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STABLE REPRESENTATIONS OF POSETS

VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

Abstract. The purpose of this paper is to study stable representations of
partially ordered sets (posets) and compare it to the well known theory for
quivers. In particular, we prove that every indecomposable representation of
a poset of finite representation type is stable with respect to some weight
and construct that weight explicitly in terms of the dimension vector. We
show that if a poset is primitive then Coxeter transformations preserve sta-
ble representations. When the base field is the field of complex numbers we
establish the connection between the polystable representations and the uni-
tary �-representations of posets. This connection explains the similarity of the
results obtained in the series of papers.

Introduction

Representation theory of finite dimensional algebras turned into a vast field
of study in the last 40-50 years. It was observed that the subject can be ap-
proached combinatorially via representations of posets (due to L.A. Nazarova
and A.V. Roiter) and representations of quivers (due to P. Gabriel). Despite of
certain similarities representations of quivers and posets have significant di↵er-
ences. For instance: the category of representation of given quiver is abelian,
while the category of representations of given poset is additive; the global dimen-
sion of the category of representations of a given quiver is at most one while it
can be arbitrary for the posets; the variety of representations of a fixed dimension
of a quiver is a�ne while it is projective in the case of posets; etc.

The problem of classifying representations of “most” algebras is wild in a sense
that it is as di�cult as the problem of classifying representations of free algebras,
or of any wild quiver (or poset). Nevertheless, one can use geometrical approach
(following the ideas of D. Mumford, e.g., [16]) by considering the spaces whose
points correspond naturally to isomorphism classes of representations. This is
how A. King in [10] defined the moduli spaces of finite dimensional algebras and
quivers (we refer to [17] for exhaustive survey of this subject).

In [23] the authors tried to define moduli spaces of posets via moduli spaces
of corresponding bound quivers. This rose certain technical problems as, for
instance, the category of bound representations of corresponding quiver is “big-
ger” then the category of representation of underlying poset. One of the goals
of the current paper is to develop a general framework to define and study the
moduli spaces of posets intrinsically. To be more precise, let F be a field and
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2 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

S = {s1, . . . , st} be a finite poset. A subspace representation of S is a tuple
V = (V0;Vs

)
s2S , in which V0 is a vector space over F and V

i

are its subspaces
such that V

s

✓ V
t

if s � t (that is, each representation is a homomorphism from
S to the poset of all subspaces of V0). All subspace representations of S form
an additive category denoted by spS (see Section 1 for more details). Consider-
ing (semi)-stable representations in spS we adopt the definitions and properties
from [18], where (semi)-stable objects in an arbitrary abelian category were stud-
ied. Following the ideas of [10] for quivers we approach the classification of
representations of posets geometrically. We show that (semi)-stable orbits are
connected to the algebraic definition of (semi)-stability in spS and relate unitary
�-representations of posets (see [13, 14, 19]) to polystable representations of S.
Note that application of [10] and [7] requires a special care since the category
spS is not abelian and the variety of all representations of S of fixed dimension
is projective.
The paper is organized as follows. In Section 1 we establish the notation

and terminology and prove some preliminary statements. In Section 2 we de-
fine an algebraic stability (and costability) in spS , prove the existence of Harder-
Narasimhan and Jordan-Hölder filtrations (in spS) and relate stability with costa-
bility (under certain assumptions). Section 3 is devoted to the reflection transfor-
mations of posets (introduced in [4]). We prove that the corresponding Coxeter
transformations preserve stability in the case of primitive posets. Section 4 is de-
voted to the posets of finite representation type. We prove (Theorem 4.1) that S
is of finite representation type if and only if any indecomposable representation of
S is positively costable, equivalently if and only if any indecomposable represen-
tation of S is positively stable. This theorem is a consequence of Propositions 4.1
and 4.3 which are analogues of the Schofield’s characterization of Schurian roots
for quivers (see [20, Theorem 6.1]). In Section 5 we relate the introduced concept
of stability with the geometric notion and define moduli space of polystable repre-
sentations of S with fixed dimension vector. Namely, we consider the embeddings
of the projective variety RS,↵ of all representations of S having the dimension
↵ into a projective space and prove that the set of (semi)-stable points of the
Sl(↵0)-action coincides with the set of (semi)-stable representations in the sense
of Section 2. In Section 6 we study the moment map of the Sl(↵0)-action on RS,↵
when F = C. As a consequence of the theorem of Kempf-Ness we obtain that
the symplectic quotient of RS,↵ can be identified with the moduli space defined
in Section 5. Also we show the that pre-image of 0 of the moment map is the set
of �-representations (defined in [13, 14, 19]).
In Appendix A we prove some additional statements. In Appendix B we de-

scribe all exact representations of non-primitive posets of finite representation
type, describe their maximal sub-coordinate vectors and state costability condi-
tion for each exact representation (this completes the proof of Proposition 4.1). In
Appendix B we describe all quite sincere representations of non-primitive posets
of finite representation type, describe their maximal sub-dimension vectors and
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state stability condition for each quite sincere representation (this completes the
proof of Proposition 4.3).
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1. Notations and Terminology

We fix a field F which is assumed algebraically closed in Section 4 and F = C
in Section 5. A finite poset S ⌘ (S,�) is given by the set of elements {s1, . . . , sn}
and a partial order �. We assume that elements s1, . . . , sn of S are enumerated
so that s

i

� s
j

implies i < j. A poset S is said to be primitive if it is a disjoint
union of finite number of linearly ordered posets. Denote by Sop the dual poset
Sop ⌘ (Sop,��), in which a �� b if and only if b ⌫ a in S. The relation � is
uniquely defined by the incidence matrix CS of S; that is, the integral square
n⇥ n matrix

CS = [c
st

]
s,t2S 2 MS(Z) = M

n

(Z), with c
st

=

(

1, for s � t,

0, for s � t.

It is easy to see that CS is invertible, C�1
S 2 M

n

(Z) and that CSop = Ctr

S (the

transpose of CS). Given a poset S, by bS we understand its enlargement by
unique maximal element 0; that is, bS ⌘ ( bS,�0) with bS \ {0} = S and the order

�0 is obvious. The Tits matrix

cCS and the reduced incidence matrix C�
S of bS are

defined as the following bipartite matrices (we use the notation and terminology
from [22]):

cCS =



1 0
�E Ctr

S

�

2 M bS(Z), C�
S =



1 0
0 CS

�

2 M bS(Z),

in which E is a 1⇥ n unit matrix.
A subspace representation of S is a system V = (V0;Vs

)
s2S of subspaces V

s

of a
finite dimensional vector space V0 such that V

s

⇢ V
t

if s � t. The vector space V0

will be called the ambient space of V. A morphism between two representations
V and V0 is a F-linear map g : V0 ! V 0

0 such that g(V
s

) ⇢ V 0
s

for all s. Denote
by spS the corresponding additive category of all subspace representations of S.
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4 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

Interested reader is refereed to [21] where the systematic (up-to-date) exposition
of the representation theory of finite posets is given.
The dimension vector of V is a Z-function on bS given by dim V(s) = dimV

s

,

that is the dimension vector of V is an element of Z bS . We say that ↵ =
(↵0;↵s

)
s2S 2 Z bS is admissible if ↵0 > 0,↵

s

� 0 and ↵
s

 ↵
t

if s � t 2 bS.
Clearly ↵ is a dimension vector of some representation of S i↵ ↵ is admissible.
Fixing an admissible dimension vector ↵ = (↵0;↵s

)
s2S 2 Z bS we consider the

following projective variety (see Proposition 6.4 in Appendix A),

RS,↵ =
n

(V
s

)
s2S 2

Y

s2S
Gr(↵

s

,↵0)
�

�

�

V
s

⇢ V
t

if s � t
o

.

The group Gl(↵0) acts on RS,↵ (diagonally) via the base change so that the
orbits of this action are in a bijection with the isomorphisms classes of subspace
representations of S with the dimension ↵. In what follows the variety RS,↵ is
called poset variety.
The coordinate vector of V is a function on bS, given by

cdn V (s) =

⇢

dim(V
s

/
P

t�s

V
t

), s 6= 0,
dimV0, s = 0.

Two elements s1, s2 2 S form an arrow (denoted by s1 ! s2) if s1 � s2 and
there is no t 2 S such that s1 � t � s2. We say that a representation V is
coordinate if for any point s 2 S we have that the sum

P

t!s

V
t

is direct. One
checks that in this case for each s 2 S we have that

cdn V (s) = dim
⇣

V
s

/
X

t�s

V
t

⌘

= dimV
s

�
X

t!s

dimV
t

,

and hence dimV = cdnV · C�
S . It follows from the definition that any rep-

resentation of a primitive poset is coordinate. Also, any subrepresentation of a
coordinate representation is coordinate.
Given ↵ 2 ZS , we define the support of ↵, supp↵, to be the full subposet of

S of the elements {s : ↵(s) 6= 0}. An indecomposable representation V is called
sincere (resp. exact) if suppdimV = bS (resp. if supp cdnV = bS).
The following two bilinear forms play a fundamental role in studying the cat-

egory spS (cf. [22])

dS , bS : Z bS ⇥ Z bS ! Z,

dS(↵,�) = ↵ · cCS · �tr =
X

s2S
↵
s

�
s

+
X

t�s2S
↵
s

�
t

� ↵0

X

s2S
�
s

,

bS(↵,�) = ↵ · C�1
bS · �tr =

X

s2S
↵
s

�
s

+
X

t�s2S
c�
st

↵
s

�
t

,
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STABLE REPRESENTATIONS OF POSETS 5

where c�
st

is the (s, t) entry of the matrix C�1
bS 2 M bS(Z) inverse to C bS . Note that

under certain conditions (see Appendix A for details)

bS(↵,↵) = dimGl(↵0)� dimRS,↵.

We have

Proposition 1.1. Let S be any poset. We have C�
S · C�1

bS · C�
S
tr = dCSop

, that is

the matrices C�1
bS and

dCSop

are Z-congruent.

Proof. The matrix C�1
bS can be written as the following bipartite matrix

C�1
bS =



1 0
�C�1

S · E C�1
S

�

.

Therefore

C�
S · C�1

bS · C�
S
tr =



1 0
0 CS

�

·


1 0
�C�1

S · E C�1
S

�

·


1 0
0 CS

�

tr

=



1 0
�E I

n

�

·


1 0
0 Ctr

S

�

=



1 0
�E CS⇤

�

= dCS⇤ . ⇤

Corollary 1.1. If V,W 2 spS are two coordinate representations hence

bS(dimV,dimW) = dS⇤(cdnV, cdnW).

Proof. As V and W are coordinate representations we have dimV = cdnV ·C�
S

and dimV = cdnV · C�
S . Hence, by the previous proposition:

bS(dimV,dimW) = dimV · C�1
bS · (dimW)tr

= (cdnV · C�
S) · C�1

bS · (cdnW · C�
S)

tr

= cdnV · (C�
S · C�1

bS · C�
S
tr) · (cdnW)tr

= cdnV · dCS⇤ · (cdnW)tr

= dS⇤(cdnV, cdnW). ⇤
Recall (see [15, Section 2.1] and [22, Section 2]) that given an invertible matrix

A 2 M
n

(Z) its Coxeter matrix Cox
A

is defined as Cox
A

= �A�1 ·Atr. The matrix

A is called Z-regular if Cox
A

2 M
n

(Z). Given a poset S, by CoxS and dCoxS we

denote the Coxeter matrix of Z-regular matrices C bS and cCS respectively. One
checks that

CoxS =

 �1 �Etr

C�1
S E C�1

S (EEtr � Ctr

S )

�

,

and

dCoxS =

 �1 Etr

Ctr

S E Ctr

S (EEtr � C�1
S )

�

,
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6 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

Given a poset S with n elements, define the following reflection matrices

r0S =

 �1 0
E I

n

�

, r⇤S =



1 Etr

0 �I
n

�

, rS =

 �1 0
0 I

n

�

,

and
br0S = rS · r0S · rS , br⇤S = rS · r⇤S · rS .

Easy to check that

CoxS = (C�
S)

�1 · r0S · C�
Sop

· r⇤S ,
Cox�1

S = r⇤S · (C�
Sop

)�1 · r0S · C�
S ,

dCoxS = (C�
Sop

) · br0S · (C�
S)

�1 · br⇤S ,
(dCoxS)�1 = (C�

S)
�1 · br⇤S · C�

S · br0S .

(1.1)

2. Stable representations of posets.

2.1. Definitions and properties. The notion of stability in an abelian category
was defined in [18]. Given an abelian category A and a function ✓ : K0(A) ! Z,
an object X 2 A is called stable if ✓(X) = 0 and ✓(Y ) < 0 for any proper sub-
object Y of X. Our first aim is to define stable objects in spS . We adopt the
definition above as well as the proof of some results from [18] to additive case.
First we define proper sub-objects in spS . A morphism g : U ! V in spS is

said to be proper if, for all s 2 S, g(U
s

) = V
s

\ g(U0). Given a representation
V = (V0, Vs

)
s2S and a subspace K ⇢ V0, one checks that V

K

= (K,V
s

\K)
s2S

is the unique subrepresentation of V with the ambient space K for which the
inclusion V

K

,! V gives a proper monomorphism V
K

! V. In what follows by
proper subrepresentation of V we mean a representation of the form V

K

where
K is a proper subspace of the ambient space of V.

Remark 2.1. Generally, given a representation V and its subrepresentation W
in spS , the quotient V/W does not need to belong to spS . Nevertheless, in the

case when W = V
K

is a proper subrepresentation we have V/V
K

2 spS (see

Appendix A, Proposition 6.3).

The mapV 7�! dimV gives rise to an isomorphism between the Grothendieck
group K0(spS) and Z bS . Fixing a form ✓ 2 Hom(Z bS ,Z) we say that V 2 spS is
✓-stable (resp. ✓-semistable) if ✓(dim (V)) = 0 and

✓(dim (W)) < 0 (resp. ),

for any proper subrepresentation W of V.
This definition is equivalent to the following. Fixing a basis in Hom(Z bS ,Z), we

will regard ✓ as a vector ✓ = (✓0; ✓s)s2S 2 Z bS , so that ✓(dimV) simply means
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STABLE REPRESENTATIONS OF POSETS 7

✓ · dimVtr. Define the µ✓-slope of V 2 spS as

µ✓(V) =
1

dimV0

X

s2S
✓
s

dimV
s

.

We say that V 2 spS is µ✓-stable (resp. µ✓-semistable) if

µ✓(W) < µ✓(V) (resp. )

for any proper subrepresentation W of V.

