
are not E∗-equivalent. So by choosing βi+1 > βi large enough, g0i+1 = F (h0) ↾ βi+1 and
g1i+1 = F (h1) ↾ βi+1 satisfy (iv) and the relevant parts of (i). Since F is continuous on
U , by choosing αi+1 > αi large enough the rest of the requirements can be satisfied. �

2 Open questions

We finish this paper with several open questions. But before this, we make some defini-
tions and observations.

Let id be the set of pairs (f, g) ∈ (2κ)2 such that f = g and E0 be the set of pairs
(f, g) ∈ (2κ)2 such that, for some α < κ, f(γ) = g(γ) for all γ > α. Then these are Borel
equivalence relations and clearly id ≤B E0 and similarly id ≤B E′

0 (Definition 1.2(I)). As
pointed out in [2], E0 ̸≤B id since if F is a reduction of E0 to id and continuous on a
co-meager set U , one can find α < κ and η, ξ : α → 2 and α′ < κ and η′, ξ′ : α′ → 2 so
that η′ ̸= ξ′ and F (Nη ∩ U) ⊆ Nη′ and F (Nξ ∩ U) ⊆ Nξ′ . But this is impossible because
there are f ∈ Nη ∩ U and g ∈ Nξ ∩ U which are E0-equivalent. Similarly E′

0 ̸≤B id and
by repeating this argument ω times, one can see the following lemma:

Lemma 2.1 E0 ̸≤ E′
0.

Proof. (Sketch) For a contradiction, suppose that F : 2κ → 2κ is a reduction, which is con-
tinuous on a co-meager set U . As in the proof of E0 ̸≤ id, one can find increasing sequences
(αi)i<ω and (γi)i<ω of ordinals and increasing sequences of functions ηi, ξi : αi → 2 and
η′i, ξ

′
i : γi → 2 such that

(i) F (Nηi ∩ U) ⊆ Nη′i
and F (Nξi ∩ U) ⊆ Nξ′i

;
(ii) for all i < ω there are γi ≤ β < β′ < γi+1 such that η′i+1(β) = ξ′i+1(β) and

η′i+1(β
′) ̸= ξ′i+1(β

′).
But now we have a contradiction, since there are f ∈ U ∩

∩
i<ωNηi and g ∈ U ∩

∩
i<ωNξi

which are E0-equivalent. �

The Infinity Project 455

Open Question 2.2 Is E′
0 Borel reducible to E0?

Open Question 2.3 In the case κ = ω, by the Glimm–Effros dichotomy (see e.g. [BK]),
for all Borel equivalence relations E above id, either E ≤B id or E0 ≤B E. By what
is above, E′

0 witnesses that this is not true for uncountable κ. However, notice that,
for κ = ω, E0 = E′

0, and one can ask: is Glimm–Effros true with E′
0 in place of E0

(for κ > ω)?

Open Question 2.4 Let us look at the structure (BE,≤B) where BE is the set of all
Borel equivalence relations on 2κ. By what is said above, (BE,≤B) contains antichains of
length at least 2 and above id, chains of length at least 4 (id <B E′

0 <B E∗ <B “E∗×E∗”;
essentially as in the proof of Lemma 1.4 one can show that E∗ is not Borel reducible to E′

0).
Can one find longer chains and antichains?

In Open Question 2.4 we mean equivalence relations that can be defined for all κ =
κ<κ > ω. For large κ, the following gives a long chain: For all γ such that ℵγ < κ, let Eγ0
be the set of pairs (f, g) ∈ (2κ)2 such that there is an increasing and continuous sequence
(αi)i≤β , β < ℵγ+1, such that α0 = 0, for all δ ≥ αβ , f(δ) = g(δ) and for all i < β, either
for all αi ≤ δ < αi+1, f(δ) = g(δ) or for all αi ≤ δ < αi+1, f(δ) ̸= g(δ). Then for α > 0,
ℵα < κ, we define E<α0 to be the set of all pairs (f, g) ∈ (2α×κ)2 such that for all γ < α,
fγE

γ
0 gγ .
It is easy to see that these are Borel equivalence relations, for all γ < β and 0 < α < β,

Eγ0 , E
<α
0 ≤B E<β0 and, as in the proof of Lemma 2.1, one can see that Eα0 ̸≤B E<α0 and

thus E<β0 ̸≤B E<α0 .

References
[1] H. Becker and A. Kechris, Descriptive Set Theory of Polish Group Actions, London Math. Soc.

Lecture Note Series, vol. 232, Cambridge University Press, 1996.
[2] S. Friedman, T. Hyttinen and V. Kulikov, Generalized descriptive set theory and classification

theory, Preprint no. 999, Centre de Recerca Matemàtica, Bellaterra, 2011, 1–99.
[3] G. Hjorth, Classification and Orbit Equivalence Relations, AMS Mathematical Surveys and Mono-

graphs, vol. 75, 2000.
[4] A. Louveau and B. Velickovic, A note on Borel equivalence relations, Proc. Amer. Math. Soc., 120

(1994), 255–259.
[5] R. Vaught, Invariant sets in topology and logic, Fund. Math., 82 (1974/75), 269–294.

The Infinity Project

Non-absoluteness of model existence in
uncountable cardinals for Lω1, ω

Sy-David Friedman†, Tapani Hyttinen‡, Martin Koerwien§

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

‡ Department of Mathematics and Statistics, University of Helsinki, Finland
tapani.hyttinen@helsinki.fi

§ Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
koerwien@math.uic.edu

Abstract. For sentences ϕ of Lω1, ω, we investigate the question of absoluteness of ϕ having models in
uncountable cardinalities. We first observe that having a model in ℵ1 is an absolute property, but having
a model in ℵ2 is not, as it may depend on the validity of the Continuum Hypothesis. We then consider
the GCH context and provide sentences for any α ∈ ω1 \ {0, 1, ω} for which the existence of a model in
ℵα is non-absolute (relative to large cardinal hypotheses). Finally, we present a complete sentence for
which model existence in ℵ3 is non-absolute.

Introduction

Throughout, we assume that ϕ is an Lω1, ω sentence which has infinite models. By the
downward Löwenheim–Skolem theorem, ϕ must have a countable model, so the property
“having a countable model” is an absolute property of such sentences in the sense that its
validity does not depend on the properties of the set-theoretic universe we work in. More
precisely, if V ⊆ W are transitive models of ZFC with the same ordinals and ϕ ∈ V ,
V |= “ϕ is an Lω1, ω-sentence” (with a natural set-theoretic coding of such sentences),
then V |= “ϕ has a countable model” if and only if W |= “ϕ has a countable model”. The
purpose of this paper is to investigate the question of how far we can replace “countable”
by higher cardinalities.

A main tool for absoluteness considerations is Shoenfield’s absoluteness theorem (The-
orem 25.20 in [9]). It states that any property expressed by either a Σ1

2 or a Π1
2 formula

is absolute between transitive models of ZFC with the same ordinals. As John Baldwin
observed in [1], it follows from results of [7] that the property of ϕ having arbitrarily large
models is absolute (it can be expressed in form of the existence of an infinite indiscernible
sequence, which by Shoenfield is absolute). Since the Hanf number of the logic Lω1, ω

equals iω1 , it follows that the existence of models in cardinalities above that number is
absolute. Therefore the context we are interested in is where ϕ (absolutely) does not have
a model of size iω1 .

Submitted for publication in the Notre Dame Journal of Formal Logic.
†Supported by the John Templeton Foundation under grant #13152, The Myriad Aspects of Infinity,

and by the Austrian Science Fund (FWF) through Project Number P 22430-N13.
‡Partially supported by the Academy of Finland under grant number 1123110.
§Supported by the John Templeton Foundation under grant #13152, The Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

457

458 Non-absoluteness of model existence in uncountable cardinals for Lω1,ω

1 The case ℵ1

For complete sentences ϕ (meaning that any model of ϕ satisfies the same Lω1, ω sen-
tences), having a model in ℵ1 is an absolute notion. We have the following characteriza-
tion (which appears also in [1] as well as in [5]) of ϕ having a model of size ℵ1 (which is
a Σ1

1 property and therefore absolute by Shoenfield’s absoluteness theorem):
(∗) There exist two countable models M,N of ϕ such that M is a

proper elementary (in the fragment of ϕ) substructure of N .
To see that this is a characterization, note first that if ϕ has an uncountable model,

then (∗) holds by Löwenheim–Skolem. For the converse, we use the completeness of ϕ
which implies that any two countable models of ϕ are isomorphic (by Scott’s isomorphism
theorem, since ϕ is complete and thus characterizes its countable models up to isomor-
phism). Then, as N ∼= M , we can find a proper countable Lω1, ω-elementary extension
of N as well and continue this procedure ω1 many times (taking unions at limit stages).
The union of this elementary chain will then be a model of ϕ of size ℵ1.

If the sentence is not complete, criterion (∗) does not obviously imply the existence
of an uncountable model. By a theorem of Gregory’s (see [6]), it can be seen that it
actually does. We will however provide a different criterion ((∗∗) below) for which we
have a relatively basic proof (essentially only using the omitting types theorem for Lω1, ω)
that it is equivalent to ϕ having an uncountable model. We thus have that for any (even
incomplete) Lω1, ω-sentence, model existence in ℵ1 is absolute.1

In the following, we consider the sentence ϕ as a set-theoretic object using standard
coding of formulas of Lω1, ω. Thus ϕ can be regarded as a hereditarily countable set.

The following property which (again by Shoenfield) is absolute, characterizes ϕ having
a model of size ℵ1:

(∗∗) There is a countable transitive model U of ZFC− (ZFC without
the power set axiom) containing ϕ with U |= “ω1 exists, ϕ is hered-
itarily countable, and there is a model of ϕ with universe ω1”.

First, suppose ϕ has a model M of size ℵ1, say one with universe ω1. As both ϕ
and M are elements of Hω2 (the collection of sets hereditarily of size at most ℵ1), we
have Hω2 |= ZFC− + “there is a model of ϕ with universe ω1”. Now it suffices to take a
countable (first order) elementary substructure U ≺ Hω2 containing ϕ, and U will have
the properties of (∗∗).

Conversely, assuming that (∗∗) holds for some countable U , we can take an elementary
extension U ′ of U where all (in the sense of U) hereditarily countable sets are unchanged
and all (in U) uncountable ones become sets of size ℵ1. This can be achieved using
Corollary A of Theorem 36 in [11], noting that it holds for models of ZFC− (instead of
full ZFC as the Corollary originally assumes), as the powerset axiom is not used for it. In
particular this is true for the ω1 of U ′ on which we know a model M of ϕ lives (note that
U ′ |= (M |= ϕ) implies that M |= ϕ in the real universe; to see this, use that U ′ contains
the fragment of ϕ and satisfaction for formulas in this fragment is absolute between U ′

and the real universe). So we get a model of ϕ of size ℵ1.
There is another absolute criterion characterizing ϕ having an uncountable model, but

it requires going beyond the logic Lω1, ω. Let us consider the extension Lω1, ω(Q) of Lω1, ω

1 This has also been observed recently by Paul Larson. His argument uses iterated generic ultra-
powers. Rami Grossberg points out that he knew of this fact already in the 1980’s but did not publish
it, and that others like Shelah, Barwise and Keisler most likely knew of it even earlier.

The Infinity Project 459

obtained by adding an extra quantifier Q with the semantics “there exist uncountably
many”. As is shown in [2], Lω1, ω(Q) admits a completeness theorem which actually has
a very natural (absolute) deduction calculus. Now the statement

(∗ ∗ ∗) There is a proof of ¬Qx(x = x) starting from ϕ.
characterizes ϕ having only countable models. Thus the negation of (∗∗∗) is an (absolute)
property characterizing ϕ having an uncountable model. Note that this argument shows
that model existence in ℵ1 is absolute even for Lω1, ω(Q) sentences.

2 Going beyond ℵ1

It is not generally true that the existence of a model of size ℵ2 is an absolute property.
A very simple way to see this is to take any sentence ϕ that has models exactly up to

size continuum. We easily find even complete sentences with this property. Then, clearly,
ϕ has a model of size ℵ2 if and only if the continuum hypothesis fails.

More generally, such a sentence has a model of size ℵα if and only if 2ℵ0 ≥ ℵα. So,
for any α > 1, the existence of a model of size ℵα is non-absolute.

There are many examples of complete Lω1, ω-sentences in the literature having models
exactly up to size continuum, but they are mostly more complicated than necessary for our
purposes, because their authors have been interested in additional properties. Therefore
we provide here a very simple such example which uses the idea of coding full binary
trees. This same idea has been used in Malitz’s examples showing that the Hanf number
for complete Lω1, ω-sentences equals iω1 (see [12]).

Let the language L consist of countably many binary relation symbols En (n < ω),
and let σ ∈ Lω1, ω be the conjunction of

• all En are equivalence relations such that E0 has two classes and each En-class
is the union of exactly two En+1-classes;
• ∀x, y((

∧
n<ω En(x, y))→ x = y).

It is an easy back-and-forth argument to show that any two countable models of σ
are isomorphic, so σ is complete. Every model represents a set of branches through a full
binary tree, so there cannot be models greater than the continuum. On the other hand,
the Cantor space 2ω together with the relations “En(x, y) if and only if x and y coincide
on the n+ 1 first components” is a model of σ of size continuum.

3 Going beyond ℵ1 under the assumption of GCH

As we have seen, playing with the cardinal exponential function provides trivial examples
for the non-absoluteness of the existence of models of cardinality greater than ℵ1. A next
natural question is if this is the only non-absoluteness phenomenon there is. That is, under
the additional assumption of GCH, does the existence of models in cardinalities greater
than ℵ1 become an absolute notion? We will provide different incomplete sentences and
later on even a complete one that show that the answer is negative.

3.1 A reminder about two-cardinal properties

As we will see later, there is an interesting connection between classical first-order two-
cardinal properties and model existence for Lω1, ω-sentences. We recall the following
definition:

460 Non-absoluteness of model existence in uncountable cardinals for Lω1,ω

Definition 3.1 Let T be a first-order theory in a signature containing a unary predi-
cate P . Given two infinite cardinals κ ≥ λ, we say that T admits (κ, λ) if there is a model
of T of size κ such that PM = {a ∈M |M |= P (a)} has cardinality λ.

As is already exposed in Chang–Keisler’s classical textbook [3, Chapter 7.2], admit-
ting certain pairs (κ, λ) is a non-absolute property for certain theories. There, examples
are given where admitting (κ+, κ) is equivalent to the existence of a special κ+-Aronszajn
tree or where admitting (κ++, κ) is equivalent to the existence of a κ+ Kurepa tree (or
equivalently a κ+ Kurepa family).

3.2 Some set theory

We now recall the two classical concepts of Kurepa families and special Aronszajn trees.
The first-order examples in [3] showing non-absoluteness of the existence of certain
two-cardinal models and our later exposed examples of Lω1, ω-sentences showing non-
absoluteness of model existence in certain cardinalities code those objects in their models.
The coding is such that the existence of a certain two-cardinal model or the existence of
a model in a certain cardinality is equivalent to the existence of such an object (which is
independent from ZFC+ GCH as we will see in the following).

Definition 3.2 Let κ be any infinite cardinal. A κ+ Kurepa family is a family F of
subsets of some set A with |A| = κ+, such that |F| > κ+ and, for any subset B ⊂ A with
|B| = κ, |{X ∩B : X ∈ F}| ≤ κ.

Let KHκ+ be the statement that there exists a κ+ Kurepa family.

It is folklore that the existence of Kurepa families in different ℵα (α < ω1) is indepen-
dent from one another. We will now describe the formal arguments for the cases we need
(essentially the same arguments would work more generally for “switching on and off”
independently of the existence of Kurepa families in different ℵα). In the constructible
universe, KHκ+ is true for all cardinals κ (this follows from the fact that ♢+ holds at
successor cardinals in L; see [10]). On the other hand we have:

Theorem 3.3 The consistency of “ ZFC + there are uncountably many inaccessible car-
dinals” implies the consistency of “ ZFC + GCH + ∀α < ω1¬KHℵα+1”.

Proof. This is a slight generalisation of Silver’s argument that if κ is inaccessible then after
forcing with Coll(ω1, < κ), the forcing to convert κ into ℵ2 with countable conditions,
KHℵ1 fails (see [9, Theorem 27.9]).

Assume GCH; let κ0 be ℵ1 and define (κβ)0<β<ω1 inductively: set κβ+1 the least inac-
cessible cardinal greater than κβ and for β < ω1 a limit ordinal set κβ = sup{κγ | γ < β}+.
Let P be the fully supported product of the forcings Coll(κβ , < κβ+1) for β < ω1. Then
in the extension, κβ equals ℵβ+1, while the GCH still holds. We claim that KHκβ fails
for each β < ω1.

Indeed, the forcing P can be factored as P (< β)× P (≥ β) where P (< β) refers only
to the collapses Coll(κγ , < κγ+1) for γ < β and P (≥ β) refers only to the collapses
Coll(κγ , < κγ+1) for γ ≥ β. Similarly, V [G] factors as V [G(< β)][G(≥ β)]. In the model
V [G(< β)], κβ+1 is still inaccessible, so we can apply Silver’s argument to conclude that
KHκβ fails in V [G(< β)][G(≥ β)] = V [G], using the closure of the forcing P (≥ β) under
sequences of length less than κβ . �

The Infinity Project 461

Definition 3.4 A tree is a partially ordered set (T,<) such that, for any element t ∈ T ,
the set {x | x < t} is well ordered by <. The rank rk(t) of t is the order type of {x | x < t}.
For any ordinal α, let Tα = {t ∈ T | rk(t) = α}.

For any cardinal κ, a κ+-tree is a tree T such that Tκ+ = ∅ and, for all α < κ+,
0 < |Tα| < κ+. A tree T is normal if

• |T0| = 1;
• every element has at least two immediate successors;
• for any t ∈ T and α with rk(t) < α < κ+, there is some t′ > t with rk(t′) = α.

A normal κ+-tree T is a special κ+-Aronszajn tree if there is some set A of size κ and
a function f : T → A such that for all t, t′ ∈ T , t < t′ implies f(t) ̸= f(t′).

It is a consequence of GCH that special κ-Aronszajn trees exist for all successor
cardinals κ that are not successors of singular cardinals (see [13]). Moreover, in the con-
structible universe, special Aronszajn trees exist even in successors of singular cardinals
(this is a consequence of 2κ; see [10]).

On the other hand, the consistency of “ZFC+∃κ(κ supercompact)” implies the con-
sistency of “ZFC+ GCH +there are no special ℵα-Aronszajn trees for all countable limit
successors α”: We start with a model of GCH with a supercompact cardinal κ and force
with Coll(ω1, < κ). As is argued in [4], this forcing preserves a stationary reflection prop-
erty sufficient to ensure that Weak Square fails at ℵλ for λ a limit ordinal of countable
cofinality. By a result of Jensen in [10], Weak Square at a cardinal κ is equivalent to the
existence of a special Aronszajn tree on κ+.

3.3 Connecting first-order two-cardinal properties with Lω1, ω-model
existence

We will describe how a first-order theory T can be turned into an Lω1, ω-sentence σ in
such a way that T admitting certain (κ, λ) is equivalent to the existence of a model of σ
of size κ.

We start with the definition of an Lω1, ω-sentence σα0 characterizing ℵα (for α < ω1),
which means that it (absolutely) has a model of size ℵα, but no bigger model. We wish
to point out that the idea we use here of characterizing cardinals using κ-like orderings
for various κ is not new. Also, there exist other ways of characterizing cardinals in
the literature, most notably Hjorth’s examples presented in [8] that are even complete
sentences.

Let Lα0 = {Qβ, an, <, F}β≤α; n<ω, where the Qβ are unary predicates, the an are
constant symbols, < is a binary and F a ternary relation symbol.

Let σα0 ∈ (Lα0)ω1, ω be the conjunction of the following sentences:

• The universe is the union of all Qβ.
• Q0 = {an | n < ω} where all an designate distinct elements.
• For any β < α, Qβ+1 is disjoint from any Qγ for all γ ≤ β.
• For any limit ordinal β ≤ α, Qβ =

∪
γ<β Qγ .

• < linearly orders Qβ+1 for every β < α and x < y implies that for some β < α,
both x and y belong to Qβ+1.
• F (a, b, c) implies that for some β < α, a ∈ Qβ+1, b < a and c ∈ Qβ .
• For every β < α and every a ∈ Qβ+1, F (a, ·, ·) defines a total injective function

from {x | x < a} into Qβ .

462 Non-absoluteness of model existence in uncountable cardinals for Lω1,ω

Note that for β a limit ordinal or zero, Qβ is not ordered by < and, if α = 0, both <
and F are empty relations.

Clearly, if M |= σα0 , then in M the ordering of Qβ+1 must be |Qβ|-like (i.e., any
proper initial segment has cardinality at most |Qβ|). This implies that |Qβ+1| is at most
|Qβ|+ and, since Q0 is countable by definition, we see inductively that the cardinality of
each Qβ is bounded by ℵβ . Also, there clearly exist models such that |Qβ| = ℵβ for all
β ≤ α.

Now suppose that we have a first-order theory T in a language containing a unary
predicate P . For β < α < ω1, we define the Lω1, ω-sentence σα,βT as the conjunction of

• T ;
• σα0 ;
• P = Qβ .

Proposition 3.5 Let β < ω1 and 0 < n < ω. T admits (ℵβ+n,ℵβ) if and only if σβ+n, βT
has a model of cardinality ℵβ+n.

Proof. If M |= σβ+n, βT has cardinality ℵβ+n, we must have |Qβ| = ℵβ in that model (here
we use that n is finite!). Now the reduct of M to the language of T is a model of size
ℵβ+n where P has size ℵβ .

Conversely, given a model of T of size ℵβ+n where P has size ℵβ , it is easy to expand
this model to be a model of σβ+n, βT . �

Note that this proposition becomes false if n is allowed to be infinite.

3.4 Examples of incomplete sentences: successor cardinals

We quote Chang–Keisler’s results 7.2.11 and 7.2.13 from [3] (adapting the notation
slightly):

• There is a sentence ϕ1 in a finite language L such that, for all infinite cardinals λ,
ϕ1 admits (λ+, λ) if and only if there exists a special λ+-Aronszajn tree.
• There is a sentence ϕ2 in a suitable language such that, for all infinite cardinals λ,
ϕ2 admits (λ++, λ) if and only if a λ+ Kurepa family exists.

From the preceding section we get thus infinitary sentences σα+1, α
ϕ1

and σα+2, α
ϕ2

such
that

• σα+1, α
ϕ1

has a model of cardinality ℵα+1 if and only if a special ℵα+1-Aronszajn
tree exists;
• σα+2, α

ϕ2
has a model of cardinality ℵα+2 if and only if an ℵα+1 Kurepa family

exists.

Now, recalling the set-theoretic facts from Section 3.2, we get the following results:

Theorem 3.6 Let α < ω1 be a limit ordinal. Assuming ZFC, GCH and the existence of
a supercompact cardinal, model-existence in ℵα+1 is non-absolute for Lω1, ω-sentences.

Theorem 3.7 Let α < ω1. Assuming ZFC, GCH and the existence of uncountably many
inaccessible cardinals, model-existence in ℵα+2 is non-absolute for Lω1, ω-sentences.

At this point, we have covered all cases of successor cardinals ℵα for 1 < α < ℵω1 .

The Infinity Project 463

3.5 Examples of incomplete sentences: limit cardinals

We would also like to find examples of (incomplete) sentences where model existence in
ℵα is non-absolute modulo ZFC+ GCH for countable limit ordinals α. With a slight
variation of our examples involving special Aronszajn trees, we can deal with limits that
are greater than ω.

Since the construction is rather straightforward, we will only give an informal de-
scription of it.

The sentence ϕ1 used to prove Theorem 3.6 which is given explicitly in [3] involves
essentially a binary relation T coding a tree and a unary predicate U and has the property
that whenever M |= ϕ1 and |M | = |UM |+, then T has a subtree which is a special
|M |-Aronszajn tree.

Now, fixing some α < ω1 greater than ω, we start with the sentence σα0 (see Sec-
tion 3.3) and for all β < α, we add the sentence ϕ1 relativised to

∪
γ≤β+1Qγ (i.e., the set∪

γ≤β+1Qγ with the induced structure in the language of ϕ1 is a model of ϕ1) with Qβ
taking the role of U . That is, we are coding special Aronszajn trees at every level Qβ+1

where |Qβ+1| = |Qβ|+.
The result is a sentence σα1 for which (assuming consistency of supercompact cardi-

nals) the existence of a model of size ℵα is non-absolute modulo ZFC+ GCH. The reason
is that if no special ℵω+1-Aronszajn tree exists, the maximum cardinality of a model of σα1
is ℵω since whenever for some γ < α, |Qγ+1| = |Qγ |+ = ℵω+1, a special ℵω+1-Aronszajn
tree will be coded in the model. Note that in any case, σα1 will have models of size ℵω since
GCH implies the existence of special αn-Aronszajn trees for all finite n > 0. Therefore
these examples do not show non-absoluteness of model existence in ℵω.

4 A complete sentence

Both the first-order examples from [3] and our Lω1, ω-examples from the preceding section
are highly incomplete (i.e., many first-order or Lω1, ω-statements are undecided) and it
seems a very non-trivial task to turn them into complete theories while conserving the
properties that matter to us.

We will now introduce a method of completing incomplete Lω1, ω-sentences that has
the benefits of providing fairly explicit axiomatizations as well as some means of con-
structing models of the resulting complete sentence with certain properties. This method
will then be applied to an incomplete sentence coding ℵ2 Kurepa trees (similar to the
examples from the preceding section).

Definition 4.1 Let σ ∈ Lω1, ω.

• A σ-chain is a family (Mα)α<λ of models of σ such that, whenever α < β < λ,
we have Mα ⊂Mβ .
• σ is preserved under chains if, for any σ-chain (Mα)α<λ, M =

∪
α<λMα is a

model of σ.

As in the classical first-order case, it is still true that any Π2-sentence is preserved
under chains, i.e., any sentence of the form ∀x∃y ψ(x, y) where ψ is quantifier-free (but
possibly infinitary). We have to be a little careful with the definition of Π2 as for example
infinite disjunctions of universal formulas might not be preserved under chains. A simple

464 Non-absoluteness of model existence in uncountable cardinals for Lω1,ω

example is given by the sentence

σ =
∨

S⊂ω finite

∀x
(
U(x)↔

∨
i∈S

x = ai

)
in the language of countably many constants ai and a unary predicate U . This sentence
expresses that U is finite.

Definition 4.2 Let σ ∈ Lω1, ω.
• Set Sqf(σ) = {tpqf(a) | ∃M |= σ (a ∈ M)} (where tpqf(a) is the quantifier-free

type of a).
• σ is qf-small if Sqf(σ) is countable.

Note that, by the downward Löwenheim–Skolem theorem, we can define Sqf(σ) by
referring only to countable models of σ.

Definition 4.3 Suppose σ is qf-small.
• For any pair p(x), q(xy) ∈ Sqf(σ), define σp,q = ∀x(p(x)→ ∃y q(xy)).
• Set σ∗ = σ ∧

∧
p,q∈Sqf(σ); p⊂q σp,q.

If σ is preserved under chains, then σ∗ is as well. However, there are consistent σ
for which σ∗ is inconsistent. An example would be the sentence σ = ∀a, b, c, d(R(a, b) ∧
R(c, d)→ a = c ∧ b = d), which expresses that exactly two points are R-related.

Proposition 4.4 For any σ, if σ∗ is consistent, then it is complete.

Proof. We show ℵ0-categoricity. Let M,N |= σ∗ be countable and suppose f is a finite
partial isomorphism mapping a tuple a ∈ M to a tuple b ∈ N . Now let c ∈ M be any
point and set p = tpqf(a) (= tpqf(b)) and q = tpqf(ac). Since N |= σp,q, we find a d ∈ N
with bd |= q, so we can extend f by mapping c to d. Now after enumerating both M and
N we can construct a total isomorphism as the union of finite partial isomorphisms by
adding every point of M to the domain and every point of N to the range eventually. �
Definition 4.5 A sentence σ ∈ Lω1, ω has the extension property for countable models
(EPC) if, for any countable M |= σ and p(x) ⊂ q(xy) in Sqf(σ), whenever some a ∈ M
realizes p, there is a countable N |= σ with M ⊂ N containing some b with ab |= q.

Theorem 4.6 Suppose that σ ∈ Lω1, ω is preserved under chains, is qf-small and has the
EPC. Then:

(1) σ∗ is consistent.
(2) Any countable model of σ has an extension that is a model of σ∗.
(3) σ∗ is the only completion of σ with property (2) that is preserved under chains.

Proof. Let M |= σ be countable. Enumerate all possible pairs (a, q) where a ∈ M and
tpqf(a) ⊂ q ∈ Sqf(σ) as ((an, qn))n<ω. Construct a ⊂-chain (Mn)n<ω of models of σ such
that in Mn we add a tuple bn with the property that anbn |= qn. Let M1 =

∪
n<ωMn.

Do the same procedure for M1 in place of M to get some M2. Repeat this ω many more
times and set N =

∪
k<ωM

k. Since σ is preserved under chains we still have N |= σ, and
we just added all necessary witnesses in the chains to satisfy all σp,q as well, so we have
constructed a model of σ∗ that contains the model M we started with.

The uniqueness of σ∗ follows from the fact that if some τ has the same properties,
including being preserved under chains, we can form a ⊂-chain (Mn)n<ω with M2n |= σ∗

and M2n+1 |= τ for all n. Then by preservation under chains, the union must be a model
of both σ∗ and τ and we conclude by completeness of both sentences. �

The Infinity Project 465

Now we turn to the definition of an incomplete sentence coding ℵ2 Kurepa families,
which we will then complete by the described technique.

Our language will be L = {S,L, U, V,En, <,R, F,G,H}n<ω, where S and L are unary
predicates, all En as well as U, V,<,R are binary relations and F , G and H are ternary
relations.

Before we give the formal definition of our sentence, we describe informally what a
model of it looks like:

• (L,<) is a linear order.
• The elements of S code subsets of L via the relation R such that any two of them

coincide on an initial segment of L with a maximum element and are disjoint
above that initial segment.
• F defines a binary function mapping two elements of S to the point of L where

they become disjoint.
• For every a ∈ L, U and V , define sets Ua = {x | U(a, x)}, Va = {x | V (a, x)}

and all those sets are pairwise disjoint.
• The En are such that every set Ua and Va with the restrictions of the En sat-

isfies the theory of binary splitting equivalence relations, given in Section 2. In
particular, all these sets have size at most 2ℵ0 = ℵ1.
• G codes bijections between every initial segment {x | x < a} and the set Ua.

This makes (L,<) ℵ2-like.
• H codes intersections of sets coded by elements of S with initial segments {x |
x < a} as elements of Va. Consequently, on each initial segment, there are at
most ℵ1 many possibilities for the sets coded by elements of S.

Let σ be the conjunction of the following statements:
(A1) Both U(x, y) or V (x, y) imply x ∈ L. Writing Ux = {y | U(x, y)} and Vx = {y |

V (x, y)}, the sets L, S, Ux, Vx (for all x ∈ L) are pairwise disjoint and their union
is everything.

(A2) All En define equivalence relations on every set Ux and Vx where on every Ux
or Vx, E0 has exactly two classes and every En-class is the union of exactly two
En+1-classes. In addition,

∧
n<ω xEny implies x = y.

(A3) < is a linear ordering of L. For x ∈ L, we write L<x = {y ∈ L | y < x} and
L≤x = L<x ∪ {x}.

(A4) F (s, t, x) implies s, t ∈ S and x ∈ L. F defines a symmetric function from S × S
to L.

(A5) R ⊂ S × L. For s ∈ S, we write Rs = {x ∈ L | R(s, x)}. For any two distinct
s, t ∈ S, Rs and Rt are identical on L≤F (s,t) and disjoint on L \ L≤F (s,t).

(A6) G(x, y, z) implies x ∈ L, y < x and z ∈ Ux. For every x ∈ L, G(x, ·, ·) defines a
bijective function Gx : L<x → Ux by Gx(y) = z if and only if G(x, y, z).

(A7) H(x, y, z) implies x ∈ L, y ∈ S and z ∈ Vx. For every x ∈ L, H(x, ·, ·) defines a
surjective function Hx : S → Vx by Hx(y) = z if and only if H(x, y, z). Hx has the
property that Hx(s) = Hx(t) if and only if F (s, t) ≥ x.

It is easy to construct a model of σ, but σ is not a complete sentence. We verify that
it satisfies the hypotheses of Theorem 4.6. The axioms are all at most Π2-statements, so
we have preservation under chains. Also, since the equivalence relations En are refining
and L \ {En}n<ω is finite, Sqf(σ) is countable.

Towards showing EPC, let M |= σ be countable, a = (a1, . . . , an) ∈ M and let
p(x), q(x, y) ∈ Sqf(σ) with a |= p and p ⊂ q (note that it suffices to consider a single

466 Non-absoluteness of model existence in uncountable cardinals for Lω1,ω

variable y instead of an arbitrary tuple). We want to find some countable N ⊃ M and
b ∈ N such that ab |= q. There are several cases:

• Suppose S(y) ∈ q(x, y). We will add a new point y to S and define a set Ry
respecting the requirements of q and the axioms of σ. The requirements can
be R(y, xi), ¬R(y, xi) as well as F (y, xj) = xi, F (y, xj) ̸= xi and Hxi(y) = xj ,
Hxi(y) ̸= xj , Hxi(y)Enxj , ¬Hxi(y)Enxj for components xi, xj in x and n < ω
(G does not matter here since it does not involve elements from S; also note
that conditions like F (y, xj) > xi translate to F (y, xj) = xk ∧ xk > xi since F
is not a function but a relation symbol).

Consider the set of all elements z ∈ L occurring in x such that one of the
following holds:
(i) q ⊢ F (y, xi) = z for some xi in x, or
(ii) q ⊢ R(y, z) and there is some s ∈ S with M |= R(s, z), or
(iii) q ⊢ Hz(y) = xi and M |= Hz(s) = xi for some xi in x and s ∈ S.

Let A = {a ∈ L | q ⊢ R(y, a)}. We now have two cases:
– There is no such element. In this case, we choose any c ∈ L that is smaller

than any element of x, as well as an arbitrary element s ∈ S. We set
Ry = A∪ (Rs ∩L≤c) and naturally F (y, s) = c (note that Ry and every Rt
(t ∈ S) are disjoint above c since (ii) fails).

– There is such an element and let z be the maximal such. We set Ry =
A ∪ (Rxi ∩ L≤z) if z satisfies (i) and Ry = A ∪ (Rs ∩ L≤z) in the cases
(ii) and (iii) (choose any such s arbitrarily). If we are in the case (ii) or
(iii) and q implies F (y, s) ̸= z, we also add a new element w to L which is
greater than z and smaller than any element of x that is larger than z, and
we declare R(s, w), R(y, w), F (s, y) = w.

In either of the two cases, we will have to turn M with the additional y (and
possibly w) into a model of σ. We have to set the F - and H-relations which can
be done straightforwardly (respecting possible requirements from q for H; we
may have to add new points to sets Va for a > z). In case we added the point
w, we also have to add new sets Uw, Vw as well as a new point to each Ua for
a > w, and extend G accordingly.
• Now suppose L(y) ∈ q(x, y). Add a new element z to L for y in an arbitrary

cut that complies with the conditions xi < y or xi > y contained in q. Add
R(xi, z) whenever demanded by q and for any other s ∈ S add R(s, z) if and
only if R(t, z) and F (s, t) > z for some element t ∈ S. Finally, we have to add
new sets Uz and Vz as well as a new point a to each Uw with w > z and declare
G(w, z, a). We may have to add a new point to sets Vw for w > z too.
• Should Uxi(y) or Vxi(y) belong to q, it is easy to see that there must already be

some b ∈M with ab |= q.
Now we apply Theorem 4.6 to σ. Immediately we see that σ∗ implies:
• The ordering on L is dense without endpoints.
• Every set Rs is dense (and thus unbounded) and co-dense in L.
• s ̸= t implies Rs ̸= Rt (“R is extensional”).

But we know more about the properties of σ∗. The countable model of σ∗ is ex-
tendible, so there is an uncountable model. In addition, we have seen in the verification
of EPC that we have a lot of freedom in adding new elements to countable models of σ,
and thus to models of σ∗, so that we can conclude the existence of models of σ∗ with:

The Infinity Project 467

• (L,<) isomorphic to a proper initial segment of η1 ·ω2, where η1 is the saturated
dense linear order without endpoints of size ℵ1 (we assume GCH).
• All (Ux, En)n<ω and (Vx, En)n<ω isomorphic to (2ω, Fn) where we define ξFnρ

if and only if ξ(k) = ρ(k) for all k ≤ n.

Now we consider the class P of all such models with the additional properties:

• (L,<) is an initial segment of (η1 · ω2, <).
• S is a subset of ω3 of size ℵ1 (so all models in P will have size ℵ1).
• The sets Ux and Vx (x ∈ L) equal 2ω × {(x, 0)} and 2ω × {(x, 1)} respectively

and the En defined on them are the natural ones (compare with Fn above).

We order the elements of P by the superstructure relation ⊃. Since σ∗ is preserved
under unions, the poset (P,⊃) is ω2-closed (meaning that every sequence of length less
than ω2 of elements of P has a lower ⊃-bound; clearly the union of the chain of models
will do).

Now we show that (P,⊃) has the ω3-cc. Take any X ⊂ P of size ℵ3. We shall find
two elements of X which have a common extension. By the pigeonhole-principle and the
delta-system-lemma, we may assume that

• the collection of the underlying sets of the models in X form a delta-system;
• the L-part of all models in X is identical;
• the L-structure of all models in X is identical of the root of the delta-system;
• the collection of sets Rs (s ∈ S) is identical for all elements of X.

Two models M,N ∈ X may only differ on their S-part. We would like to make the
union M ∪ N into a model of σ. The problem is that if the models are not already
identical, there will be x ∈ SM , y ∈ SN outside the root such that Rx = Ry, so F (x, y)
cannot be defined in such a way that axiom (A5) holds. The solution is to end-extend L
in order to make Rx and Ry disjoint on a final segment.

Suppose that in η1 · ω2, L is an initial segment contained in {x | x < a}. Enumerate
the elements of SM \SN as (sα)α<µ (for some µ ≤ ℵ1). Now inductively do the following:
given α < ω1 there is a unique t ∈ SN \ SM such that Rsα = Rt. Set R(sα, a), R(t, a),
F (sα, t) = a and R(sα, aα) (but not R(t, aα)), where aα ∈ η1 · ω2 is greater than a and
any already chosen aβ (β < α). Now we have to add sets Uaα and Vaα and extend G and
H to get a model M ′ of σ containing both M and N . Note that we do not have to add
any point to the Ux, Vx for x ∈ LM , which is fortunate since that would be impossible.

Having obtained a model M ′ of σ containing both M and N as submodels, our final
task in proving ω3-cc is to extend M ′ to an element M ′′ of P. In particular, we want M ′′

to have the following properties:

• M ′′ must be a model of σ∗.
• LM ′′ must be an initial segment of η1 · ω2.
• The sets UM ′′

x and VM ′′
x must be equal to 2ω×{(x, 0)} and 2ω×{(x, 1)} respec-

tively.

We will contruct a continuous chain (Mα)α<ω1 of models of σ starting from M0 =M ′

such that M ′′ =
∪
α<ω1

Mα satisfies our requirements. We have several sets of “tasks”
(each enumerated in order type ω1) that we want to perform along that chain:

• Let W be an enumerated set of the tasks “add the element w to the L-part of
the so far constructed model” for any w ∈ η1 · ω2 that is smaller than some aα
(we constructed the elements aα above). Thus, after performing all tasks in W ,

468 Non-absoluteness of model existence in uncountable cardinals for Lω1,ω

the L-part of M ′′ will be an initial segment of η1 ·ω2 (the smallest one containing
all aα).
• Having reached stage α of the chain, enumerate all pairs (a, q) with a ∈ Mα

and tpqf(a) ⊂ q ∈ Stpqf (σ) as Tα = ((aβ, qβ))β<ω1 (compare with the proof of
Theorem 4.6). Designate the set of tasks “add a tuple b such that aβb |= qβ”
by Tα.
• Having reached stage α of the chain, let Xα and Yα respectively be enumer-

ated sets of the tasks “add the element (σ, (x, 0)) to Ux” and “add the element
(σ, (x, 1)) to Vx” for all σ ∈ 2ω and x ∈ LMα .

At each stage α of the chain, add elements to the model Mα such that the least task
in W as well as in all Tβ, Xβ, Yβ (β ≤ α) is performed. Then remove those tasks from
the sets W,Tβ, Xβ, Yβ . By possibly adding additional elements, we can do this while
obtaining a model Mα+1 of σ (the arguments and techniques are the same as in the proof
that σ has EPC).

Note that at each stage we only have to add countably many elements in each Ux, Vx
and the L-part of Mα, so we do not encounter the problem of saturating at a countable
stage of the chain-construction the Ux, Vx for x > a (a as defined above) or any part of
L above a. This would be a serious problem as for example adding a new element w to
the order requires adding a new element to the Ux with x > w (because of the properties
of G). We are thus able to carry out the construction through all countable ordinals and
obtain M ′′ as the union of the chain with the required properties. This concludes the
proof of ω3-cc.

Let G be a P-generic filter over V . Then
∪
G will be a model of σ∗ of size ℵV3 . But

since the forcing is ω2-closed and has ω3-cc, all cardinals are preserved and in particular
ℵV [G]
3 = ℵV3 . That is, we get a model of σ∗ of size ℵ3 in a generic extension. On the

other hand, any such model codes an ℵ2 Kurepa family which means that it is consistent
with ZFC+ GCH (assuming the existence of an inaccessible cardinal and noting that the
forcing preserves GCH2) that σ∗ has no model of size ℵ3.

5 Final observations

The question of absoluteness of model-existence (under ZFC+GCH) in ℵω remains open.
On the other hand, the technique of finding complete examples described in Section 4
should be applicable more widely to obtain complete examples of non-absoluteness of
model existence (under ZFC+GCH) in cardinals greater than ℵ3. Interestingly, however,
this method seems to be problematic for finding examples for model existence in ℵ2, at
least with the approach of trying to code Kurepa families. The reason is that it seems
difficult to code an ω1-like ordering without making many elements definable over others

2 This is a standard argument: For any (infinite) κ, each subset of κ added by the forcing is of
the form {α < κ | G ∩ Aα is nonempty}, where A⃗ = (Aα)α<κ is in the ground model and each Aα is
an antichain in the forcing. This is because we can take a name σ for the given set, let Bα be a maximal
antichain consisting of conditions which decide “α ∈ σ” and take Aα to consist of the elements of Bα
which force “α ∈ σ”.

As GCH holds in the ground model and the forcing has ω3-cc, the fact that the forcing has size ω3

implies that there are only ((ω3)
ω2)κ = (ω3)

κ many (in the sense of the ground model) such sequences A⃗.
For κ ≥ ω2, this is 2κ = κ+. As the forcing does not add subsets of ω1, the GCH will also hold at ω
and ω1.

The Infinity Project 469

(or even getting infinite definable closures over finite tuples), which destroys any chance
to have EPC.

As a last remark, our use of the concept of Kurepa families has the slight flaw that
in order to find set-theoretic universes which do not contain such families, we have to
assume the existence of inaccessible cardinals. For the special Aronszajn technique, we
even have to assume the consistency of supercompact cardinals. It would be nice to find
Lω1, ω sentences for which under GCH the existence of models of certain cardinalities is
not absolute, without assuming the existence of large cardinals.

Acknowledgements

We would like to express our gratitude to the John Templeton Foundation for supporting
the Infinity Project (hosted by the CRM in Barcelona) in which the presented work has
been accomplished. We also greatly thank John Baldwin, Fred Drueck, Rami Grossberg
and Andrés Villaveces for helpful discussions at the CRM, especially on the idea of coding
Kurepa families into models to show non-absoluteness of model existence. Rami Gross-
berg in particular suggested generalizing a theory coding an ℵ1 Kurepa family to higher
cardinalities to achieve non-absoluteness of model existence in cardinalities above ℵ2. He
also was the first to recognize a problem in dealing with ℵω by this construction.

References
[1] Baldwin, J. T., Amalgamation, absoluteness and categoricity, Proceedings of Southeast Asia Logic

Conference (June 2009), to appear. Available at www.math.uic.edu/jbaldwin.
[2] Barwise, K. J., The role of the omitting types theorem in infinitary logic, Archiv für Mathematische

Logik und Grundlagenforschung, vol. 21, 1981, pp. 55–68.
[3] Chang, C. C. and Keisler, H. J., Model Theory, North-Holland Publishing Company, Amsterdam,

1990.
[4] Cummings, J., Foreman, M. and Magidor, M., Squares, scales and stationary reflection, Journal of

Mathematical Logic, vol. 1, 2001, pp. 35–98.
[5] Gao, S., On automorphism groups of countable structures, The Journal of Symbolic Logic, vol. 63(3),

1998, pp. 891–896.
[6] Gregory, J., Elementary extensions and uncountable models for infinitary finite quantifier language

fragments. Preliminary report, Notices of the American Mathematical Society, vol. 17, 1970, pp. 967–
968.

[7] Grossberg, R., Shelah, S., On the number of non isomorphic models of an infinitary theory which
has the order property, part A, Journal of Symbolic Logic, vol. 51, 1986, pp. 302–322.

[8] Hjorth, G., Knight’s model, its automorphism group, and characterizing the uncountable cardinals,
Journal of Mathematical Logic, vol. 2(1), 2002, pp. 113–144.

[9] Jech, T., Set Theory, Springer Monographs in Mathematics, 2002.
[10] Jensen, R. B., The fine structure of the constructible hierarchy. With a section by Jack Silver, Annals

of Mathematical Logic, vol. 4, 1972, pp. 229–308.
[11] Keisler, H. J., Model Theory for Infinitary Logic, North-Holland Publishing Company, Amsterdam,

1971.
[12] Malitz, J., The Hanf number for complete Lω1, ω-sentences, in: The Syntax and Semantics of Infini-

tary Languages (J. Barwise, ed.), Lecture Notes in Mathematics, vol. 72, Springer, 1968, pp. 166–181.
[13] Specker, E., Sur un problème de Sikorski, Colloquium Mathematicum, vol. 2, 1949, pp. 9–12.

The Infinity Project

Generalized descriptive set theory and
classification theory

Sy-David Friedman†, Tapani Hyttinen‡, Vadim Kulikov‡

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

‡ Department of Mathematics and Statistics, University of Helsinki, Finland
tapani.hyttinen@helsinki.fi, vadim.kulikov@helsinki.fi

Abstract. Descriptive set theory is mainly concerned with studying subsets of the space of all countable
binary sequences. In this paper we study the generalization where countable is replaced by uncountable.
We explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel re-
ducibility. The study shows that the descriptive set theory looks very different in this generalized setting
compared to the classical, countable case. We also draw the connection between the stability theoretic
complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism re-
lations. Our results suggest that Borel reducibility on uncountable structures is a model theoretically
natural way to compare the complexity of isomorphism relations.

History and motivation

There is a long tradition in studying connections between Borel structure of Polish spaces
(descriptive set theory) and model theory. The connection arises from the fact that any
class of countable structures can be coded into a subset of the space 2ω provided all
structures in the class have domain ω. A survey on this topic is given in [9]. Suppose
X and Y are subsets of 2ω and let E1 and E2 be equivalence relations on X and Y
respectively. If f : X → Y is a map such that E1(x, y)⇔ E2(f(x), f(y)), we say that f is
a reduction of E1 to E2. If there exists a Borel or continuous reduction, we say that E1 is
Borel or continuously reducible to E2, denoted E1 6B E2 or E1 6c E2. The mathematical
meaning of this is that f classifies E1-equivalence in terms of E2-equivalence.

The benefit of various reducibility and irreducibility theorems is roughly the following.
A reducibility result, say E1 6B E2, tells us that E1 is at most as complicated as E2;
once you understand E2, you understand E1 (modulo the reduction). An irreducibility
result, E1 ̸6B E2 tells that there is no hope in trying to classify E1 in terms of E2, at
least in a “Borel way”. From the model theoretic point of view, the isomorphism relation,
and the elementary equivalence relation (in some language) on some class of structures
are the equivalence relations of main interest. But model theory in general does not
restrict itself to countable structures. Most of stability theory and Shelah’s classification
theory characterizes first-order theories in terms of their uncountable models. This leads
to the generalization adopted in this paper. We consider the space 2κ for an uncountable
cardinal κ with the idea that models of size κ are coded into elements of that space.

This approach to connect such uncountable descriptive set theory with model theory
began in the early 1990’s. One of the pioneering papers was authored by Mekler and

The authors wish to thank the John Templeton Foundation for its generous support of this research
through the CRM Infinity Project (Grant ID 13152).

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

471

472 Generalized descriptive set theory and classification theory

Väänänen [24]. A survey of the research done in the 1990’s can be found in [35], and a
discussion of the motivational background for this work in [36]. A more recent account
is given in [37, Chapter 9.6].

Let us explain how our approach differs from the earlier ones and why it is useful.
For a first-order complete countable theory in a countable vocabulary T and a cardinal
κ > ω, define

SκT = {η ∈ 2κ | Aη |= T} and ∼=κ
T = {(η, ξ) ∈ (SκT)

2 | Aη ∼= Aξ},
where η 7→ Aη is some fixed coding of (all) structures of size κ. We can now define the
partial order on the set of all theories as above by

T 6κ T ′ ⇐⇒ ∼=κ
T 6B

∼=κ
T ′ .

As pointed out above, T 6κ T ′ says that ∼=κ
T is at most as difficult to classify as ∼=κ

T ′ .
But does this tell us whether T is a simpler theory than T ′? Rough answer: If κ = ω,
then no, but if κ > ω, then yes.

To illustrate this, let T = Th(Q,6) be the theory of the order of the rational numbers
(DLO) and let T ′ be the theory of a vector space over the field of rational numbers.
Without loss of generality we may assume that they are models of the same vocabulary.
It is easy to argue that the model class defined by T ′ is strictly simpler than that of T .
(For instance, there are many questions about T , unlike T ′, that cannot be answered in
ZFC; say existence of a saturated model.) On the other hand ∼=ω

T 6B
∼=ω
T ′ and ∼=ω

T ′ ̸6B
∼=ω
T

because there is only one countable model of T and there are infinitely many countable
models of T ′. But for κ > ω we have ∼=κ

T ̸6B
∼=κ
T ′ and ∼=κ

T ′ 6B
∼=κ
T , since there are 2κ

equivalence classes of ∼=κ
T and only one equivalence class of ∼=κ

T .
Another example, introduced in Martin Koerwien’s Ph.D. thesis and his article [19],

shows that there exists an ω-stable theory without DOP and without OTOP with depth 2
for which ∼=ω

T is not Borel, while we show here that, for κ<κ = κ > 2ω, ∼=κ
T is Borel for all

classifiable shallow theories (shallow is the opposite of deep). The converse holds for all κ
with κ<κ = κ > ω: if ∼=κ

T is Borel, then T is classifiable and shallow; see Theorems 4.1,
4.6 and 4.7 starting from page 520.

Our results suggest that the order 6κ for κ > ω corresponds naturally to the classi-
fication of theories in stability theory: the more complex a theory is from the viewpoint
of stability theory, the higher it seems to sit in the ordering 6κ and vice versa. Since
dealing with uncountable cardinals often implies the need for various cardinality or set
theoretic assumptions beyond ZFC, the results are not always as simple as in the case
κ = ω, but they tell us a lot. For example, our results easily imply the following (modulo
some mild cardinality assumptions on κ):
� If T is deep and T ′ is shallow, then ∼=T ̸6B

∼=T ′ .
� If T is unstable and T ′ is classifiable, then ∼=T ̸6B

∼=T ′ .

1 Introduction

1.1 Notations and conventions

1.1.1 Set theory

We use standard set theoretical notation:
� A ⊂ B means that A is a subset of B or is equal to B.
� A (B means proper subset.

The Infinity Project 473

� Union, intersection and set theoretical difference are denoted respectively by A ∪ B,
A ∩B and A \B. For larger unions and intersections,

∪
i∈I Ai etc.

� Symmetric difference: A△B = (A \B) ∪ (B \A).
� P(A) is the power set of A and [A]<κ is the set of subsets of A of size < κ.

Usually the Greek letters κ, λ and µ will stand for cardinals, and α, β and γ for
ordinals, but this is not strict. Also η, ξ, ν are usually elements of κκ or 2κ, and p, q, r
are elements of κ<κ or 2<κ. We denote by cf(α) the cofinality of α (the least ordinal β
for which there exists an increasing unbounded function f : β → α).

By Sκλ we mean {α < κ | cf(α) = λ}. A λ-cub set is a subset of a limit ordinal
(usually of cofinality > λ) which is unbounded and contains suprema of all bounded
increasing sequences of length λ. A set is cub if it is λ-cub for all λ. A set is stationary if
it intersects all cub sets and λ-stationary if it intersects all λ-cub sets. Note that C ⊂ κ
is λ-cub if and only if C ∩ Sκλ is λ-cub and S ⊂ κ is λ-stationary if and only if S ∩ Sκλ is
(just) stationary.

If (P,6) is a forcing notion, we write p 6 q if p and q are in P and q forces more
than p. Usually P is a set of functions equipped with inclusion and p 6 q ⇔ p ⊂ q. In
that case, ∅ is the weakest condition and we write P φ to mean ∅ P φ. By Cohen
forcing or standard Cohen forcing we mean the partial order 2<κ of partial functions from
κ to {0, 1} ordered by inclusion, where κ depends on the context.

1.1.2 Functions

We denote by f(x) the value of x under the mapping f and by f [A] or just fA the image
of the set A under f . Similarly f−1[A] or just f−1A indicates the inverse image of A.
Domain and range are denoted respectively by dom f and ran f .

If it is clear from the context that f has an inverse, then f−1 denotes that inverse.
For a map f : X → Y , injective means the same as one-to-one, and surjective the same
as onto.

Suppose that f : X → Y α is a function with range consisting of sequences of elements
of Y of length α. The projection prβ is a function Y α → Y defined by prβ((yi)i<α) = yβ .
For the coordinate functions of f we use the notation fβ = prβ ◦f for all β < α.

By the support of a function f we mean the subset of dom f in which f takes non-zero
values, whatever “zero” means depending on the context (hopefully never unclear). The
support of f is denoted by sprt f .

1.1.3 Model theory

In the section Coding models, on page 478, we fix a countable vocabulary and assume that
all theories are theories in this vocabulary. Moreover we assume that they are first-order,
complete and countable. By tp(a/A) we denote the complete type of a = (a1, . . . , alen a)
over A, where len a is the length of the sequence a.

We think of models as tuples A = ⟨domA, PA
n ⟩n<ω where the Pn are relation symbols

in the vocabulary and the PA
n are their interpretations. If a relation R has arity n

(a property of the vocabulary), then for its interpretation it holds that RA ⊂ (domA)n.
In the section Coding models we adopt more conventions concerning this.

In sections The Silver dichotomy for isomorphism relations (page 492) and Complexity
of isomorphism relations (page 520) we will use the following stability theoretical notions:
stable, superstable, DOP, OTOP, shallow and κ(T). Classifiable means superstable with
no DOP nor OTOP, and the least cardinal in which T is stable is denoted by λ(T).

474 Generalized descriptive set theory and classification theory

1.1.4 Reductions

Let E1 ⊂ X2 and E2 ⊂ Y 2 be equivalence relations on X and Y respectively. A function
f : X → Y is a reduction of E1 to E2 if for all x, y ∈ X we have that xE1y ⇔ f(x)E2f(y).
Suppose in addition that X and Y are topological spaces. Then we say that E1 is
continuously reducible to E2 if there exists a continuous reduction from E1 to E2, and we
say that E1 is Borel reducible to E2 if there is a Borel reduction. For the definition of Borel
adopted in this paper, see Definition 1.17. We denote the fact that E1 is continuously
reducible to E2 by E1 6c E2 and respectively Borel reducibility by E1 6B E2.

We say that relations E2 and E1 are (Borel) bireducible to each other if E2 6B E1

and E1 6B E2.

1.2 Ground work

1.2.1 Trees and topologies

Throughout the paper κ is assumed to be an uncountable regular cardinal which satisfies

(1.1) κ<κ = κ

(For justification of this, see below.) We look at the space κκ (the generalized Baire
space), i.e., the functions from κ to κ and the space formed by the initial segments κ<κ.
It is useful to think of κ<κ as a tree ordered by inclusion and of κκ as a topological space
of the branches of κ<κ; the topology is defined below. Occasionally we work in 2κ (the
generalized Cantor space) and 2<κ instead of κκ and κ<κ.

Definition 1.1 A tree t is a partial order with a root in which the sets {x ∈ t | x < y}
are well ordered for each y ∈ t. A branch in a tree is a maximal linear suborder.

A tree is called a κλ-tree if there are no branches of length λ or higher and no element
has > κ immediate successors. If t and t′ are trees, we write t 6 t′ to mean that there
exists an order preserving map f : t→ t′ such that a <t b⇒ f(a) <t′ f(b).

Convention Unless otherwise said, by a tree t ⊂ (κ<κ)n we mean a tree with domain
being a downward closed subset of

(κ<κ)n ∩ {(p0, . . . , pn−1) | dom p0 = · · · = dom pn−1}
ordered as follows: (p0, . . . , pn−1) < (q0, . . . , qn−1) if pi ⊂ qi for all i ∈ {0, . . . , n− 1}. It
is always a κ+, κ+ 1-tree.

Example 1.2 Let α < κ+ be an ordinal and let tα be the tree of descending sequences
in α ordered by end extension. The root is the empty sequence. It is a κ+ω-tree. Such
tα can be embedded into κ<ω, but note that not all subtrees of κ<ω are κ+ω-trees (there
are also κ+, ω + 1-trees).

In fact the trees κ<β, β 6 κ and tα are universal in the following sense:

Fact 1.3 (κ<κ = κ) Assume that t is a κ+, β +1-tree, β 6 κ and t′ is κ+ω-tree. Then
(1) there is an embedding f : t→ κ<β

(2) and a strictly order preserving map f : t′ → tα for some α < κ+ (in fact there is
also such an embedding f).

Define the topology on κκ as follows. For each p ∈ κ<κ define the basic open set

Np = {η ∈ κκ | η ↾dom(p) = p}.

The Infinity Project 475

Open sets are precisely the empty set and the sets of the form
∪
X, whereX is a collection

of basic open sets. Similarly for 2κ.
There are many justifications for the assumption (1.1) which will be most apparent

after seeing the proofs of our theorems. The crucial points can be summarized as follows:
if (1.1) does not hold, then
� the space κκ does not have a dense subset of size κ;
� there are open subsets of κκ that are not κ-unions of basic open sets which makes

controlling Borel sets difficult (see Definition 1.17 on page 480);
� Vaught’s generalization of the López-Escobar theorem (Theorem 2.2, page 483) fails

—see Remark 2.3 on page 485;
� the model theoretic machinery we are using often needs this cardinality assumption

(see e.g. Theorem 2.8, page 487, and proof of Theorem 4.9, page 525).
Initially the motivation to assume (1.1) was simplicity. Many statements concerning the
space κ<κ are independent of ZFC and using (1.1) we wanted to make the scope of such
statements neater. In the statements of (important) theorems we mention the assumption
explicitly.

Because the intersection of less than κ basic open sets is either empty or a basic open
set, we get the following.

Fact 1.4 (κ<κ = κ) The following hold for a topological space P ∈ {2κ, κκ}:
(1) The intersection of less than κ basic open sets is either empty or a basic open set.
(2) The intersection of less than κ open sets is open.
(3) Basic open sets are closed.
(4) |{A ⊂ P : A is basic open}| = κ.
(5) |{A ⊂ P : A is open}| = 2κ.

In the space κκ × κκ = (κκ)2 we define the ordinary product topology.

Definition 1.5 A set Z ⊂ κκ is Σ1
1 if it is a projection of a closed set C ⊂ (κκ)2. A set

is Π1
1 if it is the complement of a Σ1

1-set. A set is ∆1
1 if it is both Σ1

1 and Π1
1.

As in standard descriptive set theory (κ = ω), we have the following:

Theorem 1.6 For n < ω the spaces (κκ)n and κκ are homeomorphic. �
Remark This standard theorem can be found for example in Jech’s book [16]. Applying
this theorem we can extend the concepts of Definition 1.5 to subsets of (κκ)n. For instance
a subset A of (κκ)n is Σ1

1 if, for a homeomorphism h : (κκ)n → κκ, h[A] is Σ1
1 according

to Definition 1.5.

1.2.2 Ehrenfeucht–Fraïssé games

We will need Ehrenfeucht–Fraïssé games in various connections. It serves also as a way
of coding isomorphisms.

Definition 1.7 (Ehrenfeucht–Fraïssé games) Let t be a tree, κ a cardinal and A and B
structures with domains A and B respectively. Note that t might be an ordinal. The
game EFκt (A,B) is played by players I and II as follows. Player I chooses subsets of
A∪B and climbs up the tree t, and player II chooses partial functions A→ B as follows.
Suppose that a sequence

(Xi, pi, fi)i<γ

476 Generalized descriptive set theory and classification theory

has been played (if γ = 0, then the sequence is empty). Player I picks a set Xγ ⊂ A ∪B
of cardinality strictly less than κ such that Xδ ⊂ Xγ for all ordinals δ < γ. Then player I
picks a pγ ∈ t which is <t-above all pδ where δ < γ. Then player II chooses a partial
function fγ : A → B such that Xγ ∩ A ⊂ dom fγ , Xγ ∩ B ⊂ ran fγ , | dom fγ | < κ and
fδ ⊂ fγ for all ordinals δ < γ. The game ends when player I cannot go up the tree
anymore, i.e., (pi)i<γ is a branch. Player II wins if

f =
∪
i<γ

fi

is a partial isomorphism. Otherwise player I wins.
A strategy of player II in EFκt (A,B) is a function

σ : ([A ∪B]<κ × t)<ht(t) −→
∪

I∈[A]<κ
BI ,

where [R]<κ is the set of subsets of R of size < κ and ht(t) is the height of the tree, i.e.,

ht(t) = sup{α | α is an ordinal and there is an order preserving embedding α→ t}.

A strategy of I is similarly a function

τ :

 ∪
I∈[A]<κ

BI

<ht(t)

−→ [A ∪B]<κ × t.

We say that a strategy τ of player I beats strategy σ of player II if the play τ ∗σ is a win
for I. The play τ ∗ σ is just the play where I uses τ and II uses σ. Similarly σ beats τ if
τ ∗ σ is a win for II. We say that a strategy is a winning strategy if it beats all opponent
strategies. The notation X ↑ EFκt (A,B) means that player X has a winning strategy in
EFκt (A,B).

Remark By our convention, domA = domB = κ, so while player I picks a subset of
domA ∪ domB he actually just picks a subset of κ, but as a small analysis shows, this
does not alter the game.

Consider the game EFκt (A,B), where |A| = |B| = κ, |t| 6 κ and ht(t) 6 κ. The
set of strategies can be identified with κκ, for example as follows. The moves of player I
are members of [A ∪ B]<κ × t and the moves of player II are members of

∪
I∈[A]<κ B

I .
By our convention, domA = domB = A = B = κ, so these become V = [κ]<κ × t and
U =

∪
I∈[κ]<κ κ

I . By our cardinality assumption κ<κ = κ, these sets are of cardinality κ.
Let

f : U → κ, g : U<κ → κ, h : V → κ, k : V <κ → κ

be bijections. Let us assume that τ : U<κ → V is a strategy of player I (there cannot
be more than κ moves in the game because we assumed ht(t) 6 κ). Let ντ : κ → κ be
defined by

ντ = h ◦ τ ◦ g−1

and, if σ : V <κ → U is a strategy of player II, let νσ be defined by

νσ = f ◦ σ ◦ k−1.

We say that ντ codes τ .

The Infinity Project 477

Theorem 1.8 (κ<κ = κ) Let λ 6 κ be a cardinal. The set

C = {(ν, η, ξ) ∈ (κκ)3 | ν codes a winning strategy of II in EFκλ(Aη,Aξ)} ⊂ (κκ)3

is closed. If λ < κ, then also the corresponding set for player I

D = {(ν, η, ξ) ∈ (κκ)3 | ν codes a winning strategy of I in EFκλ(Aη,Aξ)} ⊂ (κκ)3

is closed.

Compare with Theorem 1.15.

Proof. Assuming (ν0 , η0 , ξ0) /∈ C, we will show that there is an open neighborhood U of
(ν0 , η0 , ξ0) such that U ⊂ (κκ)3 \ C. Denote the strategy that ν0 codes by σ0 . By the
assumption there is a strategy τ of I which beats σ0 . Consider the game in which I uses
τ and II uses σ0 . Denote the γ-th move in this game by (Xγ , hγ) where Xγ ⊂ Aη0 ∪Aξ0
and hγ : Aη0 → Aξ0 are the moves of the players. Since player I wins this game, there is
α < λ for which hα is not a partial isomorphism between Aη0 and Aξ0 . Let

ε = sup(Xα ∪ domhα ∪ ranhα)

(recall domAη = Aη = κ for any η by convention). Let π be the coding function defined
in Definition 1.14 on page 478. Let

β1 = π[ε<ω] + 1.

The idea is that η0 ↾β1 and ξ0 ↾β1 decide the models Aη0 and Aξ0 as far as the game has
been played. Clearly β1 < κ.

Up to this point, player II has applied her strategy σ0 precisely to the sequences of
the moves made by her opponent, namely to S = {(Xγ)γ<β | β < α} ⊂ domσ0 . We
can translate this set to represent a subset of the domain of ν0 : S′ = k[S], where k is as
defined before the statement of the present theorem. Let β2 = (supS′) + 1 and let

β = max{β1, β2}.
Thus η0 ↾β, ξ0 ↾β and ν0 ↾β decide the moves (hγ)γ<α and the winner.

Now

U = {(ν, η, ξ) | ν ↾β = ν0 ↾β ∧ η ↾β = η0 ↾β ∧ ξ ↾β = ξ0 ↾β}
= Nν0 ↾β ×Nη0 ↾β ×Nξ0 ↾β

is the desired neighborhood. Indeed, if (ν, η, ξ) ∈ U and ν codes a strategy σ, then τ beats
σ on the structures Aη, Aξ, since the first α moves are exactly as in the corresponding
game of the triple (ν0 , η0 , ξ0).

Let us now turn to D. The proof is similar. Assume that (ν0 , η0 , ξ0) /∈ D and ν0
codes strategy τ0 of player I. Then there is a strategy of II which beats τ0 . Let β < κ
be, as before, an ordinal such that all moves have occurred before β and the relations
of the substructures generated by the moves are decided by η0 ↾ β, ξ0 ↾ β as well as the
strategy τ0 . Unlike for player I, the win of II is determined always only in the end of the
game, so β can be > λ. This is why we made the assumption λ < κ, by which we can
always have β < κ and so

U = {(ν, η, ξ) | ν ↾β = ν0 ↾β ∧ η ↾β = η0 ↾β ∧ ξ ↾β = ξ0 ↾β}
= Nν0 ↾β ×Nη0 ↾β ×Nξ0 ↾β

is an open neighborhood of (ν0 , η0 , ξ0) in the complement of D. �

478 Generalized descriptive set theory and classification theory

Let us list some theorems concerning Ehrenfeucht–Fraïssé games which we will use
in the proofs.

Definition 1.9 Let T be a theory and A a model of T of size κ. The L∞κ-Scott height
of A is

sup{α | ∃B |= T (A ̸∼= B ∧ II ↑ EFκtα(A,B))},
if the supremum exists, and ∞ otherwise, where tα is as in Example 1.2 and the subse-
quent fact.

Remark Sometimes the Scott height is defined in terms of quantifier ranks, but this
gives an equivalent definition by Theorem 1.11 below.

Definition 1.10 The quantifier rank R(φ) of a formula φ ∈ L∞∞ is an ordinal defined
by induction on the length of φ as follows. If φ is quantifier free, then R(φ) = 0. If
φ = ∃xψ(x), then R(φ) = R(ψ(x)) + 1. If φ = ¬ψ, then R(φ) = R(ψ). If φ =

∧
α<λ ψα,

then R(φ) = sup{R(ψα | α < λ)}.

Theorem 1.11 Models A and B satisfy the same L∞κ-sentences of quantifier rank < α
if and only if II ↑ EFκtα(A,B). �

The following theorem is a well known generalization of a theorem of Karp [17]:

Theorem 1.12 Models A and B are L∞κ-equivalent if and only if II ↑ EFκω(A,B). �

Remark 1.13 Models A and B of size κ are Lκ+κ-equivalent if and only if they are
L∞κ-equivalent. For an extensive and detailed survey on this and related topics, see [37].

1.2.3 Coding models

There are various degrees of generality to which the content of this text is applicable.
Many of the results generalize to vocabularies with infinitary relations or to uncountable
vocabularies, but not all. We find it reasonable though to fix the used vocabulary to
make the presentation clearer.

Models can be coded to models with just one binary predicate. Function symbols
often make situations unnecessarily complicated from the point of view of this paper.

Thus our approach is, without great loss of generality, to fix our attention to models
with finitary relation symbols of all finite arities.

Let us fix L to be the countable relational vocabulary consisting of the relations Pn,
n < ω, L = {Pn | n < ω}, where each Pn is an n-ary relation: the interpretation of Pn is
a set consisting of n-tuples. We can assume without loss of generality that the domain
of each L-structure of size κ is κ, i.e., domA = κ. If we restrict our attention to these
models, then the set of all L-models has the same cardinality as κκ.

We will next present the way we code the structures and the isomorphisms between
them into the elements of κκ (or equivalently —as will be seen— to 2κ).

Definition 1.14 Let π be a bijection π : κ<ω → κ. If η ∈ κκ, define the structure Aη to
have dom(Aη) = κ and if (a1, . . . an) ∈ dom(Aη)n, then

(a1, . . . , an) ∈ P
Aη
n ⇐⇒ η(π(a1, . . . , an)) > 0.

In that way the rule η 7→ Aη defines a surjective (onto) function from κκ to the set of all
L-structures with domain κ. We say that η codes Aη.

The Infinity Project 479

Remark Define the equivalence relation on κκ by η ∼ ξ ⇔ sprt η = sprt ξ, where sprt
means support; see the section Functions on page 473. Now we have η ∼ ξ ⇔ Aη = Aξ,
i.e., the identity map κ → κ is an isomorphism between Aη and Aξ when η ∼ ξ and
vice versa. On the other hand κκ/ ∼∼= 2κ, so the coding can be seen also as a bijection
between models and the space 2κ.

The distinction will make little difference, but it is convenient to work with both
spaces depending on context. To illustrate the insignificance of the choice between κκ

and 2κ, note that ∼ is a closed equivalence relation and the identity on 2κ is bireducible
with ∼ on κκ (see page 474).

1.2.4 Coding partial isomorphisms

Let ξ, η ∈ κκ and let p be a bijection κ → κ × κ. Let ν ∈ κα, α 6 κ. The idea is that,
for β < α, p1(ν(β)) is the image of β under a partial isomorphism and p2(ν(β)) is the
inverse image of β. That is, for a ν ∈ κα, define a relation Fν ⊂ κ× κ:

(β, γ) ∈ Fν ⇐⇒
(
β < α ∧ p1(ν(β)) = γ

)
∨
(
γ < α ∧ p2(ν(γ)) = β

)
.

If ν happens to be such that Fν is a partial isomorphism Aξ → Aη, then we say that
ν codes a partial isomorphism between Aξ and Aη, this isomorphism being determined
by Fν . If α = κ and ν codes a partial isomorphism, then Fν is an isomorphism and we
say that ν codes an isomorphism.

Theorem 1.15 The set

C = {(ν, η, ξ) ∈ (κκ)3 | ν codes an isomorphism between Aη and Aξ}

is a closed set.

Proof. Suppose that (ν, η, ξ) /∈ C, i.e., ν does not code an isomorphism Aη ∼= Aξ. Then
(at least) one of the following holds:

(1) Fν is not a function,
(2) Fν is not one-to-one,
(3) Fν does not preserve relations of Aη, Aξ.

(Note that Fν is always onto if it is a function and dom ν = κ.) If (1), (2) or (3) holds
for ν, then respectively (1), (2) or (3) holds for any triple (ν ′, η′, ξ′) where ν ′ ∈ Nν↾γ ,
η′ ∈ Nη↾γ and ξ′ ∈ Nξ↾γ , so it is sufficient to check that (1), (2) or (3) holds for ν ↾γ for
some γ < κ.

Let us check the above in the case that (3) holds. The other cases are left to the
reader. Suppose that (3) holds. Then there is (a0, . . . , an−1) ∈ (domAη)n = κn such
that (a0, . . . , an−1) ∈ Pn and (a0, . . . , an−1) ∈ P

Aη
n and (Fν(a0), . . . , Fν(an−1)) /∈ P

Aξ
n . If

β is greater than

max({π(a0, . . . , an−1), π(Fν(a0), . . . , Fν(an−1))} ∪ {a0, . . . an−1, Fν(a0), . . . , Fν(an−1)}),

then it is easy to verify that any (η′, ξ′, ν ′) ∈ Nη↾β ×Nξ↾β ×Nν↾β satisfies (3) as well. �

Corollary 1.16 The set {(η, ξ) ∈ (κκ)2 | Aη ∼= Aξ} is Σ1
1.

Proof. It is the projection of the set C of Theorem 1.15. �

480 Generalized descriptive set theory and classification theory

1.3 Generalized Borel sets

Definition 1.17 We have already discussed ∆1
1-sets which generalize Borel subsets of

Polish space in one way. Let us see how else can we generalize usual Borel sets to our
setting.
� ([5, 24]) The collection of λ-Borel subsets of κκ is the smallest set which contains

the basic open sets of κκ and is closed under complementation and under taking
intersections of size λ. Since we consider only κ-Borel sets, we write Borel = κ-Borel.

� The collection ∆1
1 = Σ1

1 ∩Π1
1.� ([5, 24]) The collection of Borel* subsets of κκ. A set A is Borel* if there exists a κ+κ-

tree t in which each increasing sequence of limit order type has a unique supremum
and a function

h : {branches of t} −→ {basic open sets of κκ}
such that η ∈ A⇔ player II has a winning strategy in the game G(t, h, η). The game
G(t, h, η) is defined as follows. At the first round, player I picks a minimal element of
the tree; on successive rounds he picks an immediate successor of the last move played
by player II, and, if there is no last move, he chooses an immediate successor of the
supremum of all previous moves. Player II always picks an immediate successor of
player I’s choice. The game ends when the players cannot go up the tree anymore,
i.e., have chosen a branch b. Player II wins if η ∈ h(b); otherwise I wins.

A dual of a Borel* set B is the set

Bd = {ξ | I ↑ G(t, h, ξ)}
where t and h satisfy the equation B = {ξ | II ↑ G(t, h, ξ)}. The dual is not unique.

Remark Suppose that t is a κ+κ tree and h : {branches of t} → Borel∗ is a labeling
function taking values in Borel* sets instead of basic open sets. Then {η | II ↑ G(t, h, η)}
is a Borel* set.

Thus if we change the basic open sets to Borel* sets in the definition of Borel*, we
get Borel*.

Remark 1.18 Blackwell [2] defined Borel* sets in the case κ = ω and showed that in
fact Borel = Borel*. When κ is uncountable it is not the case. But it is easily seen that
if t is a κ+ω-tree, then the Borel* set coded by t (with some labeling h) is a Borel set,
and vice versa: each Borel set is a Borel* set coded by a κ+ω-tree. We will use this
characterization of Borel.

It was first explicitly proved in [24] that these are indeed generalizations:

Theorem 1.19 ([24], κ<κ = κ) Borel ⊂ ∆1
1 ⊂ Borel* ⊂ Σ1

1.

Proof. (Sketch) If A is Borel*, then it is Σ1
1; intuitively, because η ∈ A if and only if there

exists a winning strategy of player II in G(t, h, η) where (t, h) is a tree that codes A (here
one needs the assumption κ<κ = κ to be able to code the strategies into the elements
of κκ). By Remark 1.18 above, if A is Borel, then there is also such a tree. Since Borel ⊂
Borel* by Remark 1.18 and Borel is closed under taking complements, Borel sets are ∆1

1.
The fact that ∆1

1-sets are Borel* is a more complicated issue; it follows from a sepa-
ration theorem proved in [24]. The separation theorem says that any two disjoint Σ1

1-sets
can be separated by Borel* sets. It is proved in [24] for κ = ω1, but the proof generalizes
to any κ (with κ<κ = κ). �

The Infinity Project 481

Additionally we have the following results:

Theorem 1.20
(1) Borel (∆1

1.
(2) ∆1

1 (Σ1
1.

(3) If V = L, then Borel∗ = Σ1
1.

(4) ∆1
1 (Borel∗ holds if V = L, and also in every P-generic extension starting from a

ground model with κ<κ = κ, where

P = {p | p is a function, |p| < κ, dom p ⊂ κ× κ+, ran p ⊂ {0, 1}}.

Proof. (Sketch)
(1) The following universal Borel set is not Borel itself, but is ∆1

1:

B = {(η, ξ) ∈ 2κ × 2κ | η is in the set coded by (tξ, hξ)},

where ξ 7→ (tξ, hξ) is a continuous coding of (κ+ω-tree, labeling)-pairs in such a way
that for all κ+ω-trees t ⊂ κ<ω and labelings h there is ξ with (tξ, hξ) = (t, h). It is
not Borel since if it were, then the diagonal’s complement

D = {η | (η, η) /∈ B}

would be a Borel set, yet it is not, since it cannot be coded by any (tξ, hξ). On the
other hand, its complement C = (2κ)2 \ B is Σ1

1, because (η, ξ) ∈ C if and only if
there exists a winning strategy of player I in the Borel-game G(tξ, hξ, η) and the
latter can be coded to a Borel set. It is left to the reader to verify that when κ > ω,
then the set

F = {(η, ξ, ν) | ν codes a winning strategy for I in G(tξ, hξ, η)}

is closed.
The existence of an isomorphism relation which is ∆1

1 but not Borel follows from
Theorems 4.7 and 4.8.

(2) Similarly as above (and similarly as in the case κ = ω), take a universal Σ1
1-set

A ⊂ 2κ × 2κ with the property that if B ⊂ 2κ is any Σ1
1-set, then there is η ∈ 2κ

such that B × {η} ⊂ A. This set can be constructed as in the case κ = ω; see [16].
The diagonal {η | (η, η) ∈ A} is Σ1

1 but not Π1
1.

(3) Suppose V = L and A ⊂ 2κ is Σ1
1. There exists a formula φ(x, ξ) with parameter

ξ ∈ 2κ which is Σ1 in the Lévy hierarchy (see [16]) and for all η ∈ 2κ we have

η ∈ A ⇐⇒ L |= φ(η, ξ).

Now we have that η ∈ A if and only if the set{
α < κ | ∃β

(
η ↾α, ξ ↾α ∈ Lβ, Lβ |=

(
ZF− ∧ (α is a cardinal) ∧ φ(η ↾α, ξ ↾α)

))}
contains an ω-cub set.

But the ω-cub filter is Borel* so A is also Borel*.
(4) The first part follows from clauses (2) and (3) of this theorem and the second part

from clauses (3.20), (3.20) and (3.20) of Theorem 3.20 on page 502; see especially
the proof of (7). �

Open Problem Is it consistent that Borel* is a proper subclass of Σ1
1, or even equals ∆1

1?
Is it consistent that all the inclusions are proper at the same time: ∆1

1 (Borel∗ (Σ1
1?

482 Generalized descriptive set theory and classification theory

Theorem 1.21 For a set S ⊂ κκ, the following are equivalent:
(1) S is Σ1

1.
(2) S is a projection of a Borel set.
(3) S is a projection of a Σ1

1-set.
(4) S is a continuous image of a closed set.

Proof. Let us go in order.
(1)⇒ (2): Closed sets are Borel.
(2)⇒ (3): The same proof as in the standard case κ = ω gives that Borel sets are Σ1

1

(see for instance [16]).
(3)⇒ (4): Let A ⊂ κκ × κκ be a Σ1

1-set which is the projection of A, S = pr0A. Then
let C ⊂ κκ×κκ×κκ be a closed set such that pr1C = A. Here pr0 : κ

κ×κκ → κκ and
pr1 : κ

κ×κκ×κκ → κκ×κκ are the obvious projections. Let f : κκ×κκ×κκ → κκ be
a homeomorphism. Then S is the image of the closed set f [C] under the continuous
map pr0 ◦ pr1 ◦f−1.

(4)⇒ (1): The image of a closed set under a continuous map f is the projection of the
graph of f restricted to that closed set. It is a basic topological fact that a graph
of a continuous partial function with closed domain is closed (provided the range is
Hausdorff). �

Theorem 1.22 ([24]) Borel* sets are closed under unions and intersections of size κ. �
Definition 1.23 A Borel* set B is determined if there exists a tree t and a labeling
function h such that the corresponding game G(t, h, η) is determined for all η ∈ κκ and

B = {η | II has a winning strategy in G(t, h, η)}.

Theorem 1.24 ([24]) ∆1
1-sets are exactly the determined Borel* sets. �

2 Borel sets, ∆1
1-sets and infinitary logic

2.1 The language Lκ+κ and Borel sets

The interest in the class of Borel sets is explained by the fact that the Borel sets are
relatively simple yet at the same time this class includes many interesting definable sets.
Below we prove Vaught’s theorem (Theorem 2.2), which equates “invariant” Borel sets
with those definable in the infinitary language Lκ+κ. Recall that two models A and B
of size κ are Lκ+κ-equivalent if and only if they are L∞κ-equivalent. Vaught proved his
theorem for the case κ = ω1 assuming CH in [38], but the proof works for arbitrary κ
assuming κ<κ = κ.

Definition 2.1 Denote by Sκ the set of all permutations of κ. If u ∈ κ<κ, denote

u = {p ∈ Sκ | p−1 ↾domu = u}.
Note that ∅ = Sκ and, if u ∈ κα is not injective, then u = ∅.

A permutation p : κ→ κ acts on 2κ by

pη = ξ ⇐⇒ p : Aη → Aξ is an isomorphism.

The map η 7→ pη is well defined for every p and it is easy to check that it defines an
action of the permutation group Sκ on the space 2κ. We say that a set A ⊂ 2κ is closed
under permutations if it is a union of orbits of this action.

The Infinity Project 483

Theorem 2.2 ([38], κ<κ = κ) A set B ⊂ κκ is Borel and closed under permutations if
and only if there is a sentence φ in Lκ+κ such that B = {η | Aη |= φ}.

Proof. Let φ be a sentence in Lκ+κ. Then {η ∈ 2κ | Aη |= φ} is closed under permuta-
tions, because, if η = pξ, then Aη ∼= Aξ and Aη |= φ ⇐⇒ Aξ |= φ for every sentence φ.
If φ is a formula with parameters (ai)i<α ∈ κα, one easily verifies by induction on the
complexity of φ that the set

{η ∈ 2κ | Aη |= φ((ai)i<α)}
is Borel. This of course implies that for every sentence φ the set {η | Aη |= φ} is Borel.

The converse is less trivial. Note that the set of permutations Sκ ⊂ κκ is Borel, since

(2.1) Sκ =
∩
β<κ

∪
α<κ

{η | η(α) = β}︸ ︷︷ ︸
open

∩
∩

α<β<κ

{η | η(α) ̸= η(β)}︸ ︷︷ ︸
open

.

For a set A ⊂ κκ and u ∈ κ<κ, define

A∗u =
{
η ∈ 2κ | {p ∈ u | pη ∈ A} is co-meager in u

}
.

From now on in this section we will write “{p ∈ u | pη ∈ A} is co-meager”, when we really
mean “co-meager in u”.

Let us show that the set

Z = {A ⊂ 2κ | A is Borel and A∗u is Lκ+κ-definable for all u ∈ κ<κ}
contains all the basic open sets, is closed under intersections of size κ and under comple-
mentation in the three steps (a), (b) and (c) below. This implies that Z is the collection
of all Borel sets. We will additionally keep track of the fact that the formula which
defines A∗u depends only on A and domu, i.e., for each β < κ and Borel set A there
exists φ = φAβ such that for all u ∈ κβ we have A∗u = {η | Aη |= φ((ui)i<β)}. Setting
u = ∅, we have the intended result, because A∗∅ = A for all A which are closed under
permutations and φ is a sentence (with no parameters).

If A is fixed we denote φAβ = φβ .
(a) Assume q ∈ 2<κ and let Nq be the corresponding basic open set. Let us show that

Nq ∈ Z. Let u ∈ κβ be arbitrary. We have to find φ
Nq
β . Let θ be a quantifier free

formula with α parameters such that

Nq = {η ∈ 2κ | Aη |= θ((γ)γ<α)}.
Here (γ)γ<α denotes both an initial segment of κ as well as an α-tuple of the structure.
Suppose α 6 β. We have p ∈ u⇒ u ⊂ p−1, so

η ∈ N∗u
q ⇐⇒ {p ∈ u | pη ∈ Nq} is co-meager
⇐⇒ {p ∈ u | Apη |= θ((γ)γ<α)} is co-meager

⇐⇒ {p ∈ u | Aη |= θ((p−1(γ))γ<α)} is co-meager
⇐⇒ {p ∈ u | Aη |= θ((uγ)γ<α)︸ ︷︷ ︸

independent of p

} is co-meager

⇐⇒ Aη |= θ((uγ)γ<α).

Then φβ = θ.
Assume then that α > β. By the above, we still have

η ∈ N∗u
q ⇐⇒ E =

{
p ∈ u | Aη |= θ

(
(p−1(γ))γ<α

)}
is co-meager.

484 Generalized descriptive set theory and classification theory

Assume that w = (wγ)γ<α ∈ κα is an arbitrary sequence with no repetition and such
that u ⊂ w. Since w is an open subset of u and E is co-meager, there is p ∈ w ∩ E.
Because p ∈ E, we have Aη |= θ

(
(p−1(γ))γ<α

)
. On the other hand, p ∈ w, so we have

w ⊂ p−1, i.e., wγ = w(γ) = p−1(γ) for γ < α. Hence

(2.2) Aη |= θ((wγ)γ<α).

On the other hand, if for every injective w ∈ κα, w ⊃ u, we have (2.2), then in fact
E = u and is trivially co-meager. Therefore we have an equivalence:

η ∈ N∗u
q ⇐⇒ (∀w ⊃ u)(w ∈ κα ∧ w injective⇒ Aη |= θ((wγ)γ<α)).

But the latter can be expressed in the language Lκ+κ by the formula φβ((wi)i<β):∧
i<j<β

(wi ̸= wj) ∧
(
∀

β6i<α
wi

)(∧
i<j<α

(wi ̸= wj)→ θ((wi)i<α)
)
.

Here θ was defined to be a formula defining Nq with parameters. It is clear thus that θ
is independent of u. Furthermore the formulas constructed above from θ depend only
on β = domu and on θ. Hence the formulas defining N∗u

q and N∗v
q for domu = dom v

are the same modulo parameters.
(b) For each i < κ let Ai ∈ Z. We want to show that

∩
i<κAi ∈ Z. Assume that u ∈ κ<κ

is arbitrary. It suffices to show that∩
i<κ

(A∗u
i) =

(∩
i<κ

Ai

)∗u
,

because then φ∩iAi
β is just the κ-conjunction of the formulas φAiβ , which exist by the

induction hypothesis. Clearly the resulting formula depends again only on domu if
the previous did. Note that a κ-intersection of co-meager sets is co-meager. Now

η ∈
∩
i<κ

(A∗u
i) ⇐⇒ (∀i < κ)({p ∈ u | pη ∈ Ai} is co-meager)

⇐⇒ (∀i < κ)(∀i < κ)({p ∈ u | pη ∈ Ai} is co-meager)

⇐⇒
∩
i<κ

{p ∈ u | pη ∈ Ai} is co-meager

⇐⇒ {p ∈ u | pη ∈
∩
i<κ

Ai} is co-meager

⇐⇒ η ∈
(∩
i<κ

Ai

)∗u
.

(c) Assume that A ∈ Z, i.e., that A∗u is definable for any u. Let φdomu be the formula
which defines A∗u. Let now u ∈ κ<κ be arbitrary and let us show that (Ac)∗u is
definable. We will show that

(Ac)∗u =
∩
v⊃u

(A∗v)c ,

i.e., for all η,

(2.3) η ∈ (Ac)∗u ⇐⇒ ∀v ⊃ u(η /∈ A∗v).

Granted this, one can write the formula “∀v ⊃ u¬φdomu((vi)i<dom v)”, which is not of
course the real φAcβ which we will write in the end of the proof.

The Infinity Project 485

To prove (2.3), we have to show first that, for all η ∈ κκ, the set

B = {p ∈ u | pη ∈ A}

has the property of Baire (P.B.); see Section 3.3.
The set of all permutations Sκ ⊂ κκ is Borel by (2.1) on page 483. The set u is an

intersection of Sκ with an open set. Again the set {p ∈ u | pη ∈ A} is the intersection
of u and the inverse image of A under the continuous map (p 7→ pη), so it is Borel
and hence has the property of Baire.

We can now turn into proving the equivalence (2.3). First “⇐”:

η /∈ (Ac)∗u ⇒ B = {p ∈ u | pη ∈ A} is not meager in u
⇒ By P.B. of B there is a non-empty open U such that U \B is meager
⇒ There is non-empty v ⊂ u such that v \B is meager
⇒ There exists v ⊂ u such that {p ∈ v | pη ∈ A} = v ∩B is co-meager
⇒ ∃v ⊃ u(η ∈ A∗v).

And then the other direction “⇒”:

η ∈ (Ac)∗u ⇒ {p ∈ u | pη ∈ A} is meager
⇒ For all v ⊂ u the set {p ∈ v | pη ∈ A} is meager
⇒ ∀v ⊂ u(η /∈ A∗v).

Let us now write the formula ψ = φA
c

β such that

∀v ⊂ u(η /∈ A∗v) ⇐⇒ Aη |= ψ((ui)i<β),

where β = domu: let ψ((ui)i<β) be

∧
β6γ<κ
∀
i<γ

xi

[∧
j<β

(xj = uj) ∧
∧

i<j<γ

(xi ̸= xj)
]
→ ¬φγ((xi)i<γ)

 .

One can easily see that this is equivalent to ∀v ⊃ u
(
¬φdom v((vi)i<dom v)

)
and that ψ

depends only on domu modulo parameters. �

Remark 2.3 If κ<κ > κ, then the direction from right to left of the above theorem does
not in general hold. Let ⟨κ,⋖, A⟩ be a model with domain κ, A ⊂ κ and ⋖ a well ordering
of κ of order type κ. Shelah and Väänänen have shown [32, Corollary 17] that if κ = λ+,
κ<κ > κ, λ<λ = λ, and a forcing axiom holds (and ωL1 = ω1 if λ = ω), then there is a
sentence of Lκκ defining the set

STAT = {⟨κ,⋖, A⟩ | A is stationary}.

If now STAT is Borel, then so would be the set CUB defined in Section 3.3, but by
Theorem 3.20, page 502, this set cannot be Borel since Borel sets have the property of
Baire by Theorem 3.16 on page 501.

Open Problem Does the direction left to right of Theorem 2.2 hold without the as-
sumption κ<κ = κ?

486 Generalized descriptive set theory and classification theory

2.2 The language Mκ+κ and ∆1
1-sets

In this section we will present a theorem similar to Theorem 2.2. It is also a generalization
of the known result which follows from [24] and [35]:

Theorem 2.4 ([24, 35]) Let A be a model of size ω1. Then the isomorphism type I = {η |
Aη ∼= A} is ∆1

1 if and only if there is a sentence φ in Mκ+κ such that I = {η | Aη |= φ}
and 2κ \ I = {η | Aη |=∼φ}, where ∼θ is the dual of θ.

The idea of the proof of the following theorem is due to Sam Coskey and Philipp
Schlicht:

Theorem 2.5 (κ<κ = κ) A set D ⊂ 2κ is ∆1
1 and closed under permutations if and only if

there is a sentence φ in Mκ+κ such that D = {η | Aη |= φ} and κκ \D = {η | Aη |=∼φ},
where ∼θ is the dual of θ.

We have to define these concepts before the proof.

Definition 2.6 (Karttunen [18]) Let λ and κ be cardinals. The language Mλκ is defined
to be the set of pairs (t,≪) of a tree t and a labeling function ≪ . The tree t is a λκ-tree
where the limits of increasing sequences of t exist and are unique. The labeling ≪ is a
function satisfying the following conditions:
(1) ≪ : t→ a ∪ a ∪ {

∧
,
∨
} ∪ {∃xi | i < κ} ∪ {∀xi | i < κ} where a is the set of atomic

formulas and a is the set of negated atomic formulas.
(2) If x ∈ t has no successors, then ≪(t) ∈ a ∪ a.
(3) If x ∈ t has exactly one immediate successor then≪(t) is either ∃xi or ∀xi for some

i < κ.
(4) Otherwise ≪(t) ∈ {

∨
,
∧
}.

(5) If x < y, ≪(x) ∈ {∃xi, ∀xi} and ≪(y) ∈ {∃xj , ∀xj}, then i ̸= j.

Definition 2.7 Truth for Mλκ is defined in terms of a semantic game. Let (t,≪) be the
pair which corresponds to a particular sentence φ and let A be a model. The semantic
game S(φ,A) = S(t,≪,A) for Mλκ is played by players I and II as follows. At the first
move the players are at the root and later in the game at some other element of t. Let
us suppose that they are at the element x ∈ t. If ≪ (x) =

∨
, then player II chooses a

successor of x and the players move to that chosen element. If ≪(x) =
∧

, then player I
chooses a successor of x and the players move to that chosen element. If ≪ (x) = ∀xi
then player I picks an element ai ∈ A and if ≪(x) = ∃xi then player II picks an element
ai and they move to the immediate successor of x. If they come to a limit, they move to
the unique supremum. If x is a maximal element of t, then they plug the elements ai in
place of the corresponding free variables in the atomic formula ≪ (x). Player II wins if
this atomic formula is true in A with these interpretations. Otherwise player I wins.

We define A |= φ if and only if II has a winning strategy in the semantic game.
Given a sentence φ, the dual sentence∼φ is defined by modifying the labeling function

as follows. The atomic formulas are replaced by their negations, the symbols
∨

and
∧

switch places and the quantifiers ∀ and ∃ switch places. A sentence φ ∈Mλκ is determined
if for all models A either A |= φ or A |=∼φ.

Now the statement of Theorem 2.5 makes sense. Theorem 2.5 concerns a sentence φ
whose dual defines the complement of the set defined by φ among the models of size κ, so
it is determined in that model class. Before the proof let us recall a separation theorem
for Mκ+κ, Theorem 3.9 from [34]:

The Infinity Project 487

Theorem 2.8 Assume κ<κ = λ and let ∃Rφ and ∃Sψ be two Σ1
1 sentences where φ and

ψ are in Mκ+κ and ∃R and ∃S are second order quantifiers. If ∃Rφ∧∃Sψ does not have
a model, then there is a sentence θ ∈Mλ+λ such that, for all models A,

A |= ∃Rφ⇒ A |= θ and A |= ∃Sψ ⇒ A |=∼θ. �
Definition 2.9 For a tree t, let σt be the tree of downward closed linear subsets of t
ordered by inclusion.

Proof of Theorem 2.5. Let us first show that if φ is an arbitrary sentence of Mκ+κ, then
Dφ = {η | Aη |= φ} is Σ1

1. The proof has the same idea as the proof of Theorem 1.19
that Borel* ⊂ Σ1

1. Note that this implies that if ∼φ defines the complement of Dφ in 2κ,
then Dφ is ∆1

1.
A strategy in the semantic game S(φ,Aη) = S(t,≪,Aη) is a function

υ : σt× (domAη)<κ −→ t ∪ (t× domAη).
This is because the previous moves always form an initial segment of a branch of the
tree together with the sequence of constants picked by the players from domAη at the
quantifier moves, and a move consists either of going to some node of the tree or going
to a node of the tree together with choosing an element from domAη. By the convention
that domAη = κ, a strategy becomes a function

υ : σt× κ<κ −→ t ∪ (t× κ).
Because t is a κ+κ-tree, there are fewer than κ moves in a play (there are no branches

of length κ and the players go up the tree on each move). Let

f : σt× κ<κ −→ κ

be any bijection and let
g : t ∪ (t× κ) −→ κ

be another bijection. Let F be the bijection

F : (t ∪ (t× κ))σt×κ<κ −→ κκ

defined by F (υ) = g ◦ υ ◦ f−1. Let

C = {(η, ξ) | F−1(ξ) is a winning strategy of II in S(t,≪,Aη)}.
Clearly Dφ is the projection of C. Let us show that C is closed. Consider an element
(η, ξ) in the complement of C. We shall show that there is an open neighborhood of (η, ξ)
outside C. Denote υ = F−1(ξ). Since υ is not a winning strategy, there is a strategy τ
of I that beats υ. There are α+1 < κ moves in the play τ ∗ υ (by definition all branches
have successor order type). Assume that b = (xi)i6α is the chosen branch of the tree and
(ci)i<α the constants picked by the players. Let β < κ be an ordinal with the properties
{f((xi)i<γ , (ci)i<γ) | γ 6 α+ 1} ⊂ β and

(2.4) η′ ∈ Nη↾β → Aη′ ̸|=≪(xα)((ci)i<α).

Such a β exists, since |{f((xi)i<γ , (ci)i<γ) | γ 6 α + 1}| < κ and ≪ (xα) is a (possibly
negated) atomic formula which is not true in Aη, because II lost the game τ ∗ υ and
because already a fragment of size < κ of Aη decides this. Now if (η′, ξ′) ∈ Nη↾β ×Nξ↾β
and υ′ = F−1(ξ′), then υ ∗ τ is the same play as τ ∗υ′. So Aη′ ̸|=≪(xα)((ci)i<α) by (2.4),
(η′, ξ′) is not in C, and Nη↾β×Nξ↾β is the intended open neighborhood of (η, ξ) outside C.
This completes the “if”-part of the proof.

488 Generalized descriptive set theory and classification theory

Now for a given A ∈ ∆1
1 which is closed under permutations we want to find a sentence

φ ∈Mκ+κ such that A = {η | Aη |= φ} and 2κ \A = {η | Aη |=∼φ}. By our assumption
κ<κ = κ and Theorems 1.24 and 2.8, it is enough to show that for a given Borel* set B
which is closed under permutations, there is a sentence ∃Rψ which is Σ1

1 over Mκ+κ (as
in the formulation of Theorem 2.8), such that B = {η | Aη |= ∃Rψ}.

The sentence “R is a well ordering of the universe of order type κ”, is definable by
the formula θ = θ(R) of Lκ+κ ⊂Mκ+κ:

“R is a linear ordering on the universe”

∧
(
∀
i<ω

xi

)(∨
i<ω

¬R(xi+1, xi)
)

∧ ∀x
∨
α<κ
∃
i<α

yi

[(
∀y(R(y, x)→

∨
i<α

yi = y)
)]
.(2.5)

(We assume κ > ω, so the infinite quantification is allowed. The second row says that
there are no descending sequences of length ω and the third row says that the initial
segments are of size less than κ. This ensures that θ(R) says that R is a well ordering of
order type κ.)

Let t and h be the tree and the labeling function corresponding to B. Define the tree
t⋆ as follows.

(1) Assume that b is a branch of t with h(b) = Nξ↾α for some ξ ∈ κκ and α < κ. Then
attach a sequence of order type α∗ on top of b where

α∗ =
∪

s∈π−1[α]

ran s,

where π is the bijection κ<ω → κ used in the coding; see Definition 1.14 on page 478.
(2) Do this to each branch of t and add a root r to the resulting tree.