Proposition 2.1. Let 0 ! W ! V ! U ! 0 be an exact sequence of represen-

tations and let ✓ be a weight. Then the following conditions are equivalent:

(1) µ✓(W)  µ✓(V),

(2) µ✓(W)  µ✓(U),

(3) µ✓(V)  µ✓(U).

Proof. The proof is similar to the proof of [7, Lemma 2.1] and [8, Lemma 2.6]. ⇤
Proposition 2.2. Let ✓ be any weight. Each representation V has a unique

subspace K 2 V0 such that the subrepresentation W = V
K

satisfies:

(1) the value of µ✓(W) is maximal among all subrepresentations of V, and

(2) W is maximal among all subrepresentations which have the maximal value

µ✓(W).

Proof. Since spS is noetherian, the existence of a representation W with (1)
and (2) follows. We prove the uniqueness. Let W1 and W2 be two non-
isomorphic representations satisfying (1) and (2). Consider the following short
exact sequence:

0 �! W1 \W2 �! W1 �W2 �! W1 +W2 �! 0.

By (1) we get µ✓(W1\W2)  µ✓(W1) = µ✓(W2) and µ✓(W1+W2) = µ✓(W1) =
µ✓(W2). Therefore W1 = W1 +W2 = W2 by (2). ⇤

Obviously the unique subrepresentation W from Proposition 2.2 is µ✓-semi-
stable.

Proposition 2.3 (Harder-Narasimhan filtration). For any V = (V0;Vs

)
s2S 2 spS

there is a unique filtration (of vector subspaces)

0 = K0 ⇢ K1 ⇢ · · · ⇢ Kh = V0,

which induces a filtration of V

0 = V0 ⇢ V1 ⇢ · · · ⇢ Vh = V,

in which Vi = V
K

i = (Ki;V
s

\Ki)
s2S , such that:

(1) Vi/Vi�1
are µ✓-semistable, and

(2) µ✓(Vi/Vi�1) > µ✓(Vi+1/Vi) for all i = 1, . . . , h� 1.
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8 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

Proof. By Proposition 2.2 there exists a unique V1 ⇢ V with maximal slope µ✓.
If V1 = V then V is µ✓-semistable and we are done. Otherwise we get the first
step of the filtration

0 ⇢ V1 ⇢ V.

Now consider V/V1. If it is µ✓-semistable then Proposition 2.1 implies µ✓(V1) >
µ✓(V/V1). If V/V1 is not µ✓-semistable then we apply the above procedure to
produce a unique linear subspaceK2 (K1 ⇢ K2 ⇢ V0) withV2/V1 µ✓-semistable.
As µ✓(V1) > µ✓(V2), Proposition 2.1 implies that µ✓(V1) > µ✓(V2/V1). Then
by induction we get the desired filtration. The uniqueness of the filtration is clear
from the proof. ⇤

Proposition 2.4 (Jordan-Hölder filtration). For any µ✓-semistable V= (V0;
V
s

)
s2S 2 spS there is a filtration (of vector subspaces)

0 = K0 ⇢ K1 ⇢ · · · ⇢ Kh = V0,

which induces a filtration of V

0 = V0 ⇢ V1 ⇢ · · · ⇢ Vh = V,

in which Vi = V
K

i = (Ki;V
s

\Ki)
s2S , such that:

(1) Vi/Vi�1
are µ✓-stable, and

(2) µ✓(Vi/Vi�1) = µ✓(Vi+1/Vi) for all i = 1, . . . , h� 1.

Proof. If V is stable we are done. Otherwise, let W be a maximal subspace such
that µ✓(VW

) = µ✓(V). Then V
W

is µ✓-semistable. Using Proposition 2.1 we
have that V/V

W

is µ✓-stable and µ✓(V/V
W

) = µ✓(V). Repeating the same
procedure for V

W

we get a desired filtration. ⇤

Proposition 2.5. Suppose that both V,V0 2 spS are µ✓-semistable and g :
V ! V0

is a non zero morphism. Then µ✓(V)  µ✓(V0).

Proof. Consider the proper induced morphism g0 : V ! Im g. The kernel Ker g0

is a subrepresentation of V and we have the following short exact sequence

0 �! Ker g0 �! V �! Im g �! 0.

As Im g is a subrepresentation of V0 we have µ✓(Im g)  µ✓(V0) (since V0 is
semistable). Assuming µ✓(V) > µ✓(V0) we also have that µ✓(Im g) < µ✓(V).
Therefore, by Proposition 2.1, µ✓(Ker g0) > µ✓(V). But this contradicts the
µ✓-semistability of V. ⇤

Corollary 2.1. If V is µ✓-stable then End(V) is a division algebra over F. In

particular any stable object is indecomposable. Also if F is algebraically closed

then End(V) ' F and any stable object is Schurian.
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STABLE REPRESENTATIONS OF POSETS 9

2.2. Costability. In what follows we relate ✓-stability with the following no-
tion. Let ✓ 2 Z bS . We say that V 2 spS is ✓-costable (resp. ✓-cosemistable) if
✓(cdn (V)) = 0 and

✓(cdn (W)) < 0 (resp. )

for any proper subrepresentation W of V.
Note that in general the function cdn is not additive (unless S is primitive),

therefore the notion of costability does not posses the properties proven in Sec-
tion 2.1. Nevertheless, if V is coordinate then costability is related to stability
as the following proposition shows.

Proposition 2.6. Let V 2 spS be a coordinate representation. Then V is ✓-
stable if and only if V is ✓0

-costable with ✓0 = ✓ · C�
Sop

.

Proof. If V is coordinate then for any subrepresentation W of V (not necessarily
proper) we have

dimW = cdnW · C�
S ,

and hence

✓(dimW) = ✓ · (dimW)tr = ✓ · (cdnW · C�
S)

tr

= ✓ · C�
S
tr · (cdnW)tr = ✓ · C�

Sop

· (cdnW)tr

= ✓0 · (cdnW)tr = ✓0(cdnW).

Therefore
✓(dimV) = 0 if and only if ✓0(cdnV) = 0,

and for any proper subrepresentation W

✓(dimW) > 0 if and only if ✓0(cdnW) > 0.

The claim follows. ⇤
Corollary 2.2. Let V 2 spS be an indecomposable coordinate representation

whose endomorphism ring is not a division algebra. Then V can not be costable

with respect to some form.

Proof. If V is costable then V is stable by Proposition 2.6 and, therefore its
endomorphism ring is a division algebra by Corollary 2.1. This is a contradiction.

⇤

2.3. Positive stability. We say that representation V is positively stable (re-

spectively costable) if there exists a form ✓ 2 Z bS with ✓
s

> 0, s 2 S such that V
is ✓-stable (respectively costable).

Note that if a representation is ✓-stable this does not imply in general that
✓
s

> 0, s 2 S. For instance, if V is a general representation of a poset S with 4
incomparable elements in dimension ↵ = (2; 1, 1, 1, 1), then V is (�5; 4, 4, 4,�2)-
stable but the form is not positive.
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10 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

We need the following extension of stability. Given a ✓-stable representation
V of a poset S and any representation eV 2 sp eS such that S is a subposet eS and
eV
�

�

S = V, define e✓0 = ✓0, e✓s = ✓
s

if s 2 S and e✓
s

= 0 if s /2 S. Obviously eV is
e✓-stable. We prove even a stronger connection.

Proposition 2.7. Let V 2 spS be a positively stable representation with form

✓. Any representation

eV 2 sp eS , such that S is a subposet

eS and

eV
�

�

S = V is

positively stable with some form

e✓.

Proof. We prove the statement for the case when S = eS \ {s̃} (the remaining
part follows by induction). If V = (V0;Vs

)
s2 bS , we view the representation eV

as eV = (V0;Vs̃

, V
s

)
s2S . Let U be a proper subrepresentation of V such that

✓(dimU) is maximal. As ✓(dimU) > 0 we have that ✓(dimU) � 1. Hence
defining ✓0 = (dimV

s̃

dimV0 + 1) · ✓, we have that V is ✓0-stable and for any
proper subrepresentation W,

✓0(dimW) = (dimV
s̃

dimV0 + 1) · ✓(dimW) � dimV
s̃

dimV0 + 1.

Set ⌫ = dimV
s̃

dimV0 + 1 and define a form e✓ as follows:

e✓0 = ⌫✓0 � dimV
s

, e✓
t

=

(

✓0
t

, t 6= s̃

dimV0, t = s̃.

Then
e✓(dim eV) = ⌫✓0(dimV) = 0,

and for any proper subrepresentation fW = (W0;Ws̃

,W
s

)
s2S we have

e✓(dim fW) = ✓0(dimW) + dimV0 dimfW
s̃

� dimV
s̃

dimfW0

� dimV
s̃

dimV0 + 1� dimV0 dimV
s̃

> 0.

As e✓ has all positive components except e✓0, the claim follows. ⇤

Similarly one proves the following

Proposition 2.8. Let V 2 spS be a positively costable representation with form

✓. Any representation

eV 2 sp eS such that S is a subposet

eS, eV
�

�

S = V and

cdn eV
�

�

S = cdnV is positively costable with some form

e✓.

3. Reflections and stability

In this section we discuss how the Coxeter transformations for posets defined
in [4] act on (semi)stable representations.
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3.1. Reflections and Coxeter transformations. Reflections for posets were
defined in [4] using the bimodule language of poset representations. Below we
recall this construction. Given V = (V0, Vs

)
s2S define S(V) = (V ⇤

0 , V
?
s

), where
V ?
s

= {' 2 V ⇤
0 |'(V

s

) = 0}. Obviously, S(V) 2 spSop

, S2(V) ⇠= V and

dimS(V) = dimV · r0S = (dimV0; dimV0 � dimV
s

)
s2S .

The second reflection is defined as follows. Given a representation V =
(V0;Vs

)
s2S 2 spS define by L(V) the following family of systems of subspaces:

L(V) =
n

(V0;V
0
s

)
s2S | V 0

s

⇢ V0, V 0
s

⇠= V
s

/
X

t�s

V
t

,
X

t�s

V 0
t

= V
s

o

.

Note that having any system of subspaces (V0;Vs

)
s2S indexed by a poset S, one

can form a representation �S((V0;Vs

)) = (V0; Ṽs

)
s2S of S setting V

s

=
P

t�s

V
t

.
In particular, it follows that for any (V0;V 0

s

)
s2S 2 L(V) we recover V as V =

�S((V0;V 0
i

)).
Now let (V0;Vi

)
i2I be any system of subspaces in V0 indexed by a finite set I

(considered as a poset with trivial partial order), such that the map

' :
M

i2I
V
i

�! V0

(v
i

)
i2I 7�!

X

i2I
v
i

, v
i

2 V
i

is surjective. Consider the following short exact sequence

0 // ker'
 

//
L

i2I Vi

'

// V0
// 0

where  (y) = (p
i

(y))
i2I , pi : ker'! V

i

. Dualizing we get the sequence

0 // V ⇤
0

'

⇤
//
L

i2I V
⇤
i

 

⇤
// (ker')⇤ // 0.

Denote by �((V0;Vi

)
i2I) the system of subspaces ((ker')⇤, Im(p⇤

i

))
i2I . The action

of � on dimensions is the following:

dim�(V0;Vi

)
i2I = dim (V0;Vi

)
i2I · r⇤

I

=
⇣

X

i2I
dimV

i

� dimV0; dimV
i

⌘

i2I
.

Denote by E0 a simple representation of the form (F; 0)
s2S in spS . Let V 2 spS

be any representation. Choosing (V0;V 0
s

)
s2S 2 L(V) we define T (V) 2 spSop

by

T (V) = �Sop(�(V0;V
0
s

)
s2S).

One easily checks that if V does not contain E0 as a direct summand then the
map ' above is surjective, and therefore T (V) is well-define (in particular, it does
not depend on the choice of representative in L(V)) and we have T 2(V) ⇠= V. If



C
R
M

P
re
pr
in
t
Se
ri
es

nu
m
b
er

12
34

12 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

V and T (V) are coordinate (this is always the case when S is primitive) we have
that

dimT (V) = dimV · C�
S
�1 · r⇤S · C�

Sop

.

The compositions (when it makes sense) of reflections S, T will be denoted by

F+ = S � T, F� = T � S
and called Coxeter transformations.

Remark 3.1. The transformation F+
is related to the Auslander-Reiten translate

for poset (cf. [21, Chapter 11] and [2]).

Using the formulas (1.1) one checks that the transformations F+ and F� act
on dimensions of representations (in coordinate cases) as follows:

F+(dimV) = dimV · CoxS , F�(dimV) = dimV · (CoxS)�1.

3.2. Stability behaviour of reflections. First we show that S maps
(semi)stable representation into (semi)stable ones.

Lemma 3.1. Let ✓ = (✓0; ✓s)s2S be a weigth. A representation V = (V0;Vs

)
s2S

is ✓ = (✓0; ✓s)s2S-(semi)stable i↵ the representation S(V) = (V ⇤
0 ;V

?
s

)
s2S is S(✓)-

(semi)stable, where

S(✓) := ✓ · br⇤S =
⇣

�
X

s2S
✓
s

� ✓0; ✓s
⌘

s2S
.

Proof. Notice that

✓(dimV) =
X

s2 bS
✓
s

dimV
s

,

S(✓)(dimS(V)) = (�
X

s2S
✓
s

� ✓0) dimV0 +
X

s2S
✓
s

(dimV0 � dimV
s

)

= �✓(dimV).

Therefore ✓(dimV)=0 i↵ S(✓)(dimS(V))=0. Assume that S(V)=(V ⇤
0 ;V

?
s

)
s2P

is not S(✓)-stable. Therefore, there exists a subspace M? such that

(3.1)
X

s2P
✓
s

dim(V ?
s

\M?) +
⇣

X

s2P
✓
s

+ ✓0

⌘

dimM? � 0.

As dim(V ?
s

\M?) = dimV0�dimV
s

�dimM +dim(V
s

\M), from (3.1) we have
X

i2P
✓
i

(dimV0�dimV
i

�dimM+dim(V
i

\M))+
⇣

X

i2P
✓
i

+✓0)(dimV0�dimM
⌘

� 0.

Or, equivalently
X

s2P
✓
s

dim(V
s

\M) + �0 dimM � 0.

Hence (V0;Vs

)
s2P is not ✓-stable which is a contradiction. ⇤
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Assuming that S is primitive we prove that the reflection T also maps
(semi)stable representation into (semi)stable ones.

Lemma 3.2. A representation V is ✓-(semi)stable i↵ any representation W 2
L(V) is ✓ · C�

Sop

-(semi)stable.

Proof. The proof is similar to the proof of Proposition 2.6. ⇤
Similarly we have that if a system of subspaces (V0;Vs

)
s2S indexed by a poset

S (not necessarily a representation) is ✓-stable then �S((V0;Vs

)) is ✓ · (C�
Sop

)�1-
stable.

Lemma 3.3. Let ✓ = (✓0; ✓s)s2S be a weight, V = (V0;Vs

)
s2S a system of sub-

spaces which does not contain E0 as a direct summand. Then V is ✓ = (✓0; ✓s)s2S-
(semi)stable i↵ the system �(V) is �(✓)-(semi)stable, where

�(✓) := ✓ · br⇤S = (✓0;�✓0 � ✓
s

)
s2S .

Proof. Suppose that V is ✓-stable and that �(V) is not �(✓)-stable. Then there
exists a subspace M 2 ker'⇤ such that

(3.2)

P

s2S(✓0 � ✓
s

) dim(V ⇤
s

\M)

dimM
�

P

s2S ✓s dim(V
s

)

dimV0
.

Consider the following commutative diagram

0 0 0

0 M A =
L

s2S As

B 0

0 ker'
L

s2S Vs

V0 0

0 ker 
L

s2S Vs

\K K 0

0 0 0

'

 

We have
dimM = dimker'� dimker 

=
X

s2S
dimV

s

� dimV0 �
⇣

X

s2S
dim(V

s

\K)� dimK
⌘

.

On the other hand
X

s2S
dimV

s

�
X

s2S
dim(V

s

\K) =
X

s2S
A

s


X

s2S
(V ⇤

s

\M).
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Therefore (3.2) reduces to
⇣

X

s2S
dimV

s

�dimV0

⌘

X

s2S
✓
s

dim(V
s

\K)�dimK
X

s2S
✓
s

dimV
s

⇣

P

s2S dimV
s

dimV0
�1

⌘

,

which is equivalent to
P

s2S ✓s dim(V
s

\K)
P

s2S ✓s dimV
s

� dimK

dimV0
.

The last says that V is not ✓-stable which is a contradiction. ⇤
We also have

Proposition 3.1. Assume that a representation V does not contain E0 as a

direct summand. Then V is ✓-(semi)stable i↵ a representation T (V) is T (✓)-
(semi)stable, where

T (✓) = ✓ · C�
Sop

· br⇤S · (C�
S)

�1.

Combining this proposition with the previous two lemmas we get

Theorem 3.1. Assume that S is primitive poset, ↵ = (↵0;↵s

)
s2S the dimen-

sion vector and ✓ a weight. A representation V 6= E0 is ✓-stable (respectively

semistable) i↵ F+(V) is F+(✓)-stable (respectively semistable), where

F+(✓) = ✓ · dCoxS .
In a subsequent work we will establish similar statements for reflection T in

the case of non-primitive posets.

4. Stability and posets of finite representation type

Recall that M.Kleiner in [11] (see also [21, Theorem 10.1]) showed that a poset
S has only a finite number of non equivalent indecomposable representations
(that is, the category spS is of finite representation type) if and only if it does
not contain a full poset whose Hasse diagram is one of the following

•
• •

• • • •
• • • • • • • • • •

• • • • , • • • , • • • , • • • , • • • .

(4.1)

Tha posets in list (4.1) we call critical. Note that spS is of tame representation
type for each critical poset (see, [21, Chapter 15] for details).
In this section we prove the following

Theorem 4.1. Let S be a finite poset. The following statements are equivalent.

(a) The category spS is of finite representation type.
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(b) Any indecomposable representation of S is positively costable.

(c) Any indecomposable representation of S is positively stable.

The implication (c) ) (a) follows from Proposition 2.5. Indeed, if bS has
the infinite representation type then there exist indecomposable representations
whose endomorphism ring is not a division algebra. Therefore, they cannot be
stable by Corollary 2.1.

The implication (b) ) (a) follows from Corollary 2.2 and the fact that any
poset of infinite representation type has indecomposable coordinate representa-
tions whose endomorphism ring is not a division algebra.

4.1. Exact posets of finite representation type. Recall that a poset S is
called exact if it admits an exact representation. A complete list of exact posets
of finite representation type and their sincere representations was obtained in [11]
(see also [21, Chapter 10.7], for corrected list of exact representations). Namely,
a non-primitive poset of finite representation type is exact if and only if it has
one of the following forms:

• • • • • •
• • • • • • • • • • • •

• • • • • • • • • • • • •
• • • , • • • , • • • , • • , • , •

S1 S2 S3 S4 S5 S6

(4.2)

For each non-primitive sincere poset S1, . . . ,S6 we list all its exact representations
in the following table.

Poset Exact representations

S1 (K3;K123, K1,2,3;K1, K1,2;K3, K2,3)

S2 1) (K3;K3, K1,2,3;K123, K13,2;K1, K1,2, K1,2,3)

2) (K4;K14, K1,2,4;K4, K123,4;K3, K2,3, K1,2,3)

3) (K4;K14, K1,2,4;K4, K12,23,4;K3, K2,3, K1,2,3)

4) (K4;K1,24, K1,2,3,4;K4, K123,4;K3, K2,3, K1,2,3)

5) (K4;K1,24, K1,2,3,4;K4, K12,13,4;K3, K2,3, K1,2,3)

6) (K5;K15,4, K1,2,4,5;K5, K123,24,5;K3, K2,3, K1,2,3)

7) (K5;K3,5, K2,3,4,5;K45, K134,24,45;K1, K1,2, K1,2,3,4)

8) (K5;K1,25, K1,2,3,5;K5, K13,234,5;K4, K2,3,4, K1,2,3,4)

9) (K5;K1,25, K1,2,3,5;K5, K123,24,5;K3,4, K2,3,4, K1,2,3,4)⇤

S3 (K4;K4, K1,4, K1,2,3,4;K3, K2,3, K1,2,3;K123,24)

S4 (K4;K4, K3,4, K1,2,3,4;K234, K12,23,4;K1, K1,2, K1,2,3)
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S5 (K5;K125,13, K1,2,3,5;K5, K1,24,5;K4, K3,4, K2,3,4, K1,2,3,4,5)

S6 (K5;K1,25, K1,3,25;K5, K1,2,3,4,5;K4, K3,4, K2,3,4, K1,2,3,4,5)

We used the following notation: Kn denotes the vector space over F with the
canonical basis e1, . . . , en andK

i1...i
k

,...,j1...jm denotes the subspace ofKn generated
by the vectors e

i1...i
k

, . . . , e
j1...jm where

e
i1...i

k

= e
i1 + · · ·+ e

i

k

, . . . , e
j1...jm = e

j1 + · · ·+ e
j

m

.

4.2. Proof of the implication (a) ) (b).

Proposition 4.1. Suppose that S has a finite representation type, and V is a

Schurian representation of V. Then

(4.3) dS⇤(cdnW, cdnV)� dS⇤(cdnV, cdnW) > 0,

for any proper subrepresentation W of V.

Proof. It is clear that it is enough to check the statement in case S is exact. If S is
primitive the claim follows immediately from Corollary 1.1 and Schofield’s charac-
terization of Schurian roots for acyclic quivers [20, Theorem 6.1]. Indeed, in this
case any representation of S corresponds to a representation of an unbound Hasse
quiverQ( bS) of bS. Also, any representation of S is coordinate. Hence, using Corol-
lary 1.1 and the fact that in this case dSop(cdnW, cdnV) = bS(dimW,dimV)
coincides with the usual Tits form of Q( bS), we apply [20, Theorem 5] to prove
that (4.3) holds.

Now assume that S is non-primitive exact. For each representation in Appendix
B we completely describe all maximal sub-coordinate dimensions. The statement
now follows by direct verification of conditions (4.3). ⇤

By Proposition 4.1 we have that any indecomposable V 2 spS with coordinate
dimension ↵ = (↵0;↵i

)
i2S of a poset of finite representation type is costable with

a form ✓ 2 Z bS given by

✓(�) = dS⇤(�,↵)� dS⇤(↵,�).

It is straightforward to check that the components of this form are

(4.4) ✓0 = �
X

s2S
↵
s

, ✓
s

=
X

s�t2 bS
↵
t

�
X

t�s2 bS
↵
t

.

For instance, a unique exact representation of a poset S1 is costable with a form
(�6; 4, 1; 5, 2; 4, 2).
Now observe that if a representation is exact then for a fixed s 2 S we have

X

s�t2 bS
↵
t

> ↵0 >
X

t�s2 bS
↵
t

.
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Therefore each ✓
s

> 0, s 2 S and any exact representation is positively costable.
Now the implication (a) ) (b) follows from Proposition 2.8.

4.3. Proof of the implication (a) ) (c). To prove the implication (a) ) (c)
we show the analogue of Proposition 4.1 for so-called sincere representations and
their dimension vectors.

We call a representation V = (V0;Vs

)
s2S sincere if it is indecomposable, dimV

is sincere and V
s

6= V
t

if s � t in bS. Respectively, bS is called sincere if it has at
least one sincere representation. The following proposition describes all sincere
posets of finite type.

Proposition 4.2. The set of sincere posets of finite representation type con-

sists of four primitive posets (1, 1, 1), (1, 2, 2), (1, 2, 3), (1, 2, 4) and non-primitive

posets S1, . . . ,S6.

Proof. Let S be a poset of finite representation type, V 2 spS its sincere repre-
sentation. Precisely one of the following cases occurs:

i) V is exact representation of S with V
s

6= V0 for all s 2 S.
ii) V is non-exact representation at some s 2 S, therefore V

s

=
P

t�s

V
t

.

In the first case S is in list (4.2) of exact posets. In the second case V gen-
erates an indecomposable representation (denoted by V1) of the reduced poset
S
s

= S \ s. Obviously, V1 is a sincere representation of S
s

and therefore it
satisfies either 1) or 2) above. Proceeding in this way we eventually obtain
an exact representation of some poset S

s1,...,s
k

with V
s

6= V0, s 2 S
s1,...,s

k

from
the table (4.2).

Summing up we have the following procedure to describe all sincere posets and
their sincere representations:

(1) All exact posets which admit exact and at the same time sincere represen-
tation V (that is, V

i

6= V0) are precisely (1, 1, 1), (1, 2, 2), (1, 2, 3), (1, 2, 4)
and S2;

(2) Let S be a sincere poset and V its sincere representation. Let I be a
subset of S such that

P

s2I Vs

6= V0. Define an extended poset SI =
(S [ {es},�I) with a partial order defined in such a way that its re-
striction to S coincides with � and s �I es, for all s 2 I. Let V I

be a representation of SI given by V I
s

= V
s

for all s 2 S and V I
s̃

=
P

s2I Vs

. Evidently, V I is a sincere representation and therefore SI

is a sincere poset.

The above procedure clearly terminates as the dimensions of V0 are bounded.
Hence inductively we obtain all sincere posets and all their sincere representa-
tions. ⇤

Proceeding as in the proof of the previous proposition we obtain the following
list of all sincere representations of sincere posets S1, . . . ,S6:



C
R
M

P
re
pr
in
t
Se
ri
es

nu
m
b
er

12
34

18 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

Poset Sincere representations

S1 (K3;K123, K1,23;K1, K1,2;K3, K2,3)

S2 (K4;K123,24, K13,2,4;K4, K1,4;K3, K2,3, K1,2,3)

(K4;K124,13, K12,13,4;K4, K1,2,4;K3, K2,3, K1,2,3)

S3 (K4;K4, K1,4, K1,3,4;K3, K2,3, K1,2,3;K123,24)

S4 (K4;K4, K123,4, K1,23,4;K14, K1,2,4;K3, K2,3, K1,2,3)

S5 (K5;K15,4, K1,2,4,5;K5, K123,24,5;K3, K2,3, K1,2,3;K1,2,3,5)

S6 (K5;K5, K1,2,5;K134,235, K13,23,4,5;K4, K3,4, K2,3,4;K1,2,3,4)

Similarly to Proposition 4.1 one proves the following:

Proposition 4.3. Let S be a sincere poset and V its sincere representation.

Then V is stable with a form

(4.5) ✓(W) = bS(dimV,dimW)� bS(dimW,dimV).

To prove this proposition we describe the set of maximal subdimensions for
all sincere representations of posets of finite representation type and check the
stability conditions (4.5). The details are given in Appendix C.
If S is sincere than it is straighforward to see (see also, [22, Proposition 4.2])

that

bS(↵,�) = ↵ · C�1
bS · �tr =

X

s2 bS
↵
s

�
s

�
X

s!t2 bS
↵
s

�
t

+
X

s,t2 bS
r(s, t)↵

s

�
t

,

in which r(s, t) is the maximal number of F-linear independent minimal commu-
tativity relations with the source s and the terminus t. By Proposition 4.3 we
have that any sincere V 2 spS with dimension ↵ = (↵0;↵s

)
s2S of a poset of finite

representation type is stable with a form ✓ 2 Z bS given by

(4.6) ✓(�) = bS(�,↵)� bS(↵,�).

One checks that the components of this form are:

(4.7) ✓0 = �
X

s!02 bS
↵
s

+
X

s2S
r(s, 0)↵

s

, ✓
s

=
X

s!t2 bS
↵
t

�
X

t!s2 bS
↵
t

�
X

t2 bS
r(s, t)↵

t

.

For instance, a unique sincere representation of a poset S1 is stable with a form
(�6; 2, 1; 1, 2; 2, 2). By examining each sincere poset we check that the compo-
nents ✓

i

are positive (see Appendix C for the details). Therefore, each sincere
representation of a poset of finite representation type is positively stable with the
form defined by (4.7).
Now let V be an indecomposable representation of bS of finite representation

type. Hence, there is a sincere subposet eI of bS such that the restriction VeI
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of V to Ĩ is a sincere representation. The representation VeI is positively sta-
ble by considerations above. Then the representation V is positively stable by
Proposition2.7. The implication (a) ) (c) follows.

5. Geometric stability

In this section we assume that F is algebraically closed. Fix the poset S and the
admissible dimension vector ↵ = (↵0;↵s

)
s2S . As we mentioned above the variety

RS,↵ is projective and the group Gl(↵0) acts on RS,↵ diagonally. Our goal is
to understand the quotient space RS,↵/Gl(↵0). As usual the main problem is
that the quotient space is rarely a projective variety. One possible approach is
to construct a “good” quotient is via Geometric Invariant Theory (GIT). We
briefly recall this approach, for details we refer to [3] (for general approach),
to [10] (where the author constructed the good quotients for representations of
quivers) and to [17] (where the author motivated the geometric approach to
the classification problem of quiver representations and discussed topological,
arithmetic and algebraic methods for the study of moduli spaces).