After doing this, the resulting tree is t⋆. Clearly it is a κ+κ-tree, because t is. Next,
define the labeling function ≪. If x ∈ t then either ≪ (x) =

∧
or ≪ (x) =

∨
depending

on whether it is player I’s move or player II’s move: formally let n < ω be such that
OTP({y ∈ t⋆ | y 6 x}) = α + n where α is a limit ordinal or 0; then if n is odd, put
≪ (x) =

∧
and otherwise ≪ (x) =

∨
. If x = r is the root, then ≪ (x) =

∧
. Otherwise,

if x is not maximal, define

β = OTP{y ∈ t⋆ \ (t ∪ {r}) | y 6 x}

and set ≪(x) = ∃xβ .
Next we will define the labeling of the maximal nodes of t⋆. By definition these

should be atomic formulas or negated atomic formulas, but it is clear that they can be
replaced without loss of generality by any formula of Mκ+κ; this fact will make the proof
simpler. Assume that x is maximal in t⋆. Then ≪ (x) will depend only on h(b) where b
is the unique branch of t leading to x. Let us define ≪(x) to be the formula of the form
θ ∧Θb((xi)i<α∗), where θ is defined above and Θb is defined below. The idea is that

Aη |= Θb((aγ)γ<α∗)} ⇐⇒ η ∈ h(b) and ∀γ < α∗(aγ = γ).

The Infinity Project 489

Let us define such a Θb. Suppose that ξ and α are such that h(b) = Nξ↾α. Define for
s ∈ π−1[α] the formula Asb as follows:

Asb =

{
Pdom s, if Aξ |= Pdom s((s(i))i∈dom s),

¬Pdom s, if Aξ ̸|= Pdom s((s(i))i∈dom s).

Then define

ψ0((xi)i<α∗) =
∧
i<α∗

[
∀y(R(y, xi)⇔

∨
j<i

(y = xj))
]
;

ψ1((xi)i<α∗) =
∧

s∈π−1[α]

Asb((xs(i))i∈dom s);

Θb = ψ0 ∧ ψ1.

The disjunction over the empty set is considered false.

Claim 1 Suppose that, for all η, R is the standard order relation on κ. Then

(Aη, R) |= Θb((aγ)γ<α∗) ⇐⇒ η ∈ h(b) ∧ ∀γ < α∗(αγ = γ).

Proof of Claim 1. Suppose Aη |= Θ((aγ)γ<α∗). Then by Aη |= ψ0((aγ)γ<α∗) we have that
(aγ)γ<α∗ is an initial segment of domAη with respect to R. But (domAη, R) = (κ,<),
so ∀γ < α∗(αγ = γ). Assume that β < α and η(β) = 1 and denote s = π−1(β). Then
Aη |= Pdom s((s(i))i∈dom s). Since Θ is true in Aη as well, we must have Asb = Pdom s,
which by definition means that Aξ |= Pdom s((s(i))i∈dom s) and hence ξ(β) = ξ(π(s)) = 1.
In the same way one shows that if η(β) = 0, then ξ(β) = 0 for all β < α. Hence
η ↾α = ξ ↾α.

Assume then that aγ = γ for all γ < α∗ and that η ∈ Nξ↾α. Then Aη trivially satisfies
ψ0. Suppose that s ∈ π−1[α] is such that Aξ |= Pdom s((s(i))i∈dom s). Then ξ(π(s)) = 1
and since π(s) < α, also η(π(s)) = 1, so Aη |= Pdom s((s(i))i∈dom s). Similarly one shows
that if

Aξ ̸|= Pdom s((s(i))i∈dom s),

then Aη ̸|= Pdom s((s(i))i∈dom s). This shows that Aη |= Asb((s(i))i∈dom s) for all s. Hence
Aη satisfies ψ1, so we have Aη |= Θ. �Claim 1

Claim 2 t, h, t⋆ and ≪ are such that, for all η ∈ κκ,

II ↑ G(t, h, η) ⇐⇒ ∃R ⊂ (domAη)2 II ↑ S(t⋆,≪,Aη).

Proof of Claim 2. Suppose σ is a winning strategy of II in G(t, h, η). Let R be the well
ordering of domAη such that (domAη, R) = (κ,<). Consider the game S(t⋆,≪,Aη).
On the first move the players are at the root and player I chooses where to go next. They
go to a minimal element of t. From here on II uses σ as long as they are in t. Let us see
what happens if they got to a maximal element of t, i.e., they picked a branch b from t.
Since σ is a winning strategy of II in G(t, h, η), we have η ∈ h(b) and h(b) = Nξ↾α for
some ξ and α. For the next α moves, the players climb up the tower defined in item (1)
of the definition of t⋆. All labels are of the form ∃xβ , so player II has to pick constants
from Aη. She picks them as follows: for the variable xβ she picks β ∈ κ = domAη. She
wins now if Aη |= Θ((β)β<α∗) and Aη |= θ. But η ∈ h(b), so by Claim 1 the former holds
and the latter holds because we chose R to be a well ordering of order type κ.

490 Generalized descriptive set theory and classification theory

Let us assume that there is no winning strategy of II in G(t, h, η). Let R be an
arbitrary relation on domAη. Here we shall finally use the fact that B is closed under
permutations. Suppose R is not a well ordering of the universe of order type κ. Then
after the players reached the final node of t⋆, player I chooses to go to θ and player II
loses. So we can assume that R is a well ordering of the universe of order type κ. Let
p : κ→ κ be a bijection such that p(α) is the α-th element of κ with respect to R. Now
p is a permutation and {η | Apη ∈ B} = B since B is closed under permutations. So by
our assumption that η /∈ B (i.e., II ̸↑ G(t, h, η)), we also have pη /∈ B, i.e., player II has
no winning strategy in G(t, h, pη) either.

Suppose σ is any strategy of II in S(t⋆,≪,Aη). Player I imagines that σ is a strategy
in G(t, h, pη) and picks a strategy τ that beats it. In the game S(t⋆,≪,Aη), as long as
the players are still in t, player I uses τ that would beat σ if they were playing G(t, h, pη)
instead of S(t⋆,≪, η). Suppose they picked a branch b of t. Now pη /∈ h(b). If II wants to
satisfy ψ0 of the definition of Θb, she is forced to pick the constants (ai)i<α∗ such that ai
is the i-th element of domAη with respect to R. Suppose that Aη |= ψ1((ai)i<α∗) (recall
Θb = ψ0 ∧ψ1). But then Apη |= ψ1((γ)γ<α∗) and also Apη |= ψ0((γ)γ<α∗), so by Claim 1
we should have pη ∈ h(b), which is a contradiction. �Claim 2 �

3 Generalizing classical descriptive set theory

3.1 Simple generalizations

3.1.1 The identity relation

Denote by id the equivalence relation {(η, ξ) ∈ (2κ)2 | η = ξ}. If we want to emphasize
the set on which the identity relation lies, we denote it by idX if the set is X. With
respect to our choice of topology, the natural generalization of the equivalence relation

E0 = {(η, ξ) ∈ 2ω × 2ω | ∃n < ω∀m > n(η(m) = ξ(m))}
is equivalence modulo sets of size < κ:

E<κ
0 = {(η, ξ) ∈ 2κ × 2κ | ∃α < κ∀β > α(η(β) = ξ(β))},

although the equivalences modulo sets of size < λ for λ < κ can also be studied:

E<λ0 = {(η, ξ) ∈ 2κ × 2κ | ∃A ⊂ κ[|A| < λ ∧ ∀β /∈ A(η(β) = ξ(β))]},
but for λ < κ these turn out to be bireducible with id (see below). Similarly one can
define E<λ

0 on κκ instead of 2κ.
It makes no difference whether we define these relations on 2κ or κκ since they become

bireducible to each other:

Theorem 3.1 Let λ 6 κ be a cardinal and let E<λ0 (P) denote the equivalence relation
E<λ0 on P ∈ {2κ, κκ} (notation defined above). Then

E<λ0 (2κ) 6c E
<λ
0 (κκ) and E<λ0 (κκ) 6c E

<λ
0 (2κ).

Note that, when λ = 1, we have E<1
0 (P) = idP .

Proof. In this proof we think of functions η, ξ ∈ κκ as graphs η = {(α, η(α)) | α < κ}.
Fix a bijection h : κ → κ × κ. Let f : 2κ → κκ be the inclusion, f(η)(α) = η(α). Then
f is easily seen to be a continuous reduction E<λ0 (2κ) 6c E

<λ
0 (κκ). Define g : κκ → 2κ

as follows. For η ∈ κκ, let g(η)(α) = 1 if h(α) ∈ η and g(η)(α) = 0 otherwise. Let

The Infinity Project 491

us show that g is a continuous reduction E<λ
0 (κκ) 6c E

<λ
0 (2κ). Suppose η, ξ ∈ κ are

E<λ0 (κκ)-equivalent. Then clearly |η△ ξ| < λ. On the other hand,

I = {α | g(η)(α) ̸= g(ξ)(α)} = {α | h(α) ∈ η△ ξ}

and, because h is a bijection, we have that |I| < λ.
Suppose η and ξ are not E<λ0 (κκ)-equivalent. Then |η△ ξ| > λ and the argument

above shows that also |I| > λ, so g(η)(α) is not E<λ0 (2κ)-equivalent to g(ξ)(α).
The function g is easily seen to be continuous. �

We will need the following lemma, which is a straightforward generalization of the
case κ = ω:

Lemma 3.2 Borel functions are continuous on a co-meager set.

Proof. For each η ∈ κ<κ let Vη be an open subset of κκ such that Vη△ f−1Nη is meager.
Let

D = κκ \
∪

η∈κ<κ
Vη△ f−1Nη.

Then D is as intended. Clearly it is co-meager, since we took away only a κ-union
of meager sets. Let ξ ∈ κ<κ be arbitrary. The set D ∩ f−1Nξ is open in D since
D ∩ f−1Nξ = D ∩ Vξ and so f ↾D is continuous. �

Theorem 3.3 (κ<κ = κ) E<λ
0 is an equivalence relation on 2κ for all λ 6 κ and

(1) E<λ0 is Borel;
(2) E<κ0 ̸6B id;
(3) If λ 6 κ, then id 6c E

<λ
0 ;

(4) If λ < κ, then E<λ0 6c id.

Proof. E<λ0 is clearly reflexive and symmetric. Suppose ηE<λ
0 ξ and ξE<λ

0 ζ. Denote
η = η−1{1} and similarly for ξ, ζ. Then |η△ ξ| < λ and |ξ△ ζ| < λ; but η△ ζ ⊂
(η△ ξ) ∪ (ξ△ ζ). Thus E<λ0 is indeed an equivalence relation.

(1) E<λ0 =
∪

A∈[κ]<λ

∩
α/∈A

{(η, ξ) | η(α) = ξ(α)}︸ ︷︷ ︸
open

.

(2) Assume that there is a Borel reduction f : 2κ → 2κ witnessing E0 6B id. By
Lemma 3.2 there are dense open sets (Di)i<κ such that f ↾

∩
i<κDi is continuous.

If p, q ∈ 2α for some α and ξ ∈ Np, let us denote ξ(p/q) = q⌢(ξ ↾ (κ \ α)), and if
A ⊂ Np, denote

A(p/q) = {η(p/q) | η ∈ A}.
Let C be the collection of sets, each of which is of the form∪

q∈2α
[Di ∩Np]

(p/q)

for some α < κ and some p ∈ 2α. It is easy to see that each such set is dense
and open, so C is a collection of dense open sets. By the assumption κ<κ = κ,
C has size κ. Also C contains the sets Di for all i < κ, (taking α = 0). Denote
D =

∩
i<κDi. Let η ∈

∩
C, ξ = f(η) and ξ′ ̸= ξ, ξ′ ∈ ran(f ↾D). Now ξ and ξ′

have disjoint open neighborhoods V and V ′ respectively. Let α and p, q ∈ 2α be

492 Generalized descriptive set theory and classification theory

such that η ∈ Np and such that D ∩Np ⊂ f−1[V] and D ∩Nq ⊂ f−1[V ′]. These p
and q exist by the continuity of f on D. Since η ∈

∩
C and η ∈ Np, we have

η ∈ [Di ∩Nq]
(q/p)

for all i < κ, which is equivalent to

η(p/q) ∈ [Di ∩Nq]

for all i < κ, i.e., η(p/q) is in D ∩ Nq. On the other hand (since Di ∈ C for all
i < κ and because η ∈ Np), we have η ∈ D ∩ Np. This implies that f(η) ∈ V

and f(η(p/q)) ∈ V ′, which is a contradiction, because V and V ′ are disjoint and
(η, ηp/q) ∈ E0.

(3) Let (Ai)i<κ be a partition of κ into pieces of size κ: if i ̸= j then Ai ∩ Aj = ∅,∪
i<κAi = κ and |Ai| = κ. Obtain such a collection for instance by taking a

bijection h : κ → κ× κ and defining Ai = h−1[κ× {i}]. Let f : 2κ → 2κ be defined
by f(η)(α) = η(i) ⇔ α ∈ Ai. Now if η = ξ, then clearly f(η) = f(ξ) and so
f(η)E<λ0 f(ξ). If η ̸= ξ, then there exists i such that η(i) ̸= ξ(i) and we have that

Ai ⊂ {α | f(η)(α) ̸= f(ξ)(α)}

and Ai is of size κ > λ.
(4) Let P = κ<κ \κ<λ. Let f : P → κ be a bijection. It induces a bijection g : 2P → 2κ.

Let us construct a map h : 2κ → 2P such that g ◦ h is a reduction E<λ0 → id2κ . Let
us denote by E<λ(α) the equivalence relation on 2α such that two subsets X,Y of
α are E<λ(α)-equivalent if and only if |X△Y | < λ.

For each α in λ < α < κ let hα be any reduction of E<λ(α) to id2α . This exists
because both equivalence relations have 2α many classes. Now reduce E<λ

0 to idκ<κ

by f(A) = (hα(A∩α) | λ 6 α < κ). If A, B are E<λ
0 -equivalent, then f(A) = f(B).

Otherwise fα(A∩α) differs from fα(B ∩α) for large enough α < κ because λ is less
than κ and κ is regular. Continuity of h is easy to check. �

3.2 On the Silver dichotomy

To begin with, let us define the Silver dichotomy and the perfect set property:

Definition 3.4 Let C ∈ {Borel,∆1
1,Borel

∗,Σ1
1,Π

1
1}. By the Silver dichotomy, or more

specifically, κ-SD for C we mean the statement that there are no equivalence relations
E in the class C such that E ⊂ 2κ × 2κ and E has more than κ equivalence classes such
that id ̸6B E, id = id2κ .

Similarly, the perfect set property, or κ-PSP for C, means that each member A of C
has either size 6 κ or there is a Borel injection 2κ → A. Using Lemma 3.2, it is not hard
to see that this definition is equivalent to the game definition given in [24].

3.2.1 The Silver dichotomy for isomorphism relations

Although the Silver dichotomy for Borel sets is not provable from ZFC for κ > ω (see
Theorem 3.12 on page 499), it holds when the equivalence relation is an isomorphism
relation, if κ > ω is an inaccessible cardinal:

Theorem 3.5 Assume that κ is inaccessible. If the number of equivalence classes of ∼=T

is greater than κ, then id 6c
∼=T .

The Infinity Project 493

Proof. Suppose that there are more than κ equivalence classes of ∼=T . We will show that
then id2κ 6c

∼=T . If T is not classifiable, then, as was done in [29], we can construct a tree
t(S) for each S ⊂ Sκω and Ehrenfeucht–Mostowski-type models M(t(S)) over these trees
such that if S△S′ is stationary then M(t(S)) ̸∼=M(t(S′)). Now it is easy to construct a
reduction f : id2κ 6c ESκω (see notation defined in Section 1.1), so then η 7→ M(t(f(η)))
is a reduction id 6c

∼=T .
Assume now that T is classifiable. By λ(T) we denote the least cardinal in which

T is stable. By [30, Theorem XIII.4.8] (this is also mentioned in [8, Theorem 2.5]),
assuming that ∼=T has more than κ equivalence classes, it has depth at least 2 and so there
are: a λ(T)+-saturated model B |= T , |B| = λ(T), and a λ(T)+-saturated elementary
submodel A 4 B and a /∈ B such that tp(a/B) is orthogonal to A. Let f : κ → κ be
strictly increasing and such that, for all α < κ, f(α) = µ+ for some µ with the properties
λ(T) < µ < κ, cf(µ) = µ and µ2

ω
= µ. For each η ∈ 2κ with η−1{1} unbounded we

will construct a model Aη. As above, it will be enough to show that Aη ̸∼= Aξ whenever
η−1{1}△ ξ−1{1} is λ-stationary where λ = λ(T)+. Fix η ∈ 2κ and let λ = λ(T)+.

For each α ∈ η−1{1} choose Bα ⊃ A such that

(1) ∃πα : B ∼= Bα, πα ↾A = idA;
(2) Bα ↓A

∪
{Bβ | β ∈ η−1{1}, β ̸= α}.

Note that (2) implies that, if α ̸= β, then Bα ∩ Bβ = A. For each α ∈ η−1{1} and
i < f(α), choose tuples aαi with the properties

(3) tp(aαi /Bα) = πα(tp(a/B));
(4) aαi ↓Bα

∪
{aαj | j < f(α), j ̸= i}.

Let Aη be F sλ-primary over

Sη =
∪
{Bα | a < η−1{1}} ∪

∪
{aαi | α < η−1{1}, i < f(α)}.

It remains to show that, if Sκλ∩η−1{1}△ ξ−1{1} is stationary, thenAη ̸∼= Aξ. Without
loss of generality we may assume that Sκλ ∩ η−1{1} \ ξ−1{1} is stationary. Let us make a
counter assumption, namely that there is an isomorphism F : Aη → Aξ.

Without loss of generality there exist singletons bηi and sets Bη
i , i < κ of size < λ

such that Aη = Sη ∪
∪
i<κ b

η
i and (Sη, (b

η
i , B

η
i)i<κ) is an F sλ-construction.

Let us find an ordinal α < κ and sets C ⊂ Aη and D ⊂ Aξ with the properties listed
below:

(a) α ∈ η−1{1} \ ξ−1{1};
(b) D = F [C];
(c) ∀β ∈ (α+ 1) ∩ η−1{1}(Bβ ⊂ C) and ∀β ∈ (α+ 1) ∩ ξ−1{1}(Bβ ⊂ D);
(d) for all i < f(α), ∀β ∈ α ∩ η−1{1}(aβi ∈ C) and ∀β ∈ α ∩ ξ−1{1}(aβi ∈ D);
(e) |C| = |D| < f(α);
(f) for all β, if Bβ ∩ C \ A ̸= ∅, then Bβ ⊂ C, and if Bβ ∩D \ A ̸= ∅, then Bβ ⊂ D;
(g) C and D are λ-saturated;
(h) if bηi ∈ C, then Bη

i ⊂ [Sη ∪
∪
{bηi | j < i}]∩C, and if bξi ∈ D, then Bξ

i ⊂ [Sξ ∪
∪
{bξi |

j < i}] ∩D.

This is possible, because η−1{1} \ ξ−1{1} is stationary and we can close under the prop-
erties (b)–(h).

494 Generalized descriptive set theory and classification theory

Now Aη is F sλ-primary over C ∪ Sη and Aξ is F sλ-primary over D ∪ Sη, and thus Aη
is F sλ-atomic over C ∪ Sη and Aξ is F sλ-atomic over D ∪ Sξ. Let

Iα = {aαi | i < f(α)}.

Now |Iα \ C| = f(α), because |C| < f(α), and so Iα \ C ̸= ∅. Let c ∈ Iα \ C and let
A ⊂ Sξ \D and B ⊂ D be such that tp(F (c)/A∪B) ⊢ tp(F (c)/D∪Sξ) and |A∪B| < λ.
Since α /∈ ξ−1{1}, we can find (just take disjoint copies) a sequence (Ai)i<f(α)+ such that
Ai ⊂ Iα ∩ Aξ, tp(Ai/D) = tp(A/D) and Ai ↓D

∪
{Aj | j ̸= i, j < f(α)+}.

Now we can find (di)i<f(α)+ such that

tp(di
⌢Ai

⌢Bi/∅) = tp(F (c)⌢A⌢B/∅).

Then it is a Morley sequence over D and, for all i < f(α)+,

tp(di/D) = tp(F (c)/D),

which implies that
tp(F−1(di)/C) = tp(c/C)

for some i, since for some i we have c = aαi . Since by (c), Bα ⊂ C, the above implies that

tp(F−1(di)/Bα) = tp(aαi /Bα),

which by the definition of aαi , item 3, implies

tp(F−1(di)/Bα) = πα(tp(a/B)).

Thus the sequence (F−1(di))i<f(α)+ witnesses that the dimension of πα(tp(a/B)) in Aη
is greater than f(α). Denote that sequence by J . Since πα(tp(a/B)) is orthogonal to A,
we can find J ′ ⊂ J such that |J ′| = f(α)+ and J ′ is a Morley sequence over Sη. Since
f(α)+ > λ, this contradicts Theorem 4.9(2) of Chapter IV of [30]. �

Open Problem Under what conditions on κ does the conclusion of Theorem 3.5 hold?

3.2.2 Theories bireducible with id

Theorem 3.6 Assume κ<κ = κ = ℵα > ω, κ is not weakly inaccessible and λ = |α+ ω|.
Then the following are equivalent:
(1) There is γ < ω1 such that iγ(λ) > κ.
(2) There is a complete countable T such that id 6B

∼=T and ∼=T 6B id.

Proof. (2)⇒(1): Suppose that (1) is not true. Notice that then κ > 2ω. Then every
shallow classifiable theory has < κ many models of power κ (see [8], item 6 of the
theorem which is on the first page of the article) and thus id ̸6B

∼=T . On the other hand
if T is not classifiable and shallow, ∼=T is not Borel by Theorem 4.7 and thus it is not
Borel reducible to id by Fact 5.1.

(1)⇒(2): Since cf(κ) > ω, (1) implies that there is α = β + 1 < ω1 such that
iα(λ) = κ. But then there is an L∗-theory T ∗ which has exactly κ many models in
cardinality κ (up to isomorphism, use [8], Theorem 6.1 items 2 and 8). But then it
has exactly κ many models of cardinality 6 κ; let Ai, i < κ list these. Such a theory
must be classifiable and shallow. Let L be the vocabulary we get from L∗ by adding
one binary relation symbol E. Let A be an L-structure in which E is an equivalence
relation with infinitely many equivalence classes such that for every equivalence class
a/E, (A↾a/E)↾L∗ is a model of T ∗. Let T = Th(A).

The Infinity Project 495

We show first that identity on {η ∈ 2κ| η(0) = 1} reduces to ∼=T . For all η ∈ 2κ, let
Bη be a model of T of power κ such that if η(i) = 0, then the number of equivalence
classes isomorphic to Bi is countable and otherwise the number is κ. Clearly we can code
Bη as ξη ∈ 2κ so that η 7→ ξη is the required Borel reduction.

We show then that ∼=T Borel reduces to identity on

X = {η : κ→ (κ+ 1)}.

Since T ∗ is classifiable and shallow, for all δ, i < κ the set

{η ∈ X| (Aη ↾δ/E)↾L∗ ∼= Ai}

is Borel. But then for all cardinals θ 6 κ and i < κ, the set

{η ∈ X | |(|{δ/E | δ < κ, (Aη ↾δ/E)↾L∗ ∼= Ai}) = θ}

is Borel. Then η 7→ ξη is the required reduction when

ξη(i) = |{δ/E | δ < κ, (Aη ↾δ/E)↾L∗ ∼= Ai}|. �

In the above it was assumed that κ is not inaccessible. If κ is inaccessible, then (2)
of the above theorem always holds:

Theorem 3.7 Suppose κ is inaccessible and κ<κ = κ. Then there is a theory T such
that ∼=T is bireducible with id2κ.

Proof. LetM⌋⊣↕⌋⊣↕ be the model with domain M = domM⌋⊣↕⌋⊣↕ = ω ∪ (ω × ω) and
a binary relation R which is interpreted as

RM⌋⊣↕⌋⊣↕ = {(a, (b, c)) ∈M2 | a ∈ ω, (b, c) ∈ ω × ω, a = b}.

Then our intended theory is the complete first-order theory of T = Th(M⌋⊣↕⌋⊣↕).
Let Ĉ = {ℵβ | β 6 κ} and C = ω ∪ Ĉ. Let A be a model of T of size κ and let

fA : Ĉ → C be a function such that

(3.1) fA(ℵβ) = |(|{x ∈ A | |(|{(a, b) ∈ A | R(x, (a, b))}) = ℵβ}),

i.e., fA(ℵβ) equals the number of elements which are R-related to exactly ℵβ elements.
Clearly A ∼= B is equivalent to fA = fB.

Let g0 : µ̂→ Ĉ and g1 : µ→ C be bijections. Let us define the function F by

F (ξ) = g−1
1 ◦ fAξ ◦ g0.

Now F is a reduction ∼=T 6 idκκ . By Theorem 3.1, page 490, idκκ is continuously bire-
ducible with id2κ . Let us show that F is Borel. In order to do it, we will use the easy
direction (right to left) of Theorem 2.2 on page 483. Because every basic open set in κκ
is an intersection of the sets of the form

Uγδ = {η ∈ κκ | η(γ) = δ},

it is enough to show that F−1[Uγδ] is Borel for any γ, δ ∈ κ.
Note that η ∈ F−1[Uγδ] is equivalent to

(⋆) there exist exactly g1(δ) elements in F−1(η) which are R-related to exactly g0(γ)
elements.

496 Generalized descriptive set theory and classification theory

We can express (⋆) in Lκ+κ. First, let us define the formula φλ for λ < κ which says that
the variable x is R-related to exactly λ elements:

φλ(x) : ∃
i<λ

yi

[(∧
j0<j1<λ

¬yj0 = yj1

)
∧
∧
i<λ

R(x, yi) ∧ ∀z
(
R(x, z)→

∨
i<λ

z = yi

)]
.

Then one can write the formula which says that there are exactly ν < κ such xk that
satisfy φλ:

ψλν : ∃
k<ν

xk

[(∧
i<j<ν

¬xi = xj

)
∧
∧
k<ν

φλ(xk) ∧ ∀z
(
φλ(z)→

∨
k<ν

(z = xk)
)]
.

For the cases γ = κ, δ = κ, define

φκ(xk) :
∧
β<κ
∀
i<β

yi

[
∃yβ
[(∧

i<β

(yβ ̸= yi)
)
∧R(xk, yβ)

]]
and

ψκλ :
∧
β<κ
∀
k<β

xk

[
∃xβ

[(∧
k<β

(xβ ̸= xk)
)
∧ φλ(xβ)

]]
.

Note that the last formulas say “for all β < κ there exist more than β...”, but it is
equivalent to “there exist exactly κ...” in our class of models, because the models are all
of size κ.

Thus ψg0(γ),g1(δ) is defined for all γ 6 κ and δ 6 κ. By the direction right to left of
Theorem 2.2, this implies that the sets F−1Uγδ are Borel. This proves ∼=T 6B id2κ .

Since κ is inaccessible, the other direction follows from Theorem 3.5, page 492. On
the other hand one easily constructs such a reduction from scratch. Let us do it for the
sake of completeness.

Let us show that id 6c
∼=T . Let us modify the setting a little; let C<κ = {λ < κ |

λ is a cardinal} and Cω<κ = C<κ \ ω, and let

h0 : κ −→ Cω<κ

and
h1 : κ −→ C<κ

be increasing bijections. Suppose η ∈ κκ and define fη : Cω<κ → C<κ by

fη(λ) = [(h1 ◦ η ◦ h−1
0)(λ)]+

(recall that κ is inaccessible). Let us now build the modelM⌋⊣↕⌋⊣↕η:

domM⌋⊣↕⌋⊣↕η =
∪

λ∈Cω<κ

{(λ, fη(λ))} × [fη(λ) ∪ fη(λ)× λ]

(that is, formally domM⌋⊣↕⌋⊣↕η consists of pairs and triples the first projection being
a pair of the form (λ, fη(λ))) and, for all x, y ∈ domM⌋⊣↕⌋⊣↕η,

R(x, y) ⇐⇒ ∃λ∃α∃β
(
x = ((λ, fη(λ)), α) ∧ y = ((λ, fη(λ)), α, β)

)
.

Denote the mapping η 7→ M⌋⊣↕⌋⊣↕η by G, i.e., G(η) = M⌋⊣↕⌋⊣↕η. Clearly
M⌋⊣↕⌋⊣↕η |= T . Let us show that

M⌋⊣↕⌋⊣↕η ∼=M⌋⊣↕⌋⊣↕ξ ⇐⇒ M⌋⊣↕⌋⊣↕η =M⌋⊣↕⌋⊣↕ξ ⇐⇒ η = ξ.

The Infinity Project 497

The implications from right to left are evident. Suppose h :M⌋⊣↕⌋⊣↕η →M⌋⊣↕⌋⊣↕ξ is
an isomorphism. Since it preserves relations, the restrictions send bijectively the λ-levels
to some other λ′-levels:

h↾{(λ, fη(λ))} × [{α} ∪ {β} × λ]→ {(λ′, fη(λ′))} × [{α′} ∪ {β′} × λ′]
is a bijection which implies λ = λ′. Further, by bijectivity, the map α 7→ α′ induced by
these restrictions is also bijective (by preservation of relations, pairs are sent to pairs), so
this map α 7→ α′ is a bijection between fη(λ) and fξ(λ), thus they are the same cardinal
for all λ, i.e., fη = fξ.

For a model of the formM⌋⊣↕⌋⊣↕η and α < κ, let

M⌋⊣↕⌋⊣↕η↾α =
∪

λ∈Cω<κ, λ<h0(α)

{(λ, fη(λ))} × [fη(λ) ∪ fη(λ)× λ]

equipped with the relation RM⌋⊣↕⌋⊣↕η�α = RM⌋⊣↕⌋⊣↕ ∩ (domM⌋⊣↕⌋⊣↕η↾α)2.
Let us fix a well ordering of domA for each model A ∈ ranG as follows. If x, y ∈

domM⌋⊣↕⌋⊣↕η, then

x⋖ y ⇐⇒ pr1(x) < pr1(y)

or pr1(x) = pr1(y) ∧ pr2(x) < pr2(y)

or pr1(x) = pr1(y) ∧ pr2(x) = pr2(y) ∧ pr3(x) < pr3(y).

Note that in the last case it might happen that there is no third projection of x. In
that case define pr3(x) to be −1. (If pr3(y) were also undefined, then we had x = y.)
The initial segments with respect to ⋖ are of size less than κ, because fη(λ) and λ are
elements of C<κ and ⋖ is clearly a well ordering. Moreover, since we added the + in the
definition of fη(λ), we have that ∀λ∀η(fη(λ) > 0), so we get the following:

(⋆⋆) Suppose x is the γ-th element of the model with respect to ⋖. Then pr1(x) 6 γ.
Hence, for any η,

M⌋⊣↕⌋⊣↕η ∩ {x ∈ domM⌋⊣↕⌋⊣↕η | OTP⋖(x) < γ}
⊂ M⌋⊣↕⌋⊣↕η↾(γ+1).

Note also that ifM⌋⊣↕⌋⊣↕η↾α =M⌋⊣↕⌋⊣↕ξ↾α, then the identity map id :M⌋⊣↕⌋⊣↕η↾α =

M⌋⊣↕⌋⊣↕ξ↾α preserves ⋖.
Recall the coding η 7→ Aη of Definition 1.14. In the definition it is assumed that

domA = κ, but instead of that we can use the well-ordering ⋖. More precisely, for a
given model A, let c(A) denote some η such that there is an isomorphism f : Aη ∼= A
which preserves the ordering of the domain: f(α) is the α-th element of domA with
respect to ⋖. In our present case, c : ranG→ κκ.

Let us show that the map F = c ◦G : η 7→ c(M⌋⊣↕⌋⊣↕η) is continuous and therefore
is the intended bijection. For that purpose let us equip ranG with a topology τ . We will
then show that G is continuous with respect to that topology and then show that also c
is continuous.

Let τ be the topology on ranG generated by

Up = {M⌋⊣↕⌋⊣↕η | p ⊂ η}

for p ∈ κ<κ. In fact τ is the topology co-induced by G, so it trivially makes G continuous:

G−1Up = Np.

498 Generalized descriptive set theory and classification theory

Let us show that

(⋆ ⋆ ⋆) Up = {M⌋⊣↕⌋⊣↕ ∈ ranG | M⌋⊣↕⌋⊣↕p ⊂M⌋⊣↕⌋⊣↕}.

SupposeM⌋⊣↕⌋⊣↕η ∈ Up for some η. This is equivalent to assuming that there is ξ with
p ⊂ ξ such that M⌋⊣↕⌋⊣↕η =M⌋⊣↕⌋⊣↕ξ. This is in turn equivalent with p ⊂ η, since
necessarily η = ξ. SoM⌋⊣↕⌋⊣↕η ∈ Up implies that

M⌋⊣↕⌋⊣↕p =M⌋⊣↕⌋⊣↕η↾dom p

=M⌋⊣↕⌋⊣↕η ∩
∪

λ∈Cω<κ, λ<h0(dom p)

{λ} × [fη(λ) ∪ fη(λ)× λ]

⊂M⌋⊣↕⌋⊣↕η.

Assume that M⌋⊣↕⌋⊣↕ ∈ ranG, M⌋⊣↕⌋⊣↕p ⊂ M⌋⊣↕⌋⊣↕ and that η is such that
M⌋⊣↕⌋⊣↕ = M⌋⊣↕⌋⊣↕η. Let us assume that ξ is such that p ⊂ ξ and let us show
that ξ ↾dom p ⊂ η. Let λ < h0(dom p). Then because fξ(λ) > 0, we have

(λ, fξ(λ), 0) ∈M⌋⊣↕⌋⊣↕p.

By the assumption M⌋⊣↕⌋⊣↕p ⊂ M⌋⊣↕⌋⊣↕η, this implies (λ, fξ(λ), 0) ∈ M⌋⊣↕⌋⊣↕η. By
definition, this can only happen if fη(λ) = fξ(λ). Thus for all λ < h0(dom p), we have
fη(λ) = fξ(λ). Recall that h1 and h0 are increasing bijections, so

[∀λ < h0(dom p)](fη(λ) = fξ(λ))

⇐⇒ [∀λ < h0(dom p)]((h1 ◦ η ◦ h−1
0)(λ) = (h1 ◦ ξ ◦ h−1

0)(λ))

⇐⇒ [∀α < dom p]((h1 ◦ η)(α) = (h1 ◦ ξ)(α))
⇐⇒ [∀α < dom p](η(α) = ξ(α))

⇐⇒ [∀α < dom p](η(α) = p(α)),

and this implies that p ⊂ η.
Consider now the coding c : ranG → κκ. Let Nξ↾α be a basic open set of κκ. Let

M⌋⊣↕⌋⊣↕ be a model in c−1Nξ↾α. Let us show that there is an open τ -neighborhood
of M⌋⊣↕⌋⊣↕ inside c−1Nξ↾α. We know that ξ ↾ α decides a segment of M⌋⊣↕⌋⊣↕ that
is below the γ-th element with respect to ⋖, for some γ. Denote that segment by S ⊂
M⌋⊣↕⌋⊣↕. Let η be such thatM⌋⊣↕⌋⊣↕ =M⌋⊣↕⌋⊣↕η. From (⋆⋆) we have

S ⊂M⌋⊣↕⌋⊣↕η ∩ {x ∈ domM⌋⊣↕⌋⊣↕η | OTP⋖(x) < γ}
⊂ M⌋⊣↕⌋⊣↕η↾(γ+1).

Let us show that Uη↾(γ+1) is an open neighborhood ofM⌋⊣↕⌋⊣↕ inside c−1[Nξ↾α]. Suppose
M⌋⊣↕⌋⊣↕ ∈ Uη↾(γ+1) and c(M⌋⊣↕⌋⊣↕) = ζ. Then by (⋆ ⋆ ⋆) we haveM⌋⊣↕⌋⊣↕η↾(γ+1) ⊂
M⌋⊣↕⌋⊣↕. Let S′ ⊂M⌋⊣↕⌋⊣↕ be the subset ofM⌋⊣↕⌋⊣↕ decided by ζ ↾α. Thus

{OTP⋖(x) | x ∈ S′} = {OTP⋖(x) | x ∈ S},

but, by the note after (⋆⋆), we have S = S′, and, since S ⊂ M⌋⊣↕⌋⊣↕η↾(γ+1) and
M⌋⊣↕⌋⊣↕η↾(γ+1) =M⌋⊣↕⌋⊣↕ζ↾(γ+1), the codings must coincide and we have ζ ↾α = ξ ↾α,
i.e., c(M⌋⊣↕⌋⊣↕) ∈ Nξ↾α. �

The Infinity Project 499

3.2.3 Failures of Silver’s dichotomy

There are well-known dichotomy theorems for Borel equivalence relations on 2ω. Two of
them are:

Theorem 3.8 (Silver [33]) Let E ⊂ 2ω × 2ω be a Π1
1 equivalence relation. If E has

uncountably many equivalence classes, then id2ω 6B E. �
Theorem 3.9 (Generalized Glimm–Effros dichotomy [7]) Let E ⊂ 2ω × 2ω be a Borel
equivalence relation. Then either E 6B id2ω or else E0 6c E. �

As in the case κ = ω we have the following also for uncountable κ (see Definition 3.4,
page 492):

Theorem 3.10 If κ-SD for Π1
1 holds, then the κ-PSP holds for Σ1

1-sets. More generally,
if C ∈ {Borel,∆1

1,Borel
∗,Σ1

1,Π
1
1}, then κ-SD for C implies κ-PSP for C ′, where elements

in C ′ are all the complements of those in C.

Proof. Let us prove this for C = Π1
1, as the other cases are similar. Suppose we have a

Σ1
1-set A. Let

E = {(η, ξ) | η = ξ or ((η /∈ A) ∧ (ξ /∈ A))}.
Now E = id∪(2κ \A)2. Since A is Σ1

1, (2
κ \A)2 is Π1

1 and because id is Borel, also E is
Π1

1. Obviously |A| is the number of equivalence classes of E provided A is infinite. Then
suppose |A| > κ. Then there are more than κ equivalence classes of E, so by κ-SD for
Π1

1, there is a reduction f : id 6 E. This reduction in fact witnesses the PSP of A. �
The idea of using Kurepa trees for this purpose arose already in the paper [24] by

Mekler and Väänänen.

Definition 3.11 If t ⊂ 2<κ is a tree, a path through t is a branch of length κ. A κ-Kurepa
tree is a tree K ⊂ 2<κ which satisfies the following:
(a) K has more than κ paths;
(b) K is downward closed;
(c) for all α < κ, the levels are small: |{p ∈ K | dom p = α}| 6 |α+ ω|.

Theorem 3.12 Assume one of the following:
(1) κ is regular but not strongly inaccessible and there exists a κ-Kurepa tree K ⊂ 2<κ.
(2) κ is regular (might be strongly inaccessible), 2κ > κ+ and there exists a tree K ⊂ 2<κ

with more than κ but less than 2κ branches.
Then the Silver dichotomy for κ does not hold. In fact there is an equivalence relation
E ⊂ 2κ× 2κ which is the union of a closed and an open set, has more than κ equivalence
classes but id2κ ̸6B E.

Proof. Let us break the proof according to the assumptions (1) and (2). So first let us
consider the case where κ is not strongly inaccessible and there is a κ-Kurepa tree.

(1): Let us carry out the proof in the case κ = ω1. It should be obvious then how to
generalize it to any κ not strongly inaccessible. So let K ⊂ 2<ω1 be an ω1-Kurepa tree.
Let P be the collection of all paths of K. For b ∈ P , denote b = {bα | α < ω1} where bα
is an element of K with domain α.

Let
C = {η ∈ 2ω1 | η =

∪
α<ω1

bα, b ∈ P}.

500 Generalized descriptive set theory and classification theory

Clearly C is closed. Let E = {(η, ξ) | (η /∈ C∧ξ /∈ C)∨(η ∈ C∧η = ξ)}. In words, E is the
equivalence relation whose equivalence classes are the complement of C and the singletons
formed by the elements of C. E is the union of the open set {(η, ξ) | η /∈ C ∧ ξ /∈ C} and
the closed set {(η, ξ) | η ∈ C ∧ η = ξ} = {(η, η) | η ∈ C}. The number of equivalence
classes equals the number of paths of K, so there are more than ω1 of them by the
definition of Kurepa tree.

Let us show that id2ω1 is not embeddable to E. Suppose that f : 2ω1 → 2ω1 is a Borel
reduction. We will show that then K must have a level of size > ω1 which contradicts
the definition of Kurepa tree. By Lemma 3.2, page 491, there is a co-meager set D on
which f ↾D is continuous. There is at most one η ∈ 2ω1 whose image f(η) is outside
C, so without loss of generality f [D] ⊂ C. Let p be an arbitrary element of K such
that f−1[Np] ̸= ∅. By continuity there is a q ∈ 2<ω1 with f [Nq ∩D] ⊂ Np. Since D is
co-meager, there are η and ξ such that η ̸= ξ, q ⊂ η and q ⊂ ξ. Let α1 < ω1 and p0 and
p1 be extensions of p with the properties p0 ⊂ f(η), p1 ⊂ f(ξ), α1 = dom p0 = dom p1,
f−1[Np0] ̸= ∅ ̸= f−1[Np1] and Np0∩Np1 = ∅. Note that p0 and p1 are in K. Then, again
by continuity, there are q0 and q1 such that f [Nq0 ∩ D] ⊂ Np0 and f [Nq1 ∩ D] ⊂ Np1 .
Continue in the same manner to obtain αn and ps ∈ K for each n < ω and s ∈ 2<ω so
that s ⊂ s′ ⇔ ps ⊂ ps′ and αn = dom ps ⇔ n = dom s. Let α = supn<ω αn. Now clearly
the α’s level of K contains continuum many elements: by (b) in the definition of Kurepa
tree it contains all the elements of the form

∪
n<ω pη↾n for η ∈ 2ω and 2ω > ω1.

If κ is any regular not strongly inaccessible cardinal, then the proof is the same, but
instead of ω steps one has to do λ steps where λ is the least cardinal with 2λ > κ.

(2): The argument is even simpler. Define the equivalence relation E exactly as
above. Now E is again closed and has as many equivalence classes as is the number of
paths in K. Thus the number of equivalence classes is > κ but id cannot be reduced to
E since there are less than 2κ equivalence classes. �

Remark 3.13 Some related results:
(1) In L, the PSP fails for closed sets for all uncountable regular κ. This is because

“weak Kurepa trees” exist (see the proof sketch of (3) below for the definition of
“weak Kurepa tree”).

(2) (P. Schlicht) In Silver’s model where an inaccessible κ is made into ω2 by Lévy
collapsing each ordinal below to ω1 with countable conditions, every Σ1

1 subset X
of 2ω1 obeys the PSP.

(3) Supercompactness does not imply the PSP for closed sets.

Sketch of a proof of item (3). Suppose κ is supercompact and by a reverse Easton iter-
ation add to each inaccessible α a “weak Kurepa tree”, i.e., a tree Tα with α+ branches
whose β-th level has size β for stationary many β < α. The forcing at stage α is α-closed
and the set of branches through Tκ is a closed set with no perfect subset. If j : V → M
witnesses λ-supercompactness (λ > κ) and G is the generic then we can find G∗ which is
j(P)-generic over M containing j[G]: Up to λ we copy G, between λ and j(κ) we build
G∗ using λ+ closure of the forcing and of the model M , and at j(κ) we form a master
condition out of j[G(κ)] and build a generic below it, again using λ+ closure. �

Corollary 3.14 The consistency of the Silver dichotomy for Borel sets on ω1 with CH
implies the consistency of a strongly inaccessible cardinal. In fact, if there is no equiva-
lence relation witnessing the failure of the Silver dichotomy for ω1, then ω2 is inaccessible
in L.

The Infinity Project 501

Proof. By a result of Silver, if there are no ω1-Kurepa trees, then ω2 is inaccessible in L;
see Exercise 27.5 in Part III of [16]. �

Open Problem Is the Silver dichotomy for uncountable κ consistent?

3.3 Regularity properties and definability of the CUB filter

In the standard descriptive theory (κ = ω), the notions of Borel, ∆1
1 and Borel* coincide

and one of the most important observations in the theory is that such sets have the
property of Baire and that the Σ1

1-sets obey the perfect set property. In the case κ > ω
the situation is more complicated as the following shows. It was already pointed out in
the previous section that Borel (∆1

1. In this section we focus on the cub filter

CUB = {η ∈ 2κ | η−1{1} contains a cub}.

The set CUB is easily seen to be Σ1
1: the set

{(η, ξ) | (η−1{1} ⊂ ξ−1{1}) ∧ (η−1{1} is cub)}

is Borel. CUB (restricted to cofinality ω; see Definition 3.19 below) will serve (consis-
tently) as a counterexample to ∆1

1 = Borel*, but we will show that it is also consistent
that CUB is ∆1

1. The latter implies that it is consistent that ∆1
1-sets do not have the

property of Baire and we will also show that in a forcing extension of L, ∆1
1-sets all have

the property of Baire.

Definition 3.15 A nowhere dense set is a subset of a set whose complement is dense
and open. Let X ⊂ κκ. A subset M ⊂ X is κ-meager in X if M ∩X is the union of no
more than κ nowhere dense sets,

M =
∪
i<κ

Ni.

We usually drop the prefix “κ-”.
Clearly κ-meager sets form a κ-complete ideal. A co-meager set is a set whose com-

plement is meager.
A subset A ⊂ X has the property of Baire, or shorter P.B., if there exists an open

U ⊂ X such that the symmetric difference U △A is meager.

Halko showed in [5] that

Theorem 3.16 ([5]) Borel sets have the property of Baire. �

(The same proof as when κ = ω works.) This is independent of the assumption
κ<κ = κ. Borel* sets do not in general have the property of Baire.

Definition 3.17 ([11, 23, 24]) A κ+κ-tree t is a κλ-canary tree if for all stationary
S ⊂ Sκλ it holds that, if P does not add subsets of κ of size less than κ and P kills the
stationarity of S, then P adds a κ-branch to t.

Remark Hyttinen and Rautila [11] use the term κ-canary tree for our κ+κ-canary tree.

It was shown by Mekler and Shelah [23] and Hyttinen and Rautila [11] that it is
consistent with ZFC+ GCH that there is a κ+κ-canary tree and it is consistent with
ZFC+ GCH that there are no κ+κ-canary trees. The same proof as in [11, 23] gives the
following:

502 Generalized descriptive set theory and classification theory

Theorem 3.18 Assume GCH and assume λ < κ are regular cardinals. Let P be the
forcing which adds κ+ Cohen subsets of κ. Then in the forcing extension there are no
κλ-canary trees. �
Definition 3.19 Suppose X ⊂ κ is stationary. For each such X define the set

CUB(X) = {η ∈ 2κ | X \ η−1{1} is non-stationary},
so CUB(X) is “cub in X”.

Theorem 3.20 In the following κ satisfies κ<κ = κ > ω.
(1) CUB(Sκω) is Borel*.
(2) For all regular λ < κ, CUB(Sκλ) is not ∆1

1 in the forcing extension after adding κ+
Cohen subsets of κ.

(3) If V = L, then for every stationary S ⊂ κ, the set CUB(S) is not ∆1
1.

(4) Assume GCH and that κ is not a successor of a singular cardinal. For any stationary
set Z ⊂ κ there exists a forcing notion P which has the κ+-c.c., does not add bounded
subsets of κ and preserves GCH and stationary subsets of κ\Z such that CUB(κ\Z)
is ∆1

1 in the forcing extension.
(5) Let the assumptions for κ be as in (3.20). For all regular λ < κ, CUB(Sκλ) is ∆1

1 in
a forcing extension as in (3.20).

(6) CUB(X) does not have the property of Baire for stationary X ⊂ κ. (Proved by
Halko and Shelah in [6] for X = κ.)

(7) It is consistent that all ∆1
1-sets have the property of Baire. (Independently known to

P. Lücke and P. Schlicht.)
Proof of Theorem 3.20.
Proof of item (1). Let t = [κ]<ω (increasing functions ordered by end extension) and, for
all branches b ⊂ t,

h(b) =

{
ξ ∈ 2κ | ξ

(
sup
n<ω

b(n)
)
̸= 0

}
.

Now if κ \ ξ−1{0} contains an ω-cub set C, then player II has a winning strategy in
G(t, h, ξ): for her n-th move she picks an element x ∈ t with domain 2n + 2 such that
x(2n+1) is in C. Suppose the players picked a branch b in this way. Then the condition
ξ(b(2n + 1)) ̸= 0 holds for all n < ω and because C is cub outside ξ−1{0}, we have
ξ(supn<ω b(n)) ̸= 0.

Suppose, on the contrary, that S = ξ−1{0} is stationary. Let σ be any strategy
of player II. Let Cσ be the set of ordinals closed under this strategy. It is a cub set,
so there is an α ∈ Cσ ∩ S. Player I can now easily play towards this ordinal to force
α = supn<ω b(n) and so ξ(supn<ω b(b)) = 0, so σ cannot be a winning strategy. � item (1)

Proof of item (2). It is not hard to see that CUBκλ is ∆1
1 if and only if there exists a

κλ-canary tree. This fact is proved in detail in [24] in the case κ = ω1, λ = ω and the
proof generalizes easily to any regular uncountable κ along with the assumption κ<κ = κ.
So the statement follows from Theorem 3.18. � item (2)

Proof of item (7). Suppose that φ is Σ1 and for simplicity assume that φ has no param-
eters. Then for x ⊂ κ we have:

Claim φ(x) holds if and only if the set A of those α for which there exists β > α with

Lβ |=
(
ZF− ∧ (ω < α is regular) ∧ ((S ∩ α) is stationary) ∧ φ(x ∩ α)

)
contains C ∩ S for some cub set C.

The Infinity Project 503

Proof of the claim. “⇒”. If φ(x) holds then choose a continuous chain (Mi | i < κ) of
elementary submodels of some large ZF− model Lθ so that x and S belong to M0 and
the intersection of each Mi with κ is an ordinal αi less than κ. Let C be the set of αi’s,
cub in κ. Then any α in C ∩ S belongs to A by condensation.

“⇐”. If φ(x) fails then let C be any cub in κ and let D be the cub of α < κ such
that H(α) is the Skolem Hull in some large Lθ of α together with {κ, S,C} contains no
ordinals in the interval [α, κ). Let α be the least element of S ∩ lim(D). Then α does not
belong to A: If Lβ satisfies φ(x ∩ α) then β must be greater than β where H(α) = Lβ is
the transitive collapse of H(α), because φ(x ∩ α) fails in H(α). But as lim(D) ∩ α is an
element of Lβ+2 and is disjoint from S, it follows that either α is singular in Lβ or S ∩α
is not stationary in Lβ+2 and hence not in Lβ . Of course α does belong to C so we have
shown that A does not contain S ∩ C for an arbitrary cub C in κ. �Claim

It follows from the above that any Σ1 subset of 2κ is ∆1 over (L+
κ ,CUB(S)) and

therefore, if CUB(S) were ∆1, then every Σ1 subset of 2κ would be ∆1, which is a
contradiction. � item (7)

Proof of item (4). If X ⊂ 2κ is ∆1
1, then {η ∈ X | η−1{1} ⊂ κ\Z} is ∆1

1, so it is sufficient
to show that we can force a set E ⊂ Z which has the claimed property. So we force a set
E ⊂ Z such that E is stationary but E ∩α is non-stationary in α for all α < κ and κ \E
is fat. A set is fat if its intersection with any cub set contains closed increasing sequences
of all order types < κ.

This can be easily forced with

R = {p : α→ 2 | α < κ, p−1{1} ∩ β ⊂ Z is non-stationary in β for all β 6 α},

ordered by end-extension. For any R-generic G, the set E = (∪G)−1{1} satisfies the
requirements. Also R does not add bounded subsets of κ and has the κ+-c.c. and does
not kill stationary sets.

Without loss of generality, assume that such E exists in V and that 0 ∈ E.
Next let P0 = {p : α → 2<α | α < κ, p(β) ∈ 2β, p(β)−1{1} ⊂ E}. This forcing adds

a ♢E-sequence ⟨Aα | α ∈ E⟩ (if G is generic, set Aα = (∪G)(α)−1{1}) such that for all
B ⊂ E there is a stationary S ⊂ E such that Aα = B ∩ α for all α ∈ S. This forcing P0
is < κ-closed and clearly has the κ+-c.c., so it is easily seen that it does not add bounded
subsets of κ and does not kill stationary sets.

Let ψ(G, η, S) be a formula with parameters G ∈ (2<κ)κ and η ∈ 2κ and a free
variable S ⊂ κ which says:

∀α < κ(α ∈ S ⇐⇒ G(α)−1{1} = η−1{1} ∩ α).

If ⟨G(α)−1{1}⟩α<κ happens to be a ♢E-sequence, then S satisfying ψ is always stationary.
Thus if G0 is P0-generic over V and η ∈ 2E , then (ψ(G0, η, S)→ (S is stationary))V [G0].

For each η ∈ 2E , let Ṡη be a nice P0-name for the set S such that V [G0] |= ψ(G0, η, S)

where G0 is P0-generic over V . By the definitions, P0 “Ṡη ⊂ Ě is stationary” and if
η ̸= η′, then P0 “Ṡη ∩ Ṡη′ is bounded”.

Let us enumerate E = {βi | i < κ} such that i < j ⇒ βi < βj and for η ∈ 2E and
γ ∈ κ define η+ γ to be the ξ ∈ 2E such that ξ(βi) = 1 for all i < γ and ξ(βγ+j) = η(βj)
for j > 0. Let

(3.2) F0 = {η ∈ 2E | η(0) = 0}V .

504 Generalized descriptive set theory and classification theory

Now for all η, η′ ∈ F0 and α, α′ ∈ κ, η + α = η′ + α′ implies η = η′ and α = α′. Let
us now define the formula φ(G, η,X) with parameters G ∈ (2<κ)κ, η ∈ 2κ and a free
variable X ⊂ κ \ E which says:

(η(0) = 0) ∧ ∀α < κ
[
(α ∈ X → ∃S(ψ(G, η + 2α, S) ∧ S is non-stationary))

∧ (α /∈ X → ∃S(ψ(G, η+2α+1, S) ∧ S is non-stationary))
]
.

Now, we will construct an iterated forcing Pκ+ , starting with P0, which kills the
stationarity of Ṡη for suitable η ∈ 2E , such that if G is Pκ+-generic, then for all S ⊂ κ\E,
S is stationary if and only if

∃η ∈ 2E(φ(G0, η, S))

where G0 = G ↾{0}. In this model, for each η ∈ F0, there will be a unique X such that
φ(G0, η,X), so let us denote this X by Xη. It is easy to check that the mapping η 7→ Xη

defined by φ is Σ1
1 so in the result, also S = {S ⊂ κ \ E | S is stationary} is Σ1

1. Since
cub and non-stationarity are also Σ1

1, we get that S is ∆1
1, as needed.

Let us show how to construct the iterated forcing. For S ⊂ κ, we denote by T (S) the
partial order of all closed increasing sequences contained in the complement of S. Clearly
T (S) is a forcing that kills the stationarity of S. If the complement of S is fat and S
is non-reflecting, then T (S) has all the nice properties we need, as the following claims
show. Let f : κ+ \ {0} → κ+ × κ+ be a bijection such that f1(γ) 6 γ.

P0 is already defined and it has the κ+-c.c. and it is < κ-closed. Suppose that Pi has
been defined for i < α and σi has been defined for i < ∪α such that σi is a (nice) Pi-name
for a κ+-c.c. partial order. Also suppose that for all i < ∪α, {(Ṡij , δij) | j < κ+} is the
list of all pairs (Ṡ, δ) such that Ṡ is a nice Pi-name for a subset of κ̌ \ Ě and δ < κ, and
suppose that

(3.3) gα : {Ṡf(i) | i < α} −→ F0

is an injective function, where F0 is defined at (3.2).
If α is a limit, let Pα consist of those p : α→

∪
i<α domσi with | sprt(p)| < κ (support;

see page 473) such that for all γ < α, p ↾ γ ∈ Pγ and let gα =
∪
i<α gi. Suppose α is a

successor, α = γ + 1. Let {(Ṡγj , δγj) | j < κ} be the list of pairs as defined above. Let
(Ṡ, δ) = (Ṡf(γ), δf(γ)) where f is the bijection defined above. If there exists i < γ such
that Ṡf(i) = Ṡf(γ) (i.e., Ṡi has been already under focus), then let gα = gγ . Otherwise let

gα = gγ ∪ {(Ṡf(γ), η)},
where η is some element in F0 \ ran gγ . Doing this, we want to make sure that in the end
ran gκ+ = F0. We omit the technical details needed to ensure that.

Denote η = g(Ṡf(γ)). Let σγ be a Pγ-name such that for all Pγ-generic Gγ it holds
that

Pγ

σγ = T (Ṡη+2δ), if V [Gγ] |= [(δf(γ) ∈ Ṡf(γ)) ∧ (Ṡf(γ) is stationary)]
σγ = T (Ṡη+2δ+1), if V [Gγ] |= [(δf(γ) /∈ Ṡf(γ)) ∧ (Ṡf(γ) is stationary)]
σγ = {∅̌}, otherwise.

Now let Pα be the collection of sequences p = ⟨ρi⟩i6γ such that p ↾ γ = ⟨ρi⟩i<γ ∈ Pγ ,
ργ ∈ domσγ and p↾γ Pγ ργ ∈ σγ with the ordering defined in the usual way.

Let G be Pκ+-generic. Let us now show that the extension V [G] satisfies what we
want, namely that S ⊂ κ \ E is stationary if and only if there exists η ∈ 2E such that
S = Xη (Claims 3 and 4 below).

The Infinity Project 505

Claim 1 For α 6 κ+ the forcing Pα does not add bounded subsets of κ and the suborder

Qα = {p | p ∈ Pα, p = ⟨ρ̌i⟩i<α where ρi ∈ V for i < α}
is dense in Pα.

Proof of Claim 1. Let us show this by induction on α 6 κ+. For P0 this is already proved
and the limit case is left to the reader. Suppose this is proved for all γ < α < κ+ and
α = β + 1. Then suppose p ∈ Pα, p = ⟨ρi⟩i<α. Now p ↾ β ρβ ∈ σβ . Since by the
induction hypothesis Pβ does not add bounded subsets of κ and Qβ is dense in Pβ , there
exists a condition r ∈ Qβ , r > p ↾β and a standard name q̌ such that r q̌ = ρβ . Now
r⌢(q̌) is in Qα, so it is dense in Pα. To show that Pα does not add bounded sets, it
is enough to show that Qα does not. Let us think of Qα as a suborder of the product∏
i<α 2

<κ. Assume that τ is a Qα-name and p ∈ Qα forces that |τ | = λ̌ < κ̌ for some
cardinal λ. Then let ⟨Mδ⟩δ<κ be a sequence of elementary submodels of H(κ+) such that,
for all δ, β,
(a) |Mδ| < κ;
(b) δ < β ⇒Mδ ≼Mβ ;
(c) Mδ ∩ κ ⊂Mδ;
(d) if β is a limit ordinal, then Mβ =

∪
α<βMα;

(e) if κ = λ+, then M<λ
δ ⊂Mδ and if κ is inaccessible, then M |Mδ|

δ ⊂Mδ+1;
(f) Mα ∈Mα+1;
(g) {p, κ,Qα, τ, Ě} ⊂M0.

This (especially (e)) is possible since κ is not a successor of a singular cardinal and GCH
holds. Now the set C = {Mδ ∩ κ | δ < κ} is cub, so because κ \E is fat, there is a closed
sequence s of length λ+1 in C\E. Let (δi)i6λ be the sequence such that s = ⟨Mδi∩κ⟩i6λ.
For q ∈ Qα, let

(3.4) m(q) = inf
γ∈sprt q

ran q(γ).

Let p0 = p and for all i < γ let pi+1 ∈Mδi+1
\Mδi be such that pi < pi+1, pi+1 decides

i+ 1 first values of τ (think of τ as a name for a function λ→ κ and that pi decides the
first i values of that function) and m(pi+1) > Mδi ∩ κ. This pi+1 can be found because
clearly pi ∈ Mδi+1

and Mδi+1
is an elementary submodel. If i is a limit, i < λ, then let

pi be an upper bound of {pj | j < i} which can be found in Mδi+1
by the assumptions

(f), (e) and (b), and because Mδi ∩ κ /∈ E. Finally let pλ be an upper bound of ⟨pi⟩i<λ
which exists because for all α ∈

∪
i<λ sprt pi supi<λ ran pi(α) = Mδλ ∩ κ is not in E and

the forcing is closed under such sequences. So pλ decides the whole τ . This completes
the proof of the claim. �Claim 1

So, for simplicity, instead of Pκ+ let us work with Qκ+ .

Claim 2 Let G be Pκ+-generic over V . Suppose S ⊂ κ, S ∈ V [G] and Ṡ is a nice name
for a subset of κ such that ṠG = S. Then let γ be the smallest ordinal with S ∈ V [Gγ].
If (S ⊂ κ \E is stationary)V [Gγ], then S is stationary in V [G]. If Ṡ = Ṡη for some η ∈ V
and V [Gγ] |= σγ ̸= T ((Ṡη)Gγ↾{0}) for all γ < κ+, then S is stationary in V [G].
Proof of Claim 2. Recall that σγ is as in the construction of Pκ+ . Suppose first that
S ⊂ κ \E is a stationary set in V [Gγ] for some γ < κ+. Let us show that S is stationary

506 Generalized descriptive set theory and classification theory

in V [G]. Note that V [G] = V [Gγ][G
γ] where Gγ = G ↾ {α | α > γ}. Let us show this

in the case γ = 0 and S ∈ V , the other cases being similar. Let Ċ be a name and p a
condition which forces that Ċ is cub. Let us show that then p Š ∩ Ċ ̸= ∅̌. For q ∈ Qκ+
let m(q) be defined as in (3.4) above.

Like in the proof of Claim 1, construct a continuous increasing sequence ⟨Mα⟩α<κ
of elementary submodels of H(κ++) such that {p, κ,Pκ+ , Š, Ċ} ⊂ M0 and Mα ∩ κ is an
ordinal. Since {Mα ∩ κ | α < κ,Mα ∩ κ = α} is cub, there exists α ∈ S such that
Mα ∩ κ = α and because E does not reflect to α there exists a cub sequence

c ⊂ {Mβ ∩ κ | β < α,Mβ ∩ κ = β} \ E,
c = ⟨ci⟩i<cf(α). Now, similarly as in the proof of Claim 1, we can choose an increasing
⟨pi⟩i6cf(α) such that p0 = p, pi ∈ Qκ+ for all i, pi+1 β̌ ∈ Ċ for some ci 6 β 6 ci+1,
pi+1 ∈ Mci+1 \Mci and m(pi+1) > ci. If i is a limit, let pi be again an upper bound
of {pj | j < i} in Mci . Since the limits are not in E, the upper bounds exist. Finally
pcf(α) α ∈ Ċ, which implies pcf(α) Š ∩ Ċ ̸= ∅, because α was chosen from S.

Assume then that Ṡ = Ṡη for some η ∈ V such that

V [Gγ] |= σγ ̸= T ((Ṡη)Gγ↾{0})

for all γ < κ+. To prove that (Ṡη)G is stationary in V [G], we carry the same argument
as the above, a little modified. Let us work in V [G0] and let p0 force that

∀γ < κ+(σγ ̸= T (Sη)).

(This p0 exists for example because there is at most one γ such that σγ = T (Sη).) Build
the sequences c, ⟨Mci⟩i<cf(α) and ⟨pi⟩i<cf(α) in the same fashion as above, except that
assume additionally that the functions gκ+ and f , defined along with Pκ+ , are in Mc0 .

At the successor steps one has to choose pi+1 such that for each γ ∈ sprt pi, pi+1

decides σγ . This is possible, since there are only three choices for σγ , namely {∅},
T (Sξ+2α+1) or T (Sξ+2α) where ξ and α are justified by the functions gκ+ and f . For all
γ ∈ sprt pi let us denote by ξγ the function such that pi+1 ↾ γ σγ = T (Sξγ). Clearly
η ̸= ξγ for all γ ∈ sprt pi. Further demand that m(pi+1) > sup(Sη∩Sξγ) for all γ ∈ sprt pi.
It is possible to find such pi+1 from Mi+1 because Mi+1 is an elementary submodel and
such can be found in H(κ++) since ξγ ̸= η and, by the definitions given, Sη ∩ Sξγ is
bounded. �Claim 2

Claim 3 In V [G] the following holds: if S ⊂ κ \E is stationary, then there exists η ∈ 2E

with η(0) = 0 such that S = Xη.
Proof of Claim 3. Recall the function gκ+ from the construction of Pκ+ (defined at (3.3)
and the paragraph below that). Let η = gκ+(Ṡ) where Ṡ is a nice name Ṡ ∈ V such that
ṠG = S. If α ∈ S, then there is the smallest γ such that Ṡ = Sf(γ) and α = δf(γ) (where
f is as in the definition of Pκ+). This stage γ is the only stage where it is possible that
V [Gγ] |= σγ = T (Sη+2α+1), but since V [Gγ] |= α̌ ∈ Ṡ, by the definition of Pκ+ it is not
the case, so the stationarity of Sη+2α+1 has not been killed by Claim 2. On the other
hand the stationarity of Sη+2α is killed at this level γ of the construction, so α ∈ Xη by
the definitions of φ and Xη. Similarly if α /∈ S, we conclude that α /∈ Xη. �Claim 3

Claim 4 In V [G] the following holds: if S ⊂ κ \ E is not stationary, then for all η ∈ 2E

with η(0) = 0 we have S ̸= Xη.

The Infinity Project 507

Proof of Claim 4. It is sufficient to show thatXη is stationary for all η ∈ 2E with η(0) = 0.
Suppose first that η ∈ F0 ⊂ V . Then since gκ+ is a surjection onto F0 —see (3.3)— there
exists a name Ṡ such that S = ṠG is stationary, S ⊂ κ \ E and gκ+(S) = η. Now the
same argument as in the proof of Claim 3 implies that Xη = S, so Xη is stationary by
Claim 2.

If η /∈ F0, then by the definition of η 7→ Xη it is sufficient to show that the ♢-sequence
added by P0 guesses in V [G] every new set on a stationary set.

Suppose that τ and Ċ are nice Pκ+-names for subsets of κ̌ and let p be a condition
forcing that Ċ is cub. We want to find γ and q > p such that

q ((∪Ġ0)(γ̌)
−1{1} = τ ∩ γ̌) ∧ (γ̌ ∈ Ċ),

where Ġ0 = Ġ ↾ {0} is the name for the P0-generic. To do this, let p0 > p be such that
p0 τ /∈ ˇP(κ)V .

Similarly as in the proofs above define a suitable sequence ⟨Mi⟩i<λ of elementary sub-
models, of length λ < κ, where λ is a cofinality of a point in E, such that supi<λ(Mi∩κ) =
α ∈ E and Mi ∩ κ /∈ E for all i < λ. Assume also that p0 ∈ M0. Suppose pi ∈ Mi is
defined. Let pi+1 > pi be an element of Mi+1 \Mi satisfying the following:
(1) pi+1 decides σβ for all β ∈ sprt pi;
(2) for all β ∈ sprt pi there is β′ ∈ Mi+1 such that pi+1 β′ ∈ τ △ ξβ ; where ξβ is

defined as in the proof of Claim 2 and pi+1 decides what it is;
(3) pi+1 decides τ up to Mi ∩ κ;
(4) pi+1 δ ∈ Ċ for some δ ∈Mi+1 \Mi;
(5) m(pi+1) > Mi ∩ κ, where m(p) is defined at (3.4).

Item (1) is possible for the same reason as in the proof of Claim 2, and (2) is possible
since pi ∀η ∈ ˇP(κ)V (τ ̸= Sη̌).

Since Mi ∩κ /∈ E for i < λ, this ensures that the sequence p0 6 p1 6 . . . closes under
limits < λ. Let pλ =

∪
i<λ pi and let us define q ⊃ pλ as follows: sprt q = sprt pλ, for

δ ∈ sprt pλ \ {0} let dom q = α+1, pλ(δ) ⊂ q(δ), q(α) = 1 and q(0)(α) = τ ∩ γ (τ means
here what have been decided by {pi | i < λ}). Now q is a condition in the forcing notion.

Now certainly, if q ∈ G, then in the extension τG ∩ α = (∪G0)(α)
−1{1} and α ∈ C,

so we finish. �Claim 4 � item (4)

Proof of item (3). If κ = λ+, this follows from the result of Mekler and Shelah [23]
and Hyttinen and Rautila [11] that the existence of a κλ-canary tree is consistent. For
arbitrary λ < κ the result follows from item (4) of this theorem proved above (take
Z = κ \ Sκλ). � item (3)

Proof of item (5). For X = κ this was proved by Halko and Shelah in [6, Theorem 4.2].
For X any stationary subset of κ the proof is similar. It is sufficient to show that
2κ \CUB(X) is not meager in any open set. Suppose U is an open set and (Dα)α<κ is a
set of dense open sets and let us show that

(2κ \ CUB(X)) ∩ U ∩
∩
α<κ

Dα ̸= ∅.

Let p ∈ 2<κ be such that Np ⊂ U . Let p0 > p be such that p0 ∈ D0. Suppose pβ are
defined for β < α + 1. Let pα+1 be such that pα+1 > pα, pα+1 ∈ Dα+1. Suppose pβ
is defined for β < α and α is a limit ordinal. Let pα be any element of 2<κ such that

508 Generalized descriptive set theory and classification theory

pα >
∪
β<α pβ , pα(sup

β<α
dom pβ) = 0 and pα ∈ Dα. Let η =

∪
α<κ pα. The complement

of η−1{1} contains a cub, so X \ η−1{1} is stationary whence η /∈ CUB(X) and so
η ∈ 2κ \ CUB(X). Also clearly η ∈ U ∩

∩
α<κDα. � item (5)

Proof of item (6). Our proof is different from that given by Lücke and Schlicht. Suppose
κ<κ = κ > ω. We will show that in a generic extension of V all ∆1

1-sets have the property
of Baire. Let

P = {p | p is a function, |p| < κ, dom p ⊂ κ× κ+, ran p ⊂ {0, 1}}
with the ordering p < q ⇔ p ⊂ q and let G be P-generic over V . Suppose that X ⊂ 2κ is
a ∆1

1-set in V [G]. It is sufficient to show that for every r ∈ 2<κ there is q ⊃ r such that
either Nq \X or Nq ∩X is co-meager. So let r ∈ 2<κ be arbitrary.

Now suppose that ⟨pi⟩i<κ and ⟨qi⟩i<κ are sequences in V [G] such that pi, qi ∈ (2<κ)2

for all i < κ and X is the projection of

C0 = (2κ)2 \
∪
i<κ

Npi

and 2κ \X is the projection of

C1 = (2κ)2 \
∪
i<κ

Nqi .

(By Npi we mean Np1i
×Np2i

where pi = (p1i , p
2
i).) Since these sequences have size κ, there

is α1 < κ+ such that they are already in V [Gα1], where Gα1 = {p ∈ G | dom p ⊂ κ×α1}.
More generally, for E ⊂ P and A ⊂ κ+, we will denote EA = {p ∈ E | dom p ⊂ κ × A}
and if p ∈ P, similarly pA = p↾(κ×A).

Let α2 > α1 be such that r ∈ G{α2} (identifying κ × {α2} with κ). This is possible
since G is generic. Let x = G{α2}. In V [G], x ∈ X or x ∈ 2κ \X, so there are α3 > α2,
p ∈ Gα3 , p{α2} ⊃ r and a name τ such that p forces that (x, τ) /∈ Npi for all i < κ or
(x, τ) /∈ Nqi for all i < κ. Without loss of generality assume that p forces (x, τ) /∈ Npi for
all i < κ. Also assume that τ is a Pα3-name and that α3 = α2 + 2.

By working in V [Gα2] we may assume that α2 = 0. For all q ∈ P{1}, p{1} ⊆ q and
i < κ, let Di,q be the set of all s ∈ P{0} such that p{0} ⊆ s, dom(s) > dom(p1i) and
there is q′ ∈ P{1} such that q ⊆ q′ and s ∪ q′ decides τ ↾ dom(p2i). Clearly each Di,q

is dense above p{0} in P{0} and so it suffices to show that if y ∈ 2κ is such that for all
i < κ and q as above there is α < κ such that y ↾ α ∈ Di,q, then y ∈ X. So let y be
such. Then we can find z ∈ 2κ such that for all i < κ and q as above there are α, β < κ
such that α > dom(p1i) and y ↾ α ∪ z ↾ β decides t = τ ↾ dom(p2i). By the choice of p,
(y ↾dom(p1i), t) ̸= pi. Letting τ∗ be the function decided by y and z, (y, τ∗) ∈ C0 and so
y ∈ X. � item (6) �Theorem 3.20

Remark (cf(κ) = κ > ω) There are some more results and strengthenings of the results
in Theorem 3.20:
(1) (Independently known by S. Coskey and P. Schlicht) If V = L then there is a ∆1

1

well-order of P(κ) and this implies that there is a ∆1
1-set without the Baire property.

(2) Suppose that ω < κ < λ, κ regular and λ inaccessible. Then after turning λ into κ+
by collapsing each ordinal less than λ to κ using conditions of size < κ, the Baire
property holds for ∆1

1 subsets of κκ.

The Infinity Project 509

Corollary 3.21 For a regular λ < κ, let NSλ denote the equivalence relation on 2κ such
that ηNSλξ if and only if η−1{1}△ ξ−1{1} is not λ-stationary. Then NSλ is not Borel
and it is not ∆1

1 in L or in the forcing extensions after adding κ+ Cohen subsets of κ.

Proof. Define a map f : 2κ → (2κ)2 by η 7→ (∅, κ \ η). Suppose for a contradiction that
NSλ is Borel. Then

NS∅ = NSλ ∩ {(∅, η) | η ∈ 2κ}︸ ︷︷ ︸
closed

is Borel, and further f−1[NS∅] is Borel by continuity of f . But f−1[NS∅] equals CUB
which is not Borel by Theorem 3.20 (5) and Theorem 3.16. Similarly, using items (2) and
(7) of Theorem 3.20, one can show that NSλ is not ∆1

1 under the stated assumptions. �

3.4 Equivalence modulo the non-stationary ideal

In this section we investigate the relations defined as follows:

Definition 3.22 For X ⊂ κ, we denote by EX the relation

EX = {(η, ξ) ∈ 2κ × 2κ | (η−1{1}△ ξ−1{1}) ∩X is not stationary}.

The set X consists usually of ordinals of fixed cofinality, i.e., X ⊂ Sκµ for some µ.
These relations are easily seen to be Σ1

1. If X ⊂ Sκω, then it is in fact Borel*. To see this
use the same argument as in the proof of Theorem 3.20 (1) that the CUBκω-set is Borel*.

3.4.1 An antichain

Theorem 3.23 Assume GCH, κ<κ = κ is uncountable, and µ < κ is a regular cardinal
such that if κ = λ+ then µ 6 cf(λ). Then, in a cofinality and GCH preserving forcing
extension, there are stationary sets K(A) ⊂ Sκµ for each A ⊂ κ such that EK(A) ̸6B EK(B)

if and only if A ̸⊂ B.

Remark This was improved for Borel equivalence relations in [20].

Proof. In this proof we identify functions η ∈ 26κ with the sets η−1{1}: for example we
write η ∩ ξ to mean η−1{1} ∩ ξ−1{1}.

The embedding will look as follows. Let (Si)i<κ be pairwise disjoint stationary subsets
of

limSκµ = {α ∈ Sκµ | α is a limit of ordinals in Sκµ}.
Let

(3.5) K(A) = E∪
α∈A Sα

.

If X1 ⊂ X2 ⊂ κ, then EX1 6B EX2 , because f(η) = η ∩ X1 is a reduction. This
guarantees that

A1 ⊂ A2 ⇒ K(A1) 6B K(A2).

Now suppose that for all α < κ we have killed (by forcing) all reductions from
K(α) = ESα to K(κ \ α) = E∪

β ̸=α Sβ
for all α < κ. Then if K(A1) 6B K(A2) it follows

that A1 ⊂ A2: Otherwise choose α ∈ A1 \A2 and we have:

K(α) 6B K(A1) 6B K(A2) 6B K(κ \ α),
contradiction. So we have:

A1 ⊂ A2 ⇐⇒ K(A1) 6B K(A2).

510 Generalized descriptive set theory and classification theory

It is easy to obtain an antichain of length κ in P(κ) and so the result follows.
Suppose that f : EX 6B EY is a Borel reduction. Then g : 2κ → 2κ defined by

g(η) = f(η)△ f(0) is a Borel function with the following property:

η ∩X is stationary ⇐⇒ g(η) ∩ Y is stationary.

The function g is Borel, so by Lemma 3.2, page 491, there are dense open sets Di for i < κ
such that g ↾D is continuous where D =

∩
i<κDi. Note that Di are open so for each i we

can write Di =
∪
j<κNp(i,j), where (p(i, j))j<κ is a suitable collection of elements of 2<κ.

Next define Qg : 2
<κ × 2<κ → {0, 1} by Qg(p, q) = 1 ⇔ Np ∩ D ⊂ g−1[Nq] and

Rg : κ× κ→ 2<κ by Rg(i, j) = p(i, j) where p(i, j) are as above.
For any Q : 2<κ × 2<κ → {0, 1} define Q∗ : 2κ → 2κ by

Q∗(η) =

{
ξ, such that ∀α < κ ∃β < κQ(η ↾β, ξ ↾α) = 1 if such exists,
0, otherwise.

And for any R : κ× κ→ 2<κ define

R∗ =
∩
i<κ

∪
j<κ

NR(i,j).

Now clearly R∗
g = D and Q∗

g ↾D = g ↾D, i.e., (Q,D) codes g ↾D in this sense. Thus
we have shown that if there is a reduction EX 6B EY , then there is a pair (Q,R) which
satisfies the following conditions:
(1) Q : (2<κ)2 → {0, 1} is a function.
(2) Q(∅,∅) = 1.
(3) If Q(p, q) = 1 and p′ > p, then Q(p′, q) = 1.
(4) If Q(p, q) = 1 and q′ < q, then Q(p, q′) = 1.
(5) Suppose Q(p, q) = 1 and α > dom q. There exist q′ > q and p′ > p such that

dom q′ = α and Q(p′, q′) = 1.
(6) If Q(p, q) = Q(p, q′) = 1, then q 6 q′ or q′ < q.
(7) R : κ× κ→ 2<κ is a function.
(8) For each i ∈ κ the set

∪
j<κNR(i,j) is dense.

(9) For all η ∈ R∗, η ∩X is stationary if and only if Q∗(η ∩X) ∩ Y is stationary.
Let us call a pair (Q,R) which satisfies (1)–(9) a code for a reduction (from EX

to EY). Note that it is not the same as the Borel code for the graph of a reduction
function as a set. Thus we have shown that, if EX 6B EY , then there exists a code for
a reduction from EX to EY . We will now prove the following lemma, which is stated in
a general enough form so we can use it also in the next section:

Lemma 3.24 (GCH) Suppose µ1 and µ2 are regular cardinals less than κ such that if
κ = λ+ then µ2 6 cf(λ), and suppose X is a stationary subset of Sκµ1 , Y is a subset of
Sκµ2 , X ∩ Y = ∅ (relevant if µ1 = µ2) and if µ1 < µ2 then α ∩ X is not stationary in
α for all α ∈ Y . Suppose that (Q,R) is an arbitrary pair. Denote by φ the statement
“(Q,R) is not a code for a reduction from EX to EY ”. Then there is a κ+-c.c. <κ-closed
forcing R such that R φ.

Remark Clearly if µ1 = µ2 = ω then the condition µ2 6 cf(λ) is of course true. We
need this assumption in order to have ν<µ2 < κ for all ν < κ.
Proof of Lemma 3.24. We will show that one of the following holds:
(1) φ already holds, i.e., {∅} φ;

The Infinity Project 511

(2) P = 2<κ = {p : α→ 2 | α < κ} φ;
(3) R φ;

where
R = {(p, q) | p, q ∈ 2α, α < κ, X ∩ p ∩ q = ∅, q is µ1-closed}.

Above “q is µ1-closed” means “q−1{1} is µ1-closed” etc., and we will use this abbreviation
below. Assuming that (1) and (2) do not hold, we will show that (3) holds.

Since (2) does not hold, there is a p ∈ P which forces ¬φ and so Pp = {q ∈ P | q > p}
¬φ. But Pp ∼= P, so in fact P ¬φ, because φ has only standard names as parameters
(names for elements in V , such as Q, R, X and Y). Let G be any P-generic and let us
denote the set G−1{1} also by G. Let us show that G∩X is stationary. Suppose that Ċ
is a name and r ∈ P is a condition which forces that Ċ is cub. For an arbitrary q0, let us
find a q > q0 which forces Ċ ∩ Ġ ∩ X̌ ̸= ∅. Make a counter assumption: no such q > q0
exists. Let q1 > q0 and α1 > dom q0 be such that q1 α̌1 ∈ Ċ, dom q1 > α1 is a successor
and q1(max dom q1) = 1. Then by induction on i < κ let qi+1 and αi+1 > dom qi be such
that qi+1 α̌i+1 ∈ Ċ, dom qi+1 > αi+1 is a successor and qi+1(max dom qi+1) = 1. If j is
a limit ordinal, let qj =

∪
i<j qi ∪ {(supi<j dom qi, 1)} and αj = supi<j αi. We claim that

for some i < κ, the condition qi is as needed, i.e.,

qi Ġ ∩ X̌ ∩ Ċ ̸= ∅.
Clearly, for limit ordinals j, we have αj = maxdom qj and qj(αj) = 1 and {αj | j limit}
is cub. Since X is stationary, there exists a limit j0 such that αj0 ∈ X. Because q0 forces
that Ċ is cub, qj > qi > q0 for all i < j, qi α̌i ∈ Ċ and αj = supi<j αi, we have
qj αj ∈ Ċ ∩ X̌. On the other hand qj(αj) = 1, so qj αj ∈ G and we finish.

So now we have in V [G] that G∩X is stationary, G ∈ R∗ (since R∗ is co-meager) and
Q is a code for a reduction, so Q∗ has the property (9) and Q∗(G∩X)∩ Y is stationary.
Denote Z = Q∗(G ∩X) ∩ Y . We will now construct a forcing Q in V [G] such that

V [G] |= (Q “G ∩X is not stationary, but Z is stationary”).

Then V [G] |= (Q φ) and hence P ∗ Q φ. On the other hand Q will be chosen such
that P ∗Q and R give the same generic extensions. So let

(3.6) Q = {q : α→ 2 | X ∩G ∩ q = ∅, q is µ1-closed}.
Clearly Q kills the stationarity of G ∩X. Let us show that it preserves the stationarity
of Z. For that purpose it is sufficient to show that for any nice Q-name Ċ for a subset of
κ and any p ∈ Q, if p “ Ċ is µ2-cub”, then p (Ċ ∩ Ž ̸= ∅̌).

So suppose Ċ is a nice name for a subset of κ and p ∈ Q is such that

p “Ċ is cub” .

Let λ > κ be a sufficiently large regular cardinal and let N be an elementary submodel
of ⟨H(λ), p, Ċ,Q, κ⟩ which has the following properties:
� |N | = µ2;
� N<µ2 ⊂ N ;
� α = sup(N ∩ κ) ∈ Z (this is possible because Z is stationary).

Here we use the hypothesis that µ2 is at most cf(λ) when κ = λ+. Now by the assumption
of the theorem, α \ X contains a µ1-closed unbounded sequence of length µ2, ⟨αi⟩i<µ2 .
Let ⟨Di⟩i<µ2 list all the dense subsets of QN in N . Let q0 > p, q0 ∈ QN be arbitrary and
suppose qi ∈ QN is defined for all i < γ. If γ = β + 1, then define qγ to be an extension

512 Generalized descriptive set theory and classification theory

of qβ such that qγ ∈ Dβ and dom qγ = αi for some αi > dom qβ . To do that, for instance,
choose αi > dom qβ and define q′ ⊃ qβ by dom q′ = αi, q(δ) = 0 for all δ ∈ dom q′\dom qβ
and then q′ to qβ in Dβ. If γ is a limit ordinal with cf(γ) ̸= µ1, then let qγ =

∪
i<γ qi. If

cf(γ) = µ1, let

qγ =
(∪
i<γ

qi

)
⌢
⟨
sup
i<γ

dom qi, 1
⟩
.

Since N is closed under taking sequences of length less than µ2, qγ ∈ N . Since we
required elements of Q to be µ1-closed but not γ-closed if cf(γ) ̸= µ1, qγ ∈ Q when cf(γ) ̸=
µ1. When cf(γ) = µ1, the limit supi<γ dom qi coincides with a limit of a subsequence of
⟨αi⟩i<µ2 of length µ1, i.e., the limit is αβ for some β since this sequence is µ1-closed. So
by definition supi<γ dom qi /∈ X and again qγ ∈ Q.

Then q =
∪
γ<µ qγ is a QN -generic over N . Since X ∩ Y = ∅, also (X ∩G) ∩ Z = ∅

and α /∈ X ∩G. Hence q⌢(α, 1) is in Q. We claim that q (Ċ ∩ Ž ̸= ∅).
Because p “ Ċ is unbounded”, also N |= (p “ Ċ is unbounded”) by elementarity.

Assuming that λ is chosen large enough, we may conclude that for all QN -generic g over
N , N [g] |= “Ċg is unbounded”, thus in particular N [g] |= “Ċg is unbounded in κ”. Let
G1 be Q-generic over V [G] with q ∈ G1. Then ĊG1 ⊃ Ċq which is unbounded in α by
the above, since sup(κ ∩N) = α. Because ĊG1 is µ2-cub, α is in ĊG1 .

Thus P ∗ Q φ. It follows straightforwardly from the definition of iterated forcing
that R is isomorphic to a dense suborder of P∗ Q̇ where Q̇ is a P-name for a partial order
such that Q̇G equals Q as defined in (3.6) for any P-generic G.

Now it remains to show that R has the κ+-c.c. and is < κ-closed. Since R is a suborder
of P× P, which has size κ, it trivially has the κ+-c.c. Suppose (pi, qi)i<γ is an increasing
sequence, γ < κ. Then the pair

(p, q) =
⟨(∪

i<γ

pi

)
⌢⟨α, 0⟩,

(∪
i<γ

qi

)
⌢⟨α, 1⟩

⟩
is an upper bound. �Lemma 3.24

Note that the forcing used in the previous proof is equivalent to κ-Cohen forcing.

Corollary 3.25 (GCH) Let K : A 7→ E∪
α∈A Sα

be as in the beginning of the proof. For
each pair (Q,R) and each α there is a <κ-closed, κ+-c.c. forcing R(Q,R, α) such that

R(Q,R, α) “ (Q,R) is not a code for a reduction from K({α}) to K(κ \ {α})”.

Proof. By the above lemma one of the choices R = {∅}, R = 2<κ or

R = {(p, q) | p, q ∈ 2β, β < κ, Sα ∩ p ∩ q = ∅, q is µ-closed}

suffices. �

Start with a model satisfying GCH. Let h : κ+ → κ+×κ×κ+ be a bijection such that
h3(α) < α for α > 0 and h3(0) = 0. Let P0 = {∅}. For each α < κ, let {σβα0 | β < κ+}
be the list of all P0-names for codes for a reduction from K({α}) to K(κ\{α}). Suppose
Pi and {σβαi | β < κ+} are defined for all i < γ and α < κ, where γ < κ+ is a successor
γ = β + 1, Pi is < κ-closed and has the κ+-c.c.

The Infinity Project 513

Consider σh(β). By the above corollary, the following holds:

Pβ
[
∃R ∈ P(2<κ × 2<κ)(R is < κ-closed, κ+-c.c. p.o. and

R “ σh(β) is not a code for a reduction”)
]
.

So there is a Pβ-name ρβ such that Pβ forces that ρβ is as R above. Define

Pγ = {(pi)i<γ | ((pi)i<β ∈ Pβ) ∧ ((pi)i<β pβ ∈ ρβ)}.

And if p = (pi)i<γ ∈ Pγ and p′ = (p′i)i<γ ∈ Pγ , then

p 6Pγ p′ ⇐⇒ [(pi)i<β 6Pβ (p′i)i<β] ∧ [(p′i)i<β (pβ 6ρβ p
′
β)].

If γ is a limit, γ 6 κ+, let

Pγ = {(pi)i<γ | ∀β(β < γ → (pi)i<β ∈ Pβ) ∧ (| sprt(pi)i<γ | < κ)},

where sprt means support; see page 473. For every α, let {σβαγ | β < κ+} list all Pβ-
names for codes for a reduction. It is easily seen that Pγ is < κ-closed and has the κ+-c.c.
for all γ 6 κ+

We claim that Pκ+ forces that, for all α, K({α}) ̸6B K(κ \ {α}), which suffices by
the discussion in the beginning of the proof; see (3.5) for the notation.

Let G be Pκ+-generic and let Gγ = “ G∩Pγ” for every γ < κ. Then Gγ is Pγ-generic.
Suppose that, in V [G], f : 2κ → 2κ is a reduction K({α}) 6B K(κ \ {α}) and (Q,R)

is the corresponding code for a reduction. By [21, Theorem VIII.5.14], there is a δ < κ+

such that (Q,R) ∈ V [Gδ]. Let δ0 be the smallest such δ.
Now there exists σγαδ0 , a Pδ0-name for (Q,R). By the definition of h, there exists a

δ > δ0 with h(δ) = (γ, α, δ0). Thus

Pδ+1 “σγαδ0 is not a code for a reduction”,

i.e., V [Gδ+1] |= (Q,R) is not a code for a reduction. Now one of the items (1)–(9) fails for
(Q,R) in V [Gδ+1]. We want to show that then one of them fails in V [G]. The conditions
(1)–(8) are absolute, so if one of them fails in V [Gδ+1], then we are done. Suppose (1)–(8)
hold but (9) fails. Then there is an η ∈ R∗ such that Q∗(η ∩ S{α}) ∩ Sκ\α is stationary
but η ∩ S{α} is not or vice versa. In V [Gδ+1] define

Pδ+1 = {(pi)i<κ+ ∈ Pκ+ | (pi)i<δ+1 ∈ Gδ+1}.

Then Pδ+1 is < κ-closed. Thus it does not kill stationarity of any set. Hence, if Gδ+1 is
Pδ+1-generic over V [Gδ+1], then in V [Gδ+1][G

δ+1], (Q,R) is not a code for a reduction.
Now it remains to show that V [G] = V [Gδ+1][G

δ+1] for some Gδ+1. In fact putting
Gδ+1 = G we get Pδ+1-generic over V [Gδ+1] and of course V [Gδ+1][G] = V [G] (since
Gδ+1 ⊂ G). �Theorem 3.23

Remark The forcing constructed in the proof of Theorem 3.23 above, combined with the
forcing in the proof of item (4) of Theorem 3.20, page 502, gives that for κ<κ = κ > ω1

not successor of a singular cardinal, we have in a forcing extension that ⟨P(κ),⊂⟩ embeds
into ⟨E∆1

1 ,6B⟩, i.e., the partial order of ∆1
1-equivalence relations under Borel reducibility.

514 Generalized descriptive set theory and classification theory

3.4.2 Reducibility between different cofinalities

Recall the notation defined in Section 1.1. In this section we will prove the following two
theorems:

Theorem 3.26 Suppose that κ is a weakly compact cardinal and that V = L. Then:
(A) ESκλ 6c Ereg(κ) for any regular λ < κ, where reg(κ) = {λ < κ | λ is regular}.
(B) In a forcing extension ESω2ω 6c ESω2ω1

. Similarly for λ, λ+ and λ++ instead of ω, ω1

and ω2 for any regular λ < κ.

Theorem 3.27 For a cardinal κ which is a successor of a regular cardinal or κ inacces-
sible, there is a cofinality-preserving forcing extension in which, for all regular λ < κ, the
relations ESκλ are 6B-incomparable with each other.

Let us begin by proving the latter.

Proof of Theorem 3.27. Let us show that there is a forcing extension of L in which ESω2ω1
and ESω2ω are incomparable. The general case is similar.

We shall use Lemma 3.24 with µ1 = ω and µ2 = ω1 and vice versa, and then a
similar iteration as in the end of the proof of Theorem 3.23. First we force, like in the
proof of Theorem 3.20 (4), a stationary set S ⊂ Sω2

ω such that, for all α ∈ Sω2
ω1

, α ∩ S is
non-stationary in α. Also for all α ∈ Sω2

ω , α ∩ Sω2
ω1

is non-stationary.
By Lemma 3.24, for each code for a reduction from ES to ESω2ω1 there is a < ω2-closed

ω3-c.c. forcing which kills it. Similarly for each code for a reduction from ESω2ω1
to ESω2ω .

Making an ω3-long iteration, similarly as in the end of the proof of Theorem 3.23, we
can kill all codes for reductions from ES to ESω2ω1 and from ESω2ω1

to ESω2ω . Thus, in the
extension there are no reductions from ESω2ω1

to ESω2ω and no reductions from ESω2ω to
ESω2ω1

. (Suppose there is one of a latter kind, f : 2ω2 → 2ω2 . Then g(η) = f(η ∩ S) is a
reduction from ES to ESω2ω1 .) �Theorem 3.27

Definition 3.28 Let X,Y be subsets of κ and suppose that Y consists of ordinals of
uncountable cofinality. We say that X ♢-reflects to Y if there exists a sequence ⟨Dα⟩α∈Y
such that
(1) Dα ⊂ α is stationary in α;
(2) if Z ⊂ X is stationary, then {α ∈ Y | Dα = Z ∩ α} is stationary.

Theorem 3.29 If X ♢-reflects to Y , then EX 6c EY .

Proof. Let ⟨Dα⟩α∈Y be the sequence of Definition 3.28. For a set A ⊂ κ define

(i) f(A) = {α ∈ Y | A ∩X ∩Dα is stationary in α}.

We claim that f is a continuous reduction. Clearly f is continuous. Assume that
(A△B) ∩X is non-stationary. Then there is a cub set C ⊂ κ \ [(A△B) ∩X]. Now

(ii) A ∩X ∩ C = B ∩X ∩ C.

The set C ′ = {α < κ | C ∩ α is unbounded in α} is also cub and if α ∈ Y ∩ C ′, we have
that Dα ∩ C is stationary in α (iii). Therefore, for α ∈ Y ∩ C ′, we have the following

The Infinity Project 515

equivalences:

α ∈ f(A) ⇐⇒ A ∩X ∩Dα is stationary
(iii)⇐⇒ A ∩X ∩ C ∩Dα is stationary
(ii)⇐⇒ B ∩X ∩ C ∩Dα is stationary
(iii)⇐⇒ B ∩X ∩Dα is stationary
(i)⇐⇒ α ∈ f(B).

Thus (f(A)△ f(B)) ∩ Y ⊂ κ \ C ′ and it is non-stationary.
Suppose A△B is stationary. Then either A \B or B \A is stationary. Without loss

of generality suppose the former. Then

S = {α ∈ Y | (A \B) ∩X ∩ α = Dα}
is stationary by the definition of the sequence ⟨Dα⟩α∈Y . Thus for α ∈ S we have that
A∩X∩Dα = A∩X∩(A\B)∩X∩α = (A\B)∩X∩α is stationary in α and B∩X∩Dα =
B ∩ X ∩ (A \ B) ∩ X ∩ α = ∅ is not stationary in α. Therefore (f(A)△ f(B)) ∩ Y is
stationary (as it contains S). �
Fact (Π1

1-reflection) Assume that κ is weakly compact. If R is any binary predicate on
Vκ and ∀Aφ is some Π1

1-sentence where φ is a first-order sentence in the language of
set theory together with predicates {R,A} such that (Vκ, R) |= ∀Aφ, then there exists
stationary many α < κ such that (Vα, R ∩ Vα) |= ∀Aφ.

We say that X strongly reflects to Y if for all stationary Z ⊂ X there exist stationary
many α ∈ Y with X ∩ α stationary in α.

Theorem 3.30 Suppose V = L, κ is weakly compact and that X ⊂ κ and Y ⊂ reg κ. If
X strongly reflects to Y , then X ♢-reflects to Y .

Proof. Define Dα by induction on α ∈ Y . For the purpose of the proof, define also Cα for
each α as follows. Suppose (Dβ, Cβ) is defined for all β < α. Let (D,C) be the L-least1
pair such that
(1) C is cub subset of α;
(2) D is a stationary subset of X ∩ α;
(3) for all β ∈ Y ∩ C, D ∩ β ̸= Dβ .

If there is no such pair then set D = C = ∅. Then let Dα = D and Cα = C. We claim
that the sequence ⟨Dα⟩α∈Y is as needed. To show this, let us make a counter assumption:
there is a stationary subset Z of X and a cub subset C of κ such that

(3.7) C ∩ Y ⊂ {α ∈ Y | Dα ̸= Z ∩ α}.
Let (Z,C) be the L-least such pair. Let λ > κ be regular and let M be an elementary
submodel of Lλ such that
(1) |M | < κ;
(2) α =M ∩ κ ∈ Y ∩ C;
(3) Z ∩ α is stationary in α;
(4) {Z,C,X, Y, κ} ⊂M .

1 The least in the canonical definable ordering on L; see [21].

516 Generalized descriptive set theory and classification theory

Here (2) and (3) are possible by the definition of strong reflection. Let M be the
Mostowski collapse of M and let G : M → M be the Mostowski isomorphism. Then
M = Lγ for some γ > α. Since κ ∩M = α, we have

(3.8) G(Z) = Z ∩ α, G(C) = C ∩ α, G(X) = X ∩ α, G(Y) = Y ∩ α, and G(κ) = α.

Note that, by the definability of the canonical ordering of L, the sequence ⟨Dβ⟩β<κ is
definable. Let φ(x, y, α) be the formula which says

“(x, y) is the L-least pair such that x is contained in X ∩ α, x is stationary in α, y is
cub in α and x ∩ β ̸= Dβ for all β ∈ y ∩ Y ∩ α”.

By the assumption,

L |= φ(Z,C, κ), so M |= φ(Z,C, κ) and Lγ |= φ(G(Z), G(C), G(κ)).

Let us show that this implies L |= φ(G(Z), G(C), G(κ)), i.e., L |= φ(Z ∩ α,C ∩ α, α).
This will be a contradiction because then Dα = Z∩α, which contradicts the assumptions
(2) and (3.7) above.

By the relative absoluteness of being the L-least, the relativised formula with param-
eters φLγ (G(Z), G(C), G(κ)) says

“(G(Z), G(C)) is the L-least pair such that G(Z) is contained in G(X), G(Z) is
(stationary)Lγ in G(κ), G(C) is cub in G(κ) and G(Z) ∩ β ̸= D

Lγ
β for all

β ∈ G(C) ∩G(Y) ∩G(κ)”.

Written out, this is equivalent to

“(Z ∩ α,C ∩ α) is the L-least pair such that Z ∩ α is contained in X ∩ α, Z ∩ α is
(stationary)Lγ in α, C ∩ α is cub in α and Z ∩ β ̸= D

Lγ
β for all β ∈ C ∩ Y ∩ α”.

Note that this is true in L. Since Z ∩ α is stationary in α also in L by (3), it remains to
show by induction on β ∈ α ∩ Y that Z ∩ α DLγ

β = DL
β and CLγβ = CLβ and we are done.

Suppose we have proved this for δ ∈ β ∩ Y and β ∈ α ∩ Y . Then (D
Lγ
β , C

Lγ
β) is

(a) (the least L-pair)Lγ such that
(b) (Cβ is a cub subset of β)Lγ ,
(c) (Dβ is a stationary subset of β)Lγ ,
(d) and for all δ ∈ Y ∩ β, (Dβ ∩ δ ̸= Dδ)

Lγ ,
(e) or there is no such pair and Dβ = ∅.

The L-order is absolute as explained above, so (a) is equivalent to (the least L-pair)L.
Being a cub subset of α is also absolute for Lγ so (b) is equivalent to (Cβ is a cub subset
of α)L. All subsets of β in L are elements of L|β|+ (see [21]), and since α is regular and
β < α 6 γ, we have P(β) ⊂ Lγ . Thus

(Dβ is stationary subset of β)Lγ ⇐⇒ (Dβ is stationary subset of β)L.

Finally, the statement of (d), (Dβ ∩ δ ̸= Dδ)
Lγ , is equivalent to Dβ ∩ δ ̸= D

Lγ
δ as it is

defining Dβ , but by the induction hypothesis DLγ
δ = DL

δ , so we are done. For (e), the
fact that

P(β) ⊂ L|β|+ ⊂ Lα ⊂ Lγ
as above implies that if there is no such pair in Lγ , then there is no such pair in L. �

The Infinity Project 517

Proof of Theorem 3.26. In the case (A) we will show that Sκλ strongly reflects to reg(κ)
in L, which suffices by Theorems 3.29 and 3.30. For (B) we will assume that κ is a weakly
compact cardinal in L and then collapse it to ω2 to get a ♢-sequence which witnesses that
Sω2
ω ♢-reflects to Sω2

ω1
which is sufficient by Theorem 3.29. In the following we assume

that V = L and κ is weakly compact.

(A): Let us use Π1
1-reflection. Let X ⊂ Sκλ . We want to show that the set

{λ ∈ reg(κ) | X ∩ λ is stationary in λ}

is stationary. Let C ⊂ κ be cub. The sentence

“(X is stationary in κ) ∧ (C is cub in κ) ∧ (κ is regular)”

is a Π1
1-property of (Vκ, X,C). By Π1

1-reflection we get δ < κ such that (Vδ, X ∩ δ, C ∩ δ)
satisfies it. But then δ is regular, X ∩ δ is stationary and δ belongs to C.

(B): Let κ be weakly compact and let us Lévy-collapse κ to ω2 with the following forcing:

P = {f : reg κ→ κ<ω1 | ran(f(µ)) ⊂ µ, |{µ | f(µ) ̸= ∅}| 6 ω}.

Order P by f < g if and only if f(µ) ⊂ g(µ) for all µ ∈ reg(κ). For all µ, put
Pµ = {f ∈ P | sprt f ⊂ µ} and Pµ = {f ∈ P | sprt f ⊂ κ \ µ}, where sprt means support.

Claim 1 For all regular µ, ω < µ 6 κ, Pµ satisfies the following:
(a) If µ > ω1, then Pµ has the µ-c.c.
(b) Pµ and Pµ are < ω1-closed.
(c) P = Pκ ω2 = κ̌.
(d) If µ < κ, then P cf(µ̌) = ω1.
(e) If p ∈ P, σ a name and p “σ is cub in ω2”, then there is a cub E ⊂ κ such that

p Ě ⊂ σ.

Proof. Standard (see for instance [16]). �

We want to show that in the generic extension Sω2
ω ♢-reflects to Sω2

ω1
. It is sufficient

to show that Sω2
ω ♢-reflects to some stationary Y ⊂ Sω2

ω1
by letting Dα = α for α /∈ Y .

In our case Y = {µ ∈ V [G] | (µ ∈ reg(κ))V }. By (d) of Claim 1, Y ⊂ Sω2
ω1

, (reg(κ))V is
stationary in V (for instance by Π1

1-reflection) and by (e) it remains stationary in V [G].
It is easy to see that P ∼= Pµ × Pµ. Let G be a P-generic over (the ground model) V .

Define
Gµ = G ∩ Pµ

and
Gµ = G ∩ Pµ.

Then Gµ is Pµ-generic over V . Also Gµ is Pµ-generic over V [Gµ] and V [G] = V [Gµ][G
µ].

Let
E = {p ∈ P | (p > q) ∧ (pµ pµ ∈ Ḋ)}.

Then E is dense above q: if p > q is an arbitrary element of P, then q ∃p′ > p̌µ(p′ ∈ Ḋ).
Thus there exists q′ > q with q′ > pµ, q′ ∈ Pµ and p′ > p, p′ ∈ Pµ such that q′ p′ ∈ Ḋ
and so (q′ ↾ µ) ∪ (p′ ↾ (κ \ µ)) is above p and in E. So there is a p ∈ G ∩ E. But then
pµ ∈ Gµ and pµ ∈ Gµ and pµ pµ ∈ Ḋ, so Gµ ∩ D ̸= ∅. Since D was arbitrary, this
shows that Gµ is Pµ-generic over V [Gµ]. Clearly V [G] contains both Gµ and Gµ. On the

518 Generalized descriptive set theory and classification theory

other hand, G = Gµ ∪ Gµ, so G ∈ V [Gµ][G
µ]. By the minimality of forcing extensions,

we get V [G] = V [Gµ][G
µ].

For each µ ∈ reg(κ) \ {ω, ω1}, let

kµ : µ
+ −→ {σ | σ is a nice Pµ name for a subset of µ}

be a bijection. A nice Pµ name for a subset of µ̌ is of the form∪
{{α̌} ×Aα | α ∈ B},

where B ⊂ µ̌ and, for each α ∈ B, Aα is an antichain in Pµ. By (a) there are no antichains
of length µ in Pµ and |Pµ| = µ, so there are at most µ<µ = µ antichains and there are
µ+ subsets B ⊂ µ, so there indeed exists such a bijection kµ (these cardinality facts hold
because V = L and µ is regular). Note that if σ is a nice Pµ-name for a subset of µ̌, then
σ ⊂ Vµ.

Let us define

Dµ =

{[
kµ

(
[(∪G)(µ+)](0)

)]
G

if it is stationary,

µ otherwise.

Now Dµ is defined for all µ ∈ Y ; recall that Y = {µ ∈ V [G] | (µ ∈ reg κ)V }. We claim
that ⟨Dµ⟩µ∈Y is the needed ♢-sequence. Suppose it is not. Then there is a stationary set
S ⊂ Sω2

ω and a cub C ⊂ ω2 such that for all α ∈ C ∩ Y , Dα ̸= S ∩ α. By (e) there is a
cub set C0 ⊂ C such that C0 ∈ V . Let Ṡ be a nice name for S and p′ such that p′ forces
that Ṡ is stationary. Let us show that

H = {q > p′ | q Dµ = Ṡ ∩ µ̌ for some µ ∈ C0}
is dense above p′, which is obviously a contradiction. For that purpose, let p > p′ be
arbitrary and let us show that there is q > p in H. Let us now use Π1

1-reflection. First let
us redefine P. Let P∗ = {q | ∃r ∈ P(r ↾ sprt r = q)}. Clearly P∗ ∼= P but the advantage is
that P∗ ⊂ Vκ and P∗µ = P∗ ∩Vµ where P∗µ is defined as Pµ. One easily verifies that all the
above things (concerning Pµ, Pµ, etc.) translate between P and P∗. From now on denote
P∗ by P. Let

R = (P× {0}) ∪ (Ṡ × {1}) ∪ (C0 × {2}) ∪ ({p} × {3}).
Then (Vκ, R) |= ∀Aφ, where φ says: “(if A is closed unbounded and r > p arbitrary, then
there exist q > r and α such that α ∈ A and q P α̌ ∈ Ṡ)”. So basically ∀Aφ says “p
(Ṡ is stationary)”. It follows from (e) that it is enough to quantify over cub sets in V .
Let us explain why such a formula can be written for (Vκ, R). The sets (classes from the
viewpoint of Vκ) P, Ṡ and C0 are coded into R, so we can use them as parameters. That
r > p and q > r and A is closed and unbounded is expressible in first-order as well as
α ∈ A. How do we express q P α̌ ∈ Ṡ? The definition of α̌ is recursive in α:

α̌ = {(β̌, 1P) | β < α}

and is absolute for Vκ. Then q P α̌ ∈ Ṡ is equivalent to saying that for each q′ > q there
exists q′′ > q′ with (α̌, q′′) ∈ Ṡ and this is expressible in first-order (as we have taken R
as a parameter).

By Π1
1-reflection there is µ ∈ C0 such that p ∈ Pµ and (Vµ, R) |= ∀Aφ. Note that

we may require that µ is regular, i.e., (µ̌G ∈ Y)V [G] and such that α ∈ S ∩ µ implies
(α̌, p̌) ∈ Ṡ for some p ∈ Pµ. Let Ṡµ = Ṡ ∩ Vµ.

The Infinity Project 519

Thus p Pµ “Ṡµ is stationary”. Define q as follows: dom q = dom p∪{µ+}, q ↾µ = p↾µ
and q(µ+) = f , dom f = {0} and f(0) = k−1

µ (Ṡµ). Then q P Ṡµ = Dµ provided that
q P “Ṡµ is stationary”. The latter holds since Pµ is < ω1-closed, and does not kill
stationarity of (Ṡµ)Gµ so (Ṡµ)Gµ is stationary in V [G] and, by the assumption on µ,
(Ṡµ)Gµ = (Ṡµ)G. Finally, it remains to show that in V [G], (Ṡµ)G = S ∩µ. But this again
follows from the definition of µ.

Instead of collapsing κ to ω2, we could do the same for λ++ for any regular λ < κ
and obtain a model in which E

Sλ
++
λ

6c ESλ++

λ+
. �

Open Problem Is it consistent that Sω2
ω1

Borel reduces to Sω2
ω ?

3.4.3 E0 and ESκ
λ

In Subsection 3.4.2 above, Theorem 3.27, we showed that the equivalence relations of the
form ESκλ can form an antichain with respect to 6B. We will show that under mild set
theoretical assumptions, all of them are strictly above

E0 = {(η, ξ) | η−1{1}△ ξ−1{1} is bounded}.

Theorem 3.31 Let κ be regular and S ⊂ κ stationary and suppose that ♢κ(S) holds
(i.e., ♢κ holds on the stationary set S). Then E0 is Borel reducible to ES.

Proof. The proof uses similar ideas than the proof of Theorem 3.29. Suppose that ♢κ(S)
holds and let ⟨Dα⟩α∈S be the ♢κ(S)-sequence. Define the reduction f : 2κ → 2κ by

f(X) = {α ∈ S | Dα and X ∩ α agree on a final segment of α}.

If X,Y are E0-equivalent, then f(X), f(Y) are ES-equivalent, because they are in fact
even E0-equivalent as is easy to check. If X,Y are not E0-equivalent, then there is a club
C of α where X, Y differ cofinally in α; it follows that f(X), f(Y) differ on a stationary
subset of S, namely the elements α of C ∩ S where Dα equals X ∩ α. �

Corollary 3.32 Suppose κ = λ+ = 2λ. Then E0 is Borel reducible to ES where S ⊂
κ \ Sκcf(λ) is stationary.

Proof. Gregory proved in [4] that if 2µ = µ+ = κ, µ is regular and λ < µ, then ♢κ(Sκλ)
holds. Shelah extended this result in [31] and proved that if κ = λ+ = 2λ and S ⊂
κ \ Sκcf(λ), then ♢κ(S) holds. Now apply Theorem 3.31. �

Corollary 3.33 (GCH) Let us assume that κ is a successor cardinal. Then in a cofinality
and GCH preserving forcing extension there is an embedding

f : ⟨P(κ),⊂⟩ −→ ⟨EΣ1
1 ,6B⟩,

where EΣ1
1 is the set of Σ1

1-equivalence relations (see Theorem 3.23) such that, for all
A ∈ P(κ), E0 is strictly below f(A). If κ is not the successor of an ω-cofinal cardinal,
we may replace Σ1

1 above by Borel*.

Proof. Suppose first that κ is not the successor of an ω-cofinal cardinal. By Theorem
3.23 there is a GCH and cofinality-preserving forcing extension such that there is an
embedding

f : ⟨P(κ),⊂⟩ −→ ⟨EBorel∗ ,6B⟩.

520 Generalized descriptive set theory and classification theory

From the proof of Theorem 3.23 one sees that f(A) is of the form ES where S ⊂ Sκω.
Now E0 is reducible to such relations by Corollary 3.32, as GCH continues to hold in the
extension.

So it suffices to show that ES ̸6B E0 for stationary S ⊂ Sκω. By the same argument
as in Corollary 3.21 on page 509, ES is not Borel and by Theorem 3.3 on page 491, E0 is
Borel, so by Fact 5.1 on page 527, ESκλ is not reducible to E0.

Suppose κ is the successor of an ω-cofinal ordinal and κ > ω1. Then, in the proof of
Theorem 3.23 replace µ by ω1 and get the same result as above but for relations of the
form ES where S ⊂ Sκω1

.
The remaining case is κ = ω1. Let {Sα | α < ω1} be a set of pairwise disjoint

stationary subsets of ω1. Let P be the forcing given by the proof of Theorem 3.23
such that in the P-generic extension the function f : ⟨P(ω1),⊂⟩ → ⟨EBorel∗ ,6B⟩ given
by f(A) = E∪

α∈A Sα
is an embedding. This forcing preserves stationary sets, so as in

the proof of clause (4) of Theorem 3.20, we can first force a ♢-sequence which guesses
each subset of

∪
α<ω1

Sα on a set S such that S ∩ Sα is stationary for all α. Then, by
Corollary 3.32, E0 is reducible to E∪

α∈A Sα
for all A ⊂ κ. �

Remark The embeddings from [20] are in contrast strictly below E0.

4 Complexity of isomorphism relations

Let T be a countable complete theory. Let us turn to the question discussed in Section 5:
“How is the set theoretic complexity of ∼=T related to the stability theoretic properties
of T?”. The following theorems give some answers. As pointed out in Section 5, the
assumption that κ is uncountable is crucial in the following theorems. For instance, the
theory of dense linear orderings without end points is unstable, but ∼=T is an open set
in case κ = ω, while we show below that for unstable theories T the set ∼=T cannot be
even ∆1

1 when κ > ω. Another example introduced by Martin Koerwien in his Ph.D.
thesis and in [19] shows that there are classifiable shallow theories whose isomorphism is
not Borel when κ = ω, although we prove below that the isomorphism of such theories is
always Borel, when κ<κ = κ > 2ω. This justifies in particular the motivation for studying
the space κκ for model theoretic purposes: the set theoretic complexity of ∼=T positively
correlates with the model theoretic complexity of T .

The following stability theoretical notions will be used: stable, superstable, DOP,
OTOP, shallow, λ(T) and κ(T). Classifiable means superstable with no DOP nor OTOP
and λ(T) is the least cardinal in which T is stable.

Recall that by ∼=κ
T we denote the isomorphism relation of models of T whose size is κ.

The main theme in this section is exposed in the following two theorems:

Theorem 4.1 (κ<κ = κ) Assume that κ is a successor and let T be a complete countable
theory. If ∼=κ

T is Borel, then T is classifiable and shallow. If additionally κ > 2ω, then
the converse holds: if T is classifiable and shallow, then ∼=κ

T is Borel.

Theorem 4.2 (κ<κ = κ) Assume that, for all λ < κ, λω < κ and κ > ω1. Then in L and
in the forcing extension after adding κ+ Cohen subsets of κ we have: for any theory T ,
T is classifiable if and only if ∼=T is ∆1

1.

The two theorems above are proved in many sub-theorems below. Our results are
stronger than those given by 4.1 and 4.2 (for instance the cardinality assumption κ > ω1

is needed only in the case where T is superstable with DOP and the stable unsuperstable

The Infinity Project 521

case is the only one for which Theorem 4.2 cannot be proved in ZFC). Theorem 4.1 follows
from Theorems 4.6 and 4.7. Theorem 4.2 follows from Theorems 4.8, 4.9, 4.10 and items
(2) and (7) of Theorem 3.20.

4.1 Preliminary results

The following Theorems 4.3 and 4.5 (page 523) will serve as bridges between the set
theoretic complexity and the model theoretic complexity of an isomorphism relation.

Theorem 4.3 (κ<κ = κ) For a theory T , the set ∼=T is Borel if and only if the following
holds: there exists a κ+ω-tree t such that for all models A and B of T , we have that
A ∼= B⇔ II ↑ EFκt (A,B).

Proof. Recall that we assume domA = κ for all models in the discourse. First suppose
that there exists a κ+ω-tree t such that for all models A and B of T , we have that
A ∼= B⇔ II ↑ EFκt (A,B). Let us show that there exists a κ+ω-tree u which constitutes
a Borel code for ∼=T (see Remark 1.18 on page 480).

Let u be the tree of sequences of the form

⟨(p0, A0), f0, (p1, A1), f1, . . . , (pn, An), fn⟩

such that, for all i 6 n,
(1) (pi, Ai) is a move of player I in EFκt , i.e., pi ∈ t and Ai ⊂ κ with |Ai| < κ;
(2) fi is a move of player II in EFκt , i.e., it is a partial function κ → κ with
| dom fi|, | ran fi| < κ and Ai ⊂ dom fi ∩ ran fi;

(3) ⟨(p0, A0), f0, (p1, A1), f1, . . . , (pn, An), fn⟩ is a valid position of the game, i.e., (pi)i6n
is an initial segment of a branch in t and Ai ⊂ Aj and fi ⊂ fj whenever i < j 6 n.

Order u by end extension. The tree u is a κ+ω-tree (because t is and by (3)).
Let us now define the function

h : {branches of u} −→ {basic open sets of (κκ)2}.

Let b ⊂ u be a branch,

b = {∅, ⟨(p0, A0)⟩, ⟨(p0, A0), f0⟩, . . . , ⟨(p0, A0), f0, . . . , (pk, Ak), fk⟩}.

It corresponds to a unique EF-game between some two structures with domains κ. In
this game the players have chosen some set Ak =

∪
i6k Ai ⊂ κ and some partial function

fk =
∪
i6k fi : κ → κ. Let h(b) be the set of all pairs (η, ξ) ∈ (κκ)2 such that fκ : Aη ↾

Aκ ∼= Aξ ↾Aκ is a partial isomorphism. This is clearly an open set:

(η, ξ) ∈ h(b)⇒ Nη↾((supAκ)+1) ×Nξ↾((supAκ)+1) ⊂ h(b).

Finally we claim that Aη ∼= Aξ ⇔ II ↑ G(u, h, (η, ξ)). Here G is the game as in
Definition 1.17 of Borel* sets, page 480 but played on the product κκ × κκ. Assume
Aη ∼= Aξ. Then II ↑ EFκt (Aη,Aξ). Let υ denote the winning strategy. In the game
G(u, h, (η, ξ)), let us define a winning strategy for player II as follows. By definition, at
a particular move, say n, I chooses a sequence

⟨(p0, A0), f0, . . . , (pn, An)⟩.

Next II extends it according to υ to

⟨(p0, A0), f0, . . . , (pn, An), fn⟩,

522 Generalized descriptive set theory and classification theory

where fn = υ((p0, A0), . . . , (pn, An)). Since υ was a winning strategy, it is clear that
fκ =

∪
i<κ fi is going to be a isomorphism between Aη ↾Aκ and Aξ ↾Aκ, so (η, ξ) ∈ h(b).

Assume that Aη ̸∼= Aξ. Then by the assumption there is no winning strategy of II, so
player I can play in such a way that fκ =

∪
i6κ fi is not an isomorphism between Aη ↾∪Ai

and Aξ ↾∪Ai, so (η, ξ) is not in h(b). This completes the proof of the direction “⇐”.
Let us prove “⇒”. Suppose ∼=T is Borel and let us show that there is a tree as in the

statement of the theorem. We want to use Theorem 2.2 and formalize the statement “∼=T

is definable in Lκ+κ” by considering the space consisting of pairs of models.
Denote the vocabulary of A and B as usual by L. Let P be a unary relation symbol

not in L. We will now discuss two distinct vocabularies L and L ∪ {P} at the same
time, so we have to introduce two distinct codings. Fix an η ∈ 2κ. Let Aη denote
the L-structure as defined in Definition 1.14 of our usual coding. Let ρ : κ ∪ κ<ω → κ
be a bijection and define Aη to be the model with domAη = κ and if a ∈ domAη,
then Aη |= P (a) ⇔ η(ρ(a)) = 1 such that if (a1, . . . , an) ∈ (domAη)n, then Aη |=
Pn(a1, . . . , an) ⇔ η(ρ(a1, . . . , an)) = 1. Note that we are making a distinction here
between κ and κ{0}.

Claim 1 The set W = {η ∈ 2κ | κ = |PAη | = |κ \ PAη |} is Borel.

Proof of Claim 1. Let us show that the complement is Borel. By symmetry it is sufficient
to show that

B = {η | κ > |PAη |}
is Borel. Let I ⊂ κ be a subset of size < κ. For β /∈ I define U(I, β) to be the set

U(I, β) = {η | η(ρ(β)) = 0}.

Clearly U(I, β) is open for all I, β. Now

B =
∪

I∈[κ]<κ

∩
β/∈I

U(I, β).

By the assumption κ<κ = κ, this is Borel (in fact a union of closed sets). �Claim 1

Define a mapping h : W → (2κ)2 as follows. Suppose ξ ∈W . Let

r1 : κ −→ PAξ

and
r2 : κ −→ κ \ PAξ

be the order preserving bijections (note PAη ⊂ κ = domAη).
Let η1 be such that r1 is an isomorphism

Aη1 −→ (Aξ ∩ PAξ)↾L
and η2 such that r2 is an isomorphism

Aη2 −→ (Aξ \ PAξ)↾L.
Clearly η1 and η2 are unique, so we can define h(ξ) = (η1, η2).

Claim 2 h is continuous.
Proof of Claim 2. Let U = Np × Nq be a basic open set of (2κ)2, p, q ∈ 2<κ and let
ξ ∈ h−1[U]. Let PAξ = {βi | i < κ} be an enumeration such that βi < βj ⇔ i < j and

The Infinity Project 523

similarly κ \ PAξ = {γi | i < κ}. Let α = max{βdom p, γdom q}+ 1. Then Nξ↾α ⊂ h−1[U].
Thus arbitrary ξ in h−1[U] have an open neighborhood in h−1[U], so it is open. �Claim 2

Recall our assumption that E = {(η, ξ) ∈ 2κ | Aη ∼= Aξ} is Borel. Since h is
continuous and in particular Borel, this implies that

E′ = {η | Ah1(η) ∼= Ah2(η)} = h−1E

is Borel in W . Because W is itself Borel, E′ is Borel in 2κ. Additionally, E′ is closed
under permutations: if Aη is isomorphic to Aξ, then Aη ∩PAη is isomorphic to Aξ ∩PAξ

and Aη \PAη is isomorphic to Aξ \PAξ , so if Aη ∈ E′, then also Aξ ∈ E′ (and note that
since η ∈W , also ξ ∈W). By Theorem 2.2 (page 483), there is a sentence θ of Lκ+κ over
L∪ {P} that defines E′. Thus by Theorem 1.11 (page 478) and Remark 1.13 (page 478)
there is a κ+ω-tree t such that

(4.1) if η ∈ E′ and ξ /∈ E′, then II ̸↑ EFκt (Aη,Aξ).

We claim that t is as needed, i.e., for all models A,B of T

A ∼= B ⇐⇒ II ↑ EFκt (A,B).

Suppose not. Then there are models A ̸∼= B such that II ↑ EFκt (A,B). Let η and ξ
be such that Ah1(η) = Ah2(η) = Ah1(ξ) = A and Ah2(ξ) = B. Clearly η ∈ E′, but
ξ /∈ E′, so by (4.1) there is no winning strategy of II in EFκt (Aη,Aξ) which is clearly a
contradiction, because II can apply her winning strategies in EFκt (A,B) and EFκt (A,A)
to win in EFκt (Aη,Aξ). �Theorem 4.3

We will use the following lemma from [24]:

Lemma 4.4 If t ⊂ (κ<κ)2 is a tree and ξ ∈ κκ, denote

t(ξ) = {p ∈ κ<κ | (p, ξ ↾dom p) ∈ t}.

Similarly, if t ∈ (κ<κ)3, then

t(η, ξ) = {p ∈ κ<κ | (p, η ↾dom p, ξ ↾dom p) ∈ t}.

Assume that Z is Σ1
1. Then Z is ∆1

1 if and only if for every tree t ⊂ (κ<κ)2 such that

t(ξ) has a κ-branch ⇐⇒ ξ ∈ Z

there exists a κ+κ-tree t′ such that ξ ∈ Z ⇔ t(ξ) ̸6 t′. (Recall that t 6 t′ when there
exists a strictly order preserving map t→ t′.)

Theorem 4.5 Let T be a theory and assume that for every κ+κ-tree t there exist (η, ξ) ∈
(2κ)2 such that Aη,Aξ |= T , Aη ̸∼= Aξ but II ↑ EFκt (Aη,Aξ). Then ∼=T is not ∆1

1.

Proof. Let us abbreviate some statements:

A(t): t ⊂ (κ<κ)3 is a tree and for all (η, ξ) ∈ (κκ)2,

(η, ξ) ∈∼=T ⇐⇒ t(η, ξ) contains a κ-branch.

B(t): t ⊂ (κ<κ)3 is a κ+κ-tree and for all (η, ξ) ∈ κκ,

(η, ξ) ∈∼=T ⇐⇒ t(η, ξ) ̸6 t′.

524 Generalized descriptive set theory and classification theory

Now Lemma 4.4 implies that if ∼=T is ∆1
1, then ∀t[A(t) → ∃t′B(t, t′)]. We will show

that ∃t[A(t) ∧ ∀t′¬B(t, t′)], which by Lemma 4.4 suffices to prove the theorem. Let us
define t. In the following, να, ηα and ξα stand respectively for ν ↾α, η ↾α and ξ ↾α.

t = {(να, ηα, ξα) | α < κ and ν codes an isomorphism between Aη and Aξ}.

Using Theorem 1.15 it is easy to see that t satisfies A(t). Assume now that t′ is an
arbitrary κ+κ-tree. We will show that B(t, t′) does not hold. For that purpose let
u = ω × t′ be the tree defined by the set {(n, s) | n ∈ ω, s ∈ t′} and the ordering

(4.2) (n0, s0) <u (n1, s1) ⇐⇒
(
s0 <t′ s1 ∨ (s0 = s1 ∧ n0 <ω n1)

)
.

This tree u is still a κ+κ-tree, so by the assumption of the theorem there is a pair (ξ1, ξ2)
such that Aξ1 and Aξ2 are non-isomorphic, but II ↑ EFκu(Aξ1 ,Aξ2).

It is now sufficient to show that t(ξ1, ξ2) ̸6 t′.

Claim 1 There is no order preserving function σt′ → t′, where σt′ is as in Definition 2.9.

Proof of Claim 1. Assume that g : σt′ → t′ is order preserving. Define x0 = g(∅) and

xα = g
(
{y ∈ t′ | ∃β < α(y 6 xβ)}

)
for 0 < α < κ.

Then (xα)α<κ contradicts the assumption that t′ is a κ+κ-tree. �Claim 1

Claim 2 There is an order preserving function

σt′ −→ t(ξ1, ξ2).

Proof of Claim 2. The idea is that players I and II play an EF-game for each branch of
the tree t′ and II uses her winning strategy in EFκu(Aξ1 ,Aξ2) to embed that branch into the
tree of partial isomorphisms. A problem is that the winning strategy gives arbitrary
partial isomorphisms while we are interested in those which are coded by functions defined
on page 479. Now the tree u of (3) above becomes useful.

Let σ be a winning strategy of player II in EFκu(Aξ1 ,Aξ2). We define g : σt′ → t(ξ1, ξ2)
recursively. Recall the function π from Definition 1.14 and define

C = {α | π[α<ω] = α}.

Clearly C is cub. If s ⊂ t′ is an element of σt′, then we assume that g is defined for all
s′ <σt′ s and that EFκu is played up to (0, sup s) ∈ u. If s does not contain its supremum,
then put g(s) =

∪
s′<s g(s

′). Otherwise let them continue playing the game for ω more
moves; at the n-th of these moves player I picks (n, sup s) from u and a β < κ where β
is an element of C above

max{ran fn−1, dom fn−1},
where fn−1 is the previous move by II. (If n = 0, it does not matter what I does.) In that
way the function f =

∪
n<ω fn is a partial isomorphism such that dom f = ran f = α for

some ordinal α. It is straightforward to check that such an f is coded by some να : α→ κ.
It is an isomorphism between Aξ1 ∩α and Aξ2 ∩α and since α is in C, there are ξ′1 and ξ′2
such that ξ1 ↾α ⊂ ξ′1, ξ2 ↾α ⊂ ξ′2 and there is an isomorphism Aξ′1

∼= Aξ′2 coded by some
ν such that να = ν ↾α. Thus να ∈ t(ξ1, ξ2) is suitable for setting g(s) = να. �Claim 2

�Theorem 4.5

The Infinity Project 525

4.2 Classifiable

Throughout this section κ is a regular cardinal satisfying κ<κ = κ > ω.

Theorem 4.6 (κ > 2ω) If the theory T is classifiable and shallow, then ∼=T is Borel.

Proof. If T is classifiable and shallow, then from [30, Theorem XIII.1.5 and Claim
XIII.1.3] it follows that the models of T are characterized by a fragment of Lκ+κ which
consists of formulas of bounded quantifier rank (the bound depends on depth of T). By
the standard argument this implies that the game EFκt characterized models of T of size
κ up to isomorphism, where t is some κ+ω-tree (in fact a tree of descending sequences of
an ordinal α < κ+). Hence by Theorem 4.3 the isomorphism relation of T is Borel. �

Theorem 4.7 If the theory T is classifiable but not shallow, then ∼=T is not Borel. If κ
is not weakly inaccessible and T is not classifiable, then ∼=T is not Borel.

Proof. If T is classifiable but not shallow, then, by [30, XIII.1.8], the L∞κ-Scott heights of
models of T of size κ are not bounded by any ordinal< κ+ (see Definition 1.9 on page 478).
Because any κ+ω-tree can be embedded into tα = {decreasing sequences of α} for some
α (see Fact 1.3 on page 474), this implies that for any κ+ω-tree t there exists a pair of
models A,B such that A ≁= B but II ↑ EFκt (A,B). Theorem 4.3 now implies that the
isomorphism relation is not Borel.

If T is not classifiable, κ is not weakly inaccessible; then, by [29, Theorem 0.2 (Main
Conclusion)], there are non-isomorphic models of T of size κ which are L∞κ-equivalent,
so the same argument as above, using Theorem 4.3, gives that ∼=T is not Borel. �

Theorem 4.8 If the theory T is classifiable, then ∼=T is ∆1
1.

Proof. Shelah’s theorem [30, Theorem XIII.1.1] says that if a theory T is classifiable,
then any two models that are L∞κ-equivalent are isomorphic. But L∞κ equivalence is
equivalent to EFκω-equivalence (see Theorem 1.12 on page 478). So in order to prove the
theorem it is sufficient to show that if for any two models A, B of the theory T it holds
that II ↑ EFκω(A,B) ⇔ A ∼= B, then the isomorphism relation is ∆1

1. The game EFκω is
a closed game of length ω and so determined. Hence we have I ↑ EFκω(A,B)⇔ A ̸∼= B.
By Theorem 1.8, the set

{(ν, η, ξ) ∈ (κκ)3 | ν codes a winning strategy for I ↑ EFκω(Aη,Aξ))}

is closed and thus {(η, ξ) | Aη ̸∼= Aξ} is Σ1
1, which further implies that ∼=T is ∆1

1 by
Corollary 1.16. �

4.3 Unclassifiable

4.3.1 The unstable, DOP and OTOP cases

As before, κ is a regular cardinal satisfying κ<κ = κ > ω.

Theorem 4.9
(1) If T is unstable, then ∼=T is not ∆1

1.
(2) If T is stable with OTOP, then ∼=T is not ∆1

1.
(3) If T is superstable with DOP and κ > ω1, then ∼=T is not ∆1

1.
(4) If T is stable with DOP and λ = cf(λ) = λ(T) + λ<κ(T) > ω1, κ > λ+, and, for all

ξ < κ, ξλ < κ, then ∼=T is not ∆1
1. (Note that κ(T) ∈ {ω, ω1}.)

526 Generalized descriptive set theory and classification theory

Proof. For a model A of size κ of a theory T let us denote by E(A) the following property:
for every κ+κ-tree t there is a model B of T of cardinality κ such that II ↑ EFκt (A,B)
and A ̸∼= B.

For (3) we need a result by Hyttinen and Tuuri [15, Theorem 6.2]:

Fact (Superstable with DOP) Let T be a superstable theory with DOP, κ<κ = κ > ω1.
Then there exists a model A of T of cardinality κ with the property E(A).

For (4) we need a result by Hyttinen and Shelah from [14]:

Fact (Stable with DOP) Let T be a stable theory with DOP and λ = cf(λ) = λ(T) +

λ<κ(T) > ω1, κ<κ = κ > λ+, and, for all ξ < κ, ξλ < κ. Then there is a model A of T of
power κ with the property E(A).

For (1), a result by Hyttinen and Tuuri [15, Theorem 4.9]:

Fact (Unstable) Let T be an unstable theory. Then there exists a model A of T of
cardinality κ with the property E(A).

And for (2) another result by Hyttinen and Tuuri [15, Theorem 6.6]:

Fact (Stable with OTOP) Suppose T is a stable theory with OTOP. Then there exists
a model A of T of cardinality κ with the property E(A).

Now (1), (2) and (4) follow immediately from Theorem 4.5. �

4.3.2 Stable unsuperstable

We assume κ<κ = κ > ω in all theorems below.

Theorem 4.10 Assume that for all λ < κ, λω < κ.
(1) If T is stable unsuperstable, then ∼=T is not Borel.
(2) If κ is as above and T is stable unsuperstable, then ∼=T is not ∆1

1 in the forcing
extension after adding κ+ Cohen subsets of κ, or if V = L.

Proof. By Theorem 5.13 on page 542, the relation ESκω can be reduced to ∼=T . The
theorem follows now from Corollary 3.21 on page 509. �

On the other hand, stable unsuperstable theories may behave nicely to some extent:

Lemma 4.11 Assume that T is a theory and t is a κ+κ-tree such that if A and B are
models of T , then A ∼= B⇔ II ↑ EFκt (A,B). Then ∼= of T is Borel*.

Proof. Similar to the proof of Theorem 4.3. �

Theorem 4.12 Assume κ ∈ I[κ] and κ = λ+ (“κ ∈ I[κ]” is known as the Approachability
Property and follows from λ<λ = λ). Then there exists an unsuperstable theory T whose
isomorphism relation is Borel*.

Proof. In [12] and [13] Hyttinen and Shelah show the following (Theorem 1.1 of [13],
but the proof is essentially in [12]):

Suppose T = ((ωω, Ei)i<ω), where ηEiξ if and only if, for all j 6 i, η(j) = ξ(j). If
κ ∈ I[κ], κ = λ+, and A and B are models of T of cardinality κ, then A ∼= B⇔ II ↑
EFκλ·ω+2(A,B), where + and · denote the ordinal sum and product, i.e., λ · ω + 2 is
just an ordinal.

So taking the tree t to be λ · ω + 2 the claim follows from Lemma 4.11. �

The Infinity Project 527

Open Problem If κ = 2ω, is the isomorphism relation of all classifiable and shallow
theories Borel on structures of size κ?

Open Problem We proved that, if κ > 2ω, the isomorphism relation of a theory T is
Borel if and only if T is classifiable and shallow. Is there a connection between the depth
of a shallow theory and the Borel degree of its isomorphism relation? Is one monotone
in the other?

Open Problem Can it be proved in ZFC that if T is stable unsuperstable then ∼=T is
not ∆1

1?

5 Reductions

Recall that in Section 4 we obtained a provable characterization of theories which are
both classifiable and shallow in terms of the definability of their isomorphism relations.
Without the shallowness condition we obtained only a consistency result. In this section
we improve this to a provable characterization by analyzing isomorphism relations in
terms of Borel reducibility.

Recall the definition of a reduction (section Reductions, page 474), and recall that if
X ⊂ κ is a stationary subset, we denote by EX the equivalence relation defined by

∀η, ξ ∈ 2κ(ηEXξ ⇔ (η−1{1}△ ξ−1{1}) ∩X is non-stationary),

and by Sκλ we mean the ordinals of cofinality λ that are less than κ.
The equivalence relations EX are Σ1

1 (ηEXξ if and only if there exists a cub subset
of κ \ (X ∩ (η△ ξ))).

Simple conclusions can readily be made from the following observation that roughly
speaking, the set theoretic complexity of a relation does not decrease under reductions:

Fact 5.1 If E1 is a Borel (or ∆1
1) equivalence relation and E0 is an equivalence relation

with E0 6B E1, then E0 is Borel (respectively ∆1
1 if E1 is ∆1

1). �
The main theorem of this section is:

Theorem 5.2 Suppose κ = λ+ = 2λ > 2ω where λ<λ = λ. Let T be a first-order theory.
Then T is classifiable if and only if, for all regular µ < κ, ESκµ ̸6B

∼=κ
T .

5.1 Classifiable theories

The following follows from [30, Theorem XIII.1.1] (see also the proof of Theorem 4.8
above):

Theorem 5.3 ([30]) If a first-order theory T is classifiable and A and B are non-
isomorphic models of T of size κ, then I ↑ EFκω(A,B). �
Theorem 5.4 (κ<κ = κ) If a first-order theory T is classifiable, then, for all λ < κ,

ESκλ ̸6B
∼=κ
T .

Proof. Let NS ∈ {ESκλ | λ ∈ reg(κ)}. Suppose r : 2κ → 2κ is a Borel function such that

(5.1) ∀η, ξ ∈ 2κ(Ar(η) |= T ∧ Ar(ξ) |= T ∧ (ηNS ξ ⇔ Ar(η) ∼= Ar(ξ))).
By Lemma 3.2, page 491, let D be an intersection of κ-many dense open sets such

that R = r ↾D is continuous. D can be coded into a function v : κ× κ→ κ<κ such that

528 Generalized descriptive set theory and classification theory

D =
∩
i<κ

∪
j<κNv(i,j). Since R is continuous, it can also be coded into a single function

u : κ<κ × κ<κ → {0, 1} such that

R(η) = ξ ⇐⇒ (∀α < κ)(∃β < κ)[u(η ↾β, ξ ↾α) = 1].

(For example, define u(p, q) = 1 if D ∩Np ⊂ R−1[Nq].) Let

φ(η, ξ, u, v) = (∀α < κ)(∃β < κ)[u(η ↾β, ξ ↾α) = 1] ∧ (∀i < κ)(∃j < κ)[η ∈ Nv(i,j)].

It is a formula of set theory with parameters u and v. It is easily seen that φ is absolute for
transitive elementary submodels M of H(κ+) containing κ, u and v with (κ<κ)M = κ<κ.

Let P = 2<κ be the Cohen forcing. Suppose M 4 H(κ+) is a model as above, i.e.,
transitive, κ, u, v ∈ M and (κ<κ)M = κ<κ. Note that then P ∪ {P} ⊂ M . Then, if G is
P-generic over M , then ∪G ∈ D and there is ξ such that φ(∪G, ξ, u, v). By the definition
of φ and u, an initial segment of ξ can be read from an initial segment of ∪G. That is
why there is a nice P-name τ for a function (see [21]) such that

φ(∪G, τG, u, v)
whenever G is P-generic over M .

Now since the game EFκω is determined on all structures, (at least) one of the following
holds:
(1) there is p such that p II ↑ EFκω(Aτ ,Ar(0));
(2) there is p such that p I ↑ EFκω(Aτ ,Ar(0)),

where 0 is the constant function with value 0. Let us show that both of them lead to a
contradiction.

Assume (1). Fix a nice P-name σ such that

p “σ is a winning strategy of II in EFκω(Aτ ,Ar(0))”.

A strategy is a subset of ([κ]<κ)<ω×κ<κ (see Definition 1.7 on page 475), and the forcing
does not add elements to that set, so the nice name can be chosen such that all names
in domσ are standard names for elements that are in ([κ]<κ)<ω × κ<κ ∈ H(κ+).

Let M be an elementary submodel of H(κ+) of size κ such that

{u, v, σ, r(0), τ,P} ∪ (κ+ 1) ∪M<κ ⊂M.

Listing all dense subsets of P in M , it is easy to find a P-generic G over M which contains
p and such that (∪G)−1{1} contains a cub. Now in V , ∪G �NS0. Since φ(∪G, τG, u, v)
holds, we have, by (5.1),

(5.2) AτG ̸∼= Ar(0).

Let us show that σG is a winning strategy of player II in EFκω(AτG ,Ar(0)) (in V) which
by Theorem 5.3 above is a contradiction with (1).

Let µ be any strategy of player I in EFκω(AτG ,Ar(0)) and let us show that σG beats
it. Consider the play σG ∗ µ and assume for a contradiction that it is a win for I. This
play is well defined, since the moves made by µ are in the domain of σG by the note after
the definition of σ, and because ([κ]<κ)<ω × κ<κ ⊂M .

The play consists of ω moves and is a countable sequence in the set ([κ]<κ) × κ<κ.
Since P is < κ closed, there is q0 ∈ P which decides σG∗µ (i.e., σG0 ∗µ = σG1 ∗µ whenever
q0 ∈ G0 ∩G1). Assume that G′ is a P-generic over V with q0 ∈ G′. Then

(σG′ ∗ µ)V [G′] = (σG ∗ µ)V [G′] = (σG ∗ µ)V

The Infinity Project 529

(again, because P does not add elements of κ<κ) and so

(σG′ ∗ µ is a win for I)V [G′].

But q0 “σ ∗ µ is a win for II”, because q0 extends p and by the choice of σ.
The case (2) is similar, just instead of choosing ∪G such that (∪G)−1{1} contains a

cub, choose G such that (∪G)−1{0} contains a cub. Then we should have AτG ∼= Ar(0)
which contradicts (2) by the same absoluteness argument as above. �

5.2 Unstable and superstable theories

In this section we use Shelah’s ideas on how to prove non-structure theorems using
Ehrenfeucht–Mostowski models [29]. We use the definition of Ehrenfeucht–Mostowski
models from [15, Definition 4.2.].

Definition 5.5 In the following discussion of linear orderings we use the following con-
cepts:
� Coinitiality or reverse cofinality of a linear order η, denoted cf∗(η), is the smallest

ordinal α such that there is a map f : α → η which is strictly decreasing and ran f
has no (strict) lower bound in η.

� If η = ⟨η,<⟩ is a linear ordering, by η∗ we denote its mirror image: η∗ = ⟨η,<∗⟩
where x <∗ y ⇔ y < x.

� Suppose λ is a cardinal. We say that an ordering η is λ-dense if for all subsets A and
B of η with the properties ∀a ∈ A∀b ∈ B (a < b) and |A| < λ and |B| < λ there is
x ∈ η such that a < x < b for all a ∈ A, b ∈ B. Dense means ω-dense.

Theorem 5.6 Suppose that κ = λ+ = 2λ such that λ<λ = λ. If T is unstable or
superstable with OTOP, then ESκλ 6c

∼=T . If additionally λ > 2ω, then ESκλ 6c
∼=T holds

also for superstable T with DOP.

Proof. We will carry out the proof for the case where T is unstable and shall make
remarks on how certain steps of the proof should be modified in order for this to work
for superstable theories with DOP or OTOP. First, for each S ⊂ Sκλ , let us construct the
linear orders Φ(S) which will serve a fundamental role in the construction. The following
claim is a special case of Lemma 7.17 in [10]:

Claim 1 For each cardinal µ of uncountable cofinality there exists a linear ordering
η = ηµ which satisfies:
(1) η ∼= η + η;
(2) for all α 6 µ, η ∼= η · α+ η;
(3) η ∼= η · µ+ η · ω∗

1;
(4) η is dense;
(5) |η| = µ;
(6) cf∗(η) = ω.

Proof of Claim 1. Essentially the same as in [10]. �Claim 1

For a set S ⊂ Sκλ , define the linear order Φ(S) as follows:

Φ(S) =
∑
i<κ

τ(i, S),

530 Generalized descriptive set theory and classification theory

where τ(i, S) = ηλ if i /∈ S and τ(i, S) = ηλ · ω∗
1, if i ∈ S. Note that Φ(S) is dense. For

α < β < κ, define
Φ(S, α, β) =

∑
α6i<β

τ(i, S).

(These definitions are also as in [10] although the idea dates back to J. Conway’s Ph.D.
thesis from the 1960’s; they are first referred to in [25].) From now on, denote η = ηλ.

Claim 2 If α /∈ S, then for all β > α we have Φ(S, α, β + 1) ∼= η, and if α ∈ S, then for
all β > α we have Φ(S, α, β + 1) ∼= η · ω∗

1.

Proof of Claim 2. Let us begin by showing the first part, i.e., assume that α /∈ S. This
is also like in [10]. We prove the statement by induction on OTP(β \ α). If β = α, then
Φ(S, α, α+1) = η by the definition of Φ. If β = γ+1 is a successor, then β /∈ S, because
S contains only limit ordinals, so τ(β, S) = η and

Φ(S, α, β + 1) = Φ(S, α, γ + 1 + 1) = Φ(S, α, γ + 1) + η,

which, by the induction hypothesis and by (1), is isomorphic to η. If β /∈ S is a limit
ordinal, then choose a continuous cofinal sequence s : cf(β) → β such that s(γ) /∈ S for
all γ < cf(β). This is possible since S contains only ordinals of cofinality λ. By the
induction hypothesis Φ(S, α, s(0) + 1) ∼= η,

Φ(S, s(γ) + 1, s(γ + 1) + 1) ∼= η

for all successor ordinals γ < cf(β),

Φ(S, s(γ), s(γ + 1) + 1) ∼= η

for all limit ordinals γ < cf(β), and so now

Φ(S, α, β + 1) ∼= η · cf(β) + η,

which is isomorphic to η by (2). If β ∈ S, then cf(β) = λ and we can again choose a
cofinal sequence s : λ → β such that s(α) is not in S for all α < λ. By the induction
hypothesis, as above,

Φ(S, α, β + 1) ∼= η · λ+ τ(β, S),

and, since β ∈ S, we have τ(β, S) = η · ω∗
1, so we have

Φ(S, α, β + 1) ∼= η · λ+ η · ω∗
1,

which, by (3), is isomorphic to η.
Suppose α ∈ S. Then α+ 1 /∈ S, so by the previous part we have

Φ(S, α, β + 1) ∼= τ(α, S) + Φ(S, α+ 1, β + 1) = η · ω∗
1 + η = η · ω∗

1. �Claim 2

This gives us a way to show that the isomorphism type of Φ(S) depends only on the
ESκλ -equivalence class of S:

Claim 3 If S, S′ ⊂ Sκλ and S△S′ is non-stationary, then Φ(S) ∼= Φ(S′).
Proof of Claim 3. Let C be a cub set outside S△S′. Enumerate it as C = {αi | i < κ}
where (αi)i<κ is an increasing and continuous sequence. Now Φ(S) =

∪
i<κΦ(S, αi, αi+1)

and Φ(S′) =
∪
i<κΦ(S

′, αi, αi+1). Note that by the definitions these are disjoint unions,
so it is enough to show that for all i < κ the orders Φ(S, αi, αi+1) and Φ(S′, αi, αi+1) are
isomorphic. But, for all i < κ, αi ∈ S ⇔ αi ∈ S′, so by Claim 2 either

Φ(S, αi, αi+1) ∼= η ∼= Φ(S′, αi, αi+1)

The Infinity Project 531

(if αi /∈ S) or
Φ(S, αi, αi+1) ∼= η · ω∗

1
∼= Φ(S′, αi, αi+1)

(if αi ∈ S). �Claim 3

Definition 5.7 Kλ
tr is the set of L-models A where L = {<,⋖, (Pα)α6λ, h}, with the

following properties:
� domA ⊂ I6λ for some linear order I;
� ∀x, y ∈ A(x < y ⇔ x ⊂ y);
� ∀x ∈ A(Pα(x)⇔ len(x) = α);
� ∀x, y ∈ A[x⋖ y ⇔ ∃z ∈ A((x, y ∈ Succ(z)) ∧ (I |= x < y))];
� h(x, y) is the maximal common initial segment of x and y.

For each S, define the tree T (S) ∈ Kλ
tr by

T (S) = Φ(S)<λ ∪ {η : λ→ Φ(S) | η increasing and
cf∗(Φ(S) \ {x | (∃y ∈ ran η)(x < y)}) = ω1}.

The relations <, ⋖, Pn and h are interpreted in the natural way.
Clearly an isomorphism between Φ(S) and Φ(S′) induces an isomorphism between

T (S) and T (S′); thus T (S) ∼= T (S′) if S△S′ is non-stationary.

Claim 4 Suppose T is unstable in the vocabulary v. Let T1 be T with Skolem functions
in the Skolemized vocabulary v1 ⊃ v. Then there is a function

P(Sκλ) −→ {A1 | A1 |= T1, |A1| = κ},
S 7→ A1(S), which has the following properties:
(a) There is a mapping T (S) → (domA1(S))n for some n < ω, η 7→ aη, such that
A1(S) is the Skolem hull of {aη | η ∈ T (S)}, i.e., {aη | η ∈ T (S)} is the skeleton
of A1(S). Denote the skeleton of A by Sk(A).

(b) A(S) = A1(S)↾v is a model of T .
(c) Sk(A1(S)) is indiscernible in A1(S), i.e., if η, ξ ∈ T (S) and tpq.f.(η/∅) = tpq.f.(ξ/∅),

where tpq.f. denotes the quantifier free type, then tp(aη/∅) = tp(aξ/∅), where
aη = (aη1 , . . . , aηlenη). This assignment of types in A1(S) to q.f.-types in T (S) is
independent of S.

(d) There is a formula φ ∈ Lωω(v) such that, for all η, ν ∈ T (S) and α < λ, if T (S) |=
Pλ(η) ∧ Pα(ν), then T (S) |= η > ν if and only if A(S) |= φ(aη, aν).

Proof of Claim 4. The following is known:
(F1) Suppose that T is a complete unstable theory. Then, for each linear order η, T has

an Ehrenfeucht–Mostowski model A of vocabulary v1, where |v1| = |T |+ω and order
is definable by a first-order formula, such that the template (assignment of types) is
independent of η.2

It is not hard to see that for every tree t ∈ Kω
tr we can define a linear order L(t) satisfying

the following conditions:
(1) dom(L(t)) = (dom t× {0}) ∪ (dom t× {1});
(2) for all a ∈ t, (a, 0) <L(t) (a, 1);

2 This is from [26]; there is a sketch of the proof also in [15, Theorem 4.7].

532 Generalized descriptive set theory and classification theory

(3) if a, b ∈ t, then a <t b⇔ [(a, 0) <L(t) (b, 0)] ∧ [(b, 1) <L(t) (a, 1)];
(4) if a, b ∈ t, then

(a ̸6 b) ∧ (b ̸6 a) ⇐⇒ [(b, 1) <L(t) (a, 0)] ∨ [(a, 1) <L(t) (b, 0)].

Now for every S ⊂ κ, by (F1), there is an Ehrenfeucht–Mostowski model A1(S) for the
linear order L(T (S)) where order is definable by the formula ψ which is in L∞ω. Suppose
η = (η0, . . . , ηn) and ξ = (ξ0, . . . , ξn) are sequences in T (S) that have the same quantifier
free type. Then the sequences

⟨(η0, 0), (η0, 1), (η1, 0), (η1, 1), . . . , (ηn, 0), (ηn, 1)⟩
and

⟨(ξ0, 0), (ξ0, 1), (ξ1, 0), (ξ1, 1), . . . , (ξn, 0), (ξn, 1)⟩
have the same quantifier free type in L(T (S)). Now let the canonical skeleton of A1(S)
given by (F1) be {ax | x ∈ L(T (S))}. Define the T (S)-skeleton of A1(S) to be the set

{a(η,0)⌢a(η,1) | η ∈ T (S)}.
Let us denote bη = a(η,0)

⌢a(η,1). This guarantees that (a), (b) and (c) are satisfied.
For (d), suppose that the order L(T (S)) is definable in A(S) by the formula ψ(u, c),

i.e., A(S) |= ψ(ax, ay)⇔ x < y for x, y ∈ L(T (S)). Let φ(x0, x1, y0, y1) be the formula

ψ(x0, y0) ∧ ψ(y1, x1).
Suppose η, ν ∈ T (S) are such that T (S) |= Pλ(η) ∧ Pα(ν). Then

φ((aν , 0), (aν , 1), (aη, 0), (aη, 1))

holds in A(S) if and only if ν <T (S) η. �Claim 4

Claim 5 Suppose that S 7→ A(S) is a function as described in Claim 4 with identical
notation. Suppose further that S, S′ ⊂ Sκλ . Then S△S′ is non-stationary if and only if
A(S) ∼= A(S′).

Proof of Claim 5. Suppose S△S′ is non-stationary. Then, by Claim 3, T (S) ∼= T (S′),
which implies L(T (S)) ∼= L(T (S′)) (defined in the proof of Claim 4), which in turn implies
A(S) ∼= A(S′).

Let us now show that if S△S′ is stationary, then A(S) ̸∼= A(S′). Let us make a
counter assumption, namely that there is an isomorphism

f : A(S) ∼= A(S′)

and that S△S′ is stationary, and let us deduce a contradiction. Without loss of generality
we may assume that S \ S′ is stationary. Denote

X0 = S \ S′.

For all α < κ define Tα(S) and Tα(S′) by

Tα(S) = {η ∈ T (S) | ran η ⊂ Φ(S, 0, β + 1) for some β < α}
and

Tα(S′) = {η ∈ T (S) | ran η ⊂ Φ(S′, 0, β + 1) for some β < α}.
Then we have:
(i) if α < β, then Tα(S) ⊂ T β(S);
(ii) if γ is a limit ordinal, then T γ(S) =

∪
α<γ T

α(S).

The Infinity Project 533

The same holds of course for S′. Note that, if α ∈ S \ S′, then there is η ∈ Tα(S) cofinal
in Φ(S, 0, α) but there is no such η ∈ Tα(S′) by definition of Φ: a cofinal function η is
added only if cf∗(Φ(S′, α, κ)) = ω1, which is not the case if α /∈ S′. This is the key to
achieving the contradiction.

But the clauses (i), (ii) are not sufficient to carry out the following argument, because
we would like to have |Tα(S)| < κ. That is why we want to define a different kind of
filtration for T (S), T (S′).

For all α ∈ X0, fix a function

(5.3) ηαλ ∈ T (S)

such that dom ηαλ = λ and, for all β < λ, ηαλ ↾β ∈ Tα(S) and ηαλ /∈ Tα(S).
For arbitrary A ⊂ T (S) ∪ T (S′), let clSk(A) be the set X ⊂ A(S) ∪ A(S′) such that

X ∩A(S) is the Skolem closure of {aη | η ∈ A∩T (S)} and X ∩A(S′) the Skolem closure
of {aη | η ∈ A ∩ T (S′)}. The following is easily verified:

There exists a λ-cub set C and a set Kα ⊂ Tα(S)∪Tα(S′) for each α ∈ C such that
(i’) If α < β, then Kα ⊂ Kβ ;
(ii’) If γ is a limit ordinal in C, then Kγ =

∪
α∈C∩γK

α;
(iii) for all β < α, ηβλ ∈ K

α (see (1) above);
(iv) |Kα| = λ;
(v) clSk(K

α) is closed under f ∪ f−1;
(vi) {η ∈ Tα(S) ∪ Tα(S′) | dom η < λ} ⊂ Kα;
(vii) Kα is downward closed.

DenoteKκ =
∪
α<κK

α. ClearlyKκ is closed under f∪f−1 and so f is an isomorphism
between A(S)∩ clSk(Kκ) and A(S′)∩ clSk(Kκ). We will derive a contradiction from this,
i.e., we will actually show thatA(S)∩clSk(Kκ) andA(S′)∩clSk(Kκ) cannot be isomorphic
by f . Clauses (iii), (v), (vi) and (vii) guarantee that all elements we are going to deal
with will be in Kκ.

Let X1 = X0 ∩ C. For α ∈ X1, let us use the following abbreviations:
� By Aα(S) we denote the Skolem closure of {aη | η ∈ Kα ∩ T (S)}.
� By Aα(S′) we denote the Skolem closure of {aη | η ∈ Kα ∩ T (S′)}.
� Kα(S) = Kα ∩ T (S).
� Kα(S′) = Kα ∩ T (S′).

In the following we will often deal with finite sequences. When defining such a se-
quence we will use a bar, but afterwards we will not use the bar in the notation (e.g., let
a = a be a finite sequence...).

Suppose α ∈ X1. Choose

(5.4) ξαλ = ξ
α
λ ∈ T (S′)

to be such that for some (finite sequence of) terms π = π we have

f(aηαλ) = π(aξαλ)

=
⟨
π1
(
aξαλ (1), . . . , aξαλ (len(ξ

α
λ))

)
, . . . , πlenπ

(
aξαλ (1), . . . , aξαλ (len(ξ

α
λ))

)⟩
.

Note that ξαλ is in Kκ by the definition of Kα’s.
Let us denote by ηαβ the element ηαλ ↾β, and let

(5.5) ξα∗ = {ν ∈ T (S′) | ∃ξ ∈ ξαλ (ν < ξ)}.

534 Generalized descriptive set theory and classification theory

Also note that ξα∗ ⊂ Kβ for some β. Next define the function g : X1 → κ as follows.
Suppose α ∈ X1. Let g(α) be the smallest ordinal β such that ξα∗ ∩Kα(S′) ⊂ Kβ(S′).
We claim that g(α) < α. Clearly g(α) 6 α, so suppose that g(α) = α. Since ξαλ is
finite, there must be a ξαλ (i) ∈ ξαλ such that for all β < α there exists γ such that
ξαλ (i) ↾ γ ∈ Kα(S′) \ Kβ(S′), i.e., ξαλ (i) is cofinal in Φ(S′, 0, α), which it cannot be,
because α /∈ S′.

Now by Fodor’s lemma there exists a stationary set

X2 ⊂ X1

and γ0 such that g[X2] = {γ0}.
Since there are only < κ many finite sequences in Kγ0(S

′), there is a stationary set

X3 ⊂ X2

and a finite sequence ξ = ξ ∈ Kγ0(S′) such that, for all α ∈ X3, we have ξα∗ ∩Kγ0(S′) = ξ∗,
where ξ∗ is the set

ξ∗ = {ν ∈ T (S′) | ν 6 ζ for some ζ ∈ ξ} ⊂ Kγ0(S′).

Let us fix a (finite sequence of) term(s) π = π such that the set

X4 = {α ∈ X3 | f(aηαλ) = π(aξαλ)}

is stationary; see (5.3). Here f(a) means ⟨f(a1), . . . , f(alen a)⟩ and π(b) means

⟨π1(b1, . . . , blen a), . . . , πlenπ(b1, . . . , blen a)⟩.
We can find π because there are only countably many such finite sequences of terms.

We claim that in T (S′) there are at most λ many quantifier free types over ξ∗. All
types from now on are quantifier free. Let us show that there are at most λ many 1-types;
the general case is left to the reader. To see this, note that a type p over ξ∗ is described
by the triple

(5.6) (νp, βp,mp)

defined as follows: if η satisfies p, then νp is the maximal element of ξ∗ that is an initial
segment of η, while βp is the level of η and mp tells how many elements of ξ∗ ∩Pdom νp+1

are there ⋖-below η(dom νp) (recall the vocabulary from Definition 5.7, page 531).
Since νp ∈ ξ∗ and ξ∗ is of size λ, βp ∈ (λ + 1) ∪ {∞} and mp < ω, there can be at

most λ such triples.
Recall the notations (5.3), (5.4) and (5.5) above. We can pick ordinals α < α′,

α, α′ ∈ X4, a term τ and an ordinal β < λ such that

ηα
′

β ̸= ηαβ ,

f(aηαβ) = τ(aξαβ) and f(a
ηα

′
β
) = τ(a

ξα
′

β
) for some ξαβ , ξ

α′
β ,

tp(ξαλ/ξ∗) = tp(ξα
′

λ /ξ∗),

and

(5.7) tp(ξαβ /ξ∗) = tp(ξα
′

β /ξ∗).

We claim that then in fact

tp(ξαβ /(ξ∗ ∪ {ξα
′

λ })) = tp(ξα
′

β /(ξ∗ ∪ {ξα
′

λ })).
Let us show this. Denote

p = tp(ξαβ /(ξ∗ ∪ {ξα
′

λ }))

The Infinity Project 535

and
p′ = tp(ξα

′
β /(ξ∗ ∪ {ξα

′
λ })).

By the assumption (5.7), however, p ↾ ξ∗ = p′ ↾ ξ∗, so, because it is a tree, it suffices to
show that p↾{ξα′

λ } = p′ ↾{ξα′
λ }. Since α and α′ are in X3 and X2, we have ξα′

∗ ∩Kα′
(S′) =

ξα∗ ∩Kα(S′) = ξ∗ ⊂ Kγ0(S′). On the other hand, f ↾Aα′(S) is an isomorphism between
Aα′(S) and Aα′(S′), because α and α′ are in X1, so ξαβ , ξ

α′
β ∈ Kα′

(S′). Thus ξαβ and ξα′
β

are either both in ξ∗, whence they are the same, or not, in which case they are both not
below ξα

′
λ . From (5.7) it follows that ξαβ and ξα′

β are on the same level and if ξα′
λ is also on

the same level, then the above also implies that they are both ⋖-below ξα
′

λ . From (5.7)
and the above we also have that h(ξαβ , ξ

α′
) = h(ξα

′
β , ξ

α′
); see Definition 5.7.

Now we have: ξαλ and π are such that f(aηαλ) = π(aξαλ), and ξαβ and τ are such that
f(aηαβ) = τ(aξαβ). Similarly for α′. The formula φ is defined in Claim 4.

We know that
A(S) |= φ

(
a
ηα

′
λ
, a
ηα

′
β

)
and, because f is an isomorphism, this implies

A(S′) |= φ(f(a
ηα

′
λ
), f(a

ηα
′

β
)),

which is equivalent to
A(S′) |= φ(π(a

ξα
′

λ
), τ(a

ξα
′

β
))

because α, α′ are in X4. Since T (S′) is indiscernible in A(S′) and ξα
′

β and ξαβ have the
same type over over (ξ∗ ∪ {ξα

′
λ }), we have

(5.8) A(S′) |= φ(π(a
ξα

′
λ
), τ(a

ξα
′

β
)) ⇐⇒ φ(π(a

ξα
′

λ
), τ(aξαβ))

and so we get
A(S′) |= φ(π(a

ξα
′

λ
), τ(aξαβ)),

which is equivalent to
A(S′) |= φ(f(a

ηα
′

λ
), f(aηαβ)),

and this is in turn equivalent to

A(S) |= φ(a
ηα

′
λ
, aηαβ).

However, the latter cannot be true, because the definition of β, α and α′ implies that
ηα

′
β ̸= ηαβ . �Claim 5

Thus, the above Claims 1–5 justify the embedding of ESκλ into the isomorphism
relation on the set of structures that are models for T for unstable T . This embedding
combined with a suitable coding of models gives a continuous map.

DOP and OTOP cases. The above proof was based on the fact (F1) that for unstable
theories there are Ehrenfeucht–Mostowski models for any linear order such that the order
is definable by a first-order formula φ and is indiscernible relative to Lωω (see (c) on
page 531); it is used in (5.8) above. For the OTOP case, we use instead the fact (F2):

536 Generalized descriptive set theory and classification theory

(F2) Suppose that T is a theory with OTOP in a countable vocabulary v. Then for each
dense linear order η we can find a model A of a countable vocabulary v1 ⊃ v such
that A is an Ehrenfeucht–Mostowski model of T for η where order is definable by an
Lω1ω-formula.3

Since the order Φ(S) is dense, it is easy to argue that if T (S) is indiscernible relative to
Lωω, then it is indiscernible relative to L∞ω (define this as in (c) on page 531 changing
tp to tpL∞ω

). Other parts of the proof remain unchanged, because although the formula
φ is not first-order anymore, it is still in L∞ω.

In the DOP case we have the following fact:
(F3) Let T be a countable superstable theory with DOP of vocabulary v. Then there

exists a vocabulary v1 ⊃ v, |v1| = ω1, such that for every linear order η there exists
a v1-model A which is an Ehrenfeucht–Mostowski model of T for η where order is
definable by an Lω1ω1-formula.4

Now the problem is that φ is in L∞ω1 . By (c) of Claim 4, T (S) is indiscernible in A(S)
relative to Lωω and by the above relative to L∞ω. If we could require Φ(S) to be ω1-dense,
we would similarly get indiscernible relative to L∞ω1 . Let us show how to modify the
proof in order to do that. Recall that, in the DOP case, we assume λ > 2ω.

In Claim 1, page 529, we have to replace clauses (3), (4) and (6) by (3’), (4’)
and (6’):
(3’) η ∼= η · µ+ η · ω∗;
(4’) η is ω1-dense;
(6’) cf∗(η) = ω1.
The proof that such an η exists is exactly as the proof of [10, Lemma 7.17] except that,
instead of putting µ = (ω1)

V , put µ = ω, build θ-many functions with domains being
countable initial segments of ω1 instead of finite initial segments of ω and instead of Q
(the countable dense linear order) use an ω1-saturated dense linear order —this order has
size 2ω and that is why the assumption λ > 2ω is needed.

In the definition of Φ(S) (right after Claim 1), replace ω∗
1 by ω∗ and η by the new η

satisfying (3’), (4’) and (6’) above. Note that Φ(S) becomes now ω1-dense. In Claim 2
one has to replace ω∗

1 by ω∗. The proof remains similar. In the proof of Claim 3 (page 530)
one has to adjust the use of Claim 2. Then, in the definition of T (S) replace ω1 by ω.

Claim 4 for superstable T with DOP now follows with (c) and (d) modified: instead
of indiscernible relative to Lωω, demand L∞ω1 and instead of φ ∈ Lωω we have φ ∈ L∞ω1 .
The proof is unchanged except that the language is replaced by L∞ω1 everywhere and
fact (F1) is replaced by (F3) above.

Everything else in the proof, in particular the proof of Claim 5, remains unchanged
modulo some obvious things that are evident from the above explanation. �Theorem 5.6

5.3 Stable unsuperstable theories

In this section we provide a tree construction (Lemma 5.12) which is similar to She-
lah’s construction in [29], which he used to obtain (via Ehrenfeucht–Mostowski models)
many pairwise non-isomorphic models. Then using a prime-model construction (proof of
Theorem 5.13, page 542) we will obtain the needed result.

3 Contained in the proof of [27, Theorem 2.5]; see also [15, Theorem 6.6].
4 This is essentially from [28, Fact 2.5B]; a proof can be found also in [15, Theorem 6.1].

The Infinity Project 537

Definition 5.8 Let I be a tree of size κ. Suppose (Iα)α<κ is a collection of subsets of I
such that the following hold:
� For each α < κ, Iα is a downward closed subset of I.
� ∪

α<κ Iα = I.
� If α < β < κ, then Iα ⊂ Iβ .
� If γ is a limit ordinal, then Iγ =

∪
α<γ Iα.

� For each α < κ the cardinality of Iα is less than κ.
Such a sequence (Iα)α<κ is called κ-filtration or just filtration of I.

Definition 5.9 Recall Kλ
tr from Definition 5.7. Let Kλ

tr∗ = {A↾L∗ | A ∈ Kλ
tr}, where L∗

is the vocabulary {<}.

Definition 5.10 Suppose t ∈ Kω
tr∗ is a tree of size κ (i.e., t ⊂ κ6ω), and let I = (Iα)α<κ

be a filtration of t. Define

SI(t) =
{
α < κ | (∃η ∈ t)

[
(dom η = ω) ∧ ∀n < ω(η ↾n ∈ Iα) ∧ (η /∈ Iα)

]}
.

By S ∼NS S
′ we mean that S△S′ is not ω-stationary.

Lemma 5.11 Suppose that t0 and t1 are isomorphic trees, and that I = (Iα)α<κ and
J = (Jα)α<κ are κ-filtrations of t0 and t1 respectively. Then SI(t0) ∼NS SJ (t1).

Proof. Let f : t0 → t1 be an isomorphism. Then fI = (f [Iα])α<κ is a filtration of t1 and

(5.9) α ∈ SI(t0) ⇐⇒ α ∈ SfI(t1).
Define the set C = {α | f [Iα] = Jα}. Let us show that it is cub. Let α ∈ κ. Define α0 = α
and by induction pick (αn)n<ω such that f [Iαn] ⊂ Jαn+1 for odd n and Jαn ⊂ f [Iαn+1]
for even n. This is possible by the definition of a κ-filtration. Then αω =

∪
n<ω αn ∈ C.

Clearly C is closed and C ⊂ κ \ SfI(t1)△SJ (t1), so now, by (5.9),

SI(t0) = SfI(t1) ∼NS SJ (t1). �
Lemma 5.12 Suppose that for λ < κ, λω < κ and κ<κ = κ. Then there exists a function
J : P(κ)→ Kω

tr∗ such that:
� For all S ⊂ κ, |J(S)| = κ.
� If S ⊂ κ and I is a κ filtration of J(S), then SI(J(S)) ∼NS S.
� If S0 ∼NS S1, then J(S0) ∼= J(S1).

Proof. Let S ⊂ Sκω and let us define a preliminary tree I(S) as follows. For each
α ∈ S, let Cα be the set of all strictly increasing cofinal functions η : ω → α. Let
I(S) = [κ]<ω ∪

∪
α∈S Cα where [κ]<ω is the set of strictly increasing functions from finite

ordinals to κ.
For ordinals α < β 6 κ and i < ω, we adopt the notation

� [α, β] = {γ | α 6 γ 6 β};
� [α, β) = {γ | α 6 γ < β};
� f̃(α, β, i) =

∪
i6j6ω{η : [i, j)→ [α, β) | η strictly increasing}.

For each α, β < κ let us define the sets Pα,βγ , for γ < κ as follows. If α = β = γ = 0,
then P 0,0

0 = I(S). Otherwise let {Pα,βγ | γ < κ} enumerate all downward closed subsets
of f̃(α, β, i) for all i, i.e.,

{Pα,βγ | γ < κ} =
∪
i<ω

P(f̃(α, β, i)) ∩ {A | A is closed under inital segments}.

538 Generalized descriptive set theory and classification theory

Define ñ(Pα,βγ) to be the natural number i such that Pα,βγ ⊂ f̃(α, β, i). The enumeration
is possible, because by our assumption κ<κ = κ we have∣∣∣ ∪

i<ω

P(f̃(α, β, i))
∣∣∣ 6 ω × |P(f̃(0, β, 0))|

6 ω × |P(βω)|

= ω × 2β
ω

6 ω × κ
= κ.

Let S ⊂ κ be a set and define J(S) to be the set of all η : s → ω × κ4 such that s 6 ω
and the following conditions are met for all i, j < s:
(1) η is strictly increasing with respect to the lexicographical order on ω × κ4;
(2) η1(i) 6 η1(i+ 1) 6 η1(i) + 1;
(3) η1(i) = 0→ η2(i) = η3(i) = η4(i) = 0;
(4) η1(i) < η1(i+ 1)→ η2(i+ 1) > η3(i) + η4(i);
(5) η1(i) = η1(i+ 1)→ (∀k ∈ {2, 3, 4})(ηk(i) = ηk(i+ 1));
(6) if for some k < ω, [i, j) = η−1

1 {k}, then η5 ↾ [i, j) ∈ P η2(i),η3(i)η4(i)
;

(7) if s = ω, then either

(∃m < ω)(∀k < ω)(k > m→ η1(k) = η1(k + 1))

or sup ran η5 ∈ S;
(8) order J(S) by inclusion.

Note that it follows from the definition of Pα,βγ and conditions (6) and (4) that, for
all i < j < dom η, η ∈ J(S),
(9) i < j → η5(i) < η5(j).

For each α < κ, let

Jα(S) = {η ∈ J(S) | ran η ⊂ ω × (β + 1)4 for some β < α}.
Then (Jα(S))α<κ is a κ-filtration of J(S) (see Claim 2 below). For the first item of the
lemma, clearly |J(S)| = κ.

Let us observe that if η ∈ J(S) and ran η1 = ω, then

(5.10) sup ran η4 6 sup ran η2 = sup ran η3 = sup ran η5

and if, in addition to that, η ↾k ∈ Jα(S) for all k and η /∈ Jα(S) or if ran η1 = {0}, then

(5.11) sup ran η5 = α.

To see (5.10), suppose that ran η1 = ω. By (9), (η5(i))i<ω is an increasing sequence.
By (6), sup ran η3 > sup ran η5 > sup ran η2. By (4), sup ran η2 > sup ran η3, and again
by (4), sup ran η2 > sup ran η4. The inequality sup ran η5 6 α is an immediate con-
sequence of the definition of Jα(S), so (5.11) follows now from the assumption that
η /∈ Jα(S).

Claim 1 Suppose that ξ ∈ Jα(S) and η ∈ J(S). Then, if dom ξ < ω, ξ (η and
(∀k ∈ dom η \ dom ξ)

(
η1(k) = ξ1(max dom ξ) ∧ η1(k) > 0

)
, it follows that η ∈ Jα(S).

Proof of Claim 1. Suppose that ξ, η ∈ Jα(S) are as in the assumption, and let us define
β2 = ξ2(max dom ξ), β3 = ξ2(max dom ξ), and β4 = ξ4(max dom ξ). Because ξ ∈ Jα(S),

The Infinity Project 539

there is β such that β2, β3, β4 < β + 1 and β < α. Now by (5) η2(k) = β2, η3(k) = β3
and η4(k) = β4, for all k ∈ dom η \ dom ξ. Then by (6) for all k ∈ dom η \ dom ξ we have
that β2 < η5(k) < β3 < β + 1. Since ξ ∈ Jα(S), also β4 < β + 1, so η ∈ Jα(S). �Claim 1

Claim 2 |J(S)| = κ, (Jα(S))α<κ is a κ-filtration of J(S), and if S ⊂ κ and I is a
κ-filtration of J(S) then SI(J(S)) ∼NS S.

Proof of Claim 2. For all α 6 κ, Jα(S) ⊂ (ω × α4)6ω, so by the cardinality assumption
of the lemma, the cardinality of Jα(S) is < κ if α < κ (Jκ(S) = J(S)). Clearly α < β
implies Jα(S) ⊂ Jβ(S). Continuity is verified by∪

α<γ

Jα(S) = {η ∈ J(S) | ∃α < γ, ∃β < α(ran η ⊂ ω × (β + 1)4)}

= {η ∈ J(S) | ∃β < ∪γ(ran η ⊂ ω × (β + 1)4)},

which equals Jγ(S) if γ is a limit ordinal. By Lemma 5.11 it is enough to show that
SI(J(S)) ∼NS S for I = (Jα(S))α<κ, and we will show that if I = (Jα(S))α<κ, then in
fact SI(J(S)) = S.

Suppose α ∈ SI(J(S)). Then there is η ∈ J(S), dom η = ω, such that η ↾k ∈ Jα(S)
for all k < ω but η /∈ Jα(S). Thus there is no β < α such that ran η ⊂ ω × (β + 1)4 but
on the other hand for all k < ω there is β such that ran η ↾ k ⊂ ω × (β + 1)4. By (5)
and (6) this implies that either ran η1 = ω or ran η1 = {0}. By (5.11) on page 538 it now
follows that sup ran η5 = α and, by (7), α ∈ S.

Suppose then α ∈ S. Let us show that α ∈ SI(J(S)). Fix a function ηα : ω → κ with
sup ran ηα = α. Then ηα ∈ I(S) and the function η such that η(n) = (0, 0, 0, 0, ηα(n)) is
as required. (Recall that P 0,0

0 = I(S) in the definition of J(S).) �Claim 2

Claim 3 Suppose that S ∼NS S
′. Then J(S) ∼= J(S′).

Proof of Claim 3. Let C ⊂ κ \ (S△S′) be the cub set which exists by the assumption.
By induction on i < κ we will define αi and Fαi such that:
(a) If i < j < κ, then αi < αj and Fαi ⊂ Fαj .
(b) If i is a successor, then αi is a successor and if i is limit, then αi ∈ C.
(c) If γ is a limit ordinal, then αγ = supi<γ αi.
(d) Fαi is a partial isomorphism J(S)→ J(S′).
(e) Suppose that i = γ + n, where γ is a limit ordinal or 0 and n < ω is even. Then

domFαi = Jαi(S) (e1). If also n > 0 and (ηk)k<ω is an increasing sequence in
Jαi(S) such that η =

∪
k<ω ηk /∈ J(S), then

∪
k<ω Fαi(ηk) /∈ J(S′) (e2).

(f) If i = γ + n, where γ is a limit ordinal or 0 and n < ω is odd, then ranFαi =
Jαi(S′) (f1). Further, if (ηk)k<ω is an increasing sequence in Jαi(S′) such that
η =

∪
k<ω ηk /∈ J(S′), then

∪
k<ω F

−1
αi (ηk) /∈ J(S) (f3).

(g) If dom ξ < ω, ξ ∈ domFαi , η ↾dom ξ = ξ and (∀k > dom ξ)
(
η1(k) = ξ1(max dom ξ)∧

η1(k) > 0
)
, then η ∈ domFαi . Similarly for ranFαi .

(h) If ξ ∈ domFαi and k < dom ξ, then ξ ↾k ∈ domFαi .
(i) For all η ∈ domFαi , dom η = dom(Fαi(η)).

First step. The first step and the successor steps are similar, but the first step is easier.
Thus we give it separately in order to simplify the readability. Let us start with i = 0.

540 Generalized descriptive set theory and classification theory

Let α0 = β + 1, for arbitrary β ∈ C. Let us denote by

õ(α)

the ordinal that is order isomorphic to (ω × α4, <lex). Let γ be such that there is an
isomorphism h : P

0,õ(α0)
γ

∼= Jα0(S) and such that ñ(P 0,α0
γ) = 0, which exists by (1).

Suppose that η ∈ Jα0(S). Note that because P 0,α0
γ and Jα0(S) are closed under initial

segments and by the definitions of ñ and Pα,βγ , we have domh−1(η) = dom η. Define
ξ = Fα0(η) such that dom ξ = dom η and, for all k < dom ξ,
� ξ1(k) = 1;
� ξ2(k) = 0;
� ξ3(k) = õ(α0);
� ξ4(k) = γ;
� ξ5(k) = h−1(η)(k).

Let us check that ξ ∈ J(S′). Conditions (1)–(5) and (7) are satisfied because ξk is constant
for all k ∈ {1, 2, 3, 4}, ξ1(i) ̸= 0 for all i and ξ5 is increasing. For (6), if ξ−1

1 {k} is empty,
the condition is verified since each Pα,βγ is closed under initial segments and contains the
empty function. If it is non-empty, then k = 1 and in that case ξ−1

1 {k} = [0, ω) and by
the argument above (domh−1(η) = dom η = dom ξ) we have ξ5 = h−1(η) ∈ P 0,õ(α0)

γ =

P
ξ2(0),ξ3(0)
ξ4(0)

, so the condition is satisfied.
Let us check whether all the conditions (a)–(i) are met. In (a), (b), (c), (e2) and

(f) there is nothing to check; (d) holds because h is an isomorphism; (e1) and (i) are
immediate from the definition. Both Jα0(S) and P 0,õ(α0)

γ are closed under initial segments,
so (h) follows, because domFα0 = Jα0(S) and ranFα0 = {1}×{0}×{õ(α0)}×{γ}×P 0,α0

γ .
Claim 1 implies (g) for domFα0 . Suppose ξ ∈ ranFα0 and η ∈ J(S′) are as in the
assumption of (g). Then η1(i) = ξ1(i) = 1 for all i < dom η. By (5) it follows that
η2(i) = ξ2(i) = 0, η3(i) = ξ3(i) = õ(α0) and η4(i) = ξ4(i) = γ for all i < dom η, so by (6)
η5 ∈ P 0,õ(α0)

γ and, since h is an isomorphism, η ∈ ranFα0 .

Odd successor step. We want to handle the odd case but not the even case first, because
the most important case is the successor of a limit ordinal; see (ιιι) below. Except for
that, the even case is similar to the odd case.

Suppose that j < κ is a successor ordinal. Then there exist βj and nj such that
j = βj +nj and β is a limit ordinal or 0. Suppose that nj is odd and that αl and Fαl are
defined for all l < j such that the conditions (a)–(i) and (1)–(9) hold for l < j.

Let αj = β + 1 where β is such that β ∈ C, ranFαj−1 ⊂ Jβ(S′), β > αj−1. For
convenience define ξ(−1) = (0, 0, 0, 0, 0) for all ξ ∈ J(S) ∪ J(S′). Suppose η ∈ ranFαj−1

has finite domain dom η = m < ω and denote ξ = F−1
αj−1

(η). Fix γη to be such that
ñ(Pα,βγη) = m and such that there is an isomorphism hη : P

α,β
γη →W, where

W = {ζ | dom ζ = [m, s), m < s 6 ω, η⌢⟨m, ζ(m)⟩ /∈ ranFαj−1 , η
⌢ζ ∈ Jαj (S′)},

α = ξ3(m− 1)+ ξ4(m− 1) and β = α+ õ(αj) (defined in the beginning of the first step).
We will define Fαj so that its range is Jαj (S′) and instead of Fαj we will define its

inverse. So let η ∈ Jαj (S′). We have three cases:
(ι) η ∈ ranFαj−1 ;

(ιι) ∃m < dom η(η ↾m ∈ ranFαj−1 ∧ η ↾(m+ 1) /∈ Fαj−1);
(ιιι) ∀m < dom η(η ↾(m+ 1) ∈ ranFαj−1 ∧ η /∈ ranFαj−1).

The Infinity Project 541

Let us define ξ = F−1
αj (η) such that dom ξ = dom η. If (ι) holds, define ξ(n) = F−1

αj−1
(η)(n)

for all n < dom η. Clearly ξ ∈ J(S) by the induction hypothesis. Suppose that (ιι) holds
and let m witness this. For all n < dom ξ, let:
� If n < m, then ξ(n) = F−1

αj−1
(η ↾m)(n).

� Suppose n > m. Let
· ξ1(n) = ξ1(m− 1) + 1;
· ξ2(n) = ξ3(m− 1) + ξ4(m− 1);
· ξ3(n) = ξ2(m) + õ(αj);
· ξ4(n) = γη↾m;
· ξ5(n) = h−1

η↾m(η)(n).

Next we should check that ξ ∈ J(S); let us check items (1) and (6) —the rest are left to
the reader.
(1) By the induction hypothesis ξ ↾m is increasing. Next, ξ1(m) = ξ1(m − 1) + 1, so

ξ(m− 1) <lex ξ(m). If m 6 n1 < n2, then ξk(n1) = ξk(n2) for all k ∈ {1, 2, 3, 4} and
ξ5 is increasing.

(6) Suppose that [i, j) = ξ−1
1 {k}. Since ξ1 ↾ [m,ω) is constant, either j < m, when we

are done by the induction hypothesis, or i = m and j = ω. In that case one verifies
that η ↾ [m,ω) ∈ W = ranhη↾m and then, imitating the corresponding argument in
the first step, that

ξ5 ↾ [m,ω) = h−1
η↾m(η ↾ [m,ω))

and hence domhη↾m = P
ξ2(m),ξ3(m)
ξ4(m) .

Suppose finally that (ιιι) holds. Then dom η must be ω since otherwise the condi-
tion (ιιι) is simply contradictory (because η ↾ (dom η − 1 + 1) = η, except for the case
dom η = 0, but then condition (ι) holds and we are done). By (g), we have ran η1 = ω,
because otherwise we had η ∈ ranFαj−1 . Let F−1

αj (η) = ξ =
∪
n<ω F

−1
αj−1

(η ↾n).
Let us check that it is in J(S). Conditions (1)–(6) are satisfied by ξ, because they

are satisfied by all its initial segments. Let us check (7).
First of all ξ cannot be in Jαj−1(S), since otherwise, by (d) and (i),

Fαj−1(ξ) =
∪
n<ω

Fαj−1(ξ ↾n) =
∪
n<ω

η ↾n = η

would be again in ranFαj−1 . If j − 1 is a successor ordinal, then we are done: by (b)
αj−1 is a successor and we assumed η ∈ J(S′), so by (e2) we have ξ ∈ J(S). Thus we
can assume that j − 1 is a limit ordinal. Then by (b), αj−1 is a limit ordinal in C and
by (a), (e) and (f), ranFαj−1 = Jαj−1(S′) and domFαj−1 = Jαj−1(S). This implies that
ran η ̸⊂ ω×β4 for any β < αj−1 and by (5.11) on page 538 we must have sup ran η5 = αj−1

which gives αj−1 ∈ S′ by (7). Since αj−1 ∈ C ⊂ κ \ S△S′, we have αj−1 ∈ S. Again by
(5.11) and that domFαj−1 = Jαj−1(S) by (e1), we have sup ran ξ5 = αj−1, thus ξ satisfies
the condition (7).

Let us check whether all the conditions (a)–(i) are met: (a), (b), (c) are common to
the cases (ι), (ιι) and (ιιι) in the definition of F−1

αj and are easy to verify. Let us sketch
a proof for (d); the rest is left to the reader.
(d) Let η1, η2 ∈ ranFαj and let us show that

η1 (η2 ⇐⇒ F−1
αj (η1) (F−1

αj (η2).

542 Generalized descriptive set theory and classification theory

The case where both η1 and η2 satisfy (ιι) is the interesting one (as it implies all the
others). So suppose η1, η2 ∈ (ιι). Then there exist m1 and m2 as described in the
statement of (ιι). Let us show that m1 = m2. We have η1 ↾(m1 +1) = η2 ↾(m1 +1)
and η1 ↾ (m1 + 1) /∈ ranFαj−1 , so m2 6 m1. If m2 6 m1, then m2 < dom η1, since
m1 < dom η1. Thus if m2 6 m1, then η1 ↾ (m2 + 1) = η2 ↾ (m2 + 1) /∈ ranFαj−1 ,
which implies m2 = m1. According to the definition of F−1

αj (ηi)(k) for k < dom η1,
F−1
αj (ηi)(k) depends only on mi and η ↾ mi for i ∈ {1, 2}. Since m1 = m2 and
η1 ↾m1 = η2 ↾m2, we have F−1

αj (η1)(k) = F−1
αj (η2)(k) for all k < dom η1.

Let us now assume that η1 ̸⊂ η2. Then take the smallest n ∈ dom η1 ∩ dom η2
such that η1(n) ̸= η2(n). It is now easy to show that F−1

αj (η1)(n) ̸= F−1
αj (η2)(n) by

the construction.

Even successor step. Namely the one where j = β + n and n is even. But this case goes
exactly as the above completed step, except that we start with domFαj = Jαj (S) where
αj is big enough successor of an element of C such that Jαj (S) contains ranFαj−1 and
define ξ = Fαj (η). Instead of (e) we use (f) as the induction hypothesis. This step is
easier since one does not need to care about the successors of limit ordinals.

Limit step. Assume that j is a limit ordinal. Then let αj =
∪
i<j αi and Fαj =

∪
i<j Fαi .

Since αi are successors of ordinals in C, αj ∈ C, so (b) is satisfied. Since each Fαi is an
isomorphism, also their union is, so (d) is satisfied. Because conditions (e), (f) and (i)
hold for i < j, the conditions (e) and (i) hold for j. Condition (f) is satisfied because
the premise is not true. Conditions (a) and (c) are clearly satisfied. Also (g) and (h) are
satisfied by Claim 1 since now domFαj = Jαj (S) and ranFαj = Jαj (S′) (this is because
(a), (e) and (f) hold for i < j).

Finally, F =
∪
i<κ Fαi is an isomorphism between J(S) and J(S′). �Claim 3

�Lemma 5.12

Theorem 5.13 Suppose that κ is such that κ<κ = κ and for all λ < κ, λω < κ, and that
T is a stable unsuperstable theory. Then ESκω 6c

∼=T .

Proof. For η ∈ 2κ let Jη = J(η−1{1}) where the function J is as in Lemma 5.12 above.
For notational convenience, we assume that Jη is a downward closed subtree of κ6ω.
Since T is stable unsuperstable, for all η and t ∈ Jη, there are finite sequences at = aηt in
the monster model such that:
(1) If dom(t) = ω and n < ω then

at ̸ ↓
∪

m<n
at ↾m

at↾n.

(2) For all downward closed subtrees X,Y ⊂ Jη,∪
t∈X

at ↓
∪

t∈X∩Y
at

∪
t∈Y

at.

(3) For all downward closed subtrees X ⊂ Jη and Y ⊂ Jη′ the following holds: If
f : X → Y is an isomorphism, then there is an automorphism F of the monster
model such that, for all t ∈ X, F (aηt) = aη

′

f(t).

The Infinity Project 543

Then we can find an F fω -construction(∪
t∈Jη

at, (bi, Bi)i<κ

)
(here (t(b/C), D) ∈ F fω if D ⊂ C is finite and b ↓D C; see [30]) such that

(⋆) for all α < κ, c and finite B ⊂
∪
t∈Jη at∪

∪
i<α bi there is α < β < κ such that Bβ = B

and
stp(bβ/B) = stp(c/B).

Then
Mη =

∪
t∈Jη

at ∪
∪
i<κ

bi |= T.

Without loss of generality we may assume that the trees Jη and the F fω -constructions for
Mη are chosen coherently enough such that one can find a code ξη for (the isomorphism
type of) Mη so that η 7→ ξη is continuous. Thus we are left to show ηESκωη

′ ⇔Mη
∼=Mη′ .

“⇒” Assume Jη ∼= Jη′ . By (3) it is enough to show that F fω -constructions of length κ
satisfying (⋆) are unique up to isomorphism over

∪
t∈Jη at. But (⋆) guarantees that

the proof of the uniqueness of F -primary models from [30] works here.
“⇐” Suppose that F : Mη → Mη′ is an isomorphism and, for a contradiction, suppose

that (η, η′) /∈ ESκω . Let (Jαη)α<κ be a filtration of Jη and (Jαη′)α<κ be a filtration of
Jη′ (see Definition 5.8 above). For α < κ, let

Mα
η =

∪
t∈Jαη

at ∪
∪
i<α

bi

and, similarly for η′,
Mα
η′ =

∪
t∈Jα

η′

at ∪
∪
i<α

bi.

Let C be the cub set of those α < κ such that F ↾Mα
η is onto Mα

η′ and, for all i < α,
Bi ⊂ Mα

η and B′
i ⊂ Mα

η′ , where
(∪

t∈Jη′
, (b′i, B

′
i)i<b

)
is in the construction of Mη′ .

Then we can find α ∈ limC such that in Jη there is t∗ satisfying (a)–(c) below, but
in Jη′ there is no such t∗:
(a) dom(t∗) = ω;
(b) t∗ /∈ Jαη ;
(c) for all β < α there is n < ω such that t∗ ↾n ∈ Jαη \ J

β
η .

Note that
(⋆⋆) if α ∈ C and c ∈Mα

η , there is a finite D ⊂
∪
t∈Jαη at with (t(c,

∪
t∈Jη at), D) ∈ F fω .

Let c = F (at∗). By the construction we can find finite D ⊂Mα
η′ and X ⊂ Jη′ such that(

t(c,Mα
η′ ∪

∪
t∈Jη′

aη
′

t), D ∪
∪
t∈X

aη
′

t

)
∈ F fω .

But then there is β ∈ C, β < α, such that D ⊂ Mβ
η′ and if u 6 t for some t ∈ X, then

u ∈ Jβη′ (since in Jη′ there is no element like t∗ is in Jη). But then using (⋆⋆) and (2), it

544 Generalized descriptive set theory and classification theory

is easy to see that
c ↓
Mβ

η′

Mα
η′ .

On the other hand, using (1), (2), (⋆⋆) and the choice of t∗ one can see that at∗ ̸ ↓
Mβ
η

Ma
η ,

which is a contradiction. �
Open Problem If κ = λ+, λ regular and uncountable, does equality modulo λ-non-
stationary ideal, ESκλ , Borel reduce to T for all stable unsuperstable T?

6 Further research

In this section we merely list all the questions that have been prompted in the article:

Open Problem Is it consistent that Borel* is a proper subclass of Σ1
1, or even equals ∆1

1?
Is it consistent that all the inclusions are proper at the same time: ∆1

1 (Borel∗ (Σ1
1?

Open Problem Does the direction left to right of Theorem 2.2 hold without the as-
sumption κ<κ = κ?

Open Problem Under what conditions on κ does the conclusion of Theorem 3.5 hold?

Open Problem Is the Silver dichotomy for uncountable κ consistent?

Open Problem Is it consistent that Sω2
ω1

Borel reduces to Sω2
ω ?

Open Problem We proved that the isomorphism relation of a theory T is Borel if and
only if T is classifiable and shallow. Is there a connection between the depth of a shallow
theory and the Borel degree of its isomorphism relation? Is one monotone in the other?

Open Problem Can it be proved in ZFC that if T is stable unsuperstable then ∼=T is
not ∆1

1?

Open Problem If κ = λ+, λ regular and uncountable, does equality modulo λ-non-
stationary ideal, ESκλ , Borel reduce to T for all stable unsuperstable T?

Open Problem Let Tdlo be the theory of dense linear orderings without end points and
Tgr the theory of random graphs. Does the isomorphism relation of Tgr Borel reduce to
Tdlo, i.e., ∼=Tgr6B

∼=Tdlo?

References
[1] S. Adams, A. S. Kechris, Linear algebraic groups and countable Borel equivalence relations, J. Amer.

Math. Soc. 13 (2000), 909–943.
[2] D. Blackwell, Borel sets via games, Ann. Probab. 9 (1981), no. 2, 321–322.
[3] H. Enderton, Elements of Set Theory, Academic Press, 1977.
[4] J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic 41

(1976), no. 3, 663–671.
[5] A. Halko, Negligible subsets of the generalized Baire space ωω1

1 , Ann. Acad. Sci. Fenn. Ser. Diss.
Math. 107, Suomalainen Tiedeakatemia, 1996.

[6] A. Halko, S. Shelah, On strong measure zero subsets of κ2, Fund. Math. 170 (2001), 219–229.
[7] L. Harrington, A. S. Kechris, A. Louveau, A Glimm–Effros dichotomy theorem for Borel equivalence

relations, J. Amer. Math. Soc. 3 (1990), 903–928.
[8] B. Hart, E. Hrushovski, M. C. Laskowski, The uncountable spectra of countable theories, Ann. of

Math. (2) 152 (2000), no. 1, 207–257.

The Infinity Project 545

[9] G. Hjorth, Group actions and countable models, A survey article presented at the ASL European
Meeting in Utrecht, 1999.

[10] T. Huuskonen, T. Hyttinen, M. Rautila, On potential isomorphism and non-structure, Arch. Math.
Logic 43 (2004), 85–120.

[11] T. Hyttinen, M. Rautila, The canary tree revisited, J. Symbolic Logic 66 (2001), no. 4, 1677–1694.
[12] T. Hyttinen, S. Shelah, Constructing strongly equivalent nonisomorphic models for unsuperstable

theories, Part A, J. Symbolic Logic 59 (1994), no. 3, 984–996, Association for Symbolic Logic.
[13] T. Hyttinen, S. Shelah, Constructing strongly equivalent nonisomorphic models for unsuperstable

theories, Part B, J. Symbolic Logic 60 (1995), no. 4, 1260–1272, Association for Symbolic Logic.
[14] T. Hyttinen, S. Shelah, Constructing strongly equivalent nonisomorphic models for unsuperstable

theories, Part C, J. Symbolic Logic 64 (1999), no. 2, 634–642, Association for Symbolic Logic.
[15] T. Hyttinen, H. Tuuri, Constructing strongly equivalent nonisomorphic models, Ann. Pure Appl.

Logic 52 (1991), 203–248.
[16] T. Jech, Set Theory, Springer-Verlag, Berlin Heidelberg New York, 2003.
[17] C. Karp, Finite-quantifier equivalence, in: Theory of Models, Proc. 1963 Internat. Sympos. Berkeley,

407–412, North-Holland, Amsterdam, 1965.
[18] M. Karttunen, Model theory for infinitely deep languages, Ann. Acad. Sci. Fenn. Ser. Diss. Math.

64, Suomalainen Tiedeakatemia, 1987.
[19] M. Koerwien, A complicated ω-stable depth 2 theory, J. Symbolic Logic 76 (2011), no. 1, 47–65.
[20] V. Kulikov, Borel reductions on the generalized Cantor space, submitted 2011.
[21] K. Kunen, Set Theory – An Introduction to Independence Proofs, Studies in Logic and Foundations

of Mathematics 102, North-Holland, Amsterdam, 1980.
[22] A. Louveau, B. Velickovic, A note on Borel equivalence relations, Proc. Amer. Math. Soc. 120 (1994),

no. 1, 255–259.
[23] A. Mekler, S. Shelah, The canary tree, Canadian J. Math. 36 (1993), 209–215.
[24] A. Mekler, J. Väänänen, Trees and Π1

1-subsets of ω1ω1, J. Symbolic Logic 58 (1993), no. 3, 1052–1070.
[25] M. Nadel, J. Stavi, L∞λ-equivalence, isomorphism and potential isomorphism, Trans. Amer. Math.

Soc. 236 (1978), 51–74.
[26] S. Shelah, The number of non-isomorphic models of an unstable first-order theory, Israel J. Math. 9

(1971), 473–487.
[27] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary lan-

guages, Pacific J. Math. 41 (1972), 247–261.
[28] S. Shelah, The spectrum problem I: ℵε-saturated models, the main gap, Israel J. Math. 43 (1982),

324–356.
[29] S. Shelah, Existence of many L∞,λ-equivalent, nonisomorphic models of T of power λ, Ann. Pure

Appl. Logic 34 (1987), 291–310.
[30] S. Shelah, Classification Theory, revised ed., North-Holland, Amsterdam, 2000.
[31] S. Shelah, Diamonds, Proc. Amer. Math. Soc. 138 (2010), 2151–2161.
[32] S. Shelah, J. Väänänen, Stationary sets and infinitary logic, J. Symbolic Logic 65 (2000), 1311–1320.
[33] J. H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations,

Ann. Math. Logic 18 (1980), 1–28.
[34] H. Tuuri, Relative separation theorems for Lκ+κ, Notre Dame J. Formal Logic 33 (1992), no. 3,

383–401.
[35] J. Väänänen, Games and trees in infinitary logic: A survey, in: M. Krynicki, M. Mostowski and

L. Szczerba, eds., Quantifiers, Kluwer Academic Publishers, 1995, 105–138.
[36] J. Väänänen, How complicated can structures be? Nieuw Archief voor Wiskunde, June 2008, 117–

121.
[37] J. Väänänen, Models and Games, Cambridge Studies in Advanced Mathematics 132, Cambridge

University Press, 2011.
[38] R. Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269–294.

The Infinity Project

Potential isomorphism of elementary substructures
of a strictly stable homogeneous model

Sy-David Friedman†, Tapani Hyttinen‡, Agatha C. Walczak-Typke‡

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

‡ Department of Mathematics and Statistics, University of Helsinki, Finland
tapani.hyttinen@helsinki.fi, agatha.walczak-typke@helsinki.fi

Abstract. The results herein form part of a larger project to characterize the classification properties of
the class of submodels of a homogeneous stable diagram in terms of the solvability (in the sense of [1])
of the potential isomorphism problem for this class of submodels.

We restrict ourselves to locally saturated submodels of the monster model ç of some power π. We
assume that in Gödel’s constructible universe L, π is a regular cardinal at least the successor of the first
cardinal in which ç is stable.

We show that the collection of pairs of submodels in L as above which are potentially isomorphic
with respect to certain cardinal-preserving extensions of L is equiconstructible with 0#. As 0# is highly
“transcendental” over L, this provides a very strong statement to the effect that potential isomorphism
for this class of models not only fails to be set-theoretically absolute, but is of high (indeed of the highest
possible) complexity.

The proof uses a novel method that does away with the need for a linear order on the skeleton.

Introduction

The results we give here are part of a larger project to prove strong non-structure results
for non-elementary classes. The original impetus comes from work to generalize the
results of [2] to the Homogeneous Model Theory context. The main theorem of that
earlier work was:

Theorem ([2]) Assume 0# exists, and let T be a constructible first-order theory which
is countable in Gödel’s constructible universe L. Then the following are equivalent:

(1) The collection

{⟨A ,B⟩ ∈ L : A |= T, B |= T, A and B have universe (ℵ2)L and are
isomorphic in an extension of L with the same cardinals and reals as L}

is constructible.
(2) The theory T is superstable with NOTOP and NDOP.