5.1. Brief review of GIT quotients. Let G be a reductive group acting on a
projective algebraic variety X. The GIT approach consists of the following steps.
First one chooses a linearization of the action, that is, a G-equivariant embedding
of X into a projective space Pn with a linear action of G (via representation of
G in Gl(n+ 1)). An embedding of X to Pn is defined by choosing a line bundle
L over X (which is ample i↵ the emdedding is closed) and the set of its sections
f0, . . . , fn (which form a basis in the space of sections �(X,L)). Then one specifies
(with respect to L) the sets Xss(L), Xs(L), Xus(L) of semi-stable, stable and
regular points respectively on X, where

(i) x 2 X is called semi-stable if there exist m > 0 and f 2 �(X,Lm)G such
that X

f

= {y 2 X | f(y) 6= 0} is a�ne and contains x;
(ii) x 2 X is called stable if it is semi-stable, stabilizer of x is finite and

G-action on X
f

is closed;
(iii) x 2 X is called unstable if it is not semi-stable.

The central point GIT is that there exists an algebraic quotient of X by G,
denoted by X//G, which can be described as the quotient of the open set of
Xss(L) of semistable points by the equivalence relation: x ⇠ y if and only if
the orbit closures G · x and G · y intersects (in Xss(L)). Therefore the points of
X//G are in one-one correspondence with the closed orbits in Xss(L). Note that
in case L is ample then (see [3, Proposition 8.1])

(5.1) Xss(L)//G ⇠= Proj
⇣

�
n�0 �(X,L⌦n)G

⌘

,

and Xss(L)//G is a projective variety. The variety Xs(L)/G is a geometric

quotient, which parametrizes the stable orbits.
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A powerful tool to describe stable points is the Hilbert-Mumford numerical
criterion of stability, which is stated in terms of the action to one-parameter
subgroups of G. Let x⇤ 2 Fn+1 be a representative of x 2 X ⇢ Pn and � : F⇤ ! G
(regular morphism) be a one-parameter subgroup of G. Then (in appropriate
coordinates) it acts by:

�(t) · x⇤ = (tm0x0, . . . , t
m

nx
n

).

Set

µL(x,�) = min
t

{m
i

: x
i

6= 0}.
The Hilbert-Mumform numerical criterion claims (see [3, Theorem 9.1] for details)
that

x 2 Xss(L) () µL(x,�)  0,

x 2 Xs(L) () µL(x,�) < 0,
(5.2)

for all one-parameter subgroup of G.

5.2. Linearization of Sl(↵0)-action. First note that the orbits of Gl(↵0)-
action on RS,↵ are in one-one correspondence with the orbits of Sl(↵0), so we

study the action of Sl(↵0). Fix a form ✓ = (✓
s

)
s2S 2 Z bS with ✓

s

� 0 for all
s 2 S. As shown in Proposition 6.4 the variety RS,↵ is closed in the product of
Grassmanians

Q

s2S Gr(↵
s

,↵0). Our first aim is to embed the variety RS,↵ into
some larger projective space corresponding to linearizing action of Sl(↵0). We
use a slightly modified standard construction (see, for example, [3, Chapter 11]
and [12]).
A standard way to embed Gr(↵

s

,↵0) into a projective space is via Plucker
embedding, that is, for an element V

i

2 Gr(↵
s

,↵0) we take its basis vectors
a
j

and wedge them together a1 ^ · · · ^ a
↵

s

obtaining an element of P(^↵sF↵0).
Then using the Veronese map we embed the projective space P(V ) into the space
P(Symd(V )). Respectively, for the product of Grassmanians

Q

s2S Gr(↵
s

,↵0) we
have the embedding

Y

s2S
Gr(↵

s

,↵0) ,!
Y

s2S
P(Sym✓

s(^↵sF↵0)).

Using the Segre map Pn ⇥ Pm ,! P(n+1)(m+1)�1 we embed the last product into

P
✓

Y

s2P
Sym✓

s(^d

sFd0)

◆

.

Hence, we have the following sequence of inclusions:

Gr(↵
s

,↵0) ,! P(^↵sF↵0) ,! P(Sym✓

s(^↵sF↵0)).

And, therefore we get the following closed embedding of RS,↵:

RS,↵ ,! P(^↵sF↵0) ,! P(Sym✓

s(^↵sF↵0)).
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As embedding above is closed, the corresponding line bundle L✓ is ample. Note
that L✓ has exactly one Sl(↵0) linearization, since the center of Sl(↵0) is 0-
dimensional. Our aim is to describe the set of semistable R✓�ss

S,↵ and stable R✓�s

S,↵
points with respect to L✓ (we adopt the arguments from [3, Theorem 11.1], [8,
Theorem 2.2] and [16]).

Theorem 5.1. Let ✓ = (✓
s

)
s2S 2 ZS

+. Then V = (V0;Vs

)
s2S 2 R✓�ss

S,↵ (resp.

2 R✓�s

S,↵ ) if and only if for any proper subrepresentation W ⇢ V we have µ✓(W) 
µ✓(V) (resp. the strict inequality holds); that is, if and only if V is µ✓-semistable

(resp. µ✓-stable).

Proof. Let n = ↵0 = dimV0 and T be the maximal torus in Sl(n). Each one-
parameter subgroup � : F⇤ ! T is conjugated to a diagonal one. Therefore, we
assume that

�(t) = diag{tq1 , . . . , tqn},
where q1 + · · · + q

n

= 0. Without loss the generality we can assume that q1 �
· · · � q

n

. Also, it is a standard fact that all such groups form a convex set with
extreme points �

r

: F⇤ ! T given by

�
r

(t) = diag{tq1 , . . . , tqn},
such that q1 = · · · = q

r

= n� r, q
r+1 = · · · = q

n

= �r.
Suppose that V = (V0;Vs

)
s2S is a semistable point. Choose a basis v1, . . . , vn

of V0. Set H
i

= span{v1, . . . , vi}, i = 1, . . . , n (in particular, we have H
n

= V0

and H
r

= W ). Let K be any subspace of V0. Then for any integer j, 1  j 
s = dimK, there is a unique integer m

j

such that

dim(K \H
m

j

) = j, dim(K \H
m

j

�1) = j � 1.

Therefore we can represent K (in the basis e1, . . . , en) by the matrix A
K

of the
form

A
K

=

2

6

6

6

6

4

a11 . . . a1m1 0 . . . 0 0 . . . 0

a21 . . . . . . a2m2 . . . 0 0 . . . 0
...

...
...

...
...

...
...

...
...

a
k1 . . . . . . . . . . . . . . . a

km

k

. . . 0

3

7

7

7

7

5

T

,

with a
jmj

6= 0 for all j. Considering the maximal minors of A
K

we have that in
the Plucker embedding p

i1...i
k

(K) = 0 if i
j

> m
j

and p
m0...m

k

(K) 6= 0. Also from
the matrix representation of K we get

p
i1...i

k

(�(t)K) = tqi1+···+q

i

kp
i1...i

k

(K).

Applying the procedure above to all subspaces V
s

in V we get the numbers
m

(s)
1 , . . . ,m

(s)
↵

s

for all s 2 S and we have (by thw minimality of the numerical
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function) that

µL✓(V,�) =
X

s2S
✓
s

↵

i

X

i=1

q
m

(s)
j

.

Now, since dim(V
s

\H
j

)�dim(V
s

\H
j�1) = 0 if j 6= m

(s)
j

, we rewrite the previous
sum as follows:

µL✓(V,�) =
X

s2S
✓
s

n

X

i=1

q
i

⇣

dim(V
s

\H
i

)� dim(V
s

\H
i�1)

⌘

=
X

s2S
✓
s

�

↵
s

q
n

+
n�1
X

i=1

(dim(V
s

\H
j

)(q
i

� q
i+1)

�

= q
n

X

s2S
✓
s

↵
s

+
n�1
X

j=1

⇣

X

s2S
✓
s

dim(V
s

\H
j

)(q
j

� q
j1)

⌘

.

Note that µL✓(V,�) is linear in (q1, . . . , qn). Therefore replacing t � by a subgroup
�
s

we get

µL✓(V,�
r

) = �r
X

s2S
✓
s

↵
s

+ n
X

s2S
✓
s

dim(V
s

\H
r

).

By the Hilbert-Mumford numerical criteria (5.2) we have that if V is semistable
(resp. stable) then µL✓(V,�

r

)  0 ( µL✓(V,�
r

) < 0), which is the same as

µ✓(W)  µ✓(V), (resp <),

where W = (H
r

, V
s

\ H
r

)
s2S is a proper subrepresentation of V. Hence V is

µ✓-semistable (resp. stable).
Conversely, let V is ✓-semistable but not semistable with respest to L✓. Then

there exist a one-parameter subgroup � such that µL✓(V,�) > 0. Hence, there
must exist 1  r  n� 1 such that µL✓(V,�

r

) > 0, which is equivalent to

µ✓((H, V
s

\H)
s2S) > µ✓(V)

for some r-dimensional subspace H of V0. Therefore V is not ✓-semistable. Con-
tradiction. Similarly one proves the su�ciency of conditions for the strict in-
equality. ⇤
Corollary 5.1. If the dimension vector ↵ satisfies ✓(�) 6= 0 for all 0 6= � < ↵,

then

(5.3) R✓�ss

S,↵ = R✓�s

S,↵ .

Proof. Indeed, in this case each semistable representation is already stable. ⇤

Note that if ↵ is coprime (that is, gcd(↵
s

: s 2 bS) = 1) then the equality (5.3)
holds for the generic choice of ✓.
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5.3. Polystable representations. We start by the following proposition (see
also [8, Proposition 3.1]).

Proposition 5.1. Let ✓ = (✓
s

)
s2S . Assume that V 2 spS is µ✓-semistable and

V = �l

i=1Wi

is a direct sum of subrepresentations. Then µ✓(Wi

) = µ✓(V) and
W

i

are µ✓-semistable.

Proof. Assume that V = W1 �W2. Then

0 �! W1 �! V �! W2 �! 0,

and

0 �! W2 �! V �! W1 �! 0.

As V is semistable then µ✓(W1)  µ✓(V) and µ✓(W2)  µ✓(V). By Proposition
2.1 we have that µ✓(W1) � µ✓(V) and µ✓(W2) � µ✓(V). The statement follows.

⇤

A µ✓-semistable representation V will be called µ✓-polystable if it decomposes
into a direct sum of finitely many µ✓-stable subrepresentations. Similarly to [8,
Proposition 3.3] one proves the following:

Proposition 5.2. V is µ✓-polystable if and only if the orbit of V in R✓�ss

S,↵ is

closed.

As a conseguence of this proposition we have that R✓�ss

S,↵ //Sl(↵0) parametrizes

µ✓-polystable representations. Denote by sp✓�ps

S the additive subcategory of
sp✓�ps

S consisting of µ✓-polystable representations. Then sp✓�ps

S is semisimple,
where µ✓-stable representations are precisely the simple objects.

5.4. Moduli space of representations of posets. Let ✓ = (✓
s

)
s2S 2 Z bS

and fix an admissible dimension vector ↵ 2 Z bS . We will make the following
identification:

M✓�ss

S,↵ = R✓�ss

S,↵ //Sl(↵0), M✓�s

S,↵ = R✓�s

S,↵/Sl(↵0).

Corollary 5.2. By (5.1), the variety M✓�ss

S,↵ is projective and by Proposition 5.2

it parametrizes the isomorphisms classes of µ✓-polystable representations of S of

dimension vector ↵.

Corollary 5.3. The variety M✓�s

S,↵ is open in M✓�ss

S,↵ and parametrizes the iso-

morphisms classes of µ✓-stable representations of S of dimension vector ↵.

If M✓�s

S,↵ is non-empty we have that

dimM✓�s

S,↵ = dimRS,↵ � dimSl(↵0)

= dimRS,↵ � ↵2
0 + 1.
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By Proposition 6.5 in Appendix A we have that if S is primitive or n-point
extension of primitive poset (see Appendix A for the definition) then dimRS,↵ =
↵2
0 � bS(↵,↵). Therefore, in these cases we have

(5.4) dimM✓�s

S,↵ = 1� bS(↵,↵).

Note that this dimension formula is a direct analogue of the dimension formula
for moduli space of µ✓-stable representations of quiver Q which given in terms of
the quadratic form associated with Q (see, for example, [17, Section 3.5]).

5.5. Moduli spaces and Coxeter functors. Assume that S is primitive and
↵ 6= (1; 0)

s2S . Due to Theorem 3.1 Coxeter transformation F+ (defined in Section
3) gives rise to a map between moduli spaces:

F+ : M✓�ss

S,↵ �! MF+(✓)�ss

S,F+(↵) .

Applying (F+)n, in certain cases (for instance when S is of finite representation
type, or when ↵ is preprojective) we are able to obtain the information about
M✓�ss

S,↵ knowing it in simpler cases (e.g., one-dimensional cases). We believe that
a more careful study of these maps deserves further attention.

5.6. Examples. First assume that S is a poset of finite representation type.
By Theorem 4.1 we have that if ↵ is an admissible indecomposable dimension
then both sets R✓�ss

S,↵ and R✓�s

S,↵ are non-empty. Therefore M✓�ss

S,↵ and M✓�s

S,↵
are non-empty as well. As S is of finite representation type, the orbit of in-
decomposable V with dimension ↵ is dense in RS,↵ therefore M✓�s

S,↵ consists
of one point.
Now assume that the poset S is one of the critical poset from list (4.1). Consider

dimension vector ↵S which a minimal imaginary root of form bS (that is, minimal
↵S so that bS(↵S ,↵S) = 0):

↵(1,1,1,1) = (2; 1, 1, 1, 1);

↵(2,2,2) = (3; 1, 2, 1, 2, 1, 2);

↵(1,3,3) = (4; 2, 1, 2, 3, 1, 2, 3);

↵(1,2,5) = (6; 3, 2, 4, 1, 2, 3, 4, 5);

↵(N,4) = (5; 2, 4, 1, 3, 1, 2, 3, 4).

For instance, for unique non-primitive critical poset (N, 4) we have
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2 1

4 3

1

2

3

4

5

It is straightforward to see that both R✓�ss

S,↵ and R✓�s

S,↵ are non-empty for the

choice of ✓ given by the formulas (4.6). Therefore the moduli spaces M✓�ss

S,↵ and

M✓�s

S,↵ are non-empty as well. The poset S is primitive or 1-point extension of

a primitive poset, therefore equality (5.4) holds and we have dimM✓�s

S,↵ = 1 (as
bS(↵,↵) = 0).

6. Moment map and unitary representation of posets

6.1. Unitary representation of posets. We assume that F = C. By a unitary

representation of S we mean a subspace representation U = (U0, Us

)
s2S in which

the ambient U0 is a unitary space. Two unitary representations U = (U0, Us

)
and U0 = (U 0

0, U
0
s

) of S are unitarily equivalent if there exists a unitary bijection
' : U0 ! U 0

0 such that '(U
s

) = U 0
s

for all i 2 S. Result of [5] gives a com-
plete classification of indecomposable systems of two unitary subspaces (which
is already a non finite problem). In [1] the authors classified the posets which
have finite, tame and wild unitary type. Note that the problem of classifying of
unitary representations is wild even for the poset S = {s1, s2, s3 | s1 � s2}. It
turned out that the classification becomes possible for a broader class of posets
if one imposes additional conditions on unitary representations (cf. [13, 14, 19]).

We say that a unitary representation U = (U0;Us

)
s2S is a representation of

weight � = (�
s

)
s2S 2 Z bS

+ (or �-representation) if

(6.1)
X

s2S
�
s

P
U

s

= �0I,

where P
M

denote the orthogonal projection of U0 onto subspace M , and �0 2 Q
is determined by the trace identity of (6.1). All �-representations of P form an
additive category denoted by uspS,�.

There is an obvious (forgetfull) functor F : uspS,� ! spS which relates to �-
representation U = (U0, Us

)
s2S the underlying system of vector spaces (forgetting

the inner product). We prove the following (see also [19, Lemma 5])

Proposition 6.1. Let U = (U0;Us

)
s2S 2 uspS,� be �-representation. Then F(U)

is µ✓-polystable with ✓ = (�
s

)
s2S .
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Proof. First suppose that U is indecomposable. Equating the traces of both sides
in (6.1), we get

P

s2S �s

dimU
s

= �0 dimU. If M is any proper subspace of U
then

P

s2S �s

P
U

s

P
M

= �0PM

. Therefore �0 = µ✓(U). Equating the traces of
both sides in the last equality we get

X

s2S
�
s

tr(P
U

s

P
M

) = �0 dimM.

It follows from [5] that tr(P
M1\M2)  tr(P

M1PM2) for each two subspaces M1 and
M2, and so

X

s2S
�
s

tr(P
U

s

\M) 
X

i2S
�
i

tr(P
U

s

P
M

) = �0 dimM.

It remains to prove that the last inequality is strict. Indeed, assuming that
tr(P

U

s

\M) = tr(P
U

s

P
M

) for all s, we obtain that each P
U

s

commutes with P
M

.
Hence, the subspace M is invariant with respect to the projections P

U

i

and the
representation U is decomposable. This contradicts the assumption. Therefore,
µ✓(W) < µ✓(U) for any proper subrepresentation W, and U is µ✓-stable.

Now, if U is a decomposable �-representation, we get that U is µ✓-semistable.
Then, proceeding as in Proposition 5.1 one proves that U is µ✓-polystable. ⇤

Having a subspace representation V = (V0;Vs

)
s2S we say that it is �-unitari-

zable if there is an inner product on V0 such that V is a �-representation with
respect to this product.

It was shown in [19] that uspS,� has a finite number of unitarily non equiv-
alent indecomposable representations for each weight � if and only if S is of
finite representation type; that is, if and only if S contains one of the Kleiner’s
critical posets. There are other similarities between �-representations and usual
representations of poset (see, for example, [23] and the references therein). In
this section we explain these similarities via the Kempf-Ness theorem (which es-
tablishes the homeomorphism between GIT and symplectic quotients) and by
constructing the functorial connection between the categories uspS,� and spS .

6.2. Moment map, symplectic reduction and the Kempf-Ness theorem.
We briefly recall the idea behind the symplectic quotients and the Kempf-Ness
theorem. Suppose again that G is a complex reductive group acting linearly on a
smooth complex projective variety X ⇢ Pn. Apart from taking GIT quotient (as
in Section 5.1) one can alternatively consider the so-called symplectic quotient.
As G is a complex reductive group, it is equal to the complexification of its
maximal compact subgroup K (by k we denote the corresponding Lie algebra of
K). Complex projective space Pn has a natural Kähler structure given by the
Fubini-Study form, therefore X is symplectic with symplectic form !. Assuming
that K acts unitarily, there is a moment map for this action

� : X �! k⇤,

which satisfies:
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(1) � is K-equivariant with respect to the action of K on X and to the
coaction of K on k⇤; that is, the following holds

�(g · p) = g�(p)g�1, p 2 M, g 2 K;

(2) � lifts the infinitesimal action, in the sense that, for all A 2 k⇤ we have

d�A = !(A
X

,��)

where �A : X ! R is the map given by x 7! �(x) ·A, and the infinitesimal
action k ! V ect(X) is given by A ! A

X

with

A
X,x

=
d

dt
exp(tA) · x��

t=0
.

Theorem 6.1 (Kempf-Ness theorem, [9]). There is an inclusion ��1(0) ⇢ Xss(L)
which induces a homeomorphism between the symplectic reduction and the GIT

quotient

��1(0)/K ⇠= Xss(L)//G.

6.3. �-unitarizable representations via moment map. Let ✓ = (✓
s

)
s2S 2

ZS be a weight with positive components, ↵ = (↵0,↵s

)
s2S 2 Z bS an admissible

dimension, and V = (V0;Vs

) 2 spS a representation with dimV = ↵. We regard
V as a point in RS,↵(L✓) after the embedding of RS,↵ into the projective space
as in Section 5.2. It is easy to check that the moment map of Sl(↵0)-action on
RS,↵(L) has a form

� : RS,↵(L) ! su(↵0)
⇤,

V = (V0, Vs

)
s2S 7!

X

s2S
✓
s

A
s

A⇤
s

� µ✓(V)I,

where A
i

is an isometry which embeds V
i

into C↵0 . Considering ��1(0) we get

��1(0) =

8

>

<

>

:

(P
s

)
s2P 2 (M

↵0(C))s2S

�

�

�

P
s

= P ⇤
s

= P 2
s

, rank(P
s

) = ↵
s

,

P
s

P
t

= P
s

P
t

= P
s

, s � t,
P

s2S ✓sPs

= µ✓(↵)I

9

>

=

>

;

,

therefore ��1(0) is a set of objects U in uspS,✓ with dimension ↵. If U is �-
representation then F(U) is µ�-polystable by Proposition 6.1. Therefore, the
functor F(·) yields a natural map � : ��1(0) ! R✓�ss

S,↵ . As a consequence of the
Kempf-Ness theorem we have

Theorem 6.2. Let S be a poset, ↵ = (↵0;↵s

)
s2S a dimension vector and ✓ =

(✓0; ✓s)s2S a form such that ✓(↵) = 0. The map � : ��1(0) ! R✓�ss

S,↵ induces a

bijection:

��1(0)/U(↵0) ' M✓�ss

S,↵ .

We immediately have
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Corollary 6.1. A representation V = (V0;Vs

)
s2S is � = (�

s

)
s2S-unitarizable if

and only if V is µ�-polystable.

Applying Theorem 4.1 we have

Corollary 6.2. Any indecomposable representation V of a poset of finite repre-

sentation type is �-unitarizable, where � is constructed by formulas (4.7) with

respect to the dimension of V.

6.4. Relation between the categories uspS,� and spS. Recall that core(spS)
of spS is a maximal sub-groupoid of spS : the subcategory consisting of the same
objects as in spS , in which morphisms are the isomorphisms in spS . Note that
spS and core(spS) are the “same” from the classification point of view.
As we mentioned above there is a forgetful functor F : uspS,� ! spS . It follows

from Corollary 6.1 that the image of F (on objects) coincides with the objects
of core(sp��ps

S ). Now we construct the functor in opposite direction. Let V =
(V0;Vs

) 2 sp��ps

S . There is unique inner product in V0 which makes V into a �-
representation. Denote the resulting �-representation by U(V) 2 uspS,�. Given
an invertible morphism g : V ! W define U(g) = ', where g = 'A is a right
polar decomposition of g (' is a unitary map and A is positive definite). As
g is invertible, the right polar decomposition is unique and hence U(g) is well-
defined. Also, one checks that it is a morphism between U(V) and U(W) (see [19,
Theorem 3]). One can easily see that U preserves the composition of morphisms
and therefore yields a functor.
Consider the following relation on morphisms in core(spS). Given two mor-

phisms g1, g2 : V ! W we say that g1 ⇠ g2 if '1 = '2 in right polar decompo-
sitions g1 = '1A1 and g2 = '2A2 with respect to some inner product in V0 and
W0. One can show (the proof is left to the reader) that the relation ⇠ does not
depend on the choice of inner product and in fact is an equivalence relation on
morphisms in core(spS). By core(spS)/ ⇠ we denote the corresponding quotient
category and by ⇧ : core(spS) ! core(spS)/ ⇠ the quotient functor. By construc-
tion if follows that U factors as U0�⇧ (as the unitary parts in polar decomposition
of morphisms g1 ⇠ g2 are the same).

Proposition 6.2. Functors ⇧ � F and U0
establish an isomorphism between the

categories uspS,� and core(sp��ps

S )/ ⇠.

Summing up the constructions above we have the following

uspS,� core(sp��ps

S ) spS

core(sp��ps

S )/ ⇠

F

U ⇧

U0
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In particular one shows that uspS,� has finitely many indecomposable objects
for any � i↵ spS has finitely many indecomposable representations (up to an
isomorphism), which reproves [19, Theorem 1].

Appendix A. Some additional statements.

Proposition 6.3. Let V = (V0;Vs

)
s2S and K ⇢ V0 then for the induced repre-

sentation V
K

= (K;V
s

\K)
s2S we have V/V

K

2 spS .

Proof. Let s, t 2 S and s � t. It is enough to show that V
s

/(V
s

\K) ⇢ V
t

/(V
t

\K).
Define the following map

⇢ : V
s

/(V
s

\K) ! V
t

/(V
t

\K),

by ⇢(x + V
s

\ K) = x + V
t

\ K, for any x 2 V
s

. Clearly, ⇢ is linear. If x1 +
V
s

\ K = x2 + V
s

\ K then x1 � x2 2 V
s

\ K and x1 � x2 2 V
t

\ K, therefore
⇢(x1+V

s

\K) = ⇢(x2+V
s

\K) and ⇢ is well-defined. We have ker ⇢ = 0, therefore
⇢ is an inclusion. ⇤

Proposition 6.4. Let ↵ = (↵0;↵s

)
s2S be a dimension vector. Variety RS,↵ is a

Zariski closed, irreducible subset of

Q

s2S Gr(↵
s

,↵0).

Proof. Given the elements s1, . . . , sm 2 S denote by S(s1, . . . , sm) a subposet
of S consisting of these elements. We will use the same letter ↵ (abusing the
notation) to denote the restriction of the dimension vector on the subposet of S.
Clearly, RS(s),↵ = Gr(↵

s

,↵0). Given two incomparable points s1 and s2 we have
that RS(s1,s2),↵ = Gr(↵

s1 ,↵0)⇥Gr(↵
s2 ,↵0). If s1 � s2 then RS(s1,s2),↵ is a flag of

two subspaces and therefore it is a Zariski closed in Gr(↵
s1 ,↵0)⇥Gr(↵

s2 ,↵0).
Now, for any two s1, s2 2 S let ⇡

s1,s2 be the restriction toRS,↵ of the projection
Y

s2S
Gr(↵

s

,↵0) ⇣ Gr(↵
s1 ,↵0)⇥Gr(↵

s2 ,↵0).

Then we have

RS,↵ =
\

(s1,s2)2S⇥S
⇡�1
s1,s2

�

RS(s1,s2),↵
�

.

Hence RS,↵ is Zariski closed.
Now we prove that it is irreducible. We proceed by induction on the height of

S. If S is of height 1, then RS,↵ =
Q

s2S Gr(↵
s

,↵0) is irreducible as a product
of irreducible varieties. Now suppose that S has an arbitrary height greater than
1. By S

M

denote the set of all minimal elements in S. Denote by P
s

a principal
filter in S generated by s (that is, P

s

= {t 2 S | s � t}). Given two elements
s1, s2 2 S

M

we say that they are equivalent if the intersection between P
s1 and

P
s2 is non-empty. This defines the equivalence relation on S

M

. By X denote the
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set of equivalence classes, and by [s] the equivalence class of s 2 S
M

in X . For
any x 2 X define

O
x

=
[

s2S
M

,[s]=x

P
s

\ {s}.

Mention that each O
x

has height strictly less that the height of S. Consider the
following natural projection:

f : RS,↵ ⇣
Y

s2S
M

Gr(↵
s

,↵0).

Now one checks that the fibers of f are isomorphic to

Y

x2X
RO

x

,

e↵(x) ,

in which e↵(x) = (e↵(x)
0 , e↵

(x)
t

)
t2O

x

is an admissible dimension vector given by

e↵
(x)
0 = ↵0 �

X

s2S
M

,[s]=x

↵
s

, e↵
(x)
t

= ↵
t

�
X

s2S
M

,[s]=x

↵
s

, t 2 O
x

.

Now the induction pass follows by [6, Theorem 11.14], as each RO
x

,

e↵(x) is irre-
ducible by induction assumption. ⇤
In fact, the proof of the previous proposition gives a method to compute the

dimension of RS,↵. We will do this in two special cases. We say that a poset S
is a n-point extension of a primitive poset, if there exist n incomparable minimal
elements s1, . . . , sn 2 S such that S \ {s1, . . . , sn} is a primitive poset.

Proposition 6.5. Let S be a primitive poset or n-point extension of a primitive

poset, and ↵ = (↵0;↵s

)
s2S be a dimension vector. We have that

dimRS,↵ = ↵2
0 � bS(↵,↵).

Proof. In case S is primitive the proof is straightforward, as in this case RS,↵
splits as a product of flags of subspaces. In case S is n-point extension of a
primitive poset, projecting the variety RS,↵ as in the previous proposition for
the set of its minimal elements we reduce the statement to a primitive case. The
details are left to the reader. ⇤
Conjecture. For any poset S and an admissible dimension vector ↵ 2 Z bS

we

have:

dimRS,↵ = ↵2
0 � bS(↵,↵).
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Appendix B. Exact representations of finite representation type,

their maximal subcoordinate vectors and costability condition

For each non-primitive posets S1, . . . ,S6 of finite representation type (given in
Section 3.1) we list its exact representations, costability condition (calculated by
formulas (4.4)) and maximal subcoordinate vectors. By Kn we denote the F vec-
tor space with canonical basis e1, . . . , en and K

i1...i
k

,...,j1...jm denotes the subspace
of Kn generated by the vectors e

i1...i
k

, . . . , e
j1...jm in which

e
i1...i

k

= e
i1 + · · ·+ e

i

k

, . . . e
j1...jm = e

j1 + · · ·+ e
j

m

.