This work has been published: Potential isomorphism, 0# and classifiability of elementary substruc-
tures of a homogeneous model, Journal of Symbolic Logic 76(3):987–1004, 2011.

†The first author wishes to thank the Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
for its support through grant P19898-N18 and the John Templeton Foundation for its support through
the CRM Infinity Project, Grant #13152.

‡The second and third authors gratefully acknowledge the hospitality of the Institut Mittag-Leffler,
Djursholm, Sweden during Fall 2009. The work of the second and third authors is partially supported
by the Academy of Finland, grant number 1123110.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

547

548 0# and strictly stable non-structure in HMT

This result was proved using strong non-structure theorems, following the cases found
in the Main Gap Theorem [15].

We chose the Homogeneous Model Theory context to extend this result because of
its well developed Main Gap Theorem [10]. Much of the difficulty lies in finding strong
non-structure theorems in the Homogeneous Model Theory (HMT) context. While one
can prove strong non-structure theorems in non-elementary contexts (e.g., Abstract El-
ementary Classes, or as in [4]) having the order property in exactly the same way as
was done for unstable first order theories, strong non-structure theorems have not been
proved for almost any other non-elementary classes. This is because the only first-order
strong non-structure theorem that can be generalized in a straightforward manner is the
one stemming from the order property.

In this paper, we prove a strong non-structure theorem for the strictly stable (stable
but not superstable) case in HMT. In the first-order context, non-structure theorems
for the strictly stable case are proved by first finding tree indiscernibles, and then using
them as skeleta in Ehrenfeucht–Mostowski model constructions. In the HMT context, a
major problem arises in simply generalizing the approach used in the first-order context:
without large cardinals one cannot find tree-indiscernibles. Thus if one wants to carry
out the constructions in L, as we do in this paper, currently known methods do not allow
for the use of Ehrenfeucht–Mostowski model constructions. Alternatively, if one were
willing to assume large cardinals, then the ideas of [1] would have to be generalized from
L to a larger core model, raising significant new set-theoretic challenges.

We hope that our exposition will be accessible both to model theorists and to set
theorists. Those seeking definitions of set-theoretic concepts should consult, for example,
[12]. On the other side, [7] or a similar introduction to methods in classification theory
may help with the model-theoretic concepts. However, full comprehension of this paper
requires knowledge of [8].

1 Preliminaries

1.1 Notation

Gödel’s constructible universe will be denoted as L. To differentiate, similarity types
(languages) will be denoted with the calligraphic L.

1.2 Set theory

1.2.1 Relative constructibility

This paper is concerned with examining the solvability (in the sense of [1]) of certain
problems in the classification of structures that are not first-order axiomatizable. Our
intuition is that if the collection of constructible objects that satisfy a particular condition
is constructible (i.e., in L), then we say that the condition’s problem is solvable. On the
other hand, if the collection is not in L, then we say that the condition’s problem is
unsolvable.

We will demonstrate the unsolvability of a problem by reducing to it sets that are
known to be non-constructible —indeed, to sets that are equiconstructible with 0#.

First, some notation:

Definition 1.1 We have the following notion of reduction: Suppose that ⟨X0, X1⟩,
⟨Y0, Y1⟩ are pairs of disjoint subsets of the constructible universe L; that is, they are

The Infinity Project 549

disjoint collections of constructible sets. Note that the pairs ⟨X0, X1⟩ and ⟨Y0, Y1⟩ need
not be constructible themselves. We write

⟨X0, X1⟩
L−→ ⟨Y0, Y1⟩

if there exists a constructible function g ∈ L such that

x ∈ X0 ⇒ g(x) ∈ Y0 and x ∈ X1 ⇒ g(x) ∈ Y1.

We write X0 instead of ⟨X0, X1⟩ in the case that X0 is the complement of X1 within
some constructible set. We employ the analogous convention for Y0 and Y1.

The idea behind this notion of reduction is that if ⟨X0, X1⟩ is non-constructible,
X0∪X1 is constructible, and ⟨X0, X1⟩

L−→ ⟨Y0, Y1⟩, then ⟨Y0, Y1⟩ is also non-constructible.

Definition 1.2
(1) A cardinal preserving extension (“Cap-extension”) of L is a transitive model

satisfying the Axiom of Choice containing all the ordinals, and which is contained
in a set-generic extension of V and has the same cardinals as L.

(2) A cardinal- and real-preserving extension (“CaRp-extension”) of L is a transitive
model satisfying the Axiom of Choice containing all the ordinals, and which is
contained in a set-generic extension of V and has the same cardinals and real
numbers as L.

(3) For ν a cardinal, a cardinal- and P(ν)-preserving extension (“CaP(ν)-exten-
sion”) is defined analogously.

We also remind the reader of the following highly non-constructible object:

Definition 1.3 If there exists a non-trivial elementary embedding of the constructible
universe L into itself, then there is a closed unbounded proper class of ordinals that are
indiscernible for the structure (L,∈). Then, we can define 0# (“zero-sharp”) to be the
real number that codes in the canonical way the Gödel numbers of the formulas that are
true about the indiscernibles in L.

The existence of 0# is independent of the axioms of set theory, ZFC. If ZFC is
consistent, then so is ZFC with the assumption that 0# does not exist. It is commonly
assumed that ZFC is consistent with the assumption that 0# does exist.

We assume throughout that 0# exists.
The real number 0# is a highly non-constructible object. Our intuition will be to

show that a class of models is non-constructible by reducing 0# to it, in the sense above.
In particular, we will use the following theorem. We denote by Sνω the stationary set
consisting of ordinals in ν of cofinality ω.

Theorem 1.4 ([1]) Denote by S(κ) (resp. Sr(κ)) the collection of sets S ∈ L such that
S ⊆ (Sνω)

L is stationary in L and in a cardinal- (and real-) preserving extension, ν \ S
contains a club.

Then, if κ is an uncountable regular cardinal in L and (κ+ = ν)L, then

0#
L−→ S(κ)

and
0#

L−→ Sr(κ).

550 0# and strictly stable non-structure in HMT

1.3 Homogeneous model theory

1.3.1 Introduction and motivation for homogeneous model theory

Homogeneous Model Theory (HMT), introduced in [13] as “finite diagrams stable in
power”, is an approach to the model-theoretic classification of classes of non-elementary
structures (i.e., structures not axiomatizable using a first-order theory). The motivation
behind the development of this approach, as explained in [3, 10], was the aim to classify
the class of models of an Lγ+ω sentence ψ, with 4Lγ+ω as the substructure relation. We
wish this class of models to be “well behaved” and so add the requirement that the class
satisfies the amalgamation property. It was proved in [13] that it is equivalent to consider
the class of elementary submodels of a homogeneous monster model ç.

Thus, in practice the contrast to elementary (first-order) model theory where one
assumes that all considerations take place within a large saturated monster model, is that
we take away the assumption that the monster is saturated, and instead only insist that
it be homogeneous. However, in the HMT context, a major difficulty arises because the
compactness theorem fails. In return for this concession, we do gain a widening of the
possible structures under consideration as opposed to elementary model theory. For
example, the class of existentially closed models of an inductive theory can be studied
within the framework of homogeneous model theory. In fact, for some γ big enough the
class of submodels of a homogeneous model can be axiomatized in some theory T ∗ ⊂
Lγ+ω. (Specifically, where γ > |D(Th(ç)) \D|, where D is the finite diagram. For more
specifics, see [3, 13].)

1.3.2 Types and homogeneous monsters

We assume we work within a very large homogeneous model which can serve as a monster
model. We will then be interested in the class of elementary submodels of this monster.

We work with ç-consistent types:

Definition 1.5 ([10]) Let A ⊆ç, and let p be a (first-order) type over A. We say that
p is ç-consistent if it is realized in ç.

We write tpç(a/A) to indicate the ç-consistent type of a over A. Similarly, we take
Smç(A) = {tpç(a/A) : a ∈ç, length(a) = m}, and Sç(A) =

∪
m<ω S

m
ç(A).

Definition 1.6 A homogeneous monster model ç is said to be stable in λ if for every
B ⊂ dom(ç) of cardinality at most λ, and for every n < ω, we have |Snç(B)| 6 λ.

The monster model ç is stable if it is stable in some λ.
The monster model ç is unstable if it is not stable.
We denote by λ(ç) the least λ in which ç is stable, if it exists [9]. Denote by λr(ç)

the first regular cardinal > λ(ç).

1.3.3 Indiscernibles and strong splitting independence

A standard notion from model theory follows. We include this definition to make the
terminology clear, as the set-theoretic usage is sometimes at odds with accepted usage
among model theorists.

Definition 1.7 An (indexed) set of tuples {ai : i < α} is called an n-indiscernible
sequence over A, for n < ω, if

tp(a0, . . . , an−1/A) = tp(ai0 , . . . , ain−1/A),

The Infinity Project 551

for every i0 < · · · < in−1 < α. The set of tuples {ai : i < α} is an indiscernible sequence
over A if it is an n-indiscernible sequence over A for every n < ω. It is said to be an
indiscernible set if the ordering induced by the indices does not matter.

Definition 1.8 ([15, III, p. 85, Definition 1.2]) A type p ∈ Sn(A) splits strongly over
B ⊆ A if there exists an indiscernible sequence {ai : i < ω} over B and a formula ϕ such
that ϕ(x, a0),¬ϕ(x, a1) ∈ p.

The following definitions are very similar to the definitions of independence and κ(T)
in the first-order context. However, here we use strong splitting instead of forking in
the definitions. In the first order context, the definitions using forking and the definition
as stated here are equivalent. In the HMT context, forking is ill-defined, so we take
the strong splitting definition. Consequently, we lose some nice properties, among them
transitivity of the independence relation.

Definition 1.9 ([9, p. 2]) We define κ(ç) to be the least infinite cardinal such that there
are no a, bi, and ci, i < κ(ç), such that

(i) for all i < κ(ç), there is an infinite indiscernible set Ii over
∪
j<i(bj ∪ cj) such

that bi, ci ∈ Ii;
(ii) for all i < κ(ç), there is ϕi(x, y) such that |= ϕi(a, bi) ∧ ¬ϕi(a, ci).

Note that κ(ç) 6 λ(ç) by Corollary 1.3 of [9].

Definition 1.10 ([9, p. 17, remarks before Lemma 5.1]) We say that a monster model is
superstable if κ(ç) = ℵ0. We will call a monster model strictly stable if it is stable, but
not superstable.

Now we can define the notion of independence that we use in the HMT context.

Definition 1.11 ([9, Definition 3.1(i)]) We write a |⌣A
B if there is C ⊆ A, |C| < κ(ç),

such that for all D ⊇ A∪B there is b which satisfies tpç(b/A ∪B) = tpç(a/A ∪B) and
tpç(b/D) does not split strongly over C. We write C |⌣A

B if for all a ∈ C, a |⌣A
B.

1.3.4 Primary model constructions

Most of the following definitions are given only in very general terms that allow one
to apply the notions to a very wide range of contexts. We give here these definitions
specifically in the way we need them in our context.

Definition 1.12 For the following, ν is a cardinal.
• We say that tpç(a/A) is Fç

ν -isolated over B if there is B ⊆ A, |B| < ν, such
that for all b, tpç(b/B) = tpç(a/B) implies tpç(b/A) = tpç(a/A) ([9, Defini-
tion 5.2]).
• We say that an (elementary sub-)model A (of ç) is Fç

ν -saturated if for all
A ⊆ A , |A| < ν, and a, there is b ∈ A such that tpç(b/A) = tpç(a/A) ([9,
Definition 1.8(i)]).
• An Fç

ν -construction is a triple

A = ⟨A, {ai : i < α}, ⟨Bi : i < α⟩⟩,

such that tpç(ai/
∪
{aj : j < i} ∪A) is Fç

ν -isolated over Bi ([15, IV, p. 155,
Definition 1.2(1)]).

552 0# and strictly stable non-structure in HMT

• We say that C0 is Fç
ν -constructible over A0 if there is some Fç

ν -construction

A = ⟨A0, {ai : i < α}, ⟨Bi : i < α⟩⟩

such that
C0 =

∪
{ai : i < α} ∪A0

([15, IV, p. 156, Definition 1.3]).
• If C is Fç

ν -constructible over A and C is Fç
ν -saturated then we say that C is

Fç
ν -primary over A ([15, IV, p. 156, Definition 1.4(1)]).

• We say that C is Fç
ν -primitive over A if A ⊆ C, and for every Fç

ν -saturated C ′

such that A ⊆ C ′, there is an elementary mapping f from C into C ′, where f ↾A
is the identity ([15, IV, p. 156, Definition 1.4(2)]).
• We say that C is Fç

ν -prime over A if it is Fç
ν -primitive over A and Fç

ν -saturated.
• We say A is Fç

ν -atomic over B if B ⊆ A and for every a ∈ A, tpç(a/B) is
Fç
ν -isolated ([15, IV, p. 157, Definition 1.5]).

Fact 1.13 On the surface, the isolation notion Fç
ν above is quite similar to the isolation

notion Fpν of [15, IV, p. 168, Definition 2.6], an isolation notion that does not satisfy
certain axioms key in constructions.

However, as was noted in the last paragraph of the introduction to [10], under the
assumption that ç is stable, one can easily show that the isolation notion Fç

ν , for ν >
λr(ç) has properties very similar to the much better-behaved notion Fsν , a definition of
which can be found in [15, IV, Definitions 2.1.1.ii and 2.1.2].

In our considerations, we will use (mostly) without comment properties of the isolation
Fç
ν , ν > λr(ç), which are proved in [9].

Definition 1.14 ([10, Definition 0.1]) A model A is said to be locally Fç
ν -saturated if

for all finite sets A ⊂ A there is an Fç
ν -saturated model B such that A ⊂ B ⊂ A .

2 The strictly stable case

Theorem 2.1 Assume 0# exists. Suppose L ∈ L is a signature such that (|L| 6 ω)L.
Let ç ∈ L be a strictly stable (stable, but not superstable) homogeneous monster model
in similarity type L such that (|ç| = µ)L, for µ sufficiently large.

Let π be such that π = cf(π) > λr(ç).
Let CaP(λr)PIPç

π be the collection of pairs (A ,B) ∈ L of locally Fç
λr(ç)-saturated ele-

mentary substructures of ç with universe π such that there is a cardinal- and P(λr(ç))-
preserving extension of L in which A ∼= B. (Here “PIP” stands for “potentially isomor-
phic pairs”.)

Then, CaP(λr)PIPç
π is equiconstructible with 0#.

We will show that, for each stationary set S ⊆ Sπω , one can find two models A ,B ∈ L
of size π such that in any Cap-extension of L, A ∼= B iff π \ S contains a club set. We
do this by constructing two trees of small height J0, J1, differing from one another only
in that one codes S while the other does not. We will then perform a primary model
constructions along these trees. We show then that these models are not isomorphic in
the ground model, but become isomorphic in a suitable extension only if S is no longer
stationary in that extension.

The Infinity Project 553

2.1 Defining the trees and other orderings

We define two trees I0 and I1, which will be used to define two trees J0 and J1. From
J0 and J1 we will construct models AJ0 and AJ1 , respectively, which are potentially
isomorphic but not isomorphic. The trees Ii, Ji, i = 0, 1 all belong to a certain general
family of trees Kω

tr, defined below. Note that the trees we define here are precisely
the trees that were used for the Ehrenfeucht–Mostowski constructions in the first order
strictly stable case as analyzed in [2] and papers cited there.

Unlike the first-order context, without large cardinal assumptions non-structure re-
sults for strictly stable theories have only been shown for weakly Fç

λr(ç)-saturated models,
and not in general [6, 8, 10]. Ehrenfeucht–Mostowski constructions yield models that are
insufficiently saturated to be able to use the existing non-structure results. We will thus
instead use the technique of primary model constructions, which yield more saturated
models. In addition, we cannot use Ehrenfeucht–Mostowski constructions in this case be-
cause we would need to find tree indiscernibles in the model, and to do so we would need
large cardinals that are not available to us in L. Because we need this different technique,
we need to further define Ki = P<ω(Ji), the set of all finite subsets of Ji, i = 0, 1, as
well as an ordering on the Ki. We will then carry out primary model constructions using
sets indexed by the Ki.

We define first a general family of trees:

Definition 2.2 Let θ be a linear order, and let 6ωθ be the set of all suborders of θ of
length at most ω. We let Kω

tr(θ) be the class of models that are isomorphic to a model
of the form

I = (I,⋖,DOMα, <lex,MaxInSg)α6ω,

where
(1) I ⊆ 6ωθ and is closed under initial segments;
(2) ⋖ is the initial segment relation;
(3) DOMα = {η ∈ I : dom η = α};
(4) <lex denotes the lexicographic ordering on I;
(5) MaxInSg(ζ, η) is the maximal common initial segment of ζ and η.

Trees in the class Kω
tr(θ) are called ordered trees in the literature. We define

Kω
tr =

∪
{Kω

tr(θ) : θ is a linear order}.

2.1.1 The first generation of trees

We fix some notation:
• Let (λ = λr(ç))L. Because we have assumed that ç is strictly stable, λ > ℵ1.
• Let π > λ+ > ℵ2 be an uncountable regular cardinal such that πω = π.
• Let S ⊆ (Sπω)

L be a stationary set in L.
• Let S = ⟨ηα : α ∈ S⟩, where each ηα is an increasing cofinal sequence in α of

order type ω (i.e., a π-club guessing sequence1). We are guaranteed the existence
of this club guessing sequence because π > ℵ2.

We next define our first pair of trees.

1 For a definition, see p. 442 of [12].

554 0# and strictly stable non-structure in HMT

Definition 2.3
• Let

I0 = I(π, S)

be an ordered tree in Kω
tr(π), with cardinality |I0| = π, having universe

<ωπ ∪ {ηα : ηα ∈ S} ⊂ 6ωπ,

where the relations are as always on ordered trees.
• Let

I1 = I(π, ⟨ ⟩) = <ωπ.

The tree I1 is also in Kω
tr(π), and |I1| = π.

2.1.2 The second generation of trees

Now we define the domains of our next generation of trees. This next generation is needed
so that we have non-isomorphic L∞π-equivalent trees in Kω

tr(π) with certain further useful
properties (see [11, Definition 8.19 and Lemma 8.20] and [5, Lemma 7.29]). The non-iso-
morphism of the pair of trees I0 and I1 is easy to detect. We therefore need a new pair
of trees where this non-isomorphism is more “obscured”. This construction is originally
due to Shelah [14].

Let
• LEX(<ωπ) be a linear order with universe <ωπ, ordered lexicographically.
• OTπ(

<ωπ) be a linear (well) order with universe <ωπ, ordered with order type π.
• θ = OTπ(

<ωπ) · LEX(<ωπ) be the product of the linear orders OTπ(
<ωπ) and

LEX(<ωπ) whose universe is OTπ(
<ωπ)× LEX(<ωπ).

Let
I0 = ⟨I0 ∩ 6ωα : α < π⟩,

I1 = ⟨I1 ∩ 6ωα : α < π⟩ = ⟨<ωπ ∩ 6ωα : α < π⟩ = ⟨<ωα : α < π⟩
be π-filtrations of I0 and I1, respectively.

The filtrations are used in Definition 2.5 to ensure that the trees we build are not
“too similar”.

Lemma 2.4 ([5, Lemma 7.24] or [11, Lemma 8.17]) Let π be a cardinal. Suppose
LEX(<ωπ) is as above. Then there is E ⊆ LEX(<ωπ) of cardinality π such that for
any a, b ∈ E there is an automorphism ga,b of LEX(<ωπ) which maps a to b.

Let E ⊆ LEX(<ωπ) be as given by Lemma 2.4. Fix c ∈ E. Let g be a bijection
g : {R | R ∈ rng(I0) ∪ rng(I1)} −→ E \ {c}.

Definition 2.5 Let J0 = J(c, g, I0, I1) have a universe consisting of functions η ∈ 6ωθ,
such that one of the following holds:

(1) η ∈ <ωθ (in other terms, η ∈ DOMn for some n ∈ ω; i.e., η is of finite length);
(2) there is s ∈ I0 such that dom(s) = ω and, for all n < ω,

η(n) = ⟨s ↾(n+1), c⟩;

(3) there are m < ω, R ∈ rng(I0) ∪ rng(I1), and s ∈ R with dom(s) = ω such that,
for all finite n > m, η(n) = ⟨s ↾(n+1), g(R)⟩.

Let J1 = J(c, g, I1, I0) be defined analogously. Note that J1 differs from J0 only in
that J1 does not have any members satisfying condition (2) of the definition.

The Infinity Project 555

The trees J0 and J1 are isomorphic to ordered trees in Kω
tr(θ), so we assume that

J0, J1 ∈ Kω
tr(θ).

Lemma 8.20 of [11] establishes that J0 and J1 are L∞π-equivalent.

2.1.3 The third generation: a quasi-order

At this point in the construction, we can lose the <lex ordering on Ji, since we do not
need it for the primary model construction that follows. Indeed, we could have used a
different construction in the second generation that did not feature <lex. However, we
chose to take advantage of the existing construction from [14] to save some effort.

Let Ki = P<ω(Ji) be the set of all finite subsets of Ji, i = 0, 1, respectively.
We define relations as in [8]. Let u, v ∈ Ki. We define the “minimum” set of initials

MinSetIn(u, v) to be the largest set X such that:
(1) X ⊆ {MaxInSg(ζ, η) : ζ ∈ u, η ∈ v};
(2) if ηi, ηj ∈ X and ηi is an initial segment of ηj , then ηi = ηj .

Note that

MinSetIn(u, u) = {ζ ∈ u : ¬∃η ∈ u (ζ is a proper initial segment of η)}.
The elements of Ki are ordered by <K : u <K v iff for every ζ ∈ u there is η ∈ v such

that ζ is an initial segment of η. In other terms,

u ≤K v iff MinSetIn(u, v) = MinSetIn(u, u).

Note that (Ki, <
K) cannot have infinite descending chains.

Definition 2.6 We call s ∈ Ki semi-good if s is an antichain with regard to the ⋖
relation in Ji.

Denote by s the downwards closure of s. We say that r ∈ Ki is good if it is downwards
closed and r ⊂ s, where s is semi-good. We denote by G(Ki) the collection of good
elements of Ki.

2.2 Building the models: putting fat on the trees

We will base a primary model construction based on the trees Ji using the quasi-order Ki.

2.2.1 Cardinal assumptions

Recall that we assume in this section that we work within ç, a strictly stable homoge-
neous monster model of cardinality ||ç|| = µ. We let λ(ç) be the first cardinal in which
ç is stable, and we let λ = λr(ç) be the first regular cardinal > λ(ç). By our assump-
tion that ç is strictly stable, κ(ç) ̸= ω (see 2.7 below). Thus, ℵ1 6 κ(ç) 6 λ(ç) 6 λ.
Further, let π be a regular cardinal such that πω = π and λ < π < µ. Thus π > ℵ2. This
π is the size of the models that we will be building, and is the cardinal upon which our
trees have been built.

We proceed with the construction similarly to [8].

2.2.2 An initial ω-sequence of models

We restate the following lemma, which provides the seed for our construction:

Lemma 2.7 ([9, Lemma 5.1]) The following are equivalent:
(1) ç is not superstable.

556 0# and strictly stable non-structure in HMT

(2) κ(ç) ̸= ω.
(3) There is an increasing sequence An, n < ω of Fç

λ(ç)-saturated models and an
element a such that, for all n < ω, a -⌣An

An+1.

Fact 2.8 The sequence An, n < ω in Lemma 2.7 can be chosen to consist of models of
size λ.

Proof. Let An, n < ω be the sequence of models given by Lemma 2.7. It is easy to find
such models that are quite large.

Each An is Fç
λ -saturated, and hence strongly Fç

κ(ç)-saturated by [9, Lemma 1.9(iv)].
Thus, by the monotonicity given by Lemmas 1.2(vi) and 1.13, and the proof of Lemma
3.2(iii) of that same paper, there exists an increasing sequence Bn ⊂ An of sets of size
< κ(ç) such that

a |⌣
Bn

An.

We also have that a -⌣Bi
Ai+1. By the finite character of independence in our setting ([9,

Corollary 3.5(i)]), there exist finite bn+1 ∈ An+1 that witness a -⌣Bn
An+1 such that

a -⌣
Bn

bn+1.

Choose Fç
λ -saturated models Cn of size λ so that Bn ⊂ Cn ⊂ An and bn+1 ∈ Cn+1.

We can do this by [9, Theorem 3.14].
We claim that (Cn)n<ω satisfy the requirements of Lemma 2.7. Assume the con-

trary, that a |⌣Cn
Cn+1. Since a |⌣Bn

An, a |⌣Bn
Cn by monotonicity. By transitivity and

monotonicity, a |⌣Bn
Cn+1. Finally, monotonicity gives us

a |⌣
Bn

bn+1,

and hence a contradiction. �2.8

Construction element Thus, fix (Aj)j6ω, a sequence of Fç
λ(ç)-saturated models of

size λ, and an element a with the properties as in Lemma 2.7.

Construction element Let Aω be a Fç
λr(ç)-primary model over

a ∪
∪
i<ω

Ai,

the existence of which is guaranteed by Theorem 5.3 of [9] (a proof is in [13]).

2.2.3 The construction

Construction element For all η ∈ π6ω, using analogous reasoning to that found in
Section 1 of [6] (discussion of which begins after Theorem 1.15 and continues through the
proof of Lemma 1.17 of that paper), we define models Aη such that

• for all η ∈ 6ωπ, there is an automorphism fη of ç such that

fη(Alength(η)) = Aη;

• if η is an initial segment of ζ, then

fζ ↾Alength(η)
= fη ↾Alength(η)

;

The Infinity Project 557

• if η ∈ <ωπ, α ∈ π, and X is the set of those η ∈ 6ωπ such that η ⌣ (α) is an
initial segment of ζ, then∪

ζ∈X
Aζ |⌣

Aη

∪
ζ∈(6ωπ\X)

Aζ ;

• for all η ∈ ωπ, we let aη = fη(a).

We recall a definition which will allow us to carry out the construction in an orderly
and controlled manner.

Definition 2.9 ([8, Definition 3]) Assume that J ⊆ 6ωπ is closed under initial segments
and K = P<ω(J). Let Σ = {Au : u ∈ K} be an indexed family of subsets of ç of
cardinality < µ. We say that Σ is strongly independent if

(1) for all u, v ∈ K, u ≤K v → Au ⊆ Av;
(2) if u, ui ∈ K, i < n ∈ ω, and B ⊆

∪
i<nAui has cardinality < π, then there

is an automorphism f = fΣ,B(u,u0,...,un−1)
of ç such that f ↾(B∩Au)= idB∩Au and

f(B ∩Aui) ⊆ AMinSetIn(u,ui).

Construction element Define
Aiu =

∪
η∈u

Aη,

for u ∈ Ki.

We can apply [8, Lemma 6] to find that {Aiu : u ∈ Ki} is strongly independent.

Construction element We apply [8, Lemma 4] to {Aiu : u ∈ Ki}, and so find models
A i
u 4ç, u ∈ Ki which satisfy the following properties:

(1) For all u, v ∈ Ki, u ≤K v implies A i
u ⊆ A i

v .
(2) For all u ∈ Ki, A i

u is Fç
λr(ç)-primary over Aiu. This implies that

∪
u∈Ki A

i
u is a

model.
(3) If v ≤K u, then A i

u is Fç
λr(ç)-atomic over

∪
u∈Ki A

i
u and Fç

λr(ç)-primary over
A i
v ∪Aiu.

(4) Note further that if J ′ ⊆ Ji is closed under initial segments, and u ∈ P<ω(J ′),
then the union

∪
v∈P<ω(J ′) Av is Fç

λr(ç)-constructible over Au ∪
∪
v∈P<ω(J ′)Av.

These models A i
u arise via a Fç

λr(ç)-construction, with points aγ , and sets Bγ , γ < α

chosen appropriately. See proof of [8, Lemma 4] for full details.
In addition, note that by the proof of [8, Lemma 4 (Claim)], the families of models

{A i
u : u ∈ Ki}, where i = 0 or i = 1 are strongly independent.

Construction element Denote by

A Ji =
∪
u∈Ki

A i
u

the resulting constructed models given by [8, Lemma 4].

2.3 Non-isomorphism when symmetric difference of S-invariants is
stationary

We next prove some general facts concerning models built as above on arbitrary trees
J, J ′ ⊆ π6ω. We will later apply these results to J0 and J1.

558 0# and strictly stable non-structure in HMT

Definition 2.10 Denote by INSπ the ideal of non-stationary sets on π.
For J ⊆ π6ω, let Jα = J ∩ α6ω.
For K = P6ω(J), let Kα = P6ω(Jα).
Define the S-invariant of J to be

S(J) =
{
δ : ∃η ∈ Jδ

(
η /∈

∪
α<δ

Jα
)}

modulo INSπ .

Lemma 2.11 Let A J and A J ′ be models constructed as above for trees J, J ′ ⊆ π6ω.
Assume S(J)

a
S(J ′) = (S(J) \ S(J ′)) ∪ (S(J ′) \ S(J)) is stationary. Then A J ̸∼= A J ′.

Proof. We follow [8, Lemma 8]. Assume for a contradiction that f : A J → A J ′ is an
isomorphism. Let J = (Jα)α<π, J ′ = (J ′α)α<π. Let K = P6ω(J), K ′ = P6ω(J ′), and
let Kα = P6ω(Jα), K ′α = P6ω(J ′α).

Let A α
J =

∪
s∈G(Kα) As, where G(Kα) is the collection of good elements of Kα, as

defined in Definition 2.6.
We can find α and αi, i < ω such that:
• η = (αi)i<ω is strictly increasing for all i < ω;
• α =

∪
i<ω αi ∈ S(J)

a
S(J ′);

• the restrictions
f ↾A α

J
: A α

J

∼=−→ A α
J ′

and
f ↾A αi

J
: A αi

J

∼=−→ A αi
J ′ , ∀i < ω

are isomorphisms.
Without loss of generality, we can assume that α ∈ S(J)\S(J ′) and thus that η ∈ J \J ′.

Claim 1 aη -⌣A
αi
J

A
αi+1

J .

Recall from the construction that

aη -⌣
Aη�i

Aη↾i+1 .

Since Aη↾i ⊂ A αi
J and Aη↾i+1 ⊂ A

αi+1

J , and Aη↾i+1 ̸⊂ A αi
J , by monotonicity ([9,

Lemma 3.2(i)]), we have
aη -⌣

Aη�i

Aη↾i+1 ⇒ aη -⌣
Aη�i

A
αi+1

J .

Claim 1* Thus, to prove Claim 1, it is enough to show that

aη -⌣
A
αi
J

Aη↾i+1 .

Assume for a contradiction that aη |⌣A
αi
J

Aη↾i+1 .

Claim 2 aη |⌣A
αi
J

Aη↾i+1 ⇒ A αi
J -⌣Aη�i

Aη↾i+1 .

By assumption, aη |⌣A
αi
J

Aη↾i+1 . This implies that Aη↾i+1 |⌣A
αi
J

aη. We get this

symmetry by using monotonicity to find that aη |⌣A
αi
J

b for any finite b ∈ Aη↾i+1 . Then,

The Infinity Project 559

since A αi
J is Fç

λ(ç)-saturated by construction ([8]), and hence strongly Fç
κ(ç)-saturated,

by [9, Lemma 3.6], b |⌣A
αi
J

aη. Since this is true for all b ∈ Aη↾i+1 , we get

Aη↾i+1 |⌣
A
αi
J

aη.

Now, assume for a contradiction that A αi
J |⌣Aη�i

Aη↾i+1 . By a similar symmetry arg-

ument, Aη↾i+1 |⌣Aη�i
A αi
J . Thus, we have

Aη↾i+1 |⌣
A
αi
J

aη and Aη↾i+1 |⌣
Aη�i

A αi
J .

In addition, by [8, Lemma 3.2(iii)], we have aη |⌣A
αi
J

A αi
J . We can thus apply [8, Lemma

3.8(iii)] to find that
Aη↾i+1 |⌣

Aη�i

aη ∪A αi
J .

By monotonicity and symmetry, we get aη |⌣Aη�i
Aη↾i+1 , a contradiction. VClaim 2

Thus, with our assumptions so far, we have Aη↾i+1 -⌣Aη�i
A αi
J . We now show that

this dependence causes a contradiction.
Since Aη↾i is sufficiently saturated, by [9, Corollary 3.5(i)], there is c ∈ A αi

J such that

Aη↾i+1 -⌣
Aη�i

c.

Since A αi
J =

∪
s∈G(Kαi) As, there is a good s ∈ Kαi such that c ∈ As.

Now, let r = {η ↾j : j 6 i + 1}. Then, r is good and r ∩ Jαi = {η ↾j : j 6 i}.
Without loss of generality, we can assume that η ↾i∈ s, since As cannot get smaller with
this assumption.

However, by strong independence (see [8]), Ar |⌣Ar∩s
As, which by definition, written

otherwise
Aη↾i+1 |⌣

Aη�i

As.

This gives a contradiction since c ∈ As. VClaim 1

Thus, there is u ∈ K ′ such that for all i < ω, Au -⌣A
αi
J′

A
αi+1

J ′ . However, since

α /∈ S(J ′), this contradicts [8, Lemma 7(ii)]. Since the notation we use here is rather
different from that in [8], note that we can find a model with the properties of what is
in [8] defined by Av in A αi

J ′ . Recall that A
αi+1

J ′ can be written as a union of appropriate
models as in the notation found in [8]. �2.11

Corollary 2.12 Let A J and A J ′ be models constructed as above for trees J, J ′ ⊆ π6ω.
Assume that S(J) = S ⊂ Sπω and S(J ′) = ∅, thus S(J)

a
S(J ′) = S is stationary. Then

A J ̸∼= A J ′ in any cardinal- and P(λr(ç))-preserving extension of the universe where
the symmetric difference S(J)

a
S(J ′) remains stationary.

Notice that the proof of Lemma 2.11 is in ZFC. In particular, the notion of indepen-
dence is absolute for models where no small (of size < λr(ç)) subsets are added. Thus,
two models AJ and AJ ′ which are non-isomorphic in the ground model remain non-
isomorphic in any cardinal- and P(λr(ç))-preserving extension of the universe where
the symmetric difference S(J)

a
S(J ′) remains stationary.

560 0# and strictly stable non-structure in HMT

It is easy to see that S(J0) = S and S(J1) = ∅. Thus, we can apply the previous
lemma to find that AJ0 ̸∼= AJ1 in L.

2.4 Isomorphism of the models when S is killed

Theorem 2.13 Assume that J0 ∼= J1 in some extension of the set-theoretic universe
which preserves cardinals and P(λr(ç)). Then, in that extension, AJ0

∼= AJ1 .

Proof. Assume that F : J0 → J1 is an isomorphism. We aim to find an isomorphism
between AJ0 and AJ1 .

We proceed by induction on good elements of K0 along the ordering ≤K by building
elementary maps Gu, u ∈ K0. We ensure in this induction that if ui ≤K uj and uj ̸≤K ui
then Gui is constructed before Guj .

Base case: isomorphism for the first level of the tree G0. For all u ∈ K0 = P<ω(J0), let
F (u) = {F (η) : η ∈ u}. For η ∈ J0, let G0 ↾Aη= fF (η) ◦ f−1

η , where the fη are as defined
in Section 2.2.3. Thus,

G0 :
∪
η∈J0

Aη −→
∪
η∈J1

Aη.

Claim 3 The function G0, which maps one strongly independent family to the other, is
elementary.

We prove the claim by induction on good elements s ∈ K0 along the ordering ≤.
Denote by Gη0 = fF (η) ◦ f−1

η , and by Gs0 =
∪
ξ∈sG

ξ
0, for s ∈ G(J0).

By construction, Gη0, η ∈ J0 is elementary.
Now, assume that Gs0 has been shown to be elementary. We wish to show that Gs′0 for

s′ ≥K s is also elementary. Our ordering of G(J0) implies that it is enough to consider
s′ = s∪{η} for some η ∈ J0. We thus have two cases: η ∈ π<ω or η ∈ πω. The arguments
for both are similar.

If η ∈ π<ω, denote by η− = η ↾(length(η)−1). If η ∈ πω is an infinite branch, then we
can then find i < ω such that ∀ξ ∈ s, ξ ̸> η ↾i. Denote by η− = η ↾i−1).

Since we are working in a homogeneous monster model ç, we can assume without
loss of generality that Gs0 ↾As= idAs .

In addition, we know from the construction that

tpç(Aη/Aη−) = tpç(G
η
0(Aη)/Aη−),

because Gη0 is elementary and Gη0 ↾Aη= id. We thus want to show that

tpç(Aη/As) = tpç(G
η
0(Aη)/As).

Since Aη is Fç
λ(ç)-saturated, these types are stationary. Therefore, by definition of sta-

tionarity ([9, Definition 3.3]) it is enough to show that

Aη |⌣
Aη−

As and Gη0(Aη) |⌣
Aη−

As.

However, note that η− ∈ s = f(s), thus we have the independence by construction, and
so the embedding is elementary. VClaim 3

Before we continue with the next step of the induction, we give some notation and
reminders. Denote A{η} = Aη. Recall that, by the construction, Au =

∪
η∈u Aη for

u ∈ Ki, and Au is Fç
λr(ç)-prime over Au.

The Infinity Project 561

Ultimately, we aim to build an isomorphism G : A J0 → A J1 such that G ↾Aη= idAη

for all η ∈ Ji. Since A Ji =
∪
u∈Ki A

i
u , it is enough to construct Gu : A 0

u → A 1
u such

that if t ≤K u, then Gt ⊆ Gu. If we can show that
∪
t≤KuGt is elementary, then using

homogeneity of ç we can find the desired isomorphism Gu. The full isomorphism will
then be G =

∪
u∈G(Ki)

Gu.

Inductive step. Assume we have shown that, for all t � u, Gt are isomorphisms. We build
an isomorphism Gu : A 0

u → A 1
u .

Claim 4 The function
∪
t<KuGt is elementary.

We assume for a contradiction that the inductive step fails at some point. Let u be
the ≤K-smallest such that

∪
t≤KuGt = G∗ is not elementary.

This failure of elementariness is witnessed by some set of finitely many points
a0, . . . , am ∈

∪
t≤Ku At. Then, in particular, G∗ ↾{a0,...,am} is not elementary.

Subclaim 1 The points a0, . . . , am can be replaced with tuples ai, i = 0, . . . , n which
appear all at once at some step in the construction, that is, ai ∈ Ati and ai∩

∪
t<K ti

Ai = ∅.

Consider a0, . . . , am. For all i 6 m, there is ti <K u such that ai ∈ Ati \
∪
t<Kti At.

Let {t0, . . . , tn} be an enumeration of the ti so that ti ̸= tj if i ̸= j (i.e., we get rid of
repetitions). In addition, we can assume without loss of generality that tn is maximal in
{t0, . . . , tn} with respect to the ordering ≤K .

Define ai = {aj : tj = ti}. Then ai is the desired tuple such that ai ∈ Ati and
ai ∩

∪
t<ti

Ai = ∅. VSubclaim 1

To save ink, we will denote the tuples ai as ai, and now consider the finite set of
tuples {a0, . . . , an}.

We wish to refine this choice of witnesses {a0, . . . , an} to minimize the tn and the
number n. To this end, we devise an ordering on P6ω(Ki):

Definition 2.14 For ti, ui ∈ Ki, we say that {ti : i 6 n} ⋐ {ui : i 6 m} iff for all i 6 n
there is j ∈ m such that ti ≤ uj and there is uj such that uj ̸≤ ti for every i 6 n.

We can minimize the choice of witnesses {a0, . . . , an} easily if there are only finitely
many candidates which may be smaller than our initial choice. We will assume other-
wise, and, using Ramsey’s Theorem, come to a contradiction. Thus, assume for a contra-
diction that there are infinitely many choices of witnesses {a0, . . . , an} = {a00, . . . , a0n0

},
{a10, . . . , a1n1

}, . . . , {aj0, . . . , a
j
nj}, . . . from P<ω(K) for which the associated {t0, . . . , tn} =

{t00, . . . , t0n0
}, {t10, . . . , t1n1

}, . . . , {tj0, . . . , t
j
nj}, . . . , are ⋐ than our original choice. These

are quasi-ordered by ⋐.

Subclaim 2 The collection

{t00, . . . , t0n0
}, {t10, . . . , t1n1

}, . . . , {tj0, . . . , t
j
nj}, . . .

is a quasi-ordering with no ⋐-infinite descending sequences.

For notational simplicity, we will write Xj = {tji : i < nj}, and consider them with
the ordering ⋐.

Assume for a contradiction that there is an infinite descending chain. We assume,
without loss of generality, that this chain is enumerated so that Xj+1 ⋐ Xj .

562 0# and strictly stable non-structure in HMT

Let uj ∈ Xj be such that uj ̸≤K tj+1
k for every k < nj+1 (by definition of ⋐, there is

at least one such uj ∈ Xj for every j).
Thus, for all j < i < ω, uj ̸≤K ui. This is because if i = j + 1, then this is simply

the definition of uj , and otherwise we can find k < nj+1 such that ui ≤K tj+1
k . So, if

uj ≤K ui, then uj ≤K tj+1
k , a contradiction with the definition of ui.

Since the uj are finite antichains in Ji, it is easy to see that
∪
{uj : j < ω} does not

contain infinite decreasing ≤J -chains. By the same argument, there are also no infinite
increasing ≤J -sequences.

By Ramsey’s Theorem, there must thus be an infinite ≤J -antichain. Thus, we can
find t0i , i < n0, and an infinite set X ⊆ ω such that {uj : j ∈ X} is an ≤K-antichain, and
uj ≤K t0i for all j ∈ X.

Let T be the tree composed of η ∈ J , such that η < ξ for some ξ ∈ t0i ⊂ J . We show
that since such a tree has no maximal branches, the existence of an infinite ≤K-antichain
is not possible.

Note that for all j < i and k, there is n such that tik ≤K tjn.
Without loss of generality, we can assume that uj = {uji : i < m}. To ensure this, we

may need to make X smaller so that |uj | 6 n0, for all i ∈ X.
By applying the Ramsey Theorem m times, we can assume that one of the following

holds for all i < m:
(1) for all j < k, uki <

K uki ;
(2) for all j < k, uji ⊥K uki ;
(3) for all j < k, uji ≥K uki .

Clearly case 1 is not possible. Furthermore, it is not possible for case 3 to hold for
all i < m. Thus, let i < m be such that 2 holds. Then {uji : j ∈ X} is an infinite
≤J -antichain in T , a contradiction. VSubclaim 2

Assume now that our choice of {a0, . . . , an} and {t0, . . . , tn} is minimal in <K .
There is C ⊂

∪
t<tn

At, |C| = λr(ç) such that

tp(an/C) |= tp(an/
∪
t<tn

At).

Let B = C ∪ {a0, . . . , an−1}.
On the one hand, let H = fB(tn,t0,...,tn−1)

be as in Definition 2.9. That is, H is an
automorphism of ç such that H ↾(B∩Atn)

= idB∩Atn and, for i < n,

H(B ∩Ati) ⊆ AMinSetIn(tn,ti).

Then, H(ai) ∈ AMinSetIn(tn,ti). Since MinSetIn(tn, ti) < tn, H(ai) ∈
∪
t′<tn

At′ . Since
H ↾C= id, we have

tp(a0, . . . , an−1/C) = tp(H(a0), . . . ,H(an−1)/C)

and
tp(an/C) |= tp(an/C ∪ {H(a0), . . . , H(an−1)}),

so
tp(an/C) |= tp(an/C ∪ {a0, . . . , an−1}).

On the other hand, consider G∗. Since {a0, . . . , an} is a minimal witness that G∗ is
not elementary, the function G∗ ↾C∪{a0,...,an−1} must be elementary.

The Infinity Project 563

Let G+ be an automorphism of ç such that G+ ◦G∗ ↾C∪{a0,...,an−1}= id.
Since G∗ ↾Atn= Gtn and C ⊆ Atn , G∗ ↾C∪an is elementary. Thus

tp(G+(G∗(an))/C) = tp(an/C).

However,

tp(G+(G∗(an)), a0, . . . , an−1/C) = tp(G∗(an), G
∗(a0), . . . , G

∗(an−1)/G
∗(C)),

thus
tp(G∗(an), G

∗(a0), . . . , G
∗(an−1)/∅) |= tp(an, a0, . . . , an−1/∅).

This means that
tp(an/C) ̸|= tp(an/C ∪ a0, . . . , an−1),

a contradiction. VClaim 4

�2.13

Corollary 2.15 Let A J0 and A J1 be models constructed as above for trees J0 and J1.
Assume that in a cardinal-preserving extension of the universe, S(J0) is not stationary.
Then A J0 ∼= A J1 .

Proof. Lemmas 7.15 and 7.31 of [5] demonstrate this in the extension, J0 ∼= J1. We can
then apply the previous Theorem 2.13. �2.15

2.5 Constructibility with respect to 0#

We now have all the necessary ingredients to prove Theorem 2.1.

Proof. The result is a direct result of Theorem 1.4 and Corollaries 2.12 and 2.15. �2.1

References
[1] Sy-David Friedman. Cardinal-preserving extensions. Journal of Symbolic Logic, 68(4):1163–1170,

2003.
[2] Sy-David Friedman, Tapani Hyttinen, and Mika Rautila. Classification theory and 0#. Journal of

Symbolic Logic, 68(2):580–588, 2003.
[3] Rami Grossberg and Olivier Lessmann. Shelah’s stability spectrum and homogeneity spectrum in

finite diagrams. Archive for Mathematical Logic, 41(1):1–31, 2002.
[4] Rami Grossberg and Saharon Shelah. On the number of nonisomorphic models of an infinitary theory

which has the infinitary order property. Part A. Journal of Symbolic Logic, 51(2):302–322, 1986.
[5] Taneli Huuskonen, Tapani Hyttinen, and Mika Rautila. On potential isomorphism and non-structure.

Archive for Mathematical Logic, 43(1):85–120, 2004.
[6] Tapani Hyttinen. On nonstructure of elementary submodels of an unsuperstable homogeneous struc-

ture. Mathematical Logic Quarterly, 43(1):134–142, 1997.
[7] Tapani Hyttinen. A Short Introduction to Classification Theory, volume 2 of Graduate Texts in

Mathematics. Department of Mathematics, University of Helsinki, Helsinki, 1997.
[8] Tapani Hyttinen and Saharon Shelah. On the number of elementary submodels of an unsuperstable

homogeneous structure. Mathematical Logic Quarterly, 44:354–358, 1998.
[9] Tapani Hyttinen and Saharon Shelah. Strong splitting in stable homogeneous models. Annals of

Pure and Applied Logic, 103(1–3):201–228, 2000.
[10] Tapani Hyttinen and Saharon Shelah. Main gap for locally saturated elementary submodels of a

homogeneous structure. Journal of Symbolic Logic, 66(3):1286–1302, 2001.
[11] Tapani Hyttinen and Heikki Tuuri. Constructing strongly equivalent nonisomorphic models for un-

stable theories. Annals of Pure and Applied Logic, 52(3):203–248, 1991.
[12] Thomas Jech. Set Theory. The Third Millennium Edition, Revised and Expanded. Springer Mono-

graphs in Mathematics. Springer-Verlag, Berlin, 2003.
[13] Saharon Shelah. Finite diagrams stable in power. Annals of Mathematical Logic, 2:69–118, 1970.

564 0# and strictly stable non-structure in HMT

[14] Saharon Shelah. Existence of many L∞,λ-equivalent, nonisomorphic models of T of power λ. Annals
of Pure and Applied Logic, 34:291–310, 1987.

[15] Saharon Shelah. Classification theory and the number of non-isomorphic models, volume 92 of Studies
in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 2nd revised edition, 1990.

The Infinity Project

On absoluteness of categoricity in AEC’s

Sy-David Friedman†, Martin Koerwien‡

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

‡ Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
koerwien@math.uic.edu

Abstract. Shelah has shown in [4] that ℵ1-categoricity for Abstract Elementary Classes (AEC’s) is not
absolute in the following sense: There is an example K of an AEC (which is actually axiomatizable in
the logic L(Q)) such that if 2ℵ0 < 2ℵ1 (the weak CH holds) then K has the maximum possible number
of models of size ℵ1, whereas if Martin’s Axiom at ℵ1 (denoted by MAℵ1) holds then K is ℵ1-categorical.
In this note we extract the properties from Shelah’s example which make both parts work resulting in
our definitions of condition A and condition B, and then we show that for any AEC satisfying these two
conditions, neither of these implications can be reversed.

1 The model theoretic context

In Shelah’s paper [4], the notion of Abstract Elementary Classes (AEC) was introduced,
the idea being to write down basic properties of the first order elementary substructure
relation.

Definition 1.1 Let K be a class of models of a given similarity type and let ≺ be a
partial ordering on K refining the ordinary substructure relation. The pair K = (K,≺)
is an AEC if

(1) both K and ≺ are closed under isomorphism;
(2) A ≺ C, B ≺ C and A ⊂ B imply A ≺ B;
(3) for any continuous ≺-chain (Aα)α<λ,

(a) A =
∪
α<λAα ∈ K;

(b) for all α < λ, Aα ≺ A;
(c) if Aα ≺ B for some B and all α < λ, then A ≺ B;

(4) there is a cardinal LS(K) such that for all A ∈ K and any subset A0 ⊂ A, there
is B ≺ A containing A0 with |B| ≤ |A0|+ LS(K).

Many non-elementary classes can be made an AEC with appropriate relations ≺, such as
classes axiomatized using an additional quantifier Q saying “there are uncountably many”
(we will see an example of this later), or classes axiomatized by Lω1, ω-sentences (first

Appeared in Notre Dame Journal of Formal Logic, vol. 52(4), 2011, pp. 395–402.
†Partially supported by the Austrian Science Fund (FWF) under Project Number P 19375-N18 as

well as by the John Templeton Foundation under Grant #13152, The Myriad Aspects of Infinity.
‡Partially supported by ESF short visit INFTY grant number 2986, as well as by the John Templeton

Foundation under Grant #13152, The Myriad Aspects of Infinity. This author expresses his gratitude to
the Mittag-Leffler Institute for hosting him during a very productive stay in which a major part of the
present article has been developed. Special thanks also to John Baldwin and Tapani Hyttinen for helpful
discussions.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

565

566 On absoluteness of categoricity in AEC’s

order with infinite countable conjunctions and disjunctions) with ≺ being elementary
substructure with respect to some countable fragment of Lω1, ω.

It becomes an interesting question to what extent results of first order model theory
such as Morley’s categoricity theorem extend to arbitrary AEC, or perhaps to AEC with
some special properties. Some work in this direction is exposed in Baldwin’s book [2],
which has a particular emphasis on Lω1, ω.

2 Model theoretic properties: condition A and B

We now introduce two properties AEC can have. First, we have to fix some notation.

Notation 2.1 Let (Mα)α<β and (Nα)α<β be continous, strictly increasing (with respect
to inclusion) sequences of structures.

• We write (Mα)α<β ∼= (Nα)α<β if there is a function f :
∪
α<βMα →

∪
α<β Nα

such that, for all α < β, f ↾ Mα is an isomorphism between Mα and Nα. We
call such an f a filtration automorphism if Mα = Nα for all α < β.
• Define rank:

∪
α<βMα → β by rank(a) = min{α | a ∈ Mα}. Note that,

by continuity of the chain, the range of rank is precisely the set of countable
successor ordinals together with zero.
• For any finite tuple a in

∪
α<βMα and α < β, let aα be the subtuple of a of

elements of rank α.
• Considering a tuple a = (a0, a1, . . . , an−1) as a function whose domain is n =
{0, 1, . . . , n − 1} (via a(i) = ai), let sa = rank ◦ a (i.e., sa(i) = rank(ai) for all
i < n).
• Let tpqf(a) denote the quantifier free type of a (over the empty set).

Definition 2.2 Let (K,≺) be an AEC in a relational signature with Löwenheim–Skolem
number ℵ0. We say that

(1) (K,≺) satisfies condition A if it is ℵ0-categorical and fails amalgamation for
countable models (i.e., there is a triple of countable models M0 ≺ M1,M2 such
that there are no countable M3 and embeddings fi : Mi → M3 (i = 1, 2) with
f [Mi] ≺M3 and f1 ↾M0 = f2 ↾M0).

(2) (K,≺) satisfies condition B if there is an increasing and continous ≺-chain
(Mα)α<ω1 of countable models such that:
(i) (Decomposition) Any N ∈ K of size ℵ1 can be written as N =

∪
α<ω1

Nα

with (Nα)α<β ∼= (Mα)α<β for all β < ω1.
(ii) (Triviality) For any N =

∪
α<ω1

Nα as in (i), and any finite tuples a, b, c in
N with max(sc) < min(sa), if sb = sa and, for all α, tpqf(bαc) = tpqf(aαc),
then tpqf(bc) = tpqf(ac).

(iii) (Homogeneity) Suppose N =
∪
α<ω1

Nα is as in (i) and a, b are finite tu-
ples in N such that there is an isomorphism f : a → b with x ∈ Nα if
and only if f(x) ∈ Nα for all x ∈ dom(f) and α < ω1. Then for any
β > max(sa),max(sb), there is a filtration automorphism of (Nα)α<β ex-
tending f .

The Infinity Project 567

3 How set theory affects the number of models

Theorem 3.1 If 2ℵ0 < 2ℵ1 and condition A holds, then K has 2ℵ1 many non-isomorphic
models of size ℵ1.

Proof. This result and its proof are exposed in [2, Theorem 17.11]. �

The proof of the following result is an abstract version of the proof given for Shelah’s
specific L(Q)-example (Theorem 6.6 in [4]). A simpler version can also be found in [2].

Theorem 3.2 Martin’s Axiom at ℵ1 and condition B imply that K is ℵ1-categorical.

Proof. Let N i =
∪
α<ω1

N i
α (for i < 2) with (N i

α)α<β
∼= (Mα)α<β for all β < ω1 (by

decomposition). Let F be the set of finite partial isomorphisms f from N0 to N1 with
x ∈ N0

α if and only if f(x) ∈ N1
α for all x ∈ dom(f) and α < ω1. We show that the

partial order (F ,⊃) has the ccc:
Let {fi | i < ω1} ⊂ F . We attempt to find two distinct fi whose union is an element

of F . By simple applications of the delta system lemma and the pigeonhole principle, we
can assume the following:

• There is some n < ω such that, for all i < ω1, | dom(fi)| = |ran(fi)| = n.
• The sets {dom(fi) | i < ω1} and {ran(fi) | i < ω1} are delta systems with

roots r and r′ respectively, and for any i < ω1, max(sr) < min(sdom(fi)\r) and
max(sr′) < min(sran(fi)\r′).
• For all i < j < ω1, fi ↾ r = fj ↾ r and ran(fi ↾ r) = r′.
• (Filtration disjointness) For all i < j < ω1, ran(sdom(fi)\r) is disjoint from
ran(sdom(fj)\r) (and thus, since the fi preserve the filtrations, the same holds for
the ranges).

Now we claim that actually the union of any two fi is an element of F . Take i < j < ω1

and set g = fi ∪ fj . Let a = dom(fi) \ r, b = dom(fj) \ r. For any relation symbol R in
our signature, we want to show that N0 |= R(a, b, r) holds if and only if

N1 |= R(g(a), g(b), r′)

(not all elements of the tuples may actually occur in R). Let γ < ω1 be greater than
max(sa) and max(sb) and (by decomposition) pick any h witnessing (N0

α)α<γ
∼= (N1

α)α<γ .
By homogeneity, we can assume that h ↾ r = fi ↾ r(= fj ↾ r). Because fi, fj ∈ F ,
tpqf(g(a), r

′) = tpqf(a, r) = tpqf(h(a), r
′) and tpqf(g(b), r

′) = tpqf(b, r) = tpqf(h(b), r
′)

and thus by triviality (using filtration disjointness),

(3.1) tpqf(h(a), h(b), r
′) = tpqf(g(a), g(b), r

′).

This means that N0 |= R(a, b, r) if and only if N1 |= R(h(a), h(b), r′) (h is an isomor-
phism), if and only if, by (3.1), N1 |= R(g(a), g(b), r′). This finishes the proof of ccc.

Now we prove that Da = {f ∈ F | a ∈ dom(f)} and Rb = {f ∈ F | b ∈ ran(f)} (for
a ∈ N0, b ∈ N1) are dense in (F ,⊃). Take any g ∈ F , a ∈ N0 and, using decomposition,
an h witnessing (N0

α)α<β
∼= (N1

α)α<β for some β greater than max(sdom(g)) and max(sa).
By homogeneity, there is a filtration automorphism k of (N1

α)α<β mapping h[dom(g)] to
ran(g) such that on dom(g) we have k ◦ h = g. Now, g′ = k ◦ h ↾ (dom(g) ∪ {a}) is an
extension of g with g′ ∈ Da. The same argument also works for Rb.

Finally, we apply Martin’s Axiom to the partial order (F ,⊃) in order to obtain a
{Da | a ∈ N0} ∪ {Rb | b ∈ N1}-generic filter G. Then

∪
G is a total isomorphism

568 On absoluteness of categoricity in AEC’s

between N0 and N1. Since the N i were arbitrary models in K of size ℵ1, ℵ1-categoricity
of K follows. �

The example given in the proof of the following theorem is due to Shelah and can be
found in [4].

Theorem 3.3 There is an AEC satisfying both condition A and condition B.

Proof. Let ψ be the Lω1, ω(Q)-sentence in the signature L = {P,Q,R,E} (P,Q unary
predicates, R,E binary relations) stating:

(1) P,Q partition the universe and P is infinite, countable.
(2) E is an equivalence relation on Q with infinitely many classes, each countably

infinite.
(3) R ⊂ P ×Q has the following properties:

(3a) For any finite disjoint F,G ⊂ Q, there is some a ∈ P such that, for all
b ∈ F ∪G, R(a, b) if and only if b ∈ F .

(3b) For any finite disjoint F,G ⊂ P , there is some b ∈ Q in each E-class such
that, for all a ∈ F ∪G, R(a, b) if and only if a ∈ F .

It is easy to see that K = mod(ψ) together with the substructure relation ≺ defined by

M ≺ N if and only if M ⊂ N , PM = PN and
no element of N \M is E-equivalent to an element of M

is an AEC with LS(K) = ℵ0. Note that, by (3a), in any model of ψ, the collection of
all sets Aq = {p ∈ P | R(p, q)} (q ∈ Q) is an independent family in the sense that any
intersection of finitely many distinct sets or their complements is non-empty.

Amalgamation fails for countable models: take for M0 any countable model and let
M1,M2 be extensions where we add one E-class B1, B2 respectively to M0 such that
there are b1 ∈ B1 and b2 ∈ B2 with R(a, b1) if and only if ¬R(a, b2) for all a ∈ P .
Such extensions exist by the facts that countable independent families are not maximal
(even with the additional requirement of (3b)), and that an independent family stays
independent if we replace some set with its complement.

Clearly, M1 and M2 do not amalgamate over M0 because the amalgam would fail
property (3a).

Now let M0 be any countable model of ψ and define Mα for α < ω1 by induction: at
limits take unions and let Mα+1 be such that Mα+1 \Mα consists of exactly one E-class.
We first show that the sequence (Mα)α<ω1 witnesses decomposition.

Let N be any model of ψ of size ℵ1, let N0 ≺ N be countable and define inductively
a continuous ≺-chain in N of models Nα such that Nα+1 \ Nα consists of exactly one
E-class and such that N =

∪
α<ω1

Nα. Let β < ω1 and f be a finite partial isomorphism
f : (Nα)α<β → (Mα)α<β. We want to extend f to a (still filtration preserving) partial
isomorphism with domain dom(f) ∪ {a} for any given a ∈ Nβ . If P (a), this is possible
by (3b); if Q(a), we use (3a).

This “filtration preserving extension property” for finite partial isomorphisms shows
not only decomposition, but also ℵ0-categoricity (since the models are countable; thereby
also finishing the proof of condition A) and homogeneity (for this, apply the argument
with Nα =Mα).

It remains to show triviality. Let a, c be in Mβ for some β < ω1 with max(sc) <

min(sa) and let b be such that sb = sa and tpqf(bαc) = tpqf(aαc) for all α. Since M0

must contain all of P , max(sc) < min(sa) implies that all components of a lie in Q and

The Infinity Project 569

then sb = sa implies that bc and ac satisfy the same quantifier-free type with respect
to formulas only involving E (here we use the fact that the Mα have been chosen to
add exactly one E-class each time). But also with respect to the relation R, bc and ac
have the same quantifier-free type because of tpqf(bαc) = tpqf(aαc), so we can conclude
bc |= tpqf(ac) as required. �

Shelah provides a second example of an AEC in [4] which is a modification of the
presented L(Q)-example, axiomatizable in Lω1, ω. The basic idea is to make P countable
by making it the countable union of finite definable sets. However, as Chris Laskowski
proves in an unpublished note, this AEC has the maximum number of models in ℵ1 under
ZFC. In our terminology, that AEC satisfies condition A as well as decomposition and
homogeneity, but it fails triviality. It remains an important open question if categoricity
(in ℵ1) is absolute for Lω1, ω-sentences.

4 Martin’s axiom and WCH are sufficient but not necessary

Our main theorem is the following:

Theorem 4.1 Let K be an AEC with LS(K) = ℵ0.
(a) Suppose condition A holds. If 2ℵ0 < 2ℵ1 , then K has 2ℵ1 models of size ℵ1.

However it is consistent that 2ℵ0 = 2ℵ1 and the same conclusion holds.
(b) Suppose condition B holds. Assuming Martin’s Axiom at ℵ1, K is ℵ1-categorical.

However it is consistent that MAℵ1 fails and the same conclusion holds.

The first statements in (a) and (b) are the contents of Theorems 3.1 and 3.2. We now
turn to proofs of the second statements.

A model of ZFC where 2ℵ0 = 2ℵ1 yet K has 2ℵ1 models of size ℵ1. There are models M
of ZFC in which 2ℵ0 = ℵ2 and 2ℵ1 = ℵ3. (In fact, Easton [3] showed that any reasonable
behaviour of the generalised continuum function κ 7→ 2κ for regular κ is possible.) Now
over this model M apply ℵ2-Cohen forcing P . This is the forcing whose conditions are
of the form p : |p| → 2, |p| < ω2, ordered by extension. This forcing is ℵ2-closed, i.e.,
any descending ω1-sequence of conditions has a lower bound. As a consequence, if G is
P -generic over M , any subset of ω1 in M [G] already belongs to M . It follows that M
and M [G] have the same structures with universe ω1 and the same isomorphisms between
such structures; by the first statement of Theorem 4.1(a), K has ℵM3 many models of size
ℵ1 in M . As ℵ2 is the same in M and M [G], it follows that K has at least ℵM [G]

2 many
models in M [G] and 2ℵ0 is ℵ2 in M [G].

But 2ℵ1 equals ℵ2 in M [G]: Each subset of ω1 in M [G] can be described in M [G] by
an ω1-sequence of subsets of P that belongs to M (a “canonical name” for it), and there
are ℵM3 many such sequences. If g : ω2 → 2 is the union of the conditions in G, then
every subset of ω1 in M occurs as {i < ω1 | g(α+ i) = 1} for some α < ω2, and therefore
ℵM3 = |PM (ω1)| ≤ ℵ2 in M [G] (where PM denotes the powerset operation of M).

So M [G] is a model of ZFC in which 2ℵ0 = 2ℵ1 = ℵ2 and K has the maximum number
of models of size ℵ1, as claimed.

We now turn to the second statement of Theorem 4.1(b).

A model of ZFC in which MAℵ1 fails, yet K is ℵ1-categorical. We use iterated forcing with
countable support to construct the desired model of ZFC. We first review the argument
that MAℵ1 yields ℵ1-categoricity. Given two models A, B in K of size ℵ1, we write each

570 On absoluteness of categoricity in AEC’s

as the union of an increasing, continuous ω1-chain of countable models: A =
∪
α<ω1

Aα,
B =

∪
α<ω1

Bα, as in decomposition of condition B. Then we consider the forcing P (A⃗, B⃗)
whose conditions are finite partial isomorphisms p from A to B which preserve rank, i.e.,
such that for x in the domain of p, x belongs to Aα iff p(x) belongs to Bα, for each
α < ω1. This forcing has the countable chain condition, and therefore by MAℵ1 there is
a compatible set H of conditions in it which meets the ℵ1-many dense sets which require
that each element of A belongs to the domain and each element of B belongs to the range
of some condition in H. Then the union of the conditions in H is an isomorphism of A
onto B.

The key observation is the following. We say that a forcing P is almost bounding iff
whenever G is P -generic and f : ω → ω belongs to V [G] there is g : ω → ω in V such
that, for every infinite X ⊆ ω in V , g(n) > f(n) for infinitely many n in X.

Lemma 4.2 For any A, B of size ℵ1, the forcing P (A⃗, B⃗) is almost bounding.

Proof. Suppose that G is P (A⃗, B⃗)-generic and f : ω → ω is a function in V [G]. For any
countable α let Pα denote the suborder of P (A⃗, B⃗) consisting of conditions with domain
in Aα. Then Gα = G ∩ Pα is Pα-generic over V , as by triviality any condition p is
compatible with any extension of p ↾ Aα in Pα and therefore any maximal antichain in
Pα is also a maximal antichain in P (A⃗, B⃗). And as P (A⃗, B⃗) has the countable chain
condition, f in fact belongs to V [Gα] for some countable α and therefore it suffices to
prove that Pα is almost bounding for each countable α. But Pα is a countable forcing
and is therefore equivalent to the forcing that adds one Cohen real. It is easy to check
that the latter forcing is almost bounding (see [1]). �

We now use the following general lemma, which can be found in [1]. A forcing P
is weakly bounding iff whenever G is P -generic and f : ω → ω belongs to V [G] there is
g : ω → ω in V such that g(n) > f(n) for infinitely many n.

Lemma 4.3 The countable support iteration of proper, almost bounding forcings is weakly
bounding.

Now, to finish our proof, perform a countable support iteration of length ω2 over L,
at each stage forcing with P (A⃗, B⃗) for some choice of A⃗, B⃗. Using a bookkeeping function
we can ensure that if G is generic for this iteration, then every pair A⃗, B⃗ that exists in
V [G] will have been considered at some stage of the iteration. The result is a model in
which K is ℵ1-categorical. By Lemma 4.3, the iteration is weakly bounding, and therefore
there is no f : ω → ω in V [G] which eventually dominates each g : ω → ω in L, i.e., such
that, for each g : ω → ω in L, f(n) > g(n) for sufficiently large n. Therefore MAℵ1 fails
in V [G], by the following observation.

Lemma 4.4 MAℵ1 implies that some f : ω → ω eventually dominates every g : ω → ω
in L.

Proof. Consider Hechler forcing in L, whose conditions are pairs (s, g) where s : |s| → 2
has domain a natural number and g : ω → ω belongs to L. Extension is defined by:
(s∗, g∗) ≤ (s, g) iff s∗ extends s, g∗(n) > g(n) for all n and s∗(n) > g(n) for all n in
|s∗|\|s|. This forcing is ccc because any two conditions with the same first component are
compatible and there are only countably many first components. And for each h : ω → ω
in L the set D(s, g) of conditions (s, g) such that g(n) > h(n) for all n is dense. It follows
that if f : ω → ω is the generic function added by Hechler forcing, i.e., the union of the

The Infinity Project 571

s such that (s, g) belongs to the generic for some g, then f eventually dominates each
g : ω → ω in L. The latter only requires that the ℵ1 many dense sets D(s, g) are met, so
MAℵ1 implies that there is a such a function. �

In summary, with a countable support iteration of almost bounding forcings we pro-
duce a model where K is ℵ1-categorical yet MAℵ1 fails.

Remark 4.5 We could do better and actually find a model of ZFC in which MAℵ1 fails,
and in which all AEC’s satisfying condition B are ℵ1-categorical. The idea would be to
apply the described forcings to all pairs of models of size ℵ1 (in all countable signatures)
with distinguished filtrations by countable models, for which the corresponding poset of
finite partial filtration-preserving isomorphisms has the ccc and for which that forcing
is almost bounding. In the procedure of iterating those forcings, we may create new
instances of such pairs of models for which we can apply the forcing, but by bookkeeping,
we will have taken care of them in an ω2 long chain of iterated forcings. The resulting
universe satisfies our requirement: if (A,B) is a pair of structures of size ℵ1 (with filtra-
tions) of an AEC satisfying condition B, we know by absoluteness of condition B that
this instance occurred in our chain of forcings (use Lemma 4.2) and therefore A and B
have been forced to be isomorphic. Thus any AEC satisfying condition B in the resulting
universe is ℵ1-categorical.

On the other hand, it is not clear whether our universe failing WCH in which a
particular AEC with condition A has many models in ℵ1 has the property that all such
AEC’s have many models in ℵ1. The problem is that although we do not add subsets
of ℵ1, we do add subsets of the continuum (which is ℵ2) and may create new AEC’s
satisfying condition A. Still, all AEC’s with condition A whose restriction to countable
models is Hω2 definable will have many models in ℵ1, which is the case for example for
AEC’s axiomatizable by an Lω1, ω(Q) sentence with a natural notion of substructure.

Question Does there exist an AEC satisfying conditions A and B which is defined by
an Lω1, ω-sentence?

Question Condition B is sufficient to show ℵ1-categoricity under MAℵ1 . To what ex-
tent is it also a necessary condition? For example, does every potentially (i.e., in some
generic extension) ℵ1-categorical AEC have to satisfy decomposition? It is not very diffi-
cult to show that, for a first-order theory, decomposition is equivalent to ℵ1-categoricity
(ℵ1-categoricity is an absolute property for first-order theories because it is characterized
by ω-stability plus “there are no Vaughtian pairs”. Both properties follow directly from
decomposition). Also, clearly, triviality is a very strong condition, as it is easy to find
ℵ1-categorical first-order theories where it fails (e.g., take an equivalence relation with
exactly two classes and a binary relation defining a bijection between those two classes).
Is there a way to weaken triviality and get the same results?

References
[1] Avraham, U., Proper forcing, in Handbook of Set Theory, vol. 1, Foreman, M., Kanamori, A. (eds.),

Springer, 2010.
[2] Baldwin, J. T., Categoricity, AMS University Lecture Series, vol. 50, 2009.
[3] Easton, W., Powers of regular cardinals, Annals of Mathematical Logic 1, 1970.
[4] Shelah, S., Abstract elementary classes near ℵ1 (sh88r), revision of Classification of nonelementary

classes II, Abstract elementary classes; on the Shelah archive.

The Infinity Project

Two examples concerning ℵ1-categoricity in
abstract elementary classes

Martin Koerwien∗, Stevo Todorcevic†

∗ Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
koerwien@math.uic.edu

† CNRS FRE 3233, UFR de Mathématiques, Université Paris 7, France
stevo@logique.jussieu.fr

Abstract. We investigate two abstract elementary classes coding families of pairwise disjoint countable
dense sets of the Cantor space and of the real line respectively. While the first one absolutely has many
models in ℵ1, there is evidence that the second one may be ℵ1-categorical under PFA. We show that it
consistently has many models under MAℵ1 , which distinguishes it from an example exposed in [6] which
is ℵ1-categorical under MAℵ1 and has many models in ℵ1 assuming the weak continuum hypothesis.

Introduction

Shelah gave in [6] an example of an L(Q) axiomatizable abstract elementary class (where
Q is the quantifier expressing that “there are uncountably many”) which is ℵ1-categorical
under MAℵ1 and has the maximum number of models in ℵ1 under the weak continuum
hypothesis, thus showing that the notion of categoricity is not absolute for the logic L(Q).

In the present paper, we give another example which is again L(Q) axiomatizable,
but may have many models under MAℵ1 , while we believe that the Proper Forcing Axiom
(PFA) implies that it is ℵ1-categorical. We have to admit however that at present we
are unable to give the formal proof of the latter. The example is coding families of
pairwise disjoint countable dense sets of the real line. The argument that PFA implies
categoricity should be a variation of the proof of Theorem 4.2 in [8]. We will give a
pseudo-proof (containing a hole which we were unable to fix at the time of submission)
which should still give a reasonably good idea of what techniques are involved. The proof
of the consistency with MAℵ1 of having many models uses the model of Avraham and
Shelah [1] originally constructed for showing that MAℵ1 does not imply Baumgartner’s
axiom [3].

Before we give this example, we introduce another similar one which codes families of
countable dense sets of the “affine” Cantor space with the natural metric topology. The
fact that this example absolutely has many models in ℵ1 makes clear that the particular
properties of the real line example are essentially due to the presence of an ordering, not
only to its topology.

Preliminaries and notation

We make no notational distinction between a structure and its underlying set. If M
and N are L-structures, M ⊂ N means that M is a substructure of N . The notation

∗Supported by the John Templeton Foundation under Grant #13152, The Myriad Aspects of Infinity.
†Research supported by CNRS and NSERC.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

573

574 Two examples concerning ℵ1-categoricity in abstract elementary classes

M ≺ N may have a different meaning than M being a first order elementary substructure
of N if we redefine the symbol ≺. Recall that, for a signature L, a class of L-models K
together with a distinguished partial ordering ≺ on K is called an abstract elementary
class (AEC) if:

(1) A ≺ B implies A ⊂ B;
(2) Both K and ≺ are closed under isomorphism;
(3) A ≺ C, B ≺ C and A ⊂ B imply A ≺ B;
(4) For any continuous ≺-chain (Aα)α<λ,

(a) A =
∪
α<λAα ∈ K;

(b) for all α < λ, Aα ≺ A;
(c) if Aα ≺ B for some B and all α < λ, then A ≺ B;

(5) There is a cardinal LS(K) such that for all A ∈ K and any subset X ⊂ A, there
is B ≺ A containing X with |B| ≤ |X|+ LS(K).

1 The Cantor space

Let L = {E,Ei}i<ω where E and Ei are binary relations. Let σ be the Lω1,ω(Q)-sentence
stating:

• E and Ei are all equivalence relations, E has infinitely many classes, all count-
able, Ei has 2i+1 classes, Ei+1 refines Ei binary (every Ei-class is the union of
exactly two Ei+1-classes).
•
∧
i<ω Ei(x, y) implies x = y.

• Any E-class intersects all Ei-classes non-trivially for all i < ω.
Using the notation [x]NE for the E-class of an element x in a model M , we define a

strong substructure relation which turns the models of σ into an AEC:

M ≺ N if and only if M ⊂ N and, for all x ∈M , [x]NE = [x]ME .

An easy back-and-forth argument shows that σ is ℵ0-categorical.

Proposition 1.1 The sentence σ fails amalgamation for countable models.

Proof. Let M0 |= σ be any countable model and let M1,M2 be extensions of M0 such
that

• Mi \M0 consists of exactly one new E-class (i = 1, 2);
• there are elements ai, b (i = 1, 2) such that

– ai ∈Mi \M0, b ∈M1 \M0;
– for all x ∈M0 and j < ω, Ej(x, a1)↔ Ej(x, a2);
– for all y ∈ M1 and x ∈ M0, there is some j < ω such that ¬(Ej(x, b) ↔
Ej(x, y)).

If there were an amalgam of M1 and M2 over M0, then a1 and a2 would have to be
identified in it; but b cannot be identified with any element in M2 \M0. �
Remark 1.2 In the terminology of [4], this AEC satisfies condition A (which implies
many models in ℵ1 under ZFC+ WCH) and “almost” satisfies condition B (which would
imply ℵ1-categoricity under ZFC+MAℵ1); (mod(σ),≺) satisfies (decomposition), wit-
nessed by a continuous chain (Mα)α<ω1 whereM0 is any countable model and (Mα+1\Mα)
consists of exactly one E-class. The same back-and-forth argument as above also shows
(homogeneity). However we do not have (triviality) because any two elements have the
same quantifier-free type over the empty set, but a pair of such can have countably many

The Infinity Project 575

different types because of the Ei-equivalence relations. In the following, we show that
already ZFC implies the existence of many models in ℵ1.

Definition 1.3 Let M |= σ.
• A ⊂M is a transversal if it contains exactly one element from any E-class.
• For S ⊂ ω, a transversal A ⊂M has S type if {ix,y | x, y ∈ A, x ̸= y} ⊂ S, where
ix,y is defined as the unique i such that ¬Ei(x, y) and Ej(x, y) for all j < i.

Proposition 1.4 Let S ⊂ ω be infinite. There is some M |= σ of size ℵ1 that can be
written as the countable union of transversals of S type.

Proof. Let M0 |= σ be countable with M0 =
∪
k<ω Tk, where each Tk is an S type

transversal of M0 and the Tk are pairwise disjoint. We extend M0 by a new E-class
A = {tk | k < ω} such that each Tk ∪ {tk} is of S type.

First, choose any E-class B = {bk | k < ω} of M0 (where bk ∈ Tk for each k < ω)
and enumerate all En-classes of M0 as (Bk)k<ω in such a way that bk ∈ Bk. Now, choose
as tk any element that is Ek-equivalent to Bk (this guarantees that A will eventually be
dense) making inductively sure that itk,x ∈ S for all x ∈ Tk. �

Lemma 1.5 Suppose that S,U ⊂ ω are infinite and almost disjoint. Then MS ̸∼= MU

(denoting by MS the model constructed in the previous proposition).

Proof. Let MS =
∪
k<ω T

S
k and MU =

∪
k<ω T

U
k , where TSk and TUk are transversals of S

and U type respectively, and suppose that f : MS →MU is an isomorphism. Then f [TS0]
is a transversal in MU and must have an infinite (actually ℵ1 big) intersection X with
some TUk . Then X is of S ∩ U type, which is impossible since S ∩ U is finite. �

Corollary 1.6 (ZFC) There are 2ℵ1 pairwise non-isomorphic models of σ of size ℵ1.

Proof. If 2ℵ1 = 2ℵ0 , then this follows from the preceding Lemma and the fact that there
are almost disjoint families of subsets of ω of size continuum.

If 2ℵ1 > 2ℵ0 (which means that the weak continuum hypothesis is true), then this
follows from ℵ0-categoricity and the failure of amalgamation for countable models, as
Shelah shows in [6]. �

2 The real line

Let L = {P,Q,R,<} with P and Q unary predicates and R, < binary relations. Let σ
be the L(Q)-sentence stating:

• P and Q partition the universe;
• < is a dense linear ordering without endpoints on P ;
• R ⊂ P ×Q and writing Aq = {p ∈ P | R(p, q)} for all q ∈ Q we have that all Aq

are pairwise disjoint countable dense sets in (P,<), the union of which equals P .
If we denote by AMq the set Aq defined in a model M , then the strong substructure

relation which turns the models of σ into an AEC is defined as follows:

M ≺ N if and only if M ⊂ N and, for all q ∈ QM , ANq = AMq .

Again, a straightforward back-and-forth argument shows ℵ0-categoricity.

Proposition 2.1 The sentence σ fails amalgamation for countable models.

576 Two examples concerning ℵ1-categoricity in abstract elementary classes

Proof. Let M0 be any countable model and let Ci (i < 3) be three different non-rational
cuts in M0. Let M1,M2 be extensions of M0 adding exactly one new dense set each,
such that M1 realizes C0 and C1 but not C2 and M2 realizes C0 and C2 but not C1. In
an amalgam, the new dense sets must coincide because they intersect on the realization
of C0, which is impossible. �

So, under WCH, σ will have the maximum number of models in ℵ1. Now we will see
that this is even consistent with ZFC+ MAℵ1 .

Lemma 2.2 Let M |= σ. Then (PM , <) can be embedded into (R, <).

Proof. This is an easy consequence of (PM , <) being a separable ordering and (R, <)
being complete: Enumerate QM = {qα | α < κ} and let us write Pα for

∪
β<αAqα . Now

we show by induction that (Pα, <) embeds into (R, <).
Let f : Pα → R be an embedding and enumerate Pα+1 \ Pα as {ai | i < ω}. Suppose

that we already extended f to P ′ = Pα ∪ {a0, . . . , ak−1}. Now let C = {x ∈ P ′ | x < ak}
and D = {x ∈ P ′ | x > ak} (both are non-empty!). Then f [C] has no maximal element
and f [D] has no minimal element. For example, suppose that y ∈ f [D] were minimal.
Then there could not be any element of P ′ between ak and f−1(y), which would imply
that ak = f−1(y) ∈ D, contrary to the definition of D.

We thus can set f(ak) to be any element of R strictly above f [C] and below f [D]. �
Theorem 2.3 It is consistent with MAℵ1 that σ has 2ℵ1 many models in ℵ1.

Proof. An uncountable set A of real numbers is called 2-entangled if no injective function
from an uncountable subset of A into A with disjoint domain and range is order-preserving
or order-reversing (see Definition 20 in [1]).

As shown in Section 5 of [1], the existence of a 2-entangled set A of reals is consistent
with MAℵ1 . Now take any family (Aα)α<2ℵ1 of subsets of A of size ℵ1, such that the
symmetric differences between any two of them is uncountable. Use any one of these sets
Aα as the P -part of a model Mα |= σ of size ℵ1 (defining the family of countable dense
subsets arbitrarily).

For any α < β < 2ℵ1 , we must have Mα ̸∼= Mβ because otherwise we would get
an order-preserving bijection f : Aα → Aβ and thus (because of the uncountability of
Aα△Aβ) an uncountable g ⊂ f whose domain and range are disjoint. �

The following lemma (which we shall use in a possible argument that PFA implies
ℵ1-categoricity of σ) is well known (see, for example, [5, § 31]) and it is also a special case
of a result found in [7]. However, for the reader’s convenience, we provide a simple proof
of it.1

Lemma 2.4 Let A ⊂ Rn be any set and let f : A→ R be a continous function. Then f
extends to a continous function on a Gδ-subset of Rn.

Proof. We first introduce some notation. Given y ∈ Rn, ϵ > 0, and X ⊂ Rn, we write
Bϵ(y) = {x : ||x− y|| < ϵ)} and diam(X) = sup{||x− y|| : x, y ∈ X}.

For any a ∈ A and n < ω, let
• Ua,n be any open neighborhood (in R) of a such that diam(f [Ua,n ∩A]) < 1

n ;
• Un =

∪
a∈A Ua,n;

• U =
∩
n<ω Un.

1 The first author would like to thank Tapani Hyttinen for explaining the idea of this proof to him.

The Infinity Project 577

Clearly, Ua,n, Un are open sets, so U is Gδ and contains A. Now we set U ′ = U ∩A,
which is aGδ-set and still containsA, and show that f has a (unique) continuous extension
to U ′.

Let x ∈ U ′ and let (ai)i<ω be a sequence in A converging to x. Clearly, (f(ai))i<ω is
a Cauchy sequence: since x ∈ U , for any n < ω there is some a ∈ A such that x ∈ Ua,n
and the variations of f in Ua,n are smaller than 1

n . Now take a final segment of (ai)i<ω
contained in Ua,n.

Define f at x to be the limit of (f(ai))i<ω. Then f thus extended will be well-
defined for the same reason as before: if (bi)i<ω is another sequence approaching x, the
differences between the f(bi) and the f(ai) will become arbitrary small, so the limit will
be the same. �

Finally we give an idea of what a proof of ℵ1-categoricity may look like. As pointed
out earlier, the main arguments already appear in the proof of Theorem 4.2 in [8]. We
give a “proof” that has a mistake in it, for which we see no “trivial“ fix.

Conjecture 2.5 PFA implies that σ is ℵ1-categorical.

False proof. We use the fact that the composition of forcing CH and a forcing which
provides an isomorphism for two given models of size ℵ1 (which we show is ccc) is proper.
So we can start by assuming that CH holds. Let (Aα)α<ω1 and (Bα)α<ω1 be families of
countable dense sets (of reals) coded by two models of σ and enumerate all continous
functions from Gδ-sets of finite Cartesian products of the reals into the reals as (gα)α<ω1 .
We define a continuous increasing sequence of countable ordinals (δα)α<ω1 inductively as
follows. Let δ0 = ω and for α < ω1 let δα be any number greater than supβ<α δβ such
that, writing A<γ =

∪
β<γ Aβ , B<γ =

∪
β<γ Bβ and C<γ = A<γ ∪ B<γ , we have that

C<δα ∪
∪
β<α gβ[C<δα] is disjoint from C<ω1 \C<δα . Now let ρ : ω1 → ω1 be any bijection

such that, for all α < ω1, the interval [δα, δα+1) is mapped onto [δα+1, δα+2).
We consider the familiy F of order-preserving finite partial functions from R to R

such that, for all f ∈ F , β < ω1 and x ∈ dom(f), x ∈ Aβ if and only if f(x) ∈ Bρ(β),
and finish by showing that it has ccc, i.e., any uncountable X ⊂ F contains two elements
whose union is still a member of F (a generic of F ordered by reverse inclusion provides
an isomorphism of the two models we started with).

Thus let X ⊂ F be uncountable. We may assume that | dom(f)| = n for all f ∈ X,
and our proof of ccc will be by induction over that n (so we suppose ccc holds for such
families with n− 1). We may suppose as well that, for any f, g ∈ F , if

f = {(a1, b1), . . . , (an, bn)}, g = {(c1, d1), . . . , (cn, dn)}

with a1 < a2 < · · · < an, c1 < c2 < · · · < cn and (ai, bi) = (ci, di) for all i = 1 . . . (n− 1),
an = cn implies bn = dn. Finally we assume that there are 2n fixed rational intervals Ik,
Jk (k = 1 . . . n) such that

• the Ik are pairwise disjoint and in increasing order, and the same is true for Jk;
• any f ∈ F maps for each k exactly one element from Ik to one element from Jk.

Now we define a function g on a subset D of R2n−1 into R as follows: if f ∈ F is of the
form f = {(a1, b1), . . . , (an, bn)} with a1 < a2 < · · · < an, then, and only then, we add
(a1, b1, a2, b2, . . . , an−1, bn−1, an) to D and set g(a1, b1, a2, b2, . . . , an−1, bn−1, an) = bn.

We show that g must be discontinuous in uncountably many points of D. Suppose
not and let D′ be the result of removing the countably many discontinuities from D.

578 Two examples concerning ℵ1-categoricity in abstract elementary classes

Lemma 2.4 yields a Gδ-set containing D′ to which g extends continuously. Hence the
original g coincides with some gα on all but possibly countably many points of D.

Now let a = (a1, b1, a2, b2, . . . , an−1, bn−1, an) ∈ D′ such that an ∈ A<δγ+1 \ A<δγ for
some γ > α. By definition of ρ, we must have g(a) ∈ [δγ+1, δγ+2), which contradicts the
definition of the ordinal δγ+1 (which is supposed to be “closed under applications of gα”,
since α < γ).

We shrink F further to an uncountable F ′ such that g∗, defined analogously to g, has
the following properties:

(i) a ∈ dom(g∗) implies that a is a point of discontinuity of g (not necessarily of g∗).
(ii) There is a rational d such that for all a ∈ dom(g∗) and all neighborhoods N of a,

we can find some a′ ∈ N such that g∗(a) < d < g(a′).
By induction, there are some f1, f2 ∈ F ′ such that the union of the first n − 1

elements of f1 and of f2 form an increasing function. Without loss of generality we assume
that x < y, where (x, f1(x)) and (y, f2(y)) are the n-th elements of those functions. If
f1(x) < f2(y), then f ∪ g is already an increasing function and we are finished (using the
intervals Ii and Ji introduced above to be sure that the n-th elements of f1 and f2 do
not interfere with the n− 1 first elements of those functions). But now, if f1(x) > f2(y),
we use (ii) and make a slight perturbation of the domain of f2 to get some f3 in the
original F which still has the property that the union of its n − 1 first elements and
those of f1 form an increasing function, and moreover f3(y′) > d, where y′ is the result of
perturbing y. This implies that f1 ∪ f3 is increasing because f1(x) < d, again by (ii). �

As the reader may have noticed, there is a problematic step in the above “proof”.
In the proof of the claim that g must be discontinuous at uncountably many points, we
pick some a = (a1, b1, a2, b2, . . . , an−1, bn−1, an) ∈ D′ such that an ∈ A<δγ+1 \ A<δγ for
some γ > α and then claim that, by definition of ρ, we must have g(a) ∈ [δγ+1, δγ+2)
contradicting the definition of the ordinal δγ+1, which is supposed to be “closed under
applications of g = gα” since α < γ.

We cannot make that conclusion, since we could have an−1 ∈ A<δγ+1 \ A<δγ , for
example, which would imply that bn−1 ∈ [δγ+1, δγ+2). We would need that all of the
arguments to which we apply g, including all the bi, belong to A<δγ+1 .

The second author suggests that the argument can be fixed by applying the above
diagonalization argument to multivalued maps gα instead of single-valued ones. The
details however are still left to be worked out.

References
[1] Avraham, U., Shelah, S., Martin’s axiom does not imply that every two ℵ1-dense sets of reals are

isomorphic, Israel J. Math. 38, 1981, pp. 161–176.
[2] Baldwin, J. T., Categoricity, AMS University Lecture Series vol. 50, 2009.
[3] Baumgartner, J. E., All ℵ1-dense sets of reals can be isomorphic, Fund. Math. 79, 1973, no. 2,

pp. 101–106.
[4] Friedman S. D., Koerwien, M., On absoluteness of categoricity in AEC’s, to appear in the Notre

Dame Journal of Formal Logic.
[5] Kuratowski, K., Topology I, Academic Press, 1966.
[6] Shelah, S., Abstract elementary classes near ℵ1 (sh88r), revision of Classification of nonelementary

classes II, Abstract elementary classes; on the Shelah archive.
[7] Todorcevic, S., Remarks on chain conditions in products, Compositio Math. 55, 1985, pp. 295–302.
[8] Todorcevic, S., Partition Problems in Topology, Contemporary Math. vol. 84, AMS, 1989.

The Infinity Project

Borel reductions on the generalized Cantor space

Vadim Kulikov†

† Department of Mathematics and Statistics, University of Helsinki, Finland
vadim.kulikov@helsinki.fi

Abstract. It is shown that the power set of κ ordered by the subset relation modulo various versions
of the non-stationary ideal can be embedded into the partial order of Borel equivalence relations on 2κ

under Borel reducibility. Here κ is uncountable regular cardinal with κ<κ = κ.

Introduction

It is shown that the partial order of Borel equivalence relations on the generalized Baire
spaces (2κ for κ > ω) under Borel reducibility has high complexity already at low levels
(below E0). This extends an answer stated in [4] to an open problem stated in [5] and
in particular solves open problems 7 and 9 from [4].

The developement of the theory of generalized Baire and Cantor spaces dates back
to 1990’s, when A. Mekler and J. Väänänen published the paper Trees and Π1

1-subsets of
ω1ω1 [13] and A. Halko published Negligible subsets of the generalized Baire space ωω1

1 .
More recently, equivalence relations and Borel reducibility on these spaces and their appli-
cations to model theory have been under focus; see my latest joint work with S. Friedman
and T. Hyttinen [5].

Suppose κ is an infinite cardinal and let EBκ be the collection of all Borel equivalence
relations on 2κ. (For definitions in the case κ > ω, see next section.) For equivalence
relations E0 and E1, let us denote E0 ≤B E1 if there exists a Borel function f : 2κ → 2κ

such that (η, ξ) ∈ E0 ⇔ (f(η), f(ξ)) ∈ E1. The relation ≤B defines a quasiorder on
EBκ , i.e., it induces a partial order on EBκ / ∼B where ∼B is the equivalence relation of
bireducibility: E0 ∼B E1 ⇔ (E0 ≤B E1) ∧ (E1 ≤B E0).

In the case κ = ω there are many known results that describe the order ⟨EBκ ,≤B⟩.
Two of them are:

Theorem (Louveau–Velickovic [12]) The partial order ⟨P(ω),⊂∗⟩ can be embedded into
the partial order ⟨EBω ,≤B⟩, where A ⊂∗ B if A \B is finite.

Theorem (Adams–Kechris [1]) The partial order ⟨B,⊂⟩ can be embedded into the partial
order ⟨EBω ,≤B⟩, where B is the collection of all Borel subsets of the real line R. In
fact, the embedding is into the suborder of ⟨EBω ,≤B⟩ consisting of the countable Borel
equivalence relations, i.e., those Borel equivalence relations each of whose equivalence
classes is countable.

Our aim is to generalize these results to uncountable κ with κ<κ = κ, and it is proved
that ⟨P(κ),⊂NS(ω)⟩ can be embedded into ⟨EBκ ,≤B⟩, where A ⊂NS(ω) B means that A\B
is not ω-stationary. This is proved in ZFC. However under mild additional assumptions
on κ or on the underlying set theory, it is shown that ⟨P(κ),⊂NS⟩ can be embedded into
⟨EBκ ,≤B⟩, where A ⊂NS B means that A \ B is non-stationary and that ⟨P(κ),⊂∗⟩ can
be embedded into ⟨EBκ ,≤B⟩, where A ⊂∗ B means that A \B is bounded.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

579

580 Borel reductions on the generalized Cantor space

Assumption Everywhere in this article it is assumed that κ is a cardinal which satisfies
|κα| = κ for all α < κ. This requirement is briefly denoted by κ<κ = κ.

1 Background in generalized descriptive set theory

Definition 1.1 Consider the function space 2κ (all functions from κ to {0, 1}) equipped
with the topology generated by the sets

Np = {η ∈ 2κ | η | α = p}

for α < κ and p ∈ 2α. Borel sets on this space are obtained by closing the topology under
unions and intersections of length ≤ κ, and complements.

An equivalence relation E on 2κ is Borel reducible to an equivalence relation E′ on 2κ

if there exists a Borel function f : 2κ → 2κ (inverse images of open sets are Borel) such
that ηEξ ⇔ f(η)E′f(ξ). This is denoted by E ≤B E′.

The descriptive set theory of these spaces, of equivalence relations on them and of
their reducibility properties for κ > ω, has been developed at least in [5, 7, 13]. For
κ = ω this is the field of standard descriptive set theory.

By idX we denote the identity relation on X: (η, ξ) ∈ idX ⇔ (η, ξ) ∈ X2 ∧ η = ξ,
and by E0 the equivalence relation on 2κ (or on κκ as in the proof of Theorem 3.20) such
that (η, ξ) ∈ E0 ⇔ {α | η(α) ̸= ξ(α)} is bounded.

Notation Let EBκ denote the set of all Borel equivalence relations on 2κ (i.e., equivalence
relations E ⊂ (2κ)2 such that E is a Borel set). If X,Y ⊂ κ and X \Y is non-stationary,
let us denote it by X ⊂NS Y . If X \ Y is not λ-stationary for some regular λ < κ, it is
denoted by X ⊂NS(λ) Y .

The set of all ordinals below κ which have cofinality λ is denoted by Sκλ , and lim(κ)
denotes the set of all limit ordinals below κ. Also reg κ denotes the set of regular cardinals
below κ and

Sκ≥λ = ⋒ µ≥λ
µ∈reg κ

Sκµ ,

Sκ≤λ = ⋒ µ≤λ
µ∈reg κ

Sκµ .

If A ⊂ α and α is an ordinal, then OTP(A) is the order type of A in the ordering
induced on it by α.

For ordinals α < β, let us adopt the following abbreviations:

(α, β) = {γ | α < γ < β};
[α, β] = {γ | α ≤ γ ≤ β};
(α, β] = {γ | α < γ ≤ β};
[α, β) = {γ | α ≤ γ < β}.

If η and ξ are functions in 2κ, then η sd ξ is the function ζ ∈ 2κ such that ζ(α) = 1⇔
η(α) ̸= ξ(α) for all α < κ, and η = 1− η is the function ζ ∈ 2κ such that ζ(α) = 1− η(α)
for all α < κ. If A and B are sets, then A sdB is just the symmetric difference.

For any set X, 2X denotes the set of all functions from X to 2 = {0, 1}. If p ∈ 2[0,α)

and η ∈ 2[α,κ), then p⌢η ∈ 2κ is the catenation: (p⌢η)(β) = p(β) for β < α and
(p⌢η)(β) = η(β) for β ≥ α.

The Infinity Project 581

Definition 1.2 A co-meager subset of X is a set which contains an intersection of length
≤ κ of dense open subsets of X. Co-meager sets are always non-empty and form a filter
on 2κ; cf. [13]. A set X has the property of Baire if there exists an open set A such
that X sdA is meager, i.e., a complement of a co-meager set. As in standard descriptive
set theory, Borel sets have the property of Baire (proved in [7]). For a Borel function
f : 2κ → 2κ, denote by C(f) one of the co-meager sets restricted to which f is continuous
(such a set is not unique, but we can always pick one using the property of Baire of Borel
sets; see [5]).

Lemma 1.3 Let D be a co-meager set in 2κ and let p, q ∈ 2α for some α < κ. Then
there exists η ∈ 2[α,κ) such that p⌢η ∈ D and q⌢η ∈ D. Also there exists η ∈ 2[α,κ) such
that p⌢η ∈ D and q⌢η ∈ D where η = 1− η.

Proof. Let h be the homeomorphism Np → Nq defined by p⌢η 7→ q⌢η. Then h[Np ∩D]
is co-meager in Nq, so Nq ∩D ∩ h[Np ∩D] is non-empty. Pick η′ from that intersection
and let η = η′ | [α, κ). This will do. For the second part, take for h the homeomorphism
defined by p⌢η 7→ q⌢η. �

2 On cub-games and GCλ-characterization

The notion of cub-games is a useful way to treat certain properties of subsets of cardinals.
They generalize closed unbounded sets and are related to combinatorial principles such
as �κ. Under mild set-theoretic assumptions, they give characterizations of CUB-filters
in different cofinalities. Treatments of this subject can be found for example in [8, 9, 10].

Definition 2.1 Let A ⊂ κ. The game GCλ(A) is played between players I and II as
follows. There are λ moves and at the i-th move player I picks an ordinal αi which is
greater than any ordinal picked earlier in the game and then II picks an ordinal βi > αi.
Player II wins if supi<λ αi ∈ A. Otherwise player I wins.

Definition 2.2 A set C ⊂ κ is λ-closed for a regular cardinal λ < κ if, for all increasing
sequences ⟨αi ∈ C | i < λ⟩, the limit supi<λ αi is in C. A set C ⊂ κ is closed if it is
λ-closed for all regular λ < κ. A set is λ-cub if it is λ-closed and unbounded, and cub
if it is closed and unbounded. A set is λ-stationary if it intersects all λ-cub sets, and
stationary if it intersects all cub sets.

Definition 2.3 We say that GCλ-characterization holds for κ if

{A ⊂ κ | II has a winning strategy in GCλ(A)} = {A ⊂ κ | A contains a λ-cub set},
and we say that GC-characterization holds for κ if GCλ-characterization holds for κ for
all regular λ < κ.

Definition 2.4 Assume κ = λ+ and µ ≤ λ a regular uncountable cardinal. The square
principle on κ for µ, denoted �κ

µ, defined by Jensen in case λ = µ, is the statement that
there exists a sequence ⟨Cα | α ∈ Sκ≤µ⟩ with the following properties:
(1) Cα ⊂ α is closed and unbounded in α;
(2) if β ∈ limCα, then Cβ = β ∩ Cα;
(3) if cf(α) < µ, then |Cα| < µ.

Remark 2.5 For ω < µ < λ in the definition above, it was proved by Shelah in [14]
that �κ

µ holds (this can be proved in ZFC —for a proof, see [2, Lemma 7.7]). If µ = λ,

582 Borel reductions on the generalized Cantor space

then �κ
µ = �µ+

µ is denoted by �µ and can be easily forced or, on the other hand, it holds
if V = L. The failure of �µ implies that µ+ is Mahlo in L, as pointed out by Jensen;
see [11].

Definition 2.6 For κ > ω, the set I[κ] consists of those S ⊂ κ that have the following
property: there exists a cub set C and a sequence ⟨Dα | α < κ⟩ such that
(1) Dα ⊂ P(α), |Dα| < κ;
(2) Dα ⊂ Dβ for all α < β;
(3) for all α ∈ C ∩ S there exists E ⊂ α unbounded in α and of order type cf(α) such

that, for all β < α, E ∩ β ∈ Dγ for some γ < α.

Remark 2.7 The following is known:
(1) I[κ] is a normal ideal and contains the non-stationary sets.
(2) If λ < κ is regular and Sκλ ∈ I[κ], then GCλ-characterization holds for κ.
(3) If µ is regular and κ = µ+, then Sκ<µ ∈ I[κ]; cf. [14]. This follows also from (4) and

Remark 2.5.
(4) When λ > ω, then �κ

λ implies that Sκλ ∈ I[κ] (take Dα = {Cα ∩ β | β < α}).
(5) Sκω ∈ I[κ].
(6) If κ<λ = κ = λ+, then GCλ-characterization holds for κ if and only if κ ∈ I[κ], if

and only if Sκλ ∈ I[κ]; see [8, Corollary 2.4] and [14].
(7) The existence of λ < κ such that GCλ-characterization does not hold for κ is

equiconsistent with the existence of a Mahlo cardinal.1 Briefly this is because the
failure of the characterization implies the failure of �λ, which implies that λ+ is
Mahlo in L as discussed above. On the other hand, in the Mitchell model, obtained
from Sin = {δ < λ | δ is inaccessible} where λ > κ is Mahlo, it holds that Sin /∈
I[κ+]; see [8, Lemma 2.6].

(8) If κ is regular and for all regular µ < κ we have µ<λ < κ, then κ ∈ I[κ].

Remark 2.8 As Remark 2.7 shows, the assumption that GCλ-characterization holds for
κ is quite weak. For instance, GCω-characterization holds for all regular κ > ω and GCH
implies that GCλ-characterization holds for κ for all regular λ < κ.

3 Main results

Theorems 3.1 and 3.2 constitute the goal of this work. They are stated below but proved
in the end of this section, starting at pages 589 and 592 respectively.

Theorem 3.1 Assume that λ < κ are regular and GCλ-characterization holds for κ.
Then the order ⟨P(κ),⊂NS(λ)⟩ can be embedded into ⟨EBκ ,≤B⟩ strictly between id2κ

and E0. More precisely, there exists a one-to-one map F : P(κ) → EBκ such that for
all X,Y ∈ P(κ) we have id2κ �B F (X) �B E0 and

X ⊂NS(λ) Y ⇐⇒ F (X) ≤B F (Y).

Theorem 3.2 Assume either κ = ω1 or κ = λ+ > ω1 and �λ. Then the partial order
⟨P(κ),⊂NS⟩ can be embedded into ⟨EBκ ,≤B⟩.

1 A good exposition of this result can be found in Lauri Tuomi’s Master’s thesis (University of
Helsinki, 2009).

The Infinity Project 583

3.1 Corollaries

Corollary 3.3 Assume that λ < κ is regular. Additionally assume one of the following:
(1) κ = µ+, µ is regular and λ < µ;
(2) κ = λ+ and �λ holds;
(3) for all regular µ < κ, µ<λ < κ (e.g., κ is ω1 or inaccessible).

Then the partial order ⟨P(κ),⊂NS(λ)⟩ can be embedded into ⟨EBκ ,≤B⟩.
Proof. Any of the assumptions (1)–(3) is sufficient to obtain GCλ-characterization for κ
by Remarks 2.7 and 2.5, so the result follows from Theorem 3.1. �
Corollary 3.4 The partial order ⟨P(κ),⊂NS(ω)⟩ can be embedded into ⟨EBκ ,≤B⟩. In
particular, ⟨P(ω1),⊂NS⟩ can be embedded into ⟨EBω1

,≤B⟩ assuming CH.

Proof. By Remark 2.7, GCω-characterization holds for κ for any regular κ > ω, so the
result follows from Theorem 3.1. �
Definition 3.5 Let S ⊂ κ. Then the combinatorial principle ♢κ(S) states that there
exists a sequence ⟨Dα | α ∈ S⟩ such that for every A ⊂ κ the set {α | A ∩ α = Dα} is
stationary.

Theorem 3.6 (Shelah [15]) If κ = λ+ = 2λ and S ⊂ κ \Sκcf(λ) is stationary, then ♢κ(S)
holds. �
Corollary 3.7
(1) The ordering ⟨P(κ),⊂⟩ can be embedded into ⟨EBκ ,≤B⟩.
(2) Assume that κ = ω1 and ♢ω1 holds or that κ is not a successor of an ω-cofinal

cardinal. Then also the ordering ⟨P(κ),⊂∗⟩ can be embedded into ⟨EBκ ,≤B⟩, where
⊂∗ is inclusion modulo bounded sets.

Proof. For the first part it is sufficient to show that the partial order ⟨P(κ),⊂⟩ can be
embedded into ⟨P(κ),⊂NS(ω)⟩. Let G(A) = ⋒i∈ASi where {Si ⊂ Sκω | i < κ} is a collection
of disjoint stationary sets. Then A ⊂ B ⇔ G(A) ⊂NS G(B), so this proves the first part.

For the second part, let us show that if ♢κ(Sκλ) holds, then ⟨P(κ),⊂∗⟩ can be embed-
ded into ⟨P(κ),⊂NS(λ)⟩. Then the result follows. If κ = ω1 and ♢ω1 holds, then it follows
by Corollary 3.4. On the other hand, if κ is not a successor of an ω-cofinal cardinal,
then from Theorem 3.6 it follows that ♢κ(Sκω) holds and the result follows again from
Corollary 3.4.

Suppose that ⟨Dα | α ∈ Sκλ⟩ is a ♢κ(Sκλ)-sequence. If X,Y ⊂ α for α ≤ κ, let X ⊂∗ Y
denote that there is β < α such that X \ β ⊂ Y \ β, i.e., X is a subset of Y on a final
segment of α. Note that this coincides with the earlier defined ⊂∗ when α = κ. For
A ⊂ κ, let

H(A) = {α < κ | Dα ⊂∗ A ∩ α}.
If A ⊂∗ B then there is γ < κ such that A \ γ ⊂ B \ γ and if β > γ is in H(A), then
Dβ ⊂∗ A ∩ β and since A ∩ β ⊂∗ B ∩ β, we have Dβ ⊂∗ B ∩ β, so H(A) ⊂∗ H(B) which
finally implies H(A) ⊂NS(ω) H(B).

Assume now that A ̸⊂∗ B and let C = A\B. Let S′ be the stationary set such that for
all α ∈ S′, C∩α = Dα. Let S be the λ-stationary set S′∩{α | C is unbounded below α}.
S is stationary, because it is the intersection of S′ and a cub set. Now for all α ∈ S we
have Dα = C ∩ α ⊂ A ∩ α, so S ⊂ H(A). On the other hand, if α ∈ S, then

Dα \ (B ∩ α) = (C ∩ α) \ (B ∩ α) = ((A \B) ∩ α) \ (B ∩ α) = C ∩ α

584 Borel reductions on the generalized Cantor space

is unbounded in α, so Dα ̸⊂∗ B∩α and therefore S ⊂ H(A)\H(B), whence we conclude
that H(A) ̸⊂NS(λ) H(B). �
Corollary 3.8 There are 2κ equivalence relations between id and E0 that form a linear
order with respect to �B.

Proof. Let K = {η ∈ 2κ | (∃β)(∀γ > β)(η(γ) = 0)}, let f : K → κ be a bijection and for
η, ξ ∈ 2κ define η ⋖ ξ if and only if

η(min{α | η(α) ̸= ξ(α)}) < ξ(min{α | η(α) ̸= ξ(α)}).
For η ∈ 2κ, let Aη = {f(ξ) | ξ⋖ η ∧ ξ ∈ K}. Clearly Aη (Aξ if and only if η⋖ ξ and the
latter is a linear order. The statement now follows from Corollary 3.7. �

3.2 Preparing for the proofs

Definition 3.9 For each S ⊂ limκ let us define equivalence relations E∗
S , ES and E∗

S(α),
α ≤ κ, on the space 2κ as follows. Suppose η, ξ ∈ 2δ for some δ ≤ κ and let ζ = η sd ξ.
Let us define η and ξ to be E∗

S(δ)-equivalent if and only if for all ordinals α ∈ S ∩ δ there
exists β < α such that ζ(γ) has the same value for all γ ∈ (β, α). Let E∗

S = E∗
S(κ) and

ES = E∗
S ∩ E0, where E0 is the equivalence modulo bounded sets.

Remark If S = ∅, then ES = E∅ = E0. If S = limκ or equivalently if S = limω κ = Sκω
(ω-cofinal limit ordinals), then ES = E′

0, where E′
0 is defined in [4].

Theorem 3.10 For any S ⊂ limκ the equivalence relations ES and E∗
S are Borel.

Proof. This is obvious by writing out the definitions:

E∗
S = ⋓α∈S ⋒β<α

(
⋓β<γ<α {(η, ξ) | η(γ) ̸= ξ(γ)} ∪ ⋓β<γ<α{(η, ξ) | η(γ) = ξ(γ)}

)
;

E0 = ⋒α<κ ⋓α<β<κ {(η, ξ) | η(β) = ξ(β)};
ES = E∗

S ∩ E0. �

The ideas of the following proofs are simple, but are repeated many times in this
article in one way or another.

Theorem 3.11 For all S ⊂ limκ, ES ̸≤B id2κ and E∗
S ≤B id2κ.

Proof. For the first part suppose f is a Borel reduction from ES to id2κ . Let η be a
function such that η and η = 1 − η are both in C(f) (see Definition 1.2, page 581).
This is possible by Lemma 1.3, page 581. Then (η, η) /∈ ES . Let α be so large that
f(η) | α ̸= f(η) | α and pick β so that

f [Nη↾β ∩ C(f)] ⊂ Nf(η)↾α

and
f [Nη↾β ∩ C(f)] ⊂ Nf(η)↾α.

This is possible by the continuity of f on C(f). By Lemma 1.3 pick now a ζ ∈ 2[β,κ) so
that η | β⌢ζ ∈ C(f) and η | β⌢ζ ∈ C(f) which provides us with a contradiction, since(

η | β⌢ζ, η | β⌢ζ
)
∈ ES , but f(η | β⌢ζ) ̸= f(η | β⌢ζ).

To prove the second part it is sufficient to construct a reduction from E∗
S to idκκ ,

since idκκ and id2κ are bireducible (see [5]). Let us define an equivalence relation ∼ on
2<κ such that p ∼ q if and only if dom p = dom q and p sd q is eventually constant, i.e.,

The Infinity Project 585

for some α < dom p, (p sd q)(γ) is the same for all γ ∈ [α,dom p). Let s : 2<κ → κ be a
map such that p ∼ q ⇔ s(p) = s(q). Suppose η ∈ 2κ and let us define ξ = f(η) as follows.
Let βγ denote the γ-th element of S and let ξ(γ) = s(η | βγ). Now we have ηE∗

Sξ if and
only if η | βγ = ξ | βγ for all γ ∈ κ, if and only if f(η) = f(ξ). �
Corollary 3.12 Let S ⊂ κ. If p ∈ 2<κ and C ⊂ Np is any co-meager subset of Np, then
there is no continuous function C → 2κ such that (η, ξ) ∈ ES ∩ C2 ⇔ f(η) = f(ξ).

Proof. Apply the same proof as for the first part of Theorem 3.11; take C instead of C(f)
and work inside Np, e.g., instead of η, η take p⌢η, p⌢η for suitable η ∈ 2[dom p,κ). �
Definition 3.13 A set A ⊂ κ does not reflect to an ordinal α if the set α ∩ A is non-
stationary in α, i.e., there exists a closed unbounded subset of α outside of A ∩ α.
Theorem 3.14 If κ = λ+ > ω1 and �κ

µ holds, µ ≤ λ, then for every stationary S ⊂ Sκω
there exists a set Bµ

nr(S) ⊂ S (nr for non-reflecting) such that Bµ
nr(S) does not reflect

to any α ∈ Sκ≤µ ∩ Sκ≥ω1
and the sets limCα witness that, where ⟨Cα | α ∈ Sκ≤µ⟩ is the

�λ-sequence, i.e., limCα ⊂ α \ Bµ
nr(S) for α ∈ Sκ≤µ ∩ Sκ≥ω1

. Since cf(α) > ω, limCα is
cub in α.

Proof. This is a well known argument and can be found in [11]. Let g : S → κ be the
function defined by g(α) = OTP(Cα). By the definition of �µ, OTP(Cα) < µ for α ∈ Sκω,
so for α > µ we have g(α) < α. By Fodor’s lemma there exists a stationary Bµ

nr(S) ⊂ S
such that OTP(Cα) = OTP(Cβ) for all α, β ∈ Bµ

nr(µ). If α ∈ limCβ, then Cα = Cβ ∩ α
and therefore OTP(Cα) < OTP(Cβ). Hence limCβ ⊂ β \Bµ

nr(S). �
Definition 3.15 Let Ei be equivalence relations on 2κ×{i} for all i < α where α < κ.
Let E =

⊗
i<αEi be an equivalence relation on the space 2κ×α such that (η, ξ) ∈ E if

and only if for all i < α, (η | (κ× {i}), ξ | (κ× {i})) ∈ Ei.
Naturally, if α = 2, we denote

⊗
i<2Ei by just E0 ⊗ E1 and we constantly identify

2κ×{i} with 2κ.
Definition 3.16 Given equivalence relations Ei on 2κ×{i} for i < α < κ+, let

⊕
i∈I Ei

be an equivalence relation on ⋒i<α2κ×{i} such that η and ξ are equivalent if and only if
for some i < α, η, ξ ∈ 2κ×{i} and (η, ξ) ∈ Ei.

Intuitively the operation ⊕ is taking disjoint unions of the equivalence relations. As
above, if say α = 2, we denote

⊕
i<2Ei by just E0 ⊕ E1 and we identify 2κ×{i} with 2κ.

Theorem 3.17 Assume that λ ∈ reg κ and GCλ-characterization holds for κ.
(1) Suppose that S1, S2 ⊂ Sκ≥λ and that (S2 \S1)∩Sκλ is stationary. Then the following

holds:
(a) ES1 ̸≤B ES2 .
(b) If p ∈ 2<κ and C ⊂ Np is any co-meager subset of Np, then there is no

continuous function C → 2κ such that (η, ξ) ∈ ES1 ∩C2 ⇔ (f(η), f(ξ)) ∈ ES2 .
(2) Assume that κ = λ+ > ω1, µ ∈ reg(κ) \ {ω} and �κ

µ holds. Let S ⊂ Sκω be any
stationary set and let Bµ

nr(S) be the set defined by Theorem 3.14. Then the following
holds:
(a) Suppose that S1, S2 ⊂ Sκµ, B ⊂ Bµ

nr(S) and let S′
1 = S1 ∪ B, S′

2 = S2 ∪ B. If
(S′

2 \ S′
1) ∩ Sκµ is stationary, then ES′

1
̸≤B ES′

2
.

(b) Let S1, S2, B, S′
1 and S′

2 be as above. If (S′
2\S′

1)∩Sκµ is stationary, p ∈ 2<κ and
C ⊂ Np is any co-meager subset of Np, then there is no continuous function
C → 2κ such that (η, ξ) ∈ ES′

1
∩ C2 ⇔ (f(η), f(ξ)) ∈ ES′

2
.

586 Borel reductions on the generalized Cantor space

(3) Let S1, S2, A1, A2 ⊂ Sκω be either such that S2 \ S1 and A2 \ S1 are stationary or
such that S2 \A1 and A2 \A1 are stationary. Then the following holds:
(a) ES1 ⊗ EA1 ̸≤B ES2 ⊗ EA2 .
(b) If C ⊂ (2κ)2 (we identify 2κ×2 with (2κ)2) is a set which is co-meager in some

Nr = {η ∈ (2κ)2 | η | dom r = r}, r ∈ (2α)2, α < κ, then there is no continuous
function f from C ∩ Nr to (2κ)2 such that (η, ξ) ∈ (ES1 ⊗ EA1) ∩ C2 ⇔
(f(η), f(ξ)) ∈ ES2 ⊗ EA2 .

(4) Assume that S1, S2, A2 ⊂ κ are such that A2 \ S1 and S2 \ S1 are ω-stationary.
Then:
(a) ES1 ̸≤B ES2 ⊗ EA2 .
(b) If p ∈ 2<κ and C ⊂ Np is any co-meager subset of Np, there is no continuous

function C → (2κ)2 such that (η, ξ) ∈ ES1 ∩ C2 ⇔ (f(η), f(ξ)) ∈ ES2 ⊗ EA2.
(5) Assume that S1, A1, S2, A2 ⊂ κ are such that A2 \A1 is ω-stationary. Then:

(a) ES1 ⊗ EA1 ̸≤B ES2∪A2 .
(b) If p ∈ (2<κ)2 and C ⊂ Np is any co-meager subset of Np, there is no continuous

function C → 2κ such that (η, ξ) ∈ (ES1 ⊗EA1)∩C2 ⇔ (f(η), f(ξ)) ∈ ES2∪A2 .

Proof. Item (1b) of the theorem implies item (1a), and all (b)-parts imply the corre-
sponding (a)-parts, because if f : 2κ → 2κ is a Borel function, then it is continuous on
the co-meager set C(f) (see Definition 1.2). Let us start by proving (1b).

Assume that S2 \S1 is λ-stationary, p ∈ 2<κ, C ⊂ Np, and assume that f : C → 2κ is
a continuous function as described in the Theorem. Let us derive a contradiction. Define
a strategy for player II in the game GCλ(κ \ (S2 \ S1)) as follows.

Denote the i-th move of player I by αi and the i-th move of player II by βi. During
the game, at the i-th move, i < λ, player II secretly defines functions p0i , p

1
i , q

0
i , q

1
i ∈ 2<κ

in such a way that for all i and all j < i we have

(a) dom p0j = dom p1j = βj and αj ≤ dom q0j+1 = dom q1j+1 ≤ αj , and if j is a limit, then
supi<j αi ≤ dom q0j = dom q1j ≤ βj ;

(b) p0j ⊂ p0j+1, p
1
i ⊂ p1i+1, q

0
i ⊂ q0i+1 and q1i ⊂ q1i+1;

(c) f [C ∩Np0i
] ⊂ Nq0i

and f [C ∩Np1i
] ⊂ Nq1i

.

Suppose it is i-th move and i = γ + 2k for some k < ω and γ which is either 0 or a limit
ordinal, and suppose that the players have picked the sequences (αj)j≤i and (βj)j<i.
Additionally II has secretly picked the sequences

(p0i)i<j , (p
1
i)i<j , (q

0
i)i<j , (q

1
i)i<j ,

which satisfy conditions (a)–(c). Assume first that i is a successor. In this case, if q0i−1

is not E∗
S2
(dom q0i−1)-equivalent to q1i−1, then player II plays arbitrarily. Otherwise, to

decide her next move, player II uses Lemma 1.3 (page 581) to find η ∈ 2[βi−1,κ) and
ξ = 1 − η, such that p0i−1

⌢η ∈ C and p1i−1
⌢ξ ∈ C. Then she finds β′i > αi such that

f(p0i−1
⌢η)(δ) ̸= f(p1i−1

⌢ξ)(δ) for some δ ∈ [αi, β
′
i). This is possible since f is a reduction

and (q0i−1, q
1
i−1) ∈ E∗

S2
. Then she picks βi > β′i so that

f [C ∩N(p0i−1
⌢η)↾βi] ⊂ Nf(p0i−1

⌢η)↾β′
i

and

f [C ∩N(p1i−1
⌢ξ)↾βi] ⊂ Nf(p1i−1

⌢ξ)↾β′
i
.

The Infinity Project 587

This choice is possible by the continuity of f . Then she (secretly) sets p0i = (p0i−1
⌢η) | βi,

p1i = (p1i−1
⌢ξ) | βi, q0i = f(p0i−1

⌢η) | β′i and q1i = f(p1i−1
⌢ξ) | β′i. Note that the new

partial functions secretly picked by II satisfy conditions (a)–(c).
If i is a limit, then player II proceeds as above but instead of pni−1 she uses ⋒i′<ipni′ ,

n ∈ {0, 1}, and instead of βi−1 she uses supi′<i βi′ . If i is 0, then proceed in the same
way assuming p0−1 = p1−1 = q0−1 = q1−1 = ∅ and α−1 = β−1 = 0.

Suppose i = γ+2k+1 where γ is again a limit or zero and k < ω. Then the moves go in
the same way, except that she sets η = ξ instead of η = 1−ξ and requires f(p0i−1

⌢η)(δ) =

f(p1i−1
⌢ξ)(δ) for some δ ∈ [αi−1, β

′
i) instead of f(p0i−1

⌢η)(δ) ̸= f(p1i−1
⌢ξ)(δ) for some

δ ∈ [αi−1, β
′
i). Denote this strategy by σ.

Since S2 \ S1 is stationary and GCλ-characterization holds for κ, player I is able to
play against this strategy in such a way that supi<λ αi ∈ S2 \ S1. Suppose they have
played the game to the end, so that player II used σ, player I has won and they have
picked the sequence ⟨αi, βi | i < λ⟩. Let

αλ = sup
i<λ

αi = sup
i<λ

βi = sup
i<λ

dom pi = sup
i<λ

dom qi

and
p0λ = ⋒i<λp0i , p1λ = ⋒i<λp1i , q0λ = ⋒i<λq0i and q1λ = ⋒i<λq1i .

By continuity, p0λ, p
1
λ, q

0
λ and q1λ satisfy condition (c) above and dom p0λ = dom p1λ =

dom q0λ = dom q1λ = supi<λ αi = supi<λ βi, so αλ is well defined.
On one hand q0λ and q1λ cannot be extended in an ES2-equivalent way, since either they

cofinally get same and different values below αλ ∈ S2, or they are not E∗
S2
(γ)-equivalent

already for some γ < αλ. On the other hand p0λ and p1λ can be extended in an ES1-
equivalent way, since αλ is not in S1 and for all γ < λ, supi<γ αγ is not µ-cofinal for any
µ ≥ λ, so cannot be in S1 either (∗).

Let η, ξ ∈ 2κ be extensions of p0λ and p1λ respectively such that (η, ξ) ∈ ES1 ∩ C2.
Now f(η) and f(ξ) cannot be ES2-equivalent, since by condition (c), they must extend
q0λ and q1λ respectively.

Now let us prove (2b), which implies (2a). Let ⟨Cµα | α ∈ Sκ≤µ⟩ be the �κ
µ-sequence

and denote by tµ the function α 7→ Cµα .
Let player II define her strategy in the game GC(κ \ (S′

2 \S′
1)) exactly as in the proof

of (1b). Note that S′
2 \ S′

1 = S2 \ S1 since µ > ω. Denote this strategy by σ. We know
that, as above, player I is able to beat σ. However, now it is not enough, because in order
to be able to extend p0µ and p1µ in an ES′

1
-equivalent way, he needs to ensure that

(∗∗) S′
1 ∩ limω({αi | i < µ}) = ∅,

where limωX is the set of ω-limits of elements of X, i.e., we cannot rely on the sentence
followed by (∗) above. On the other hand (∗∗) is sufficient, because S′

1 ⊂ Sκµ ∪ Sκω.
Let us show that it is possible for player I to play against σ as required.
Let ν > κ be a sufficiently large cardinal and let M be an elementary submodel of

⟨Hν , σ, κ, t
µ⟩ such that |M | < κ and α = κ ∩M is an ordinal in S′

2 \ S′
1.

In the game, suppose that the sequence d = ⟨αj , βj | j < i⟩ has been played before
move i and suppose that this sequence is in M . Player I will now pick αi to be the
smallest element in Cµα which is above supj<i βj . Since Cµα ∩ β = Cµβ for any β ∈ limCµα
and Cµβ ∈M , this element is definable in M from the sequence d and tµ. This guarantees
that the sequence obtained on the following move is also in M . At limits the sequence is

588 Borel reductions on the generalized Cantor space

in M , because it is definable from tµ and σ. Since OTP(Cµα) = µ, the game ends at α
and player I wins. Also the requirement (∗∗) is satisfied because he picked elements only
from Cµα and so limω{αi | i < µ} ⊂ limω(C

µ
α) ⊂ α \B which gives the result.

Next let us prove (3b), which again implies (3a). The proofs of (4) and (5) are very
similar to that of (3) and are left to the reader.

So, let S1, A1, S2, A2, C and r be as in the statement of (3) and suppose that there
is a counterexample f . Assume that S2 \ S1 and A2 \ S1 are stationary, the other case
being symmetric. Let us define property P :
P : There exist p, p′ ∈ (2α)2, p = (p1, p2) and p′ = (p′1, p

′
2) such that

(a) r ⊂ p ∩ p′;
(b) p2 = p′2, (p1, p′1) ∈ E∗

S1
(α+ 1) (see Definition 3.9, page 584);

(c) for all η ∈ C ∩ Np and η′ ∈ C ∩ Np′ , η = (η1, η2), η′ = (η′1, η
′
2), if η2 = η′2 and

(η1, η
′
1) ∈ E∗

S1
, then f(η)1 sd f(η′)1 ⊂ dom p1 where f(η) = (f(η)1, f(η)2).

We will show that both P and ¬P lead to a contradiction. Assume first ¬P . Now
the argument is similar to the proof of (1b). Player II defines her strategy in the same
way but this time she chooses the elements pni and qni from (2α)2 instead of 2α so that
pni = (pni,1, p

n
i,2), q

n
i = (qni,1, q

n
i,2) and, for all i < λ, p0i,2 = p1i,2. In building the strategy

she looks only at qni,1 and ignores qni,2. In other words she pretends that the game is for
ES1 and ES2 in the proof of (1). At the even moves she extends p0i,1 and p1i,1 by η and η′

which witness the failure of item (c) (but not of (a) and (b)) of property P for p0i and p1i .
Then there is α ∈ f(η)1 sd f(η′)1, α > dom p0i,1. And then she chooses q0i,1 and q1i,1 to be
initial segments of f(η)1 and f(η′)1 respectively.

At the odd moves she just extends p0i,1 and p1i,1 in an ES1-equivalent way, so that she
finds an α > dom p0i,1, q

0
i,1 and q1i,1 such that q0i,1(α) = q1i,1(α) and f [Np0i

∩ C] ⊂ Nq0i
.

As in the proof of (1), I responses by playing towards an ordinal in S2 \ S1. During
the game they either hit a point at which q0i,2 and q1i,2 cannot be extended to be EA2-
equivalent or else they play the game to the end whence q0λ,1 and q1λ,1 cannot be extended
in a ES2-equivalent way but p0λ and p1λ can be extended to ES1 ⊗ EA1-equivalent way.

Assume that P holds. Fix p and p′ which witness that. Now player II builds her
strategy as if they were playing between ES1 and EA2 . This time she concentrates on
q0i,2 and q1i,2 instead of q0i,1 and q1i,1. At the even moves she extends p0i,1 and p1i,1 by η

and η respectively for some η. Also, as above, p0i,2 and p1i,2 are extended in the same
way. By item (c), f(η)1 sd f(η′)1 is bounded by dom p0i,1, but f(η) and f(η′) cannot be
ES2 ⊗ EA2-equivalent, because f is assumed to be a reduction. Hence there must exist
α > dom p0i,1, q

0
i,2 and q0i,2 such that q0i,2(α) ̸= q1i,2(α). The rest of the argument goes

similarly as above. �

Corollary 3.18 If GCλ-characterization holds for κ and S ⊂ κ is λ-stationary, then
E0 ̸≤ ES. In particular, if S is ω-stationary, then E0 ̸≤ ES.

Proof. This follows from Theorem 3.17(1a) by taking S1 = ∅, since E∅ = E0 and GCω-
characterization holds for κ. �

Corollary 3.19 There is an antichain2 of Borel equivalence relations on 2κ of length 2κ.

2 By an antichain I refer here to a family of pairwise incomparable elements unlike e.g. in forcing
context.

The Infinity Project 589

Proof. Take disjoint ω-stationary sets Si, i < κ. Let f : κ × 2 → κ be a bijection. For
each η ∈ 2κ let Aη = {(α, n) ∈ κ× 2 | (n = 0∧ η(α) = 1)∨ (n = 1∧ η(α) = 0)}. For each
η ̸= ξ clearly Aη \Aξ ̸= ∅ ̸= Aξ \Aη. Let

Sη = ⋒i∈f [Aη]Si.
Now {ESη | η ∈ 2κ} is an antichain by Theorem 3.17(1b). �

Let us show that all these relations are below E0. It is already shown that they are
not above it (Corollary 3.18), provided GCλ-characterization holds for κ. Again, similar
ideas will be used in the proof of Theorems 3.1 and 3.2.

Theorem 3.20 For all S, ES ≤B E0.

Proof. Let us show that ES is reducible to E0 on κκ, which is in turn bireducible with
E0 on 2κ (see [5]). Let us define an equivalence relation ∼ on 2<κ as on page 585, such
that p ∼ q if and only if dom p = dom q and p sd q is eventually constant, i.e., for some
α < dom p, (p sd q)(γ) is the same for all γ ∈ [α, dom p). Let s : 2<κ → κ be a map
such that p ∼ q ⇔ s(p) = s(q). Let {Ai | i ∈ S} be a partition of limκ into disjoint
unbounded sets. Suppose η ∈ 2κ and define f(η) = ξ ∈ κκ as follows:
� If α is a successor, α = β + 1, then ξ(α) = η(β).
� If α is a limit, then α ∈ Ai for some i ∈ S. Let ξ(α) = s(η | i).

Let us show that f is the desired reduction from ES to E0. Assume that η and ξ are
ES-equivalent. If α is a limit and α ∈ Ai, then, since η and ξ are ES-equivalent, we
have η | i ∼ ξ | i, so s(η | i) = s(ξ | i) and so f(η)(α) = f(ξ)(α). There is β such
that η(γ) = ξ(γ) for all γ > β. This implies that for all successors γ > β we also have
f(η)(γ) = f(ξ)(γ). Hence f(η) and f(ξ) are E0-equivalent. Assume now that η and ξ
are not ES-equivalent. Then there are two cases:

(1) η sd ξ is unbounded. Now f(η)(β + 1) = η(β) and f(ξ)(β + 1) = ξ(β) for all β,
so we have

{β | η(β) ̸= ξ(β)} = {β | f(η)(β + 1) ̸= ξ(β + 1)}.
If the former is unbounded, then so is the latter.

(2) For some i ∈ S, η | i ̸∼ ξ | i. This implies that f(η)(α) ̸= f(ξ)(α) for all α ∈ Ai.
and we get that {β | f(η)(β) ̸= ξ(β)} is again unbounded.

It is easy to check that f is continuous. �

3.3 Proofs of the main theorems

Proof of Theorem 3.1. The subject of the proof is that for a regular λ < κ, if GCλ-
characterization holds for κ, then the order ⟨P(κ),⊂NS(λ)⟩ can be embedded into ⟨EBκ ,≤B⟩
strictly below E0 and above id2κ .

Let h : ω×κ→ κ be a bijection. Let h̃ : 2ω×κ → 2κ be defined by h̃(η)(α) = η(h−1(α)).
We define the topology on 2ω×κ to be generated by the sets {h̃−1V | V is open in 2κ}.
Then h̃ is a homeomorphism between 2ω×κ and 2κ. If g : κ × κ → κ is a bijection, we
similarly get a topology onto 2κ×κ and a homeomorphism g̃ from 2κ×κ onto 2κ. By
combining these two we get a homeomorphism between 2ω×κ×2κ and 2κ, and so without
loss of generality we can consider equivalence relations on these spaces.

For a given equivalence relation E on 2κ, let E be the equivalence relation on 2ω×κ×2κ
defined by

((η, ξ), (η′, ξ′)) ∈ E ⇐⇒ η = η′ ∧ (ξ, ξ′) ∈ E.

590 Borel reductions on the generalized Cantor space

Essentially E is the same as id⊗E, since 2ω×κ ≈ 2κ.

Remark 3.21 Corollary 3.12, Theorem 3.17 and Corollary 3.18 hold even if ES is re-
placed everywhere by ES for all S ⊂ κ.

Proof. Let us show this for Theorem 3.17(1). The proof goes exactly as the proof of
Theorem 3.17(1), but player I now picks the functions pnk from ⋒α<κ2ω×α × 2α instead
of 2<κ, pnk = (pnk,1, p

n
k,2), and requires that at each move p0k,1 = p1k,1. Otherwise the

argument proceeds in the same manner. Similarly for 3.17(2), 3.17(3), 3.17(4) and 3.17(5).
Modify the proof of the first part of Theorem 3.11 in a similar way to obtain the result

for Corollary 3.12. Corollary 3.18 follows from the modified version of Theorem 3.17. �
For S ⊂ κ, let

G(S) = ESκλ\S .

Let us show that G : P(κ)→ EBκ is the desired embedding. Without loss of generality
let us assume that G is restricted to P(Sκλ), whence stationary is the same as λ-stationary
and non-stationary is the same as not λ-stationary. For arbitrary S1, S2 ⊂ Sκλ we have to
show:

(1) If S2 \ S1 is stationary, then ES1 ̸≤B ES2 .
(2) If S2 \ S1 is non-stationary, then ES1 ≤B ES2 .
(3) id2κ �B ES1 �B E0.

If η ∈ 2ω×κ, denote ηi(α) = η(i, α) and (ηi)i<ω = η.

Claim 1 If S2 \ S1 is stationary, then ES1 ̸≤B ES2 . Also E0 ̸≤ ES .

Proof. It follows from Theorem 3.17(1a) and Remark 3.21. �
Claim 2 If S2 \ S1 is non-stationary, then ES1 ≤B ES2 .

Proof. Let us split this into two parts according to the stationarity of S2. Assume first
that S2 is non-stationary. Let C be a cub set outside S2. Let f : 2κ → 2ω×κ × 2κ

be the function defined as follows. For η ∈ 2κ, let f(η) = ⟨(ηi)i<ω, ξ⟩ be such that
ηi(α) = 0 for all α < κ and i < ω, and ξ(α) = 0 for all α /∈ C. If α ∈ C, then let
ξ(α) = η(OTP(α ∩C)). This is easily verified to be a reduction from E0 to ES2 . By the
following Claim 3, ES1 ≤B E0, so we are done.

Assume now that S2 is stationary. Note that then S1 is also stationary. Let C be a
cub set such that S2 ∩ C ⊂ S1. Assume that ⟨(ηi)i<ω, ξ⟩ ∈ 2ω×κ × 2κ and let us define

f(⟨(ηi)i<ω, ξ⟩) = ⟨(η′i)i<ω, ξ′⟩ ∈ 2ω×κ × 2κ

as follows. For i ≥ 0, let
η′i+1 = ηi.

For all α < κ, let ξ′(α) = ξ(min(C \ α)). Then let s be the function defined in the proof
of Theorem 3.11 (on page 585) and for all α < κ let β(α) be the α-th element of S1 \ S2.
For all α < κ, let

η′0(α) = s(ξ | β(α)).
Let us show that this defines a continuous reduction.

Suppose ⟨(η0i)i<ω, ξ0⟩ and ⟨(η1i)i<ω, ξ1⟩ are ES1-equivalent. Denote their images under
f by ⟨(ρ0i)i<ω, ζ0⟩ and ⟨(ρ1i)i<ω, ζ1⟩ respectively. Since η0i = η1i for all i < ω, we have
ρ0i = ρ1i for all 0 < i < ω. Since for all α ∈ S1 we have that ξ0 | α and ξ1 | α are
∼-equivalent (as in the definition of s), we have that ρ00(β) = ρ10(β) for all β < κ.

The Infinity Project 591

Suppose now that α ∈ S2. The aim is to show that ζ0 | α ∼ ζ1 | α. If α /∈ C, then
there is β < α such that C ∩ (β, α) = ∅, because C is closed. This implies that for all
β < γ < γ′ < α, min(C \ γ′) = min(C \ γ), so by the definition of f , ζ0(γ) = ζ0(γ′)
and ζ1(γ) = ζ1(γ′). Now by fixing γ0 between β and α we deduce that ζ0 | (β, α) is
constant and ζ1 | (β, α) is constant, since for all γ < α we have ζ0(γ) = ζ0(γ0) and
ζ1(γ) = ζ1(γ0) = ζ1(γ). Hence (ζ0 sd ζ1) | (β, α) is constant, which by the definition of
∼ implies that ζ0 | α ∼ ζ1 | α.

If α ∈ C, then, since α is also in S2, we have by the definition of C that α ∈ S1.
Thus, there is β < α such that (ξ0 sd ξ1) | (β, α) is constant, which implies that for some
k ∈ {0, 1} we have (ζ0 sd ζ1)(γ) = k for all γ ∈ (β, α) ∩ C. But if γ ∈ (β, α) \ C, then,
again by the definition of f , we have (ζ0 sd ζ1)(γ) = (ζ0 sd ζ1)(γ′) for some γ ∈ (β, α)∩C,
so (ζ0 sd ζ1)(γ) also equals k.

This shows that ζ0 and ζ1 are E∗
S2

-equivalent. It remains to show that they are E0-
equivalent. But since ξ0 and ξ1 are E0-equivalent, the number k ∈ {0, 1} referred above
equals 0 for all α large enough and we are done.

Next let us show that if ⟨(η0i)i<ω, ξ0⟩ and ⟨(η1i)i<ω, ξ1⟩ are not ES1-equivalent, then
⟨(ρ0i)i<ω, ζ0⟩ and ⟨(ρ1i)i<ω, ζ1⟩ are not ES2-equivalent. This is just reversing implications
of the above argument. If η0i ̸= η1i for some i < ω, then ρ0i+1 ̸= ρ1i+1, so we can assume
that (ξ0, ξ1) /∈ ES1 . If ξ0 and ξ1 are not E∗

S1
-equivalent, then ρ0(α) ̸= ρ1(α) for some

α < κ.
The remaining case is that ξ0 and ξ1 are E∗

S1
-equivalent but not E0-equivalent. But

then in fact ξ0 sd ξ1 is eventually equal to 1, since otherwise the sets

C1 = {α | {β < α | (ξ0 sd ξ1)(β) = 1} is unbounded in α}

and
C2 = {α | {β < α | (ξ0 sd ξ1)(β) = 0} is unbounded in α}

are both cub and, by the stationarity of S1, there exists a point α ∈ C1 ∩ C2 ∩ S1 which
contradicts the fact that ξ0 and ξ1 are E∗

S1
-equivalent. So ξ0 sd ξ1 is eventually equal to 1

and this finally implies that also ζ0 and ζ1 cannot be E0-equivalent. �

Claim 3 Let S ⊂ Sκλ . Then id �B ES <B E0. If S is stationary, then also E0 ̸≤B ES .

Proof. If η ∈ 2κ, let η0 = η and ηi(α) = ξ(α) = 0 for all α < κ. Then η 7→ ⟨(ηi)i<ω, ξ⟩
defines a reduction from id to ES . On the other hand ES is not reducible to id by
Remark 3.21.

Let u : 2ω×κ → 2κ be a reduction from id2ω×κ to E0. Let v : 2κ → 2κ be a reduction
from ES to E0 which exists by 3.20. Let {A,B} be a partition of κ into two disjoint
unbounded subsets. Let (η, η′) ∈ 2ω×κ × 2κ and let us define ξ = f(η, η′) ∈ 2κ. If α ∈ A,
then let ξ(α) = u(η)(OTP(α ∩ A)). If α ∈ B, then let ξ(α) = v(η′)(OTP(α ∩ B)). (See
page 580 for notation.)

Now if ((η0, η′0), (η1, η′1)) ∈ (2ω×κ × 2κ)2 are ES-equivalent, then u(η0) sdu(η1) and
v(η′0) sd v(η

′
1) are eventually equal to zero, which clearly implies that f(η0, η′0) sd f(η1, η′1)

is eventually zero, and so f(η0, η′0) and f(η1, η
′
1) are E0-equivalent. Similarly, if (η0, η′0)

and (η1, η
′
1) are not ES-equivalent, then either u(η0) sdu(η1) or v(η′0) sd v(η′1) is not even-

tually zero, and so f(η0, η′0) and f(η1, η′1) are not E0-equivalent.
If S is stationary, then E0 ̸≤B ES by Corollary 3.18 and Remark 3.21. �

This completes the proof of Theorem 3.1. �

592 Borel reductions on the generalized Cantor space

Proof of Theorem 3.2. Let us review the statement of the theorem: assuming κ = ω1, or
κ = λ+ and �λ, the partial order ⟨P(κ),⊂NS⟩ can be embedded into ⟨EBκ ,≤B⟩.

If κ = ω1, then this is just the second part (a special case) of Corollary 3.7 on page 583
and follows from Theorem 3.1.

Recall Definition 3.16 on page 585. Let us see that if α < κ, then ⋒i<α2κ×{i} is
homeomorphic to 2κ and so the domains of the forthcoming equivalence relations can be
thought without loss of generality to be 2κ. So fix α < κ. For all β+1 < α let ζβ : β+1→ 2
be the function ζβ(γ) = 0 for all γ < β and ζβ(β) = 1, and let ζα : α→ 2 be the constant
function with value 0. Clearly (ζβ)β≤α is a maximal antichain. By rearranging the
indexation we can assume that (ζβ)β<α is a maximal antichain. If η ∈ 2κ×{i}, i < α, let
ξ = η + i be the function with dom ξ = [i+ 1, κ) and ξ(γ) = η(OTP(γ \ i)) and let

f(η) = ζi
⌢(η + i).

Then f is a homeomorphism ⋒i<α2κ×{i} → 2κ.
Assume S ⊂ κ and let us construct the equivalence relation HS . Denote for short

r = reg κ, the set of regular cardinals below κ. Since κ is not inaccessible, |r| < κ. Let
{Kµ ⊂ Sκω | µ ∈ r} be a partition of Sκω into disjoint stationary sets. For each µ ∈ r \{ω},
let Aµ = Bµ

nr(Kµ) be the set given by Theorem 3.14. Additionally let {A0
ω, A

1
ω, A

2
ω, A

3
ω}

be a partition of Kω into disjoint stationary sets.
Let

HS =
(
id2κ ⊗EA2

ω∪((S∩Sκω)\A0
ω)
⊗ EA0

ω

)
⊕
(
id2κ ⊗EA3

ω∪((S∩Sκω)\A1
ω)
⊗ EA1

ω

)
⊕

⊕
µ∈r, µ>ω

(
id2κ ⊗E(S∩Sκµ)∪Aµ

)
.

This might require a bit of explanation. HS is a disjoint union of the equivalence relations
listed in the equation. The final part of the equation lists all the relations obtained by
splitting the set S into pieces of fixed uncountable cofinality and coupling them with
the non-reflecting ω-stationary sets Aµ. The operation E 7→ id2κ ⊗E is the same as the
operation E 7→ E in the proof of Theorem 3.1 above after the identification 2ω×κ ≈ 2κ.
The first two lines of the equation deal with the ω-cofinal part of S. It is trickier, because
the “coding sets” Aµ also consist of ω-cofinal ordinals. The way we have built up the
relations makes it possible to use Theorem 3.17 to prove that S 7→ Hκ\S is the desired
embedding.

In order to make the sequel a bit more readable, let us denote

B0
ω(S) =

(
id2κ ⊗EA2

ω∪((S∩Sκω)\A0
ω)
⊗ EA0

ω

)
,

B1
ω(S) =

(
id2κ ⊗EA3

ω∪((S∩Sκω)\A1
ω)
⊗ EA1

ω

)
,

Bµ(S) =
(
id2κ ⊗E(S∩Sκµ)∪Aµ

)
,

for µ ∈ r \ {ω}. With this notation we have

HS = B0
ω(S)⊕B1

ω(S)⊕
⊕

µ∈r, µ>ω
Bµ(S).

Let us show that S 7→ Hκ\S is an embedding from ⟨P(κ),⊂NS⟩ into ⟨EBκ ,≤B⟩. Sup-
pose S2 \ S1 is non-stationary. Then for each µ ∈ r \ {ω} the set(

(Sκµ ∩ S2) ∪Aµ
)
\
(
(Sκµ ∩ S1) ∪Aµ

)

The Infinity Project 593

is non-stationary as well as are the sets(
A2
ω ∪ ((S2 ∩ Sκω) \A0

ω)
)
\
(
A2
ω ∪ ((S1 ∩ Sκω) \A0

ω)
)

and (
A3
ω ∪ ((S2 ∩ Sκω) \A1

ω)
)
\
(
A3
ω ∪ ((S1 ∩ Sκω) \A1

ω)
)
,

so by Claim 2 of the proof of Theorem 3.1 (page 590) we have for all µ ∈ r \ {ω} that

(id2κ ⊗E(S1∩Sκµ)∪Aµ) ≤B (id2κ ⊗E(S2∩Sκµ)∪Aµ),

(id2κ ⊗EA2
ω∪((S1∩Sκω)\A0

ω)
) ≤B (id2κ ⊗EA2

ω∪((S2∩Sκω)\A0
ω)
),

and
(id2κ ⊗EA3

ω∪((S1∩Sκω)\A1
ω)
) ≤B (id2κ ⊗EA3

ω∪((S2∩Sκω)\A1
ω)
).

Of course this implies that, for all µ ∈ r \ {ω},
(id2κ ⊗EA2

ω∪((S1∩Sκω)\A0
ω)
⊗ EA0

ω
) ≤B (id2κ ⊗EA2

ω∪((S2∩Sκω)\A0
ω)
⊗ EA0

ω
)

and that

(id2κ ⊗EA3
ω∪((S1∩Sκω)\A1

ω)
⊗ EA1

ω
) ≤B (id2κ ⊗EA3

ω∪((S2∩Sκω)\A1
ω)
⊗ EA1

ω
),

which precisely means that B0
ω(S1) ≤B B0

ω(S2), B1
ω(S1) ≤B B1

ω(S2) and Bµ(S1) ≤B
Bµ(S2) for all µ ∈ r \ {ω}. Combining these reductions, we get a reduction from HS1

to HS2 .
Assume that S2 \S1 is stationary. We want to show that HS1 ̸≤B HS2 . Here HS1 is a

disjoint union of the equivalence relations B0
ω(S1), B1

ω(S1) and Bµ(S1) for µ ∈ r \ {ω}.
Let us call these equivalence relations the building blocks of HS1 , and similarly for HS2 .

Each building block ofHS1 can be easily reduced toHS1 via inclusion, so it is sufficient
to show that there is one block that cannot be reduced to HS2 . We will show that if µ1
is the least cardinal such that Sκµ1 ∩ (S2 \ S1) is stationary, then
� that building block is Bµ1(S1) if µ1 > ω;
� that building block is either B0

ω(S1) or B1
ω(S1) if µ1 = ω.

Such a cardinal µ1 exists because κ is not inaccessible and |r| < κ.
Suppose that f is a reduction from a building block of HS1 , call it B, to HS2 . HS2 is

a disjoint union of less than κ building blocks whose domains’ inverse images decompose
dom f into less than κ disjoint pieces and one of them, say C, is not meager. By the
property of Baire one can find a basic open set U such that C ∩U is co-meager in U . Let
C(f) be a co-meager set in which f is continuous. Now f | (U ∩C∩C(f)) is a continuous
reduction from B restricted to (U ∩ C ∩ C(f))2 to a building block of HS2 . Thus it
is sufficient to show that this correctly chosen building block of HS1 is not reducible
to any of the building blocks of HS2 on any such U ∩ C ∩ C(f). This will follow from
Theorem 3.17 and Remark 3.21 once we go through all the possible cases. So the following
lemma concludes the proof.

Lemma 3.22 Assume that µ1 ∈ r is the least cardinal such that (S2 \ S1) ∩ Sκµ1 is
stationary. If µ1 > ω, then

(i) for all µ2 > ω, Bµ1(S1) ̸≤B Bµ2(S2),
(ii) Bµ1(S1) ̸≤B B0

ω(S2),
(iii) Bµ1(S1) ̸≤B B1

ω(S2),
and if µ1 = ω then
(i*) for all µ2 > ω, B0

ω(S1) ̸≤B Bµ2(S2),

594 Borel reductions on the generalized Cantor space

(ii*) for all µ2 > ω, B1
ω(S1) ̸≤B Bµ2(S2),

(iii*) either

(3.1) B0
ω(S1) ̸≤B B0

ω(S2) and B0
ω(S1) ̸≤B B1

ω(S2)

or

(3.2) B1
ω(S1) ̸≤B B0

ω(S2) and B1
ω(S1) ̸≤B B1

ω(S2).

Proof of the Lemma. First we assume µ1 > ω.
(i) There are two cases:

Case 1: µ2 = µ1. Write B = Aµ1 = Aµ2 and S′
1 = (S1∩Sκµ1)∪B and S′

2 = (S2∩Sκµ2)∪B.
Now Bµ1(S1) = id⊗ES′

1
, Bµ2(S2) = id⊗ES′

2
. Since, by definition, B = Bµ

nr(Kµ)

where Kµ ⊂ Sκω is stationary, and (S2 \ S1) ∩ Sκµ1 is stationary, the sets S′
1 and

S′
2 satisfy the assumptions of Theorem 3.17(2b), so the statement follows from

Theorem 3.17(2b) and Remark 3.21.
Case 2: µ2 ̸= µ1. Let S′

1 = (S1 ∩ Sκµ1) ∪ Aµ1 and S′
2 = (S2 ∩ Sκµ2) ∪ Aµ2 whence

Bµ1(S1) = id⊗ES′
1

and Bµ2(S2) = id⊗ES′
2
. Now S′

1 ⊂ Sκ≥ω and S′
2 ⊂ Sκ≥ω and

since Aµ1 ∩Aµ2 = ∅, the result follows from Theorem 3.17(1b) and Remark 3.21.
(ii) Let S′

1 = (S1 ∩ Sκµ1) ∪Aµ1 , S
′
2 = A2

ω ∪ ((S2 ∩ Sκω) \A0
ω), and A′

2 = A0
ω. By definition,

B0
ω(S2) = id2κ ⊗ES′

2
⊗ EA′

2

and Bµ1(S1) = ES′
1
. Since Aµ1 ∩ A2

ω = ∅, S′
1 ∩ Sκω = Aµ1 and A2

ω ⊂ S′
2, we have

that S′
2 \ S′

1 is ω-stationary, because it contains A2
ω. Also A0

ω \ S′
1 = A0

ω, because
S′
1∩A0

ω = ∅, so A′
2\S′

1 is ω-stationary. Now the result follows from Theorem 3.17(4b)
and Remark 3.21.

(iii) Similar to (ii).
Then we assume µ1 = ω.

(i*) Let S′
1 = A2

ω ∪ ((S1 ∩ Sκω) \ A0
ω), A′

1 = A0
ω A′

2 = Aµ2 and S′
2 = (S2 ∩ Sκµ2). Since

A0
ω ∩ Aµ2 = ∅, we have that A′

2 \ A′
1 is ω-stationary, so by Theorem 3.17(5) and

Remark 3.21,
id⊗ES′

1
⊗ EA′

1
̸≤B id⊗ES′

2∪A′
2
,

which by definitions is exactly the subject of the proof.
(ii*) Similar to (i*).

(iii*) The situation is split into two cases, the latter of which is split into two subcases:
Case 1: ((S2 \ S1) ∩ Sκω) \ (A2

ω ∪ A0
ω) is stationary. Let S′

1 = A2
ω ∪ ((S1 ∩ Sκω) \ A0

ω),
A′

1 = A0
ω, S′

2 = A2
ω ∪ ((S2 ∩ Sκω) \ A0

ω) and A′
2 = A0

ω. Now A′
2 \ S′

1 is obviously
ω-stationary, since it is equal to A0

ω. Also S′
2 \ S′

1 is stationary, because it equals
to ((S2 \ S1) ∩ Sκω) \ (A2

ω ∪ A0
ω) which is stationary by the assumption. Now

the first part of (1) follows from Theorem 3.17(3b) and Remark 3.21, because
B0
ω(S1) = id⊗ES′

1
⊗ EA′

1
and B0

ω(S2) = id⊗ES′
2
⊗ EA′

2
. On the other hand let

S′′
2 = A3

ω ∪ ((S2 ∩ Sκω) \ A1
ω) and A′′

2 = A1
ω. Now S′′

2 \ A′
1 is stationary, because

A3
ω ⊂ S′′

2 but A3
ω ∩A′

1 = A3
ω ∩A0

ω = ∅. Also A′′
2 \A′

1 is stationary since A′′
2 ∩A′

1 =
A1
ω∩A0

ω = ∅. Now also the second part of (1) follows from Theorem 3.17(3b) and
Remark 3.21, because B0

1(S1) = id⊗ES′
1
⊗ EA′

1
and B1

1(S2) = id⊗ES′′
2
⊗ EA′′

2
.

Case 2: ((S2 \ S1) ∩ Sκω) \ (A2
ω ∪A0

ω) is non-stationary.
Case 2a: ((S2 \ S1) ∩ Sκω) \ (A3

ω ∪ A1
ω) is stationary. Now (2) follows from Theo-

rem 3.17(3b) and Remark 3.21 in a similar way as (1) followed in Case 1.

The Infinity Project 595

Case 2b: ((S2 \ S1) ∩ Sκω) \ (A3
ω ∪A1

ω) is non-stationary. We have both that

(3.3) ((S2 \ S1) ∩ Sκω) \ (A2
ω ∪A0

ω) is non-stationary

and that

(3.4) ((S2 \ S1) ∩ Sκω) \ (A3
ω ∪A1

ω) is non-stationary.

Now from (3.3) it follows that S2 \ S1 ⊂NS(ω) A
2
ω ∪ A0

ω, and from (3.4) it
follows that S2 \ S1 ⊂NS(ω) A

3
ω ∪A1

ω. This is a contradiction, because S2 \ S1
is ω-stationary and (A2

ω ∪A0
ω) ∩ (A3

ω ∪A1
ω) = ∅. �

This completes the proof of Theorem 3.2. �

4 On chains in ⟨EB
κ ,≤B⟩

There are chains of order type κ+ in Borel equivalence relation on 2κ:

Theorem 4.1 Let κ > ω. There are equivalence relations Ri ∈ EBκ , for i < κ+, such
that i < j ⇔ Ri �B Rj � E0.

Remark 4.2 In many cases there are κ+-long chains in the power set of κ ordered by
inclusion modulo the non-stationary ideal whence a weak version of this theorem could
be proved using Theorem 3.2. Namely if the ideal IκNS of non-stationary subsets of κ is
not κ+-saturated, then there are κ+-long chains. In this case being not κ+-saturation
means that there exists a sequence ⟨Ai | i < κ+⟩ of subsets of κ such that Ai is stationary
for all i but Ai ∩ Aj is non-stationary for all i ̸= j. Now let fα be a bijection from κ to
α for all α < κ+ and let

Bα = ▽
i<α

Ai =
{
α | for some i < α, α ∈ Afα(i)

}
.

It is not difficult to see that ⟨Bα | α < κ+⟩ is a chain. On the other hand, the existence
of such a chain implies that IκNS is not κ+-saturated.

By a theorem of Gitik and Shelah [11, Theorem 23.17], IκNS is not κ+-saturated
for all κ ≥ ℵ2. By a result of Shelah [11, Theorem 38.1], it is consistent relative to
the consistency of a Woodin cardinal that Iℵ1

NS is ℵ2-saturated in which case there are
no chains of length ω2 in ⟨P(ω1),⊂NS⟩. On the other hand, in the model provided by
Shelah, CH fails. According to Jech [3] it is an open question whether CH implies that
Iℵ1
NS is not ℵ2-saturated.

However, as the following shows, it follows from ZFC that there are κ+-long chains
in ⟨EBκ ,≤B⟩ for any uncountable κ.

Proof of Theorem 4.1. By the proof of Corollary 3.19, page 588, one can find ω-stationary
sets Si for i < κ+ such that Si \ Sj and Sj \ Si are stationary whenever i ̸= j. For all
j ∈ [1, κ+), let

Rj =
⊕
i<j

ESi ,

where the operation ⊕ is from Definition 3.16, page 585.
Let us denote PA = ⋒i∈A2κ×{i} for A ⊂ κ+, i.e., for example Pj = ⋒i<j2κ×{i}. Let us

show that
(1) if i < j, then Ri ≤B Rj ;
(2) if i < j, then Rj ̸≤B Ri;

596 Borel reductions on the generalized Cantor space

(3) for all i < κ+, Ri �B E0.
Item (1) is simple: let f : Pi → Pj be the inclusion map (as Pi ⊂ Pj). Then f is clearly
a reduction from Ri to Rj .

Suppose then that i < j and that i ≤ k < j. To prove (2) it is sufficient to show
that there is no reduction from ESk to Rj . Let us assume that f : 2κ → Pj is a Borel
reduction from ESk to Rj . Now

2κ = ⋒α<if−1[P{α}],

so one of the sets f−1[P{α}] is not meager; let α0 be an index witnessing this. Note
that α0 < k, because α0 < i ≤ k. Because f is a Borel function and Borel sets have
the property of Baire, we can find a p ∈ 2<κ such that C = Np ∩ C(f) ∩ f−1[P{j}] is
co-meager in Np. But now f | C is a continuous reduction from ESk ∩ C2 to ESα which
contradicts Theorem 3.17(1b).

To prove (3) we will show first that Ri ≤B
⊕

j<iE0 and then that
⊕

j<iE0 ≤B E0,
after which we will show that E0 ̸≤B Ri for all i.

Let fj be a reduction from ESj to E0 for all j < i given by Claim 3 of the proof of
Theorem 3.1. Then combine these reductions to get a reduction from Ri to

⊕
j<iE0. To

be more precise, for each η ∈ P{j} let f(η) be ξ such that ξ ∈ P{j} and ξ = fj(η).
Let {Ak | k ≤ i} be a partition of κ into disjoint unbounded sets. Let η ∈ Pi. By

definition, η ∈ P{k} for some k < i. Define ξ = F (η) as follows. Let f : Ai → κ be a
bijection.
� If α ∈ Ai, then let ξ(α) = η(f(α)).
� If α ∈ Aj and j ̸= k, then let ξ(α) = 0.
� If α ∈ Ak, then let ξ(α) = 1.

It is easy to see that F is a continuous reduction.
Assume for a contradiction that E0 ≤B Ri for some i < κ+. Then by (1) and

transitivity, E0 ≤B Rj for all j ∈ [i, κ+). By the above also Rj ≤B E0 for all j ∈ [i, κ+)
which, again by transitivity, implies that the relations Rj for j ∈ [i, κ+) are mutually
bireducible to each other, which contradicts (2). �

Acknowledgements

This work is part of my Ph.D. thesis, defended in Fall 2011. I wish to express my gratitude
to my supervisor Tapani Hyttinen for his careful attention towards this work, his valuable
advice and some technical help regarding the proof of Theorem 3.2.

I am indebted to the Finnish National Graduate School in Mathematics and its Ap-
plications for supporting my post-graduate studies during the preparation of this article.

This work is part of the project The Myriad Aspects of Infinity supported by the John
Templeton Foundation (Grant #13152).

References
[1] S. Adams, A. S. Kechris: Linear algebraic groups and countable Borel equivalence relations, J. Amer.

Math. Soc. 13 (2000), 909–943.
[2] M. Burke and M. Magidor: Shelah’s pcf theory and its applications, Ann. Pure Appl. Logic, 1990.
[3] Handbook of Set Theory, Foreman, Matthew and Kanamori, Akihiro (eds.), 1st edition, 2010.
[4] S. D. Friedman, T. Hyttinen: On Borel equivalence relations in the generalized Baire space, submitted

to Arch. Math. Logic.

The Infinity Project 597

[5] S. D. Friedman, T. Hyttinen, V. Kulikov: Generalized descriptive set theory and classification theory,
CRM preprint no. 999, 2011.

[6] J. Gregory: Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic 41,
no. 3 (1976), 663–671.

[7] A. Halko: Negligible subsets of the generalized Baire space ωω1
1 , Ann. Acad. Sci. Fenn. Ser. A Diss.

Math. 108 (1996).
[8] T. Huuskonen, T. Hyttinen, M. Rautila: On the κ-cub game on λ and I[λ], Arch. Math. Logic 38

(1999), 589–557.
[9] T. Hyttinen: Games and infinitary languages, Ann. Acad. Sci. Fenn. Ser. A Diss. Math. 64 (1987),

1–32.
[10] T. Hyttinen, S. Shelah and H. Tuuri: Remarks on strong nonstructure theorems, Notre Dame J.

Formal Logic 34, no. 2 (1993), 157–168.
[11] T. Jech: Set Theory, Springer-Verlag, Berlin Heidelberg New York, 2003.
[12] A. Louveau, B. Velickovic: A note on Borel equivalence relations, Proc. Amer. Math. Soc. 120, no. 1

(1994), 255–259.
[13] A. Mekler, J. Väänänen: Trees and Π1

1-subsets of ω1ω1, J. Symbolic Logic 58, no. 3 (1993), 1052–
1070.

[14] S. Shelah: Reflecting stationary sets and successors of singular cardinals, Arch. Math. Logic 31
(1991), 25–53.

[15] S. Shelah: Diamonds, Proc. Amer. Math. Soc. 138 (2010), 2151–2161.

The Infinity Project

On ultrafilter extensions of models

Denis I. Saveliev†

† Department of Mathematical Logic and Theory of Algorithms, Faculty of Mechanics and Mathematics,
Moscow M.V. Lomonosov State University, Russia
d.i.saveliev@gmail.com

Abstract. We show that any model A can be extended, in a canonical way, to a model βA consisting
of ultrafilters over it. The extension preserves relationships between models: any homomorphism of A
into B extends to a continuous homomorphism of βA into βB. Moreover, if a model C carries a com-
pact Hausdorff topology compatible with its structure, then any homomorphism of A into C extends to
a continuous homomorphism of βA into C. This is also true for embeddings.

Introduction

In this paper, we present a new area in general model theory. Following [13], we show
that an arbitrary first-order model can be extended, in a canonical way, to the model (of
the same language) consisting of all ultrafilters over it, with a model-theoretic behavior
similar to the topological behavior of the largest compactification.

Recall standard facts concerning topology of ultrafilters (see [5, 7, 11]). The set βX
of ultrafilters over a set X carries a natural topology generated by elementary (cl)open
sets of the form

S̃ = {u ∈ βX : S ∈ u}
for all S ⊆ X. The space βX is compact Hausdorff, extremally disconnected (the clo-
sure of any open set is open), and it is, in fact, the Stone–Čech (and also Wallman)
compactification of the discrete space X, i.e., its largest compactification. This means
that X is dense in βX (one lets X ⊆ βX by identifying each x ∈ X with the principal
ultrafilter x̂), and any continuous mapping h of X into any compact space Y can be
uniquely extended to a continuous mapping h̃ of βX into Y . There exists a one-to-one
correspondence between filters over X and closed subsets of βX (a filter D corresponds
to {u ∈ βX : D ⊆ u} while a closed C ⊆ βX corresponds to

∩
C). The cardinality

of βX is 22
|X| for all infinite X. Some of these facts require a dose of AC. Actually, the

compactness of βX is equivalent to PI (the claim that {u ∈ βX : D ⊆ u} is nonempty for
each filter D) and can partly recover the cardinality evaluation (see [15]). PI is weaker
than AC but stronger than the existence of non-principal ultrafilters; the latter is still
unprovable in ZF alone (see [1]).

Here we deal with the case when X is endowed with a first-order structure, i.e., there
are some operations F, . . . and relations P, . . . on X. In Section 1 we describe a canonical
way to extend them to operations F̃ , . . . and relations P̃ , . . . on βX, thus extending the
model A = (X,F, . . . , P, . . .) to the model βA = (βX, F̃ , . . . , P̃ , . . .). In Section 2 we prove

This paper is a slightly revised and expanded version of [13].
†Partially supported by INFTY grant of ESF, RFBR grants 11-01-00958-a and 11-01-93107-a, and

grant NSh-5593.2012.1. The author thanks the John Templeton Foundation for its support through
Project #13152, Myriad Aspects of Infinity.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

599

600 On ultrafilter extensions of models

the First Extension Theorem, showing that the extension procedure preserves model-
theoretic relationships: if h is a homomorphism of A into B, then h̃ is a homomorphism
of βA into βB, and the same holds for embeddings and some other relationships between
models. In Section 3 we study topological properties of extended models. In Section 4
we prove the Second Extension Theorem: if C carries a compact Hausdorff topology, its
first-order structure has the same topological properties as ultrafilter extensions, and h is
a homomorphism of A into C, then h̃ is a homomorphism of βA into C, and similarly for
embeddings etc. This shows that the construction provides a right generalization of the
Stone–Čech (or Wallman) compactification of a discrete space X to the case when X is
endowed with a first-order structure. Finally, in Section 5 we mark directions for further
investigations, fix several problems, and mention a few results without proofs.

Historical remarks The largest compactification of Tychonoff spaces was discovered
independently by Čech and Stone in 1937; in a year, Wallman did the same for T1 spaces
(by using ultrafilters on lattices of closed sets); see [7] for more information. Our ultra-
filter extension procedure extends unary relations to elementary open sets, and unary
mappings to continuous mappings; thus, in the unary casef it gives classical concepts
known in the 30s. As for mappings and relations of greater arities, several instances of
their ultrafilter extensions were discovered only in the 60s. We isolate three areas where
such instances arose.

The first area concerns iterated ultrapowers. Frayne, Morel, and Scott [8] showed
that finite iteration of ultrapowers gives ultrapowers by using (in our terms) ultrafilter
extensions of taking n-tuples. The general construction of iterated ultrapowers, invented
by Gaifman and elaborated by Kunen, has become standard in model theory and set
theory (see [4, 12]).

The second area concerns ultrafilter extensions of semigroups. Such structures ap-
peared in the 60s as subspaces of function spaces; the first explicit construction of the
ultrafilter extension of a group is due to Ellis [6]. In the 70s Galvin and Glazer applied
them to give an easy proof of Hindman’s Finite Sums Theorem; the key idea was to
use idempotent ultrafilters. The method was used then by Hindman, van Douwen, Blass,
Protasov, and many others, and gave numerous applications of Ramsey theory in number
theory, algebra, topological dynamics, and ergodic theory. A partial case of the Second
Extension Theorem in which models are semigroups appeared in [3]. The book [11] is
a comprehensive treatise on this area, with an historical information.

The third area concerns modal logic. Characterizing modal definability, van Ben-
them [16] extended binary relations of frames to ultrafilters. Goldblatt [9] and then
Goranko [10] generalized this construction to relations of arbitrary arity. Their exten-
sions coincide with our extensions only for unary relations; in general, our extensions
are smaller. Goranko defines there also extensions of operations; moreover, he extends
models to arbitrary filters. However his filter extension of operations does not work
for ultrafilters, and he defines this case separately, in the same way as here. Goranko
proves a theorem analogous to the First Extension Theorem —they coincide for ultrafilter
extensions of operations.

It seems that the three areas have a very little knowledge about each other, if any.
Our construction of ultrafilter extensions of models, together with the mentioned basic

results, has appeared in [13]; here we present a slightly revised and expanded version.

The Infinity Project 601

1 Basic definitions

Here we describe our extensions of models by ultrafilters.
To extend a model A = (X,F, . . . , P, . . .), we extend operations F, . . . on X, i.e., map-

pings of Cartesian products of X into X itself, and relations P, . . . on X, i.e., subsets of
such products. Let us provide a slightly more general definition involving n-ary mappings
of X1 × · · · ×Xn into Y , and n-ary relations that are subsets of X1 × · · · ×Xn. We shall
use it, in particular, when we shall show that any mapping h of a certain kind between
models (e.g., a homomorphism) extends to h̃ of the same kind.

We start by defining ultrafilter extensions of mappings.

Definition 1.1 For an n-ary map F : X1×· · ·×Xn → Y , let F̃ : βX1×· · ·×βXn → βY
be defined as follows:

F̃ (u1, . . . , un) ={
S ⊆ Y : {x1 ∈ X1 : . . . {xn ∈ Xn : F (x1, . . . , xn) ∈ S} ∈ un . . .} ∈ u1

}
for all u1 ∈ βX1, . . . , un ∈ βXn.

Lemma 1.2 For all z1 ∈ X1 and u2 ∈ βX2, . . . , un ∈ βXn,{
x1 :

{
x2 : . . . {xn : F (x1, x2, . . . , xn) ∈ S} ∈ un . . .

}
∈ u2

}
∈ ẑ1

iff
{
x2 : . . . {xn : F (z1, x2, . . . , xn) ∈ S} ∈ un . . .

}
∈ u2.

Proof. Clear. �

Proposition 1.3 If F : X1×· · ·×Xn → Y , then F̃ : βX1×· · ·×βXn → βY . Moreover,
the restriction of F̃ on dom(F) is F .

Proof. By definition, dom(F̃) = βX1 × · · · × βXn, and a standard argument shows that
values of F̃ are ultrafilters. It follows from Lemma 1.2 that for all z1 ∈ X1, . . . , zn ∈ Xn,{

x1 : . . . {xn : F (x1, . . . , xn) ∈ S} ∈ ẑn . . .
}
∈ ẑ1 ↔ F (z1, . . . , zn) ∈ S.

Therefore,
F̃ (ẑ1, . . . , ẑn) = ŷ whenever F (z1, . . . , zn) = y,

and thus F̃ extends F up to identification of x and x̂. �

Let us comment on the construction. First, in the unary case, an F : X → Y extends
to F̃ : βX → βY by

F̃ (u) =
{
S ⊆ Y : {x ∈ X : F (x) ∈ S} ∈ u

}
.

This gives the standard unique continuous extension of F . Indeed, it is easy to see that
F̃ is continuous, and continuous extensions agreeing on a dense subset coincide.

Next, consider the binary case. F : X1 ×X2 → Y extends to F̃ : βX1 × βX2 → βY
by

F̃ (u1, u2) =
{
S ⊆ Y : {x1 ∈ X1 : {x2 ∈ X2 : F (x1, x2) ∈ S} ∈ u2} ∈ u1

}
.

This can be considered as the extension fulfilled in two steps: first one extends left
translations, then right ones. In the extended F , all right translations are continuous; in
terms of [11], the groupoid (βX, F̃) is right topological . Moreover, all left translations by
principal ultrafilters are continuous, and such an extension is unique.

602 On ultrafilter extensions of models

The extensions of mappings of arbitrary arity have analogous topological properties:
If F : X1 × · · · × Xn → Y and 1 ≤ i ≤ n, then for all x1 ∈ X1, . . . , xi−1 ∈ Xi−1 and
ui+1 ∈ βXi+1, . . . , un ∈ βXn, the mapping

u 7−→ F̃ (x̂1, . . . , x̂i−1, u, ui+1, . . . , un)

of βXi into βY is continuous. Moreover, F̃ is a unique such extension of F . A proof of
this fact will be given in the next section (Lemma 3.3).

Now we define ultrafilter extensions of relations.

Definition 1.4 Given P ⊆ X1 × · · · ×Xn, let P̃ be defined as follows:

⟨u1, . . . , un⟩ ∈ P̃ iff
{
x1 ∈ X1 : . . . {xn ∈ Xn : ⟨x1, . . . , xn⟩ ∈ P} ∈ un . . .

}
∈ u1,

for all u1 ∈ βX1, . . . , un ∈ βXn.

Proposition 1.5 If P ⊆ X1 × · · · × Xn, then P̃ ⊆ βX1 × · · · × βXn. Moreover, the
intersection P̃ ∩ (X1 × · · · ×Xn) is equal to P .

Proof. This is true by Lemma 1.2. �
Let us comment on the construction. If P is a unary relation on X, P ⊆ X, one has

u ∈ P̃ iff P ∈ u.
(The definition involves n-tuples; a 1-tuple ⟨x⟩ is just x.) Thus P̃ is an elementary open
set of βX; the extensions of all unary relations on X form the standard open basis of the
topology of βX. As we noted, the P̃ are in fact clopen.

If P is a binary relation, P ⊆ X1 ×X2, one has

⟨u1, u2⟩ ∈ P̃ iff
{
x1 ∈ X1 : {x2 ∈ X2 : ⟨x1, x2⟩ ∈ P} ∈ u2

}
∈ u1.

There is an easier way to say the same. Let ⟨ ⟩̃ denote the extension of the pairing
function ⟨ ⟩ (cf. Definition 11.1 in [11] —there ⟨ ⟩̃ is denoted by ⊗ and refered as a “tensor
product”; another name that is used is a “Fubini product”). Then

⟨u1, u2⟩ ∈ P̃ iff P ∈ ⟨u1, u2⟩̃ .
This formula displays a similarity to the formula with unary P explicitly.

As for topological properties of extended binary relations, it is easy to see that for
any x1 ∈ X1 and u2 ∈ βX2, the set {u1 ∈ βX1 : ⟨u1, u2⟩ ∈ P̃} is clopen in βX1, and the
set {u2 ∈ βX2 : ⟨x̂1, u2⟩ ∈ P̃} is clopen in βX2.

Likewise, if ⟨ ⟩̃ denotes the extension of taking n-tuples, one gets the following redef-
inition:

Proposition 1.6 Let P ⊆ X1 × · · · ×Xn. Then for all u1 ∈ βX1, . . . , un ∈ βXn,

⟨u1, . . . , un⟩ ∈ P̃ iff P ∈ ⟨u1, . . . , un⟩̃ .

Proof. Clear. �
The extensions of relations of arbitrary arity have analogous topological properties:

If P ⊆ X1 × · · · × Xn and 1 ≤ i ≤ n, then for every x1 ∈ X1, . . . , xi−1 ∈ Xi−1 and
ui+1 ∈ βXi+1, . . . , un ∈ βXn, the subset

{u ∈ βXi : ⟨x̂1, . . . , x̂i−1, u, ui+1, . . . , un⟩ ∈ P̃}
of βXi is clopen. A proof of this fact is also postponed to the next section (Lemma 3.7).

Now we are ready to define ultrafilter extensions of arbitrary models.

The Infinity Project 603

Definition 1.7 Given a model A = (X,F, . . . , P, . . .), let βA denote the extended model
(βX, F̃ , . . . , P̃ , . . .), called the ultrafilter extension of A.

Remarks
(1) Our use of the symbol ˜ is ambiguous in two respects. First, the same relation

or function can have distinct extensions depends on its implicit arity. Say, let
P ⊆ X × X. If P is regarded as a binary relation on X, then P̃ is a binary
relation on βX:

P̃ ⊆ βX × βX.
If P is considered as a unary relation on X × X, then P̃ is a unary relation
on β(X ×X):

P̃ ⊆ β(X ×X).

Note that for discrete X the spaces β(X × X) and βX × βX are not homeo-
morphic. Similarly for extensions of mappings. Second, the same set can have
distinct extensions when regarded as a function or as a relation. Say, let P be
a binary relation that is a function, and let FP denote this unary function. If
FP is an injection, then P̃ and F̃P do not coincide: P̃ = P , while F̃P ̸= FP
whenever βX ̸= X (as dom(FP) = βX). Nevertheless, the context usually
leaves no doubts, and so we adopt the notation.

(2) The example above suggests to ask about relations that coincide with their
extensions. Actually, this example near characterizes them. Let us say that
a relation P is almost injective iff for any i and all fixed x1, . . . , xi−1, xi+1, . . . , xn,
the set

Px1,...,xi−1,xi+1,...,xn = {xi : ⟨x1, . . . , xn⟩ ∈ P}
is finite. Note that a unary relation is almost injective iff it is finite. Then it
can be shown that P̃ = P iff P is almost injective. The ‘only if’ part assumes
that any infinite set carries a non-principal ultrafilter, which is weaker than the
compactness of βX but still inprovable in ZF. (The fact can be restated in
ZF alone if we redefine almost injective relations by replacing “is finite” with
“carries no ultrafilter”; in ZFC the definitions coincide, while in models without
ultrafilters all relations are almost injective.)

(3) Proposition 1.6 shows that extensions of n-ary relations can be defined via the
extension of taking n-tuples. Let us note that the latter extensions can be
defined iteratively via the extension of the pairing function only. Moreover,
extensions of an n-ary mapping F can be decomposed into a combination of two
extensions: of taking n-tuples and of F regarded as a unary mapping , i.e., with
the domain β(X×· · ·×X). Thus the whole construction of ultrafilter extensions
can be reduced to two simple basic cases: extensions of unary mappings and the
extension of pairing.

2 The First Extension Theorem

In this section, we establish our first main result showing that the extension procedure
preserves homomorphisms and some other model-theoretic relationships (Theorem 2.7).

The following lemma is crucial; it states that extensions of compositions are compo-
sitions of extensions (e.g., (G ◦ h)̃ = G̃ ◦ h̃ if G and h are unary).

604 On ultrafilter extensions of models

Lemma 2.1 Let h1 : X1 → Y1, . . . , hn : Xn → Yn, and G : Y1 × · · · × Yn → Z. For all
S ⊆ Z and u1 ∈ βX1, . . . , un ∈ βXn, the following are equivalent:

(a) S ∈ G̃(h̃1(u1), . . . , h̃n(un));
(b)

{
y1 ∈ Y1 : . . . {yn ∈ Yn : G(y1, . . . , yn) ∈ S} ∈ h̃n(un) . . .

}
∈ h̃1(u1);

(c)
{
x1 ∈ X1 : . . . {xn ∈ Xn : G(h1(x1), . . . , hn(xn)) ∈ S} ∈ un . . .

}
∈ u1.

Proof. The first and the second formulas are equivalent by definition of F̃ .
That the second and the third formulas are equivalent can be proved by a straight-

forward induction on n. First one gets{
y1 : . . . {yn : G(y1, . . . , yn) ∈ S} ∈ h̃1(un) . . .

}
∈ h̃1(u1)

iff
{
x1 : h1(x1) ∈ {y1 : . . . {yn : G(y1, . . . , yn) ∈ S} ∈ h̃n(un) . . .}

}
∈ u1

iff
{
x1 : {y2 : . . . {yn : G(h1(x1), y2, . . . , yn) ∈ S} ∈ h̃n(un) . . .} ∈ h̃2(u2)

}
∈ u1.

Then similarly{
y2 : . . . {yn : G(h1(x1), y2, . . . , yn) ∈ S} ∈ h̃n(un) . . .

}
∈ h̃2(u2)

iff
{
x2 : . . . {yn : G(h1(x1), h2(x2), . . . , yn) ∈ S} ∈ h̃n(un) . . .

}
∈ u2,

etc. After n steps we obtain the required equivalence. �
Remark An analogous statement holds as well if h1, . . . , hn are of arbitrary arities.
Actually, a similar formula holds for any open formula; we discuss this elsewhere.

Corollary 2.2 The following are equivalent:
(a) ⟨h̃1(u1), . . . , h̃n(un)⟩ ∈ P̃ ;
(b) P ∈ ⟨h̃1(u1), . . . , h̃n(un)⟩̃ ;
(c) {x1 : . . . {xn : ⟨x1, . . . , xn⟩ ∈ P} ∈ h̃n(un) . . .} ∈ h̃1(u1);
(d) {x1 : . . . {xn : ⟨h1(x1), . . . , hn(xn)⟩ ∈ P} ∈ un . . .} ∈ u1.

Proof. The first and the second formulas are equivalent by Proposition 1.6, while the
second and two last formulas are equivalent by Lemma 2.1 with ⟨ ⟩ as G. �

Before going further, let us fix “model-theoretic relationships” we shall consider. Be-
sides common and important concepts of homomorphism and isomorphic embedding, we
shall consider less common and more general concepts of homotopy and isotopy. These
concepts are customarily used for groupoids, especially in quasigroup theory. Let us give
a general definition suitable for arbitrary models.

Definition 2.3 Let F and G be n-ary operations on X and Y respectively. A collection
of mappings h, h1, . . . , hn of X into Y form a homotopy of (X,F) into (Y,G) iff

h(F (x1, . . . , xn)) = G(h1(x1), . . . , hn(xn))

for all x1, . . . , xn ∈ X. The homotopy is an isotopy iff all the h, h1, . . . , hn are bijective.

Definition 2.4 Let P and Q be n-ary relations on X and Y respectively. A collection
of mappings h1, . . . , hn of X into Y are a homotopy of (X,P) into (Y,Q) iff

P (x1, . . . , xn) implies Q(h1(x1), . . . , hn(xn))

for all x1, . . . , xn ∈ X. The homotopy is an isotopy iff all the h1, . . . , hn are bijective and

P (x1, . . . , xn) iff Q(h1(x1), . . . , hn(xn)).

The Infinity Project 605

Note that when all the h, h1, . . . , hn coincide, then the homotopy is a homomorphism
(and the isotopy is an isomorphism). In particular, homotopies of unary relations are
homomorphisms.

If A and B have more than one operation or relation, there are various ways to define
homotopies (and isotopies) between them, the weakest of which is as follows.

Definition 2.5 A family H of mappings of X into Y form a homotopy of A into B iff for
any m-ary operation F in A there are mappings h, h1, . . . , hm in H forming a homotopy of
(X,F) into (Y,G) with the corresponding operation G in B, and for any n-ary relation P
in A there are mappings h1, . . . , hn in H forming a homotopy of (X,P) into (Y,Q) with
the corresponding relation Q in B. The homotopy H is an isotopy iff all mappings in H
are bijective.

Obviously, a homotopy H is a homomorphism iff |H| = 1. In general, the size of H
can be regarded as a degree of its dissimilarity to a homomorphism. Similarly for isotopies
and isomorphisms.

We need the following auxiliary result.

Proposition 2.6 Let F : X → Y .

(i) If F is surjective, then so is F̃ .
(ii) If F is injective, then so is F̃ . Moreover, (F̃)−1 = (F−1)̃ .
(iii) If F is bijective, then F̃ is a homeomorphism of βX onto βY .

Proof. (i) We must show that for any v ∈ βY there is u ∈ βX such that F̃ (u) = v, i.e.,

S ∈ v iff {x : F (x) ∈ S} ∈ u

for all S ⊆ Y . Given v, let

D =
{
{x : F (x) ∈ S} : S ∈ v

}
.

D has the finite intersection property: Given S′, S′′ ∈ v, we have {x : F (x) ∈ S′} ∩ {x :
F (x) ∈ S′′} = {x : F (x) ∈ S′ ∩ S′′}, so this set is in D (since S′ ∩ S′′ is in v).

Let u be any ultrafilter that extends D. Then u is as required: The ‘only if’ part
holds by definition of u. To verify the ‘if’ part, notice that if S /∈ v then Y \ S ∈ v, and
so {x : F (x) ∈ Y \S} ∈ u, whence it follows {x : F (x) ∈ S} /∈ u (as preimages of disjoint
sets are disjoint).

(ii) We must show that if u′, u′′ ∈ βX are distinct, then so are F̃ (u′), F̃ (u′′) ∈ βY ,
i.e., there is T ∈ F̃ (u′) \ F̃ (u′′), and thus {x : F (x) ∈ T} ∈ u′ \ u′′. As u′ ̸= u′′, there
is S ∈ u′ \ u′′. Since F is injective, we have {x : F (x) ∈ F“S} = S, so we can put
T = F“S.

The equality (F̃)−1 = (F−1)̃ follows immediately.
(iii) This follows from (i) and (ii). �

Remark Clause (i) uses the assumption that any filter extends to an ultrafilter, which
is, as we mentioned above, equivalent to the compactness of βX.

Now all is fixed.

606 On ultrafilter extensions of models

Theorem 2.7 (First Extension Theorem) Let A and B be two models.

(i) If h is a homomorphism of A into B, then h̃ is a homomorphism of βA into βB.
Similarly for embeddings.

(ii) If H is a homotopy of A into B, then {h̃ : h ∈ H} is a homotopy of βA into βB.
Similarly for isotopies.

Proof. Obviously, clause (i) is a partial case of clause (ii), so it suffices to prove the latter.
Let A = (X,F, . . . , P, . . .) and B = (Y,G, . . . , Q, . . .).

Operations. Let h, h1, . . . , hn form a homotopy of (X,F) into (Y,G). We have, for all
x1, . . . , xn ∈ X,

h(F (x1, . . . , xn)) = G(h1(x1), . . . , hn(xn)).

Then, by Lemma 2.1, for all u1, . . . , un ∈ βX,

h̃(F̃ (u1, . . . , un))

=
{
S : {x1 : . . . {xn : h(F (x1, . . . , xn)) ∈ S} ∈ un . . .} ∈ u1

}
=
{
S : {x1 : . . . {xn : G(h1(x1), . . . , hn(xn)) ∈ S} ∈ un . . .} ∈ u1

}
= G̃(h̃1(u1), . . . , h̃n(un)),

thus h̃, h̃1, . . . , h̃n form a homotopy of (βX, F̃) into (βY, G̃).
If h, h1, . . . , hn form an isotopy, then h̃, h̃1, . . . , h̃n form an isotopy by Proposition 2.6.

Relations. Let h1, . . . , hn form a homotopy of (X,P) into (Y,Q). Then we have, for all
x1, . . . , xn ∈ X, that

⟨x1, . . . , xn⟩ ∈ P implies ⟨h1(x1), . . . , hn(xn)⟩ ∈ Q.

We must verify that, for all u1, . . . , un ∈ βX,

⟨u1, . . . , un⟩ ∈ P̃ implies ⟨h̃1(u1), . . . , h̃n(un)⟩ ∈ Q̃,

thus
{
x1 : . . . {xn : ⟨x1, . . . , xn⟩ ∈ P} ∈ un} . . .

}
∈ u1 implies that{

x1 : . . . {xn : ⟨x1, . . . , xn⟩ ∈ Q} ∈ h̃n(un) . . .
}
∈ h̃1(u1).

By Corollary 2.2, the latter formula is equivalent to{
x1 : . . . {xn : ⟨h1(x1), . . . , hn(xn)⟩ ∈ Q} ∈ un . . .

}
∈ u1.

That h1, . . . , hn form a homotopy just means that

P ⊆ {⟨x1, . . . , xn⟩ : ⟨h1(x1), . . . , hn(xn)⟩ ∈ Q}.

Therefore, the implication holds since u1, . . . , un are filters, thus h̃1, . . . , h̃n form a homo-
topy of (βX, P̃) into (βY, Q̃).

If h, h1, . . . , hn form an isotopy, we prove that h̃, h̃1, . . . , h̃n form an isotopy in the
same way but with “iff” instead of “implies” and apply Proposition 2.6. �

The Infinity Project 607

3 Topological properties of extensions

Topology provides a natural language describing the structure of ultrafilter extensions of
models. In this section, we establish specific topological properties of extended mapping
and relations, then we isolate them in abstracto, for mapping and relations on topological
spaces; this results to a certain class of models endowed with topologies (which is larger
than the classes of usual topological, or even semitopological models). The main aim of
these studies lies in the next section; then we shall show that ultrafilter extensions are
largest extensions belonging to that class.

We start from an explicit description of extensions of (unary) mappings to arbitrary
compact Hausdorff spaces.

Definition 3.1 If F : X → Y where Y is a compact Hausdorff topological space, let
F̃ : βX → Y be defined as follows:

F̃ (u) = v iff {v} =
∩
A∈u

cl Y (F“A).

It is routine to check that the intersection consists of a single point (it has at most one
point as Y is compact, and at least one point as u is ultra), so the definition is correct,
and that F̃ is a continuous extension of F , unique since Y is Hausdorff.

If the compact space is βY , the ultrafilter F̃ (u) can be rewritten in a form closer to
that we knew already.

Lemma 3.2 If F : X → βY , then

F̃ (u) =
{
S ⊆ Y : {x ∈ X : F (x) ∈ S̃} ∈ u

}
.

Proof. It easily follows from the definition that

F̃ (u) = {S ⊆ Y : (∀A ∈ u) (∃x ∈ A) F (x) ∈ S̃}.

It remains to verify that

(∀A ∈ u) (∃x ∈ A) F (x) ∈ S̃ iff {x ∈ X : F (x) ∈ S̃} ∈ u.

‘If’ uses the fact that u is a filter, while ‘only if’ uses that u is ultra. �

In particular, if F : X → Y ⊆ βY with Y discrete, then F̃ in the sense of the former
definition coincides with F̃ in the sense of the new definition, thus witnessing that we do
not abuse notation.

Now we establish topological properties of extended mappings of arbitrary arity.

Lemma 3.3 Let F : X1× · · ·×Xn → Y . For each i, 1 ≤ i ≤ n, and for all x1 ∈ X1, . . . ,
xi−1 ∈ Xi−1 and ui+1 ∈ βXi+1, . . . , un ∈ βXn, the mapping F̃x1,...,xi−1,ui+1,...,un of βXi

into βY defined by
u 7−→ F̃ (x1, . . . , xi−1, u, ui+1, . . . , un)

is continuous. Moreover, F̃ is the only such extension of F .

Proof. We shall show that F̃ can be constructed by fixing successively all but one argu-
ments and extending the resulting unary functions. First we describe the construction
and verify that the constructed extension has the required continuity properties. Then
we verify that it coincides with F̃ .

608 On ultrafilter extensions of models

Step 1. Fix all but the last arguments: x1 ∈ X1, . . . , xn−1 ∈ Xn−1, and put

fx1,...,xn−1(x) = F (x1, . . . , xn−1, x).

Thus fx1,...,xn−1 : Xn → Y . We extend it to f̃x1,...,xn−1 : βXn → βY and put

F1(x1, . . . , xn−1, u) = f̃x1,...,xn−1(u).

Thus F1 : X1 × · · · × Xn−1 × βXn → βY . It is obvious from the construction that
F1 is continuous in its last argument (since then it coincides with f̃x1,...,xn−1). And it is
continuous in any other of its arguments (since then its domain is discrete).

Step 2. Fix all but the (n− 1)th arguments: x1 ∈ X1, . . . , xn−2 ∈ Xn−2, un ∈ βXn, and
put

fx1,...,xn−2,un(x) = F1(x1, . . . , xn−2, x, un).

Thus fx1,...,xn−2,un : Xn−1 → βY . We extend it to f̃x1,...,xn−2,un : βXn−1 → βY and put

F2(x1, . . . , xn−2, u, un) = f̃x1,...,xn−2,un(u).

Hence F2 : X1×· · ·×βXn−2×βXn → βY . The mapping F2 is continuous in its (n−1)th
argument (since then it coincides with f̃x1,...,xn−2,un). Moreover, it is continuous in its
nth argument whenever the fixed (n− 1)th argument is in Xn−1 (since then it coincides
with F1).

Arguing so, after n − 1 steps we get Fn−1 : X1 × βX2 × · · · × βXn → βY , which
is continuous in its ith argument whenever any jth fixed argument is in Xj , for all i,
1 ≤ i ≤ n, and all j < i.

Step n. Fix all but the first arguments: u2 ∈ βX2, . . . , un ∈ βXn, and put

fu2,...,un(x) = Fn−1(x, u2, . . . , un).

Thus fu2,...,un : X1 → βY . We extend it to f̃u2,...,un : βX1 → βY and put

Fn(u, u2, . . . , un) = f̃u2,...,un(u).

Thus Fn : βX1 × · · · × βXn → βY . The mapping Fn is continuous in its first argument
(since then it coincides with f̃u2,...,un). Moreover, it is continuous in its ith argument
whenever any jth fixed argument is in Xj , for all i, 1 ≤ i ≤ n, and all j < i.

The uniqueness of such an extension follows from the uniqueness of continuous ex-
tensions of unary mappings by induction.

It remains to verify that Fn coincides with F̃ . We have:

F1(x1, . . . , xn−1, un) = f̃x1,...,xn−1(un)

=
{
S : {x : fx1,...,xn−1(x) ∈ S} ∈ un

}
= F̃ (x̂1, . . . , x̂n−1, un).

The Infinity Project 609

Then

F2(x1, . . . , xn−2, un−1, un) = f̃x1,...,xn−2,un(un−1)

=
{
S : {xn−1 : fx1,...,xn−2,un(xn−1) ∈ S̃} ∈ un−1

}
=
{
S : {xn−1 : F1(x1, . . . , xn−2, xn−1, un) ∈ S̃} ∈ un−1

}
=
{
S : {xn−1 : f̃x1,...,xn−1(un) ∈ S̃} ∈ un−1

}
=
{
S : {xn−1 : {T : {x : fx1,...,xn−1(x) ∈ T} ∈ un} ∈ S̃} ∈ un−1

}
=
{
S : {xn−1 : S ∈ {T : {x : fx1,...,xn−1(x) ∈ T} ∈ un}} ∈ un−1

}
=
{
S : {xn−1 : {xn : fx1,...,xn−1(xn) ∈ S} ∈ un} ∈ un−1

}
= F̃ (x̂1, . . . , x̂n−2, un−1, un).

Likewise we get Fn(u1, . . . , un) = F̃ (u1, . . . , un), as required. �
Remark This description of continuity of extended mappings cannot be improved. If
some of u1, . . . , ui−1 is non-principal, then the mapping F̃u1,...,ui−1,ui+1,...,un of βXi into βY
defined by

u 7−→ F̃ (u1, . . . , ui−1, u, ui+1, . . . , un)

is not necessarily continuous. For example, let F be the usual (binary) addition of
natural numbers; then the mapping u 7→ u1 +̃u is discontinuous. Also for fixed only
x1 ∈ X1, . . . , xi−1 ∈ Xi−1, the (n − i + 1)-ary mapping F̃x1,...,xi−1 of βXi × · · · × βXn

into βY defined by

⟨ui, . . . , un⟩ 7−→ F̃ (x1, . . . , xi−1, ui, . . . , un)

is not necessarily continuous. For instance, let F (x1, x2, x3) = x2 + x3 and use the
previous observation.

To name the established topological property of F̃ shortly, let us introduce a termi-
nology.

Definition 3.4 Let X1, . . . , Xn, Y be topological spaces, and let C1 ⊆ X1, . . . , Cn−1 ⊆
Xn−1. We shall say that an n-ary function F : X1 × · · · × Xn → Y is right continuous
with respect to C1, . . . , Cn iff for each i, 1 ≤ i ≤ n, and all c1 ∈ C1, . . . , ci−1 ∈ Ci−1 and
xi+1 ∈ Xi+1, . . . , xn ∈ Xn, the mapping

x 7−→ F (c1, . . . , ci−1, x, xi+1, . . . , xn)

of Xi into Y is continuous. If all the Ci coincide with, say C, we shall say that F is right
continuous with respect to C.

In particular, F is right continuous with respect to the empty set if and only if, for
all x2 ∈ X2, . . . , xn ∈ Xn, the mapping

x 7−→ F (x, x2, . . . , xn)

of X1 into Y is continuous. Clearly, a unary F is right continuous iff it is continuous. If
the operation is binary, right continuity with respect to the empty set means that all right
translations are continuous, and usually referred to as “right continuity”; see e.g. [11]. If
F is right continuous with respect to the whole X1, . . . , Xn, then it is called separately
continuous.

The following proposition notes obvious properties of compositions of right continuous
functions.

610 On ultrafilter extensions of models

Proposition 3.5
(i) Let F : X1 × · · · ×Xn → Y be right continuous with respect to C1, . . . , Cn, and

let g : Y → Z be continuous. Then H : X1 × · · · ×Xn → Z defined by

H(x1, . . . , xn) = g(F (x1, . . . , xn))

is right continuous with respect to C1, . . . , Cn.
(ii) Let f1 : X1 → Y1, . . . , fn : Xn → Yn be continuous, and let G : Y1× · · ·×Yn → Z

be right continuous with respect to D1, . . . , Dn. Then H : X1 × · · · × Xn → Z
defined by

H(x1, . . . , xn) = F (h1(x1), . . . , hn(xn))

is right continuous with respect to f−1
1 D1, . . . , f

−1
n Dn.

Proof. Clear. �
Definition 3.6 We shall say that an algebra is right topological with C a right topological
center iff all its operations are right continuous with respect to C.

In these terms, Lemma 3.3 states that for any algebra A = (X,F, . . .), its extension
βA = (βX, F̃ , . . .) is right topological with X a right topological center.

Further, we establish topological properties of extended relations.

Lemma 3.7 Let P ⊆ X1×· · ·×Xn. For all i, 1 ≤ i ≤ n, and all x1 ∈ X1, . . . , xi−1 ∈ Xi−1

and ui+1 ∈ βXi+1, . . . , un ∈ βXn, the subset

P̃x1,...,xi−1,ui+1,...,un = {u ∈ βXi : ⟨x̂1, . . . , x̂i−1, u, ui+1, . . . , un⟩ ∈ P̃}
of βXi is clopen.

Proof. Let
fx1,...,xi−1,ui+1,...,un(u) = ⟨x̂1, . . . , x̂i−1, u, ui+1, . . . , un⟩̃ .

The mapping fx1,...,xi−1,ui+1,...,un of βXi into β(X1×· · ·×Xn) is continuous by the previous
lemma. Hence

P̃x1,...,xi−1,ui+1,...,un = {u ∈ βXi : ⟨x̂1, . . . , x̂i−1, u, ui+1, . . . , un⟩ ∈ P̃}
= {u ∈ βXi : P ∈ ⟨x̂1, . . . , x̂i−1, u, ui+1, . . . , un⟩̃ }
= {u ∈ βXi : P ∈ fx1,...,xi−1,ui+1,...,un(u)}

= {u ∈ βXi : fx1,...,xi−1,ui+1,...,un(u) ∈ Q̃},

where Q is P considered as a unary relation on X1× · · ·×Xn, thus Q̃ is a unary relation
on β(X1 × · · · ×Xn). Since Q is clopen, so is its preimage P̃x1,...,xi−1,ui+1,...,un under the
continuous mapping fx1,...,xi−1,ui+1,...,un . �
Remark One can also derive Lemma 3.7 from Lemma 3.3 by replacing the relation P
with its characteristic function.

To name shortly the established topological property of P̃ , let us introduce notation.

Definition 3.8 Let X1, . . . , Xn be topological spaces, and C1 ⊆ X1, . . . , Cn−1 ⊆ Xn−1.
We shall say that an n-ary relation P ⊆ X1 × · · · × Xn is right open with respect to
C1, . . . , Cn iff for every i, 1 ≤ i ≤ n, for all c1 ∈ C1, . . . , ci−1 ∈ Ci−1, and for all
xi+1 ∈ Xi+1, . . . , xn ∈ Xn, the subset

Pc1,...,ci−1,xi+1,...,xn = {x ∈ Xi : ⟨c1, . . . , ci−1, x, xi+1, . . . , xn⟩ ∈ P}
of Xi is open. That a relation is right closed (or right clopen, etc.) is defined likewise.

The Infinity Project 611

In particular, P is right open with respect to the empty set if and only if, for all
x2 ∈ X2, . . . , xn ∈ Xn, the subset

Px2,...,xn = {x ∈ X1 : ⟨x, x2, . . . , xn⟩ ∈ P}
of X1 is open. Clearly, a unary P is right open iff it is open. Likewise for right closed
(right clopen, etc.) relations.

The following proposition notes an obvious interplay of right open (right closed, right
clopen, etc.) relations and right continuous functions.

Proposition 3.9
(i) Let F : X1 × · · · ×Xn → Y be right continuous with respect to C1, . . . , Cn, and

let Q ⊆ Y be open. Then

P = {⟨x1, . . . , xn⟩ ∈ X1 × · · · ×Xn : F (x1, . . . , xn) ∈ Q}
is right open with respect to C1, . . . , Cn.

(ii) Let F1 : X1 → Y1, . . . , Fn : Xn → Yn be continuous, and let Q ⊆ Y1 × · · · × Yn be
right open with respect to D1, . . . , Dn. Then

P = {⟨x1, . . . , xn⟩ ∈ X1 × · · · ×Xn : ⟨F1(x1), . . . , Fn(xn)⟩ ∈ Q}

is right open with respect to F−1
1 D1, . . . , F

−1
n Dn.

Both clauses also hold for right closed (right clopen, etc.) relations.

Proof. Clear. �

Now we are ready to isolate the class of models having “the same” topological prop-
erties as ultrafilter extensions.

Definition 3.10 Let A = (X,F, . . . , P, . . .) be a model equipped with a topology, and
let C ⊆ X. We shall say that A is right open, and C is its right topological center , iff all
its operations are right continuous with respect to C and all its relations are right open
with respect to C. Likewise for right closed (right clopen, etc.) models.

Note that if the model is an algebra (i.e., does not have relations), each of these
properties means that the algebra is right topological with C a right topological center.

In these terms, two last lemmas state the following.

Theorem 3.11 For any model A, its extension βA is right clopen with A a right topo-
logical center.