Poset S1.

Representation

K3

K1,2,3

K123

K1,2

K1

K2,3

K3

Costability

�6

1

4

2

5

2

4

Maximal subcoordinate vectors

(1; 0, 0; 1, 0; 0, 0), (1; 0, 1; 0, 0; 1, 0), (1; 0, 1; 0, 1; 0, 1), (1; 1, 0; 0, 0; 0, 0),
(2; 0, 1; 1, 0; 1, 0), (2; 0, 1; 1, 1; 0, 1), (2; 0, 2; 0, 1; 1, 1), (2; 1, 0; 1, 0; 0, 1),
(2; 1, 1; 0, 1; 0, 1), (2; 1, 1; 0, 1; 1, 0),

Poset S2.

Representation

K3

K1,2,3

K3

K13,2

K123

K1,2,3

K2,3

K1

Costability

�7

1

4

2

5

1

3

5

Maximal subcoordinate vectors

(1; 0, 0; 1, 0; 0, 0, 1), (1; 0, 1; 0, 0; 1, 0, 0), (1; 0, 1; 0, 1; 0, 0, 1), (1; 0, 1; 0, 1; 0, 1, 0),
(1; 1, 0; 0, 0; 0, 0, 1), (2; 0, 1; 1, 0; 1, 0, 1), (2; 0, 1; 1, 1; 0, 1, 1), (2; 0, 2; 0, 1; 1, 1, 0),
(2; 1, 0; 1, 0; 0, 1, 1), (2; 1, 1; 0, 1; 0, 1, 1), (2; 1, 1; 0, 1; 1, 0, 1).
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Representation

K4

K1,2,4

K14

K4,123

K4

K1,2,3

K2,3

K3

Costability

�7

2

5

3

6

2

4

6

Maximal subcoordinate vectors

(1; 0, 0; 0, 0; 1, 0, 0), (1; 0, 0; 0, 1; 0, 0, 1), (1; 0, 0; 1, 0; 0, 0, 0), (1; 0, 1; 0, 0; 0, 0, 1),
(1; 0, 1; 0, 0; 0, 1, 0), (1; 1, 0; 0, 0; 0, 0, 0), (2; 0, 0; 1, 0; 1, 0, 0), (2; 0, 0; 1, 1; 0, 0, 1),
(2; 0, 1; 0, 0; 1, 1, 0), (2; 0, 1; 0, 1; 0, 1, 1), (2; 0, 1; 0, 1; 1, 0, 1), (2; 0, 1; 1, 0; 0, 1, 0),
(2; 0, 2; 0, 0; 0, 1, 1), (2; 1, 0; 0, 0; 1, 0, 0), (2; 1, 0; 0, 1; 0, 0, 1), (2; 1, 0; 1, 0; 0, 0, 1),
(2; 1, 1; 0, 0; 0, 1, 0), (3; 0, 1; 1, 0; 1, 1, 0), (3; 0, 1; 1, 1; 0, 1, 1), (3; 0, 1; 1, 1; 1, 0, 1),
(3; 0, 2; 0, 1; 1, 1, 1), (3; 1, 0; 1, 0; 1, 0, 1), (3; 1, 0; 1, 1; 0, 1, 1), (3; 1, 1; 0, 1; 0, 1, 1),
(3; 1, 1; 0, 1; 1, 0, 1), (3; 1, 1; 0, 1; 1, 1, 0), (3; 1, 1; 1, 0; 0, 1, 1).

Representation

K4

K1,2,4

K14

K4,12,23

K4

K1,2,3

K2,3

K3

Costability

�8

2

5

3

7

2

4

6

Maximal subcoordinate vectors

(1; 0, 0; 0, 0; 1, 0, 0), (1; 0, 0; 0, 1; 0, 1, 0), (1; 0, 0; 1, 0; 0, 0, 0), (1; 0, 1; 0, 0; 0, 1, 0),
(1; 0, 1; 0, 1; 0, 0, 1), (1; 1, 0; 0, 0; 0, 0, 0), (2; 0, 0; 1, 0; 1, 0, 0), (2; 0, 0; 1, 1; 0, 1, 0),
(2; 0, 1; 0, 1; 1, 0, 1), (2; 0, 1; 0, 1; 1, 1, 0), (2; 0, 1; 0, 2; 0, 1, 1), (2; 0, 1; 1, 0; 0, 1, 0),
(2; 0, 1; 1, 1; 0, 0, 1), (2; 0, 2; 0, 1; 0, 1, 1), (2; 1, 0; 0, 1; 1, 0, 0), (2; 1, 0; 1, 0; 0, 0, 1),
(2; 1, 1; 0, 1; 0, 0, 1), (2; 1, 1; 0, 1; 0, 1, 0), (3; 0, 1; 1, 1; 1, 0, 1), (3; 0, 1; 1, 1; 1, 1, 0),
(3; 0, 1; 1, 2; 0, 1, 1), (3; 0, 2; 0, 2; 1, 1, 1), (3; 1, 0; 1, 1; 1, 0, 1), (3; 1, 1; 0, 2; 0, 1, 1),
(3; 1, 1; 0, 2; 1, 0, 1), (3; 1, 1; 0, 2; 1, 1, 0), (3; 1, 1; 1, 1; 0, 1, 1).
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Representation

K4

K1,2,3,4

K1,24

K4,123

K4

K1,2,3

K2,3

K3

Costability

�8

1

5

3

6

2

4

6

Maximal subcoordinate vectors

(1; 0, 0; 1, 0; 0, 0, 0), (1; 0, 1; 0, 0; 0, 1, 0), (1; 0, 1; 0, 0; 1, 0, 0), (1; 0, 1; 0, 1; 0, 0, 1),
(1; 1, 0; 0, 0; 0, 0, 1), (2; 0, 1; 1, 0; 1, 0, 0), (2; 0, 1; 1, 1; 0, 0, 1), (2; 0, 2; 0, 0; 1, 1, 0),
(2; 0, 2; 0, 1; 0, 1, 1), (2; 0, 2; 0, 1; 1, 0, 1), (2; 1, 0; 1, 0; 0, 0, 1), (2; 1, 0; 1, 0; 0, 1, 0),
(2; 1, 1; 0, 0; 1, 0, 1), (2; 1, 1; 0, 1; 0, 1, 1), (2; 2, 0; 0, 0; 0, 0, 1), (3; 1, 1; 1, 0; 1, 1, 0),
(3; 1, 1; 1, 1; 0, 1, 1), (3; 1, 1; 1, 1; 1, 0, 1), (3; 1, 2; 0, 1; 1, 1, 1), (3; 2, 0; 1, 0; 0, 1, 1),
(3; 2, 1; 0, 1; 0, 1, 1), (3; 2, 1; 0, 1; 1, 0, 1).

Representation

K4

K1,2,3,4

K1,24

K4,12,23

K4

K1,2,3

K2,3

K3

Costability

�9

1

5

3

7

2

4

6

Maximal subcoordinate vectors

(1; 0, 0; 1, 0; 0, 0, 0), (1; 0, 1; 0, 0; 1, 0, 0), (1; 0, 1; 0, 1; 0, 0, 1), (1; 0, 1; 0, 1; 0, 1, 0),
(1; 1, 0; 0, 0; 0, 0, 1), (2; 0, 1; 1, 0; 1, 0, 0), (2; 0, 1; 1, 1; 0, 1, 0), (2; 0, 2; 0, 1; 1, 0, 1),
(2; 0, 2; 0, 1; 1, 1, 0), (2; 0, 2; 0, 2; 0, 1, 1), (2; 1, 0; 1, 0; 0, 1, 0), (2; 1, 0; 1, 1; 0, 0, 1),
(2; 1, 1; 0, 1; 0, 1, 1), (2; 1, 1; 0, 1; 1, 0, 1), (2; 2, 0; 0, 1; 0, 0, 1), (3; 1, 1; 1, 1; 1, 0, 1),
(3; 1, 1; 1, 1; 1, 1, 0), (3; 1, 1; 1, 2; 0, 1, 1), (3; 1, 2; 0, 2; 1, 1, 1), (3; 2, 0; 1, 1; 0, 1, 1),
(3; 2, 1; 0, 2; 0, 1, 1), (3; 2, 1; 0, 2; 1, 0, 1).
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Representation

K5

K1,2,4,5

K4,15

K123,24,5

K5

K1,2,3

K2,3

K3

Costability

�9

2

6

4

8

3

5

7

Maximal subcoordinate vectors

(1; 0, 0; 0, 0; 1, 0, 0), (1; 0, 0; 0, 1; 0, 0, 1), (1; 0, 0; 1, 0; 0, 0, 0), (1; 0, 1; 0, 0; 0, 0, 1),
(1; 0, 1; 0, 0; 0, 1, 0), (1; 0, 1; 0, 1; 0, 0, 0), (1; 1, 0; 0, 0; 0, 0, 0), (2; 0, 0; 1, 0; 1, 0, 0),
(2; 0, 0; 1, 1; 0, 0, 1), (2; 0, 1; 0, 0; 1, 1, 0), (2; 0, 1; 0, 1; 0, 1, 1), (2; 0, 1; 0, 1; 1, 0, 1),
(2; 0, 1; 0, 2; 0, 0, 1), (2; 0, 1; 1, 0; 0, 1, 0), (2; 0, 1; 1, 1; 0, 0, 0), (2; 0, 2; 0, 0; 0, 1, 1),
(2; 0, 2; 0, 1; 0, 0, 1), (2; 1, 0; 0, 0; 1, 0, 0), (2; 1, 0; 0, 1; 0, 0, 1), (2; 1, 0; 1, 0; 0, 0, 1),
(2; 1, 1; 0, 0; 0, 0, 1), (2; 1, 1; 0, 1; 0, 1, 0), (2; 2, 0; 0, 0; 0, 0, 0), (3; 0, 1; 1, 0; 1, 1, 0),
(3; 0, 1; 1, 1; 0, 1, 1), (3; 0, 1; 1, 1; 1, 0, 1), (3; 0, 1; 1, 2; 0, 0, 1), (3; 0, 2; 0, 1; 1, 1, 1),
(3; 0, 2; 0, 2; 0, 1, 1), (3; 0, 2; 0, 2; 1, 0, 1), (3; 1, 0; 1, 0; 1, 0, 1), (3; 1, 0; 1, 1; 0, 1, 1),
(3; 1, 1; 0, 1; 1, 0, 1), (3; 1, 1; 0, 1; 1, 1, 0), (3; 1, 1; 0, 2; 0, 1, 1), (3; 1, 1; 1, 0; 0, 1, 1),
(3; 1, 1; 1, 1; 0, 0, 1), (3; 1, 1; 1, 1; 0, 1, 0), (3; 1, 2; 0, 1; 0, 1, 1), (3; 2, 0; 0, 1; 0, 0, 1),
(3; 2, 0; 0, 1; 1, 0, 0), (3; 2, 0; 1, 0; 0, 0, 1), (3; 2, 1; 0, 1; 0, 1, 0), (4; 1, 1; 1, 1; 1, 1, 1),
(4; 1, 1; 1, 2; 0, 1, 1), (4; 1, 1; 1, 2; 1, 0, 1), (4; 1, 2; 0, 2; 1, 1, 1), (4; 2, 0; 1, 1; 1, 0, 1),
(4; 2, 1; 0, 2; 0, 1, 1), (4; 2, 1; 0, 2; 1, 0, 1), (4; 2, 1; 0, 2; 1, 1, 0), (4; 2, 1; 1, 1; 0, 1, 1).

Representation

K5

K2,3,4,5

K3,5

K134,24,45

K45

K1,2,3,4

K1,2

K1

Costability

�10

2

6

4

8

3

6

8
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Maximal subcoordinate vectors

(1; 0, 0; 0, 0; 1, 0, 0), (1; 0, 0; 1, 0; 0, 0, 0), (1; 0, 1; 0, 0; 0, 1, 0), (1; 0, 1; 0, 1; 0, 0, 1),
(1; 1, 0; 0, 0; 0, 0, 1), (2; 0, 0; 1, 0; 1, 0, 0), (2; 0, 1; 0, 0; 1, 1, 0), (2; 0, 1; 0, 1; 1, 0, 1),
(2; 0, 1; 0, 2; 0, 0, 2), (2; 0, 1; 1, 0; 0, 1, 0), (2; 0, 1; 1, 1; 0, 0, 1), (2; 0, 2; 0, 1; 0, 1, 1),
(2; 1, 0; 0, 0; 1, 0, 1), (2; 1, 0; 1, 0; 0, 0, 1), (2; 1, 1; 0, 0; 0, 1, 1), (2; 1, 1; 0, 1; 0, 0, 2),
(2; 1, 1; 0, 1; 0, 1, 0), (2; 2, 0; 0, 0; 0, 0, 1), (3; 0, 1; 1, 0; 1, 1, 0), (3; 0, 1; 1, 1; 1, 0, 1),
(3; 0, 1; 1, 2; 0, 0, 2), (3; 0, 2; 0, 1; 1, 1, 1), (3; 0, 2; 0, 2; 0, 1, 2), (3; 0, 2; 0, 2; 1, 0, 2),
(3; 1, 0; 1, 1; 1, 0, 1), (3; 1, 1; 0, 1; 1, 0, 2), (3; 1, 1; 0, 1; 1, 1, 1), (3; 1, 1; 0, 2; 0, 1, 2),
(3; 1, 1; 1, 1; 0, 0, 2), (3; 1, 1; 1, 1; 0, 1, 1), (3; 1, 2; 0, 1; 0, 1, 2), (3; 2, 0; 0, 1; 1, 0, 1),
(3; 2, 0; 1, 0; 0, 0, 2), (3; 2, 1; 0, 1; 0, 0, 2), (3; 2, 1; 0, 1; 0, 1, 1), (4; 1, 1; 1, 1; 1, 1, 1),
(4; 1, 1; 1, 2; 0, 1, 2), (4; 1, 1; 1, 2; 1, 0, 2), (4; 1, 2; 0, 2; 1, 1, 2), (4; 2, 0; 1, 1; 1, 0, 2),
(4; 2, 1; 0, 2; 0, 1, 2), (4; 2, 1; 0, 2; 1, 0, 2), (4; 2, 1; 0, 2; 1, 1, 1), (4; 2, 1; 1, 1; 0, 1, 2).