Proof. Lemmas 3.3 and 3.7. �

4 The Second Extension Theorem

Here we prove the main result of the paper, which establishes that ultrafilter exten-
sions are largest extensions in the class of compact Hausdorff right-closed models (The-
orem 4.2). This result confirms that the construction provides a right generalization
of the largest compactification of a discrete space X, i.e., its Stone–Čech (or Wallman)
compactification, to the situation when X is endowed with a first-order structure.

We start with an “abstract extension theorem”, which concerns rather arbitrary right
open and right closed models with dense right topological centers than ultrafilter exten-
sions.

612 On ultrafilter extensions of models

Theorem 4.1 Let A be a right open model, B a Hausdorff right closed model, and C ⊆ A
a dense submodel and a right topological center of A.

(i) If h is a continuous mapping of A into B such that h↾C is a homomorphism and
h“C is a right topological center of B, then h is a homomorphism of A into B.
Similarly for embeddings.

(ii) If H is a family of continuous mappings of A into B such that {h↾C : h ∈ H} is
a homotopy and h“C is a right topological center of B for each h ∈ H, then
H is a homotopy of A into B. Similarly for isotopies.

Proof. Likewise Theorem 2.7, it suffices to prove clause (ii). To simplify notation, how-
ever, below we prove clause (i) —it is easy to see that the proof of clause (ii) is essentially
the same (typically, h(xi) should be replaced by hi(xi)).

Let A = (X,F, . . . , P, . . .) and B = (Y,G, . . . , Q, . . .).

Operations. We argue by induction on the arity of F (and G).

Step 1. Fix c1, . . . , cn−1 ∈ C and put, for all x ∈ X and y ∈ Y ,

fc1,...,cn−1(x) = F (c1, . . . , cn−1, x),

gh(c1),...,h(cn−1)(y) = G(h(c1), . . . , h(cn−1), y).

The functions fc1,...,cn−1 and gh(c1),...,h(cn−1) are continuous (since c1, . . . , cn−1 are in C,
C is a right topological center of A, and h“C is a right topological center of B). Therefore
the functions h ◦ fc1,...,cn−1 and gh(c1),...,h(cn−1) ◦ h (both of X to Y) are continuous too
(as compositions of continuous functions). Moreover, they agree on the dense subset C
of X (since C is a subalgebra and h↾C is a homomorphism), i.e., for all c ∈ C,

h(fc1,...,cn−1(c)) = gh(c1),...,h(cn−1)(h(c)).

Hence (as Y is Hausdorff) they coincide, i.e., for all x ∈ X,

h(fc1,...,cn−1(x)) = gh(c1),...,h(cn−1)(h(x)).

Thus we proved that, for all c1, . . . , cn−1 ∈ C and xn ∈ X,

h(F (c1, . . . , cn−1, xn)) = G(h(c1), . . . , h(cn−1), h(xn)).

Step 2. Fix c1, . . . , cn−2 ∈ C and xn ∈ X, and put, for all x ∈ X and y ∈ Y ,

fc1,...,cn−2,xn(x) = F (c1, . . . , cn−2, x, xn),

gh(c1),...,h(cn−2),h(xn)(y) = G(h(c1), . . . , h(cn−2), y, h(xn)).

Again, the functions fc1,...,cn−2,xn and gh(c1),...,h(cn−2),h(xn) are continuous (as c1, . . . , cn−2

are in C, C is a right topological center of A, and h“C is a right topological center of B).
Therefore the compositions h ◦ fc1,...,cn−2,xn and gh(c1),...,h(cn−2),h(xn) ◦ h (both of X to Y)
are continuous too. Moreover, they agree on the dense subset C of X (by Step 1), i.e.,
for all c ∈ C,

h(fc1,...,cn−2,xn(c)) = gh(c1),...,h(cn−2),h(xn)(h(c)).

Hence they coincide, i.e., for all x ∈ X,

h(fc1,...,cn−2,xn(x)) = gh(c1),...,h(cn−2),h(xn)(h(x)).

Thus we proved that, for all c1, . . . , cn−2 ∈ C and xn−1, xn ∈ X,

h(F (c1, . . . , cn−2, xn−1, xn)) = G(h(c1), . . . , h(cn−2), h(xn−1), h(xn)).

The Infinity Project 613

After n steps, we get h(F (x1, . . . , xn)) = G(h(x1), . . . , h(xn)) for all x1, . . . , xn ∈ X,
thus showing that h is a homomorphism of (X,F) into (Y,G), as required.

Relations. Assuming ⟨x1, . . . , xn⟩ ∈ P , we shall show that ⟨h(x1), . . . , h(xn)⟩ ∈ Q by
induction on n.

Step 1. First we suppose c1, . . . , cn−1 ∈ C. Pick an arbitrary neighborhood V of h(xn).
Since h is continuous, there exists a neighborhood U of xn such that h“U ⊆ V . The
set U ∩ Pc1,...,cn−1 is open (Pc1,...,cn−1 is open as c1, . . . , cn−1 are in the right topological
center C) and nonempty (xn belongs to it), and so there is c ∈ C∩U∩Pc1,...,cn−1 (since C is
dense). Therefore, we have ⟨c1, . . . , cn−1, c⟩ ∈ P , and so ⟨h(c1), . . . , h(cn−1), h(c)⟩ ∈ Q
(since h↾C is a homomorphism).

Hence, every neighborhood of h(xn) has a point y with ⟨h(c1), . . . , h(cn−1), y⟩ ∈ Q.
Since the set

Qh(c1),...,h(cn−1) = {y : ⟨h(c1), . . . , h(cn−1), y⟩ ∈ Q}
is closed (as h(c1), . . . , h(cn−1) are in the right topological center h“C), it contains the
point h(xn). Thus we proved that whenever c1, . . . , cn−1 ∈ C and ⟨c1, . . . , cn−1, xn⟩ ∈ P ,
then ⟨h(c1), . . . , h(cn−1), h(xn)⟩ ∈ Q.

Step 2. Now we suppose c1, . . . , cn−2 ∈ C and xn ∈ X. Pick an arbitrary neighborhood V
of h(xn−1). Since h is continuous, there exists a neighborhood U of xn−1 such that
h“U ⊆ V . Again, the set U ∩ Pc1,...,cn−2,xn is open and nonempty, so there exists c ∈
C ∩ U ∩ Pc1,...,cn−2,xn . Hence, ⟨c1, . . . , cn−2, c, xn⟩ ∈ P , and so

⟨h(c1), . . . , h(cn−2), h(c), h(xn)⟩ ∈ Q
(by Step 1). Consequently, we infer that every neighborhood of h(xn−1) has a point y
with ⟨h(c1), . . . , h(cn−2), y, h(xn)⟩ ∈ Q. Since the set

Qh(c1),...,h(cn−2),h(xn) = {y : ⟨h(c1), . . . , h(cn−2), y, h(xn)⟩ ∈ Q}
is closed, it has the point h(xn−1). Thus we proved that whenever c1, . . . , cn−2 ∈ C and
⟨c1, . . . , cn−2, xn−1, xn⟩ ∈ P , then

⟨h(c1), . . . , h(cn−2), h(xn−1), h(xn)⟩ ∈ Q.
After n steps, we conclude that whenever ⟨x1, . . . , xn⟩ ∈ P , then ⟨h(x1), . . . , h(xn)⟩ ∈ Q,
thus h is a homomorphism of (X,P) into (Y,Q), as required.

For embeddings we use the same argument, with the only difference in the part
about relations where implications should be replaced by logical equivalences, and apply
Proposition 2.6. �

After all this, we are able to obtain our main result.

Theorem 4.2 (Second Extension Theorem) Let A and B be two models, and let B be
compact Hausdorff right closed (while A is considered discrete).

(i) If h is a homomorphism of A into B such that h“A is a right topological center
of B, then h̃ is a homomorphism of βA into B. Similarly for embeddings.

(ii) If H is a homotopy of A into B such that h“A is a right topological center of B
for each h ∈ H, then {h̃ : h ∈ H} is a homotopy of βA into B. Similarly for
isotopies.

Proof. Theorem 3.11 and Theorem 4.1. �
Note that the First Extension Theorem (Theorem 2.7) follows from this one.

614 On ultrafilter extensions of models

5 Problems

Here we mark some tasks and directions for further investigations and also mention a few
related results without proofs.

We have seen that under ultrafilter extensions, certain model-theoretic properties of
mappings (or systems of mappings) are preserved; this is the case for homomorphisms and
embeddings (and more generally, homotopies and isotopies). It is natural to ask whether
that holds for other kinds of model-theoretic mappings, e.g. elementary embeddings or
strong homomorphisms. Furthermore, one can inquire about other relationships between
models, such as elementary equivalence or bisimulations.

Problem 5.1 Characterize relationships between models satisfying the extension theo-
rems.

The next problem, besides a pure model-theoretic interest, has a motivation in Ram-
sey theory. A cornerstone of its numerous applications in number theory, algebra, topo-
logical dynamics, etc. is the existence of non-principal ultrafilters that are idempotents of
ultrafilter extensions of semigroups. The proof of the existence is based on two facts. One
is that ultrafilter extensions of semigroups are semigroups themselves, thus associativity
is stable under the ultrafilter extension procedure (and the second one is that compact
Hausdorff right-topological semigroups contain idempotents).

Problem 5.2 Characterize formulas that are stable under ultrafilter extensions.

In general, equational theories of ultrafilter extensions quite differ from the equational
theories of underlying models and are highly complicated (e.g., the “simple” question
whether some three non-principal u, v, w in βN satisfy u ·̃ (v +̃w) = u ·̃ v +̃u ·̃w was posed
decades ago and still remains open; see also [11]). In [14] we produce the following
sufficient condition (but we do not know at the moment whether it is necessary).

Theorem 5.3 Let an identity s1 = s2 be equivalent to some identity t1 = t2 such that
the common variables of t1 and t2 appear in these terms in the same ordering, and any
common variable occurs in each of the terms only once. Then the identity s1 = s2 is
stable under ultrafilter extensions. �

For example, it is easy to check that the following identities (in the language of
groupoids) satisfy the condition of Theorem 5.3 and so are stable under ultrafilter exten-
sions: xy = (xy)z, xy = xx, xy = (yx)z, (xy)(zw) = x(y(zw)). On the other hand, it
can be shown that neither commutativity nor idempotency are stable.

The literature devoted to various types of ultrafilters is too vast for describing all
its directions; let us mention a few of them. First, one has special ultrafilters over N:
p-points, q-points, selective ultrafilters, etc. Second, certain ultrafilters are important for
model-theoretic constructions: regular, good, etc. Third, concepts of σ-completeness and
normality of ultrafilters are at the heart of the theory of large cardinals.

Problem 5.4 Study the role of specific ultrafilters in ultrafilter extensions.

The following result shows that ultrafilters of certain types form submodels of ex-
tended models ([15]). An n-ary operation F is κ-cancellative iff for any i and all fixed
x1, . . . , xi−1, xi+1, . . . , xn, y, we have |{xi : F (x1, . . . , xn) = y}| < κ.

Theorem 5.5 Let A be a model and κ a cardinal.
(i) The set {u ∈ βA : u is κ-complete} forms a submodel of βA.

The Infinity Project 615

(ii) The set {u ∈ βA : u is κ-uniform} forms a closed submodel of βA whenever
all operations in βA are λ-cancellative with some λ < κ or κ-cancellative and
κ regular. �

Further, let us treat ultrafilters as quantifiers (as mentioned in [2]). For each u ∈ βX
we can provide a new symbol Qu and interpret Qux φ(x) in a model with the universe X
by {x ∈ X : φ(x)} ∈ u. Clearly, each Qu satisfies Qux φ(x) → ∃x φ(x) and commutes
with all Boolean connectives but not with another Qv.

Problem 5.6 Develop a theory of ultrafilter extensions treating ultrafilters as quantifiers.

Perhaps this approach could simplify the cumbersome notation used here.

Problem 5.7 Study ultrafilter extensions without the axiom of choice or with alternative
axioms, e.g. AD.

This is the subject of [15].

Problem 5.8 Study connections of ultrafilter extensions with ultraproducts.

Let us give a simple related result.

Theorem 5.9 If F̃ (u1, . . . , un) = v then j :
∏
v A ≺

∏
uA, where u = ⟨u1, . . . , un⟩˜and

j is defined by j = [f ◦ F]u for all f . �
In particular, v ≤RK u implies

∏
v A ≺

∏
uA.

Problem 5.10 Generalize the ultrafilter extension procedure from discrete models to
larger classes of models with topologies.

Perhaps, Wallman compactifications of T1 right open or right closed models can be
endowed with the extended first-order structure essentially in the same way as this has
been done here.

A motivation of the following task is to find effective analogs of proofs that use
ultrafilters. Recall that ultrafilters on Boolean algebras of definable subsets are complete
types.

Problem 5.11 Construct extensions of models by ultrafilters on Boolean algebras of
definable subsets.

Ultrafilters encode complex properties of their underlying models; applications are
based on this phenomen. As the simplest example, Ramsey’s Theorem corresponds to
non-principal ultrafilters; whenever we have one, then we can easily get the theorem.
A harder example, Hindman’s Finite Sums Theorem, corresponds to idempotent non-
principal ultrafilters, in the same sense. Other Ramsey-theoretic results may use non-
principal idempotents of some special type (see [11] for various further examples). Is not
there here a general principle?

Problem 5.12 Find a translation of statements about models to statements about their
ultrafilter extensions et vice versa.

References
[1] A. Blass, A model without ultrafilters, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 25,

4 (1977), 329–331.

616 On ultrafilter extensions of models

[2] A. Blass, Ultrafilters: where topological dynamics = algebra = combinatorics, Topology Proc., 18
(1993), 33–56.

[3] J. Berglund, H. Junghenn, P. Milnes, Analysis on Semigroups, Wiley, New York, 1989.
[4] C. C. Chang, H. J. Keisler, Model Theory , North-Holland, Amsterdam, London, New York, 1973.
[5] W. Comfort, S. Negrepontis, The theory of ultrafilters, Springer, Berlin, 1974.
[6] R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969.
[7] R. Engelking, General Topology , Monogr. Matem. 60, Warszawa, 1977.
[8] T. E. Frayne, A. C. Morel, D. S. Scott, Reduced direct products, Fund. Math., 51 (1962), 195–228.

Abstract: Notices Amer. Math. Soc., 5 (1958), 673–675.
[9] R. Goldblatt, Varieties of complex algebras, Ann. Pure Appl. Logic, 44 (1989), 173–242.

[10] V. Goranko, Filter and ultrafilter extensions of structures: universal-algebraic aspects, manu-
script, 2007.

[11] N. Hindman, D. Strauss, Algebra in the Stone–Čech compactification, W. de Gruyter, Berlin, New
York, 1998.

[12] A. Kanamori, The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings, Springer,
Berlin, 2005 (2nd ed.).

[13] D. I. Saveliev, Ultrafilter extensions of models, Logic and Its Applications, Lecture Notes in Com-
puter Science, 6521 (2011), 162–177.

[14] D. I. Saveliev, Identities stable under ultrafilter extensions, in progress.
[15] D. I. Saveliev, On ultrafilters without the axiom of choice, in progress. A preliminary report (2011)

is available at http://www.crm.cat/cinfinity/Saveliev__Dennis.pdf.
[16] J. van Benthem, Notes on modal definability , Notre Dame J. Formal Logic, 30, 1 (1988), 20–35.

Part VI

Proofs and Sets

The Infinity Project

Some results on PA-provably recursive functions

Sy-David Friedman†, Michael Rathjen‡, Andreas Weiermann§

† Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

‡ Department of Pure Mathematics, University of Leeds, UK
rathjen@maths.leeds.ac.uk

§ Vakgroep Zuivere Wiskunde en Computeralgebra, Universiteit Gent, Belgium
Andreas.Weiermann@UGent.be

Abstract. We provide some results which emerged from joint research carried out during the CRM
Infinity Project. The theorems are inspired by analogies with forcing.

Analogies with forcing

In set theory one has a “ground model” with a given set of functions from ω to ω. Then
three things can happen when passing to a larger model, as exemplified by:

1. Sacks forcing: One adds new functions but any new function is dominated by an
old (ground model) function.

2. Cohen forcing: One adds a new function that cannot be dominated by a ground
model function but no single function dominating (mod finite) all ground model
functions. If one adds two such functions f, g using “Cohen times Cohen” forcing,
then in addition any function added by both f and g is in the ground model.

3. Hechler forcing: One adds a new function that dominates (mod finite) all ground
model functions. If one adds two such functions f, g using “Hechler times Hechler”
forcing, then again any function added by both f and g is in the ground model.

The analogy in proof theory is the following: Fix a theory T like PA (Peano Arith-
metic). Let us take the “T -provably recursive” functions to be those with primitive
recursive graph (the honest functions) such that for some choice of primitive recursive
representation of that graph, totality of the function is T -provable.

Our Theorem 1.1 says the following: There is a “natural” total recursive function
f with primitive recursive graph which is not PA-provably recursive (via any primitive
recursive representation of its graph) and such that no provably recursive function of
PA + Tot(f) (where f is expressed using any primitive recursive graph representation
and Tot(f) expresses the fact that f is total) dominates (mod finite) all provably recursive
functions of PA. This is a proof-theoretic analogue of Cohen forcing.

The situation is similar for Theorem 1.2. It says that there are “natural” functions
f0, f1 with primitive recursive graphs which are not provably recursive in PA (via any
primitive recursive graph representation), yet any function which is provably recursive

The authors wish to thank the John Templeton Foundation for its generous support of this research
through the CRM Infinity Project (Grant ID 13152).

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

619

620 Some results on PA-provably recursive functions

in both PA+Tot(f0) and PA+Tot(f1) (where the latter are expressed using primitive
recursive graph representations) is in fact provably recursive in PA. This is a proof-
theoretic analogue of Cohen times Cohen forcing.

1 Results

Theorem 1.1 There exists an honest number-theoretic function f such that f is not
provably recursive in PA and such that any g which is provably total in PA+Tot(f) does
not eventually dominate every PA-recursive function.

Proof. (The proof is inspired by [1].) We construct f in stages. Set d0 := 0. Assume we
are at stage s = 2i and that ds is defined. Assume that f(x) is defined for x < ds. Then
set ds+1 := Hε0(ds). We extend f by f(x) := Hε0(x) for ds ≤ x < ds+1.

Assume that s = 2i + 1. Let d′s+1 := Hε0(ds) and ds+1 := Hε0(d
′
s+1). We extend

f by f(x) := d′s+1 + x for ds ≤ x < ds+1. Moreover let fs(x) := f(x) for x < ds and
f s(x) := d′s+1 + x for ds ≤ x.

Since f(x) = Hε0(x) for infinitely many x, we see that f is not provably recursive
in PA. Assume now that PA+Tot(f) proves Tot(g). Then there exists an α < ε0 such
that for all x we have g(x) < fα(x), where

fα(x) := max({f(x)} ∪ {fβ(fβ(x)) : β < α ∧Nβ ≤ f(Nα+ x)}).

Here Nα is defined via N0 := 0 and Nα := Nβ+Nγ+1 if α has the normal form ωβ+γ.
By construction we know that for each odd s we have f s(x) ≤ Hd′s+1

(x). Choose an
odd stage s with 2 ·Nα+ 12 ≤ d′s+1. Then fαs (d′s+1) ≤ Hε0(d

′
s+1).

For a proof we apply Theorem 4 from [2] (and tacitly Lemma 9 from the same article).
With this we obtain from fs(x) ≤ Hd′s+1

(x) (which holds for all x) that

fs
α
(d′s+1) ≤ Hω

α+d′s+1+1
+8

(d′s+1)

≤ H
ω
α+d′s+1+1

+8
(d′s+1 +Nα+ 10)

≤ Hωα+ω(d
′
s+1 +Nα+ 10)

≤ Hωα+ω(Hα+10(d
′
s+1))

≤ Hωα+ω+α+10(d
′
s+1) ≤ Hε0(d

′
s+1).

Now we prove:

(1.1) fs
α
(y) ≤ Hε0(d

′
s+1)⇒ fα(y) = fs

α
(y)

by induction on α < ε0. Assume that fα(y) = fβ(fβ(y)) for some β < α with Nβ ≤
f(Nα+y). We know that fs(Nα+y) ≤ Hε0(d

′
s+1); hence fs(Nα+y) = f(Nα+y) ≥ Nβ.

Thus fs
β
(
fs
β
(y)
)
≤ fs

α
(y) ≤ Hε0(d

′
s+1). So fs

β
(y) ≤ Hε0(d

′
s+1) and the induction

hypothesis yields fs
β
(y) = fβ(y) and hence fs

β
(
fs
β
(y)
)
= fβ

(
fs
β
)
(y)) = fβ

(
fβ(y)

)
.

Since fα(y) = fβ
(
fβ(y)

)
= fs

β
(
fs
β
(y)
)
≤ fs

α
(y), we are done with the proof of (1.1).

Putting things together we obtain for large enough s that

g(d′s+1) < fα(d′s+1) = fs
α
(d′s+1) ≤ Hωα#ω+α+10(d

′
s+1).

So the function Hωα#ω+α+10 is not eventually dominated by g. �

The Infinity Project 621

Theorem 1.2 There are two honest recursive functions f0, f1 which are not provably
recursive in PA such that if a function g is provably recursive in PA + Tot(f0) and
PA+Tot(f1) then g is provably recursive in PA.

Proof. (The proof is inspired by [1].) We construct f0, f1 in stages. Set d0 := 0. Assume
we are at stage s = 2i and ds is defined. Assume that fi(x) are defined for x < ds. Put
d̂s+1 := Hε0(ds). Define f1,s by f1,s(x) := f1(x) for x < ds and f1,s(x) := f1(ds − 1) + x
for x ≥ ds. Put

d′s+1 := µn : ∃x < n[x ≥ d̂s+1 ∧ f1,s
ωi(x) < Hε0(x) ≤ n]

and ds+1 := Hε0(d
′
s+1).

Extend f0 by f0(x) := f0(x) for x < ds, f0(x) := d̂s+1 + x for d̂s+1 > x ≥ ds and
f0(x) := Hε0(x) for d′s+1 > x ≥ d̂s+1 and f0(x) := ds+1 + x for ds+1 > x ≥ d′s+1. Define
f0,s by f0,s(x) := f0(x) for x < d′s+1 and f0,s(x) := ds+1 + x for x ≥ d′s+1. Extend f1 by
f1(x) := f1(x) for x < ds and f1(x) := f1,s(x) for ds+1 > x ≥ ds. Assume we are at stage
s = 2i+1 and ds is defined. We interchange the roles of f0 and f1. That means: Assume
that fi(x) are defined for x < ds. Put d̂s+1 := Hε0(ds). Define f0,s by f0,s(x) := f0(x) for
x < ds and f0,s(x) := f0(ds − 1) + x for x ≥ ds. Put

d′s+1 := µn : ∃x < n[x ≥ d̂s+1 ∧ f0,s
ωi(x) < Hε0(x) ≤ n]

and ds+1 := Hε0(d
′
s+1). Extend f1 by f1(x) := f1(x) for x < d̂s+1 and f1(x) := Hε0(x)

for d′s+1 > x ≥ d̂s+1 and f1(x) := ds+1 + x for ds+1 > x ≥ d′s+1.
Define f1,s by f1(x) := f1(x) for x < d′s+1 and f1,s(x) := ds+1 + x for x ≥ d′s+1.

Extend f0 by f0(x) := f0(x) for x < ds and f0(x) := f0,s(x) for ds+1 > x ≥ ds.
We write f0 ∧ f1 for x 7→ min{f0(x), f1(x)}. Then (f0 ∧ f1)(x) ≤ 2 · x.
Assume that PA+Tot(f1) ⊢ Tot(f0). Then, by [2], there is an α < ε0 such that for

all x we have f0(x) < fα1 (x). Choose i1 such that α < ωi1 . Then for x ≥ Nα we have

(1.2) f0(x) < f
ωi1
1 (x).

Assume that s is 2i + 1 with i > max{Nα, i1}. Then there is an x < d′s+1 with x ≥ ds
such that f1

ωi(x) < Hε0(x) ≤ d′s+1. Since f1 and f1 agree on x < ds+1 we obtain

fωi1 (x) = f1
ωi(x) < Hε0(x) = f0(x),

contradicting (1.2). By a symmetric argument, PA+Tot(f0) does not prove Tot(f1).
Now assume that PA + Tot(f0) ⊢ Tot(g) and PA + Tot(f1) ⊢ Tot(g). Then there

exist αi such that for all x we have g(x) < fαii (x). Our idea is now to show that

(fα0
0 ∧ f

α1
1)(x) ≤ (f0 ∧ f1)α0#α1(x).

Since (f0 ∧ f1)(x) ≤ 2 · x, this would yield the claim. But the obvious verification does
not seem to work.

For this purpose, let us introduce another iteration hierarchy:

fα(x) := max({f(x)} ∪ {fβ(fβ(x)) : β < α ∧Nβ ≤ Nα+ x}).

This hierarchy behaves better with respect to the ∧ operator.
Indeed for two increasing functions f, h we have

(fα ∧ hβ)(x) ≤ (f ∧ h)α#β(x).

622 Some results on PA-provably recursive functions

This is proved by induction on α#β. Assume first that β = 0. Then hβ(x) = h(x). If
α = 0 then fα(x) = f(x) and the assertion is clear. If α > 0 then fα(x) = fγ(fγ(x)) for
some γ < α with Nγ ≤ Nα + x. We have (f ∧ h)α(x) ≥ (f ∧ h)γ((f ∧ h)γ(x)). The
induction hypothesis yields (f ∧ h)γ(x) ≥ (fγ ∧ h)(x). If (fγ ∧ h)(x) = h(x) then

(f ∧ h)α(x) ≥ (f ∧ h)γ(h(x)) ≥ h(x)
and the assertion follows. So assume (fγ ∧ h)(x) = fγ(x). We then have

(fγ ∧ h)(fγ ∧ h) = (fγ ∧ h)(fγ(x)).
If (fγ ∧ h)(fγ(x)) = h(fγ(x)) then the assertion follows from h(fγ(x)) ≥ h(x). We may
assume that (fγ ∧ h)(fγ(x)) = fγ(fγ(x)) = fα(x). Since fα(x) ≥ h(x), the assertion also
holds in this case.

Assume (by symmetry) for the induction step that (fα∧hβ)(x) = hβ(x) = hγ(hγ(x))
for some γ < β with Nγ ≤ Nβ + x. The inequality fα(x) ≥ hβ(x) yields

hγ(x) ≤ (fα ∧ hγ)(x) ≤ (f ∧ h)α#γ(x)
by the induction hypothesis, and the inequality fα(hγ(x)) ≥ fα(x) ≥ hβ(x) yields

hγ(hγ(x)) ≤ fα(hγ(x)) ≤ (fα ∧ hγ)(hγ(x)) ≤ (f ∧ h)α#γ(hγ(x))
by the induction hypothesis.

Putting things together we obtain hγ(hγ(x)) ≤ (f ∧ h)α#γ((f ∧ h)α#γ(x)). Now we
have N(α#γ) ≤ N(α#β)+x. Hence (f ∧h)α#γ((f ∧h)α#γ(x)) ≤ (f ∧h)α#β(x) and we
are done.

To prove the theorem it suffices to show that fα(x) ≤ fωα+1(x). This is proved by
induction on α. Assume that fα(x) = fβ(fβ(x)) with β < α and Nβ ≤ f(Nα+ x). The
induction hypothesis yields fβ(fβ(x)) ≤ fωβ+1(fωβ+1(x)). Then

fβ(fβ(x)) ≤ fωβ+1(fωβ+1(x))

≤ fωβ+1(fωβ+1(f(Nα+ x)))

≤ fωα(f(Nα+ x))

≤ fωα(fωα(x))
≤ fωα+1(x),

where we made use of f(Nα + x) ≤ fα(x). The last claim is again proved by induction
on α. For the induction step for proving this claim, note that fα(x) = fβ(fβ(x)) for
some β < α with Nβ = Nα + x. (It is easily seen that here = has to hold.) Then
fβ(fβ(x)) ≥ fβ(x) ≥ f(Nβ + x) ≥ f(Nα+ x+ x) ≥ f(Nα+ x). �

References
[1] Lars Kristiansen. Subrecursive degrees and fragments of Peano arithmetic. Archive for Mathematical

Logic, 40:365–397, 2001.
[2] Andreas Weiermann. Classifying the provably total functions of PA. Bulletin of Symbolic Logic,

12(2):177–190, 2006.

The Infinity Project

Slow consistency

Sy-David Friedman∗, Michael Rathjen†, Andreas Weiermann‡

∗ Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Austria
sdf@logic.univie.ac.at

† Department of Pure Mathematics, University of Leeds, UK
rathjen@maths.leeds.ac.uk

‡ Vakgroep Zuivere Wiskunde en Computeralgebra, Universiteit Gent, Belgium
Andreas.Weiermann@ugent.be

Abstract. The fact that “natural” theories, i.e., theories which have something like an “idea” to them,
are almost always linearly ordered with regard to logical strength has been called one of the great
mysteries of the foundation of mathematics. However, one easily establishes the existence of theories
with incomparable logical strengths using self-reference (Rosser-style). As a result, PA + Con(PA) is
not the least theory whose strength is greater than that of PA. But still we can ask: is there a sense in
which PA + Con(PA) is the least “natural” theory whose strength is greater than that of PA? In this
paper we exhibit natural theories in strength strictly between PA and PA+ Con(PA) by introducing a
notion of slow consistency.

1 Preliminaries

PA is Peano Arithmetic. PA↾k denotes the subtheory of PA usually denoted by IΣk. It
consists of a finite base theory P− (which are the axioms for a commutative discretely
ordered semiring) together with a single Πk+2 axiom which asserts that induction holds
for Σk formulae. For functions F : N → N we use exponential notation F 0(x) = x and
F k+1(x) = F (F k(x)) to denote repeated compositions of F .

In what follows we require an ordinal representation system for ε0. Moreover, we
assume that these ordinals come equipped with specific fundamental sequences λ[n] for
each limit ordinal λ ≤ ε0. Their definition springs forth from their representation in
Cantor normal form (to base ω). For an ordinal α such that α > 0, α has a unique
representation

α = ωα1 · n1 + · · ·+ ωαk · nk,
where 0 < k, n1, . . . , nk < ω, and α1, . . . , αk are ordinals such that α1 > · · · > αk.

If the Cantor normal form of β > 0 is ωβ1 ·m1 + · · · + ωβl ·ml, we write α ≫ β if
α > β and αk ≥ β1.

Definition 1.1 For α an ordinal and n a natural number, let ωαn be defined inductively
by ωα0 := α and ωαn+1 := ωω

α
n .

We also write ωn for ω1
n. In particular, ω0 = 1 and ω1 = ω.

∗The research of all authors was supported by Templeton Foundation Grant #13152, the CRM
Infinity Project. The first author also wishes to thank the Austrian Science Fund for its support through
research project P22430-N13.

†The second author’s research was also supported by U.K.EPSRC grant No. EP/G029520/1.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

623

624 Slow consistency

Definition 1.2 For each limit ordinal λ ≤ ε0, define a strictly monotone sequence λ[n] of
ordinals converging to λ from below. We use the fact, following from the Cantor normal
form representation, that if 0 < α < ε0 then there are unique β, γ < ε0 and 0 < m < ω
such that

α = β + ωγ ·m,
and either β = 0 or β has normal form ωβ1 ·m1 + · · ·+ ωβl ·ml with βl > γ.

The definition of λ[n] proceeds by recursion on this representation of λ.

Case 1: λ = β+ωγ ·m and γ = δ+1. Put λ[n] = β+ωγ · (m−1)+ωδ · (n+1). (Remark:
In particular, ω[n] = n+ 1.)

Case 2: λ = β+ωγ ·m, and γ < λ is a limit ordinal. Put λ[n] = β+ωγ · (m−1)+ωγ[n].

Case 3: λ = ε0. Put ε0[0] = ω and ε0[n+ 1] = ωε0[n]. (Remark: Thus ε0[n] = ωn+1.)

It will be convenient to have α[n] defined for non-limit α. We set (β + 1)[n] = β and
0[n] = 0.

Definition 1.3 By “a fast growing” hierarchy we simply mean a transfinitely extended
version of the Grzegorczyk hierarchy, i.e., a transfinite sequence sequence of number-
theoretic functions Fα : N → N defined recursively by iteration at successor levels and
diagonalization over fundamental sequences at limit levels. We use the hierarchy

F0(n) = n+ 1

Fα+1(n) = Fn+1
α (n)

Fα(n) = Fαn if α is a limit.

It is closely related to the Hardy hierarchy:

H0(n) = n

Hα+1(n) = Hα(n+ 1)

Hα(n) = Hαn if α is a limit.

Their relationship is as follows:

(1.1) Hωα = Fα

for every α < ε0. If α = ωα1 ·n1+ · · ·+ωαk ·nk is in Cantor normal form and β < ωαk+1,
then

(1.2) Hα+β = Hα ◦Hβ.

Ketonen and Solovay [6] found an interesting combinatorial characterization of the
Hα’s. Call an interval [k, n] 0-large if k ≤ n, (α+1)-large if there are m,m′ ∈ [k, n] such
that m ̸= m′ and [m,n] and [m′, n] are both α-large; and λ-large (where λ is a limit) if
[k, n] is λ[k]-large.

Theorem 1.4 (Ketonen–Solovay [6]) Let α < ε0. Then

Hα(n) = least m such that [n,m] is α-large;
Fα(n) = least m such that [n,m] is ωα-large.

The order of growth of Fε0 is essentially the same as that of the Paris–Harrington
function FPH .

The Infinity Project 625

Definition 1.5 Let X be a finite set of natural numbers and |X| be the number of
elements in X. Then X is large if X if X is non-empty, and, letting s be the least
element of X, X has at least s elements. If d ∈ N then [X]d denotes the set of all subsets
of X of cardinality d. If g : [X]d → Y , a subset Z of Y is homogeneous for g if g is
constant on [Z]d. Identify n ∈ N with the set {0, . . . , n− 1}.

Let a, b, c ∈ N. Then a → (large)bc if for every map g : [a]b → c there is a large
homogeneous set for g of cardinality greater than b.

Let σ(b, c) be the least integer a such that a→ (large)bc and fPH (n) = σ(n, n).

Theorem 1.6
(i) (Harrington–Paris [13]) The function fPH dominates all PA-provably recursive

functions.
(ii) (Ketonen–Solovay [6]) For n ≥ 20,

Fε0(n− 3) ≤ σ(n, 8) ≤ Fε0(n− 2);

fPH (n) ≤ Fε0(n− 1).

2 Capturing the Fα’s in PA

In [6] many facts about the functions Fα, as befits their definition, are proved by transfi-
nite induction on the ordinals ≤ ε0. In [6] there is no attempt to determine whether they
are provable in PA (let alone in weaker theories). In what follows we will have to assume
that some of the properties of the Fα’s hold in all models of PA. As a consequence, we
will revisit some parts of [6], especially section 2, and recast them in such a way that they
become provable in PA. Statements shown by transfinite on the ordinals in [6] will be
proved by ordinary induction on the term complexity of ordinal representations, adding
extra assumptions.

Definition 2.1 The computation of Fα(x) is closely connected with the step-down rela-
tions of [6] and [14]. For α < β ≤ ε0 we write β −→

n
α if for some sequence of ordinals

γ0, . . . , γr we have γ0 = β, γi+1 = γi[n], for 0 ≤ i < r, and γr = α. If we also want to
record the number of steps r, we shall write α r−→

n
β.

The definition of the functions Fα for α ≤ ε0 employs transfinite recursion on α. It
is therefore not immediately clear how we can speak about these functions in arithmetic.
Later on we shall need to refer to a definition of Fα(x) = y in an arbitrary model of PA.
As it turns out, this can be done via a formula of low complexity.

Lemma 2.2 There is a ∆0-formula expressing Fα(x) = y (as a predicate of α, x, y).

Proof. This is shown in [17, 5.2]. The main idea is that the computation of Fα(x) can
be described as a rewrite systems, that is, as a sequence of manipulations of expressions
of the form

Fn1
α1

(Fn2
α2

(. . . (Fnkαk (n)) . . .)),

where n1, . . . , nk ∈ ω − {0} and α1 > . . . > αk ≥ 0. �

Let I∆0 be the subsystem of Peano Arithmetic in which induction applies only to
formulas with bounded quantifiers (∆0-formulas). If we add to I∆0 the axiom

exp = ∀x > 1∀y ∃z E0(x, y, z),

626 Slow consistency

saying that the exponential function is total, then the resulting theory will be denoted
by I∆0(exp). I∆0(exp) is strong enough to prove all of the results of elementary number
theory. For example, Matijasevic’s Theorem is provable in it.

Lemma 2.3 We use Fα(x) ↓ to denote ∃y Fα(x) = y, and Fα ↓ stands for ∀xFα(x) ↓.
The following are provable in I∆0(exp):

(i) If β sdxα and Fβ(x) ↓, then Fα(x) ↓ and Fβ(x) ≥ Fα(x).
(ii) If Fβ(x) ↓ and x > y, then Fβ(y) ↓ and Fβ(x) ≥ Fβ(y).
(iii) If α > β and Fα ↓, then Fβ ↓.
(iv) If i > 0 and F iα(x) ↓ then x < F iα(x).

Proof. Part (i) follows by induction on the length r of the sequence γ0, . . . , γr with γ0 = β,
γi+1 = γi[n], for 0 ≤ i < r, and γr = α. In the proof one uses the fact that ‘Fδ(x) = y’
is ∆0 as a relation with arguments δ, x, y, and also uses [17, Theorem 5.3] (or rather
Claim 1 in Appendix A of [16]).

Part (ii) follows from [17, Proposition 5.4(v)]; (iii) follows from [17, Proposition
5.4(iv)], and (iv) is [17, Proposition 5.4(i)]. �

There is an additional piece of information that is provided by the particular coding
and ∆0 formula denoting Fα(x) = y used in [17, 5.2], namely that there is a fixed
polynomial P in one variable such that for all α ≤ ε0, the number of steps it takes to
compute Fα(x) is always bounded by P (Fα(x)). This has a useful consequence that we
are going to exploit in the next lemma.

Lemma 2.4 The following is provable in I∆0(exp): Let α ≤ ε0, and suppose Fα(n) ↓.
Then α r−→

n
0 for some r ≤ P (Fα(n)).

Proof. We clearly have that the number of steps it takes to compute Fα(n) is a bound for
any sequence of ordinals γ0, . . . , γs with γ0 = α, γs > 0, and γi+1 = γi[n] for 0 ≤ i < s.
Hence s < P (Fα(n)) and thus α r−→

n
0 for some r ≤ P (Fα(n)). �

Convention For the remainder of this section we will be working in the background
theory PA; thus all statements are formally provable in PA. A cursory glance would
reveal that the fragment IΣ1 is certainly capacious enough, and very likely I∆0(exp)
would suffice, too.

Lemma 2.5
(i) Let α −→

n
β, α −→

n
γ, β > γ. Then β −→

n
γ.

(ii) Let α −→
n
β, β −→

n
γ. Then α −→

n
γ. Then α −→

n
γ.

Proof. This is evident from the definition. �
Definition 2.6 Let α, β be ordinals. Say that α meshes with β if, for some ordinals γ, δ,
we have α = ωγ · δ and β < ωγ+1.

Note that if α and β have Cantor normal forms α = ωα1 · n1 + · · · + ωαk · nk,
β = ωβ1 ·m1 + · · · + ωβl ·ml, respectively, then the condition that α meshes with β is
precisely that αk ≥ β1.

Lemma 2.7 Let α, β < ε0. Let α mesh with β > 0. Then (α + β)[n] = α + β[n]. Thus
if β −→

n
γ, then α+ β −→

n
α+ γ.

The Infinity Project 627

Proof. That α meshes with β implies that the Cantor normal form of α + β is basically
the concatenation of those for α, β. The first claim thus follows from the way that the
definition of δ[n] focuses on the rightmost term of the Cantor normal form of δ, provided
δ < ε0. The second claim reduces to the special case when γ = β[n], using the transitivity
of −→

n
. This special claim is evident by the first claim. �

Lemma 2.8 Let k < l < ω, α < ε0, and suppose that ωα · l −→
n

0. Then ωα · l −→
n
ωα · k.

Proof. This holds by assumption if k = 0. So suppose that n > 0. Let ωα ·k < δ ≤ ωα · l.
Then δ can be uniquely written as δ = ωα · k+ γ for some γ > 0, and ωα · k and γ mesh.
Thus it follows from Lemma 2.7 that δ[n] = ωα · k + γ[n] and hence δ[n] ≥ ωα · k. Since
ωα · l −→

n
0, we conclude that ωα · l −→

n
ωα · k. �

Lemma 2.9 Let n ≥ 1. Let δ < ε0. Suppose ωδ+1 −→
n

0. Then ωδ+1 −→
n
ωδ.

Proof. ωδ+1 −→
n
ωδ+1[n] = ωδ · (n+ 1). Now apply Lemma 2.8 and Lemma 2.5(ii). �

Lemma 2.10 Let α1 < ε0. Let n ≥ 1. Suppose that α1 −→n α2 and ωα1 −→
n

0. Then
ωα1 −→

n
ωα2 .

Proof. Let α1
x−→
n
α2. By induction on x we show that ωα1 −→

n
ωα2 .

If x = 0 this is trivial. Suppose x > 0. If α1 is a successor α0 + 1, then α1[n] =

α0
x−1−−→
n

α2 and thus αα0 −→
n
ωα2 by the induction hypothesis. Also ωα1 [n] = ωα0 · (n+1)

and ωα0 · (n+ 1) −→
n
ωα0 owing to Lemma 2.8. Consequently, ωα1 −→

n
ωα2 .

Now let α1 be a limit. Then ωα1 [n] = ωα1[n]. Inductively, as α1[n]
x−1−−→
n

α2, we have

that ωα1[n] −→
n
ωα2 . Hence ωα1 −→

n
ωα2 . �

Lemma 2.11 Let α < ε0. Suppose ωα x−→
n

0. Then α
y−→
n

0 for some y < x.

Proof. We proceed by induction on x. If α = 0 then this is obvious. Let α = α0 + 1.
Then ωα[n] = ωα0 · n + ωα0

x−1−−→
n

0. In light of Lemma 2.7 we conclude that ωα0 u−→
n

0

for some u ≤ x − 1. Thus, by the inductive assumption, α0
v−→
n

0 for some v < x − 1.

Therefore α v+1−−→
n

0 with v + 1 < x.

Now let α be a limit. Then ωα[n] = ωα[n]
x−1−−→
n

0. Inductively we thus have α[n] u−→
n

0

for some u < x− 1, and hence α u+1−−−→
n

0 where u+ 1 < x. �

Proposition 2.12 Let λ be a limit ≤ ε0. Suppose i < j < ω and λ[j] −→
n

0. Then
λ[j] −→

n
λ[i].

Proof. We proceed by induction on the (term) complexity of λ.

Case 1: λ = β + ωα+1 ·m. Then λ[k] = β + ωα+1 · (m− 1) + ωα · (k + 1). As λ[j] −→
n

0

entails that ωα · (j + 1) −→
n

0, it follows from Lemma 2.8 that ωα · (j + 1) −→
n
ωα · (i+ 1).

But then, by Lemma 2.7,

λ[j] = β + ωα+1 · (m− 1) + ωα · (j + 1) −→
n
β + ωα+1 · (m− 1) + ωα · (i+ 1) = λ[i].

628 Slow consistency

Case 2: λ = β + ωγ ·m, and γ is a limit ordinal. Then λ[k] = β + ωγ · (m − 1) + ωγ[k].
λ[j] −→

n
0 implies that ωγ[j] −→

n
0, and hence, by Lemma 2.11, γ[j] −→

n
0. Since the term

complexity of γ is smaller than that of λ, the inductive assumption yields γ[j] −→
n
γ[i],

and hence ωγ[j] −→
n
ωγ[i] by Lemma 2.10. As a result, by Lemma 2.7,

λ[j] = β + ωγ · (m− 1) + ωγ[j] −→
n
β + ωγ · (m− 1) + ωγ[i] = λ[i].

Case 3: λ = ε0. Then λ[j] = ωj+1 = ωωj . From the assumption λ[j] −→
n

0, applying
Lemma 2.11 iteratively, one deduces that ωk −→n 0 holds for all k ≤ j + 1. Obviously,

ω −→
n

1. Thus, by Lemma 2.10, ω2 = ωω −→
n
ω1 = ω = ω1. Iterating this procedure we

have ωl+1 −→n ωl for all l ≤ j. By transitivity of −→
n

we thus arrive at λ[j] = ωj+1 −→n
ωi+1 = λ[j]. �

Lemma 2.13 Let n, k < ω and n > 0. Suppose ωk+1 −→n 0. Then ωk+1 −→n ωk + 1.

Proof. From the proof of Proposition 2.12, Case 3, we infer that ωu+1 −→n 0 for all u ≤ k.
Now use induction on u ≤ k to show that ωu+1 −→n ωu + 1. If u = 0 then ωu = 1 and
ωu+1 = ω, and ω −→

n
2 holds since n ≥ 1. Now suppose u = v + 1 and ωv+1 −→n ωv + 1.

Then, as ωu+1 −→n 0, we have

ωu+1 = ωωv+1 −→
n
ωωv+1(2.1)

by applying Lemma 2.10. In particular, ωωv+1 −→
n

0, and therefore

ωωv+1[n] = ωωv · (n+ 1) = ωv+1 · (n+ 1) −→
n
ωv+1 + ωv+1(2.2)

since n > 0. Since we also have ωv+1 −→n ω0 = 1 by Proposition 2.12, (2.2) implies

ωωv+1 −→
n
ωv+1 + 1.(2.3)

Combining (2.1) and (2.3) yields ωu+1 −→n ωu + 1. �

Corollary 2.14 Let k, n < ω and n > 0.

(i) Suppose ε0[k + 1] −→
n

0. Then ε0[k + 1] −→
n
ε0[k] + 1.

(ii) Suppose Fε0[k+1](n) ↓. Then Fε0[k+1](n) ≥ Fε0[k](Fε0[k](n)).

Proof. As ε0[u] = ωu+1, (i) is a consequence of Lemma 2.13. We next prove (ii). By
Lemma 2.4, Fε0[k+1](n) ↓ implies that ε0[k + 1] −→

n
0. Thus, using (i), we may infer that

ε0[k + 1] −→
n
ε0[k] + 1. Hence, by Lemma 2.3(i),

Fε0[k+1](n) ≥ Fε0[k]+1(n) = Fn+1
ε0[k]

(n) ≥ Fε0[k](Fε0[k](n)),

where the last inequality is a consequence of Lemma 2.3(iv). �

The Infinity Project 629

3 Slow consistency

To motivate our notion of slow consistency we recall the concept of interpretability of one
theory in another theory. Let S and S′ be arbitrary theories. S′ is interpretable in S or
S interprets S′ (in symbols S′ ▹ S) “if, roughly speaking, the primitive concepts and the
range of the variables of S′ are defined in such a way as to turn every theorem of S′ into
a theorem of S” (quoted from [10, p. 96]; for details, see [10, Section 6]).

To simplify matters, we restrict attention to theories T formulated in the language
of PA which contain the axioms of PA and have a primitive recursive axiomatization,
i.e., the axioms are enumerated by such a function. For an integer k ≥ 0, we denote by
T ↾k the theory consisting of the first k axioms of T . Let Con(T) be the arithmetized
statement that T is consistent.

A theory T is reflexive if it proves the consistency of all its finite subtheories, i.e.,
T ⊢ Con(T ↾k) for all k ∈ N. Note that theories satisfying the conditions spelled out
above will always be reflexive.

Another interesting relationship between theories we shall consider is T1 ⊆Π0
1
T2, i.e.,

every Π0
1 theorem of T1 is also a theorem of T2.

Theorem 3.1 Let S, T be theories that satisfy the conditions spelled out above. Then:

S ▹ T if and only if T ⊢ Con(S ↾n) holds for all n ∈ N(3.1)
if and only if S ⊆Π0

1
T.(3.2)

Proof. Fact (3.1) seems to be due to Orey [11]. Another easily accessible proof of (3.1)
can be found in [10, Section 6, Theorem 5]. Fact (3.2) was first stated in [5] and [9].
A proof can also be found in [10, Section 6, Theorem 6]. �

We know that
Con(PA) ↔ ∀xCon(PA↾x).

Given a function f : N → N (say provably total in PA) we are thus led to the following
consistency statement:

(3.3) Conf (PA) := ∀xCon(PA↾f(x)).
It is perhaps worth pointing out that the exact meaning of Conf (PA) depends on the
representation that we choose for f .

Statements of the form (3.3) are interesting only if the function f grows extremely
slowly, though still has an infinite range but PA cannot prove that fact.

Definition 3.2 Define

F−1
ε0 (n) = max({k ≤ n | ∃y ≤ nFε0(k) = y} ∪ {0}).

Note that, by Lemma 2.2, the graph of F−1
ε0 has a ∆0 definition. Thus it follows that

F−1
ε0 is a provably recursive function of PA.

Let Con∗(PA) be the statement ∀xCon
(
PA↾F−1

ε0
(x)

)
. Of course, in the definition of

Con∗(PA) we have in mind some standard representation of Fε0 referred to in Lemma 2.2.
Note that Con∗(PA) is equivalent to the statement

∀x [Fε0(x) ↓→ Con(PA↾x)].

630 Slow consistency

Proposition 3.3 PA ̸⊢ Con∗(PA).

Proof. Aiming at a contradiction, suppose PA ⊢ Con∗(PA). Then PA ↾k⊢ Con∗(PA)
for all sufficiently large k. As PA ↾k⊢ Fε0(k) ↓ on account of Fε0(k) ↓ being a true Σ1

statement, we arrive at PA↾k⊢ Con(PA↾k), contradicting Gödel’s second incompleteness
theorem. �

Proposition 3.3 holds in more generality.

Corollary 3.4 If T is a recursive consistent extension of PA and f is a total recursive
function with unbounded range, then

T ̸⊢ ∀xCon(T ↾f(x))
where f(x) ↓ is understood to be formalized via some Σ1 representation of f .

Proof. Basically the same proof as for Proposition 3.3. �
It is quite natural to consider another version of slow consistency where the function

f : N → N, rather than acting as a bound on the fragments of PA, restricts the lengths
of proofs. Let ⊥ be a Gödel number of the canonical inconsistency and let ProofPA(y, z)
be the primitive recursive predicate expressing the concept that “y is the Gödel number
of a proof in PA of a formula with Gödel number z”.

(3.4) Conℓf (PA) := ∀x∀y < f(x)¬ProofPA(y,⊥)

Let Con#(PA) be the statement Conℓ
F−1
ε0

(PA).

Note that Con#(PA) is equivalent to the following formula:

∀u [Fε0(u)↓ → ∀y < u¬ProofPA(y,⊥)].
As it turns out, by contrast with Con∗(PA), Con#(PA) is not very interesting.

Lemma 3.5 PA ⊢ Con#(PA).

Proof. Recall that Gentzen showed how to effectively transform an alleged PA-proof
of an inconsistency (the empty sequent) in his sequent calculus into another proof of
the empty sequent such that the latter gets assigned a smaller ordinal than the former.
More precisely, there is a reduction procedure R on proofs P of the empty sequent
together with an assignment ord of representations for ordinals < ε0 to proofs such that
ord(R(P)) < ord(P). Here < denotes the ordering on ordinal representations induced
by the ordering of the pertaining ordinals. The functions R and ord and the relation <
are primitive recursive (when viewed as acting on codes for the syntactic objects). With
g(n) = ord(Rn(P)), the n-fold iteration of R applied to P , one has

g(0) < g(1) < g(2) < · · · < g(n)

for all n, which is absurd as the ordinals are well-founded.
We will now argue in PA. Suppose that Fε0(u)↓. Aiming at a contradiction, assume

that there is a p < u such that ProofPA(p,⊥). We have not said anything about the
particular proof predicate ProofPA we use; however, whatever proof system is assumed,
p will be larger than the Gödel numbers of all formulae occurring in the proof. The proof
that p codes can be primitive recursively transformed into a sequent calculus proof P of
the empty sequent in such a way that ord(P) < ωp since p is larger than the number
of logical symbols occurring in any cut or induction formulae featuring in P (for details
see [18, Ch. 2]). Inspection of Gentzen’s proof, as presented e.g. in [18, 2.12.8], shows

The Infinity Project 631

that there is a primitive recursive function ℓ such that the number of steps it takes to
get from ord(P) to 0 by applying the reduction procedure R is majorized by ℓ(Fε0(u)).
As a result we have a contradiction, since there is no proof P0 of the empty sequent with
ordinal ord(P0) = 0.

The authors realize that the foregoing proof is merely a sketch. An alternative proof
can be obtained by harking back to [1]. The reader will be assumed to have access to [1].
That paper uses an infinitary proof system with the ω-rule (of course). But this system is
also quite peculiar in that the ordinal assignment adhered to is very rigid and, crucially,
it has a so-called accumulation rule. To deal with infinite proofs in PA, though, one has
to use primitive recursive proof trees instead of arbitrary ones (for details, see [3]). The
role of the repetition rule (or trivial rule; cf. [3]) is of central importance to capturing the
usual operations on proofs, such as inversion and cut elimination, by primitive recursive
functions acting on their codes. In the proof system of [1] the accumulation rule takes
over this role. Now assume that everything in [1] has been recast in terms of primitive
recursive proof trees. Then the cut elimination for infinitary proofs with finite cut rank (as
presented in [3, Theorem 2.19]) can be formalized in PA. Working in PA, suppose that
Fε0(u) ↓. Aiming at a contradiction, assume there is a p < u such that ProofPA(p,⊥).
As above, the proof that p codes, can be primitive recursively transformed into a proof
P of ⊥ in the sequent calculus of [1] with ordinal ωp and cut-degree 0 (in the sense of [1,
Definition 5]). The plan is to reach a contradiction by constructing an infinite descending
sequence of ordinals (αi)i∈N such that α0 = ωp, αi+1 < αi and αi+1 <li+1

αi for some
li+1 < Fωp(2). It remains to determine (αi)i∈N. To this end, we construct a branch of the
proof-tree P with ⊢αi ∆i,Γi being the i-th node of the branch (bottom-up). The sequent
Γi contains only closed elementary prime formulas and formulas of the form n ∈ N ,
whereas ∆i is of the form {n1 /∈ N, . . . , nr /∈ N} or ∅. We set

k∆i := max
(
{2} ∪ {3 · n1, . . . , 3 · nr}

)
in the former and k∆i := 2 in the latter case. We say that Γi is true in m if Γi is true
when N is interpreted as the finite set {n | 3 · n < m}. Let Γ0 = {0 = 1} and ∆0 = ∅.
Clearly, Γ0 is false in Fα0(2). Now assume ⊢αi ∆i,Γi has been constructed in such a way
that Fαi(k∆i) ↓ and Γi is false in Fαi(k∆i) and Fαi(k∆i) ≤ Fα0(2). Since Γi is false in
Fαi(k∆i) and Fαi(k∆i) > k∆i , it follows that ∆i,Γi is not an axiom. Thus ⊢αi ∆i,Γi is
not an end-node in P and therefore it is the result of an application of an inference rule.
As the cut-rank of P is 0, the only possible rules are a cut of rank 0, an N -rule, and
Accumulation.

If it is an N -rule, Γi contains “Sn ∈ N ” for some n and ⊢β ∆i,Γ
′
i, n ∈ N will

be a node in P immediately above ⊢αi ∆i,Γi with Γ′
i ⊆ Γi and β + 1 = αi. We let

αi+1 = β, li+1 = 1, ∆i+1 = ∆i and Γi+1 = Γi, n ∈ N . Since Γi is false in Fαi(k∆i) and
Fαi+1(k∆i) + 3 ≤ Fαi(k∆i) it follows that Γi+1 is false in Fαi(k∆i+1).

If the last rule is Accumulation, ⊢β ∆i,Γi will be a node in P immediately above
⊢αi ∆i,Γi for some β <k∆i αi. Then let ∆i+1 = ∆i, Γi+1 = Γi, αi+1 = β, and li+1 = k∆i .
Since Fβ(k∆i) ≤ Fαi(k∆i), Γi+1 is false in Fαi+1(k∆i+1), too. Inductively we also have
Fαi(k∆i) ≤ Fα0(2), and hence li+1 < Fα0(2).

If the last rule is a cut with a closed elementary prime formula A, the immediate
nodes above ⊢αi ∆i,Γi in P are of the form ⊢β ∆i,Γi, A and ⊢β ∆i,Γi,¬A, respectively,
where β + 1 = αi. Let ∆i+1 = ∆i, αi+1 = β, and li+1 = 1. If A is false let Γi+1 = Γi, A.

632 Slow consistency

If A is true, let Γi+1 = Γi,¬A. Clearly, Γi+1 will be false in Fαi+1(k∆i+1) since this value
is smaller than Fαi(k∆i).

Finally suppose the last rule is a cut with cut formula “n ∈ N ”. Then the immediate
nodes above ⊢αi ∆i,Γi in P are of the form ⊢β ∆i, n ∈ N,Γi and ⊢β ∆i, n /∈ N,Γi,
respectively, where β + 1 = αi. Set αi+1 = β and and li+1 = 1. If Fβ(k∆i) ≤ 3 · n,
then “n ∈ N ” will be false in Fβ(k∆i), and hence, as Fβ(k∆i) < Fαi(k∆i), it follows
that n ∈ N,Γi will be false in Fβ(k∆i) as well. So in this case let ∆i+1 = ∆i and
Γi+1 = n ∈ N,Γi.

If on the other hand 3 · n < Fβ(k∆i), we compute that

Fβ(k∆i,n/∈N) < Fβ(Fβ(k∆i)) ≤ Fαi(k∆i).
Hence Γi will be false in Fβ(k∆i,n/∈N), and we put ∆i+1 = ∆i, n /∈ N and Γi+1 = Γi.

This finishes the definition of the (αi)i∈N. Their construction also guarantees that
Fαi(li+1) ↓ and Fαi+1(li+1) ≤ Fαi(li+1) ≤ Fωp(2). Note also that whenever the inference
involving ⊢αi+1 ∆i+1,Γi+1 as a premiss and ⊢αi ∆i,Γi as its conclusion was an application
of a rule other than the Accumulation rule, then we have αi = αi+1+1 and li+1 = 1, and
hence Fαi+1(li+1) < Fαi(li+1). As a result, there can only be finitely many of those. Hence
there exists x0 such that for i ≥ x0 the inference from ⊢αi+1 ∆i+1,Γi+1 to ⊢αi ∆i,Γi is
always an instance of Accumulation. Furthermore, this entails that ∆i,Γi = ∆j ,Γj and
li = lj for all i, j > x0. Hence αi+1 <k αi for all i ≥ x0 where k = lx0+1. However, this
is absurd in view of Lemma 2.4 since then the computation of Fαx0 (k) (i.e., Fαx0 (lx0+1))
would never halt. �

The next goal will be to show that Con(PA) is not derivable in PA+Con∗(PA). We
need some preparatory definitions.

Definition 3.6 Let E denote the “stack of two’s” function, E(0) = 0, E(n+ 1) = 2E(n).
Given two elements a and b of a non-standard model M of PA, we say that ‘ b is much
larger than a’ if for every standard integer k we have Ek(a) < b.

If M is a model of PA and I is a substructure of M we say that I is an initial segment
of M if for all a ∈ |I| and x ∈ |M|, M |= x < a implies x ∈ |I|. We will write I < b to
mean b ∈ |M| \ |I|. Sometimes we write a < I to indicate a ∈ |I|.

Theorem 3.7 Let N be a non-standard model of PA (or ∆0(exp)), n be a standard
integer, and e, d ∈ |N| be non-standard such that N |= Fωen(e) = d. Then there is an
initial segment I of N such e < I < d and I is a model of Πn+1-induction.

Proof. This follows e.g. from [17, Theorem 5.25], letting α = 0, c = e, a = e and b = d.
The technique used to prove Theorem 5.25 in [17] is a variation of techniques used by
Paris in [12]. �
Corollary 3.8 Let N be a non-standard model of PA, a, e, c ∈ |N| be non-standard such
that N |= Fε0(a) = e and N |= Fε0(a + 1) = c. Then for every standard n there is an
initial segment I of N such e < I < c and I is a model of Πn+1-induction.

Proof. We argue in N. From Fε0(a+ 1) = Fε0[a+1](a+ 1) = c we conclude with the help
of Corollary 2.14 that

c ≥ Fε0[a](Fε0[a](a+ 1)) ≥ Fε0[a](Fε0a) = Fε0[a](e) > e.

In view of the previous theorem we just have to ensure that Fωen(e) = d for some d with
d ≤ c. From Fε0[a](e) ↓ we get ε0[a] −→e 0 by Lemma 2.4. Proposition 2.12 guarantees

The Infinity Project 633

that ε0[p] −→e e holds for all p ≤ a. In particular, ε0[a − n] −→e e. Applying Lemma 2.10
n times, we arrive at

ε0[a] = ωε0[a−n]n −→
e
ωen.

In view of Lemma 2.3(i) the latter implies that Fωen(e) ↓ and Fε0[a](e) ≥ Fωen(e). �
Definition 3.9 Below we shall need the notion of two models M and N of PA ‘agreeing
up to e’. For this to hold, the following conditions must be met:

(1) e belongs to both models.
(2) e has the same predecessors in both M and N.
(3) If d0, d1, and c are ≤ e (in one of the models M and N), then M |= d0 + d1 = c

iff N |= d0 + d1 = c.
(4) If d0, d1, and c are ≤ e (in one of the models M and N), then M |= d0 · d1 = c

iff N |= d0 · d1 = c.
If M and N agree up to e, d ≤ e and θ(x) is a ∆0 formula, it follows that M |= θ(d) iff
N |= θ(d) (cf. [2, Proposition 1]).

Theorem 3.10 PA+Con∗(PA) ̸⊢ Con(PA).

Proof. Let M be a countable non-standard model of PA + Fε0 is total. Let M be the
domain of M and a ∈ M be non-standard. Moreover, let e = FM

ε0 (a). As a result of the
standing assumption, M |= Con(PA↾a). Owing to a result of Solovay’s [15, Theorem 1.1]
(or similar results in [7]), there exists a countable model N of PA such that:

(a) M and N agree up to e (in the sense of Definition 3.9).
(b) N thinks that PA↾a is consistent.
(c) N thinks that PA ↾a+1 is inconsistent. In fact there is a proof of 0 = 1 from

PA↾a+1 whose Gödel number is less than 22
e (as computed in N).

In actuality, to be able to apply [15, Theorem 1.1] we have to ensure that e is much larger
than a, i.e., Ek(a) < e for every standard number k. It is a standard fact (provable in
PA) that E(x) ≤ F3(x) holds for all sufficiently large x (cf. [6, p. 269]). In particular
this holds for all non-standard elements s of M and hence

Ek(s) ≤ F k3 (s) ≤ F s3 (s) ≤ F4(s) < Fε0(s),

so that Ek(a) < e holds for all standard k, leading to e being much larger than a.
We will now distinguish two cases.

Case 1: N |= Fε0(a + 1) ↑. Then also N |= Fε0(d) ↑ for all d > a by Lemma 2.3(ii).
Hence, in light of (b), N |= Con∗(PA). As (c) yields N |= ¬Con(PA), we have

N |= PA+Con∗(PA) + ¬Con(PA).(3.5)

Case 2: N |= Fε0(a+1) ↓. We then also have e = FN
ε0(a), for M and N agree up to e and

the formula ‘Fε0(x) = y’ is ∆0 by Lemma 2.2. Let c := FN
ε0(a+ 1). By Corollary 3.8, for

every standard n there is an initial segment I of N such e < I < c and I is a model of
Πn+1-induction. Moreover, it follows from the properties of N and the fact 22

e
< I that

(1) I thinks that PA↾a is consistent.
(2) I thinks that PA↾a+1 is inconsistent.
(3) I thinks that Fε0(a+ 1) is not defined.

Consequently, I |= Con∗(PA)+¬Con(PA)+Πn+1-induction. Since n was arbitrary, this
shows that PA+Con∗(PA) + ¬Con(PA) is a consistent theory. �

634 Slow consistency

Proposition 3.3 and Theorem 3.10 can be extended to theories T = PA+ψ where ψ
is a true Π0

1 statement.

Theorem 3.11 Let T = PA+ψ where ψ is a Π1 statement such that T + ‘Fε0 is total’ is
a consistent theory. Let T↾k be the theory PA↾k +ψ and Con∗(T) := ∀xCon(T↾F−1

ε0
(x)).

Then the strength of T+Con∗(T) is strictly between T and T+ Con(T), i.e.,
(i) T ̸⊢ Con∗(T).
(ii) T+Con∗(T) ̸⊢ Con(T).
(iii) T+ Con(T) ⊢ Con∗(T).

Proof. For (i) the same proof as in Proposition 3.3 works with PA replaced by T, while
(iii) is obvious. For (ii) note that Solovay’s Theorem also works for T, so that the proof
of case 1 of Theorem 3.10 can be copied. To deal with case 2, observe that I |= ψ since
ψ is Π1, N |= ψ and I is an initial segment of N. �

The methods of Theorem 3.10 can also be used to produce two ‘natural’ slow growing
functions f and g such that the theories PA + Conf (PA) and PA + Cong(PA) are
mutually non-interpretable in each other.

Definition 3.12 The even and odd parts of Fε0 are defined as follows:

F even
ε0 (2n) = Fε0(2n), F even

ε0 (2n+ 1) = Fε0(2n) + 1,

F odd
ε0 (2n+ 1) = Fε0(2n+ 1), F odd

ε0 (2n+ 2) = Fε0(2n+ 1) + 1, F odd
ε0 (0) = 1,

f(n) = max({k ≤ n | ∃y ≤ nF even
ε0 (k) = y} ∪ {0}),

g(n) = max({k ≤ n | ∃y ≤ nF odd
ε0 (k) = y} ∪ {0}).

By Lemma 2.2, the graphs of f and g are ∆0 and both functions are provably recursive
functions of PA.

Remark 3.13 In a much more elaborate form, the method of defining variants of given
computable functions (such as Fε0) in a piecewise manner has been employed in [8]
to obtain results about degree structures of computable functions and in [4] to obtain
forcing-like results about provably recursive functions.

Theorem 3.14
(i) PA+ Conf (PA) ̸⊢ Cong(PA).
(ii) PA+ Cong(PA) ̸⊢ Conf (PA).

Proof. The proof of (i) is a variant of that of Theorem 3.10. Let M be a countable
non-standard model of PA+Fε0 is total. Let M be the domain of M and a ∈M be non-
standard such that M thinks that a is odd. Let e = FM

ε0 (a). As before, there exists a
countable model N of PA such that:

(a) M and N agree up to e.
(b) N thinks that PA↾a is consistent.
(c) N thinks that PA ↾a+1 is inconsistent. In fact there is a proof of 0 = 1 from

PA↾a+1 whose Gödel number is less than 22
e (as computed in N).

Again we distinguish two cases.

Case 1: N |= Fε0(a+1) ↑. Then also N |= Fε0(d) ↑ for all d > a by Lemma 2.3(ii). Since
M thinks that a+1 is even, so does N, as both models agree up to e. Thus N |= F even

ε0 (d) ↑
for all d > a. As a result, N |= ∀x f(x) ≤ a, and hence, N |= Conf (PA). On the other

The Infinity Project 635

hand, since N |= F odd
ε0 (a+1) = e+1 and N thinks that PA↾a+1 is inconsistent, it follows

that N ̸|= Cong(PA).

Case 2: N |= Fε0(a+1) ↓. As in the proof of Theorem 3.10, letting c := FN
ε0(a+1), for each

n we find an initial segment I of N such e < I < c and I is a model of Πn+1-induction.
Moreover, it follows from the properties of N and the fact that 22

e
< I, that

(1) I thinks that PA↾a is consistent.
(2) I thinks that PA↾a+1 is inconsistent.
(3) I thinks that Fε0(a+ 1) is not defined.

Consequently as I thinks that a + 1 is even, I |= ∀x f(x) ≤ a, whence I |= Conf (PA).
On the other hand, since I |= F odd

ε0 (a + 1) = e + 1, we also have that N ̸|= Cong(PA).
Since n was arbitrary, this shows that PA + Conf (PA) + ¬Cong(PA) is a consistent
theory.

For (ii), the argument is completely analogous, the only difference being that we start
with a non-standard a ∈M such that M thinks that a is even. �

Corollary 3.15 Neither is PA+Conf (PA) interpretable in PA+Cong(PA) nor PA+
Cong(PA) interpretable in PA+ Conf (PA).

Proof. This follows from Theorem 3.14 and Theorem 3.1. �

3.1 A natural Orey sentence

A sentence φ of PA is called an Orey sentence if both PA+φ ▹ PA and PA+¬φ ▹ PA
hold.

Corollary 3.16 The sentence ∃x (Fε0(x) ↑ ∧∀y < xFε0(y) ↓ ∧ x is even) is an Orey
sentence.

Proof. Let ψ be the foregoing sentence. In view of Theorem 3.1, it suffices to show that
PA ⊢ Con(PA↾k +ψ) and PA ⊢ Con(PA↾k +¬ψ) hold for all k. Fix k > 0.

First we show that PA ⊢ Con(PA ↾k +ψ). Note that PA proves the consistency of
PA ↾k +∀xFωk+1

(x) ↓ +∃xFε0(x) ↑. Arguing in PA we thus find a non-standard model
N such that

N |= PA↾k +∀xFωk+1
(x) ↓ +∃xFε0(x) ↑ .

In particular there exists a least a ∈ |N| in the sense of N such that N |= Fε0(a) ↑. If
N thinks that a is even, then N |= ψ, which entails that Con(PA ↾k +ψ). If N thinks
that a is odd, we define a cut I such that I |= PA ↾k and FN

ε0(a − 2) < I < FN
ε0(a − 1),

applying Theorem 3.7. Then I |= ψ which also entails Con(PA↾k +ψ).
Next we show that PA ⊢ Con(PA↾k +¬ψ). As PA proves

Con(PA↾k +∀xFωk+1
(x) ↓),

we can argue in PA and assume that we have a model M |= PA ↾k +∀xFωk+1
(x) ↓. If

M |= ∀xFε0(x)↓ then M |= ¬ψ, and Con(PA↾k +¬ψ) follows. Otherwise there is a least
a in the sense of M such that FM

ε0 (a) ↑. If M thinks that a is odd we have M |= ¬ψ, too.
If M thinks that a is even we introduce a cut FM

ε0 (a − 2) < I′ < FM
ε0 (a − 1) such that

I′ |= PA↾k. Since I′ |= Fε0(a− 1) ↑ we have I′ |= ¬ψ, whence Con(PA↾k +¬ψ). �

636 Slow consistency

References
[1] W. Buchholz, S. Wainer: Provably computable functions and the fast growing hierarchy, in: S. Simpson

(ed.): Logic and Combinatorics, Contemporary Mathematics 65 (AMS, Providence, 1987), 179–198.
[2] C. Dimitracopoulos, J. B. Paris: Truth definitions for ∆0 formulae, in: Logic and Algorithmic,

L’Enseignement Mathématique 30 (Univ. Genève, Geneva, 1982), 317–329.
[3] H. Friedman, S. Sheard: Elementary descent recursion and proof theory, Annals of Pure and Applied

Logic 71 (1995), 1–45.
[4] S.-D. Friedman, M. Rathjen, A. Weiermann: Some results on PA-provably recursive functions, pre-

print, 2011.
[5] D. Guaspari: Partially conservative extensions of arithmetic, Transactions of the American Mathe-

matical Society 254 (1979), 47–68.
[6] J. Ketonen, R. M. Solovay: Rapidly growing Ramsey functions, Annals of Mathematics 113 (1981),

267–314.
[7] J. Krajíček, P. Pudlák: On the structure of initial segments of models of arithmetic, Archive for

Mathematical Logic 28 (1989), 91–98.
[8] L. Kristiansen: Subrecursive degrees and fragments of Peano arithmetic, Archive for Mathematical

Logic 40 (2001), 365–397.
[9] P. Lindström: Some results on interpretability, in: Proceedings of the 5th Scandinavian Logic Sym-

posium 1979 (Aalborg University Press, Aalborg, 1979), 329–361.
[10] P. Lindström: Aspects of Incompleteness, Lecture Notes in Logic 10, second edition (Association for

Symbolic Logic, 2003).
[11] S. Orey: Relative interpretations, Zeitschrift für mathematische Logik 7 (1961), 146–153.
[12] J. B. Paris: A hierarchy of cuts in models of arithmetic, in: Lecture Notes in Mathematics, vol. 834

(Springer, Berlin, 1980), 312–337.
[13] J. Paris, L. Harrington: A mathematical incompleteness in Peano arithmetic, in: J. Barwise (ed.):

Handbook of Mathematical Logic (North-Holland, Amsterdam, 1977), 1133–1142.
[14] D. Schmidt: Built-up systems of fundamental sequences and hierarchies of number-theoretic func-

tions, Archive for Mathematical Logic 18 (1976), 47–53.
[15] R. M. Solovay; Injecting inconsistencies into models of PA, Annals of Pure and Applied Logic 44

(1989), 101–132.
[16] R. Sommer: Transfinite induction and hierarchies generated by transfinite recursion within Peano

arithmetic, PhD thesis, U. C. Berkeley, 1990.
[17] R. Sommer: Transfinite induction within Peano arithmetic, Annals of Pure and Applied Logic 76

(1995), 231–289.
[18] G. Takeuti: Proof Theory, 2nd edition (North-Holland, Amsterdam, 1987).

The Infinity Project

Relativized ordinal analysis: The case of Power
Kripke-Platek set theory

Michael Rathjen

Department of Pure Mathematics, University of Leeds, UK
rathjen@maths.leeds.ac.uk

Abstract. The paper relativizes the method of ordinal analysis developed for Kripke–Platek set theory
to theories which have the power set axiom. We show that it is possible to use this technique to extract
information about Power Kripke–Platek set theory, KP(P).

Introduction

Ordinal analyses of ever stronger theories have been obtained over the last 20 years
[1, 2, 3, 19, 20, 23, 24]. The strongest theories for which proof-theoretic ordinals
have been determined are subsystems of second-order arithmetic with comprehension
restricted to Π1

2-comprehension (or even ∆1
3-comprehension; see [26, 27, 28]). Thus it

appears that it is currently impossible to furnish an ordinal analysis of any set theory
which has the power set axiom among its axioms as such a theory would dwarf the strength
of second-order arithmetic. Notwithstanding the foregoing, the current paper relativizes
the techniques of ordinal analysis developed for Kripke–Platek set theory, KP, to obtain
very useful information about Power Kripke–Platek set theory, KP(P), crystallizing in
a bound for the transfinite iterations of the power set operation that are provable in the
latter theory.

Technically we draw on tools that were developed more than 30 years ago. With the
work of Jäger and Pohlers [13, 14] the forum of ordinal analysis switched from subsystems
of second-order arithmetic to set theory, shaping what is called admissible proof theory,
after the standard models of KP. We also draw on the framework of operator controlled
derivations developed by Buchholz [22] that allows one to express the uniformity of
infinite derivations and to carry out their bookkeeping in an elegant way.

The results and techniques of this paper have important applications. The charac-
terization of the strength of KP(P) in terms of the von Neumann hierarchy is used in
[31, Theorem 1.1] to calibrate the strength of the calculus of construction with one type
universe (which is an intuitionistic type theory). Another application is made in con-
nection with the so-called existence property, EP, that intuitionistic set theories may or
may not have. Full intuitionistic Zermelo–Fraenkel set theory, IZF, does not have the
existence property, where IZF is formulated with Collection (cf. [12]). By contrast, an
ordinal analysis of intuitionistic KP(P) similar to the one given in this paper together
with results from [30] can be utilized to show that IZF with only bounded separation
has the EP.

Research supported by Templeton Foundation Grant #13152, the CRM Infinity Project, and by
U.K. EPSRC grant No. EP/G029520/1. The author is also grateful for a Mercator Professorship of the
German Science Foundation (DFG) which allowed him to work on some of the ideas of this article.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

637

638 Relativized ordinal analysis

1 Power Kripke–Platek set theory

A particularly interesting (classical) subtheory of ZF is Kripke–Platek set theory, KP. Its
standard models are called admissible sets. One of the reasons that this is an important
theory is that a great deal of set theory requires only the axioms of KP. An even
more important reason is that admissible sets have been a major source of interaction
between model theory, recursion theory and set theory (cf. [5]). KP arises from ZF
by completely omitting the power set axiom and restricting separation and collection to
bounded formulae. These alterations are suggested by the informal notion of ‘predicative’.

To be more precise, quantifiers of the forms ∀x ∈ a, ∃x ∈ a are called bounded.
Bounded or ∆0-formulae are the formulae wherein all quantifiers are bounded. The
axioms of KP consist of Extensionality, Pair, Union, Infinity, Bounded Separation

∃x∀u [u ∈ x↔ (u ∈ a ∧ A(u))]

for all bounded formulae A(u), Bounded Collection

∀x ∈ a∃y G(x, y) → ∃z ∀x ∈ a ∃y ∈ z G(x, y)

for all bounded formulae G(x, y), and Set Induction

∀x [(∀y ∈ xC(y))→ C(x)] → ∀xC(x)

for all formulae C(x).
A transitive set A such that (A,∈) is a model of KP is called an admissible set. Of

particular interest are the models of KP formed by segments of Gödel’s constructible
hierarchy L. The constructible hierarchy is obtained by iterating the definable powerset
operation through the ordinals

L0 = ∅,

Lλ =
∪
{Lβ : β < λ}, λ limit,

Lβ+1 =
{
X : X ⊆ Lβ; X definable over ⟨Lβ,∈⟩

}
.

So any element of L of level α is definable from elements of L with levels < α and the
parameter Lα. An ordinal α is admissible if the structure (Lα,∈) is a model of KP.

If the power set operation is considered as a definite operation, but the universe of
all sets is regarded as an indefinite totality, we are led to systems of set theory having
Power Set as an axiom but only Bounded Separation axioms and intuitionistic logic for
reasoning about the universe at large. The study of subsystems of ZF formulated in
intuitionistic logic with Bounded Separation but containing the Power Set axiom was
apparently initiated by Pozsgay [17, 18] and then pursued more systematically by Tharp
[33], Friedman [10] and Wolf [35]. These systems are actually semi-intuitionistic as they
contain the law of excluded middle for bounded formulae.

In the classical context, weak subsystems of ZF with Bounded Separation and Power
Set have been studied by Thiele [34], Friedman [11] and more recently at great length by
Mathias [16]. Mac Lane has singled out and championed a particular fragment of ZF,
especially in his book Form and Function [15]. Mac Lane Set Theory, christened MAC
in [16], comprises the axioms of Extensionality, Null Set, Pairing, Union, Infinity, Power
Set, Bounded Separation, Foundation, and Choice. MAC is naturally related to systems
derived from topos-theoretic notions and, moreover, to type theories.

The Infinity Project 639

Definition 1.1 We use subset bounded quantifiers ∃x ⊆ y . . . and ∀x ⊆ y . . . as abbre-
viations for ∃x(x ⊆ y ∧ . . .) and ∀x(x ⊆ y → . . .), respectively.

The ∆P
0 formulae are the smallest class of formulae containing the atomic formulae

closed under ∧,∨,→,¬ and the quantifiers

∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

Definition 1.2 KP(P) has the same language as ZF. Its axioms are the following:
Extensionality, Pairing, Union, Infinity, Powerset, ∆P

0 -Separation and ∆P
0 -Collection.

The transitive models of KP(P) have been termed power admissible sets in [11].

Remark 1.3 Alternatively, KP(P) can be obtained from KP by adding a function
symbol P for the powerset function as a primitive symbol to the language and the axiom

∀y [y ∈ P(x)↔ y ⊆ x]
and extending the schemes of ∆0 Separation and Collection to the ∆0 formulae of this
new language.

Lemma 1.4 KP(P) is not the same theory as KP + Pow. Indeed, KP + Pow is a
much weaker theory than KP(P) in which one cannot prove the existence of Vω+ω.

Proof. Note that in the presence of full Separation and Infinity there is no difference
between our system KP and Mathias’ [16] KP. It follows from [16, Theorem 14] that
Z+KP+AC is conservative over Z+AC for stratifiable sentences. Z and Z+AC are
of the same proof-theoretic strength as the constructible hierarchy can be simulated in Z;
a stronger statement is given in [16, Theorem 16]. As a result, Z and Z+KP are of the
same strength. As KP + Pow is a subtheory of Z + KP, we have that KP + Pow is
not stronger than Z. If KP+Pow could prove the existence of Vω+ω it would prove the
consistency of Z. On the other hand KP(P) proves the existence of Vα for every ordinal
α and hence proves the existence of arbitrarily large transitive models of Z. �
Remark 1.5 Our system KP(P) is not quite the same as the theory KPP in Mathias’
paper [16, 6.10]. The difference between KP(P) and KPP is that in the latter system
set induction only holds for ΣP

1 formulae, or what amounts to the same, ΠP
1 foundation

(A ̸= ∅ → ∃x ∈ A x ∩A = ∅ for ΠP
1 classes A).

Friedman [11] includes only Set Foundation in his formulation of a formal system
PAdms appropriate to the concept of recursion in the power set operation P.

2 A Tait-style formalization of KP(P)

For technical reasons we shall use a Tait-style sequent calculus version of KP(P) in
which finite sets of formulae can be derived. In addition, formulae have to be in negation
normal form (cf. [32]). The language consists of: free variables a0, a1, . . . , bound variables
x0, x1, . . . ; the predicate symbol ∈; the logical symbols ¬,∨,∧, ∀, ∃. One peculiarity will
be that we treat bounded quantifiers and subset bounded quantifiers as quantifiers in
their own right.

We will use a, b, c, . . . , x, y, z, . . . , A,B,C, . . . as metavariables whose domains are
the domain of the free variables, bound variables, formulae, respectively.

The atomic formulae are those of the form (a ∈ b), ¬(a ∈ b). Formulae are defined
inductively as follows:

(i) Atomic formulae are formulae.

640 Relativized ordinal analysis

(ii) If A and B are formulae, then so are (A ∧B) and (A ∨B).
(iii) If A(b) is a formula in which x does not occur, then ∀xA(x), ∃xA(x), (∀x∈ a)

A(x), (∃x∈a)A(x), (∀x ⊆ a)A(x), and (∃x ⊆ a)A(x) are formulae.
The quantifiers ∃x, ∀x will be called unrestricted, whereas the other quantifiers will

be referred to as restricted quantifiers. A ∆P
0 -formula is a formula which contains no

unrestricted quantifiers. The ∆0-formulae are those ∆P
0 -formulae that do not contain

subset bounded quantifiers.
The negation ¬A of a formula A is defined to be the formula obtained from A by (i)

putting ¬ in front of any atomic formula; (ii) replacing ∧, ∨, ∀x, ∃x, (∀x∈a), (∃x∈a),
(∀x ⊆ a), (∃x ⊆ a) by ∨, ∧, ∃x, ∀x, (∃x∈a), (∀x∈a), (∃x ⊆ a), (∀x ⊆ a), respectively,
and (iii) dropping double negations. A→ B stands for ¬A ∨ B.

a⃗, b⃗, c⃗, . . . and x⃗, y⃗, z⃗, . . . will be used to denote finite sequences of free and bound
variables, respectively.

We use F [a1, . . . , an] (by contrast with F (a1, . . . , an)) to denote a formula the free
variables of which are among a1, . . . , an. We will write a = {x∈b : G(x)} for

(∀x∈a)[x∈b ∧G(x)] ∧ (∀x∈b)[G(x)→x∈a].
a = b stands for (∀x∈a)(x∈b) ∧ (∀x∈b)(x∈a), and a ⊆ b stands for (∀x∈a)(x∈b).

However, as part of a subset bounded quantifier (∀x ⊆ a) or (∃x ⊆ b), ⊆ is considered to
be a primitive symbol.

Definition 2.1 The sequent-style version of KP(P) derives finite sets of formulae de-
noted by Γ,∆,Θ,Ξ, The intended meaning of Γ is the disjunction of all formulae
of Γ. We use the notation Γ, A for Γ ∪ {A}, and Γ,Ξ for Γ ∪ Ξ.

The axioms of KP(P) are the following:

Logical axioms: Γ, A,¬A for every ∆P
0 -formula A

Extensionality: Γ, a=b ∧B(a)→ B(b) for every ∆P
0 -formula B(a)

Pair: Γ, ∃x[a∈x ∧ b∈x]
Union: Γ, ∃x(∀y∈a)(∀z∈y)(z∈x)
∆P

0 -Separation: Γ, ∃y(y = {x∈a : G(x)}) for every ∆P
0 -formula G(b)

Set Induction: Γ, ∀u [(∀x∈u)G(x) → G(x)] → ∀uG(u) for every formula G(b)
Infinity: Γ, ∃x [(∃y∈x) y ∈ x ∧ (∀y ∈ x)(∃z∈x) y ∈ z]
Power Set: Γ, ∃z (∀x ⊆ a)x ∈ z
The logical rules of inference are:

(∧) ⊢ Γ, A and ⊢ Γ, B ⇒ ⊢ Γ, A ∧B
(∨) ⊢ Γ, Ai for i∈{0, 1} ⇒ ⊢ Γ, A0 ∨A1

(b∀) ⊢ Γ, a∈b→ F (a) ⇒ ⊢ Γ, (∀x∈b)F (x)
(pb∀) ⊢ Γ, a ⊆ b→ F (a) ⇒ ⊢ Γ, (∀x ⊆ b)F (x)
(∀) ⊢ Γ, F (a) ⇒ ⊢ Γ, ∀xF (x)
(b∃) ⊢ Γ, a∈b ∧ F (a) ⇒ ⊢ Γ, (∃x∈b)F (x)
(pb∃) ⊢ Γ, a ⊆ b ∧ F (a) ⇒ ⊢ Γ, (∃x ⊆ b)F (x)
(∃) ⊢ Γ, F (a) ⇒ ⊢ Γ, ∃xF (x)
(Cut) ⊢ Γ, A and ⊢ Γ,¬A ⇒ ⊢ Γ

In the foregoing rules, F (a) is an arbitrary formula. Of course, it is demanded that
in (b∀), (pb∀) and (∀) the free variable a is not to occur in the conclusion; a is called the
eigenvariable of that inference.

The Infinity Project 641

The non-logical rule of inference is

(∆P
0 -COLLR) ⊢ Γ, (∀x∈a)∃yH(x, y) ⇒ ⊢ Γ, ∃z(∀x∈a)(∃y∈z)H(x, y)

for every ∆P
0 -formula H(b, c).

We shall conceive of axioms as inferences with an empty set of premisses. The minor
formulae (m.f.) of an inference are those formulae which are rendered prominently in
its premises. The principal formulae (p.f.) of an inference are the formulae rendered
prominently in its conclusion. (Cut) has no p.f. So any inference has the form

(2.1) For all i < k ⊢ Γ,Ξi ⇒ ⊢ Γ,Ξ

(0 ≤ k ≤ 2), where Ξ consists of the p.f. and Ξi is the set of m.f. in the i-th premise. The
formulae in Γ are called side formulae (s.f.) of (2.1). Derivations are defined inductively,
as usual. D,D′,D0, . . . range as syntactic variables over derivations. All this is completely
standard, and we refer to [32] for notions like “ length of a derivation D” (abbreviated
by |D|), “ last inference of D”, or “direct subderivation of D”. We write D ⊢ Γ if D is a
derivation of Γ.

3 A representation system for the Bachmann–Howard
ordinal

Definition 3.1 Let Ω be a “big” ordinal, e.g., Ω = ℵ1 or ωck1 . By recursion on α we
define sets CΩ(α, β) and the ordinal ψΩ(α) as follows:

CΩ(α, β) =

closure of β ∪ {0,Ω} under:
+, (ξ 7→ ωξ)
(ξ 7−→ ψΩ(ξ))ξ<α;

(3.1)

ψΩ(α) ≃ min{ρ < Ω : CΩ(α, ρ) ∩ Ω = ρ }.(3.2)

It can be shown that ψΩ(α) is always defined and that

ψΩ(α) < Ω.

In the case of Ω being ωck1 , this follows from [22]. Moreover,

[ψΩ(α),Ω] ∩ CΩ(α, ψΩ(α)) = ∅.

Thus the order-type of the ordinals below Ω which belong to the set CΩ(α, ψΩ(α)) is
ψΩ(α). ψΩ(α) is also a countable ordinal. In more pictorial terms, ψΩ(α) is the α-th
collapse of Ω.

Let εΩ+1 be the least ordinal α > Ω such that ωα = α. The set of ordinals CΩ(εΩ+1, 0)
gives rise to an elementary computable ordinal representation system (cf. [7, 13, 22, 25]).
In what follows, CΩ(εΩ+1, 0) will sometimes be denoted by T (Ω).

In point of fact,
CΩ(εΩ+1, 0) ∩ Ω = ψΩ(εΩ+1).

The ordinal ψΩ(εΩ+1) is known as the Bachmann–Howard ordinal. Its relation to KP is
that it is the proof-theoretic ordinal of this theory as was shown by Jäger [13]. Moreover
it is the smallest ordinal such that LψΩ(εΩ+1) is a Π2-model of KP (see [21, Theorem 2.1]
or [29, Theorem 4.3]), i.e., whenever KP proves a Π2 sentence C of set theory, then
LψΩ(εΩ+1) |= C.

642 Relativized ordinal analysis

4 The infinitary proof system RSP
Ω

Henceforth all ordinals will be assumed to belong to CΩ(εΩ+1, 0).
The problem of “naming” sets will be solved by building a formal von Neumann

hierarchy using the ordinals < Ω belonging to this set (i.e., ordinals < ψΩ(εΩ+1)).

Definition 4.1 We define the RSP
Ω -terms. To each RSP

Ω -term t we also assign its level, |t|.
1. For each α < Ω, Vα is an RSP

Ω -term with |Vα| = α.
2. For each α < Ω, we have infinitely many free variables aα1 , aα2 , aα3 , . . . which are
RSP

Ω -terms with |aαi | = α.
3. If F (x, y⃗) is a ∆P

0 formula (whose free variables are exactly those indicated) and
s⃗ ≡ s1, . . . , sn are RSP

Ω -terms, then the formal expression

{x∈Vα | F (x, s⃗)}

is an RSP
Ω -term with |{x∈Vα | F (x, s⃗)}| = α.

The RSP
Ω -formulae are the expressions of the form F (s1, . . . , sn), where F [a1, . . . , an] is

a formula of KP(P) and s1, . . . , sn are RSP
Ω -terms. We set

|F (s1, . . . , sn)| = {|s1|, . . . , |sn|}.

If F [a1, . . . , an] is in ∆P
0 , then F (s1, . . . , sn) is also called a ∆P

0 formula (of RSP
Ω).

As in the case of the Tait-style version of KP(P), we let ¬A be the formula which
arises from A by (i) putting ¬ in front of each atomic formula; (ii) replacing ∧, ∨, (∀x∈s),
(∃x∈ s), (∀x ⊆ s), (∃x ⊆ s), ∀x, ∃x by ∨, ∧, (∃x∈ s), (∀x∈ s), (∃x ⊆ s), (∀x ⊆ s), ∃x,
∀x, respectively, and (iii) dropping double negations. A→ B stands for ¬A ∨ B.

Convention In the sequel, RSP
Ω -formulae will simply be referred to as formulae. The

same usage applies to RSP
Ω -terms.

We denote by upper case Greek letters Γ,∆,Λ, . . . finite sets of RSP
Ω -formulae. The

intended meaning of Γ = {A1, . . . , An} is the disjunction A1 ∨ · · · ∨ An. Γ,Ξ stands for
Γ ∪ Ξ and Γ, A stands for Γ ∪ {A}.

Definition 4.2 The axioms of RSP
Ω are:

(A1) Γ, A, ¬A for A in ∆P
0 .

(A2) Γ, t = t.

(A3) Γ, s1 ̸= t1, . . . , sn ̸= tn,¬A(s1, . . . , sn), A(t1, . . . , tn)
for A(s1, . . . , sn) in ∆P

0 .

(A4) Γ, s ∈ Vα if |s| < α.

(A5) Γ, s ⊆ Vα if |s| ≤ α.

(A6) Γ, t /∈ {x ∈ Vα | F (x, s⃗)}, F (t, s⃗)

whenever F (t, s⃗) is ∆P
0 and |t| < α.

(A7) Γ,¬F (t, s⃗), t ∈ {x ∈ Vα | F (x, s⃗)}

whenever F (t, s⃗) is ∆P
0 and |t| < α.

The Infinity Project 643

The inference rules of RSP
Ω are:

(∧) Γ, A Γ, A′

Γ, A ∧A′

(∨) Γ, Ai
Γ, A0 ∨A1

if i = 0 or i = 1

(b∀)∞
Γ, s∈t→ F (s) for all |s| < |t|
Γ, (∀x∈ t)F (x)

(b∃) Γ, s∈t ∧ F (s)
Γ, (∃x∈ t)F (x)

if |s| < |t|

(pb∀)∞
Γ, s ⊆ t→ F (s) for all |s| ≤ |t|
Γ, (∀x ⊆ t)F (x)

(pb∃) Γ, s ⊆ t ∧ F (s)
Γ, (∃x ⊆ t)F (x)

if |s| ≤ |t|

(∀)∞
Γ, F (s) for all s
Γ, ∀xF (x)

(∃) Γ, F (s)

Γ, ∃xF (x)

(̸∈)∞
Γ, r ∈ t→ r ̸= s for all |r| < |t|

Γ, s ̸∈ t

(∈) Γ, r∈t ∧ r = s
Γ, s∈ t

if |r| < |t|

(̸⊆)∞
Γ, r ⊆ t→ r ̸= s for all |r| ≤ |t|

Γ, s ̸⊆ t

(⊆) Γ, s = r ∧ r ⊆ t
Γ, s ⊆ t

if |r| ≤ |s|

(Cut) Γ, A Γ,¬ A
Γ

(ΣP -Ref) Γ, A
Γ, ∃z Az

if A is a ΣP -formula,

where a formula is said to be in ΣP if all its unbounded quantifiers are existential.
Az results from A by restricting all unbounded quantifiers to z.

4.1 H-controlled derivations

In general, in RSP
Ω we cannot remove cuts that have ∆P

0 cut formulae. What is more, the
rule (ΣP -Ref) poses an obstacle to removing cuts involving ΣP

1 formulae. Notwithstanding
that, it will turn out that cuts of a complexity higher than ∆P

0 can be removed from
derivations of ΣP formulae if they are of a very uniform kind.

644 Relativized ordinal analysis

For the presentation of infinitary proofs we draw on [7]. Buchholz developed a very
elegant and flexible setting for describing uniformity in infinitary proofs, called operator
controlled derivations.

Definition 4.3 Let
P (ON) = {X : X is a set of ordinals}.

A class function H : P (ON)→ P (ON) will be called operator if H is a closure operator,
i.e., monotone, inclusive, and idempotent, and satisfies the following conditions for all
X ∈P (ON):

(1) 0 ∈ H(X) and Ω ∈ H(X).
(2) If α has Cantor normal form ωα1 + · · ·+ ωαn , then

α ∈ H(X) ⇐⇒ α1, . . . , αn ∈ H(X).

The latter ensures that H(X) will be closed under + and σ 7→ ωσ, and decomposition of
its members into additive and multiplicative components.

For a sequent Γ = {A1, . . . , An} we define

|Γ| := |A1| ∪ . . . ∪ |An|.

If s is an RSP
Ω -term, the operator H[s] is defined by

H[s](X) = H(X ∪ {|s|}).

Likewise, if X is a formula or a sequent we define

HX = H(X ∪ |X|).

If Yi is a term, or a formula, or a sequent for 1 ≤ i ≤ n, we let H[Y1,Y2] = (H[Y1])[Y2],
H[Y1,Y2,Y3] = (H[Y1,Y2])[Y3], etc.

Lemma 4.4 Let H be an operator. Let s be a term and X be a formula or a sequent.
(i) ∀X,X ′∈P (On)[X ′ ⊆ X =⇒ H(X ′) ⊆ H(X)].
(ii) H[s] and H[X] are operators.
(iii) |X| ⊆ H[∅] =⇒ H[X] = H.
(iv) |s| ∈ H[∅] =⇒ H[s] = H.

Since we also want to keep track of the complexity of cuts appearing in derivations,
we endow each formula with an ordinal rank.

Definition 4.5 The rank of a formula is determined as follows:
(1) rk(s∈t) := rk(s /∈ t) := max{|s|+ 1, |t|+ 1}.

(2) rk((∃x∈t)F (x)) := rk((∀x∈t)F (x)) := max{|t|, rk(F (V0)) + 2}.

(3) rk((∃x ⊆ t)F (x)) := rk((∀x ⊆ t)F (x)) := max{|t|, rk(F (V0)) + 2}.

(4) rk(∃xF (x)) := rk(∀xF (x)) := max{Ω, rk(F (V0)) + 2}.

(5) rk(A ∧B) := rk(A ∨B) := max{rk(A), rk(B)}+ 1.

Note that for a ∆P
0 formula A we have rk(A) < Ω.

There is plenty of leeway in designing the actual rank of a formula.

The Infinity Project 645

Definition 4.6 Let H be an operator and let Λ be a finite set of RSP
Ω -formulae. Then

H α

ρ Λ is defined by recursion on α.
If Λ is an axiom and |Λ| ∪ {α} ⊆ H(∅), then H α

ρ Λ .
Moreover, we have inductive clauses pertaining to the inference rules of RSP

Ω , which
come with the additional requirement that |Λ| ∪ {α} ⊆ H(∅), where Λ is the sequent of
the conclusion. We shall not repeat this requirement below. The clauses are the following:

(∧)
H α0

ρ Γ, A0 H α0

ρ Γ, A1

H α

ρ Γ, A0 ∧A1

α0 < α

(∨)
H α0

ρ Λ, Ai

H α

ρ Γ, A0 ∨A1

α0 < α
i ∈ {0, 1}

(b∀)∞
H[s] αs

ρ Γ, s∈t→ F (s) for all |s| < |t|

H α

ρ Γ, (∀x∈t)F (x)
|s| ≤ αs < α

(b∃)
H α0

ρ Γ, s∈t ∧ F (s)

H α

ρ Γ, (∃x∈t)F (x)

α0 < α
|s| < |t|
|s| < α

(pb∀)∞
H[s] αs

ρ Γ, s ⊆ t→ F (s) for all |s| ≤ |t|

H α

ρ Γ, (∀x ⊆ t)F (x)
|s| ≤ αs < α

(pb∃)
H α0

ρ Γ, s ⊆ t ∧ F (s)

H α

ρ Γ, (∃x ⊆ t)F (x)

α0 < α
|s| ≤ |t|
|s| < α

(∀)∞
H[s] αs

ρ Γ, F (s) for all s

H α

ρ Γ, (∀xF (x)
|s| ≤ αs + 1 < α

(∃)
H α0

ρ Γ, F (s)

H α

ρ Γ, ∃xF (x)
α0 < α
|s| < α

(̸∈)∞
H[r] αr

ρ Γ, r∈t→ r ̸= s for all |r| < |t|

H α

ρ Γ, s ̸∈ t
|r| ≤ αr < α

(∈)
H α0

ρ Γ, r∈t ∧ r = s

H α

ρ Γ, s∈t

α0 < α
|r| < |t|
|r| < α

646 Relativized ordinal analysis

(̸⊆)∞
H[r] αr

ρ Γ, r ⊆ t→ r ̸= s for all |r| ≤ |t|

H α

ρ Γ, s ̸⊆ t
|r| ≤ αr < α

(⊆)
H α0

ρ Γ, r ⊆ t ∧ r = s

H α

ρ Γ, s ⊆ t

α0 < α
|r| ≤ |t|
|r| < α

(Cut)
H α0

ρ Λ, B H α0

ρ Λ,¬B

H α

ρ Λ

α0 < α
rk(B) < ρ

(ΣP -Ref)
H α0

ρ Γ, A

H α

ρ Γ, ∃z Az
α0,Ω < α

A∈ΣP

Remark 4.7 Suppose H α

ρ Γ(s1, . . . , sn) , where Γ(a1, . . . , an) is a sequent of KP(P)
and s1, . . . , sn are RSP

Ω -terms. Then we have that |s1|, . . . , |sn| ∈ H(∅). Standing in
sharp contrast to the ordinal analysis of KP (cf. [7, 13]), however, the terms si may and
often will contain subterms that the operator H does not control, that is, subterms t with
|t| ̸∈ H(∅).

The following observation is easily established by induction on α.

Lemma 4.8 (Weakening)

H α

ρ Γ ∧ α ≤ α′∈H ∧ ρ ≤ ρ′ ∧ |Λ| ⊆ H(∅) =⇒ H α′

ρ′
Γ,Λ.

Lemma 4.9 (Inversion)

(i) If H α

ρ Γ, A ∨B and rk(A ∨B) ≥ Ω, then H α

ρ Γ, A,B.

(ii) If H α

ρ Γ, A0 ∧A1 , i ∈ {0, 1} and rk(A0 ∧A1) ≥ Ω, then H α

ρ Γ, Ai.

(iii) H α

ρ Γ, ∀xF (x) ∧ γ∈H(∅) ∧ γ < Ω =⇒ H α

ρ Γ, (∀x∈Vγ)F (x).

(iv) If H α

ρ Γ, (∀x ∈ t)F (x) and rk(F (V0)) ≥ Ω, then H[s] α

ρ Γ, s∈t→ F (s) for all
|s| < |t|.

(v) If H α

ρ Γ, (∀x ⊆ t)F (x) and rk(F (V0)) ≥ Ω, then H[s] α

ρ Γ, s ⊆ t→ F (s) for
all |s| ≤ |t|.

Proof. All proofs are by induction on α. Note that if a formula C of rk(C) ≥ Ω is active
in a derivation then it must have been the principal formula of an inference.

We show (iii). Suppose that ∀xF (x) was the principal formula of the last inference.
Then we have H[s] αs

ρ Γ, ∀xF (x), F (s) for all terms s, using weakening (Lemma 4.8) if
∀xF (x) was not a side formula of the inference. Moreover, |s| ≤ αs + 1 < α holds for
all s. Inductively we have H[s] αs

ρ Γ, (∀x∈Vγ)F (x), F (s) for all |s| < γ. As

H[s] αs
ρ Γ, (∀x∈Vγ)F (x), s ∈ Vγ

The Infinity Project 647

holds for |s| < γ on account of being an axiom, we get

H[s] αs+1

ρ Γ, (∀x∈Vγ)F (x), s ∈ Vγ ∧ F (s)

for all |s| < γ via an inference (∧), and hence H α

ρ Γ, (∀x∈Vγ)F (x) via an inference (b∀).
If ∀xF (x) is not the principal formula of the last inference, then the assertion follows

by using the induction hypothesis to its premises and re-applying the same inference. �

5 Embedding

To connect KP(P) with the infinitary system RSP
Ω , we show that KP(P) can be embed-

ded into RSP
Ω . Indeed, the finite KP(P)-derivations give rise to very uniform infinitary

derivations.

Definition 5.1 For Γ = {A1, . . . , An}, let

no(Γ) := ωrk(A1)# · · ·#ωrk(An).

We define
 Γ :⇐⇒ for all operators H, H[Γ]

no(Γ)

0
Γ

and

ξρ Γ :⇐⇒ for all operators H, H[Γ]
no(Γ)#ξ

ρ Γ.

Lemma 5.2 For all formulae A,
 A,¬A.

Proof. We proceed by induction on the syntactic complexity of A. For A in ∆P
0 , this

is an axiom of RSP
Ω . Suppose that A is of the form ∀xF (x). Let H be an arbi-

trary operator. Let αs := no({F (s),¬F (s)}) and α := no({∀xF (x),∃x¬F (x)}). In-
ductively we have H[F (s)] αs

0
F (s),¬F (s) for all terms s. Using an inference (∃) we

get H[F (s)]
no({F (s),∃x¬F (x)})
0

F (s), ∃x¬F (x) . Hence, via an inference (∀), we arrive at
H[∀xF (x)] α

0
∀xF (x), ∃x¬F (x) , noting that H[F (s)}] ⊆ (H[∀x¬F (x)])[s].

The other cases are similar. �

Lemma 5.3 (Equality and Extensionality)

 s1 ̸= t1, . . . , sn ̸= tn,¬A(s1, . . . , sn), A(t1, . . . , tn).

Proof. We proceed by induction on the buildup of A(s⃗). If A(s⃗) is ∆P
0 then this is an

axiom.
Suppose A(s⃗) is a formula ∀xF (x, s⃗). Let s⃗ ̸= t⃗ stand for s1 ̸= t1, . . . , sn ̸= tn.

Let Γr := {s⃗ ̸= t⃗,¬F (r, s⃗), F (r, t⃗)} and αr := no(Γr). Let H be an arbitrary operator.
Inductively we have

H[Γr]
αr

0
Γr

for all terms r. Using an inference (∃) we obtain H[Γ̃r]
Γ
0

Γ̃r , where

Γ̃r := {s⃗ ̸= t⃗, ∃x¬F (x, s⃗), F (r, t⃗)}

648 Relativized ordinal analysis

and α̃r := no(Γ̃r), noting that |r| < Ω ≤ no(∃x¬F (x, s⃗)). Thus, using an inference (∀),
we have

H[Γ]
no(Γ)

0
Γ,

where Γ := {s⃗ ̸= t⃗, ∃x¬F (x, s⃗), ∀xF (x, t⃗)}. In the latter we used the fact that H[Γ̃r] ⊆
(H[Γ])[r].

The other cases are similar. �
Lemma 5.4 (Set Induction)

 ∀x [(∀y∈x)F (y)→ F (x)] −→ ∀xF (x).

Proof. Fix an operator H. Let A ≡ (∀x [(∀y∈x)F (y) → F (x)]. First, we show, by
induction on |s|, that

(+) H[A, s] ωrk(A)#ω|s|+1

0
¬A,F (s).

So assume that
H[A, t] ωrk(A)#ω|t|+1

0
¬A,F (t)

holds for all |t| < |s|. Using (∨), this yields

H[A, s, t] ωrk(A)#ω|t|+1+1

0
¬A, t∈s→ F (t)

for all |t| < |s|, and hence

(5.1) H[A, s] ωrk(A)#ω|s|+2

0
¬A, (∀x∈s)F (x)

via (∀)∞. Set ηs := ωrk(A)#ω|s| + 2. By Lemma 5.2 we have H[A, s] ηs

0
¬F (s), F (s).

Therefore, using (5.1) and (∧),

H[A, s] ηs+1

0
¬A, (∀y∈s)F (y) ∧ ¬F (s), F (s).

From the latter we obtain

H[A, s] ηs+2

0
¬A, ∃x [(∀y∈x)F (y) ∧ ¬F (x)], F (s)

via (∃). This shows (+).
Finally, (+) enables us to deduce, via (∀)∞, that

H[A, s] ωrk(A)+Ω

0
¬A,∀xF (x).

From this the assertion follows by applying (∨) twice. �
Lemma 5.5 (Infinity Axiom) For any operator H we have

H ω+2

0
∃x [(∃y∈x) y ∈ x ∧ (∀y ∈ x)(∃z∈x) y ∈ z].

Proof. Let s be a term with |s| = n < ω. Then H 0

0
s∈Vn+1 and H 0

0
Vn+1 ∈ Vω since

these formulae are axioms. Via (∧) we deduce H 1

0
Vn+1 ∈ Vω ∧ s∈Vn+1 and hence

H n+2

0
(∃z ∈ Vω)s∈z , using (b∃). An inference (∨) yields

H n+3

0
s∈Vω → (∃z ∈ Vω)s∈z.

Since this holds for all terms s with |s| < ω, we conclude that

H ω

0
(∀y∈Vω)(∃z ∈ Vω)y∈z.(5.2)

The Infinity Project 649

Since V0 ∈ Vω is an axiom we have H 1

0
V0 ∈ Vω ∧ V0 ∈ Vω via (∧) and thus

H 2

0
(∃z ∈ Vω)z ∈ Vω,(5.3)

using (b∃). Combining (5.2) and (5.3) we arrive at

H ω+1

0
(∃z ∈ Vω)z ∈ Vω ∧ (∀y∈Vω)(∃z ∈ Vω)y∈z.

Thus an inference (b∃) furnishes us with

H ω+2

0
∃x [(∃z ∈ x)z ∈ x ∧ (∀y∈x)(∃z∈x)y∈z]. �

Lemma 5.6 (∆P
0 -Separation) Let A(a, b, c1, . . . , cn) be a ∆P

0 -formula of L with all free
variables among the exhibited. Let r, s1, . . . , sn be RSP

Ω -terms. Let H be an arbitrary
operator. Then:

H[r, s⃗] sρ ∃y [(∀x∈y)(x∈r ∧A(x, r, s⃗) ∧ (∀x∈r)(A(x, r, s⃗)→ x∈y)],

where α = |r| and ρ = max{|r|, |s1|, . . . , |sn|}+ ω.

Proof. Define the RSP
Ω -term p by

p := {x ∈ Vα | x∈r ∧ A(x, r, s⃗)}.

Then |p| = α. Let H̃ := H[r, s⃗]. We have H̃[t] H
0
t ̸∈ p, t ∈ r ∧ A(t, r, s⃗) for all |t| < α

since this is an axiom. Hence H̃[t] H
0
t∈p→ t ∈ r ∧ A(t, r, s⃗) using (∨) twice, and there-

fore

H̃ H
0

(∀x∈p)(x ∈ r ∧ A(x, r, s⃗))(5.4)

by applying (b∀)∞. We also have H̃[t] H
0
t ̸∈ r, t∈r and H̃[t] H

0
¬A(t, r, s⃗), A(t, r, s⃗) as

these sequents are axioms. Using (∧) and weakening (Lemma 4.8) we conclude that

H̃[t] H
0
t ̸∈ r,¬A(t, r, s⃗), t∈r ∧ A(t, r, s⃗).(5.5)

Since H̃[t] H
0
¬(t∈r ∧ A(t, r, s⃗)), t∈p holds on account of being an axiom, a cut applied

to (5.5) and the latter yields

H̃[t] Hρ t ̸∈ r,¬A(t, r, s⃗), t∈p,(5.6)

since rk(t∈r ∧ A(t, r, s⃗)) < ρ holds for terms t with |t| < α. Now use (∨) four times to
arrive at

H̃[t] Hρ t∈r → (A(t, r, s⃗)→ t∈p).(5.7)

Applying (b∀)∞ to (5.7) yields

H̃ H
ρ (∀x ∈ r)(A(x, r, s⃗)→ x ∈ p).(5.8)

Combining (5.4) and (5.8) via (∧) we have

H̃ H
ρ (∀x∈p)(x ∈ r ∧ A(x, r, s⃗)) ∧ (∀x ∈ r)(A(x, r, s⃗)→ x∈p).

650 Relativized ordinal analysis

Consequently, by means of (b∃),

H̃ H
ρ ∃y[(∀x∈y)(x ∈ r ∧ A(x, r, s⃗)) ∧ (∀x ∈ r)(A(x, r, s⃗)→ x∈y)]. �

Lemma 5.7 (Pair and Union) For any operator H, the following hold:

(i) H[s, t] α+1

0
∃z (s∈z ∧ t∈z) , where α = max(|s|, |t|) + 1.

(ii) H[s] β+7

0
∃z (∀y∈s)(∀x∈y)(x∈z) , where β = |s|.

Proof. For (i), s ∈ Vα and t ∈ Vα are axioms. Thus H[s, t] 1

0
s ∈ Vα ∧ t ∈ Vα , and

hence H[s, t] α+2

0
∃z (s∈z ∧ t∈z) by means of (b∃).

For (ii), let r and t be terms of levels < β. Since r ∈ Vβ is an axiom, we have

H[s] 0

0
t ̸∈ s, r ̸∈ t, r ∈ Vβ.

Thus we get

H[s] 2

0
t ̸∈ s, r∈t→ r ∈ Vβ

H[s] β+3

0
t ̸∈ s, (∀x∈t)x ∈ Vβ

H[s] β+5

0
t∈s→ (∀x∈t)x ∈ Vβ

H[s] β+6

0
(∀y∈s)(∀x∈t)x ∈ Vβ

H[s] β+7

0
∃z (∀y∈s)(∀x∈t)x∈z. �

Lemma 5.8 (Power Set) For any operator H, the following holds:

H[s] α+1

0
∃z (∀x ⊆ s)x ∈ z,

where α = |s|.

Proof. Let t be a term with |t| ≤ α. Then t ∈ Vα+1 is an axiom. Whence, using (∨)
(twice), (pb∀)∞, and (∃), we have

H[s] 0

0
t ̸⊆ s, t ∈ Vα+1

H[s] 2

0
t ⊆ s→ t ∈ Vα+1

H[s] α+3

0
(∀x ⊆ s)x ∈ Vα+1

H[s] α+4

0
∃z (∀x ⊆ s)x ∈ z. �

Theorem 5.9 If KP(P) ⊢ Γ(a1, . . . , al), then there exist m,n < ω such that

H[s1, . . . , sl]
ωΩ+m

Ω+n
Γ(s1, . . . , sl)

holds for all RSP
Ω -terms s1, . . . , sl and operators H. Thus m and n depend only on the

KP(P)-derivation of Γ(⃗a).

The Infinity Project 651

Proof. One proceeds by induction on the length of the KP(P)-derivation of Γ(⃗a). Note
that the rank of an RSP

Ω -formula A is always < Ω+ω and thus the norms of RSP
Ω -sequents

will always be < ωΩ+ω.
If Γ(⃗a) is an axiom of KP(P) then the assertion follows from the earlier results of

this section.
As an example of a rule we shall treat (pb∃). So suppose the last inference of our

KP(P)-derivation D was an instance of (pb∃). Then Γ(⃗a) contains a formula of the form
(∃x ⊆ ai) ∧ F (x, a⃗) and there exists a shorter KP(P)-derivation D0 whose end sequent
is either of the form Γ(⃗a), c ⊆ ai ∧ F (c, a⃗) with c not occurring in Γ(⃗a) or c is aj for
some 1 ≤ j ≤ l. In the former case the induction hypothesis supplies us with n0,m0 < ω
such that

H[s⃗] ωΩ+m0

Ω+n0
Γ(s⃗),V0 ⊆ si ∧ F (V0, s⃗)(5.9)

holds for all terms s⃗. As |V0| = 0 ≤ |si| we can apply an inference (pb∃) in the system
RSP

Ω , yielding

H[s⃗] ωΩ+m0+2

Ω+n0
Γ(s⃗), (∃x ⊆ si)F (x, s⃗)(5.10)

and thus H[s⃗] ωΩ+m0+2

Ω+n0
Γ(s⃗) as (∃x ⊆ si)F (x, s⃗) belongs to Γ(s⃗).

Now let us turn to the case where c is aj . Then, by the induction hypothesis, there
are n0,m0 < ω such that

H[s⃗] ωΩ+m0

Ω+n0
Γ(s⃗), sj ⊆ si ∧ F (sj , s⃗)(5.11)

holds for all terms s⃗. Owing to Lemma 5.3 we can find m1, n1 such that with ρ := ωΩ+m1

we have
H[s⃗, r] s

Ω+n1
sj ̸= r, sj ̸⊆ si, r ⊆ si

and H[s⃗, r] s
Ω+n1

sj ̸= r,¬F (sj , s⃗), F (r, s⃗) hold for all r, s⃗. By applying weakening and
(∧) we thus get

H[s⃗, r] s
Ω+n1

r ̸⊆ si, sj ̸= r,¬F (sj , s⃗), r ⊆ si ∧ F (r, s⃗)

for all r with |r| ≤ |si|. Now apply (pb∃), (∨) (twice), (̸⊆)∞, and (∨) (twice):

H[s⃗, r] s
Ω+n1

r ̸⊆ si, sj ̸= r,¬F (sj , s⃗), (∃x ⊆ si)F (x, s⃗)

H[s⃗, r] s
Ω+n1

r ⊆ si → sj ̸= r,¬F (sj , s⃗), (∃x ⊆ si)F (x, s⃗)

H[s⃗] s
Ω+n1

sj ̸⊆ si,¬F (sj , s⃗), (∃x ⊆ si)F (x, s⃗)

H[s⃗] s
Ω+n1

¬(sj ⊆ si ∧ F (sj , s⃗)), (∃x ⊆ si)F (x, s⃗).(5.12)

Finally, by applying a cut to (5.11) and (5.12) we have

H[s⃗] s
Ω+n

Γ(s⃗), (∃x ⊆ si)F (x, s⃗),

i.e., H[s⃗] s
Ω+n

Γ(s⃗) , where m = max(m0,m1) + 1 and n is chosen such that n > n0, n1

and rk(sj ⊆ si ∧ F (sj , s⃗) < Ω+ n for all s⃗.
The case of the last inference being (b∃) is treated in the same vein as (pb∃). All the

other inferences are straightforward as the desired assertion can be obtained immediately

652 Relativized ordinal analysis

from the induction hypothesis applied to the premises followed by the corresponding
inference in RSP

Ω . For example, in the case of the (∆P
0 -COLLR) one inductively finds

m0, n0 < ω such that

H[s⃗] s
Ω+n

Γ0(s⃗), (∀x∈si)∃y H(x, y, s⃗)

holds for all s⃗, where H(x, y, a⃗) is ΣP . Using (ΣP -Ref) one obtains

H[s⃗] s
Ω+n

Γ0(s⃗),∃z(∀x∈si)(∃y ∈ z)H(x, y, s⃗). �

6 Cut elimination

The usual cut elimination procedure works as long as the cut formulae are not in ∆P
0

and have not been introduced by an inference (ΣP -Ref). As the principal formula of an
inference (ΣP -Ref) has rank Ω, one gets the following result.

Theorem 6.1 (Cut elimination I)

H α

Ω+n+1
Γ =⇒ H

ωn(α)

Ω+1
Γ

where ω0(β) := β and ωk+1(β) := ωωk(β).

Proof. The proof is standard. For details, see [7, Lemma 3.14]. �
Lemma 6.2 (Boundedness) Let A be a ΣP -formula, α ≤ β < Ω, and β ∈ H(∅). If

H α

ρ Γ, A

then
H α

ρ Γ, AVβ .

Proof. Note that the derivation contains no instances of (ΣP -Ref). The proof is by
induction on α. For details, see [7, Lemma 3.17]. �

The obstacle to pushing cut elimination further is exemplified by the following sce-
nario:

H δ

Ω
Γ, A

H ξ

Ω
Γ,∃z Az

(ΣP -Ref)
. . .H[s] ξs

Ω
Γ,¬As . . . (s ∈ T)

H ξ

Ω
Γ, ∀z ¬Az

(∀)

H α

Ω+1
Γ

(Cut).

Fortunately, it is possible to eliminate cuts in the above situation provided that
the side formulae Γ are of complexity ΣP . The technique is known as “collapsing” of
derivations.

If the length of a derivation of ΣP -formulae is ≥ Ω, then “collapsing” results in a
shorter derivation, however, at the cost of a much more complicated controlling operator.

Definition 6.3 Hδ(X) =
∩
{CΩ(α, β) : X ⊆ CΩ(α, β) ∧ δ < α}.

Theorem 6.4 (Collapsing Theorem) Let Γ be a set of ΣP-formulae for which we have
|Γ| ⊆ CΩ(η + 1, ψΩ(η + 1)). Suppose also that η ∈ Hη[Γ](∅). Then

Hη[Γ]
α

Ω+1
Γ =⇒ Hα̂[Γ]

ψΩ(α̂)

ψΩ(α̂)
Γ,

where α̂ = η + ωΩ+α.

The Infinity Project 653

Proof. By induction on α. Suppose Hη[Γ]
α

Ω+1
Γ. We shall distinguish cases according to

the last inference of Hη[Γ]
α

Ω+1
Γ. Firstly, note that η ∈ Hη[Γ](∅) implies η ∈ Hα̂[Γ](∅),

and therefore

α ∈ Hη[Γ](∅) =⇒ ψΩ(α̂) ∈ Hα̂[Γ](∅).(6.1)

Case 0: Suppose Γ is an axiom. Then Hα̂[Γ]
ψΩ(α̂)

ψΩ(α̂)
Γ follows immediately by (6.1).

Case 1: Suppose the last inference was (pb∀)∞. Then there is an A ∈ Γ of the form
(∀x ⊆ t)F (x) and Hη[Γ][s]

αs

Ω+1
Γ, s ⊆ t→ F (s) and αs < α hold for all s with |s| < |t|.

Since |t| ∈ CΩ(η + 1, ψΩ(η + 1)) ∩ Ω we have |t| < ψΩ(η + 1) and hence |s| < ψΩ(η + 1)
whenever |s| < |t|. As a result, |s| ∈ CΩ(η+1, ψΩ(η+1)) holds for all |s| < |t|. Therefore,
by the induction hypothesis,

Hα̂s [Γ][s]
ψΩ(α̂s)

ψΩ(α̂s)
Γ, s ⊆ t→ F (s)(6.2)

for all |s| < |t|. Let |s| < |t|. Since |s| < ψΩ(η + 1), one computes that ψΩ(α̂s) < ψΩ(α̂).

Therefore, an inference (pb∀)∞ applied to (6.2) yields Hα̂[Γ]
ψΩ(α̂)

ψΩ(α̂)
Γ.

The cases were the last inference is an instance of (b∀)∞, (̸∈)∞, (̸⊆)∞, or (∧) are
dealt with in a similar manner.

Case 2: Suppose the last inference was (∃). Then there is a formula A ∈ Γ of the form
∃xF (x) such that Hη[Γ]

α0

Ω+1
Γ, F (s) holds for some term s and α0 < α. The induction

hypothesis yields

Hα̂0 [Γ]
ψΩ(α̂0)

ψΩ(α̂0)
Γ, F (s).

Since α0, |s| ∈ Hη[Γ](∅) and |Γ| ⊆ CΩ(η + 1, ψΩ(η + 1)) we see that

α0, |s| ∈ CΩ(η + 1, ψΩ(η + 1)).

Consequently, |s|, ψΩ(α̂0) < ψΩ(α̂). Thus, via (∃) we conclude that Hα̂[Γ]
ψΩ(α̂)

ψΩ(α̂)
Γ.

The cases were the last inference is an instance of (b∃), (∈), (⊆), or (∨) are dealt
with in a similar manner.

Case 3: Suppose ∃z Az ∈ Γ and Hη[Γ]
α0

Ω+1
Γ, A with α0 < α. This means that the

last inference was (ΣP -Ref). Note that |A| = |∃z Az|, and hence Hη[Γ, A] = Hη[Γ].
The induction hypothesis therefore yields Hα̂0 [Γ]

ψΩ(α̂0)

ψΩ(α̂0)
Γ, A and therefore, as A is a

ΣP -formula, we get Hα̂0 [Γ]
ψΩ(α̂0)

ψΩ(α̂0)
Γ, AVψΩ(α̂0) by Lemma 6.2. Since ψΩ(α̂0) ∈ Hα̂ and

ψΩ(α̂0) < ψΩ(α̂), an inference (∃) yields Hα̂[Γ]
ψΩ(α̂)

ψΩ(α̂)
Γ, ∃z Az , i.e., Hα̂[Γ]

ψΩ(α̂)

ψΩ(α̂)
Γ.

Case 4: Suppose the last inference is (Cut). Then

Hη[Γ]
α0

Ω+1
Γ, A and Hη[Γ]

α0

Ω+1
Γ,¬A,

where α0 < α and A is a formula with rk(A) ≤ Ω.
Since |A| ⊆ Hη[Γ](∅) and |Γ| ⊆ CΩ(η + 1, ψΩ(η + 1)), this implies

|A| ⊆ CΩ(η + 1, ψΩ(η + 1))

654 Relativized ordinal analysis

and
Hη′ [Γ, A] = Hη′ [Γ]

for all η′ ≥ η.
Case 4.1: Suppose that rk(A) < Ω. This implies rk(A) ∈ CΩ(η+1, ψΩ(η+1)) and hence
rk(A) < ψΩ(η + 1) < ψΩ(α̂). Inductively we have

Hα̂0 [Γ]
ψΩ(α̂0)

ψΩ(α̂0)
Γ, A and Hα̂0 [Γ]

ψΩ(α̂0)

ψΩ(α̂0)
Γ,¬A.

Thus Hα̂
ψΩ(α̂)

ψΩ(α̂)
Γ by means of (Cut).

Case 4.2: Suppose that rk(A) = Ω. Then A or ¬A will be of the form ∃z F (z) with F (V0)
being ∆P

0 . We may assume that the former is the case. Then the induction hypothesis

applied to Hη[Γ]
α0

Ω+1
Γ, A yields Hα̂0 [Γ]

ψΩ(α̂0)

ψΩ(α̂0)
Γ, A. Since ψΩ(α̂0) ∈ Hα̂0(∅), we can

apply the Boundedness Lemma 6.2, obtaining

Hα̂0 [Γ]
ψΩ(α̂0)

ψΩ(α̂0)
Γ, AVψΩ(α̂0) .(6.3)

By applying inversion (Lemma 4.9(iii)) to Hα̂0 [Γ]
α0

Ω+1
Γ,¬A we also get

Hα̂0 [Γ]
α0

Ω+1
Γ,¬AVψΩ(α̂0) .(6.4)

Observing that Γ,¬AVψΩ(α̂0) is a set of ΣP -formulae, we can apply the induction hypoth-
esis to (6.4), yielding

Hα1 [Γ]
ψΩ(α1)

ψΩ(α1)
Γ,¬AVψΩ(α̂0) ,(6.5)

where α1 = α̂0 + ωΩ+α0 = η + ωΩ+α0 + ωΩ+α0 < η + ωΩ+α = α̂. Moreover, we have
ψΩ(α1) < ψΩ(α̂). Therefore (Cut) applied to (6.3) and (6.5) furnishesHα̂[Γ]

ψΩ(α̂)

ψΩ(α̂)
Γ. �

Note that the Collapsing Theorem produces a derivation in which all instances of
(ΣP -Ref) have been removed.

Also note that we cannot eliminate cuts with ∆P
0 -formulae since we do not have

predicative cut elimination as in the case KP.

Corollary 6.5 Let A be a ΣP -sentence of KP(P). Suppose that KP(P) ⊢ A. Then
there exists an operator H and an ordinal ρ < ψΩ(εΩ+1) such that

H ρ

ρ A.

Proof. Let H0 be defined as in Definition 6.3. By Theorem 5.9 we have

H0
ωΩ+m

Ω+m+1
A

for some 0 < m < ω. Applying ordinary cut elimination, Theorem 6.1, we get

H0
ωm(ωΩ+m)

Ω+1
A.

Finally, using the Collapsing Theorem 6.4 we arrive at

Hωm+1(ωΩ+m)
ρ

ρ A

with ρ := ψΩ(ωm+1(ω
Ω+m)). �

The Infinity Project 655

7 Soundness

For the main theorem of this paper, we want to show that derivability in RSP
Ω entails

truth. Since RSP
Ω -formulae contain variables we need the notion of assignment. Let VAR

be the set of free variables of RSP
Ω . A variable assignment ℓ is a function

ℓ : VAR −→ VψΩ(εΩ+1)

satisfying ℓ(aα) ∈ Vα+1, where as per usual Vα denotes the α-th level of the von Neumann
hierarchy.

The function ℓ can be canonically lifted to all RSP
Ω -terms as follows:

ℓ(Vα) = Vα

ℓ({x ∈ Vα | F (x, s1, . . . , sn)}) = {x ∈ Vα | F (x, ℓ(s1), . . . , ℓ(sn))}.

Note that ℓ(s) ∈ VψΩ(εΩ+1) holds for all RSP
Ω -terms s. Moreover, ℓ(s) ∈ V|s|+1.

Theorem 7.1 (Soundness) Let H be an operator and α, ρ < ψΩ(εΩ+1). Let Γ(s1, . . . , sn)
be a sequent consisting only of ΣP -formulae. Suppose

H α

ρ Γ(s1, . . . , sn).

Then, for all variable assignments ℓ,

VψΩ(εΩ+1) |= Γ(ℓ(s1), . . . , ℓ(sn)).

Proof. The proof proceeds by induction on α. Note that, owing to α, ρ < Ω, the proof tree
pertaining to H α

ρ Γ(s1, . . . , sn) neither contains any instances of (ΣP -Ref) nor of (∀)∞,
and that all cuts are with ∆P

0 -formulae. The proof is straightforward as all the axioms
of RSP

Ω are true under the interpretation and all other rules are truth preserving with
respect to this interpretation. Observe that we make essential use of the free variables
when showing the soundness of (b∀)∞, (pb∀)∞, (̸∈)∞ and (̸⊆)∞. �

Combining Theorem 7.1 and Corollary 6.5 we have the following:

Theorem 7.2 If A is a ΣP -sentence and

KP(P) ⊢ A
then

VψΩ(εΩ+1) |= A.

The bound of this corollary is actually sharp, that is, ψΩ(εΩ+1) is the first ordinal
with that property. This follows immediately from [21, Theorem 4.9].

The previous result can be extended to ΠP
2 sentences, basically by the same proof as

for [21, Theorem 2.1].

Theorem 7.3 Let A be a ΠP
2 -sentence. Then KP(P) ⊢ A implies VψΩ(εΩ+1) |= A.

Proof. Assume KP(P) ⊢ ∀u∃wH(u,w) with H(u,w) being ∆P
0 . Let σ := ψΩ(εΩ+1). Let

b ∈ Vσ. We have to verify that Vσ |= ∃wH(b, w). Since σ is a limit, there is ξ < σ
such that b ∈ Vξ. Since Vξ does not satisfy all ΣP -sentences provable in KP(P), we have
KP(P) ⊢ B and Vξ |= ¬B for some ΣP -sentence B. Since ΣP -reflection is provable in
KP(P), we also get KP(P) ⊢ ∃α∃x(x = Vα∧Bx). Then, using ∆P

0 -Collection, we obtain

KP(P) ⊢ ∃z∃α∃x[x = Vα ∧Bx ∧ (∀u∈x)(∃w∈z)H(u,w)].

656 Relativized ordinal analysis

Since this formula is equivalent to a ΣP -formula in KP(P), we get

Vσ |= ∃α∃x[x = Vα ∧Bx ∧ (∀u∈x)∃wH(u,w)].

As the formula “x = Vα” has the same meaning in Vσ as it has in V , there exists α < σ
such that Vα |= B and (∀u∈Vα)(∃w∈Vσ)H(u,w). By the choice of B, this implies ξ < α,
hence b ∈ Vα, thus Vσ |= ∃wH(b, w). �

References
[1] T. Arai: Ordinal diagrams for PI3-reflection, Journal of Symbolic Logic 65 (2000), 3, 1375–1394.
[2] T. Arai: Proof theory for theories of ordinals I: Recursively Mahlo ordinals, Annals of Pure and

Applied Logic 122 (2003), 1–85.
[3] T. Arai: Proof theory for theories of ordinals II: Π3-reflection, Annals of Pure and Applied Logic

129 (2004), 39–92.
[4] H. Bachmann: Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordi-

nalzahlen, Vierteljahresschrift Naturforsch. Ges. Zürich 95 (1950), 115–147.
[5] J. Barwise: Admissible Sets and Structures (Springer, Berlin, 1975).
[6] W. Buchholz: Eine Erweiterung der Schnitteliminationsmethode, Habilitationsschrift (München,

1977).
[7] W. Buchholz: A simplified version of local predicativity, in: Aczel, Simmons, Wainer (eds.), Leeds

Proof Theory 1991 (Cambridge University Press, Cambridge, 1993), 115–147.
[8] W. Buchholz, S. Feferman, W. Pohlers, W. Sieg: Iterated inductive definitions and subsystems of

analysis (Springer, Berlin, 1981).
[9] W. Buchholz and K. Schütte: Proof theory of impredicative subsystems of analysis (Bibliopolis,

Naples, 1988).
[10] H. Friedman: Some applications of Kleene’s method for intuitionistic systems, in: A.R.D. Mathias

and H. Rogers Jr. (eds.): Cambridge Summer School in Mathematical Logic, Lecture Notes in
Mathematics, vol. 337 (Springer, Berlin, 1973), 113–170.

[11] H. Friedman: Countable models of set theories, in: A. R.D. Mathias and H. Rogers Jr. (eds.), Cam-
bridge Summer School in Mathematical Logic, Lecture Notes in Mathematics, vol. 337 (Springer,
Berlin, 1973), 539–573.

[12] H. Friedman, S. Ščedrov: The lack of definable witnesses and provably recursive functions in intu-
itionistic set theory, Advances in Mathematics 57 (1985), 1–13.

[13] G. Jäger: Zur Beweistheorie der Kripke–Platek Mengenlehre über den natürlichen Zahlen, Archiv
für mathematische Logik 22 (1982), 121–139.

[14] G. Jäger and W. Pohlers: Eine beweistheoretische Untersuchung von ∆1
2–CA+BI und ver-

wandter Systeme, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-
Naturwissenschaftliche Klasse (1982).

[15] S. Mac Lane: Form and Function (Springer, Berlin, 1992).
[16] A.R. D. Mathias: The strength of Mac Lane set theory, Annals of Pure and Applied Logic 110

(2001), 107–234.
[17] L. Pozsgay: Liberal intuitionism as a basis for set theory, in: Axiomatic Set Theory, Proc. Symp.

Pure Math. XIII, Part 1 (1971), 321–330.
[18] L. Pozsgay: Semi-intuitionistic set theory, Notre Dame Journal of Formal Logic 13 (1972), 546–550.
[19] M. Rathjen: Ordinal notations based on a weakly Mahlo cardinal, Archive for Mathematical Logic

29 (1990), 249–263.
[20] M. Rathjen: Proof-theoretic analysis of KPM, Archive for Mathematical Logic 30 (1991), 377–403.
[21] M. Rathjen: Fragments of Kripke–Platek set theory, in: P. Aczel, S. Wainer, H. Simmons (eds.),

Proof Theory (Cambridge University Press, 1992), 251–273.
[22] M. Rathjen: How to develop proof-theoretic ordinal functions on the basis of admissible sets, Math-

ematical Quarterly 39 (1993), 47–54.
[23] M. Rathjen: Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM,

Archive for Mathematical Logic 33 (1994), 35–55.
[24] M. Rathjen: Proof theory of reflection, Annals of Pure and Applied Logic 68 (1994), 181–224.

The Infinity Project 657

[25] M. Rathjen: The realm of ordinal analysis, S. B. Cooper and J. K. Truss (eds.), Sets and Proofs
(Cambridge University Press, 1999), 219–279.

[26] M. Rathjen: Recent advances in ordinal analysis: Π1
2-CA and related systems, Bulletin of Symbolic

Logic 1 (1995), 468–485.
[27] M. Rathjen: An ordinal analysis of stability, Archive for Mathematical Logic 44 (2005), 1–62.
[28] M. Rathjen: An ordinal analysis of parameter-free Π1

2 comprehension, Archive for Mathematical
Logic 44 (2005), 263–362.

[29] M. Rathjen: Theories and ordinals in proof theory, Synthese 148 (2006), 719–743.
[30] M. Rathjen: From the weak to the strong existence property, Annals of Pure and Applied Logic

(2012), doi:10.1016/j.apal.2012.01.012.
[31] M. Rathjen: Constructive Zermelo–Fraenkel Set Theory, Power Set, and the Calculus of Construc-

tions, 2010. To appear in 2012, in: P. Dybjer, S. Lindström, E. Palmgren and G. Sundholm: Epis-
temology versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of
Per Martin-Löf (Logic, Epistemology and the Unity of Science Series, NewYork/Dordrecht: Springer
Verlag).

[32] H. Schwichtenberg: Some applications of cut elimination, in J. Barwise (ed.), Handbook of Mathe-
matical Logic (North-Holland, Amsterdam, 1977), 868–895.

[33] L. Tharp: A quasi-intuitionistic set theory, Journal of Symbolic Logic 36 (1971), 456–460.
[34] E. J. Thiele: Über endlich axiomatisierbare Teilsysteme der Zermelo–Fraenkel’schen Mengenlehre,

Zeitschrift für mathematische Logik und Grundlagen der Mathematik 14 (1968), 39–58.
[35] R. S. Wolf: Formally Intuitionistic Set Theories with Bounded Predicates Decidable, PhD thesis

(Stanford University, 1974).

The Infinity Project

Uniform density in Lindenbaum algebras

Vladimir Yu. Shavrukov∗, Albert Visser†

∗ Nijenburg 24, Amsterdam, The Netherlands
v.yu.shavrukov@gmail.com

† Department of Philosophy, Universiteit Utrecht, The Netherlands
albert.visser@phil.uu.nl

Abstract. In this paper we prove that the preordering . of provable implication over any recursively
enumerable theory T containing a modicum of arithmetic is uniformly dense. This means that we can
find a recursive extensional density function F for .. A recursive function F is a density function if it
computes, for A and B with A � B, an element C such that A � C � B. The function is extensional if
it preserves T -provable equivalence.

Secondly, we prove a general result that implies that, for extensions of Elementary Arithmetic, the
ordering . restricted to Σn-sentences is uniformly dense.

In the last section we provide historical notes and background material.

Introduction

It is well known that the Lindenbaum algebras of theories that contain a modicum of
arithmetic are dense with respect to the implication ordering. In this paper we will
study a property that is stronger than density, to wit uniform density. We prove that the
Lindenbaum algebras of these theories are uniformly dense with respect to the implication
ordering. We first provide the necessary definitions to formulate the result.

Consider any recursively enumerable theory T that interprets the theory R introduced
by Tarski, Mostowski and Robinson in [19]. We define:

• A .T B iff T +A ⊢ B.
• A �T B iff A .T B and not B .T A.
• A ∼T B iff A .T B and B .T A.

Here .T is the “provable implication” ordering on LT , the Lindenbaum sentence
algebra of T . It is well known that .T is dense. We say that LT (or .T) is uniformly
dense if there is a recursive function F such that:

(i) F is a density function, i.e., we have A �T F (A,B) �T B, whenever A �T B, and
if A ∼T B, then A ∼T F (A,B) ∼T B;

(ii) F is extensional, i.e., if A ∼T A′ and B ∼T B′, then F (A,B) ∼T F (A′, B′).
We show that LT is uniformly dense for recursively enumerable theories T that in-

terpret R. Moreover, we can take the function F to be elementary and, in some specific
cases, even p-time computable.

†The question concerning the uniform density of Lindenbaum algebras was raised by Sy Friedman
in conversation. Sy’s question was inspired by the idea that perhaps the consistency operator is, in some
sense, the least way to strengthen theories. This is not so, as is corroborated by the results of this paper.
I acknowledge the support of the Templeton Foundation through my participation in the CRM Infinity
Project (Templeton Foundation project #13152).

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

659

660 Uniform density in Lindenbaum algebras

We present our proof in Section 2. It consists of two stages. First we prove the desired
result for Peano Arithmetic PA, or, more generally, for essentially reflexive theories.1 Our
construction delivers a p-time computable density function. This result is then generalized
to all r.e. consistent theories that interpret R although the new density functions fall
outside polynomial time —we do not know if this can be rectified.

A variant of the density question is obtained by imposing a restriction to a prescribed
formula class. We explore this variant in Section 3. We prove a general result which
implies e.g. that, for extensions T of Elementary Arithmetic, the ordering .T restricted
to Σn-sentences is uniformly dense.

The basic idea and the ingredients of our construction for PA come with a history.
The sentences we produce are certain unique Rosser sentences of a kind studied by Craig
Smoryński ([17]) and they are the unique Gödel sentences of a certain Feferman predicate
studied in [15]. Finally, they are Orey sentences. We will explain this background in
Section 4. The reader who wants to just see the solution may, of course, skip Section 4.

1 The usual proof of density

Our proof of uniform density for LPA is a specific instance of the usual proof of the density
of LT , where T is a recursively enumerable theory that interprets R. We first present this
usual proof.

Suppose A �T B. It follows that T +¬A+B is consistent. Let C be any arithmetical
sentence that is independent of T +¬A+B, i.e., T +¬A+B 0 C and T +¬A+B 0 ¬C.

The essential ingredients of the proof that, for every consistent recursively enumerable
theory U that interprets R, there exists a sentence R that is independent of T were
provided by J. Barkley Rosser in his classical paper [14].

We consider D := A ∨ (C ∧ B). We claim: A �T D �T B. First, we clearly have
A .T D .T B. Suppose T + B ⊢ A ∨ (C ∧ B). Then, by propositional logic, it follows
that T +¬A+B ⊢ C. Quod non. Suppose T +A∨ (C ∧B) ⊢ A. Then, by propositional
logic, we find that T + ¬A+B ⊢ ¬C. Quod non.

We can squeeze a little bit more information out of our construction. If C is inde-
pendent, then ¬C is also independent. So we can construct E := A∨ (¬C ∧B). We find
that A �T E �T B. Moreover, we have T ⊢ (D ∧ E) ↔ A and T ⊢ (D ∨ E) ↔ B. So
we have two sentences D and E strictly between A and B such that B is the supremum
with respect to .T of D and E and A is the infimum with respect to .T of D and E.

In the light of the proof given above, to prove p-time uniform density for PA, it is,
modulo some simple details, sufficient to give a p-time construction A 7→ CA, where CA is
independent over PA+A, provided that PA+A is consistent and, if PA ⊢ A0 ↔ A1, then
PA ⊢ CA0 ↔ CA1 .

In the next section, we will provide a mapping A 7→ CA that satisfies the desiderata.

1A theory is essentially reflexive (uniformly essentially reflexive) if it proves reflection (resp. uniform
reflection) for each of its finitely axiomatized subtheories. Here (uniform) reflection concerns a proof
predicate that is formalized with respect to an interpretation of a weak arithmetic, like S1

2, in the given
theory. Uniform essential reflexivity implies full induction with respect to the designated interpretation
of the numbers. Conversely, a theory that satisfies full induction and is sequential is uniformly essentially
reflexive. (For the definition of sequential, see [4] or [23].) If we drop uniformity, essentially reflexive
theories can be much weaker. For example, the minimal essentially reflexive extension of elementary
arithmetic EA (also known as I∆0 +Exp) is both a subtheory of PA and of EA plus all true Π1-sentences.

The Infinity Project 661

2 Uniform density

The first order of business for this section is:

Theorem 2.1 LPA is uniformly dense via a p-time computable density function. More
generally, this result holds for all essentially reflexive sequential r.e. theories.

This theorem will later be extended to more theories.
Since we are interested in getting our density function p-time, we will use efficiently

coded syntax and base 2 numerals. See e.g. [1, 7.3] or [4, V.3].
We consider the sequence of theories Arn, where Ar0 is EA, also known as I∆0 + Exp,

and Arn+1 := IΣn+1. These theories have the following important property.

Theorem 2.2 (IΣ1 proves that) for all n, Arn+1 proves uniform Πn+2-reflection for Arn.

For a proof, see e.g. [16] or [10]. We note that we have as an immediate consequence:

Corollary 2.3 (IΣ1 proves that) for any sentence A in Σn+2, Arn+1+A proves uniform
Πn+2-reflection for Arn +A.

We give the following definitions:
• 2A,xB stands for provArx+A(pBq).
• �A,xB stands for ¬ provArx+A(p¬Bq), i.e., ¬2A,x¬B.

• CA :↔ A ∧ ∀x (2A,x2A,x⊥ → 2A,x⊥).
We have the following useful lemma:

Lemma 2.4 Suppose A ∈ Σn and n ≥ 1. Then,

Arn ⊢ CA ↔ (A ∧ ∀x ≥ n (2A,x2A,x⊥ → 2A,x⊥)).

Proof. By Corollary 2.3, Arn +A proves Σ1-reflection for 2A,k with k < n. Ergo,

Arn +A ⊢ ∀x < n (2A,x2A,x⊥ → 2A,x⊥).

The desired result is immediate. �

We have:

Lemma 2.5 Suppose PA ⊢ A0 ↔ A1. Then PA ⊢ CA0 ↔ CA1 .

Proof. Suppose PA ⊢ A0 ↔ A1. Then, for some n, Arn ⊢ A0 ↔ A1. We can pick n so
large that n ≥ 1 and A0, A1 ∈ Σn. We have:

Arn ⊢ CA0 ↔ A0 ∧ ∀x ≥ n (2A0,x2A0,x⊥ → 2A0,x⊥)
↔ A1 ∧ ∀x ≥ n (2A1,x2A1,x⊥ → 2A1,x⊥)
↔ CA1 .

Hence, PA ⊢ CA0 ↔ CA1 . �

We show that, if PA+A is consistent, then CA is independent over PA+A.

Lemma 2.6 Suppose PA+A is consistent. Then CA is independent over PA+A.

662 Uniform density in Lindenbaum algebras

Proof. Suppose that PA + A ⊢ CA. Then, for some n, Arn + A ⊢ CA. We may assume
that n ≥ 1 and A ∈ Σn. It follows that Arn+A ⊢ 2A,n2A,n⊥ → 2A,n⊥. Hence, by Löb’s
Theorem, Arn +A ⊢ 2A,n⊥. We may conclude that PA+A ⊢ ⊥. Quod non.

Suppose that PA + A ⊢ ¬CA. Then, for some n, Arn + A ⊢ ¬CA. We may assume
that n ≥ 1 and A ∈ Σn. We find, using Lemma 2.4, that

Arn +A ⊢ ∃x ≥ n (2A,x2A,x⊥ ∧ �A,x⊤).

But then Arn +A ⊢ �A,n⊤, contradicting the Second Incompleteness Theorem. �

We put F (A,B) := A ∨ (C¬A∧B ∧ B). We note that this is defined for any arith-
metical sentences A and B. Moreover, we always have: A .PA F (A,B) .PA A ∨ B.
By Lemma 2.5, F is extensional. By Lemma 2.6, we have that, if A �PA B, then
A �PA F (A,B) �PA B.

This concludes the proof of Theorem 2.1. We note that F is p-time in A and B. �

Remark 2.7 We can put:
• F0(A,B) := A ∨ (C¬A∧B ∧B),
• F1(A,B) := A ∨ (¬C¬A∧B ∧B).

We construct an infinite .PA-antichain between A and B by considering, e.g., DA,B,0 :=
F0(A,B), DA,B,1 := F0(A,F1(A,B)), DA,B,2 := F0(A,F1(A,F1(A,B))), The map-
ping H : A,B, n 7→ DA,B,n need not be p-time, but since this mapping is elementary
we can represent it in PA. Since the DA,B,n have complexity (in the sense of the arith-
metical hierarchy) bounded by the maximum of 2, the compexity of A and that of B
—say the complexity is k(A,B)— we can, using efficient numerals, replace DA,B,n by
EA,B,n := Truek(A,B)(H(A,B, n)). If we use a reasonable version of the definition of
Truek, the mapping A,B, n 7→ EA,B,n becomes p-time. (Note that we do not need to
worry about the length of the verifications of the usual properties of the Truek. We are
only interested in the size of the formulas.)

Our proof can be immediately adapted to any essentially reflexive theory —like ZF:
all the ingredients of the construction of C are also present in such a theory.

Let C◦
A := ∀x (2A,x2A,x⊥ → 2A,x⊥). Note that C◦

A is ∆2 over IΣ1 because it is
IΣ1-provably equivalent to �A⊤ ∨ ∃x (2A,x+1⊥ ∧ �A,x �A,x⊤).

Let us consider the relationship between C◦
A and con(PA+A).

Proposition 2.8 PA+ con(PA+A) ⊢ ∀x (2A,x2A,x⊥ → 2A,x⊥).

Proof. Suppose A is Σn+2. We reason in PA + con(PA + A): Suppose that 2A,x2A,x⊥.
Then 2A,max{x+1,n}⊥ and, hence, 2A⊥. Quod non. We may conclude ¬2A,x2A,x⊥,
and, a fortiori, C◦

A. �

Since, as we will show in Section 4, C◦
A is an Orey sentence of PA+A and, provided

that PA + A is consistent, con(PA + A) is not an Orey sentence, CA is strictly between
A + con(PA + A) and A over PA. In other words, C◦

A is a reflection principle that is
strictly between con(PA+A) and ⊤ over PA+A.

Theorem 2.1 generalizes to theories containing R thanks to

Theorem 2.9 (Pour-El & Kripke [12, Theorem 2]) The Lindenbaum sentence algebras of
all recursively enumerable, consistent theories that interpret R are effectively isomorphic.

The Infinity Project 663

For us, ‘effective isomorphism’ means a recursive function from sentences of one theory
to those of the other theory that, through provable equivalence, quotients down to an
isomorphism between the two Lindenbaum algebras. The functions constructed in [12]
however possess further nice properties.

Pulling the density function of Theorem 2.1 off LPA back to LT along an effective
isomorphism LT → LPA, we obtain

Corollary 2.10 The Lindenbaum sentence algebras of all recursively enumerable consis-
tent theories that interpret R enjoy uniform density.

It is seen from the proof of Theorem 2 in [12] that the isomorphisms of Theorem 2.9
together with their inverses can be given by elementary functions (aka ones from Grze-
gorczyk class E3).

Accordingly, we are only able to claim elementarity rather than polynomial time for
the second-hand density functions obtained via (the intended proof of) Corollary 2.10.
Our proof also forfeits the ability to have uniform density achieved by just mixing in an
appropriate ∆2 sentence.

3 Orderings of Σn sentences and precomplete lattices

We address the question of uniform density for restricted classes of formulas in a somewhat
more general setting.

An r.e. lattice L is a pair of recursive functions ∨ and ∧ defined on an r.e. subset
fieldL of ω together with an r.e. equivalence relation ∼ on fieldL which is a congruence
for ∨ and ∧ and such that the quotient is a lattice. If that lattice is Boolean then L is
called an r.e. Boolean algebra and, as is easily seen, has a recursive negation function.
Lindenbaum sentence algebras of r.e. theories provide typical examples.

A density function for L is a function D : (fieldL)2 → fieldL such that, if a � b then
a � D(a, b) � b, and D(a, b) ∼ a ∼ b whenever a ∼ b. D is extensional (with respect
to ∼ or L) if ∼ is a congruence for D. L is uniformly dense if it admits an effective
extensional density function —note that for LT this agrees with our earlier definition.

Montagna & Sorbi [9, Proposition 3.1(b)] extend Theorem 2.9 to all effectively insep-
arable r.e. Boolean algebras, i.e., algebras where the ∼-equivalence classes of (Boolean)
0 and 1 are effectively inseparable within fieldL. Hence Corollary 2.10 also holds for all
e.i. r.e. Boolean algebras.

When the proof of Theorem 2.1 works for a theory T , it works equally well for the sub-
lattice Σn/T of LT determined by Σn sentences provided n > 1 because D(a, b) is a lattice
polynomial in a, b, and a ∆2 sentence. In this section we handle Σ1/T using a different
approach which starts with the definition of a precomplete numeration/equivalence.

A non-trivial equivalence relation ∼ on an r.e. subset field∼ of ω is precomplete if
to every partial recursive f : ω → field∼ there is a total recursive F : ω → field∼ that
makes f total modulo ∼, i.e., F (n) ∼ f(n) whenever f(n) converges. Reducing f to a
universal (field∼)-valued partial recursive function, we see that an index for F can be
found effectively in one for f .

An r.e. lattice L is precomplete if its associated (r.e.) equivalence relation ∼ is. By -
we denote the corresponding (r.e.) preorder on fieldL.

Example 3.1 (Visser [21, 1.6.6]) Σn/T is r.e. and precomplete whenever T is a consistent
r.e. extension of EA.

664 Uniform density in Lindenbaum algebras

Hint 3.2 The mapping that assigns to k the Σn sentence ∃y (y = f(k)∧Truen(y)) makes
f total modulo T -provable equivalence.

It is an open question whether Σ1/S
1
2 or ∃Σb

1/S
1
2 is precomplete. (See [1] for definitions

of ∃Σb
1 and S12.)

Mutual interpretability for finitely axiomatized sequential theories is also r.e. precom-
plete, since the interpretability ordering on finitely axiomatized sequential theories (mod-
ulo mutual interpretability) is p-time anti-isomorphic to Π1/EA. This uses the Friedman
characterization of interpretability between finitely axiomatized theories (see e.g. [24],
Theorem 3.6). Thus, the lattice of finitely axiomatized sequential interpretability degrees
is (p-time) isomorphic to Σ1/EA.

Sentences of the form ∃xT0(n, x), where T0 is Kleene’s T-predicate for the 0-ary
case, form an example of a class Γ, such that Γ/S12 is r.e., precomplete, and is, modulo
S12-provability, a sublattice of LS12

.
The r.e. extensions of PA in the language of PA modulo interpretability give us under

an appropriate indexing an example of a precomplete numeration that is not recursively
enumerable.

Theorem 3.3 Any r.e. precomplete lattice is uniformly dense.

Note that the theorem needs neither distributivity nor boundedness.
Here is the plan: given a recursive F , we are going to craft a partial recursive f .

In other words, the Construction below will effectively associate to an index e for F an
index c(e) for f . An index t(c(e)) for some F ′ making f total modulo ∼ is then effective
in c(e). By the 2nd Recursion Theorem there is an e0 indexing the same function as
t(c(e0)). For that e0 we have F ′ ≃ F . We may therefore assume from the outset that F
makes f total modulo ∼.

Lastly, we put D(a, b) = a∨ (F (a, b)∧b) which will be the desired extensional density
function for L.

We fix effective enumerations (∼n)n∈ω and (-n)n∈ω of ∼ and - resp. that satisfy the
following:

• for each n ∈ ω, field∼n = field-n is a finite non-empty subset of fieldL;
• ∼n is an equivalence relation;
• ∼n ⊆ ∼n+1 and -n ⊆ -n+1;
• ∼ =

∪
n∈ω ∼n and - =

∪
n∈ω -n.

Construction 3.4 The construction of f proceeds in stages. The following happens at
stage n:
(C1) Suppose a, b ∈ field∼n and f(a, b) has not yet been defined.

Let a0, b0 ∈ field∼n be the minimal such that a0 ∼n a and b0 ∼n b, and put
f(a, b) = F (a0, b0) unless (a, b) = (a0, b0).

(C2) Suppose a -n b, f(a, b) has not yet been defined and a ∨ (F (a, b) ∧ b) -n a.
Put f(a, b) = b.

(C3) Suppose a -n b, f(a, b) has not yet been defined and b -n a ∨ (F (a, b) ∧ b).
Put f(a, b) = a.

Claim 1 If a - b then a - D(a, b) - b. In particular, a ∼ b implies a ∼ D(a, b) ∼ b.

Proof. This holds by virtue of the definition D(a, b) = a ∨ (F (a, b) ∧ b) regardless of the
value of F (a, b). �

The Infinity Project 665

Claim 2 f(a, b) is defined unless a and b are minima of their respective ∼-equivalence
classes.

Proof. Clause (C1) takes care of this. �

Claim 3 If f(a, b) is defined via clause (C2) or (C3) then a ∼ b.

Proof. Suppose f(a, b) is defined via clause (C2). We may conclude that a - b, and
a ∨ (F (a, b) ∧ b) - a, and F (a, b) ∼ f(a, b) = b, so a ∨ b - a, hence a ∼ b.

Clause (C3) is treated similarly. �

Claim 4 D is extensional with respect to ∼.

Proof. That the ∼-equivalence class of D(a, b) only depends on those of a and b follows
from Claim 1 for the case a ∼ b. We may therefore assume a ≁ b. This implies, by
Claim 3, that the only way to define f(a′, b′) for a′ ∼ a and b′ ∼ b is via clause (C1).

Assume a0 and b0 are the minima of the ∼-equivalence classes of a and b respectively.
We show by induction on a+b that F (a, b) ∼ F (a0, b0) for all a ∼ a0 and b ∼ b0. Suppose
(a, b) ̸= (a0, b0). By Claim 2, f(a, b) is defined —via clause (C1). So f(a, b) = F (a′, b′)
where a′ ∼ a, b′ ∼ b, and a′ + b′ < a+ b. Accordingly,

F (a, b) ∼ f(a, b) = F (a′, b′) ∼ F (a0, b0)

with the last equivalence holding by i.h. Hence D(a, b) ∼ D(a0, b0). �

Claim 5 If a � b then a � D(a, b) � b.

Proof. In view of Claim 1, it suffices to exclude the situations a ∼ D(a, b) and D(a, b) ∼ b.
Suppose a ∼ D(a, b) = a∨(F (a, b)∧b). Let a0, b0 be the minima of the ∼-equivalence

classes of a and b. Then a0, b0 also are minima of any ∼n-equivalence classes they be-
long to. Thus clause (C1) cannot define f(a0, b0). By Claim 3 neither can (C2) nor (C3).
Yet clause (C2) will sooner or later define f(a0, b0) if nothing else does. Contradiction.

D(a, b) ∼ b is outruled in a similar fashion. �

Claims 1, 4, and 5 amount to a proof of Theorem 3.3.

Corollary 3.5 For r.e. consistent T extending EA the lattice Σn/T is uniformly dense.

Remark 3.6 Using Truen(· · ·) as in Remark 2.7, one can bring down to p-time the
complexity of any recursive function with values in Σn/T . The density functions for
Σn/T obtained through Theorem 3.3 however are already polynomial time because in
Σn/T totalization works by substitution (see the hint to Example 3.1) as does, for that
matter, the 2nd Recursion Theorem.

Corollary 3.7 The finitely axiomatized sequential theories are uniformly dense with re-
spect to the interpretability preordering �. The density function can be taken to be p-time.

Open Question 3.8 Are Σ1/S
1
2 and/or ∃Σb

1/S
1
2 uniformly dense?

Harvey Friedman shows in his Tarski lectures that the interpretability preordering
on arbitrary finitely axiomatized theories of predicate logic is dense. Is this ordering
uniformly dense?

△

666 Uniform density in Lindenbaum algebras

4 Archaeology

In this section we provide various background materials that make our construction of
CA meaningful. We will sketch how the main ingredient of our formula CA, to wit the
formula C◦

A := ∀x (2A,x2A,x⊥ → 2A,x⊥), can be viewed as either a unique Rosser or
Gödel fixed point. We first discuss the Rosser construction.

A standard way to produce independent sentences is the Rosser construction, invented
by J. Barkley Rosser. The original paper is [14]. Rosser’s construction has some extra
good properties. The construction is verifiable in PA, and, after some careful inspection,
even in EA.2 A second point is that Rosser’s argument works for a very wide class of the-
ories including the recursively enumerable extensions of the Tarski–Mostowski–Robinson
theory R. Finally, the sentence produced by his construction, the Rosser sentence, is Σ1

or Π1, more specifically: ∃Πb
1 or ∀Σb

1.
Can we use the original Rosser construction to obtain independent sentences in a

uniform way? This does not look very promising: the sentences delivered by that con-
struction are quite sensitive to implementation details. E.g., suppose we use a standard
fixed point construction to obtain a Rosser sentence RA for PA+A and a Rosser sentence
RA′ for PA + A′. Suppose further that A and A′ are PA-provably equivalent. Then,
RA and RA′ need not be PA-provably equivalent. The intensionality of the Rosser con-
struction has, for example, been studied in [3]. However, several variants of the Rosser
construction have been considered in the literature and among these we find one that is
sufficiently uniform. This Rosser construction was introduced by Craig Smoryński. As
we will see this Rosser construction can also be viewed as a Gödel construction.

Consider an r.e. extension T of PA in the same language. Let τ := (Tn)n∈ω be a
recursive sequence of theories so that IΣ1 proves that:

i. for all n and k, if n < k, then Tn is a subtheory of Tk;
ii. the union of the Tn is T ;
iii. for each n, Tn+1 ⊢ con(Tn).

We need the following definitions:
• 2⋆τB stands for ∃x2TxB. Note that 2⋆τB is provably equivalent to 2TB.
• If C and D are of the respective forms ∃xC0(x) and ∃y D0(y), then

C < D := ∃x (C0(x) ∧ ∀y ≤ x¬D0(y))

and
C ≤ D := ∃x (C0(x) ∧ ∀y < x¬D0(y)).

We note that 2⋆τB < 2⋆τC is IΣ1-provably equivalent to 2TB ∧ ¬ (2⋆τC ≤ 2⋆τB).
Thus, the formula 2⋆τB < 2⋆C is ∆2 over IΣ1. Similarly, for 2⋆τB ≤ 2⋆C.

The formula 2⋆τB < 2⋆τC is equivalent over PA to ∃x (2TxB ∧ ¬2TxC). It follows
that the formula 2⋆τB < 2⋆τ¬B is equivalent to 2⋆τB < 2⋆τ⊥ which coincides with the
Feferman predicate for τ defined as

• △τA := 2⋆τA < 2⋆τ⊥.
We note that, over EA, △τA is equivalent to ∃x (2TxA ∧ �Tx⊤).
The Feferman predicate was introduced by Solomon Feferman in his classical paper

[2]. It is a sort of self correcting provability predicate, which is related to trial-and-error
predicates as studied in [5] and [13]. Feferman’s aim in introducing it was not just the

2A modified argument even works in I∆0 + Ω1. The basic idea of this argument is due to Švejdar
(see [18]). For the verification that Švejdar’s assumptions are fulfilled, see [20].

The Infinity Project 667

study of ways to escape the second incompleteness theorem, but also applications to
the study of relative interpretability.

Here is the central insight. We write
• △

τA for ¬△τ¬A;
• U � V for: there is a relative interpretation of V in U .

See e.g. [2, 6, 19, 24] for basic definitions concerning interpretations. We have:

Theorem 4.1 (T +

△

τA)� (T +A).

See [2] for the main ingredients of the proof. The basic idea of the result is that

△

τA
is a consistency statement of T + A. We can use the Henkin construction to build the
desired interpretation.

We now consider the specialized sequences νA := (Arn+A)n∈ω for the theories PA+A.
We simply write 2⋆A for 2⋆νA , etcetera.

By the Gödel Fixed Point Lemma, we can find a sentence RA such that

PA ⊢ RA ↔ ¬ (2⋆ARA < 2⋆A¬RA).

Thus RA is a Rosser sentence for the 2⋆A. By our previous remarks, the sentence RA
is also a Gödel sentence for the Feferman predicate △A, that is:

PA ⊢ RA ↔ ¬△ARA.

Smoryński gave the construction of RA in his paper [17]. This paper was inspired by
a study of a variant of the Rosser construction in the context of set theory by Kenneth
McAloon [7].

Theorem 2.1 in [17] implies that RA is, up to provable equivalence, unique over
PA+A. By a minor addition to Smoryński’s argument, one can show that the mapping
A 7→ (A∧RA) preserves PA-provable equivalence. It is shown in [15] that uniqueness can
fail under a choice of stratification sequence different from (Arn)n∈ω.

Smoryński also shows that RA is independent over PA + A, provided that PA + A
is consistent. As we will see, Smoryński’s Rosser sentence RA is (PA + A)-provably
equivalent to the sentence ∀x (2A,x2A,x⊥ → 2A,x⊥). So the independence of RA also
follows from our Lemma 2.6.

Since the Feferman–Smoryński predicate explicates a notion of provability, it can be
studied modally. This study was taken up in [8, 15, 22]. The latter paper studies the
Feferman predicate over PA based on the sequence Arn with conclusions translatable to
the hierarchy Arn+A. Thus, [15] contains an alternative, modal, proof of the uniqueness
of RA.

Recall C◦
A := ∀x (2A,x2A,x⊥ → 2A,x⊥). We show that C◦

A is a Gödel sentence
for △A.

Theorem 4.2 ([15, Exercise 2.7]) C◦
A is a Gödel sentence of △A over PA+A.

Proof. We have, using Löb’s theorem in the third step:

PA+A ⊢ △AC
◦
A → ∃x (2A,x∀y (2A,y2A,y⊥ → 2A,y⊥) ∧ �A,x⊤)
→ ∃x (2A,x(2A,x2A,x⊥ → 2A,x⊥) ∧ �A,x⊤)
→ ∃x (2A,x2A,x⊥ ∧ �A,x⊤)
→ ¬C◦

A.

668 Uniform density in Lindenbaum algebras

We treat the other direction. Suppose A ∈ Σn, where n ≥ 1. We work in PA+A. Suppose
¬C◦

A, i.e., ∃x (2A,x2A,x⊥ ∧ �A,x⊤). Clearly, it follows that

∃x (2A,x∀y ≥ x2A,y⊥ ∧ �A,x⊤),
and hence

(4.1) ∃x (2A,x∀y ≥ x (2A,y2A,y⊥ → 2A,y⊥) ∧ �A,x⊤).
We note that we may assume that x ≥ n, since for any standardly finite k, 2A,k2A,k⊥
implies ⊥. Hence, by the fact that Arx + A proves Σ1-reflection for Ary + A, for y < x,
we find

(4.2) ∃x (2A,x∀y < x (2A,y2A,y⊥ → 2A,y⊥) ∧ �A,x⊤).

Combining (4.1) and (4.2), we find

(4.3) ∃x (2A,x∀y (2A,y2A,y⊥ → 2A,y⊥) ∧ �A,x⊤).

Of course (4.3) is △AC
◦
A.

Thus, we have shown that PA+A ⊢ C◦
A ↔ ¬△AC

◦
A. �

So, C◦
A is modulo PA-provable equivalence Smoryński’s Rosser sentence for PA+A.

Open Question 4.3 Our proof of the extensionality of A 7→ CA as well as that of un-
provability of CA go through, with minor modifications, for any stratification sequence τ
for PA satisfying our conditions. The consistency of C◦

A with PA + A is the only ele-
ment of Theorem 2.1 that ostensibly depends on τ = (Arn)n∈ω (or, more generally, on
the “fast-growing” property of τ that each level proves enough reflection for the previous
ones).

This makes us wonder if there exists a consistent theory of the form PA+A together
with a stratification sequence τ = (Tn)n∈ω such that PA+A refutes:

∀x (2A,Tx2A,Tx⊥ → 2A,Tx⊥).

A similar question can be asked of Theorem 4.2.

△

We end this section by showing that C◦
A is an Orey sentence of PA+A.

Consider any theory T . A sentence O in the language of T is an Orey sentence of
T if T � (T + O) and T � (T + ¬O). Note that the negation of an Orey sentence is an
Orey sentence. An Orey sentence O of T is clearly independent of T . Neither an Orey
sentence nor its negation add interpretability strength to the given theory.

The idea of Orey sentences was introduced by Orey ([11]), who also provided the
first known Orey sentence for PA. There are many salient natural Orey sentences. Two
well-known examples are the Parallel Axiom over a suitable version of neutral geometry
and the Continuum Hypothesis over ZFC. For essentially reflexive sequential theories, the
Gödel sentence of a Feferman predicate for the theory is an Orey sentence —see below.

We will show that C◦
A is an Orey sentence of PA + A. This sentence is still meta-

mathematical and does involve coding, but it is, at least, self-reference-free. Since C◦
A is

a Gödel sentence of △A, the desired insight is immediate by the following theorem. (This
theorem was also proved in [22].)

Theorem 4.4 Consider a consistent theory T given by a sequence τ satisfying the con-
ditions given above. Then any Gödel sentence of △τ is an Orey sentence for T .

The Infinity Project 669

Proof. Let G be a Gödel sentence of △τ . We have:

T +G ⊢ T +

△

τ¬G
� T + ¬G;

T + ¬G ⊢ T +△τG

⊢ T +

△

τG

� T +G.

In the second step of the second proof, we use T ⊢ △τ¬A→ ¬△τA. Thus, we have both
(T +G)� (T +G), by the identity interpretation, and (T + ¬G)� (T +G). So, using a
disjunctive interpretation, we find T � (T +G). Similarly, T � (T + ¬G). �

References
[1] S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.
[2] S. Feferman. Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae,

49:35–92, 1960.
[3] D. Guaspari and R. M. Solovay. Rosser sentences. Annals of Mathematical Logic, 16:81–99, 1979.
[4] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Perspectives in Mathematical

Logic. Springer, Berlin, 1991.
[5] R. G. Jeroslow. Experimental logics and ∆0

2-theories. Journal of Philosophical Logic, 4:253–267,
1975.

[6] P. Lindström. Aspects of Incompleteness, 2nd ed., vol. 10 of Lecture Notes in Logic. ASL / A. K. Pe-
ters, Natick, Massachusetts, 2003.

[7] K. McAloon. Formules de Rosser pour ZF. Comptes Rendus Hebdomadaires des Séances de l’Aca-
démie des Sciences, Série A, 281(16):669–672, 1975.

[8] F. Montagna. On the algebraization of a Feferman’s predicate. Studia Logica, 37:221–236, 1978.
[9] F. Montagna and A. Sorbi. Universal recursion theoretic properties of r.e. preordered structures.

The Journal of Symbolic Logic, 50:395–406, 1985.
[10] H. Ono. Reflection principles in fragments of Peano arithmetic. Zeitschrift für mathematische Logik

und Grundlagen der Mathematik, 33:317–333, 1987.
[11] S. Orey. Relative interpretations. Zeitschrift für mathematische Logik und Grundlagen der Mathe-

matik, 7:146–153, 1961.
[12] M. B. Pour-El and S. Kripke. Deduction-preserving “Recursive Isomorphisms” between theories.

Fundamenta Mathematicae, 61:141–163, 1967.
[13] H. Putnam. Trial and error predicates and the solution to a problem of Mostowski. The Journal of

Symbolic Logic, 30:49–57, 1965.
[14] J. B. Rosser. Extensions of some theorems of Gödel and Church. The Journal of Symbolic Logic,

1:87–91, 1936.
[15] V. Yu. Shavrukov. A smart child of Peano’s. Notre Dame Journal of Formal Logic, 35:161–185, 1994.
[16] W. Sieg. Fragments of arithmetic. Annals of Pure and Applied Logic, 28:33–71, 1985.
[17] C. Smoryński. Arithmetic analogues of McAloon’s unique Rosser sentences. Archive for Mathematical

Logic, 28:1–21, 1989.
[18] V. Švejdar. Modal analysis of generalized Rosser sentences. The Journal of Symbolic Logic, 48:986–

999, 1983.
[19] A. Tarski, A. Mostowski, and R. M. Robinson. Undecidable Theories. North-Holland, Amsterdam,

1953.
[20] R. Verbrugge and A. Visser. A small reflection principle for bounded arithmetic. The Journal of

Symbolic Logic, 59:785–812, 1994.
[21] A. Visser. Numerations, λ-calculus & arithmetic. In J. P. Seldin and J. R. Hindley, editors, To H. B.

Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 259–284. Academic
Press, London, 1980.

670 Uniform density in Lindenbaum algebras

[22] A. Visser. Peano’s smart children: A provability logical study of systems with built-in consistency.
Notre Dame Journal of Formal Logic, 30:161–196, 1989.

[23] A. Visser. What is the right notion of sequentiality? Logic Group Preprint Series 288, Department
of Philosophy, Utrecht University, 2010, http://www.phil.uu.nl/preprints/lgps/.

[24] A. Visser. Can we make the Second Incompleteness Theorem coordinate free? Journal of Logic and
Computation, 21(4):543–560, 2011.

The Infinity Project

Derivation lengths classification of Gödel’s T
extending Howard’s assignment

Gunnar Wilken†, Andreas Weiermann‡

† Structural Cellular Biology Unit, OIST Graduate University, Okinawa, Japan
wilken@oist.jp

‡ Department of Mathematics, Universiteit Gent, Belgium
weierman@cage.ugent.be

Abstract. Let T be Gödel’s system of primitive recursive functionals of finite type in the lambda
formulation. We define by constructive means using recursion on nested multisets a multivalued function
I from the set of terms of T into the set of natural numbers such that if a term A reduces to a term B
and if a natural number I(A) is assigned to A then a natural number I(B) can be assigned to B such
that I(A) is greater than I(B). The construction of I is based on Howard’s 1970 ordinal assignment for
T and Weiermann’s 1998 treatment of T in the combinatory logic version. As a corollary we obtain an
optimal derivation lengths classification for the lambda formulation of T and its fragments. Compared
with Weiermann’s 1998 exposition this article yields solutions to several non-trivial problems arising from
dealing with lambda terms instead of combinatory logic terms. It is expected that the methods developed
here can be applied to other higher order rewrite systems resulting in new powerful termination orderings
since T is a paradigm for such systems.

Introduction

This article is part of a general program of investigations on subrecursive complexity
classes via derivation lengths classifications of term rewriting systems. Quite often, an
equationally defined subrecursive complexity class C of number-theoretic functions can
be defined in terms of a corresponding rewrite system RC which computes the functions
from C. Appropriate bounds on the RC-derivation lengths then yield intrinsic information
on the computational complexity of C. Successful examples of this program have been
documented, for example, in [1, 5]. Having such applications in mind, it seems desirable
to have a large variety of powerful methods for establishing bounds on derivation lengths
in general.

A common and very convenient tool for proving termination of a reduction system
consists in defining an interpretation function I from the set of terms in question into
the set of natural numbers such that if a term A rewrites to a term B then I(A) >
I(B). A rewriting sequence of terms A1 → · · · → An then yields a strictly descending
chain of natural numbers I(A1) > · · · > I(An). The number I(A1) is thus an upper
bound for n and hence the assignment function I provides a termination proof plus
a non-trivial upper bound on resulting lengths of longest possible reductions. In this
paper we apply a generalization of this method —the non-unique assignment technique—
to GTλ, the λ-formulation of Gödel’s GT, which is the prototype for a higher order
rewrite system. For GTL, the combinatory logic formulation of GT, a corresponding

This paper has been published in Logical Methods in Computer Science under the creative commons
license; see [16].

†This work was partially supported by the Mathematical Biology Unit at OIST.

CRM Documents, vol. 11, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2012

671

672 Derivation lengths classification of Gödel’s T

interpretation has already been constructed in [15]. In this article we solve the technically
more involved problem of classifying the derivation lengths for GTλ via a multivalued
interpretation function. The extra complications when compared with the treatment in
[15] are due to the need for a variable concept underlying the assignment technique and
to the simultaneous treatment of recursion, β-conversion, and the ξ-rule.

For a recent and extensive exposition of the history of termination proofs for Gödel’s
GT we refer the reader to Section 8.2 in [4]. In fact, [4] covers the history of λ-calculus
and combinatory logic in general. Unlike the present paper, the majority of termination
proofs for Gödel’s GT mentioned in [4] does not yield non-trivial upper bounds on the
lengths of reductions.

An alternative approach for proving termination of Gödel’s GT which yields non-
trivial upper bounds on the lengths of reductions was suggested in [2]. There the lengths
of derivations were classified by proof-theoretic investigations on head-reduction trees.

The current approach is more direct, and as a possible benefit for future work we
expect the extraction of powerful (syntactic) termination orderings for higher order re-
duction systems which generalize the recursive path ordering. We conjecture that such
an ordering for Gödel’s GT will have the Bachmann–Howard ordinal as order type.

Preliminary remarks

Frequent mention of Howard’s work [8] does not mean that we presuppose its knowledge.
In fact, we have intended this paper to become as much self-contained as possible. Nev-
ertheless, we have adopted much of the notation used in [8] and [15]. Knowledge of those
works together with [3, 13, 14] is certainly useful in order to understand this article in
greater depth, but it is not required.

Section 1 introduces Gödel’s GT in the typed λ-calculus version together with several
well-known notions for its analysis. In addition, Subsection 1.4 will prove useful for the
particular purposes of this paper, and Subsection 1.6 gives a heuristic explanation and
motivation of the method of non-unique assignment. We believe that this facilitates the
understanding of the method considerably. Nevertheless, the results of Subsection 1.6 are
not needed later on, hence Subsections 1.6.2 and 1.6.3 can be skipped at first reading.
Subsection 3.3 will clarify how 1.6 relates to our argumentation in the central section
of this paper, Section 3. At that stage we expect the benefits from Subsections 1.6 and
3.3 to become fully convincing. The ordinal theoretic means applied in Section 3 are
introduced in Section 2. Section 4 provides a thorough analysis of the assignments given
in Section 3, showing that we obtain an exact classification of derivation lengths of GT
and its fragments.

The paper is organized in a way that allows for linear reading. However, detailed
technical proofs required in our argumentation are given in the appendix in order to
increase readability for an audience less familiar with ordinal theory.

1 Typed λ-calculus with recursion

We give a short description of typed λ-calculus extended by recursors and case distinction
functionals for each type. We will call this variant λβR-calculus. The theory GTλ is
Gödel’s GT based on λβR-calculus. We are going to slightly deviate from the notation
of [8].

The Infinity Project 673

1.1 Types and levels

The set of finite types is defined inductively: it contains the type 0 and the type (στ)
whenever στ are finite types. Type 0 is intended to consist of the natural numbers
whereas (στ) for given finite types σ and τ denotes the type of functions f : σ → τ . We
will denote finite types by the letters ρ, σ, τ, etc. In cases where ambiguity is unlikely,
instead of (στ) we will simply write στ , and we identify ρστ with ρ(στ). As in [8] the
level of a finite type is defined recursively by

lv(0) := 0, lv(στ) := max{lv(σ) + 1, lv(τ)}.

1.2 Terms, subterms, parse trees, substitution, α-equivalence

Let V be a countably infinite set of variables which we denote by X,Y, Z, etc. Following
the Church-style convention, we choose a type for each of those variables in such a way
that V contains infinitely many variables of each type. This choice is fixed throughout the
paper, and we will sometimes indicate the type, say σ, of a variableX by the notationXσ.

The set T of typed terms is defined inductively. It contains
• all variables in V,
• a constant 0 of type 0,
• a constant S of type 00,
• case distinction functionals1 Dτ of type 0τττ ,
• primitive recursion functionals Rτ of type 0(0ττ)ττ for each τ ,

and is closed under
• application, that is, (AB) is a term of type τ whenever A is a term of type στ

and B is a term of type σ, and
• abstraction, that is, λX.B is a term of type ρσ whenever X is a variable of type
ρ and B is a term of type σ.

We will suppress parentheses whenever ambiguity is unlikely to arise, e.g., we write AB
instead of (AB). We further identify ABC with (AB)C for any terms A,B,C of suitable
types. If a term A is of type τ we communicate this sometimes by writing Aτ . Conversely,
instead of writing Dτ ,Rτ we sometimes simply write D,R, respectively. We continue to
denote terms of T by Roman capital letters with the exception of recursion arguments in
terms of the form Rt, where we sometimes use lower case Roman letters s, t, etc.

The set BV(A) of bound variables of a term A consists of all variables X for which
λX occurs in A, whereas the set FV(A) of free variables of A consists of all variables X
occurring in A outside the scope of λX.

The set of subterms of a given term A is defined as usual by induction on the buildup
of A, including A itself. The direct subterms of terms of a form AB are A and B; the
only direct subterm of λX.A is A —all other terms do not have any direct subterm.

The parse tree of a term A is the labeled tree whose root is labeled with A, and whose
immediate subtrees are the parse trees of the immediate subterms of A (if any). The set
of all labels of nodes of the parse tree of a term A is therefore equal to the set of subterms
of A. The parse tree, however, distinguishes between possibly various occurrences of
the same subterm of A and provides their contexts within A. The set of nodes of the
parse tree of a term A can be identified with the addresses of A, which are finite strings

1 Case distinction functionals are needed to the full extent in the functional interpretation of the
fragments IΣn+1 of Peano Arithmetic in the fragments GTn of GT; cf. [9].

674 Derivation lengths classification of Gödel’s T

over {1, 2} according to the following definition, where ϵ denotes the empty string. The
subterm of A at address a, written A|a, is defined inductively by

• A if a = ϵ,
• B|b if A = λX.B and a = 1b,
• B|b if A = BC and a = 1b,
• C|c if A = BC and a = 2c.

Substitution A{X := B} is defined as usual by induction on the buildup of A, replac-
ing any free occurrence of the variable X in A by the term B. The variable condition

BV(λX.A) ∩ FV(B) = ∅

for β-conversion (see below) avoids variable capture. In other words, it makes sure that
none of the free variables in B becomes bound within A{X := B}. Moreover, the
abstraction variable X does not occur in A{X := B}.

A term A is called well-named iff for each subterm B of A we have

FV(B) ∩ BV(B) = ∅,

and furthermore, for each variable X, the binder λX occurs at most once in B.
Let A be a term with subterm λX.B at address a. If Y is a variable of the same type

as X such that Y ̸∈ FV(B), then we say that A α-converts to the term resulting from
A by the replacement of A|a by λY.(B{X := Y }). If a term C is obtained from A via a
finite number of α-conversions, then we call A and C α-equivalent, A =α C. Notice that
every term is α-equivalent to some well-named term.

1.3 Equivalence and λβR-reduction

The equivalence relation is the reflexive, symmetric and transitive closure of α-equivalence
and the one-step reduction �, defined inductively as least binary relation on terms such
that

(D0) D0AB �A (DS) D(St)AB �B

(R0) R0AB �B (RS) R(St)AB �At(RtAB)

(Appr) A�B ⇒ AC �BC (Appl) B � C ⇒ AB �AC

(β) (λX.A)B �A{X := B} where BV(λX.A) ∩ FV(B) = ∅
(ξ) A�B ⇒ λX.A� λX.B.

Clearly, the variable condition for β-conversion is satisfied if the term (λX.A)B is
well-named. Note that � does not preserve well-namedness. However, as mentioned
above, well-namedness can always be restored: if A� B′ then there exists a well-named
term B such that A� B′ =α B. On well-named terms we define A�α B iff there exists
(the unique) B′ such that A�B′ =α B.

The calculus λβR enjoys the Church–Rosser property (confluence) and strong nor-
malization, and every functional of type 0 reduces to a numeral (cf. [7]).

Note that extending λβR by η-contractions would cause loss of the Church–Rosser
property —consider for example the term λX.R0AX.

1.4 Extension to T′ and λβR′

In order to prepare a separate treatment of R-reductions and β-reductions, which other-
wise would be incompatible within the framework of our intended non-unique assignment,

The Infinity Project 675

we introduce the following definitional extension of λβR-calculus. We extend the clauses
in 1.2 defining the terms of T so that

• Rt is a term of type (0ττ)ττ for any Rτ and any term t of type 0.
We call the extended set of terms T′. The terms Rt are special forms of application
terms and thus allow for a clean way to give two different assignments to terms result-
ing from the application of some t to a recursor R. The effect will be that assignments
to Rt allow for a treatment of β-conversion while assignments to Rt allow for a treat-
ment of R-reduction. This smoothly fits with our treatment of the ξ-rule by the method
of non-unique assignment according to [8], which takes advantage from the additional
information given by the reduction history of terms; see Subsection 1.6.

The subterms of Rt are Rt itself, R, and the subterms of t. The direct subterms are
R and t. Parse trees for the extension are defined accordingly; (Rt)|a is defined by (Rt)|a.
Substitution for the new terms is defined by

Rt{X := A} :≡ Rt{X:=A},

and α-equivalence is expanded to all terms of T′. The one-step reduction relation is then
modified to include additional rules (R) and (AppR), and (R0) and (RS) are replaced by
(R0) and (RS), respectively, as follows:

(R) Rt� Rt (AppR) s� t⇒ Rs � Rt

(R0) R0AB �B (RS) RStAB �At(RtAB).

We denote the modified calculus for the terms of T′ by λβR′. The properties and defi-
nitions regarding λβR mentioned in the previous subsection are easily seen to carry over
to λβR′.

We define the length of a term A, lh(A), as follows:
• lh(A) := 1 if A is a variable or constant,
• lh(BC) := lh(B) + lh(C),
• lh(Rt) := 1 + lh(t), and
• lh(λX.G) := lh(G) + 1.

It is a trivial observation that by identifying any Rt with Rt and omitting all
(R)-reductions we recover the original λβR-calculus where (AppR)-reductions turn into
(Appl)-reductions and (R0), (RS) turn into (R0), (RS), respectively. Clearly, reduction
sequences can only become shorter in this process.

On the other hand, given any reduction sequence in λβR, we obtain a corresponding
reduction sequence in λβR′ (of at most double length) by straightforward insertion of
(R)-reductions as needed, from which we recover the original sequence by the process
described above.

Another trivial observation is that given a reduction sequence in λβR′, starting from
a term A ∈ T′ we can straightforwardly find a term A′ ∈ T and a reduction sequence
which transforms A′ into A in at most lh(A)-many steps, only using (R)-reduction. It is
therefore sufficient to perform a derivation lengths classification for the class of reduction
sequences in λβR′ which start from T-terms, as the resulting bounds will turn out to be
sharp for λβR.

1.5 Reduction trees

The rules (Appl), (Appr), (ξ), and (AppR) imply that the one-step reduction � applied to
some term A consists of the reduction of one redex of A. A redex of A is the occurrence of

676 Derivation lengths classification of Gödel’s T

a subterm of A (corresponding to a unique node in the parse tree of A) that matches any
left-hand side of the reduction clauses for D-, R-, or β-reduction. Inside A the redex is
then replaced by the (properly instantiated) right-hand side of the corresponding clause.
We call the redex chosen for a particular one-step reduction � the working redex. The
reduction tree of a (well-named) term A is then given by the exhaustive application of
�α in order to pass from a parent to a child node, starting from A. We do not need to
be any more specific about the arrangement of nodes in reduction trees.

1.6 Assignment of ordinals to terms of T′

1.6.1 Overview

The aim of the present paper is to give exact bounds on the heights of reduction trees
in the usual sense of derivation lengths classification for term rewriting systems. This
is achieved by the assignment of strictly decreasing natural numbers to the terms of
reduction sequences. The natural numbers assigned to terms are computed along vectors
of ordinal terms (from upper down to lower components) which in turn are built over
variable vectors that correspond to typed variables.

The assignment is not unique for terms because it is dependent on the respective
reduction history. The main reason for this dependency on reduction histories is the
same as already encountered in [8]. The treatment of β-reduction involves an operator
on ordinal vectors which is not monotone with respect to the ξ-rule. The other reason
is the incompatibility of our treatments of R- and β-reduction, as already mentioned in
Subsection 1.4. The solution outlined there is based on the fact that when considering
λβR′-reduction sequences which start from terms in T, we can trace back abstraction
subterms in the reduction history, obtaining corresponding subterms, cf. Definition 1.1,
in which the respective abstraction variable does not occur in subterms of the form Rt.
This observation is crucial for our simultaneous treatment of β-reductions, the ξ-rule, and
arbitrary R-reductions, which were excluded in [8]. The assignment to such corresponding
terms earlier in the reduction history is then the key to the handling of β-reductions that
may occur much later in the reduction sequence.

Now, given the particular reduction history of a term A occurring in a fixed reduction
sequence, the assignment is determined uniquely (we will introduce the crucial notion of
assignment derivation in our formal argumentation) and built up from the assignments to
the nodes of the parse tree of A and terms occurring earlier in the reduction history of A.
Additionally, the assembly of new assignments along the reduction sequence involves
(iterated) substitutions of variable vectors by already defined assignments, generating
terms which do not occur as subterms of terms in the reduction history of A. For
this reason, besides the obvious reason in the treatment of β-reduction, the assignment
method has to be designed so as to naturally commute with substitution, as was done
already in [8]. Another essential property of our assignment method is its invariance
under α-equivalence, as in [8]. This will enable us to treat �α-reductions in the same
way as �-reductions.

Our construction of assignments to terms will start from unique assignments to all
variables and constants, using Howard’s operator 2 in its refined form of [15] to compute
an assignment to a term BC from assignments to B and C, a specific treatment of terms
Rt as used in [15], where it was used for terms of the form Rt, and a refinement of
Howard’s operator δ, cf. [8], to be applied in the treatment of abstraction terms, which
causes the non-uniqueness of the assignment method.

The Infinity Project 677

1.6.2 Basic considerations

Given a reduction A� B we begin with describing how the parse tree for B is obtained
from the parse tree for A in a uniform way. This will be crucial for the construction of
our assignment. Focusing on the working redex of the reduction A � B we consider the
path P from the root, labeled with A, to the working redex at node r, labeled with F .
Clearly, F is a subterm of any term labeling a node of P. Assume the working redex is
reduced (via D-, R-, or β-reduction) to the term G at node s in the parse tree of B. The
subtree with root r of the parse tree of A, that is the parse tree for F , is replaced with
the parse tree for G, and along the path P the labels are modified by the replacement
of the working redex F by the reduct G. If the meaning is clear from the context we
will sometimes denote such a replacement by H[s/r] where H is a label of a node on P.
All remaining nodes of the parse tree of A are preserved in the parse tree of B with the
same labeling term. In other words, the tree structure is modified by the replacement
of the parse tree of F at node r by the parse tree of G with the corresponding labeling,
while the modification of labels additionally involves the labels along P in form of the
replacement [s/r] of the working redex F by G.

In the case of D- and R-reductions the transformation of the parse tree of F to the
parse tree of G is clear, and we can uniquely identify subtrees of redex and reduct,
including their labels. For example in the case where F is a term RStCD and G is the
term Ct(RtCD), we can trace the parse tree of F until we reach the parse trees of t, C,
and D, and do the same with the parse tree of G, identifying the corresponding subtrees.
We are going to use this identification of subtrees in our assignment in order to carry
over already defined assignments.

Now consider the case where the working redex is a β-redex, say F is (λX.C)D and G
is C{X := D}. The immediate subtrees of the parse tree of F are then the parse trees of
λX.C and D, the immediate subtree of the former being the parse tree S of C. Consider
the tree S{X := D} which is obtained as follows. The tree structure is obtained from
S by replacing every leaf with label X by the parse tree of D with the corresponding
labels. The remaining labels are modified by the substitution {X := D}. The subtrees
substituted for the leaves with label X can be identified with the immediate subtree of
F which is the parse tree of D.

Having discussed the transition from the parse tree of A to the parse tree of B, where
A � B, let us now assume that Y ∈ FV(B) and that C is a term of the same type
as Y such that BV(B) ∩ FV(C) = ∅. Modulo α-congruence we may assume that also
BV(A) ∩ FV(C) = ∅. We then clearly have Y ∈ FV(A), and A{Y := C}� B{Y := C}.
The parse trees of A{Y := C} and B{Y := C} are obtained from those for A and B,
respectively, by replacing every leaf with label Y by the parse tree of C and by the
modification of all remaining labels by the substitution {Y := C}.

1.6.3 Precise motivation

Bearing the above preparation in mind we proceed with a precise explanation of the
method of non-unique assignment that was used in Section 4 of [8] in order to handle the
unrestricted ξ-rule. As mentioned above, the approach of non-unique assignment had to
be refined so as to manage arbitrary R-reductions.

Definition 1.1 Let A,B be terms such that A � B with working redex and reduct
at address w, respectively. Let b be an address in B such that b = q1 and B|q is an

678 Derivation lengths classification of Gödel’s T

abstraction. We define a unique address a and say that a corresponds to b with respect
to the pair (A,B) as follows.

(1) If b and w are incomparable, then we have A|b = B|b and set a := b.
(2) If b is a prefix of w (written as b ⊆ w), then we have A|b �B|b and set a := b.
(3) If w is a proper prefix of b, that is, w (b.

(3.1) w ̸= ϵ. Then let b′ be such that b = wb′, let a′ be such that a′ corresponds
to b′ with respect to (A|w, B|w), and set a := wa′.

(3.2) w = ϵ. Then we distinguish between the following cases:
(a) A = (λX.C)D, B = C{X := D}.

– If b is of a form cd such that C|c = X then a := 2d,
– otherwise a := 11b.

(b) A = Rt, B = Rt. Then set a := b.
(c) A = R0CB. Set a := 2b.
(d) A = RStCD, B = Ct(RtCD).

– If b is of a form 22d, then a := 2d.
– If b is of a form either 11c or 212c, then a := 12c.
– If b is of a form either 12e or 2112e, then a := 1122e.

(e) A = D0BC. Set a := 12b.
(f) A = D(St)CB. Set a := 2b.

In case (2) we call the reduction A|b � B|b the associated reduction with respect to
(A,B) and b, otherwise an associated reduction is not defined.

If the working redex is a β-redex, say A|w = (λX.C)D, and w (b, b not of a form
b = wcd with C|c = X, then we call the substitution {X := D} the associated substitution
with respect to (A,B) and b, otherwise an associated substitution is not defined.

For well-named terms A,B such that A�αB and addresses a, b in A,B, respectively,
let B′ be the unique term such that A�B′ =α B. Then we say that a corresponds to b
with respect to the pair (A,B) iff a corresponds to b with respect to the pair (A,B′). The
associated reduction (respectively, associated substitution) with respect to (A,B) and b
is defined iff it is defined for (A,B′) and b, in which case they are the same. 3

Note that for any A,B, a, b as in the above definition, a is of the form p1, and A|p is
an abstraction. Notice further that exactly one of the following holds:

(1) The associated reduction is defined.
(2) The associated substitution is defined.
(3) Neither the associated reduction nor the associated substitution is defined.

Notice that if A�B, in case (I) we have A|a�B|b, in case (II) we have A|a{X := D} = B|b
where {X := D} is the associated substitution, and in case (III) we have A|a = B|b.

However, if we have A �α B, say A � B′ =α B, in general the terms B|b and B′
|b do

not only differ due to the renaming of bound variables but also due to renaming of free
variables as they might be subterms of abstractions that have undergone α-conversion.
In particular, it does not make sense to keep track of the abstraction variable of B|q. The
following lemma addresses this technical issue.

Lemma 1.2 Let A,B,C be terms such that A�B =α C and suppose that A,C are well-
named and that the abstraction variables used in order to α-convert B to C do neither
occur free nor bound in A or B. Let b = q1 be an address such that C|q is an abstraction
term, say λX.H, and let a = p1 be the corresponding address in A. Then there exists a
well-named term A∗ such that

The Infinity Project 679

(1) A∗ =α A,
(2) A∗ �B∗ =α C,
(3) B∗

|q = λX.(B∗
|b) where B∗

|b =α H, and
(4) exactly one of the following holds:

(a) A∗
|a �H,

(b) A∗
|a{Y := D} =α H where {Y := D} is the associated substitution with

respect to (A∗, C),
(c) A∗

|a =α H.

Proof. Notice first of all that (2) follows from (1) and B∗ is determined by (2). Suppose
{v1, . . . , vm} is the set of addresses in B at which α-conversion has to be performed
in order to obtain C (the order of those α-conversions is of course irrelevant), with
corresponding new variables V1, . . . , Vm. Let w be the address of the working redex in A
and hence also the address of the reduct in B. In the case m = 0 we choose A∗ := A and
are done.

Now suppose that m > 0 and consider v ∈ {v1, . . . , vm} with corresponding new
abstraction variable V . We investigate whether an α-conversion in A becomes necessary in
order to satisfy the lemma. The collection of all α-conversions that have to be performed
in A will then determine the term A∗.

If v is not a prefix of q, then the α-conversion at v in B does not cause any change
in C|q and hence does not require any additional α-conversion in A.

Suppose now that v is a prefix of q, that is, v ⊆ q. We then consider three cases
regarding the addresses v and w.

Case 1: v and w are incomparable. Then we have p = q, v1 corresponds to v1 with
respect to (A,B), and we draw the α-conversion at v in B back to an α-conversion at v
in A with the same new variable V .

Case 2: v (w. Then A|v is of a form λZ.G and A|v �B|v = λZ.G′. Hence

C|v = λV.G′{Z := V }.

Again v1 corresponds to v1 with respect to (A,B), and we draw the α-conversion at v in
B back to an α-conversion at v in A with the same new variable V . The subterms of A|v
are now subject to the variable substitution {Z := V }, which includes the working redex
and the term A|p.

Case 3: w ⊆ v. Then we have w ⊆ v ⊆ q. Let u be the address in A such that u1
corresponds to v1 with respect to (A,B). We have v1 ⊆ b and w (u (abstractions
cannot be working redices). We perform the α-conversion at u in A switching to the
abstraction variable V . The reduction of A to B might generate further copies of A|u in B
whose addresses in B, however, cannot be prefixes of q. In B∗ we will have corresponding
copies, differing from those in B by the abstraction variable V . Hence α-conversions of
those modified copies in B∗ to fit the corresponding abstractions in C are possible and
determined by C. �

Definition 1.3 Let F0 � · · · � Fn be a reduction sequence and let p be the address
identified with a node in the parse tree of Fn that is labeled with an abstraction term
λX.H. The trace of p in F0 � · · · � Fn is the sequence (b0, . . . , bn) such that bn = p1
and each bi corresponds to bi+1 with respect to (Fi, Fi+1). The associated trace terms

680 Derivation lengths classification of Gödel’s T

H0, . . . , Hn are the terms F0|b0 , . . . , Fn|bn , thus Hn = H. Let a partition IR, IS , IE of the
index set {0, . . . , n− 1} be defined as follows:

• i ∈ IR if the associated reduction with respect to (Fi, Fi+1) and bi+1 is defined,
• i ∈ IS if the associated substitution with respect to (Fi, Fi+1) and bi+1 is defined,

and
• i ∈ IE otherwise,

according to the remark following Definition 1.1. The index set IS therefore gives rise to
the associated partial substitution list.

For a reduction sequence F0 �α · · ·�α Fn we define the same notions, proceeding as
in Definition 1.1, and defining the trace terms Hi by Fi|bi . 3

Given a reduction sequence F0 �α · · · �α Fn we have unique terms F ′
1, . . . , F

′
n such

that
F0 � F ′

1 =α F1 . . . Fn−1 � F ′
n =α Fn.

Assume that each conversion from F ′
i+1 to Fi+1 only uses new variables, i.e., variables

that have not been used earlier in the reduction sequence. Clearly, this requirement
on the reduction sequence can always be obtained via α-equivalence (possibly including
renamings of bound variables in Fn). Given an address p identified with a node in the
parse tree of Fn that is labeled with an abstraction term λX.H, let (b0, . . . , bn) be the
trace of p and IR, IS , IE be the partition of the set of indices {0, . . . , n− 1} according to
Definition 1.3.

Let F ∗
n := Fn. Iterated application of Lemma 1.2 starting from Fn−1 � F ′

n =α Fn
yields terms F ∗

n−1, . . . , F
∗
0 such that

(1) Fi =α F
∗
i for each i,

(2) F ∗
0 �α · · · �α F

∗
n with the same trace of p, the same partition IR, IS , IE , and

trace terms Hi := F ∗
i|bi , and

(3) for each i < n we have:
(a) Hi �Hi+1 if i ∈ IR,
(b) Hi{Yi := Di} =α Hi+1 if i ∈ IS where {Yi := Di} is the associated substi-

tution with respect to (F ∗
i , F

∗
i+1), or

(c) Hi =α Hi+1 if i ∈ IE .
(4) The associated partial list of substitutions with respect to F ∗

0 �α · · ·�α F
∗
n and

p is X-free, that is, none of the terms Di which is defined contains the variable
X and none of the defined variables Yi is identical with X.

(5) Each bi is of a form b′i1 and F ∗
i|b′i

= λX.Hi.

Definition 1.4 For a reduction sequence F0 �α · · ·�α Fn with the above specified con-
dition of freshness of abstraction variables introduced by α-conversions and node p in
Fn as above, we call the sequence F ∗

0 �α · · · �α F
∗
n defined above the p-companion of

F0 �α · · · �α Fn. If F0 �α · · · �α Fn can be a p-companion of itself, then we call it nice
with respect to p. 3

Notice that the crucial property for p-niceness of reduction sequences roots in property
1.2 of Lemma 1.2: the invariance of the free variables which occur in the trace terms.

Definition 1.5 Let F0�α · · ·�αFn, n > 0, be a nice reduction sequence with respect to a
node p in the parse tree of Fn that is labeled with an abstraction term λX.H. Let further
(b0, . . . , bn) be the trace of p in F0 �α · · ·�α Fn with associated trace terms H0, . . . , Hn

and associated partial list of substitutions ({Yi := Di})i∈IS .

The Infinity Project 681

For each i ∈ {0, . . . , n− 1} we define terms {Hj
i }i≤j≤n such that

• H i
i := Hi,

• Hj+1
i =α C

j
i {Yj := Dj} if j ∈ IS , where

– Cji =α H
j
i ,

– Hj+1
i and (λYj .C

j
i)Dj are well-named,

using only fresh variables for α-conversion,
• Hj+1

i otherwise.
Let (ij)0≤j≤m be the longest sequence such that
• i0 = 0,
• ij+1 is the least i > ij such that Hi−1 �Hi.