Representation

K5

K1,2,3,5

K1,25

K13,234,5

K5

K1,2,3,4

K2,3,4

K4

Costability

�10

2

6

4

8

2

5

8

Maximal subcoordinate vectors

(1; 0, 0; 0, 0; 1, 0, 0), (1; 0, 0; 0, 1; 0, 1, 0), (1; 0, 0; 1, 0; 0, 0, 0), (1; 0, 1; 0, 0; 0, 1, 0),
(1; 0, 1; 0, 1; 0, 0, 1), (1; 1, 0; 0, 0; 0, 0, 1), (2; 0, 0; 1, 0; 1, 0, 0), (2; 0, 0; 1, 1; 0, 1, 0),
(2; 0, 1; 0, 1; 0, 2, 0), (2; 0, 1; 0, 1; 1, 0, 1), (2; 0, 1; 0, 1; 1, 1, 0), (2; 0, 1; 0, 2; 0, 1, 1),
(2; 0, 1; 1, 0; 0, 1, 0), (2; 0, 1; 1, 1; 0, 0, 1), (2; 0, 2; 0, 0; 0, 2, 0), (2; 0, 2; 0, 1; 0, 1, 1),
(2; 1, 0; 0, 0; 1, 0, 1), (2; 1, 0; 1, 0; 0, 0, 1), (2; 1, 0; 1, 0; 0, 1, 0), (2; 1, 1; 0, 1; 0, 1, 1),
(2; 2, 0; 0, 0; 0, 0, 1), (3; 0, 1; 1, 1; 0, 2, 0), (3; 0, 1; 1, 1; 1, 0, 1), (3; 0, 1; 1, 1; 1, 1, 0),
(3; 0, 1; 1, 2; 0, 1, 1), (3; 0, 2; 0, 1; 1, 2, 0), (3; 0, 2; 0, 2; 0, 2, 1), (3; 0, 2; 0, 2; 1, 1, 1),
(3; 1, 0; 1, 0; 1, 0, 1), (3; 1, 0; 1, 0; 1, 1, 0), (3; 1, 0; 1, 1; 0, 2, 0), (3; 1, 1; 0, 1; 1, 1, 1),
(3; 1, 1; 0, 2; 0, 2, 1), (3; 1, 1; 1, 0; 0, 2, 0), (3; 1, 1; 1, 1; 0, 1, 1), (3; 1, 2; 0, 1; 0, 2, 1),
(3; 2, 0; 0, 1; 1, 0, 1), (3; 2, 0; 1, 0; 0, 1, 1), (3; 2, 1; 0, 1; 0, 1, 1), (4; 1, 1; 1, 1; 1, 2, 0),
(4; 1, 1; 1, 2; 0, 2, 1), (4; 1, 1; 1, 2; 1, 1, 1), (4; 1, 2; 0, 2; 1, 2, 1), (4; 2, 0; 1, 1; 1, 1, 1),
(4; 2, 1; 0, 2; 0, 2, 1), (4; 2, 1; 0, 2; 1, 1, 1), (4; 2, 1; 1, 1; 0, 2, 1).
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Representation

K5

K1,2,3,5

K1,25

K123,24,5

K5

K1,2,3,4

K2,3,4

K3,4

Costability

�10

2

6

4

8

2

4

7

Maximal subcoordinate vectors

(1; 0, 0; 0, 1; 0, 1, 0), (1; 0, 0; 1, 0; 0, 0, 0), (1; 0, 1; 0, 0; 0, 1, 0), (1; 0, 1; 0, 0; 1, 0, 0),
(1; 0, 1; 0, 1; 0, 0, 1), (1; 1, 0; 0, 0; 0, 0, 1), (2; 0, 0; 1, 1; 0, 1, 0), (2; 0, 1; 0, 0; 2, 0, 0),
(2; 0, 1; 0, 1; 1, 1, 0), (2; 0, 1; 0, 2; 0, 1, 1), (2; 0, 1; 1, 0; 1, 0, 0), (2; 0, 1; 1, 1; 0, 0, 1),
(2; 0, 2; 0, 0; 1, 1, 0), (2; 0, 2; 0, 1; 0, 1, 1), (2; 0, 2; 0, 1; 1, 0, 1), (2; 1, 0; 0, 1; 1, 0, 0),
(2; 1, 0; 1, 0; 0, 0, 1), (2; 1, 0; 1, 0; 0, 1, 0), (2; 1, 1; 0, 0; 1, 0, 1), (2; 1, 1; 0, 1; 0, 1, 1),
(2; 2, 0; 0, 0; 0, 0, 1), (3; 0, 1; 1, 0; 2, 0, 0), (3; 0, 1; 1, 1; 1, 1, 0), (3; 0, 1; 1, 2; 0, 1, 1),
(3; 0, 2; 0, 1; 2, 0, 1), (3; 0, 2; 0, 1; 2, 1, 0), (3; 0, 2; 0, 2; 1, 1, 1), (3; 1, 0; 1, 1; 1, 1, 0),
(3; 1, 1; 0, 1; 2, 0, 1), (3; 1, 1; 0, 2; 1, 1, 1), (3; 1, 1; 1, 0; 1, 1, 0), (3; 1, 1; 1, 1; 0, 1, 1),
(3; 1, 1; 1, 1; 1, 0, 1), (3; 1, 2; 0, 1; 1, 1, 1), (3; 2, 0; 1, 0; 0, 1, 1), (3; 2, 1; 0, 1; 0, 1, 1),
(3; 2, 1; 0, 1; 1, 0, 1), (4; 1, 1; 1, 1; 2, 0, 1), (4; 1, 1; 1, 1; 2, 1, 0), (4; 1, 1; 1, 2; 1, 1, 1),
(4; 1, 2; 0, 2; 2, 1, 1), (4; 2, 1; 0, 2; 1, 1, 1), (4; 2, 1; 0, 2; 2, 0, 1), (4; 2, 1; 1, 1; 1, 1, 1).

Poset S3.

Representation

K4

K1,2,3,4

K3,4

K4

K1

K12,234,4

K234 K1,2

Costability

�8

1

4

6

2

4

7 4

Maximal subcoordinate vectors

(1; 0, 0, 0; 1, 0, 0; 0), (1; 0, 0, 1; 0, 0, 1; 1), (1; 0, 0, 1; 0, 1, 0; 0), (1; 0, 1, 0; 0, 0, 1; 0),
(1; 1, 0, 0; 0, 0, 0; 0), (2; 0, 0, 1; 1, 0, 1; 1), (2; 0, 0, 1; 1, 1, 0; 0), (2; 0, 0, 2; 0, 0, 1; 2),
(2; 0, 0, 2; 0, 1, 1; 1), (2; 0, 1, 0; 1, 0, 1; 0), (2; 0, 1, 1; 0, 1, 1; 1), (2; 1, 0, 0; 1, 0, 0; 0),
(2; 1, 0, 1; 0, 0, 1; 1), (2; 1, 0, 1; 0, 1, 0; 1), (2; 1, 1, 0; 0, 0, 1; 0), (3; 0, 1, 1; 1, 0, 1; 2),
(3; 0, 1, 1; 1, 1, 1; 1), (3; 0, 1, 2; 0, 1, 1; 2), (3; 1, 0, 1; 1, 0, 1; 1), (3; 1, 0, 1; 1, 1, 0; 1),
(3; 1, 0, 2; 0, 1, 1; 2), (3; 1, 1, 0; 1, 0, 1; 1), (3; 1, 1, 1; 0, 1, 1; 1).
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Poset S4.

Representation

K4

K1,2,3,4

K3,4

K4

K12,234,4

K234

K1,2,3

K1,2

K1

Costability

�8
1

4

7

2

6

2

4

6

Maximal subcoordinate vectors

(1; 0, 0, 0; 1, 0; 0, 0, 0), (1; 0, 0, 1; 0, 0; 1, 0, 0), (1; 0, 0, 1; 0, 1; 0, 1, 0),
(1; 0, 1, 0; 0, 0; 0, 0, 1), (1; 1, 0, 0; 0, 0; 0, 0, 0), (2; 0, 0, 1; 1, 0; 1, 0, 0),
(2; 0, 0, 1; 1, 1; 0, 1, 0), (2; 0, 0, 2; 0, 1; 1, 1, 0), (2; 0, 1, 0; 1, 0; 0, 0, 1),
(2; 0, 1, 0; 1, 0; 0, 1, 0), (2; 0, 1, 1; 0, 1; 0, 1, 1), (2; 0, 1, 1; 0, 1; 1, 0, 1),
(2; 1, 0, 0; 1, 0; 0, 0, 1), (2; 1, 0, 1; 0, 0; 1, 0, 0), (2; 1, 0, 1; 0, 1; 0, 1, 0),
(2; 1, 1, 0; 0, 0; 0, 0, 1), (3; 0, 1, 1; 1, 1; 0, 1, 1), (3; 0, 1, 1; 1, 1; 1, 0, 1),
(3; 0, 1, 1; 1, 1; 1, 1, 0), (3; 0, 1, 2; 0, 2; 1, 1, 1), (3; 1, 0, 1; 1, 0; 1, 0, 1),
(3; 1, 0, 1; 1, 1; 0, 1, 1), (3; 1, 0, 2; 0, 1; 1, 1, 0), (3; 1, 1, 0; 1, 0; 0, 1, 1),
(3; 1, 1, 1; 0, 1; 0, 1, 1), (3; 1, 1, 1; 0, 1; 1, 0, 1).
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Poset S5.

Representation

K5

K1,2,3,5

K13,125

K1,24,5

K5

K1,2,3,4,5

K2,3,4

K3,4

K4

Costability

�10

2

6

4

9

1

4

6

8

Maximal subcoordinate vectors

(1; 0, 0; 0, 0; 1, 0, 0, 0), (1; 0, 0; 0, 1; 0, 0, 1, 0), (1; 0, 0; 1, 0; 0, 0, 0, 0),
(1; 0, 1; 0, 0; 0, 0, 1, 0), (1; 0, 1; 0, 0; 0, 1, 0, 0), (1; 0, 1; 0, 1; 0, 0, 0, 1),
(1; 1, 0; 0, 0; 0, 0, 0, 1), (2; 0, 0; 1, 0; 1, 0, 0, 0), (2; 0, 0; 1, 1; 0, 0, 1, 0),
(2; 0, 1; 0, 0; 1, 1, 0, 0), (2; 0, 1; 0, 1; 0, 1, 1, 0), (2; 0, 1; 0, 1; 1, 0, 0, 1),
(2; 0, 1; 0, 1; 1, 0, 1, 0), (2; 0, 1; 0, 2; 0, 0, 1, 1), (2; 0, 1; 1, 0; 0, 0, 1, 0),
(2; 0, 1; 1, 0; 0, 1, 0, 0), (2; 0, 1; 1, 1; 0, 0, 0, 1), (2; 0, 2; 0, 0; 0, 1, 1, 0),
(2; 0, 2; 0, 1; 0, 0, 1, 1), (2; 1, 0; 0, 1; 1, 0, 0, 1), (2; 1, 0; 1, 0; 0, 0, 0, 1),
(2; 1, 1; 0, 1; 0, 0, 0, 2), (2; 1, 1; 0, 1; 0, 0, 1, 1), (2; 1, 1; 0, 1; 0, 1, 0, 1),
(2; 2, 0; 0, 0; 0, 0, 0, 2), (3; 0, 1; 1, 0; 1, 1, 0, 0), (3; 0, 1; 1, 1; 0, 1, 1, 0),
(3; 0, 1; 1, 1; 1, 0, 0, 1), (3; 0, 1; 1, 1; 1, 0, 1, 0), (3; 0, 1; 1, 2; 0, 0, 1, 1),
(3; 0, 2; 0, 1; 1, 1, 1, 0), (3; 0, 2; 0, 2; 1, 0, 1, 1), (3; 1, 0; 1, 1; 1, 0, 0, 1),
(3; 1, 1; 0, 1; 1, 1, 0, 1), (3; 1, 1; 0, 2; 0, 0, 1, 2), (3; 1, 1; 0, 2; 0, 1, 1, 1),
(3; 1, 1; 0, 2; 1, 0, 0, 2), (3; 1, 1; 0, 2; 1, 0, 1, 1), (3; 1, 1; 1, 0; 0, 1, 1, 0),
(3; 1, 1; 1, 1; 0, 0, 1, 1), (3; 1, 1; 1, 1; 0, 1, 0, 1), (3; 1, 2; 0, 1; 0, 1, 1, 1),
(3; 2, 0; 0, 1; 1, 0, 0, 2), (3; 2, 0; 1, 0; 0, 0, 1, 1), (3; 2, 1; 0, 1; 0, 0, 1, 2),
(3; 2, 1; 0, 1; 0, 1, 0, 2), (4; 1, 1; 1, 1; 1, 1, 0, 1), (4; 1, 1; 1, 1; 1, 1, 1, 0),
(4; 1, 1; 1, 2; 0, 1, 1, 1), (4; 1, 1; 1, 2; 1, 0, 1, 1), (4; 1, 2; 0, 2; 1, 1, 1, 1),
(4; 2, 0; 1, 1; 1, 0, 1, 1), (4; 2, 1; 0, 2; 0, 1, 1, 2), (4; 2, 1; 0, 2; 1, 0, 1, 2),
(4; 2, 1; 0, 2; 1, 1, 0, 2), (4; 2, 1; 1, 1; 0, 1, 1, 1).
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Poset S6.