We now let Gm := Hn; define Gj := Hn
ij

for each j ∈ {0, . . . ,m − 1}, and call the
sequence G0�α · · ·�αGm the associated reduction sequence with respect to F0�α · · ·�αFn
and p.

In the case of the trivial reduction sequence F0 with node p in the parse tree of F0

that is labeled with λX.H we define G0 := H to be the associated reduction sequence
with respect to F0 and p. 3

Notice that in the above definition Hn
im

=α Hn which justifies our choice of Gm. We
have now carefully shown how, making extensive use of α-conversion, abstraction terms
can be traced in reduction sequences. This will be essential in the treatment of the ξ-rule.
As mentioned before, our assignments to terms will be invariant modulo α-congruence.

The inductive definition below introduces a binary relation w originating from t on
p. 457 of [8], which assigns weights to terms of T′ in a non-unique manner. For the
purpose of the present section the assignment of weights serves as a useful illustration.
However, the use of weights will not be required later on.

Definition 1.6 Let w be the minimal binary relation on T′ × N+ which satisfies:
• w(A, 1) if A is a variable or constant,
• w(BC, n) if w(B,nB), w(C, nC), and n = nB + nC ,
• w(Rt, n+ 1) if w(t, n),
• w(λX.G, n) if there are terms G0 �α · · · �α Gm = G such that X does not

occur in any subterm of G0 of a form Rt, w(Gi, ni) for i = 0, . . . ,m, and n =
1 + n0 + · · ·+ nm.

Every relation w(F, nF) for some F ∈ T′ comes with a witnessing derivation, which is a
tree whose root is labeled with w(F, nF), defined as follows:

• If A is a variable or constant, then the tree consisting only of its root is the
derivation of w(A, 1).
• For derivations R of w(B,nB) and S of w(C, nC), the tree with direct subtrees
R and S is a derivation of w(BC, nB + nC).
• For a derivation R of w(t, n), the tree with direct subtree R is a derivation of
w(Rt, n+ 1).
• For derivations R0, . . . ,Rm of w(G0, n0), . . . ,w(Gm, nm) with

G0 �α · · ·�α Gm =: G

such that X does not occur in any subterm of G0 of a form Rt, the tree with
direct subtrees R0, . . . ,Rm is a derivation of w(λX.G, 1 + n0 + · · ·+ nm). 3

682 Derivation lengths classification of Gödel’s T

In Section 3, instead of weights we will assign ordinal vectors to terms, resulting in as-
signment derivations ; see Definition 3.1. The notion of assignment derivation will be more
restrictive than the notion of derivation here. Reduction sequences G0�α · · ·�αGm = G
as mentioned above for the treatment of an abstraction λX.G will additionally have to
have a strictly decreasing sequence of assignments, which is crucial in the treatment of
the ξ-rule.

We are going to show how weights can be assigned to terms along any reduction
sequence F0 �α · · · �α Fn, in a way that is compatible with Definition 1.5, relying on
associated reduction sequences. Recall the observation that, given any reduction sequence
F0�α · · ·�α Fn of terms in T′, we may prepend a sequence of terms starting with a term
in T which reduces to F0 in at most lh(F0)-many steps and merely involves (R)-redices
as working redices. We may therefore assume that F0 ∈ T.

Lemma 1.7 The relation w is invariant modulo α-congruence.

Proof. Straightforward. �

The above lemma justifies to consider nice reduction sequences without loss of gen-
erality. The next definition relates derivations to substitution.

Definition 1.8 Let A,D ∈ T′ be such that D is substitutable for Y in A, i.e., BV(A) ∩
FV(D) = ∅. For any fixed derivations of w(A,nA) and w(D,nD) we define a canonical
derivation of w(A{Y := D}, n) with suitable n. The definition proceeds by induction
along the inductive definition of derivation of w(A,nA).

(1) A = Y . Then choose n := nD and the derivation of w(D,nD).
(2) Y ̸∈ FV(A). Then choose n := nA and the derivation of w(A,nA).
(3) A = BC with derivations of w(B,nB) and w(C, nC), and nA = nB + nC . The

canonical derivation of w((BC){Y := D}, n) is then assembled from the already
defined canonical derivations w(B{Y := D}, n1) and w(C{Y := D}, n2), setting
n := n1 + n2.

(4) A = Rt with a derivation of w(t, nt) and nA = 1 + nt. We have the canonical
derivation of w(t{Y := D}, n1), from which, setting n := 1 + n1, we define the
canonical derivation of w(A{Y := D}, n).

(5) A = λX.B, where X ̸= Y , with a sequence B0 �α · · · �α Bm = B such that X
does not occur in any subterm of B0 of a form Rt, and derivations of w(Bi, nBi)
for i = 0, . . . ,m, and nA = 1 + nB0 + · · · + nBm . By the previous lemma we
may assume that D is substitutable for Y in every Bi, i = 0, . . . ,m. We already
have the canonical derivation of each w(Bi{Y := D}, ni). By assumption, X
does not occur in D, hence X does not occur in any subterm of B0{Y := D} of
a form Rt. We have

B0{Y := D}�α · · ·�α Bm{Y := D} = B{Y := D}
and assembly the canonical derivation of w(A{Y := D}, n), n := 1+n0+· · ·+nm.

Definition 1.9 We give an inductive definition of canonical weight assignments along
reduction sequences. Suppose F0 �α · · ·�α Fn is a λβR′-reduction sequence with F0 ∈ T
and let p be a node in Fn with label A. Assume that derivations of w(B,nB) have
been specified for all terms B labeling nodes in the parse trees of Fi for each i < n
and to nodes descending from p in the parse tree of Fn. In case A is a variable or
constant we are done with the unique derivation of w(A, 1), and if A = BC, we have

The Infinity Project 683

derivations of w(B,nB) and w(C, nC) for the labels B and C of the direct child nodes
of p and accordingly choose the canonical derivation of w(A,nB + nC). The interesting
case is where A = λX.G. Here, let us assume that F0 �α · · · �α Fn is nice with respect
to p, justified by Lemma 1.7. Let G0 �α · · · �α Gm, where Gm = G, be the associated
reduction sequence for p in F0�α · · ·�αFn according to Definition 1.5. Then Definition 1.8
yields canonical derivations w(Gi, ni) for each i, from which we assembly the canonical
derivation of w(A, 1 + n0 + · · ·+ nm). 3

We now see that we may give a non-unique assignment to terms of T′ inductively
along a definition similar to Definition 1.6. As illustrated in the case of derivations, our
assignment method will be unique with respect to assignment derivations. We can then
conveniently prove properties of the assignment method by induction along assignment
derivations; cf. Definition 1.8. As illustrated in Definition 1.9, we will have canonical
assignment derivations in the context of reduction sequences. The assignment method
will thus easily be seen to be constructive.

The central result obtained in this paper will be a constructive procedure that, given
terms A,B ∈ T′ such that A � B and given an assignment in form of a natural number
a to A together with its derivation, outputs the derivation of an assignment b ∈ N to B
such that a > b. The uniformity of the procedure then allows for a derivation lengths
classification of λβR′ and hence also of λβR.

2 Ordinal terms and vectors

This section provides the theoretical framework of our assignment of ordinal vectors to
terms of T′. The computational complexity of the calculus λβR poses a challenge regard-
ing the determination of appropriate upper bounds on the lengths of reduction sequences.
Ordinal terms containing exponential towers occur —see Definition 2.10— and require
precise bookkeeping. Due to the presence of recursion with arguments not explicitly
known at the beginning of a reduction sequence, the ordinal ω occurs in our assignments,
leading to ordinal terms below the ordinal ε0 which is the least fixed point of exponen-
tiation to base ω. Bookkeeping during the computation of upper bounds will require a
sufficiently expressive term algebra, and using ordinal vectors will help keeping track of
exponential (sub-)terms of a certain height. Vectors allow us to build up ordinal terms
from the upper components down; see Definitions 2.6, 2.9, 2.10, 2.18. The δ-operator
will require decomposition of ordinal terms, which is facilitated by the concept of ordinal
vectors. The starting component is determined by the type level of the term for which
the assignment is being defined; cf. Subsection 1.1. This approach was designed in [8]
and is used here with some modifications. The innovation, first used by Weiermann in
a treatment of the combinatory logic version of GT (see [15]) concerns the 0-th compo-
nent. The 0-th component of the vectors generated will in general result from a collapsing
operation below ω and save an ω-power when compared to [8];2 see Definition 2.10 and
cf. also the difference between [14] and [15]. In order to treat arbitrary R-reductions,
where the recursion argument has not yet been reduced to a numeral and might even
contain variables, we feed collapsed terms back into the process of vector generation; see
Definition 3.1. The 0-th component of a vector assigned to such a recursion argument,
say t, turns out to be both an upper bound for the height of the reduction tree of t as

2 In [8], the 0-th component introduces another ω-power, whereas our modification (essentially)
collapses the component 1.

684 Derivation lengths classification of Gödel’s T

well as the value of t itself; see the proof of Corollary 4.2. Clearly, it is crucial that
during a reduction of t (by means of the ξ-rule) we obtain a strictly descending chain of
ordinal terms below ω in the 0-th component of the respectively assigned ordinal vectors,
while the values of the terms in the reduction sequence remain constant. The information
on the derivation length of t is therefore needed for the assignment to the term Rt, and
comes genuinely as a natural number which in turn is provided by the collapse in the
0-th component of the vector assigned to t. In summary, collapsing plays the essential
role in the treatment of unrestricted recursion, and a more modular procedure, where
collapsing is applied in a separate step after the assignment of ordinal terms would be at
the expense of sharp upper bounds (cf. [8] and [14]).

We develop an autonomous theory of ordinal terms and vectors and give an interpre-
tation of closed ordinal terms as ordinals below ε0. Due to the presence of variables in T′

we introduce ordinal variables and a notion of comparison on the ordinal terms containing
variables. We adopt most of the terminology and conventions introduced in Section 2
of [8]; see in particular the Introduction to Section 2 there. However, knowledge of [8]
is not a prerequisite. The main new ingredient in this paper is the concept of norm of
an ordinal term and Weiermann’s collapsing function ψ which is defined using norms of
ordinal notations; see below.

2.1 Ordinal terms

The basic expressions of our assignment are ordinal terms as introduced syntactically in
the following definition. The interpretation of ordinal terms is explained in the remainder
of this subsection, together with some facts from ordinal theory. First of all, let us adopt
the following convention regarding ordinal variables.

Convention Let otV be a set of fresh variables, called ordinal variables. We assume
the existence of a function mapping each typed variable Xσ from V to a sequence
(x0, . . . , xlv(σ)) of pairwise distinct ordinal variables, in such a way that each ordinal
variable belongs to exactly one such sequence. We will sometimes explicitly indicate the
type by writing, e.g., xσi for xi in the above setting.

Definition 2.1 The set ot of ordinal terms is defined inductively as follows:
• otV ⊆ ot.
• 0, 1, ω ∈ ot.
• If f, g ∈ ot, then f + g, 2f · g, ψ(ω · f + g) ∈ ot.

We call h ∈ ot closed if it does not contain any variable and x-free if none of the variables
xi occurs in h. The notion of parse tree for ordinal terms is clear from the above inductive
definition, that is, the immediate subterms of f + g, 2f · g, and ψ(ω · f + g) are f and g.
If g in ψ(ω · f + g) is itself a sum, we will sometimes drop parentheses. Also, if h ∈ ot
and n ∈ N, we sometimes write nh or n · h in order to denote the n-fold summation of h.

As mentioned above we will interpret closed ot-terms as ordinal numbers below the
ordinal ε0, the least fixed point of exponentiation to base ω and hence the proof-theoretic
ordinal of Peano arithmetic, as was shown by Gentzen. The interpretation of ot-terms
will make use of the natural sum and product of ordinals, exponentiation to base 2, as
well as the ψ-function which was introduced in [13]. For the readers’ convenience we are
going to recall these ordinal functions, starting with the natural sum ⊕ and the natural
product ⊗ of ordinals, also called Hessenberg sum and product, respectively, as well as
the exponentiation to bases 2 and ω, ω denoting the least infinite ordinal. The natural

The Infinity Project 685

sum of α and 0 agrees with ordinal addition, α⊕ 0 = 0⊕ α = α, for the natural product
of α and 0 we have α⊗ 0 = 0⊗ α = 0 in agreement with ordinal multiplication. Now let

α = ωγ0 + · · ·+ ωγm > γ0 ≥ · · · ≥ γm, m ≥ 0,

and
β = ωγm+1 + · · ·+ ωγn > γm+1 ≥ · · · ≥ γn, n ≥ m+ 1,

be the Cantor normal form representations of non-zero ordinals α, β below ε0, where +
is ordinal addition and ξ 7→ ωξ enumerates the non-zero ordinals which are closed under
ordinal addition, also called additive principal numbers.3 The natural sum of α and β is
then defined by

α⊕ β = ωγπ(0) + · · ·+ ωγπ(n)

where π is a permutation of {0, . . . , n} such that γπ(0) ≥ · · · ≥ γπ(n). The natural product
of α and β is then defined by

α⊗ β = (ωγ0⊕γm+1 ⊕ · · · ⊕ ωγ0⊕γn)⊕ · · · ⊕ (ωγm⊕γm+1 ⊕ · · · ⊕ ωγm⊕γn).

Exponentiation to base 2 is characterized by

2α = ωα0 · 2n

where α = ω · α0 + n and n < ω (see for example [11]). In other words: If α is the
n-th successor of the α0-th limit ordinal, then 2α is 2n times the α0-th additive principal
number.

We define the function ψ : ε0 → ω, which will be used to interpret ψ-terms of ot,
exactly as in [13, 14, 15], where the interested reader can find a detailed explanation
of the collapsing mechanism and its relation to the theory of subrecursive functions and
ordinal recursion. An abstract exposition of the underlying concepts can be found in [3],
where among other results a comparison of ψ with the classical Hardy functions is given.
The Hardy functions provide a fine scale that allows for the comparison of provably
recursive functions of fragments of Peano Arithmetic or even the distinction in levels of
the Grzegorczyk hierarchy. By directly assigning ψ-terms to terms of T we can compare
the “run-time” of different terms in T, varying in the occurrence of, say, R-functionals of
various types. The assignment using ψ resolves nested occurrences of recursion in terms
of T into unnested recursion along corresponding ordinal lengths.

Let Φ: ω → ω be a sufficiently fast growing number theoretic function, for example
the function x 7→ F5(x+100) where F0(x) := 2x and Fn+1(x) := F x+1

n (x). There is leeway
in the choice of Φ; however, it is essential that Φ is bounded by some Fk, k < ω, which
guarantees the primitive recursiveness of Φ. Let further the norm function no: ε0 → ω
be defined by no(0) := 0 and

no(α) := n+ no(α1) + · · ·+ no(αn)

for α = ωα1 + · · · + ωαn > α1 ≥ · · · ≥ αn. This definition of a norm has the convenient
property that no(k) = k for any k < ω, and we have that for every m < ω the set

{β | no(β) ≤ m}
is finite. This property of the norm makes the following definition of the collapsing
function ψ by recursion on ε0 possible:

ψ(α) := max({0} ∪ {ψ(β) + 1 | β < α&no(β) ≤ Φ(no(α))}).
3 See [10] for a comprehensive introduction to the basics of ordinal arithmetic, the proof theory of

Peano arithmetic and further advanced topics of proof theory.

686 Derivation lengths classification of Gödel’s T

This definition can be carried out in PRA+ PRWO(ε0); cf. [13, 15]. We now state two
basic propositions concerning the norm and the ψ-function (see [15]).

Proposition 2.2 Let α and β be ordinals less than ε0. Then we have
(1) no(α⊕ β) = no(α) + no(β).
(2) no(α) + no(β)− 1 ≤ no(α⊗ β) ≤ no(α) · no(β) if α ̸= 0 ̸= β.
(3) no(α) ≤ 2 · no(2α) and no(2α) ≤ 2no(α).

Proof. The proof is given in full detail in the appendix. �
Proposition 2.3 Let k < ω and ordinals α, β < ε0 be given. Then we have

(1) k = ψ(k), k ≤ ψ(α+ k), no(α) ≤ ψ(α), and ψ(β) + k ≤ ψ(β + k).
(2) ψ(α) + ψ(β) ≤ ψ(α⊕ ψ(β)) ≤ ψ(α⊕ β).
(3) α < β&no(α) ≤ Φ(no(β))⇒ ψ(α) < ψ(β).
(4) α ≥ ω ⇒ Φ(no(α)) < ψ(α).

Proof. The proof is given in full detail in the appendix. �
Our preparations now enable us to introduce a canonical interpretation of closed ot-

terms as ordinals below ε0. This clarifies the notion of the norm no(h) for closed terms
h ∈ ot and how closed ot-terms can be compared.

Definition 2.4 Closed terms h ∈ ot are interpreted canonically, however, + is interpreted
by ⊕ and · is interpreted by ⊗. 3

In order to clarify the above definition, consider the example of the closed ot-term

ψ
(
ω ·
(
2ω+1 · (ω + 0)

)
+ 22

ω+1·ω · 1
)
,

which is interpreted by the ordinal ψ(ω⊗(2ω⊕1⊗(ω⊕0))⊕22ω⊕1⊗ω⊗1) = ψ(ωω·2+ω3 ·2).
Convention When working with (closed) ot-terms we will always assume their interpre-
tation by Definition 2.4 and compare them accordingly. Therefore, instead of using the
symbols ⊕ and ⊗ we are going to simply use the ordinary symbols + and · in order to
refer to the natural sum and product, respectively.

2.2 Ordinal vectors

As in [8], a vector of level n is an (n+ 1)-tuple h⃗ = ⟨h0, . . . , hn⟩ where the hi are ordinal
terms, hence h⃗ ∈ O<ω. As there is no danger of ambiguity we write lv(⃗h) = n. For
simplicity, we define hi to be 0 if i > lv(⃗h). Thus, the sum h⃗ = f⃗ + g⃗ of vectors f⃗ , g⃗ is a
vector of level max{lv(f⃗), lv(g⃗)} where hi = fi + gi.

The comparison of arbitrary ot-terms and their norms poses the problem of how to
interpret or substitute variables. We can consider ot-terms and their norms as functions
in the variables occurring in them and then define the comparison relation via pointwise
domination of functions. These functions are viewed as intensional objects and are given
by the buildup of the corresponding ot-term.

Let X be a variable of type σ. The variable vector associated with X is the vector

x⃗ := ⟨x0, . . . , xlv(σ)⟩
where (x0, . . . , xlv(σ)) is the sequence of ordinal variables associated with X according to
the convention at the beginning of the previous subsection. We will sometimes explicitly
indicate the type by writing, e.g., x⃗σ for x⃗ or xσi for a component xi of the vector x⃗

The Infinity Project 687

corresponding to Xσ. By convention we write x⃗ for the variable vector associated with X;
similarly, we write y⃗ for the variable vector associated with Y , etc.

We will later introduce operations 2 and δx⃗ (where x⃗ ranges over variable vectors)
on vectors that will be applied in our assignment in order to handle application and
abstraction, respectively. Suitable domains for 2 and δx⃗, namely classes C and Cx⃗,
respectively, will be defined towards the end of this subsection.

Substitution of variable vectors is defined as follows. For a variable vector x⃗ of level
n and a vector a⃗ of ordinal terms of the same level we define the substitution {x⃗ := a⃗}
as the replacement of xi by ai for each i ≤ n. We write {x⃗ := 1⃗} for the replacement of
xi by 1 for i ≤ n, etc.

The question arises over which domain the substitutions of variable vectors should
vary. The variable vectors involved are those, of which at least one component occurs
in one of the ot-terms that are compared or whose norms are compared. We are going
to introduce the notion of bounded norm and the class B of vectors characterizing the
restrictions of Cx⃗ and C to closed vectors, i.e., vectors whose components are closed
ordinal terms. The restriction of B to vectors of bounded norm will then serve as the
domain of substitutions considered for the comparison relation. The operators δx⃗ will
be defined via vectors from Cx⃗ which in general are not of bounded norm, which is the
reason for not integrating this condition into the definitions of B, Cx⃗, C.

Definition 2.5 A closed vector f⃗ ∈ O<ω is of bounded norm if

no(fi) ≤ no(f0)

for every i.

Definition 2.6 We define sets Bi ⊆ ot for i < ω by simultaneous induction:
• 1 ∈ Bi for all i.
• ω ∈ Bi for i ≥ 1.
• If f, g ∈ Bi, then f + g ∈ Bi for all i.
• If f ∈ Bi+1 and g ∈ Bi, then 2f · g ∈ Bi for i ≥ 1.
• If f ∈ B1 and g ∈ B0 with4 no(f) ≤ F2(g), then ψ(ω · f + g) ∈ B0.
• If h ∈ B0, then h ∈ Bi for i ≥ 1.

The class B ⊆ O<ω consists of all vectors h⃗ such that hi ∈ Bi for all i ≤ lv(⃗h). 3

Notice that 0 does not occur in the parse tree of any term in any Bi. Terms h ∈ B0
cannot be of a shape 2f · g, and they satisfy h < ω, which plays a crucial role in this
paper as the 0-th component of a vector assigned to a term in T′ is intended to yield an
upper bound on the height of the term’s reduction tree.

Definition 2.7 Let f, g ∈ ot. The relation f ≺ g holds if and only if χ(f) < χ(g) for all
substitutions χ satisfying the following conditions:

(1) The domain of χ is the set of elements of all variable vectors x⃗ such that at least
one element of x⃗ occurs in f or in g.

(2) For each such x⃗ the vector χ(x⃗) := ⟨χ(x0), . . . , χ(xn)⟩, where n = lv(x⃗), is an
element of B of bounded norm.

The relation ≼ on ot-terms is defined similarly, as well as (extensional) equality =.
The comparison of no(f) with no(g) or some term h ∈ B0 is defined accordingly, using

the same symbols ≺, ≼, and =.

4 This condition will be useful later; all ψ-terms involved in our assignment will satisfy this condition.

688 Derivation lengths classification of Gödel’s T

We are going to use the relations ≺, ≼, and = also when comparing expressions
containing the functions no and Fi, i < ω. Clearly, for expressions of the form Fi(f) to
make sense we must have f ≺ ω. 3

Notice that this definition implies that

no(h) = h for every h ∈ ot such that h ≺ ω,
0 ≺ no(xi) ≼ x0 ≺ ω, and h ≺ ε0 for every h ∈ ot.

Propositions 2.2 and 2.3 now generalize to ot-terms and their norms using the above
generalized comparison relations.

Definition 2.8 Let f⃗ , g⃗ ∈ O<ω. We define

f⃗ ≺ g⃗ :⇐⇒ f0 ≺ g0 & ∀i > 0 fi ≼ gi
and

f⃗ ≼ g⃗ :⇐⇒ ∀i fi ≼ gi.
Equality is componentwise equality in the sense of the previous definition.

Thus, f⃗ is of bounded norm if no(fi) ≼ no(f0) for every i. 3

Note that all comparison relations defined in this subsection are transitive, but in
general not total. We conjecture that there is a way to make the comparison relations
introduced here effective; however, as we do not need such effectiveness in order to achieve
our results, we stay with the above elegant comparison notion.

We now adapt the class C, introduced in [8] as domain of the operators δr. Our
version is variable-specific, depending on the abstraction variable, so we will introduce
classes Cx⃗ serving as domains for δx⃗. The classes Ci and C defined here comprise the
union of all Cx⃗i and Cx⃗, respectively, and will become the general domain of ordinal vectors
used in this article. We will make use of C-vectors which are not of bounded norm, namely
when defining δx⃗ in terms of partial operators δx⃗i . However, the vectors we are going to
assign to terms of T′ will always be C-vectors of bounded norm.

Definition 2.9 For every x⃗σ ∈ O<ω, corresponding to some variable Xσ ∈ V, we define
sets Cx⃗i ⊆ ot for i < ω by simultaneous induction:

• 1 ∈ Cx⃗i for all i.
• ω ∈ Cx⃗i for i ≥ 1.
• yρi ∈ Cx⃗i for i ≤ lv(ρ) where Y ρ ∈ V.
• If f, g ∈ Cx⃗i , then f + g ∈ Cx⃗i for all i.
• If f ∈ Cx⃗i+1 and g ∈ Cx⃗i , then 2f · g ∈ Cx⃗i for i ≥ 1.
• If f ∈ Cx⃗1 and g ∈ Cx⃗0 with no(f) ≼ F2(g), then ψ(ω · f + g) ∈ Cx⃗0 .
• If h ∈ Cx⃗0 is x-free, then h ∈ Cx⃗i for i ≥ 1.

The class Cx⃗ ⊆ O<ω is defined to consist of all h⃗ such that hi ∈ Cx⃗i for all i ≤ lv(⃗h).
Classes Ci and C are defined in the same way as Cx⃗i and Cx⃗ with the only difference

that the condition of being x-free in the last clause defining the classes Cx⃗i is dropped. 3

It is easy to see that the sets of closed Cx⃗-vectors, closed C-vectors, and B-vectors
coincide. Notice that if h ∈ Cx⃗i , then it does not contain any variable xj such that j < i,
cf. Lemma 2.7 of [8]. Notice further that the class Cx⃗ is closed under substitution with
x-free Cx⃗-vectors, cf. Lemma 2.9 of [8]. We obviously have Cx⃗i ⊆ Ci and Cx⃗ ⊆ C, and C
is closed under substitution with C-vectors.

The Infinity Project 689

2.3 The operator 2

We now define the operator 2 and show its basic properties. The definition originates
from Howard’s [8] and was used by Schütte (see [11]) for an analysis of GTL which in
turn later served as starting point for Weiermann’s [15] with a refinement for vector level
0 that enabled a derivation lengths classification of Gödel’s T in the combinatory logic
variant. The modification of the 0-th level has two important effects: firstly, it saves one
ω-power, and secondly, by using the collapsing function ψ we obtain an assignment of
natural numbers to terms in T′ instead of ordinal terms below ε0.

Definition 2.10 Let f⃗ , g⃗ ∈ O<ω be such that m := lv(f⃗) > lv(g⃗) =: n. We define5

(f⃗ 2 g⃗)i :=

ψ(ω · (f⃗ 2 g⃗)1 + f0 + g0 + n) if i = 0,

2(f⃗ 2 g⃗)i+1 · (fi + gi) if 1 ≤ i ≤ n,
fi if n < i ≤ m,

to obtain the vector f⃗ 2 g⃗ of level m. For i ≤ m we define f⃗ 2 g⃗ ↾i to be the vector of
level i whose components are (f⃗ 2 g⃗)j for j = 0, . . . , i. 3

Lemma 2.11 Let f⃗ , g⃗ ∈ O<ω be such that m := lv(f⃗) > lv(g⃗) =: n and let k ∈ [1,m].
Suppose expressions f, g ≺ ω satisfy no(fi) ≼ f for k ≤ i ≤ m and no(gi) ≼ g for
k ≤ i ≤ n (in the sense explained at the end of Definition 2.7). Then we have

no
(
(f⃗ 2 g⃗)i

)
≼ F2(f + g + n)

for k ≤ i ≤ m.

Proof. The proof is given in the appendix. �
By the above lemma it follows that B is closed under 2, as well as are Cx⃗ and C,

cf. Lemma 2.8 of [8]. If f1 + g1 ≻ 0 in the case lv(g⃗) > 0, then, due to Proposition 2.3,
part (4), f⃗ 2 g⃗ is of bounded norm. We therefore have the following:

Corollary 2.12 The restriction of 2 to C-vectors maintains bounded norm. �
We now provide several lemmas which establish crucial properties of 2 and are

adapted from [8], extended to work for component 0.

Lemma 2.13 Let a⃗, b⃗ ∈ C such that m := lv(⃗a) > lv(⃗b). Then we have

a⃗+ b⃗ ≼ a⃗2 b⃗.

Proof. By induction on m ·− i it is easily shown that ai + bi ≼ (⃗a2 b⃗)i. �

Lemma 2.14 Let a⃗, b⃗, c⃗ ∈ C.
(1) Suppose m := lv(⃗a) = lv(⃗b) > lv(c⃗) =: n and let i ∈ [1,m].

If aj ≼ bj for i ≤ j ≤ m, then

(⃗a2 c⃗)i ≼ (⃗b2 c⃗)i,

where “≺” holds if additionally ak ≺ bk for some k ∈ [i, n+ 1].

5 Compared to [8] we have chosen an asymmetric (non-commutative) definition in order to more
directly fit the intended application of 2 and facilitate the syntactic fit with our version of C, e.g.
avoiding occurrences of 0 in the parse trees of components of f⃗ 2 g⃗ for f⃗ , g⃗ ∈ C.

690 Derivation lengths classification of Gödel’s T

If the vectors a⃗, b⃗, and c⃗ are of bounded norm and a⃗ ≼ b⃗, then we have

a⃗2 c⃗ ≼ b⃗2 c⃗,

where “≺” holds if a⃗ ≺ b⃗.
(2) Suppose lv(⃗a) > lv(⃗b), lv(c⃗) =: n and let i ∈ [1, n].

If bj ≼ cj for i ≤ j ≤ n, then

(⃗a2 b⃗)i ≼ (⃗a2 c⃗)i,

where “≺” holds if additionally bk ≺ ck for some k ∈ [i, n].
If the vectors a⃗, b⃗, and c⃗ are of bounded norm and b⃗ ≼ c⃗, then we have

a⃗2 b⃗ ≼ a⃗2 c⃗,

where “≺” holds if b⃗ ≺ c⃗.

Proof. The proof of part 2.14 is by straightforward induction on m ·− i for the claims
concerning components i, 1 ≤ i ≤ m. The claim for component 0 then follows by straight-
forward application of Proposition 2.3, part (3), and Lemma 2.11, whose assumptions are
satisfied since we have assumed bounded norms. The proof of part 2.14 is analogous. �

Lemma 2.15 Let a⃗, b⃗, c⃗, d⃗ ∈ C be such that m := lv(⃗a) = lv(⃗b) = lv(c⃗) > lv(d⃗) =: n.
(1) If ai + bi ≼ ci for 1 ≤ i ≤ n+ 1, then

(⃗a2 d⃗)i + (⃗b2 d⃗)i ≺ (c⃗2 d⃗)i

for 1 ≤ i ≤ n.
(2) If no(ai) ≼ no(bi) for 1 ≤ i ≤ m, then

no((⃗a2 d⃗)i) ≼ F3

(
no((⃗b2 d⃗)i) + n

)
for 1 ≤ i ≤ m.

(3) If ai + bi ≺ ci and no(ai), no(bi) ≼ no(ci) for i ≤ m, then

(⃗a2 d⃗)i + (⃗b2 d⃗)i ≺ (c⃗2 d⃗)i

for i ≤ m.

Proof. For the detailed proof the reader is referred to the appendix. �

The next lemma is an adaptation of the crucial Lemma 2.6 of [8]. It is the key to the
treatment of the combinatorial complexity of the combinator S, cf. [11, 15], in part of
the recursor R, and, when combined with the operator δ, of β-reduction. Regarding the
latter property, which is essential in Howard’s approach, notice the correspondence of the
factor 2 occurring in Definition 2.18 in the case of δx⃗i h where h ≡ 2f · g is not x-free (this
factor is in fact only necessary for the highest vector component), with the factor 2 in the
assumption 2an+1+bn+1 ≺ cn+1 of the following lemma. We regard this correspondence as
crucial in order to understand why the operators 2 and δx⃗ model β-reduction. Consider,
as an instructive example, β-reduction of terms of the form (λX.AB)D.

Lemma 2.16 Let a⃗, b⃗, c⃗, d⃗ ∈ C and n ∈ N be such that lv(⃗a) = lv(⃗b) = lv(c⃗) = n+1 and
lv(d⃗) = n. If ai + bi ≺ ci for 1 ≤ i ≤ n and 2an+1 + bn+1 ≺ cn+1, then setting

e⃗ := (⃗a2 d⃗)2 (⃗b2 d⃗↾n)

The Infinity Project 691

we have
2ei ≺ (c⃗2 d⃗)i

for 1 ≤ i ≤ n+ 1.

Proof. See the appendix for a proof in full detail. �

For the treatment of R-reductions we will need estimations of norms of the type stated
in the following lemma.

Lemma 2.17 Let a⃗, b⃗, c⃗, d⃗ ∈ C be of bounded norm and n ∈ N such that lv(⃗a) = lv(c⃗) =

n+ 1 > lv(⃗b), lv(d⃗). Setting
e⃗ := (⃗a2 b⃗)2 (c⃗2 d⃗↾n),

we have
no(ei) ≺ F3(a0 + b0 + c0 + d0 + n)

for 1 ≤ i ≤ n+ 1.

Proof. The proof is given in the appendix. �

2.4 The operators δx⃗

Here we introduce our refinement of the operators δr —see [8]— which provide the key
to appropriate assignments of ordinal vectors to abstraction terms in order to allow for
the treatment of β-contraction. Our modification of δ essentially concerns vector level
zero, which ranges over terms for natural numbers instead of ordinals below ε0 as in the
original version. This is made possible by application of the collapsing function ψ. Our
refinement is formulated on the basis of the Cx⃗-classes introduced earlier in order to make
the treatment of general R-reductions possible.

Definition 2.18 In order to define δx⃗ : Cx⃗ → Cx⃗, let h⃗ ∈ Cx⃗ be of level m := lv(⃗h) and
set n := lv(x⃗) + 1. Then δx⃗h⃗ is a vector of level l := max{n,m}, defined componentwise
by

(δx⃗h⃗)j :=

Sx⃗(⃗h) · (δx⃗0h0)0 if j = 0,∑m

i=0(δ
x⃗
i hi)j if 0 < j ≤ n,

hj if n < j ≤ l,

where Sx⃗ will be defined below and the δx⃗i : Cx⃗i → Cx⃗ are defined recursively as follows.
Let h ∈ Cx⃗i . Then δx⃗i h is a Cx⃗-vector of level n, defined componentwise as follows. If h is
x-free, we set

(δx⃗i h)j :=

{
1 if i ̸= j ≤ n,
h+ 1 if i = j ≤ n.

The following cases apply if h is not x-free.
• h ≡ xσi :

δx⃗i h := 1⃗.

• h ≡ f + g where f, g ∈ Cx⃗i :

δx⃗i h := δx⃗i f + δx⃗i g + 1⃗.

692 Derivation lengths classification of Gödel’s T

• h ≡ 2f · g where f ∈ Cx⃗i+1, g ∈ Cx⃗i , and i > 0:

δx⃗i h := 2 δx⃗i+1f + δx⃗i g + 1⃗.

• h ≡ ψ(ω · f + g) where f ∈ Cx⃗1 , g ∈ Cx⃗0 and i = 0:

(δx⃗i h)j :=

{
ψ(ω · f{x⃗ := 1⃗}+ (δx⃗0g)0) if j = 0,

(δx⃗1f)j + (δx⃗0g)j if 1 ≤ j ≤ n.

The norm controlling factor Sx⃗(⃗h) ∈ N is defined by

Sx⃗(⃗h) := 2n ·
m∑
i=0

szx⃗(hi),

where the auxiliary szx⃗(h) for h ∈ ot is defined by
• szx⃗(h) := 1 if h is x-free or h ≡ xi for some i;
• szx⃗(h) := szx⃗(f) + szx⃗(g) + 1 if h is not x-free and either of a form f + g or
ψ(ω · f + g);
• szx⃗(h) := 2szx⃗(f) + szx⃗(g) + 1 if h is not x-free and of a form 2f · g. 3

Notice that δx⃗h⃗ does not contain any component of x⃗. In order to see that the above
definition is sound, we have to verify that the vectors δx⃗i h are indeed Cx⃗-vectors. We
have the following:

Lemma 2.19 For h ∈ Cx⃗0 we have

h{x⃗ := 1⃗} ≺ (δx⃗0h)0.

Proof. The proof is by induction on the buildup of h. The interesting case is where h
is of the form ψ(ω · f + g) and not x-free. We then use the induction hypothesis for g,
obtaining

h{x⃗ := 1⃗} ≡ ψ(ω · f{x⃗ := 1⃗}+ g{x⃗ := 1⃗})

≺ ψ(ω · f{x⃗ := 1⃗}+ (δx⃗0g)0)

≡ (δx⃗0h)0. �

The above lemma shows that for terms h ≡ ψ(ω · f + g) ∈ Cx⃗0 we have

no(f{x⃗ := 1⃗}) ≼ F2((δ
x⃗
0g)0),

using that no(f{x⃗ := 1⃗}) ≼ F2(g{x⃗ := 1⃗}). It is then easy to verify that δx⃗i h ∈ Cx⃗ for
h ∈ Cx⃗i and hence δx⃗h⃗ ∈ Cx⃗ for h⃗ ∈ Cx⃗.

We call a substitution {y⃗ := g⃗} an x-free substitution if y⃗ ̸≡ x⃗ and g⃗ is x-free.
This notion facilitates an elegant statement of the next lemma, which corresponds to
Lemma 2.10 and Corollary of [8].

Lemma 2.20 The operator δx⃗ commutes with x-free substitution: for f⃗ , h⃗ ∈ Cx⃗, f⃗ x-free,
and y⃗ ̸≡ x⃗, we have

(δx⃗h⃗){y⃗ := f⃗} = δx⃗(⃗h{y⃗ := f⃗}).

Proof. Notice that szx⃗ and hence Sx⃗ are invariant under x-free substitution. It is then
straightforward to verify the commutativity of the partial operators δx⃗i with x-free sub-
stitution and finally conclude the lemma. �

The Infinity Project 693

Lemma 2.21 For any variable vector x⃗ the operator δx⃗ preserves bounded norm: for
every h⃗ ∈ Cx⃗ of bounded norm, δx⃗h⃗ is of bounded norm.

Proof. This is part 5.2 of Lemma 5.2, which is stated and proved in the appendix. �

We conclude this section establishing the interplay of the operators 2 and δx⃗, corre-
sponding to Lemma 2.11 of [8] and its Corollary.

Lemma 2.22 Let h⃗ ∈ Cx⃗. We have

h⃗ ≺ δx⃗h⃗2 x⃗.

Proof. The proof is given in the appendix. �

3 Assignment of ordinal vectors to terms

3.1 Assignment derivations

We are now prepared to assign ordinal vectors to terms of T′. Recall, for illustrative
reasons, Definition 1.6 and the notion of derivation along an inductive definition. Def-
inition 1.9 provides canonical derivations of w(F, nF) for every F ∈ T′ along a given
reduction sequence. With the following inductive definition, which is independent of
Subsection 1.6, we refine the notion of derivation towards assignment derivation, carrying
the ordinal vectors assigned to terms as labels.

Definition 3.1 We define assignment derivations inductively for terms Aσ ∈ T′, which
assign vectors [[A]] of level lv(σ) to A. The notation [[A]] is therefore only determined
uniquely in the context of a fixed assignment derivation.

Assignment to prime terms of T′. If A is a variable or constant, then it has a unique
assignment [[A]] as defined below, and its assignment derivation is a single-node tree which
is labeled with (A, [[A]]).

[[Xσ]] := x⃗σ.

[[0]] := ⟨1⟩.
[[S]] := ⟨1, 1⟩.
[[Dτ]] := ⟨1, . . . , 1⟩ of level lv(τ) + 1.

[[Rτ]] := ⟨2, 1, . . . , 1, ω⟩ of level lv(τ) + 2.

Terms formed by application. For assignment derivations R of (Bστ , [[B]]) and S of
(Cσ, [[C]]), the tree with direct subtrees R and S is a derivation of (BC, [[BC]]), where
[[BC]] is defined by

[[BC]] := [[B]]2 [[C]]↾lv(τ) .

For an assignment derivation R of (t, [[t]]), the tree with direct subtree R is an as-
signment derivation of (Rt, [[Rt]]) where [[Rtτ]] of level lv(τ) + 2 is defined by

[[Rtτ]] := ⟨[[t]]0, 1, . . . , 1, [[t]]0⟩.

Terms formed by abstraction. For assignment derivations Ri of (Gi, [[Gi]]), i ≤ m, where
G0 �α · · · �α Gm =: G such that X does not occur in any subterm of G0 of a form Rt

694 Derivation lengths classification of Gödel’s T

and [[G0]] ≻ · · · ≻ [[Gm]], the tree with direct subtrees R0, . . . ,Rm in this order is an
assignment derivation of (λX.G, [[λX.G]]), the label of its root, where

[[λX.G]] := δx⃗[[G0]] + [[Gm]]{x⃗ := 1⃗}.

Whenever a particular assignment derivation is clear from the context of argumen-
tation, we will use the notation [[·]] as if it were an operator returning a unique ordinal
vector.

For a term A ∈ T we define the canonical assignment for A by choosing for every
subterm of a form λX.G the assignment [[λX.G]] := δx⃗[[G]] + [[G]]{x⃗ := 1⃗}. This results
in a unique assignment [[A]] to the term A. We call the vector a⃗ resulting from [[A]] by
replacing every variable by 1 the closed canonical assignment for A. 3

It is easy to verify that all vectors assigned to terms are C-vectors of bounded
norm, cf. Corollary 2.12 and Lemma 2.21. Notice also that in case of an assignment
[[λX.G]] := δx⃗[[G0]]+ [[Gm]]{x⃗ := 1⃗} the vector [[G0]] even is a Cx⃗-vector, as is required for
the application of the operator δx⃗. This latter property [[G0]] ∈ Cx⃗ is guaranteed by the
fact that the variable X corresponding to x⃗ does not occur in any subterm of the form
Rt of G0. This is crucial for the compatibility of the original treatment of β-reductions
with unrestricted R-reductions and is one of the two reasons why we need this form of
non-unique ordinal assignment that depends on the reduction history of terms in a given
reduction sequence, as explained in greater detail in Subsection 1.6. The other reason is
the same as in [8]: the operators δx⃗ are in general not monotonically increasing6 (see also
[8], p. 456) and therefore do not allow for a direct treatment of the unrestricted ξ-rule.

Lemma 3.2 Assignment derivations are invariant modulo α-congruence.

Proof. Straightforward. �

The following lemma corresponds to Lemma 3.1 of [8]; cf. also Definition 1.8.

Lemma 3.3 The assignment [[·]] commutes with substitution. Suppose that F,H ∈ T′

satisfy FV(F)∩BV(H) = ∅ and let Y be a variable of the same type as F . Given assign-
ment derivations of (H, [[H]]) and (F, [[F]]), there is a canonical assignment derivation of
(H{Y := F}, [[H]]{y⃗ := [[F]]}), defined straightforwardly in the proof.

Proof. The proof is by induction along the definition of an assignment derivation of
(H, [[H]]). The interesting case is where H is an abstraction term, say λX.G, whose
assignment

[[H]] = δx⃗[[G0]] + [[Gm]]{x⃗ := 1⃗}
is based on assignments [[G0]], . . . , [[Gm]] where G0 �α · · · �α Gm = G such that X does
not occur in any subterm of G0 of a form Rt and [[G0]] ≻ · · · ≻ [[Gm]].

Since the case Y = X is trivial, we assume Y ̸= X. By assumption we have X ̸∈
FV(F), and according to Lemma 3.2 we may further assume without loss of generality
that FV(F) ∩ BV(G0) = ∅. The induction hypothesis yields assignment derivations of
(Gi{Y := F}, [[Gi]]{y⃗ := [[F]]}) for i ≤ m, and we have

[[G0]]{y⃗ := [[F]]} ≻ · · · ≻ [[Gm]]{y⃗ := [[F]]}.

6 Consider for example variables x, y of type 00, variables z, u of type 0 and compute the canonical
assignments to λx.((λz.x(yz))u)� λx.(x(yu)). Setting e.g. y := λw0.w0 and u := y(yv0) we see that δx⃗

is not even weakly monotonically increasing.

The Infinity Project 695

Clearly,
([[Gm]]{x⃗ := 1⃗}){y⃗ := [[F]]} = ([[Gm]]{y⃗ := [[F]]}){x⃗ := 1⃗},

and by Lemma 2.20 we have

(δx⃗[[G0]]){y⃗ := [[F]]} = δx⃗([[G0]]{y⃗ := [[F]]}).

We have
G0{Y := F}�α · · ·�α Gm{Y := F},

andX does not occur in any subterm of G0{Y := F} of a form Rt. The assignment deriva-
tion of (H{Y := F}, [[H]]{y⃗ := [[F]]}) can therefore be assembled from the assignment
derivations of the (Gi{Y := F}, [[Gi]]{y⃗ := [[F]]}). �

Definition 3.4 By recursion on lh(A) we define an algorithm which, given two terms
A,B ∈ T′ such that A�B and given an assignment derivation for A, returns an assign-
ment derivation for B.

Reductions:
• (D0), (DS), (R), and (R0) are trivial, proceeding in the same way as in the

following case.

• (RS) RStFG � Ft(RtFG) with [[RStFG]] given via assignments [[t]], [[F]], [[G]].
Then

[[Ft(RtFG)]]

is built up from the same assignments [[t]], [[F]], [[G]].

• (β) (λX.G)H � G{X := H} where BV(λX.G) ∩ FV(H) = ∅ with [[(λX.G)H]]
given via assignments [[λX.G]], [[H]] where the former is in turn given via as-
signments [[G0]], . . . , [[Gm]] from the assignment derivation of λX.G, whence
G0 �α · · ·�α Gm = G. By Lemma 3.3 we obtain an assignment

[[Gm]]{x⃗ := [[H]]}

to the term G{X := H} with the canonical assignment derivation.

Rules:
• (Appr), (Appl), and (AppR) are handled in the same straightforward manner,

e.g. in the case where Rs�Rt is derived from s� t and the assignment [[Rs]] given
via an assignment [[s]] to s, we let [[t]] be the assignment provided by the algorithm
and build [[Rt]] up from [[t]].

• (ξ) λX.F � λX.G derived from F � G, with [[λX.F]] given by means of as-
signments [[F0]], . . . , [[Fm]] from the assignment derivation of λX.F , whence
F0 �α · · ·�α Fm = F . We then choose the assignment

[[λX.G]] := δx⃗[[F0]] + [[G]]{x⃗ := 1⃗},

where [[G]] is the assignment to G provided by the algorithm. 3

The soundness of the above definition hinges on the verification that in the clause
for (ξ) we indeed have [[Fm]] ≻ [[G]]. This is accomplished by our Main Theorem.

696 Derivation lengths classification of Gödel’s T

3.2 Main theorem

Theorem 3.5 For A,B ∈ T′ such that A�B and a given assignment derivation assigning
[[A]] to A, the assignment [[B]] to B that is provided by the algorithm specified in Defini-
tion 3.4 satisfies

[[A]] ≻ [[B]].

Proof. The proof is by induction on lh(A). We use the terminology of Definition 3.4.

(D0), (DS), (R), and (R0) are handled straightforwardly using Lemma 2.13.

(RS) RStFG � Ft(RtFG) where R ≡ Rτ and n := lv(τ). Suppose [[RStFG]] is given
via assignments [[t]], [[F]], and [[G]]. We introduce the following abbreviations:

a⃗ := [[Ft]]

b⃗ := [[RtF]]

c⃗ := [[RStF]]

d⃗ := [[G]]

e⃗ := (⃗a2 d⃗)2 (⃗b2 d⃗↾n)
f⃗ := [[F]]

t⃗ := [[t]].

Notice that we have a⃗ = f⃗ 2 t⃗ and

[[Rt]] = ⟨t0, 1, . . . , 1, t0⟩
≺ ⟨ψ(ω + t0 + 1), 1, . . . , 1, ψ(ω + t0 + 1)⟩

= [[RSt]],

hence bi = ([[Rt]]2 f⃗)i ≺ ([[RSt]]2 f⃗)i = ci for i ≤ n + 1 by Lemma 2.14, part 2.14. We
further have [[RtFG]] = b⃗2 d⃗↾n, and

[[Ft(RtFG)]] = a⃗2 (⃗b2 d⃗↾n)↾n≺ e⃗

by part 2.14 of Lemma 2.14 since a⃗ ≺ a⃗2 d⃗ by Lemma 2.13. We obtain

2ei ≺ (c⃗2 d⃗)i

for 1 ≤ i ≤ n + 1 by an application of Lemma 2.16, whose assumptions ai + bi ≺ ci for
1 ≤ i ≤ n and 2an+1 + bn+1 ≺ cn+1 are easily verified. As [[RStFG]] = c⃗2 d⃗↾n, we obtain

2[[Ft(RtFG)]]i ≺ [[RStFG]]i

for 1 ≤ i ≤ n, and in the case n > 0 by Lemma 2.13 we thus have

(3.1) [[Ft(RtFG)]]1 + f1 + [[RtFG]]1 ≺ [[RStFG]]1.

It remains to prove that

(3.2) [[Ft(RtFG)]]0 ≺ [[RStFG]]0.

The Infinity Project 697

We begin with the following estimation:

b0 + f0 + t0 = ψ(ω · b1 + t0 + f0 + n+ 1) + f0 + t0

≼ ψ(ω · b1 + 2t0 + 2f0 + n+ 1)

≺ ψ(ω · c1 + ψ(ω + t0 + 1) + f0 + n+ 1)

= c0,

which follows by Proposition 2.3, part (3), since b1 ≺ c1 and no(b1) ≼ F2(t0 + f0 +n+1)
using Lemma 2.11. In the case n = 0 it is easy to verify (3.2). Let us therefore assume
that n > 0. Using parts (2) and (3) of Proposition 2.3, from (3.1) we then obtain

[[Ft(RtFG)]]0 = ψ(ω · [[Ft(RtFG)]]1 + a0 + [[RtFG]]0 + n)

= ψ(ω · [[Ft(RtFG)]]1 + ψ(ω · f1 + f0 + t0)+

ψ(ω · [[RtFG]]1 + b0 + d0 + n) + n)

≼ ψ(ω · ([[Ft(RtFG)]]1 + f1 + [[RtFG]]1) + b0 + f0 + d0 + t0 + 2n)

≺ ψ(ω · [[RStFG]]1 + c0 + d0 + n)

= [[RStFG]]0,

since using Lemma 2.17 we may estimate

no([[Ft(RtFG)]]1 + f1 + [[RtFG]]1) ≼ F3(f0 + t0 + b0 + d0 + n)+

F2(f0 + t0) + F2(b0 + d0 + n)

≺ Φ(c0 + d0 + n).

(β)(λX.G)H�G{X := H}. With the notations of Definition 3.4, the vector assigned
to λX.G is δx⃗[[G0]] + [[G]]{x⃗ := 1⃗}. By Lemma 2.22 we have

[[G0]] ≺ δx⃗[[G0]]2 x⃗,

hence

[[λX.G]]2 [[H]] ≻ δx⃗[[G0]]2 [[H]] by part (i) of Lemma 2.14

≻ [[G0]]{x⃗ := [[H]]}.
We have [[G0]] ≻ · · · ≻ [[Gm]]; hence

[[G0]]{x⃗ := [[H]]} ≻ · · · ≻ [[Gm]]{x⃗ := [[H]]},
and by Lemma 3.3 the [[Gi]]{x⃗ := [[H]]} are vectors assigned to Gi{X := H} for i ≤ m.

(Appr) FH � GH, derived from F � G. By the induction hypothesis we have
[[F]] ≻ [[G]], hence part (i) of Lemma 2.14 yields [[FH]] ≻ [[GH]].

(Appl) FG � FH, derived from G � H. From the induction hypothesis it follows
that [[G]] ≻ [[H]], hence part (ii) of Lemma 2.14 yields [[FG]] ≻ [[FH]].

(AppR) Rs � Rt, derived from s� t. By the induction hypothesis we have [[s]] ≻ [[t]],
so we immediately obtain [[Rs]] ≻ [[Rt]].

(ξ)λX.F �λX.G, derived from F �G. Then [[λX.F]] ≻ [[λX.G]] follows directly from
the induction hypothesis, which yields [[Fm]] ≻ [[G]]. �

698 Derivation lengths classification of Gödel’s T

Corollary 3.6 Let A ∈ T and a⃗ be its closed canonical assignment. Then a0 ∈ N is an
upper bound of the height of the reduction tree of A. We obtain strong normalization for
λβR and λβR′.

Proof. Regarding the relationships between reduction sequences of T-terms in λβR and
T′-terms in λβR′, recall the remarks stated in Subsection 1.4. The corollary then follows
from Theorem 3.5. �

3.3 Tying in with Subsection 1.6

For illustrative reasons we establish the link of our assignment with Definition 1.9.
Let F0 �α · · · �α Fn be a λβR′-reduction sequence with F0 ∈ T and let p be a node

in Fn with label A. Suppose that assignment derivations of (B, [[B]]) have been specified
for all terms B labeled to nodes in the parse trees of Fi for i = 0, . . . , n− 1 and to nodes
descending from p in the parse tree of Fn. In case A is a variable or constant we are done
with (A, [[A]]), and if Aτ ≡ BC, we have (B, [[B]]) and (C, [[C]]) for the labels B and C of
the direct child nodes of p and accordingly choose (A, [[B]]2 [[C]] ↾lv(τ)). The interesting
case is where A = λX.G. We may assume that F0 �α · · · �α Fn is p-nice, according to
Lemma 3.2. Let (G0, . . . , Gm), where Gm = G, be the associated reduction sequence
with respect to F0 �α · · · �α Fn and p according to Definition 1.5, so using Lemma 3.3
we obtain assignment derivations labeled with (Gi, [[Gi]]) for i ≤ m. If we can show that

[[G0]] ≻ · · · ≻ [[Gm]],

then we obtain an assignment derivation of (A, δx⃗[[G0]] + [[Gm]]{x⃗ := 1⃗}). We are going
to show that the assignments [[G1]], . . . , [[Gm]] are obtained by consecutive application of
the algorithm given in Definition 3.4, starting from [[G0]]. Recalling our description of
how the parse tree of Fi+1 is obtained from the parse tree of Fi in 1.6.2, we see that for
corresponding terms A in the parse tree of Fi and B in the parse tree of Fi+1 such that
A � B, the assignment derivation of [[B]] is obtained from the assignment derivation of
[[A]] by the algorithm given in Definition 3.4. Such terms A and B are either the working
redex itself and its reduct, corresponding to a D-, R-, or β-reduction, or corresponding
terms on the paths leading from the roots of the parse trees of Fi and Fi+1 to the working
redex and its reduct, respectively, corresponding to an App- or ξ-rule. Notice that the
claimed property [[G0]] ≻ · · · ≻ [[Gm]] for the associated reduction sequence mentioned
above then follows after observing that the algorithm in Definition 3.4 commutes with
substitution in the sense of Lemma 3.3 and checking the possible cases as outlined in
Definition 1.1.

4 Derivation lengths classification

We are going to show that the upper bounds for reduction sequences in Gödel’s GT and
its fragments Tn are optimal. The set of terms Tn in the fragment Tn, n ∈ N, is the
restriction of T to recursors of type level ≤ n + 2. From our remarks in Subsection 1.4
it follows that we can discuss term reductions in T using our results regarding reduction
sequences in T′ via the mutual embeddings of reduction sequences in T and T′.

The Infinity Project 699

Definition 4.1 For G ∈ T let L(G) denote the maximum type level of subterms of G,
and let R(G) denote the maximum type level of recursors occurring in G. We further
define

DGT(m) := max{k | ∃G1, . . . , Gk ∈ T G1 � · · ·�Gk & lh(G1),L(G1) ≤ m}

DTn(m) := max{k | ∃G1, . . . , Gk ∈ Tn G1 � · · ·�Gk & lh(G1),L(G1) ≤ m}.

We are going to use the following common notation for exponential expressions. We
set ω0 := 1 and ωi+1 := ωωi , 20(α) := α, and 2i+1(α) := 22i(α) where α < ε0.

Corollary 4.2 Corollary 3.6 gives rise to the following derivation lengths classifications.
(1) The functions definable in GT, i.e., the provably recursive functions of PA,

comprise the < ε0-recursive functions. The derivation lengths function DGT
is ε0-recursive.

(2) The functions definable in Tn, i.e., the provably recursive functions of IΣn+1,
comprise the <ωn+2-recursive functions. The derivation lengths function DTn is
ωn+2-recursive.

Proof. We make use of the well-known fact that PA has a functional interpretation in GT
(see [6, 11, 12]) and the fact that the fragments IΣn+1 have functional interpretations
in the Tn (see [9]). By results from [3] the corollary then follows from Corollary 3.6. The
detailed argumentation is given below. It is based on preparations worked out in the
appendix (5.4), which we will use in the form of citations of Lemma 5.8, whose purpose
it is to extract bounds on the ordinal vectors [[G]] assigned to terms G of T which are
expressed in terms of maximum type level L(G) and length lh(G) of G. Notice that we
only need to consider the (unique) canonical assignment for the terms of T.

Let C0 ∈ T be closed. There is an m ∈ N such that

C �α · · ·�α m :≡ S(m)0.

We define
α⃗(C) := m.

Theorem 3.5 shows that [[C]]0 is an upper bound for α⃗(C) and the length of any reduction
sequence starting from C, since we have

m < [[m]]0.

Note that
[[m]]0 ≤ ψ(ω · (m+ 1) +m+ 2) < ψ(ω2 +m)

using Proposition 2.3, parts (2) and (3).
Let F 00 ∈ Tn be closed. F represents the function

m 7→ α⃗(Fm),

and for any m ∈ N we have

DF (m), α⃗(Fm) ≤ [[Fm]]0

where
DF (m) := max{k | ∃G1, . . . , Gk ∈ T Fm ≡ G1 � · · ·�Gk}.

We have

[[Fm]]0 = ψ(ω · [[F]]1 + [[F]]0 + [[m]]0) < ψ(ω · ([[F]]1 + ω2) + [[F]]0 +m),

700 Derivation lengths classification of Gödel’s T

and the function
m 7→ ψ(ω · ([[F]]1 + ω2) + [[F]]0︸ ︷︷ ︸

<ωn+2 by Lemma 5.8

+m)

is <ωn+2-recursive (cf. [3]), implying that also DF and m 7→ α⃗(Fm) are <ωn+2-recursive.
We therefore obtain that the functions definable in Tn are < ωn+2-recursive and the
functions definable in GT are <ε0-recursive.

Now let some m ∈ N and a term Gσ ∈ T with lh(G), L(G) ≤ m and R(G) ≤ n + 2
be given. Let g⃗ be the closed canonical assignment to the term G. Then, according to
Lemma 5.8,

g0 < ψ(ω · 2n+1(ω · 2m+1(2(m+ 1 + lh(G))))︸ ︷︷ ︸
<ωn+2

)

< ψ(ωn+2 +m) by Proposition 2.3, part (3).

This implies DTn(m) < ψ(ωn+2 + m), and hence DTn is an ωn+2-recursive function.
Omitting the restriction concerning R(G) it similarly follows that DGT is an ε0-recursive
function. �

5 Appendix: Proofs omitted in Sections 2 and 4

5.1 Proofs in Subsection 2.1

We give the detailed proofs of the two propositions regarding the ψ-function.

Proof of Proposition 2.2. Part (1) is an immediate consequence of the definitions of ⊕
and no. For part (ii), suppose

α = ωα1 + · · ·+ ωαn > α1 ≥ · · · ≥ αn and

β = ωβ1 + · · ·+ ωβm > β1 ≥ · · · ≥ βm,
where n, m ≥ 1. By definition of ⊗ we have

no(α⊗ β) = nm+m

n∑
i=1

no(αi) + n

m∑
j=1

no(βj)

≤ nm+m

n∑
i=1

no(αi) + n

m∑
j=1

no(βj) +

n∑
i=1

no(αi) ·
m∑
j=1

no(βj)

= no(α) · no(β).
This estimation of the norm of the natural product holds for all α and β. Equality holds
if and only if α < ω or β < ω. We further have

no(α) + no(β)− 1 = n+m− 1 +

n∑
i=1

no(αi) +

m∑
j=1

no(βj)

≤ nm+m

n∑
i=1

no(αi) + n

m∑
j=1

no(βj)

= no(α⊗ β).

The Infinity Project 701

We next prove (3). Since the case α < ω is trivial, we may assume that α ≥ ω, say,
α = ω · α0 +m where 0 < α0 ≤ α and m < ω. Let

α0 = ωα1 + · · ·+ ωαk + · · ·+ ωαn > α1 ≥ · · · ≥ αk ≥ ω > αk+1 ≥ · · · ≥ αn

with 0 ≤ k ≤ n > 0. Then we have

ω · α0 = ωα1 + · · ·+ ωαk + ωαk+1+1 + · · ·+ ωαn+1,

which implies no(α) = no(α0) + n− k +m. By definition, 2α = ωα0 · 2m; hence

no(2α) = (no(α0) + 1) · 2m.

We obtain from these preparations

no(α) ≤ 2no(α0) +m < 2(no(α0) · 2m + 2m) = 2 · no(2α)

as well as

no(2α) = (no(α0) + 1) · 2m ≤ 2no(α0) · 2m ≤ 2no(α).

This concludes the proof of Proposition 2.2. �

Proof of Proposition 2.3. The proof of part (1) is by straightforward induction on k
and follows directly from the definition of ψ. Also part (3) immediately follows from
the Definition of ψ. For part (4) note that Φ(no(α)) = ψ(Φ(no(α))) by part (1), and
then apply part (3). For α = 0 part (2) follows immediately from part (1). In the case
α > 0 the first ≤-relation is immediate by part (1); for the second ≤-relation we argue
by induction on β:

• β = 0: Trivial.
• β > 0: By definition of ψ there exists a γ < β such that no(γ) ≤ Φ(no(β)) and
ψ(β) = ψ(γ) + 1. Therefore

ψ(α+ ψ(β)) ≤ ψ(α⊕ γ + 1) ≤ ψ(α⊕ β)

where the first ≤-relation follows from the induction hypothesis for α+1 and the
second ≤-relation is verified using part (3). If γ+1 = β we are done. Otherwise
we have α⊕ γ + 1 < α⊕ β and

no(α⊕ γ + 1) ≤ no(α) + 1 + Φ(no(β)) ≤ Φ(no(α⊕ β)),

using that α > 0. �

5.2 Proofs in Subsection 2.3

We give detailed proofs of the lemmas regarding the 2-operator.

Proof of Lemma 2.11. The proof is essentially the same as in [15]. We give the details for
the reader’s convenience, frequently using Proposition 2.2. We first show the following:

Claim For k ≤ i ≤ n, we have

(5.1) no((f⃗ 2 g⃗)i) ≺ F 2(n+1 ·−i)
0 (f + g + 1),

702 Derivation lengths classification of Gödel’s T

where n ·− i := n− i if n ≥ i, and n ·− i := 0 otherwise. The claim is shown by induction
on n ·− i. For i = n, we obtain

no((f⃗ 2 g⃗)n) = no(2fn+1 · (fn + gn))

≼ 2no(fn+1) · (no(fn) + no(gn))

≼ 2f · (f + g)

≺ 22
f+g · (f + g)

≺ 22
f+g+1

= F 2
0 (f + g + 1).

For k ≤ i < n, we have

no((f⃗ 2 g⃗)i) = no(2(f⃗ 2 g⃗)i+1 · (fi + gi))

≼ 2F
2(n+1−i)−2
0 (f+g+1) · (f + g)

= F
2(n+1−i)−1
0 (f + g + 1) · (f + g)

≺ F 2(n+1−i)
0 (f + g + 1).

Now we prove the lemma. For k, n+ 1 ≤ i ≤ m, we have

no((f⃗ 2 g⃗)i) = no(fi) ≼ f ≺ F2(f + g + n).

For k ≤ i ≤ n, we obtain

no((f⃗ 2 g⃗)i) ≺ F 2(n+1 ·−i)
0 (f + g + 1) by 5.1

≼ F 2n
0 (f + g + 1)

≼ F1(f + g + 2n)

≺ F2(f + g + n),

concluding the proof of the lemma. �

Proof of Lemma 2.15. Part (1) is adapted from [8], p. 450, and is shown here for the
reader’s convenience. We argue by induction on n+ 1 ·− i for 1 ≤ i ≤ n.

(⃗a2 d⃗)i + (⃗b2 d⃗)i

≺ 2(a⃗2 d⃗)i+1 · (ai + bi + di) + 2(⃗b2 d⃗)i+1 · (ai + bi + di)

≼ 2(a⃗2 d⃗)i+1+(⃗b2 d⃗)i+1 · (ai + bi + di)

≼ 2(c⃗2 d⃗)i+1 · (ci + di)

= (c⃗2 d⃗)i.

The Infinity Project 703

We now prove part (2). For 1 ≤ i ≤ m, we set

Ni :=

m∑
j=i

no(aj), Mi :=

m∑
j=i

no(bj), Li :=

n∑
j=i

no(dj).

Lemma 2.11 yields, for 1 ≤ i ≤ m,

(5.2) no((⃗a2 d⃗)i) ≼ F2(Ni + Li + n).

Since the case i > n is trivial, we assume in the sequel that 1 ≤ i ≤ n. By Proposition 2.2,
part (iii), we have

no((⃗b2 d⃗)i+1) ≼ 2no((⃗b2 d⃗)i).

From this we obtain, for i ≤ j ≤ n+ 1,

no((⃗b2 d⃗)j) ≼ 2n · no((⃗b2 d⃗)i).

Since no(bj) ≼ no((⃗b2 d⃗)j) for every j and no(dj) ≼ no((⃗b2 d⃗)j) for 1 ≤ j ≤ n, we get

(5.3) Mi + Li ≼ (n+ 1) · 2n+1 · no((⃗b2 d⃗)i).
Now (5.2) and (5.3) together with Ni ≼Mi yield

no((⃗a2 d⃗)i) ≼ F2(Mi + Li + n)

≼ F2((n+ 1) · 2n+1 · no((⃗b2 d⃗)i) + n)

≼ F3(no((⃗b2 d⃗)i) + n).

Finally we prove part (3). For n < i ≤ m the claim holds by assumption, and for
1 ≤ i ≤ n the claim follows by part (1). Consider the case i = 0 (the inequalities are
explained below):

(⃗a2 d⃗)0 + (⃗b2 d⃗)0

= ψ(ω · (⃗a2 d⃗)1 + a0 + d0 + n) + ψ(ω · (⃗b2 d⃗)1 + b0 + d0 + n)

≼ ψ(ω · ((⃗a2 d⃗)1 + (⃗b2 d⃗)1) + a0 + b0 + 2d0 + 2n)

≺ ψ(ω · (c⃗2 d⃗)1 + c0 + d0 + n)

= (c⃗2 d⃗)0.

The ≼-relationship follows by Proposition 2.3, parts (1) and (2). We next show that the
≺-relationship holds, making use of Proposition 2.3, part (3), and part (2) of the present
lemma:

(⃗a2 d⃗)1 + (⃗b2 d⃗)1 ≺ (c⃗2 d⃗)1

holds by assumption if n = 0, and for n > 0 this has already been shown. We obtain

ω · ((⃗a2 d⃗)1 + (⃗b2 d⃗)1) + a0 + b0 + 2d0 + 2n ≺ ω · (c⃗2 d⃗)1 + c0 + d0 + n.

Part (2) yields
no((⃗a2 d⃗)1), no((⃗b2 d⃗)1) ≼ F3(no(c⃗2 d⃗)1 + n).

From this we easily verify the second assumption of Proposition 2.3, part (3). �

Proof of Lemma 2.16. We proceed by induction on n+ 1 ·− i. If i = n+ 1, then

2ei = 2ai ≺ ci = (c⃗2 d⃗)i.

704 Derivation lengths classification of Gödel’s T

In the case i = n, we have

en = 2an+1 · (2an+1 · (an + dn) + 2bn+1 · (bn + dn))

≺ 22an+1 · (an + bn + dn) + 2an+1+bn+1 · (an + bn + dn)

≼ 22an+1+bn+1 · (an + bn + dn).

This implies
2en ≺ 2cn+1 · (cn + dn) = (c⃗2 d⃗)n.

Now let us assume that 1 ≤ i < n:

ei = 2ei+1 · (2(a⃗2 d⃗)i+1 · (ai + di) + 2(⃗b2 d⃗)i+1 · (bi + di))

≺ 2ei+1+(a⃗2 d⃗)i+1 · (ai + bi + di) + 2ei+1+(⃗b2 d⃗)i+1 · (ai + bi + di)

≼ 22ei+1 · (ci + di),

where the last ≼-relation holds since i+ 1 ≤ n and, by Lemma 2.13,

(⃗a2 d⃗)i+1 + (⃗b2 d⃗)i+1 ≼ ei+1.

Using the induction hypothesis, which allows us to estimate 2ei ≺ 22ei+1+1 · (ci + di) ≼
2(c⃗2 d⃗)i+1 · (ci + di), we finally obtain

2ei ≺ (c⃗2 d⃗)i.

This concludes the proof of the lemma. �

Proof of Lemma 2.17. For convenience we set a := a0, b := b0, c := c0, and d := d0. We
first show the following:

Claim For 1 ≤ i ≤ n, setting e := a+ b+ c+ d+ 2(n+ 1), we have

(5.4) no(ei) ≼ F 2(n+1 ·−i)
2 (e).

The claim is proved by induction on n ·−i. We will make use of the following abbreviations:

α := F2(a+ b+ n),

β := F2(c+ d+ n),

γ := F2(a+ b+ c+ d+ 2n+ 1).

If i = n, then we obtain

no(en) = no(2an+1 · ((⃗a2 b⃗)n + (c⃗2 d⃗)n))

≼ 2no(an+1) · (no((⃗a2 b⃗)n) + no((c⃗2 d⃗)n))

≼ 2a · (α+ β) by Lemma 2.11

≼ F2(γ + 1)

≼ F 2
2 (e).

The Infinity Project 705

If 1 ≤ i < n, then we have

no(ei) ≼ 2no(ei+1) · (no((⃗a2 b⃗)i) + no((c⃗2 d⃗)i))

≼ 2F
2(n+1 ·−i)−2
2 (e) · (α+ β) by Lemma 2.11 and the induction hypothesis

≼ F 2(n+1 ·−i)−1
2 (e) · γ

≺ F 2(n+1 ·−i)
2 (e).

Now we prove the lemma from the above claim. The case i = n + 1 is trivial, since we
then have en+1 = an+1. For 1 ≤ i ≤ n, we finally obtain

no(ei) ≼ F 2(n+1 ·−i)
2 (e) by 5.4

≼ F 2n
2 (e)

≺ F3(a+ b+ c+ d+ n).

This concludes the proof of Lemma 2.17. �

5.3 Proofs in Subsection 2.4

We provide the proofs regarding the operator δ. Our first goal is to show that the
operators δx⃗ preserve bounded norms. To this end, and in preparation of the analysis of
our assignment in Section 4, we need to introduce precise notions of subterms.

Definition 5.1 By recursion on the buildup of h ∈ Cx⃗i we define the set Tx⃗i,j(h) of
maximal x-free subterms of j-th level of h and the set Subx⃗i,j(h) of those subterms of j-th
level of h which are different from xi, where x-free subterms are considered atomic. We
use the abbreviation

{h}i,j := {h | i = j}.
If h is x-free, then

Tx⃗i,j(h) := {h}i,j =: Subx⃗i,j(h),

otherwise we distinguish between the following cases:
• If h ≡ xi, then

Tx⃗i,j(h) := ∅ =: Subx⃗i,j(h).

• If h ≡ f + g, then

Tx⃗i,j(h) := Tx⃗i,j(f) ∪ Tx⃗i,j(g),

Subx⃗i,j(h) := {h}i,j ∪ Subx⃗i,j(f) ∪ Subx⃗i,j(g).

• If h ≡ 2f · g or h ≡ ψ(ω · f + g), then

Tx⃗i,j(h) := Tx⃗i+1,j(f) ∪ Tx⃗i,j(g),

Subx⃗i,j(h) := {h}i,j ∪ Subx⃗i+1,j(f) ∪ Subx⃗i,j(g).

We further define

Tx⃗i (h) :=
∪
i≤j

Tx⃗i,j(h) and Subx⃗i (h) :=
∪
i≤j

Subx⃗i,j(h).

706 Derivation lengths classification of Gödel’s T

Notice that for h ∈ Cx⃗i the set Tx⃗i,j(h) comprises the x-free terms of Subx⃗i,j(h), that
we have Tx⃗i,j(h) = Subx⃗i,j(h) = ∅ if i > j, and that for every t ∈ Subx⃗i,i(h) we have t ≼ h.

Lemma 5.2 Let x⃗ be a variable vector and set k := lv(x⃗), n := k + 1.

(1) For any h ∈ Cx⃗i and t ∈ Subx⃗i (h), we have

no(t) ≼ 2n
·−i · no(h).

(2) Let h⃗ ∈ Cx⃗ be of bounded norm, m := lv(⃗h). Then for all t ∈ Tx⃗i (hi), i ≤ m, we
have

no(t) ≺ 2n
·−i · (δx⃗0h0)0,(5.5)

and for 0 < j ≤ n we have

no((δx⃗i hi)j) ≼ szx⃗(hi) · 2n · (δx⃗0h0)0.(5.6)

(3) δx⃗ preserves bounded norm: for every h⃗ ∈ Cx⃗ of bounded norm, δx⃗h⃗ is of bounded
norm.

Proof. Part (1) is shown by induction on the buildup of h. If i > k, then h is x-free, so
t ≡ h and we are done. Suppose i ≤ k. If h is of a form ψ(ω ·f+g), we use Proposition 2.3
to see that no(f), g ≼ h. In the interesting case, where h ≡ 2f · g and t ∈ Subx⃗i+1(f), we
have no(t) ≼ 2n

·−(i+1) ·no(f), and by Proposition 2.2 we have no(f) ≼ 2no(2f) ≼ 2no(h).
Therefore, no(t) ≼ 2n

·−i · no(h).
We turn to the proof of part (2). By part (1) we have no(t) ≼ 2n

·−i · no(hi). Since t
is x-free and h⃗ of bounded norm, we even have

no(t) ≼ 2n
·−i · no(hi{x⃗ := 1⃗}) ≼ 2n

·−i · h0{x⃗ := 1⃗},

which by Lemma 2.19 implies (5.5). In order to show (5.6), set ν := 2n · (δx⃗0h0)0. We
show by induction on the buildup of h ∈ Cx⃗i that if no(t) ≺ ν for all t ∈ Tx⃗i (h), then

no((δx⃗i h)j) ≼ szx⃗(h) · ν.

If h is x-free, we obtain no((δx⃗i h)j) ≼ no(h) + 1 ≼ ν. Now suppose h is not x-free. The
case h ≡ xi is trivial, the case h ≡ f + g follows directly from the induction hypothesis,
and in the remaining cases notice that Tx⃗i+1(f),T

x⃗
i (g) ⊆ Tx⃗i (h). For h ≡ 2f · g, we obtain

no((δx⃗i h)j) ≼ 2no((δx⃗i+1f)j) + no((δx⃗i g)j) + 1,

which implies the claimed estimate since szx⃗(h) = 2szx⃗(f) + szx⃗(g) + 1. The remaining
situation h ≡ ψ(ω · f + g) is handled similarly.

Part (3) is now easy to see. In the case j > n, we apply Lemma 2.19 to obtain

no((δx⃗h⃗)j) = no(hj) ≼ h0{x⃗ := 1⃗} ≺ (δx⃗0h0)0 ≼ (δx⃗h⃗)0.

For 0 < j ≤ n, we apply (5.6) to obtain

no((δx⃗h⃗)j) =

m∑
i=0

no((δx⃗i hi)j) ≼

(
m∑
i=0

szx⃗(hi)

)
· 2n · (δx⃗0h0)0 = (δx⃗h⃗)0.

Thus δx⃗h⃗ is of bounded norm. �

The Infinity Project 707

Proof of Lemma 2.22. For convenience we set k := lv(x⃗), n := k + 1, m := lv(⃗h), and
l := max{m,n}. We first show that the lemma is a consequence of the following:

Claim For h ∈ Cx⃗i , i ≤ n, we have

(5.7) h ≺ (δx⃗i h2 x⃗)i.

In order to derive the lemma from (5.7), let i ≤ m. We distinguish between the following
three cases.

Case 1: n < i ≤ l. Then clearly hi ≡ (δx⃗h⃗2 x⃗)i.

Case 2: 1 ≤ i ≤ n. We have

(δx⃗i hi)j ≼ (δx⃗h⃗)j

for i ≤ j ≤ n. Thus by Lemma 2.14, part (1),

(δx⃗i hi2 x⃗)i ≼ (δx⃗h⃗2 x⃗)i,

as we may ignore components of δx⃗h⃗ above the n-th. By (5.7), we have hi ≺ (δx⃗i hi2 x⃗)i.

Case 3: i = 0. Here (5.7) applies, since we have

(δx⃗0h02 x⃗)0 = ψ(ω · (δx⃗0h02 x⃗)1 + (δx⃗0h0)0 + x0 + k)

≺ ψ(ω · (δx⃗h⃗2 x⃗)1 + (δx⃗h⃗)0 + x0 + k)

= (δx⃗h⃗2 x⃗)0

by Proposition 2.3, part (3), whose assumptions are easily checked: For all j ≤ n, we
have (δx⃗0h0)j ≺ (δx⃗h⃗)j . Lemma 2.14, part (1), yields (δx⃗0h02 x⃗)1 ≺ (δx⃗h⃗2 x⃗)1. By
Lemma 2.15, part (2), no((δx⃗0h02 x⃗)1) ≼ F3(no((δ

x⃗h⃗2 x⃗)1) + k).

We now prove (5.7) by induction on the definition of δx⃗i . Assume first that h is x-
free. Then clearly h ≺ h+ 1 = (δx⃗i h)i ≼ (δx⃗i h2 x⃗)i. Otherwise we must have i ≤ k and
distinguish between the following four cases:

Case 1: h ≡ xi. h ≺ xi + 1 ≼ (⃗12 x⃗)i.

Case 2: h ≡ f+g. Then we apply the induction hypothesis and use Lemma 2.15, part (3):

h ≡ f + g ≺ (δx⃗i f 2 x⃗)i + (δx⃗i g2 x⃗)i

≺ (δx⃗i h2 x⃗)i.

Case 3: h ≡ 2f · g. Then i ≥ 1, and after applying the induction hypothesis we use
Lemma 2.16:

h ≡ 2f · g ≺ 2(δ
x⃗
i+1f 2 x⃗)i+1 · (δx⃗i g2 x⃗)i

≼ ((δx⃗i+1f 2 x⃗)2 (δx⃗i g2 x⃗↾k))i

≺ (δx⃗i h2 x⃗)i.

708 Derivation lengths classification of Gödel’s T

Case 4: h ≡ ψ(ω · f + g). Then we have i = 0 and obtain

h ≺ ψ(ω · (δx⃗1f 2 x⃗)1 + (δx⃗0g2 x⃗)0) (see below)

= ψ(ω · (δx⃗1f 2 x⃗)1 + ψ(ω · (δx⃗0g2 x⃗)1 + (δx⃗0g)0 + x0 + k))

≼ ψ(ω · ((δx⃗1f 2 x⃗)1 + (δx⃗0g2 x⃗)1) + (δx⃗0g)0 + x0 + k)

≼ ψ(ω · (δx⃗0h2 x⃗)1 + (δx⃗0h)0 + x0 + k) (see below)

= (δx⃗0h2 x⃗)0.

The strict inequality follows from the induction hypothesis, using that

no(f) ≼ F2(g) ≺ F2((δ
x⃗
0g2 x⃗)0).

The last inequality is easily verified: In the case k > 0, Lemma 2.15, part (1), yields

(δx⃗1f 2 x⃗)1 + (δx⃗0g2 x⃗)1 ≺ (δx⃗0h2 x⃗)1,

and for k = 0 both terms are equal. Using Lemma 2.15, part (2), we obtain

no((δx⃗1f 2 x⃗)1), no((δ
x⃗
0g2 x⃗)1) ≼ F3(no((δ

x⃗
0h2 x⃗)1) + k).

Clearly, we have (δx⃗0g)0 ≼ (δx⃗0h)0. �

5.4 Preparations for the proof of Corollary 4.2 in Section 4

Here we are going to show Lemmata 5.5 and 5.8, where the former will be used in the
proof of the latter. As a preparation for the proof of Lemma 5.5, recall the definition of
szx⃗ in Definition 2.18. We define the variable independent version sz to serve as another
auxiliary function in order to estimate the term complexity of ordinal terms occurring in
our assignment. Note that we have szx⃗ ≤ sz.

Definition 5.3 sz(h) for h ∈ ot is defined by
• sz(h) := 1 if h is a variable or constant.
• sz(h) := sz(f) + sz(g) + 1 if h is of a form either f + g or ψ(ω · f + g).
• sz(h) := 2sz(f) + sz(g) + 1 if h is of a form 2f · g.

Lemma 5.4 Suppose h ∈ Cx⃗i for some i ∈ N. We have

sz((δx⃗i h)j) ≤ 4sz(h)

for j ≤ lv(x⃗) + 1.

Proof. The proof is by straightforward induction on the buildup of h, along the definition
of δx⃗i h. �

Lemma 5.5 Let G ∈ T and g⃗ := [[G]] be its canonical assignment. Setting m := lv(g⃗),
we have

(5.8)
m∑
i=0

sz(gi) < 22(L(G) + 2lh(G)) =:M(G).

Setting n := lv(x⃗) + 1 and Ln(G) := max{n,L(G)}, we have

(5.9) Sx⃗(g⃗) < 22(Ln(G) + 1 + 2lh(G)).

The Infinity Project 709

Proof. The proof of (5.8) is by induction on lh(G). The second claim (5.9) then follows
from the first one, since n ≤ Ln(G).
Case 1: G is a constant or variable. Then the claim is trivial once we notice that
m ≤ L(G).

Case 2: G ≡ AB. Let a⃗ and b⃗ be the canonical assignments of A and B, respectively,
and set mA := lv(⃗a), mB := lv(⃗b). The vector c⃗ := a⃗2 b⃗ agrees with g⃗ up to component
m, and for mB < i ≤ mA we have ci = ai, hence by the induction hypothesis

sz(ci) = sz(ai) < M(A).

By side induction on mB + 1 ·− i we show that

(5.10) sz(ci) < 22(mB+1 ·−i)(M(A) +M(B)).

The case i = mB + 1 has already been taken care of. Suppose i ≤ mB. If i > 0, we have
sz(ci) = 2sz(ci+1)+sz(ai)+sz(bi)+2, while sz(ci) = sz(ci+1)+sz(ai)+sz(bi)+2(mB+1)
for i = 0. In any case, we obtain

sz(ci) < 22(mB
·−i)+1(M(A) +M(B)) +M(A) +M(B)

< 22(mB+1 ·−i)(M(A) +M(B)).

Using (5.10), the formula for the geometric series yields
mB∑
i=0

sz(ci) < 4mB+2(M(A) +M(B));

hence, together with the induction hypothesis applied to A,
m∑
i=0

sz(gi) < (4L(G)+1 + 1)(M(A) +M(B))

< 22(L(G) + 2lh(G)− 1) · (22(L(G) + 2lh(A)) + 22(L(G) + 2lh(B)))

≤ (22(L(G) + 2lh(G)− 1))2

=M(G),

showing (5.10) for application terms.

Case 3: G ≡ λY.F . Let f⃗ be the canonical assignment to F , and set k := lv(f⃗) and
l := lv(y⃗) + 1. We have g⃗ = δy⃗f⃗ + f⃗{y⃗ := 1⃗} and m = max{k, l}. Setting

M := 22(L(G) + 2lh(F)),

by the induction hypothesis (5.9) applied to F , we have

Sy⃗(f⃗) < 22(Ll(F) + 1 + 2lh(F))

≤ 22(L(G) + 1 + 2lh(F))

=M2,

since Ll(F) = max{l,L(F)} ≤ L(G), and by the induction hypothesis (5.8), we have
k∑
j=0

sz(fj) < M(F) ≤M,

710 Derivation lengths classification of Gödel’s T

whence using Lemma 5.4 we obtain

sz(gi) <

M2(4sz(f0) + 1) if i = 0,

4M + k + sz(fi) + 2 if 1 ≤ i ≤ l,
2sz(fi) + 2 if l < i ≤ m.

We may now generously estimate the sum of the above terms:
m∑
i=0

sz(gi) < M2(4sz(f0) + 1) + (4L(G) + 2)M + (L(G) + 2)2

< M2(4sz(f0) + 1) + (4L(G) + 3)M

< M2(4sz(f0) + 2)

< M4

=M(G),

which concludes the proof of Lemma 5.5. �

The following two lemmas will prepare the proof of Lemma 5.8. Recall Definition 5.1,
and for any h ∈ ot let h be the closure of h by replacing every variable in h with 1.

Lemma 5.6 Suppose h ∈ Cx⃗k and i < j where i ≤ n := lv(x⃗) + 1. Then we have

Suby⃗i,j((δ
x⃗
kh)i) ⊆ Suby⃗k,j(h{x⃗ := 1⃗}).

Proof. The proof is by induction on the buildup of h along the definition of the partial
operators δx⃗k , k ∈ N. If h is x-free, then we have (δx⃗i h)i = h+1 if k = i while (δx⃗kh)i = 1
if k ̸= i, and the claim follows immediately. Now suppose that h is not x-free. We then
distinguish between the following cases.

Case 1: h is a variable or constant. Since i < j, we then have Suby⃗i,j((δ
x⃗
kh)i) = ∅, so

there is nothing to show.

Case 2: h ≡ f + g. Then we have (δx⃗kh)i = (δx⃗kf)i + (δx⃗kg)i + 1, and therefore

Suby⃗i,j((δ
x⃗
kh)i) = Suby⃗i,j((δ

x⃗
kf)i) ∪ Suby⃗i,j((δ

x⃗
kg)i)

since i < j. Thus we may directly apply the induction hypothesis.

Case 3: h ≡ 2f ·g. Then (δx⃗kh)i = 2(δx⃗k+1f)i+(δx⃗kg)i+1, and we argue as in the previous
case.

Case 4: h ≡ ψ(ω · f + g). Here the case k ̸= i is treated as the previous cases, so assume
k = i = 0, whence (δx⃗0h)0 = ψ(ω · f{x⃗ := 1⃗}+ (δx⃗0g)0). We therefore have

Suby⃗0,j((δ
x⃗
0h)0) = Suby⃗1,j(f{x⃗ := 1⃗}) ∪ Suby⃗0,j((δ

x⃗
kg)i)

since j > 0, and clearly

Suby⃗1,j(f{x⃗ := 1⃗}) ∪ Suby⃗0,j(g{x⃗ := 1⃗}) = Suby⃗0,j(h{x⃗ := 1⃗}),

applying the induction hypothesis for g if necessary. �

The Infinity Project 711

Lemma 5.7

(1) Let h ∈ Cx⃗i , n := lv(x⃗) + 1, j ∈ (0, n], and α ∈ (0, ε0) such that t < α for all
t ∈ Tx⃗i,j(h). Then we have

(δx⃗i h)j ≤ szx⃗(h) · α.

(2) Let h ∈ Cx⃗0 , m ∈ (0, ω), and α ∈ (0, ε0) such that t < m for all t ∈ Tx⃗0,0(h) and
f < α for all f ∈ Subx⃗0,1(h). Then we have

(δx⃗0h)0 < ψ(ω · szx⃗(h) · α+ szx⃗(h) ·m).

Proof. Part (1) is proved by induction on the buildup of h ∈ Cx⃗i . If h is x-free or h ≡ xi,
the claim follows immediately. Let us assume that h is not x-free. In the case h ≡ f + g
the claim directly follows from the induction hypothesis for f and g. If h ≡ 2f · g or
h ≡ ψ(ω · f + g), we have Tx⃗i,j(h) = Tx⃗i+1,j(f) ∪ Tx⃗i,j(g), and straightforwardly apply the
induction hypothesis to f and g.

Part (2) is shown by induction on the buildup of h ∈ Cx⃗0 along the definition of δx⃗0h.
If h is x-free, then h ∈ Tx⃗0,0(h), and we have

(δx⃗0h)0 = h+ 1 ≤ m < ψ(ω · szx⃗(h) · α+ szx⃗(h) ·m).

Let us now assume that h is not x-free. The case h ≡ xσ0 is trivial. If h ≡ f + g, then
using Proposition 2.3 and the induction hypothesis we may estimate straightforwardly as
follows:

(δx⃗0h)0 = (δx⃗0f)0 + (δx⃗0g)0 + 1

< ψ(ω · szx⃗(f) · α+ szx⃗(f) ·m) + ψ(ω · szx⃗(g) · α+ szx⃗(g) ·m)

≤ ψ(ω · (szx⃗(f) + szx⃗(g)) · α+ (szx⃗(f) + szx⃗(g)) ·m)

< ψ(ω · szx⃗(h) · α+ szx⃗(h) ·m).

Finally, suppose h ≡ ψ(ω · f + g). Since f ∈ Subx⃗0,1(h), we have f < α, and since h ∈ Cx⃗0 ,
we have no(f) ≼ F2(g). By Lemma 2.19, we obtain

no
(
f
)
≤ F2 (g) < F2

(
(δx⃗0g)0

)
,

and, using the induction hypothesis, Proposition 2.3 yields

(δx⃗0h)0 = ψ
(
ω · f + (δx⃗0g)0

)
< ψ(ω · α+ ψ(ω · szx⃗(g) · α+ szx⃗(g) ·m))

≤ ψ(ω · (szx⃗(g) + 1) · α+ (szx⃗(g) + 1) ·m)

≤ ψ(ω · szx⃗(h) · α+ szx⃗(h) ·m),

concluding the proof of Lemma 5.7. �

712 Derivation lengths classification of Gödel’s T

Lemma 5.8 Let G ∈ T, L := L(G), R := R(G), and for every subterm H of G set
MH := 2(L+ 1 + lh(H)) and define a vector α⃗H of level L by

αHi :=

2L+2 ·−i(MH ·− i) if R < i ≤ L,
2R ·−i(ω · 2L+2 ·−i(MH ·− i)) if 1 ≤ i ≤ R,
ψ(ω · 2R ·−1(ω · 2L+1(MH))) if i = 0.

Then for every subterm H of G with canonical assignment h⃗ := [[H]] we have

(5.11) hi < αHi

for i ≤ lv(⃗h) =: m. If h⃗ ∈ C y⃗, then for all i ≤ m, all j ≤ L, and every t ∈ Suby⃗i,j(hi), we
have

(5.12) t < αHj .

Proof. The lemma is proved by induction on lh(H).

Case 1: H is a variable or constant. Then the claims follow immediately. The subcase
H ≡ R is where infinite ordinals enter the picture.

Case 2: H ≡ AστBσ. Then h⃗ = a⃗2 b⃗↾m where a⃗ and b⃗ are the canonical assignments to
A and B, respectively. Let n := lv(σ). We first show (5.11). If i > n, we have hi ≤ ai,
and the claim follows by the induction hypothesis applied to A. Suppose i ≤ n, whence
i < L. We argue by side induction on n ·− i.

• L > i > R: Then 0 < i ≤ n and hence

hi ≤ 2hi+1 · (ai + bi)

< 2L+2 ·−i(MH ·− (i+ 1)) · (2L+2 ·−i(MA ·− i) + 2L+2 ·−i(MB ·− i))

< (2L+2 ·−i(MH ·− (i+ 1)))2

< 2L+2 ·−i(MH ·− i).

• R ≥ i ≥ 1: Suppose first that i = R. Then we have

hi < 2L+2 ·−i(MH ·− (i+ 1)) · (ω · 2L+2 ·−i(MA ·− i) + ω · 2L+2 ·−i(MB ·− i))

< 2L+2 ·−i(MH ·− (i+ 1)) · (ω · 2L+2 ·−i(MH ·− (i+ 1)))

< ω · 2L+2 ·−i(MH ·− i).

We now consider the case i < R, where we estimate as follows.

hi < 2R ·−i(ω · 2L+2 ·−(i+1)(MH ·− (i+ 1)))

· (2R ·−i(ω · 2L+2 ·−i(MA ·− i)) + 2R ·−i(ω · 2L+2 ·−i(MB ·− i)))

< 2R ·−i(ω · 2L+2 ·−(i+1)(MH ·− (i+ 1)))

· 2R ·−i(ω · 2L+2 ·−i(MH ·− (i+ 1)))

< 2R ·−i(ω · 2L+2 ·−i(MH ·− i)).

The Infinity Project 713

• i = 0: In case of R = 0, we obtain, using Proposition 2.3,

h0 < ψ(ω · 2L+1(MH ·− 1) + ψ(ω2 · 2L+1(MA)) + ψ(ω2 · 2L+1(MB)) + n)

< ψ(ω2 · 2L+1(MH)).

If R > 0, we even have R ≥ 2, and using again Proposition 2.3 we obtain

h0 < ψ(ω · 2R ·−1(ω · 2L+1(MH ·− 1))

+ ψ(ω · 2R ·−1(ω · 2L+1(MA))) + ψ(ω · 2R ·−1(ω · 2L+1(MB))) + n)

< ψ(ω · 2R ·−1(ω · 2L+1(MH))).

This finishes the verification of (5.11), and we proceed with proving (5.12). If h⃗ ∈ C y⃗,
then we must also have a⃗, b⃗ ∈ C y⃗ and may apply the respective induction hypotheses.
Suppose t ∈ Suby⃗i,j(hi), whence i ≤ j, as the set Suby⃗i,j(hi) is empty if i > j. In order to
show t < αHj , we employ an induction on j ·− i. If i = j, we clearly have t ≤ hi < αHi by
(5.11). Suppose i < j. In the case i > n, we use the induction hypothesis applied to A.
If on the other hand i ≤ n, then we have

t ∈ Suby⃗i+1,j(hi+1) ∪ Suby⃗i,j(ai) ∪ Suby⃗i,j(bi),

and in each case t < αHj follows using the induction hypothesis since clearly αAj , α
B
j < αHj .

Case 3: H ≡ λXσ.F τ . Then h⃗ = δx⃗f⃗ + f⃗{x⃗ := 1⃗} where f⃗ := [[f]], and m = max{n, l}
where n := lv(x⃗) + 1 and l = lv(f⃗). We first show (5.11), where we distinguish between
the following three cases.

• n < i ≤ m. Then we have hi = 2fi, and the claim follows easily from the
induction hypothesis for F .
• 1 ≤ i ≤ n. By part (1) of Lemma 5.7 and the induction hypothesis for F , we

have
(δx⃗kfk)i ≤ szx⃗(fk) · αFi

for every k ≤ l, which yields

hi ≤

(
l∑

k=0

szx⃗(fk) + 1

)
· αFi ≤ 22(L+ 2lh(F)) · αFi

by (5.8) of Lemma 5.5. In case of i > R, we may now estimate

hi ≤ 22(L+ 2lh(F)) · 2L+2 ·−i(MF ·− i)

< (2L+2 ·−i(MF ·− i))2

< 2L+2 ·−i(MH ·− i)

= αHi ,

whereas in case of i ≤ R we estimate

hi ≤ 22(L+ 2lh(F)) · 2R ·−i(ω · 2L+2 ·−i(MF ·− i))

< 2R ·−i(ω · 2L+2 ·−i(MH ·− (i+ 1)))

< αHi .

714 Derivation lengths classification of Gödel’s T

• i = 0. Since in the case R = 0 the argumentation is easier, let us assume that
R > 0. By Lemma 5.5, we have

szx⃗(f0), S
x⃗(f⃗) < 22(L+ 1 + 2lh(F)) =: K,

and relying on the induction hypothesis for F we obtain, using part (2) of
Lemma 5.7,

(δx⃗0f0)0 < ψ(ω · szx⃗(f0) · αF1 + szx⃗(f0) · αF0),

which, using Proposition 2.3, allows for the following estimation:

h0 = Sx⃗(f⃗) · (δx⃗0f0)0 + f0

< K · ψ(ω ·K · αF1 +KαF0)

≤ ψ(ω ·K2 · αF1 +K2αF0)

< ψ(ω · 2K2 · 2R ·−1(ω · 2L+1(MF)))

< ψ(ω · 2R ·−1(ω · 2L+1(MH)))

= αH0 .

In order to verify (5.12), suppose t ∈ Suby⃗i,j(hi). If i = j, we obtain t ≤ hi < αHi from
(5.11) by the monotonicity properties of +, ·, and ψ. Assume i < j. Then we either have
t ∈ Suby⃗i,j(fi{x⃗ := 1⃗}) where i ≤ l, or i ≤ n and

t ∈ Suby⃗i,j((δ
x⃗
kfk)i)

for some k ≤ l, which is 0 in the case i = 0, and Lemma 5.6 yields t ∈ Suby⃗k,j(fk{x⃗ := 1⃗}),
hence k ≤ j. If y⃗ ≡ x⃗, we must have k = j, t ≡ fj{x⃗ := 1⃗}, and therefore t ≤ αFj by the
induction hypothesis for F . Now assume y⃗ ̸≡ x⃗. Then we have

Suby⃗k,j(fk{x⃗ := 1⃗}) = Suby⃗k,j(fk){x⃗ := 1⃗},

and t ≤ αFj follows from the induction hypothesis for F . The case t ∈ Suby⃗i,j(fi{x⃗ := 1⃗})
is treated in the same way. �

Acknowledgements

The authors would like to thank Roger Hindley and Jonathan Seldin for informative
discussions as well as Pierre-Louis Curien for constructive assistance in the rewrite process
of the original contribution to TLCA 2009. We are indebted to one of the referees who
pointed out our sloppiness regarding the treatment of bound variables in an earlier version
of the paper and gave many constructive suggestions that have led to an improvement of
the first section of this paper. We wish to thank William Howard for a number of helpful
suggestions and simplifications for the final version of the paper. Finally, we express our
gratitude to the John Templeton Foundation for its support through Project #13152,
The Myriad Aspects of Infinity.

The Infinity Project 715

References
[1] A. Beckmann, A. Weiermann, A term rewriting characterization of the polytime functions and

related complexity classes, Archive for Mathematical Logic 36 (1996), 11–30.
[2] A. Beckmann, A. Weiermann, Analyzing Gödel’s T via expanded head reduction trees, Mathematical

Logic Quarterly 46 (2000), 517–536.
[3] W. Buchholz, E. A. Cichon, A. Weiermann, A uniform approach to fundamental sequences and

hierarchies, Mathematical Logic Quarterly 40 (1994) 273–286.
[4] F. Cardone, J. R. Hindley, Lambda-calculus and combinators in the 20th century, Logic from Russell

to Church, Handbook of the History of Logic, 5, Elsevier, 2009.
[5] E. A. Cichon, A. Weiermann, Term rewriting theory for the primitive recursive functions, Annals of

Pure and Applied Logic 83 (1997), 199–223.
[6] K. Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica 12

(1958), 280–287.
[7] J. R. Hindley, J. P. Seldin, Introduction to Combinators and λ-Calculus, London Mathematical

Society, Cambridge University Press, 1986.
[8] W. A. Howard, Assignment of ordinals to terms for primitive recursive functionals of finite type.

Intuitionism and Proof Theory, North-Holland, Amsterdam, 1970, 443–458.
[9] C. Parsons, On n-quantifier induction, The Journal of Symbolic Logic 37 (1972), 466–482.

[10] W. Pohlers, Proof Theory. The First Step into Impredicativity, Springer, Berlin, 2009.
[11] K. Schütte, Proof Theory, Springer, 1977.
[12] J. R. Shoenfield, Mathematical Logic, Addison-Wesley, New York, 1967.
[13] A. Weiermann, How to characterize provably total functions by local predicativity, The Journal of

Symbolic Logic 61 (1996), 52–69.
[14] A. Weiermann, A proof of strongly uniform termination for Gödel’s T by methods from local pred-

icativity, Archive for Mathematical Logic 36 (1997), 445–460.
[15] A. Weiermann, How is it that infinitary methods can be applied to finitary mathematics? Gödel’s

T: a case study, The Journal of Symbolic Logic 63 (1998), 1348–1370.
[16] G. Wilken, A. Weiermann, Derivation lengths classification of Gödel’s T extending Howard’s assign-

ment, Logical Methods in Computer Science 8 (2012), 1–44.