Representation

K5

K13,234,5

K5

K1,2,3,4,5

K1,25

K1,2,3,4

K2,3,4

K3,4

K4

Costability

�10

4

8

1

6

2

4

6

9

Maximal subcoordinate vectors

(1; 0, 0; 0, 0; 1, 0, 0, 0), (1; 0, 0; 0, 1; 0, 1, 0, 0), (1; 0, 0; 1, 0; 0, 0, 0, 1),
(1; 0, 1; 0, 1; 0, 0, 0, 1), (1; 0, 1; 0, 1; 0, 0, 1, 0), (1; 1, 0; 0, 0; 0, 0, 0, 0),
(2; 0, 0; 0, 1; 1, 1, 0, 0), (2; 0, 0; 1, 0; 1, 0, 0, 1), (2; 0, 0; 2, 0; 0, 0, 0, 1),
(2; 0, 1; 0, 1; 1, 0, 0, 1), (2; 0, 1; 0, 1; 1, 0, 1, 0), (2; 0, 1; 0, 2; 0, 1, 1, 0),
(2; 0, 1; 1, 1; 0, 0, 1, 1), (2; 0, 1; 1, 1; 0, 1, 0, 1), (2; 0, 2; 0, 2; 0, 0, 1, 1),
(2; 1, 0; 0, 0; 1, 0, 0, 0), (2; 1, 0; 0, 1; 0, 1, 0, 0), (2; 1, 0; 1, 0; 0, 0, 0, 1),
(2; 1, 0; 1, 0; 0, 0, 1, 0), (2; 1, 1; 0, 1; 0, 0, 0, 1), (2; 1, 1; 0, 1; 0, 0, 1, 0),
(3; 0, 1; 0, 2; 1, 1, 1, 0), (3; 0, 1; 1, 1; 1, 0, 1, 1), (3; 0, 1; 1, 1; 1, 1, 0, 1),
(3; 0, 1; 2, 0; 1, 0, 0, 1), (3; 0, 1; 2, 1; 0, 0, 1, 1), (3; 0, 1; 2, 1; 0, 1, 0, 1),
(3; 0, 2; 0, 2; 1, 0, 1, 1), (3; 0, 2; 0, 3; 0, 1, 1, 1), (3; 0, 2; 1, 2; 0, 1, 1, 1),
(3; 1, 0; 0, 1; 1, 1, 0, 0), (3; 1, 0; 1, 0; 1, 0, 0, 1), (3; 1, 0; 1, 0; 1, 0, 1, 0),
(3; 1, 0; 2, 0; 0, 0, 1, 1), (3; 1, 1; 0, 1; 1, 0, 0, 1), (3; 1, 1; 0, 1; 1, 0, 1, 0),
(3; 1, 1; 0, 2; 0, 1, 1, 0), (3; 1, 1; 1, 1; 0, 0, 1, 1), (3; 1, 1; 1, 1; 0, 1, 0, 1),
(3; 1, 1; 1, 1; 0, 1, 1, 0), (3; 1, 2; 0, 2; 0, 0, 1, 1), (4; 0, 2; 1, 2; 1, 1, 1, 1),
(4; 0, 2; 2, 1; 1, 0, 1, 1), (4; 0, 2; 2, 1; 1, 1, 0, 1), (4; 0, 2; 2, 2; 0, 1, 1, 1),
(4; 1, 1; 1, 1; 1, 1, 0, 1), (4; 1, 1; 1, 1; 1, 1, 1, 0), (4; 1, 1; 2, 0; 1, 0, 1, 1),
(4; 1, 1; 2, 1; 0, 1, 1, 1), (4; 1, 2; 1, 1; 1, 0, 1, 1), (4; 1, 2; 1, 2; 0, 1, 1, 1).
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40 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

Appendix C. Sincere representations of finite representation

type, their maximal subdimension vectors and stability

conditions.

For each non-primitive posets S1, . . . ,S6 of finite representation type (given in
Section 3.1) we list its sincere representations, stability condition (calculated by
formulas (4.7)) and maximal subdimension vectors. We use the same notation as
in Appendix B.

Poset S1.

Representation

K3

K1,23

K123

K1,2

K1

K2,3

K3

Stability

�6

1

2

2

1

2

2

Maximal subdimension vectors

(1; 0, 0; 0, 0; 1, 1), (1; 0, 0; 0, 1; 0, 1), (1; 0, 1; 0, 0; 0, 1), (1; 0, 1; 1, 1; 0, 0),
(1; 1, 1; 0, 0; 0, 0), (2; 0, 1; 0, 1; 1, 2), (2; 0, 1; 1, 1; 1, 1), (2; 0, 1; 1, 2; 0, 1),
(2; 1, 1; 0, 1; 1, 1), (2; 1, 2; 1, 1; 0, 1)

Poset S2.

Representation

K3

K13,2,4

K123,24

K1,4

K4

K1,2,3

K2,3

K3

Stability

�7

1

3

3

1

2

2

2

Maximal subdimension vectors

(1; 0, 0; 0, 0; 1, 1, 1), (1; 0, 0; 0, 1; 0, 0, 1), (1; 0, 1; 0, 0; 0, 1, 1), (1; 0, 1; 1, 1; 0, 0, 0),
(1; 1, 1; 0, 0; 0, 0, 1), (2; 0, 1; 0, 0; 1, 2, 2), (2; 0, 1; 0, 1; 1, 1, 2), (2; 0, 1; 1, 1; 1, 1, 1),
(2; 0, 1; 1, 2; 0, 0, 1), (2; 1, 1; 0, 0; 1, 1, 2), (2; 1, 1; 0, 1; 0, 1, 2), (2; 1, 2; 0, 0; 0, 1, 2),
(2; 1, 2; 1, 1; 0, 1, 1), (2; 2, 2; 0, 0; 0, 0, 1), (3; 1, 2; 0, 1; 1, 2, 3), (3; 1, 2; 1, 1; 1, 2, 2),
(3; 1, 2; 1, 2; 1, 1, 2), (3; 2, 2; 0, 1; 1, 1, 2), (3; 2, 3; 1, 1; 0, 1, 2).
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Representation

K3

K12,13,4

K124,13

K1,2,4

K4

K1,2,3

K2,3

K3

Stability

�8

1

3

3

2

2

2

2

Maximal subdimension vectors

(1; 0, 0; 0, 0; 1, 1, 1), (1; 0, 0; 0, 1; 0, 1, 1), (1; 0, 1; 0, 1; 0, 0, 1), (1; 0, 1; 1, 1; 0, 0, 0),
(1; 1, 1; 0, 0; 0, 0, 1), (1; 1, 1; 0, 1; 0, 0, 0), (2; 0, 1; 0, 1; 1, 2, 2), (2; 0, 1; 0, 2; 0, 1, 2),
(2; 0, 1; 1, 1; 1, 1, 1), (2; 0, 1; 1, 2; 0, 1, 1), (2; 1, 1; 0, 1; 1, 1, 2), (2; 1, 1; 0, 2; 0, 1, 1),
(2; 1, 2; 0, 1; 0, 1, 2), (2; 1, 2; 1, 2; 0, 0, 1), (2; 2, 2; 0, 1; 0, 0, 1), (3; 1, 2; 0, 2; 1, 2, 3),
(3; 1, 2; 1, 2; 1, 2, 2), (3; 1, 2; 1, 3; 0, 1, 2), (3; 2, 2; 0, 2; 1, 1, 2), (3; 2, 3; 1, 2; 0, 1, 2).

Poset S3.

Representation

K4

K1,3,4

K1,4

K4

K1,2,3

K2,3

K3 K123,24

Stability

�8

1

2

2

2

2

1 4

Maximal subdimension vectors

(1; 0, 0, 0; 0, 0, 1; 1), (1; 0, 0, 1; 1, 1, 1; 0), (1; 0, 1, 1; 0, 0, 1; 0), (1; 1, 1, 1; 0, 0, 0; 0),
(2; 0, 0, 1; 0, 0, 1; 2), (2; 0, 0, 1; 1, 1, 2; 1), (2; 0, 0, 1; 1, 2, 2; 0), (2; 0, 1, 1; 0, 1, 2; 1),
(2; 0, 1, 2; 1, 1, 2; 0), (2; 1, 1, 1; 0, 1, 1; 1), (2; 1, 1, 2; 1, 1, 1; 0), (2; 1, 2, 2; 0, 0, 1; 0),
(3; 0, 1, 2; 1, 1, 2; 2), (3; 0, 1, 2; 1, 2, 3; 1), (3; 1, 1, 2; 0, 1, 2; 2), (3; 1, 1, 2; 1, 2, 2; 1),
(3; 1, 2, 3; 1, 1, 2; 1).
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42 VYACHESLAV FUTORNY AND KOSTIANTYN IUSENKO

Poset S4.

Representation

K4

K1,23,4

K123,4

K4

K1,2,4

K14

K1,2,3

K2,3

K3

Stability

�7
1

2

1

2

2

2

2

2

Maximal subdimension vectors

(1; 0, 0, 0; 0, 0; 1, 1, 1), (1; 0, 0, 0; 0, 1; 0, 1, 1), (1; 0, 0, 1; 0, 0; 0, 1, 1),
(1; 0, 0, 1; 0, 1; 0, 0, 1), (1; 0, 0, 1; 1, 1; 0, 0, 0), (1; 0, 1, 1; 0, 0; 0, 0, 1),
(1; 1, 1, 1; 0, 1; 0, 0, 0), (2; 0, 0, 1; 0, 1; 1, 2, 2), (2; 0, 0, 1; 0, 2; 0, 1, 2),
(2; 0, 0, 1; 1, 1; 1, 1, 1), (2; 0, 0, 1; 1, 2; 0, 1, 1), (2; 0, 1, 1; 0, 1; 1, 1, 2),
(2; 0, 1, 2; 0, 1; 0, 1, 2), (2; 0, 1, 2; 1, 1; 0, 1, 1), (2; 1, 1, 1; 0, 1; 1, 1, 1),
(2; 1, 1, 1; 0, 2; 0, 1, 1), (2; 1, 1, 2; 0, 1; 0, 1, 1), (2; 1, 1, 2; 1, 2; 0, 0, 1),
(2; 1, 2, 2; 0, 1; 0, 0, 1), (3; 0, 1, 2; 0, 2; 1, 2, 3), (3; 0, 1, 2; 1, 2; 1, 2, 2),
(3; 1, 1, 2; 0, 2; 1, 2, 2), (3; 1, 1, 2; 1, 2; 1, 1, 2), (3; 1, 1, 2; 1, 3; 0, 1, 2),
(3; 1, 2, 2; 0, 2; 1, 1, 2), (3; 1, 2, 3; 1, 2; 0, 1, 2).

Poset S5.

Representation

K5

K1,2,4,5

K15,4

K123,24,5

K5

K1,2,3,5

K1,2,3

K2,3

K3

Stability

�9

4

2

3

1

1

2

2

2
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Maximal subdimension vectors

(1; 0, 0; 0, 0; 1, 1, 1, 1), (1; 0, 0; 0, 1; 0, 0, 1, 1), (1; 0, 1; 0, 0; 0, 1, 1, 1),
(1; 0, 1; 1, 1; 0, 0, 0, 1), (1; 1, 1; 0, 0; 0, 0, 0, 1), (2; 0, 1; 0, 0; 1, 2, 2, 2),
(2; 0, 1; 0, 1; 1, 1, 2, 2), (2; 0, 1; 1, 1; 1, 1, 1, 2), (2; 0, 1; 1, 2; 0, 0, 1, 2),
(2; 0, 2; 0, 0; 0, 1, 2, 2), (2; 0, 2; 1, 1; 0, 1, 1, 2), (2; 0, 2; 1, 2; 0, 0, 0, 1),
(2; 1, 1; 0, 0; 1, 1, 1, 2), (2; 1, 2; 0, 0; 0, 1, 1, 2), (2; 1, 2; 0, 1; 0, 1, 1, 1),
(2; 1, 2; 1, 1; 0, 0, 1, 2), (2; 2, 2; 0, 0; 0, 0, 0, 1), (3; 0, 2; 0, 1; 1, 2, 3, 3),
(3; 0, 2; 1, 1; 1, 2, 2, 3), (3; 0, 2; 1, 2; 1, 1, 2, 3), (3; 0, 2; 1, 3; 0, 0, 1, 2),
(3; 1, 2; 0, 1; 1, 2, 2, 3), (3; 1, 2; 1, 1; 1, 1, 2, 3), (3; 1, 2; 1, 2; 0, 1, 2, 3),
(3; 1, 3; 1, 1; 0, 1, 2, 3), (3; 1, 3; 1, 2; 0, 1, 1, 2), (3; 2, 2; 0, 1; 1, 1, 1, 2),
(3; 2, 3; 0, 1; 0, 1, 1, 2), (3; 2, 3; 1, 1; 0, 0, 1, 2), (4; 1, 3; 1, 2; 1, 2, 3, 4),
(4; 1, 3; 1, 3; 1, 1, 2, 3), (4; 2, 3; 0, 2; 1, 2, 2, 3), (4; 2, 3; 1, 2; 1, 1, 2, 3),
(4; 2, 4; 1, 2; 0, 1, 2, 3).

Poset S6.

Representation

K5

K1,2,5

K5

K13,23,4,5

K134,235

K1,2,3,4

K2,3,4

K3,4

K4

Stability

�9

4

2

1

4

2

2

2

1

Maximal subdimension vectors

(1; 0, 0; 0, 1; 1, 1, 1, 1), (1; 0, 0; 1, 1; 0, 0, 0, 1), (1; 0, 1; 0, 0; 0, 0, 1, 1),
(1; 1, 1; 0, 1; 0, 0, 0, 0), (2; 0, 0; 0, 1; 1, 2, 2, 2), (2; 0, 0; 0, 2; 1, 1, 2, 2),
(2; 0, 0; 1, 2; 1, 1, 1, 2), (2; 0, 0; 2, 2; 0, 0, 0, 1), (2; 0, 1; 0, 1; 1, 1, 2, 2),
(2; 0, 1; 0, 2; 0, 0, 1, 2), (2; 0, 1; 1, 1; 0, 1, 1, 2), (2; 0, 2; 0, 1; 0, 0, 1, 2),
(2; 1, 1; 0, 2; 1, 1, 1, 1), (2; 1, 1; 1, 2; 0, 0, 1, 1), (2; 1, 2; 0, 1; 0, 0, 1, 1),
(3; 0, 1; 0, 2; 1, 2, 3, 3), (3; 0, 1; 1, 2; 1, 2, 2, 3), (3; 0, 1; 1, 3; 1, 1, 2, 3),
(3; 0, 1; 2, 3; 1, 1, 1, 2), (3; 0, 2; 0, 2; 1, 1, 2, 3), (3; 0, 2; 1, 2; 0, 1, 2, 3),
(3; 1, 1; 0, 2; 1, 2, 2, 2), (3; 1, 1; 1, 3; 1, 1, 2, 2), (3; 1, 1; 2, 3; 0, 0, 1, 2),
(3; 1, 2; 0, 2; 1, 1, 2, 2), (3; 1, 2; 1, 2; 0, 1, 2, 2), (3; 1, 2; 1, 3; 0, 0, 1, 2),
(3; 1, 3; 0, 2; 0, 0, 1, 2), (4; 0, 2; 1, 3; 1, 2, 3, 4), (4; 0, 2; 2, 3; 1, 2, 2, 3),
(4; 1, 2; 1, 3; 1, 2, 3, 3), (4; 1, 2; 2, 4; 1, 1, 2, 3), (4; 1, 3; 1, 3; 1, 1, 2, 3).
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